WorldWideScience

Sample records for acid metabolic networks

  1. Microbial diversity and metabolic networks in acid mine drainage habitats.

    Science.gov (United States)

    Méndez-García, Celia; Peláez, Ana I; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  2. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  3. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    Science.gov (United States)

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  5. [Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes].

    Science.gov (United States)

    Liu, Ying; Chen, Zheng; Shang, Er-chang; Yang, Kun; Wei, Deng-guo; Zhou, Lu; Jiang, Xiao-lu; He, Chong; Lai, Lu-hua

    2009-03-01

    Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.

  6. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available The tricarboxylic acid (TCA cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH(2 that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and alpha-ketoglutarate (KG is a key participant in the detoxification of reactive oxygen species (ROS. Its utilization as an anti-oxidant can effectively diminish ROS and curtail the formation of NADH, a situation that further impedes the release of ROS via oxidative phosphorylation. Thus, the increased production of KG mediated by NADP-dependent isocitrate dehydrogenase (NADP-ICDH and its decreased utilization via the TCA cycle confer a unique strategy to modulate the cellular redox environment. Activities of alpha-ketoglutarate dehydrogenase (KGDH, NAD-dependent isocitrate dehydrogenase (NAD-ICDH, and succinate dehydrogenase (SDH were sharply diminished in the cellular systems exposed to conditions conducive to oxidative stress. These findings uncover an intricate link between TCA cycle and ROS homeostasis and may help explain the ineffective TCA cycle that characterizes various pathological conditions and ageing.

  7. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  8. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells.

    Science.gov (United States)

    Ray, Upasana; Roy Chowdhury, Shreya; Vasudevan, Madavan; Bankar, Kiran; Roychoudhury, Susanta; Roy, Sib Sankar

    2017-05-01

    Extravasation and metastatic progression are two main reasons for the high mortality rate associated with cancer. The metastatic potential of cancer cells depends on a plethora of metabolic challenges prevailing within the tumor microenvironment. To achieve higher rates of proliferation, cancer cells reprogram their metabolism, increasing glycolysis and biosynthetic activities. Just why this metabolic reprogramming predisposes cells towards increased oncogenesis remains elusive. The accumulation of myriad oncolipids in the tumor microenvironment has been shown to promote the invasiveness of cancer cells, with lysophosphatidic acid (LPA) being one such critical factor enriched in ovarian cancer patients. Cellular bioenergetic studies confirm that oxidative phosphorylation is suppressed and glycolysis is increased with long exposure to LPA in ovarian cancer cells compared with non-transformed epithelial cells. We sought to uncover the regulatory complexity underlying this oncolipid-induced metabolic perturbation. Gene regulatory networking using RNA-Seq analysis identified the oncogene ETS-1 as a critical mediator of LPA-induced metabolic alterations for the maintenance of invasive phenotype. Moreover, LPA receptor-2 specific PtdIns3K-AKT signaling induces ETS-1 and its target matrix metalloproteases. Abrogation of ETS-1 restores cellular bioenergetics towards increased oxidative phosphorylation and reduced glycolysis, and this effect was reversed by the presence of LPA. Furthermore, the bioenergetic status of LPA-treated ovarian cancer cells mimics hypoxia through induction of hypoxia-inducible factor-1α, which was found to transactivate ets-1. Studies in primary tumors generated in syngeneic mice corroborated the in vitro findings. Thus, our study highlights the phenotypic changes induced by the pro-metastatic factor ETS-1 in ovarian cancer cells. The relationship between enhanced invasiveness and metabolic plasticity further illustrates the critical role of

  9. Robustness of metabolic networks

    Science.gov (United States)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  10. Crassulacean acid metabolism

    Directory of Open Access Journals (Sweden)

    Thomas David Geydan

    2005-07-01

    Full Text Available A review of Crassulacean acid metabolism is presented, characterized by showing the occurrence, activity and plasticity of these complex mechanism at the physiological, biochemical and molecular level, framed by the presence of the denominated four phases in CAM and its repercussion and expression due to different stresses in an ecological context. The basic enzymes, and metabolites necessary for the optional functioning of CAM are presented as well as their mode of action and cellular control. Finally, it is shown how environmental conditions and molecular signalling mediate the phenotypic plasticity.

  11. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  12. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  13. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... acids are "building blocks" that join together to form proteins. If you have one of these disorders, your body may have trouble breaking down certain amino acids. Or there may be a problem getting the ...

  14. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zheng, Hao; Yu, Wei; Chai, Hongyan [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390,USA (United States); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yue, Jiang; Peng, Renxiu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  15. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    International Nuclear Information System (INIS)

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-01-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E 2 (PGE 2 ) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B 4 (LTB 4 ). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser 241 ), phospho-Akt (Thr 308 ), phospho-Bad (Ser 136 ), and Bcl-x L expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE 2 , LTB 4 and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr 308 ). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in

  16. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    Science.gov (United States)

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  17. Serum uric acid levels and metabolic syndrome.

    Science.gov (United States)

    Ciarla, Sara; Struglia, Manuela; Giorgini, Paolo; Striuli, Rinaldo; Necozione, Stefano; Properzi, Giuliana; Ferri, Claudio

    2014-07-01

    To investigate the relationship among serum uric acid levels and metabolic syndrome. Anthropometric parameters, serum uric acid and metabolic parameters were evaluated in 139 subjects. Serum uric acid levels were significantly higher in subjects with than without metabolic syndrome (p metabolic syndrome components (p for trend uric acid significantly correlated with various anthropometric and serum metabolic parameters. Serum uric acid levels were higher in individuals with rather than without metabolic syndrome and raised gradually as the number of metabolic syndrome components increased. The relationship between serum uric acid levels and various metabolic parameters suggests that uric acid might be considered as a component of metabolic syndrome. Hyperuricemia is a common finding in patients with the metabolic syndrome. Recent studies indicated that hyperuricemia may be also a predictor of metabolic syndrome development.

  18. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.

    Science.gov (United States)

    Averesch, Nils J H; Martínez, Verónica S; Nielsen, Lars K; Krömer, Jens O

    2018-02-16

    Adipic acid, a nylon-6,6 precursor, has recently gained popularity in synthetic biology. Here, 16 different production routes to adipic acid were evaluated using a novel tool for network-embedded thermodynamic analysis of elementary flux modes. The tool distinguishes between thermodynamically feasible and infeasible modes under determined metabolite concentrations, allowing the thermodynamic feasibility of theoretical yields to be assessed. Further, patterns that always caused infeasible flux distributions were identified, which will aid the development of tailored strain design. A review of cellular efflux mechanisms revealed that significant accumulation of extracellular product is only possible if coupled with ATP hydrolysis. A stoichiometric analysis demonstrated that the maximum theoretical product carbon yield heavily depends on the metabolic route, ranging from 32 to 99% on glucose and/or palmitate in Escherichia coli and Saccharomyces cerevisiae metabolic models. Equally important, metabolite concentrations appeared to be thermodynamically restricted in several pathways. Consequently, the number of thermodynamically feasible flux distributions was reduced, in some cases even rendering whole pathways infeasible, highlighting the importance of pathway choice. Only routes based on the shikimate pathway were thermodynamically favorable over a large concentration and pH range. The low pH capability of S. cerevisiae shifted the thermodynamic equilibrium of some pathways toward product formation. One identified infeasible-pattern revealed that the reversibility of the mitochondrial malate dehydrogenase contradicted the current state of knowledge, which imposes a major restriction on the metabolism of S. cerevisiae. Finally, the evaluation of industrially relevant constraints revealed that two shikimate pathway-based routes in E. coli were the most robust.

  19. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes

  20. Structural correlations in bacterial metabolic networks

    Directory of Open Access Journals (Sweden)

    Lizana Ludvig

    2011-01-01

    Full Text Available Abstract Background Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. Results We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD, a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. Conclusions The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery

  1. Structural correlations in bacterial metabolic networks.

    Science.gov (United States)

    Bernhardsson, Sebastian; Gerlee, Philip; Lizana, Ludvig

    2011-01-20

    Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests that natural selection and

  2. CACODYLIC ACID (DMAV): METABOLISM AND ...

    Science.gov (United States)

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic action (MOA) for DMAV including a consideration of the key events for bladder tumor formation in rats, other potential modes of action; and also considers the human relevance of the proposed animal MOA. As part of tolerance reassessment under the Food Quality Protection Act for the August 3, 2006 deadline, the hazard of cacodylic acid is being reassessed.

  3. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    Science.gov (United States)

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.

  5. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...... changes induced by complex regulatory mechanisms coordinating the activity of different metabolic pathways. It is difficult to map such global transcriptional responses by using traditional methods, because many genes in the metabolic network have relatively small changes at their transcription level. We...... in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic...

  6. Branched Chain Amino Acids: Beyond Nutrition Metabolism.

    Science.gov (United States)

    Nie, Cunxi; He, Ting; Zhang, Wenju; Zhang, Guolong; Ma, Xi

    2018-03-23

    Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.

  7. Nonessential amino acid metabolism in breast cancer.

    Science.gov (United States)

    Geck, Renee C; Toker, Alex

    2016-09-01

    Interest in studying cancer metabolism has risen in recent years, as it has become evident that the relationship between cancer and metabolic pathways could reveal novel biomarkers and therapeutic targets. Metabolic starvation therapy is particularly promising due to its low toxicity. Nonessential amino acids are promising metabolites for such therapy because they become essential in many tumor cells, including breast cancer cells. This review will focus on four nonessential amino acid metabolism pathways: glutamine-glutamate, serine-glycine, cysteine, and arginine-proline metabolism. Recent studies of these amino acids have revealed metabolic enzymes that have the potential to be effective as cancer therapy targets or biomarkers for response to metabolic starvation therapy. The review will also discuss features of nonessential amino acid metabolism that merit further investigation to determine their relevancy to breast cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Stability from Structure : Metabolic Networks Are Unlike Other Biological Networks

    NARCIS (Netherlands)

    Van Nes, P.; Bellomo, D.; Reinders, M.J.T.; De Ridder, D.

    2009-01-01

    In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we

  9. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression.

    Science.gov (United States)

    Li, Zhaoyong; Zhang, Huafeng

    2016-01-01

    Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the "Warburg effect", i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.

  10. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    Science.gov (United States)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  11. A network perspective on metabolic inconsistency

    Directory of Open Access Journals (Sweden)

    Sonnenschein Nikolaus

    2012-05-01

    Full Text Available Abstract Background Integrating gene expression profiles and metabolic pathways under different experimental conditions is essential for understanding the coherence of these two layers of cellular organization. The network character of metabolic systems can be instrumental in developing concepts of agreement between expression data and pathways. A network-driven interpretation of gene expression data has the potential of suggesting novel classifiers for pathological cellular states and of contributing to a general theoretical understanding of gene regulation. Results Here, we analyze the coherence of gene expression patterns and a reconstruction of human metabolism, using consistency scores obtained from network and constraint-based analysis methods. We find a surprisingly strong correlation between the two measures, demonstrating that a substantial part of inconsistencies between metabolic processes and gene expression can be understood from a network perspective alone. Prompted by this finding, we investigate the topological context of the individual biochemical reactions responsible for the observed inconsistencies. On this basis, we are able to separate the differential contributions that bear physiological information about the system, from the unspecific contributions that unravel gaps in the metabolic reconstruction. We demonstrate the biological potential of our network-driven approach by analyzing transcriptome profiles of aldosterone producing adenomas that have been obtained from a cohort of Primary Aldosteronism patients. We unravel systematics in the data that could not have been resolved by conventional microarray data analysis. In particular, we discover two distinct metabolic states in the adenoma expression patterns. Conclusions The methodology presented here can help understand metabolic inconsistencies from a network perspective. It thus serves as a mediator between the topology of metabolic systems and their dynamical

  12. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  13. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  14. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  15. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  16. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  17. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism

    Directory of Open Access Journals (Sweden)

    Karlstädt Anja

    2012-08-01

    Full Text Available Abstract Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  18. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  19. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  20. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    Directory of Open Access Journals (Sweden)

    Zeeshan Muhammad Iqbal

    Full Text Available The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON or high-energy (OVE diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA did not differ, among the polyunsaturated fatty acids (PUFA, the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation.

  1. On Functional Module Detection in Metabolic Networks

    Science.gov (United States)

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  2. Developmental changes in the metabolic network of snapdragon flowers.

    Directory of Open Access Journals (Sweden)

    Joëlle K Muhlemann

    Full Text Available Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.

  3. Regulation of uric acid metabolism and excretion.

    Science.gov (United States)

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. Ecological network analysis of China's societal metabolism.

    Science.gov (United States)

    Zhang, Yan; Liu, Hong; Li, Yating; Yang, Zhifeng; Li, Shengsheng; Yang, Naijin

    2012-01-01

    Uncontrolled socioeconomic development has strong negative effects on the ecological environment, including pollution and the depletion and waste of natural resources. These serious consequences result from the high flows of materials and energy through a socioeconomic system produced by exchanges between the system and its surroundings, causing the disturbance of metabolic processes. In this paper, we developed an ecological network model for a societal system, and used China in 2006 as a case study to illustrate application of the model. We analyzed China's basic metabolic processes and used ecological network analysis to study the network relationships within the system. Basic components comprised the internal environment, five sectors (agriculture, exploitation, manufacturing, domestic, and recycling), and the external environment. We defined 21 pairs of ecological relationships in China's societal metabolic system (excluding self-mutualism within a component). Using utility and throughflow analysis, we found that exploitation, mutualism, and competition relationships accounted for 76.2, 14.3, and 9.5% of the total relationships, respectively. In our trophic level analysis, the components were divided into producers, consumers, and decomposers according to their positions in the system. Our analyses revealed ways to optimize the system's structure and adjust its functions, thereby promoting healthier socioeconomic development, and suggested ways to apply ecological network analysis in future socioeconomic research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. [Acid-base homeostasis: metabolic acidosis and metabolic alkalosis].

    Science.gov (United States)

    Dussol, Bertrand

    2014-07-01

    Acid-base homeostasis ensured by the kidneys, which maintain the equilibrium between proton generation by cellular metabolism and proton excretion in urine. This requirement is lifesaving because of the protons' ability to bind to anionic proteins in the extracellular space, modifying their structure and functions. The kidneys also regenerate bicarbonates. The kidney is not the sole organ in charge of maintaining blood pH in a very narrow range; lungs are also involved since they allow a large amount of volatile acid generated by cellular respiration to be eliminated. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  6. Metabolic engineering of chloroplasts for artemisinic acid ...

    Indian Academy of Sciences (India)

    Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth ... International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA ...

  7. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  8. Genotype networks, innovation, and robustness in sulfur metabolism

    Science.gov (United States)

    2011-01-01

    Background A metabolism is a complex network of chemical reactions. This network synthesizes multiple small precursor molecules of biomass from chemicals that occur in the environment. The metabolic network of any one organism is encoded by a metabolic genotype, defined as the set of enzyme-coding genes whose products catalyze the network's reactions. Each metabolic genotype has a metabolic phenotype. We define this metabolic phenotype as the spectrum of different sources of a chemical element that a metabolism can use to synthesize biomass. We here focus on the element sulfur. We study properties of the space of all possible metabolic genotypes in sulfur metabolism by analyzing random metabolic genotypes that are viable on different numbers of sulfur sources. Results We show that metabolic genotypes with the same phenotype form large connected genotype networks - networks of metabolic networks - that extend far through metabolic genotype space. How far they reach through this space depends linearly on the number of super-essential reactions. A super-essential reaction is an essential reaction that occurs in all networks viable in a given environment. Metabolic networks can differ in how robust their phenotype is to the removal of individual reactions. We find that this robustness depends on metabolic network size, and on other variables, such as the size of minimal metabolic networks whose reactions are all essential in a specific environment. We show that different neighborhoods of any genotype network harbor very different novel phenotypes, metabolic innovations that can sustain life on novel sulfur sources. We also analyze the ability of evolving populations of metabolic networks to explore novel metabolic phenotypes. This ability is facilitated by the existence of genotype networks, because different neighborhoods of these networks contain very different novel phenotypes. Conclusions We show that the space of metabolic genotypes involved in sulfur metabolism

  9. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  10. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    Science.gov (United States)

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  11. The reconstruction and analysis of tissue specific human metabolic networks.

    Science.gov (United States)

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  12. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    and the environment were included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed network, corresponding to 1035 metabolic reactions. Further, 140 reactions were included on the basis of biochemical evidence resulting in a genome-scale reconstructed metabolic network...... with Escherichia coli. The reconstructed metabolic network is the first comprehensive network for a eukaryotic organism, and it may be used as the basis for in silico analysis of phenotypic functions....

  13. Crassulacean acid metabolism in submerged aquatic plants

    Science.gov (United States)

    Keeley, Jon E.; Sybesme, C.

    1984-01-01

    CO2-fixation in the dark is known to occur in various organs of many plants. However, only in species possessing crassulacean acid metabolism (CAM) does dark CO2-fixation contribute substantially to the carbon economy of the plant. Until very recently CAM was known only from terrestrial species, largely drought adapted succulents. The discovery of CAM in the submerged aquatic fern ally Isoetes howellii (Isoetaceae)(Keeley 1981) adds a new dimension to our understanding of crassulacean acid metabolism. In this paper I will summarize 1) the evidence of CAM in Isoetes howellii, 2) the data on the distribution of CAM in aquatic species, and 3) the work to date on the functional significance of CAM in aquatic species.

  14. Novel metabolic pathways for linoleic and arachidonic acid metabolism.

    Science.gov (United States)

    Moghaddam, M; Motoba, K; Borhan, B; Pinot, F; Hammock, B D

    1996-08-13

    Mouse liver microsomes oxidized linoleic acid to form 9,10- or 12,13-epoxyoctadecenoate. These monoepoxides were subsequently hydrolyzed to their corresponding diols in the absence of the microsomal epoxide hydrolase inhibitor, 1,2-epoxy-3,3,3-trichloropropane. Furthermore, both 9,10- and 12,13-epoxyoctadecenoates were oxidized to diepoxyoctadecanoate at apparently identical rates by mouse liver microsomal P-450 epoxidation. Both epoxyoctadecanoates and diepoxyoctadecanoates were converted to tetrahydrofuran-diols by microsomes. Tetrahydroxides of linoleate were produced as minor metabolites. Arachidonic acid was metabolized to epoxyeicosatrienoates, dihydroxyeicosatrienoates, and monohydroxyeicosatetraenoates by the microsomes. Microsomes prepared from clofibrate (but not phenobarbital) -treated mice exhibited much higher production rates for epoxyeicosatrienoates and vic-dihydroxyeicosatrienoates. This indicated an induction of P-450 epoxygenase(s) and microsomal epoxide hydrolase in mice by clofibrate and not by phenobarbital. Incubation of synthetic epoxyeicosatrienoates with microsomes led to the production of diepoxyeicosadienoates. Among chemically generated diepoxyeicosadienoate isomers, three of them possessing adjacent diepoxides were hydrolyzed to their diol epoxides which cyclized to the corresponding tetrahydrofuran-diols by microsomes as well as soluble epoxide hydrolase at a much higher rate. Larger cyclic products from non-adjacent diepoxides were not observed. The results of our in vitro experiments suggest that linoleic and arachidonic acid can be metabolized to their tetrahydrofuran-diols by two consecutive microsomal cytochrome P-450 epoxidations followed by microsomal or soluble epoxide hydrolase catalyzed hydrolysis of the epoxides. Incubation experiments with the S-9 fractions indicate that the soluble epoxide hydrolase is more important in this conversion. This manuscript is the first report of techniques for the separation and

  15. The topology of metabolic isotope labeling networks

    Directory of Open Access Journals (Sweden)

    Wiechert Wolfgang

    2007-08-01

    Full Text Available Abstract Background Metabolic Flux Analysis (MFA based on isotope labeling experiments (ILEs is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. Results With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Conclusion Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global

  16. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of ...

  17. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  18. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues.

    Science.gov (United States)

    Ralston, Jessica C; Lyons, Claire L; Kennedy, Elaine B; Kirwan, Anna M; Roche, Helen M

    2017-08-21

    Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

  19. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    Science.gov (United States)

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  20. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  1. Metabolic networks of Cucurbita maxima phloem.

    Science.gov (United States)

    Fiehn, Oliver

    2003-03-01

    Metabolomic analysis aims at a comprehensive characterization of biological samples. Yet, biologically meaningful interpretations are often limited by the poor spatial and temporal resolution of the acquired data sets. One way to remedy this is to limit the complexity of the cell types being studied. Cucurbita maxima Duch. vascular exudates provide an excellent material for metabolomics in this regard. Using automated mass spectral deconvolution, over 400 components have been detected in these exudates, but only 90 of them were tentatively identified. Many amino compounds were found in vascular exudates from leaf petioles at concentrations several orders of magnitude higher than in tissue disks from the same leaves, whereas hexoses and sucrose were found in far lower amounts. In order to find the expected impact of assimilation rates on sugar levels, total phloem composition of eight leaves from four plants was followed over 4.5 days. Surprisingly, no diurnal rhythm was found for any of the phloem metabolites that was statistically valid for all eight leaves. Instead, each leaf had its own distinct vascular exudate profile similar to leaves from the same plant, but clearly different from leaves harvested from plants at the same developmental stage. Thirty to forty per cent of all metabolite levels of individual leaves were different from the average of all metabolite profiles. Using metabolic co-regulation analysis, similarities and differences between the exudate profiles were more accurately characterized through network computation, specifically with respect to nitrogen metabolism.

  2. From genomes to in silico cells via metabolic networks

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2005-01-01

    Genome-scale metabolic models are the focal point of systems biology as they allow the collection of various data types in a form suitable for mathematical analysis. High-quality metabolic networks and metabolic networks with incorporated regulation have been successfully used for the analysis of...... approaches to obtain an in silico prediction of cellular function based on the interaction of all of the cellular components....

  3. The evolution of modularity in bacterial metabolic networks.

    Science.gov (United States)

    Kreimer, Anat; Borenstein, Elhanan; Gophna, Uri; Ruppin, Eytan

    2008-05-13

    Deciphering the modular organization of metabolic networks and understanding how modularity evolves have attracted tremendous interest in recent years. Here, we present a comprehensive large scale characterization of modularity across the bacterial tree of life, systematically quantifying the modularity of the metabolic networks of >300 bacterial species. Three main determinants of metabolic network modularity are identified. First, network size is an important topological determinant of network modularity. Second, several environmental factors influence network modularity, with endosymbionts and mammal-specific pathogens having lower modularity scores than bacterial species that occupy a wider range of niches. Moreover, even among the pathogens, those that alternate between two distinct niches, such as insect and mammal, tend to have relatively high metabolic network modularity. Third, horizontal gene transfer is an important force that contributes significantly to metabolic modularity. We additionally reconstruct the metabolic network of ancestral bacterial species and examine the evolution of modularity across the tree of life. This reveals a trend of modularity decrease from ancestors to descendants that is likely the outcome of niche specialization and the incorporation of peripheral metabolic reactions.

  4. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  5. Origins of Specificity and Promiscuity in Metabolic Networks

    Science.gov (United States)

    Carbonell, Pablo; Lecointre, Guillaume; Faulon, Jean-Loup

    2011-01-01

    How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism. PMID:22052908

  6. Metabolic syndrome and the genesis of uric acid stones.

    Science.gov (United States)

    Maalouf, Naim M

    2011-01-01

    Uric acid stones are significantly more common among nephrolithiasis patients with type 2 diabetes, obesity, and/or the metabolic syndrome. The principal metabolic feature responsible for this association is an overly acidic urine, which leads to the precipitation of sparingly soluble uric acid crystals in urine and subsequent development of stones. The unduly acidic urine in uric acid stone formers is caused by a combination of excessive dietary intake of animal proteins and a defect in renal ammoniagenesis and/or excretion that leads to impaired buffering and amplifies the acidic urine caused by an increased acid excretion. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  7. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Graph methods for the investigation of metabolic networks in parasitology.

    Science.gov (United States)

    Cottret, Ludovic; Jourdan, Fabien

    2010-08-01

    Recently, a way was opened with the development of many mathematical methods to model and analyze genome-scale metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network reconstruction, we propose an overview of the graph-based approaches used in whole metabolic network analyses. Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggesting metabolic targets for new drugs. Their development still represents a major challenge to fight against the numerous diseases caused by parasites.

  9. Metabolic pathways variability and sequence/networks comparisons

    Science.gov (United States)

    Tun, Kyaw; Dhar, Pawan K; Palumbo, Maria Concetta; Giuliani, Alessandro

    2006-01-01

    Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process. PMID:16420696

  10. Metabolic pathways variability and sequence/networks comparisons

    Directory of Open Access Journals (Sweden)

    Palumbo Maria

    2006-01-01

    Full Text Available Abstract Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint steps of the metabolic process.

  11. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  12. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis.

    Science.gov (United States)

    Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi

    2018-05-15

    Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Protein and metabolic engineering for the production of organic acids.

    Science.gov (United States)

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  14. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics

    Science.gov (United States)

    Maldonado, Elaina M.; Leoncikas, Vytautas; Fisher, Ciarán P.; Moore, J. Bernadette; Plant, Nick J.

    2017-01-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. PMID:28782239

  15. Phytanic acid metabolism in health and disease

    NARCIS (Netherlands)

    Wanders, Ronald J. A.; Komen, Jasper; Ferdinandusse, Sacha

    2011-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid)

  16. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    Science.gov (United States)

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  17. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    OpenAIRE

    Neis, Evelien P. J. G.; Dejong, Cornelis H. C.; Rensen, Sander S.

    2015-01-01

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous protei...

  18. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    Science.gov (United States)

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  20. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  1. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  2. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  3. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 2

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1982-01-01

    In an experiment with 20 15 N-labelled growing rats the excretion of amino acids as well as of metabolic fecal amino acids were investigated after feeding of soybean oil meal as sole protein source. A low, yet statistically significant increase of the excretion of amino acids and metabolic fecal amino acids was ascertained in accordance with a growing quota of soybean oil meal in the ration. The true digestibility of amino acids ascertained according to conventional methods is above 90% and, under consideration of the increase of metabolic fecal amino acids, on the average increases by 3.5 digestibility units (1.4 to 6.2). (author)

  4. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using C-13-Labeled glucose

    DEFF Research Database (Denmark)

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-01-01

    to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small...... or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch...

  5. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  6. Correlation of uric acid levels and parameters of metabolic syndrome.

    Science.gov (United States)

    Cibičková, Ľ; Langová, K; Vaverková, H; Kubíčková, V; Karásek, D

    2017-07-18

    Hyperuricemia has been described as associated with the risk of development metabolic syndrome; however the relationship between the uric acid level and particular parameters of metabolic syndrome remained unclear. We performed a cross-sectional study on a cohort of 833 dyslipidemic patients and correlated their levels of uric acid with parameters of insulin resistance, lipid metabolism, C-reactive protein, anthropometric parameters. We also defined patients with hypertriglyceridemic waist phenotype and compered their uric acid levels with those without this phenotype. We found that levels of uric acid are associated with parameters of metabolic syndrome. Specifically, dyslipidemia characteristic for metabolic syndrome (low HDL-cholesterol and high triglycerides) correlates better with uric acid levels than parameters of insulin resistance. Also waist circumference correlates better with uric acid levels than body mass index. Patients with hypertriglyceridemic waist phenotype had higher levels of uric acid when compared with patients without this phenotype. Serum uric acid levels are even in low levels linearly correlated with parameters of metabolic syndrome (better with typical lipid characteristics than with parameters of insulin resistance) and could be associated with higher cardiovascular risk.

  7. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  8. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  9. Phylogeny of metabolic networks: A spectral graph theoretical ...

    Indian Academy of Sciences (India)

    The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a ...

  10. Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity.

    Science.gov (United States)

    Rolfsson, Óttar; Paglia, Giuseppe; Magnusdóttir, Manuela; Palsson, Bernhard Ø; Thiele, Ines

    2013-01-15

    Metabolic network reconstructions define metabolic information within a target organism and can therefore be used to address incomplete metabolic information. In the present study we used a computational approach to identify human metabolites whose metabolism is incomplete on the basis of their detection in humans but exclusion from the human metabolic network reconstruction RECON 1. Candidate solutions, composed of metabolic reactions capable of explaining the metabolism of these compounds, were then identified computationally from a global biochemical reaction database. Solutions were characterized with respect to how metabolites were incorporated into RECON 1 and their biological relevance. Through detailed case studies we show that biologically plausible non-intuitive hypotheses regarding the metabolism of these compounds can be proposed in a semi-automated manner, in an approach that is similar to de novo network reconstruction. We subsequently experimentally validated one of the proposed hypotheses and report that C9orf103, previously identified as a candidate tumour suppressor gene, encodes a functional human gluconokinase. The results of the present study demonstrate how semi-automatic gap filling can be used to refine and extend metabolic reconstructions, thereby increasing their biological scope. Furthermore, we illustrate how incomplete human metabolic knowledge can be coupled with gene annotation in order to prioritize and confirm gene functions.

  11. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from......Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  12. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  13. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  14. Pyroglutamic acid-induced metabolic acidosis: a case report

    NARCIS (Netherlands)

    Luyasu, S.; Wamelink, M.M.C.; Galanti, L.; Dive, A.

    2014-01-01

    High anion gap metabolic acidosis due to pyroglutamic acid (5-oxoproline) is a rare complication of acetaminophen treatment (which depletes glutathione stores) and is often associated with clinically moderate to severe encephalopathy. Acquired 5-oxoprolinase deficiency (penicillins) or the presence

  15. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    -of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed...

  16. Effect of dietary conjugated linoleic acid (CLA) on the metabolism ...

    African Journals Online (AJOL)

    Effect of dietary conjugated linoleic acid (CLA) on the metabolism and reproduction of dairy cows. ... South African Journal of Animal Science ... This study confirms the positive effects of dietary CLA supplementation on the metabolism, by improving the energy intake and reducing the negative energy balance. Moreover, the ...

  17. Systems metabolic engineering strategies for the production of amino acids.

    Science.gov (United States)

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  18. Preferential attachment in the evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2005-11-01

    Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate

  19. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  20. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  1. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Science.gov (United States)

    Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto

    2012-01-01

    Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767

  3. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  4. Association between serum uric acid level and metabolic syndrome.

    Science.gov (United States)

    Lee, Ju-Mi; Kim, Hyeon Chang; Cho, Hye Min; Oh, Sun Min; Choi, Dong Phil; Suh, Il

    2012-05-01

    Serum uric acid levels have been reported to be associated with a variety of cardiovascular conditions. However, the direct association between uric acid levels and metabolic syndrome remains controversial. Thus, we evaluated the association of serum uric acid levels and metabolic syndrome in a community-based cohort study in Korea. We performed cross-sectional analysis of baseline data of 889 males and 1491 females (aged 38 to 87) who participated in baseline examinations of the Korean Genome and Epidemiology Study: Kanghwa study. Blood samples were collected after at least an 8 hour fast. Uric acid quartiles were defined as follows: Metabolic syndrome was defined by the National Cholesterol Education Program Adult Treatment Panel III Criteria with adjusted waist circumference cutoffs (90 cm for males; 80 cm for females). The association between serum uric acid quartiles and metabolic syndrome was assessed using multivariate logistic regression. The odds ratio for having metabolic syndrome in the highest versus lowest quartiles of serum uric acid levels was 2.67 (95% confidence interval [CI], 1.60 to 4.46) in males and 2.14 (95% CI, 1.50 to 3.05) in females after adjusting for age, smoking, alcohol intake, body mass index, total cholesterol, HbA1c, albumin, γ-glutamyltransferase, blood urea nitrogen, and log C-reactive protein. The number of metabolic abnormalities also increased gradually with increasing serum uric acid levels (adjusted p for trend uric acid levels are positively associated with the presence of metabolic syndrome in Korean males and females.

  5. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    Energy Technology Data Exchange (ETDEWEB)

    Morrish, Fionnuala M.; Isern, Nancy; Sadilek, Martin; Jeffrey, Mark; Hockenbery, David M.

    2009-05-18

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA, and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell cycle entry is unknown. Here, we report the metabolic fates of [U-13C] glucose in serum-stimulated myc-/- and myc+/+ fibroblasts by 13C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased 13C-labeling of ribose sugars, purines, and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked GlcNAc protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing role for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its role in directing metabolic networks required for cell proliferation.

  6. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2017-06-01

    Full Text Available Motivation:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem.Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs.Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the

  7. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive

  8. Unsaturated fatty acid: Metabolism, synthesis and gene regulation ...

    African Journals Online (AJOL)

    In both plants and animals, unsaturated fatty acids are considered to be essential membrane components. Also they play key roles in many cellular events. The synthesis and metabolism of unsaturated fatty acid are very complex processes, involving a variety of enzymes and regulated pathways. Most recently, research has ...

  9. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  10. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  11. Serum uric acid and metabolic syndrome in Taiwanese adults.

    Science.gov (United States)

    Liu, Pei-Wen; Chang, Tsui-Yen; Chen, Jong-Dar

    2010-06-01

    A positive association between serum uric acid and metabolic syndrome has been reported, but little information is available about the association between serum uric acid and metabolic syndrome in Taiwanese adults. The purpose of this study was to investigate the association between serum uric acid levels and metabolic syndrome in Taiwanese adults. We performed a cross-sectional study of 2085 men and 1557 women. All of the participants underwent a health screening during the period from January 2005 to December 2005 at a health center of the Shin Kong Wu Ho-Su Memorial Hospital. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. The results showed that hyperuricemia was significantly associated with increased risk for hypertriglyceridemia, low high-density lipoprotein cholesterol level, and high blood pressure in men and women. The risk of metabolic syndrome was significantly higher in the fourth quartile than in the first quartile of uric acid level in men (odds ratio [OR], 1.50; 95% confidence interval [CI], 1.06-2.14) and women (OR, 2.33; 95% CI, 1.39-3.93). In addition, uric acid level was inversely associated with hyperglycemia in men. The ORs of hyperglycemia for the second, third, and fourth quartile of uric acid were 0.69 (95% CI, 0.46-1.03), 0.55 (95% CI, 0.37-0.83), and 0.45 (95% CI, 0.29-0.69), respectively, compared with the lowest quartile of uric acid. The results demonstrate that there is a positive association between serum uric acid levels and metabolic syndrome and an inverse association between uric acid and fasting plasma glucose in Taiwanese adults. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  13. Pathophysiological aspect of metabolic acid-base disorders

    Directory of Open Access Journals (Sweden)

    Nešović-Ostojić Jelena

    2016-01-01

    Full Text Available Maintaing the arterial pH values (in normal range of 7,35-7,45 is one of the main principles of homeostasis. Regulatory responses, including chemical buffering (extracellular, intracellular, sceletal, the regulation of pCO2 by the respiratory system, and the regulation of [HCO3-] by the kidneys, act in concert to maintain normal arterial pH value. The main extracellular chemical buffer is bicarbonate-carbonic acid buffer system. The kidneys contribute to the regulation of hydrogen (and bicarbonate in body fluids in two ways. Proximal tubules are important in bicarbonate reabsorption and distal tubules excrete hydrogen ion (as ammonium ion or titratable acid. There are four simple acid-base disorders: metabolic acidosis and metabolic alkalosis; respiratory acidosis and respiratory alkalosis. Metabolic acidosis can occur because of an increase in endogenous acid production (such as lactate and ketoacids, loss of bicarbonate (as in diarrhea, or accumulation of endogenous acids (as in renal failure. Metabolic acidosis can also be with high and normal (hyperchloremic metabolic acidosis anion gap. Renal tubular acidosis (RTA is a form of hyperchloremic metabolic acidosis which occurs when the renal damage primarily affects tubular function. The main problem in distal RTA is reduced H+ excretion in distal tubule. Type 2 RTA is also called proximal RTA because the main problem is greatly impaired reabsorption of bicarbonate in proximal tubule. Impaired cation exchange in distal tubule is the main problem in RTA type 4. Metabolic alkalosis occurs as a result of net gain of [HCO3-] or loss of nonvolatile acid from extracellular fluids. Metabolic alkalosis can be associated with reduced or increased extracellular volume.

  14. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Fengming Lin

    Full Text Available Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  15. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Science.gov (United States)

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  16. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  17. Dietary trans-fatty acids and metabolic syndrome

    OpenAIRE

    Zdzisław Kochan; Joanna Karbowska; Ewa Babicz-Zielińska

    2010-01-01

    Trans-fatty acids (TFAs), products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the ...

  18. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    Science.gov (United States)

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction.

    Directory of Open Access Journals (Sweden)

    Benjamin D Heavner

    2015-11-01

    Full Text Available We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159. We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype.

  20. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    Science.gov (United States)

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia. We evaluated 103 patients less than 40 years of age, from a low-income population, and without history of cardiovascular disease, in all of them the presence of metabolic syndrome was assessed in accordance with the International Diabetes Federation criteria. In all patients, fasting serum uric acid levels were measured; hyperuricaemia was defined as serum uric acid values 6.5 mg/dl in men and 5.1 mg/dl in women. Statistical analysis was performed with odds ratio. 83 of our patients (80.5%) suffered metabolic syndrome, the odds ratio for the presence of metabolic syndrome in patients with hyperuricaemia was 5.1 (p=0.002, I.C 1.8- 14.5). When patients were evaluated by gender a significantly association between hyperuricaemia and metabolic syndrome was found in women (odds ratio 3.6, p=0.048, C.I. 1.0-12.9), and men (odds ratio 10.2, p= 0.015, IC 1.5-13.2). When uric acid was correlated with the components of metabolic syndrome, we only found a positive correlation with waist circumference (r=0.483). Our results showed a significant association between hyperuricemia and metabolic syndrome in low-income young adults in Mexico. DR is associated with estimated risk of CVD in type 2 diabetic patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  2. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by e...

  3. Regulation of Bile Acid and Cholesterol Metabolism by PPARs

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2009-01-01

    Full Text Available Bile acids are amphipathic molecules synthesized from cholesterol in the liver. Bile acid synthesis is a major pathway for hepatic cholesterol catabolism. Bile acid synthesis generates bile flow which is important for biliary secretion of free cholesterol, endogenous metabolites, and xenobiotics. Bile acids are biological detergents that facilitate intestinal absorption of lipids and fat-soluble vitamins. Recent studies suggest that bile acids are important metabolic regulators of lipid, glucose, and energy homeostasis. Agonists of peroxisome proliferator-activated receptors (PPARα, PPARγ, PPARδ regulate lipoprotein metabolism, fatty acid oxidation, glucose homeostasis and inflammation, and therefore are used as anti-diabetic drugs for treatment of dyslipidemia and insulin insistence. Recent studies have shown that activation of PPARα alters bile acid synthesis, conjugation, and transport, and also cholesterol synthesis, absorption and reverse cholesterol transport. This review will focus on the roles of PPARs in the regulation of pathways in bile acid and cholesterol homeostasis, and the therapeutic implications of using PPAR agonists for the treatment of metabolic syndrome.

  4. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  5. Model-driven discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells.

    Science.gov (United States)

    Marín de Mas, Igor; Aguilar, Esther; Zodda, Erika; Balcells, Cristina; Marin, Silvia; Dallmann, Guido; Thomson, Timothy M; Papp, Balázs; Cascante, Marta

    2018-01-01

    Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.

  6. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    OpenAIRE

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes ...

  7. Fatty acids from diet and microbiota regulate energy metabolism

    OpenAIRE

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly ...

  8. Enumeration of minimal stoichiometric precursor sets in metabolic networks

    NARCIS (Netherlands)

    Andrade, R.; Wannagat, M.; Coimbra Klein, C.; Acuna, V.; Marchetti Spaccamela, A.; Vieira Milreu, P.; Stougie, L.; Sagot, M.-F.

    2016-01-01

    Background: What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network

  9. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  10. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and

  11. Underground metabolism: network-level perspective and biotechnological potential

    DEFF Research Database (Denmark)

    Notebaart, Richard A; Kintses, Bálint; Feist, Adam

    2018-01-01

    A key challenge in molecular systems biology is understanding how new pathways arise during evolution and how to exploit them for biotechnological applications. New pathways in metabolic networks often evolve by recruiting weak promiscuous activities of pre-existing enzymes. Here we describe recent...

  12. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Science.gov (United States)

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  13. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  14. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  15. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2016-05-01

    Full Text Available Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control and hippocampus (cognitive processing from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  16. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Estimating the size of the solution space of metabolic networks

    Directory of Open Access Journals (Sweden)

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  18. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    Science.gov (United States)

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  19. Salivary uric acid as a noninvasive biomarker of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Soukup Maria

    2012-04-01

    Full Text Available Abstract Background Elevated serum uric acid is associated with obesity, hypertension and metabolic syndrome. Because a linear relationship exists between serum and salivary uric acid (SUA concentration, saliva testing may be a useful noninvasive approach for monitoring cardiometabolic risk. The goal of this pilot study was to determine if SUA is increased in patients with metabolic syndrome and to investigate correlations between SUA and individual cardiometabolic risk factors. Findings Volunteers between the ages of 18 and 65 without conditions known to affect serum uric acid levels were recruited. Height, weight, blood pressure and waist circumference were measured and a full lipid panel along with fasting blood glucose was obtained. Saliva samples were collected and uric acid levels were determined. 78 volunteers, 35% of whom had metabolic syndrome, completed the study. SUA was significantly elevated in patients with metabolic syndrome (p=.002. The incidence of metabolic syndrome in the 4th quartile for SUA was 67% compared to 25% in quartiles1-3 combined. Significant correlations were seen between SUA and systolic blood pressure (r=.440, p=.000, diastolic blood pressure ( r=.304, p=.007, waist circumference (r=.332, p=.003, BMI ( r=.269, p=.018, fasting blood glucose ( r=.341, p=.002, triglycerides (r=.410, p=.000, HDL ( r=.237, p=.036 and the number of cardiometabolic risk factors present (r=0.257, p=.023. Conclusions These results suggest that SUA may be a useful biomarker for noninvasive monitoring of cardiometabolic risk. Larger studies are needed to validate this approach.

  20. Salivary uric acid as a noninvasive biomarker of metabolic syndrome.

    Science.gov (United States)

    Soukup, Maria; Biesiada, Izabela; Henderson, Aaron; Idowu, Benmichael; Rodeback, Derek; Ridpath, Lance; Bridges, Edward G; Nazar, Andrea M; Bridges, Kristie Grove

    2012-04-19

    Elevated serum uric acid is associated with obesity, hypertension and metabolic syndrome. Because a linear relationship exists between serum and salivary uric acid (SUA) concentration, saliva testing may be a useful noninvasive approach for monitoring cardiometabolic risk. The goal of this pilot study was to determine if SUA is increased in patients with metabolic syndrome and to investigate correlations between SUA and individual cardiometabolic risk factors. Volunteers between the ages of 18 and 65 without conditions known to affect serum uric acid levels were recruited. Height, weight, blood pressure and waist circumference were measured and a full lipid panel along with fasting blood glucose was obtained. Saliva samples were collected and uric acid levels were determined. 78 volunteers, 35% of whom had metabolic syndrome, completed the study. SUA was significantly elevated in patients with metabolic syndrome (p=.002). The incidence of metabolic syndrome in the 4th quartile for SUA was 67% compared to 25% in quartiles1-3 combined. Significant correlations were seen between SUA and systolic blood pressure (r=.440, p=.000), diastolic blood pressure ( r=.304, p=.007), waist circumference (r=.332, p=.003), BMI ( r=.269, p=.018), fasting blood glucose ( r=.341, p=.002), triglycerides (r=.410, p=.000), HDL ( r=.237, p=.036) and the number of cardiometabolic risk factors present (r=0.257, p=.023). These results suggest that SUA may be a useful biomarker for noninvasive monitoring of cardiometabolic risk. Larger studies are needed to validate this approach.

  1. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  2. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice.

    Science.gov (United States)

    Miraldi, Emily R; Sharfi, Hadar; Friedline, Randall H; Johnson, Hannah; Zhang, Tejia; Lau, Ken S; Ko, Hwi Jin; Curran, Timothy G; Haigis, Kevin M; Yaffe, Michael B; Bonneau, Richard; Lauffenburger, Douglas A; Kahn, Barbara B; Kim, Jason K; Neel, Benjamin G; Saghatelian, Alan; White, Forest M

    2013-07-24

    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b(-/-)) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b(-/-) mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b(-/-) mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation-reduction in altered PUFA and triglyceride metabolism.

  3. Biosynthesis and metabolic pathways of pivalic acid

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Čejková, A.; Sigler, Karel

    2012-01-01

    Roč. 95, č. 6 (2012), s. 1371-1376 ISSN 0175-7598 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Pivalic acid * Isooctane * Biosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.689, year: 2012

  4. Treatment of Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... of amino acids. Babies with TYR I may need vitamin D, a vitamin that can help babies who ... Rickets is a condition in which too little vitamin D causes a child’s bones to be ... condition, he may need to take certain medicines. For example: Babies with ...

  5. Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart.

    Science.gov (United States)

    Ball, Daniel R; Rowlands, Ben; Dodd, Michael S; Le Page, Lydia; Ball, Vicky; Carr, Carolyn A; Clarke, Kieran; Tyler, Damian J

    2014-05-01

    Butyrate, a short chain fatty acid, was studied as a novel hyperpolarized substrate for use in dynamic nuclear polarization enhanced magnetic resonance spectroscopy experiments, to define the pathways of short chain fatty acid and ketone body metabolism in real time. Butyrate was polarized via the dynamic nuclear polarization process and subsequently dissolved to generate an injectable metabolic substrate. Metabolism was initially assessed in the isolated perfused rat heart, followed by evaluation in the in vivo rat heart. Hyperpolarized butyrate was generated with a polarization level of 7% and was shown to have a T1 relaxation time of 20 s. These physical characteristics were sufficient to enable assessment of multiple steps in its metabolism, with the ketone body acetoacetate and several tricarboxylic acid cycle intermediates observed both in vitro and in vivo. Metabolite to butyrate ratios of 0.1-0.4% and 0.5-2% were observed in vitro and in vivo respectively, similar to levels previously observed with hyperpolarized [2-(13) C]pyruvate. In this study, butyrate has been demonstrated to be a suitable hyperpolarized substrate capable of revealing multi-step metabolism in dynamic nuclear polarization experiments and providing information on the metabolism of fatty acids not currently achievable with other hyperpolarized substrates. Copyright © 2013 Wiley Periodicals, Inc.

  6. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  7. Bacterial metabolism of human polymorphonuclear leukocyte-derived arachidonic acid.

    Science.gov (United States)

    Sorrell, T C; Muller, M; Sztelma, K

    1992-05-01

    Evidence for transcellular bacterial metabolism of phagocyte-derived arachidonic acid was sought by exposing human blood polymorphonuclear leukocytes, prelabelled with [3H]arachidonic acid, to opsonized, stationary-phase Pseudomonas aeruginosa (bacteria-to-phagocyte ratio of 50:1) for 90 min at 37 degrees C. Control leukocytes were stimulated with the calcium ionophore A23187 (5 microM) for 5 min. Radiochromatograms of arachidonic acid metabolites, extracted from A23187-stimulated cultures and then separated by reverse-phase high-performance liquid chromatography, revealed leukotriene B4, its omega-oxidation products, and 5-hydroxy-eicosatetraenoic acid. In contrast, two major metabolite peaks, distinct from known polymorphonuclear leukocyte arachidonic acid products by high-performance liquid chromatography or by thin-layer chromatography, were identified in cultures of P. aeruginosa with [3H]arachidonic acid-labelled polymorphonuclear leukocytes. Respective chromatographic characteristics of these novel products were identical to those of two major metabolite peaks produced by incubation of stationary-phase P. aeruginosa with [3H]arachidonic acid. Production of the metabolites was dependent upon pseudomonal viability. UV spectral data were consistent with a conjugated diene structure. Metabolism of arachidonic acid by P. aeruginosa was not influenced by the presence of catalase, superoxide dismutase, nordihydroguaiaretic acid, ethanol, dimethyl sulfoxide, or ferrous ions but was inhibited by carbon monoxide, ketoconazole, and 1,2-epoxy-3,3,3-trichloropropane. Our data suggest that pseudomonal metabolism of polymorphonuclear leukocyte-derived arachidonic acid occurs during phagocytosis, probably by enzymatic epoxidation and hydroxylation via an oxygenase. By this means, potential proinflammatory effects of arachidonic acid or its metabolites may be modulated by P. aeruginosa at sites of infection in vivo.

  8. Fatty acid metabolism studies of human epidermal cell cultures.

    Science.gov (United States)

    Marcelo, C L; Dunham, W R

    1993-12-01

    Adult human epidermal keratinocytes grow rapidly in medium that is essential fatty acid (EFA)-deficient. In this medium they exhibit decreased amounts of the fatty acids, 18:2, 20:3, 20:4, and contain increased amounts of monounsaturated fatty acids. [14C]- and [3H]acetate and radiolabeled fatty acids, 16:0, 18:2, and 20:4 were used to study the fatty acid metabolism of these cells. Label from acetate appeared in 14- to 20-carbon fatty acids, both saturated and monounsaturated. No label was seen in the essential fatty acid 18:2, 18:3, and 20:4. Radiolabel from [9, 10-3H]palmitic acid (16:0) was detected in 16:0, 16:1, 18:0, and 18:1. [14C]linoleic acid (18:2) was converted to 18:3, 20:2, 20:3, and 20:4, demonstrating delta 6 and delta 5 desaturase activity in keratinocytes. Label from acetate, 16:0, or 18:2 was found mostly in the cellular phospholipids while only one third of the label from [14C]arachidonic was found in the phospholipids. [14C]acetate and [14C]18:2 time course data were used to construct a model of the metabolism of these reactants, using coupled, first-order differential equations. The data show that EFA-deficient keratinocytes metabolize fatty acids using pathways previously found in liver; they suggest the positioning of 18:2 desaturase and 18:3 elongase near the plasma membrane; they indicate that for the synthesis of nonessential fatty acids the formation of 18:0 from 16:0 is the rate-determining step; and they show that the conversion of 18:2 to 20:3 is rapid. These experiments demonstrate a method to study lipid enzyme kinetics in living cells.

  9. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    Science.gov (United States)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  10. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  11. Uric Acid as a Cause of the Metabolic Syndrome.

    Science.gov (United States)

    King, Christopher; Lanaspa, Miguel A; Jensen, Thomas; Tolan, Dean R; Sánchez-Lozada, L Gabriela; Johnson, Richard J

    2018-01-01

    Hyperuricemia is common in subjects with obesity, metabolic syndrome, and type 2 diabetes. For many years, hyperuricemia was attributed to the effects of insulin resistance to reduce urinary excretion of uric acid, and it was believed that uric acid may not have any causal role in the metabolic syndrome. However, in recent years, hyperuricemia has been found to independently predict the development of diabetes. Experimental studies have also shown that hyperuricemia may mediate insulin resistance, fatty liver, and dyslipidemia in both fructose-dependent and fructose-independent models of metabolic syndrome. The mechanism for uric acid-induced insulin resistance appears to be mediated by the development of mitochondrial oxidative stress and impairment of insulin-dependent stimulation of nitric oxide in endothelial cells. Pilot studies in humans have reported a potential benefit of lowering serum uric acid on insulin resistance. Large clinical trials are recommended. If uric acid is shown to be a mediator of incident type 2 diabetes in humans, then lowering serum uric acid would represent a simple and inexpensive way to help prevent the development of diabetes and to slow the epidemic. © 2018 S. Karger AG, Basel.

  12. Response of hepatic amino acid consumption to chronic metabolic acidosis

    NARCIS (Netherlands)

    Boon, L.; Blommaart, P. J.; Meijer, A. J.; Lamers, W. H.; Schoolwerth, A. C.

    1996-01-01

    In a previous paper, we showed that an inhibition of amino acid transport across the liver plasma membrane is responsible for the decrease in urea synthesis in acute metabolic acidosis. We have now studied the mechanism responsible for the decline in urea synthesis in chronic acidosis. Chronic

  13. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia

    NARCIS (Netherlands)

    Häussinger, D.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate

  14. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  15. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems.

    Science.gov (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  16. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  17. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  18. GAM: a web-service for integrated transcriptional and metabolic network analysis.

    Science.gov (United States)

    Sergushichev, Alexey A; Loboda, Alexander A; Jha, Abhishek K; Vincent, Emma E; Driggers, Edward M; Jones, Russell G; Pearce, Edward J; Artyomov, Maxim N

    2016-07-08

    Novel techniques for high-throughput steady-state metabolomic profiling yield information about changes of nearly thousands of metabolites. Such metabolomic profiles, when analyzed together with transcriptional profiles, can reveal novel insights about underlying biological processes. While a number of conceptual approaches have been developed for data integration, easily accessible tools for integrated analysis of mammalian steady-state metabolomic and transcriptional data are lacking. Here we present GAM ('genes and metabolites'): a web-service for integrated network analysis of transcriptional and steady-state metabolomic data focused on identification of the most changing metabolic subnetworks between two conditions of interest. In the web-service, we have pre-assembled metabolic networks for humans, mice, Arabidopsis and yeast and adapted exact solvers for an optimal subgraph search to work in the context of these metabolic networks. The output is the most regulated metabolic subnetwork of size controlled by false discovery rate parameters. The subnetworks are then visualized online and also can be downloaded in Cytoscape format for subsequent processing. The web-service is available at: https://artyomovlab.wustl.edu/shiny/gam/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  20. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    Science.gov (United States)

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  2. Postillumination burst of carbon dioxide in crassalacean Acid metabolism plants.

    Science.gov (United States)

    Crews, C E; Vines, H M; Black, C C

    1975-04-01

    Immediately following exposure to light, a postillumination burst of CO(2) has been detected in Crassulacean acid metabolism plants. A detailed study with pineapple (Ananas comosus) leaves indicates that the postillumination burst changes its amplitude and kinetics during the course of a day. In air, the postillumination burst in pineapple leaves generally is exhibited as two peaks. The postillumination burst is sensitive to atmospheric CO(2) and O(2) concentrations as well as to the light intensity under which plants are grown. We propose that the CO(2) released in the first postillumination burst peak is indicative of photorespiration since it is sensitive to either O(2) or CO(2) concentration while the second CO(2) evolution peak is likely due to decarboxylation of organic acids involved in Crassulacean acid metabolism.In marked contrast to other higher plants, the postillumination burst in Crassulacean acid metabolism plants can be equal to or greater than the rate of photosynthesis. Photosynthesis in pineapple leaves also varies throughout a day. Both photosynthesis and the postillumination burst have a daily variation which apparently is a complex function of degree of leaf acidity, growth light intensity, ambient gas phase, and the time a plant has been exposed to a given gas.

  3. Metabolic engineering strategies to bio-adipic acid production.

    Science.gov (United States)

    Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-06-01

    Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  5. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-09-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production.

  6. Muconic Acid Production via Alternative Pathways and a Synthetic "Metabolic Funnel".

    Science.gov (United States)

    Thompson, Brian; Pugh, Shawn; Machas, Michael; Nielsen, David R

    2018-02-16

    Muconic acid is a promising platform biochemical and precursor to adipic acid, which can be used to synthesize various plastics and polymers. In this study, the systematic construction and comparative evaluation of a modular network of non-natural pathways for muconic acid biosynthesis was investigated in Escherichia coli, including via three distinct and novel pathways proceeding via phenol as a common intermediate. However, poor recombinant activity and high promiscuity of phenol hydroxylase ultimately limited "phenol-dependent" muconic acid production. A fourth pathway proceeding via p-hydroxybenzoate, protocatechuate, and catechol was accordingly developed, though with muconic acid titers by this route reaching just 819 mg/L, its performance lagged behind that of the established, "3-dehydroshikimiate-derived" route. Finally, these two most promising pathways were coexpressed in parallel to create a synthetic "metabolic funnel" that, by enabling maximal net precursor assimilation and flux while preserving native chorismate biosynthesis, nearly doubled muconic acid production to up to >3.1 g/L at a glucose yield of 158 mg/g while introducing only a single auxotrophy. This generalizable, "funneling" strategy is expected to have broad applications in metabolic engineering for further enhancing production of muconic acid, as well as other important bioproducts of interest.

  7. Bacterial Unculturability and the Formation of Intercellular Metabolic Networks.

    Science.gov (United States)

    Pande, Samay; Kost, Christian

    2017-05-01

    The majority of known bacterial species cannot be cultivated under laboratory conditions. Here we argue that the adaptive emergence of obligate metabolic interactions in natural bacterial communities can explain this pattern. Bacteria commonly release metabolites into the external environment. Accumulating pools of extracellular metabolites create an ecological niche that benefits auxotrophic mutants, which have lost the ability to autonomously produce the corresponding metabolites. In addition to a diffusion-based metabolite transfer, auxotrophic cells can use contact-dependent means to obtain nutrients from other co-occurring cells. Spatial colocalisation and a continuous coevolution further increase the nutritional dependency and optimise fluxes through combined metabolic networks. Thus, bacteria likely function as networks of interacting cells that reciprocally exchange nutrients and biochemical functions rather than as physiologically autonomous units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The evolution of metabolic networks of E. coli

    Directory of Open Access Journals (Sweden)

    Baumler David J

    2011-11-01

    Full Text Available Abstract Background Despite the availability of numerous complete genome sequences from E. coli strains, published genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts. Results We used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for E. coli K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other E. coli strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan. The pangenome model included reactions from a metabolic model update for E. coli K-12 MG1655 (iEco1339_MG1655 and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110 and four pathogenic strains (two enterohemorrhagic E. coli O157:H7 and two uropathogens. When compared to the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89 contained numerous lineage-specific gene and reaction differences. All six E. coli models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v glucose. An ancestral

  9. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  10. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  11. Tanycytes and a differential fatty acid metabolism in the hypothalamus.

    Science.gov (United States)

    Hofmann, Kristina; Lamberz, Christian; Piotrowitz, Kira; Offermann, Nina; But, Diana; Scheller, Anja; Al-Amoudi, Ashraf; Kuerschner, Lars

    2017-02-01

    Although the brain controls all main metabolic pathways in the whole organism, its lipid metabolism is partially separated from the rest of the body. Circulating lipids and other metabolites are taken up into brain areas like the hypothalamus and are locally metabolized and sensed involving several hypothalamic cell types. In this study we show that saturated and unsaturated fatty acids are differentially processed in the murine hypothalamus. The observed differences involve both lipid distribution and metabolism. Key findings were: (i) hypothalamic astrocytes are targeted by unsaturated, but not saturated lipids in lean mice; (ii) in obese mice labeling of these astrocytes by unsaturated oleic acid cannot be detected unless β-oxidation or ketogenesis is inhibited; (iii) the hypothalamus of obese animals increases ketone body and neutral lipid synthesis while tanycytes, hypothalamic cells facing the ventricle, increase their lipid droplet content; and (iv) tanycytes show different labeling for saturated or unsaturated lipids. Our data support a metabolic connection between tanycytes and astrocytes likely to impact hypothalamic lipid sensing. GLIA 2017;65:231-249. © 2016 Wiley Periodicals, Inc.

  12. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    Science.gov (United States)

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  13. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    Science.gov (United States)

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Heart and bile acids - Clinical consequences of altered bile acid metabolism.

    Science.gov (United States)

    Vasavan, Tharni; Ferraro, Elisa; Ibrahim, Effendi; Dixon, Peter; Gorelik, Julia; Williamson, Catherine

    2018-04-01

    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    Science.gov (United States)

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okahashi

    2014-05-01

    Full Text Available 13C metabolic flux analysis (MFA is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs. Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

  17. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Morrell-Falvey, Jennifer L [ORNL; Karve, Abhijit A [ORNL; Lu, Tse-Yuan S [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL; Martin, Madhavi Z [ORNL; Jawdy, Sara [ORNL; Weston, David [ORNL; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  18. Current Understanding of the Formation and Adaptation of Metabolic Systems Based on Network Theory

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2012-07-01

    Full Text Available Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  19. Structurally modified fatty acids - clinical potential as tracers of metabolism

    International Nuclear Information System (INIS)

    Dudczak, R.; Schmoliner, R.; Angelberger, P.; Knapp, F.F.; Goodman, M.M.

    1985-01-01

    Recently 15-p-iodophenyl-betamethyl-pentadecanoic acid (BMPPA) was proposed for myocardial scintigraphy, as possible probe of metabolic processes other than β-oxidation. In 19 patients myocardial scintigraphy was done after i.v. BMPPA (2 to 4 mCi). Data were collected (LAO 45 0 /14; anterior/5) for 100 minutes in the fasted patients. From heart (H) and liver (L) organ to background (BG) ratios were calculated, and the elimination (E) behavior was analyzed from BG (V. cava region) corrected time activity curves. In 10 patients plasma and urine were examined. By CHCl 3 /MeOH extraction of plasma samples (90 min. pi) both in water and in organic medium soluble catabolites were found. TLC fractionation showed that those were co-migrating, compared to standards, with benzoic acid, BMPPA and triglycerides. In urine (0 to 2h pi: 4.1% dose) hippuric acid was found. It is concluded that BMPPA is a useful agent for myocardial scintigraphy. Its longer retention in the heart compared to unbranched radioiodinated fatty acids may facilitate SPECT studies. Rate of elimination and plasma analysis indicate the metabolic breakdown of BMPPA. Yet, the complexity of the supposed mechanism may impede curve interpretation in terms of specific metabolic pathways. 19 refs., 5 tabs

  20. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    Science.gov (United States)

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  1. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  2. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  3. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  4. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea.

    Science.gov (United States)

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-08-14

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment.

  5. Multiobjective flux balancing using the NISE method for metabolic network analysis.

    Science.gov (United States)

    Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon

    2009-01-01

    Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  6. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans

    Science.gov (United States)

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha JM

    2016-01-01

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild. DOI: http://dx.doi.org/10.7554/eLife.17670.001 PMID:27383050

  7. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks

    NARCIS (Netherlands)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-01-01

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy

  8. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Predicting selective drug targets in cancer through metabolic networks

    Science.gov (United States)

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  10. Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation.

    Science.gov (United States)

    Wang, Hong; Wang, Xicheng; Li, Zheng; Li, Keqiu

    2016-01-01

    The metabolic network model allows for an in-depth insight into the molecular mechanism of a particular organism. Because most parameters of the metabolic network cannot be directly measured, they must be estimated by using optimization algorithms. However, three characteristics of the metabolic network model, i.e., high nonlinearity, large amount parameters, and huge variation scopes of parameters, restrict the application of many traditional optimization algorithms. As a result, there is a growing demand to develop efficient optimization approaches to address this complex problem. In this paper, a Kriging-based algorithm aiming at parameter estimation is presented for constructing the metabolic networks. In the algorithm, a new infill sampling criterion, named expected improvement and mutual information (EI&MI), is adopted to improve the modeling accuracy by selecting multiple new sample points at each cycle, and the domain decomposition strategy based on the principal component analysis is introduced to save computing time. Meanwhile, the convergence speed is accelerated by combining a single-dimensional optimization method with the dynamic coordinate perturbation strategy when determining the new sample points. Finally, the algorithm is applied to the arachidonic acid metabolic network to estimate its parameters. The obtained results demonstrate the effectiveness of the proposed algorithm in getting precise parameter values under a limited number of iterations.

  11. Acylation and metabolism of (n-6) fatty acids in hepatocytes

    International Nuclear Information System (INIS)

    Voss, A.C.; Sprecher, H.

    1986-01-01

    Isolated hepatocytes (5 x 10 6 in 2ml) from chow fed rats were incubated from 20 to 60 min. with increasing concentrations of [1- 14 C] labeled 18:2 (n-6), 18:3 (n-6) or 20:3 (n-6) to define optimum conditions for measuring acylation and metabolism to other (n-6) acids with subsequent incorporation into lipids. The triglycerides (TG) and phospholipids (PL) contained 157 and 80 nmols of 18:2 (n-6) and 6.0 and 6.1 nmols of other (n-6) acids, respectively, when cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) for 40 min. When cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) plus 0.15 to 0.45mM 18:3 (n-6) or 20:3 (n-6), the metabolism of 18:2 (n-6) to other (n-6) acids was inhibited but not totally abolished. These results may suggest that (n-6) acid made from linoleate do not totally equilibrate with exogenous 18:3 (n-6) or 20:3

  12. Enumeration of minimal stoichiometric precursor sets in metabolic networks.

    Science.gov (United States)

    Andrade, Ricardo; Wannagat, Martin; Klein, Cecilia C; Acuña, Vicente; Marchetti-Spaccamela, Alberto; Milreu, Paulo V; Stougie, Leen; Sagot, Marie-France

    2016-01-01

    What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network (topological precursor sets). Due to cycles and the stoichiometric values of the reactions, it is often not possible to produce the target(s) from a topological precursor set in the sense that there is no feasible flux. Although considering the stoichiometry makes the problem harder, it enables to obtain biologically reasonable precursor sets that we call stoichiometric. Recently a method to enumerate all minimal stoichiometric precursor sets was proposed in the literature. The relationship between topological and stoichiometric precursor sets had however not yet been studied. Such relationship between topological and stoichiometric precursor sets is highlighted. We also present two algorithms that enumerate all minimal stoichiometric precursor sets. The first one is of theoretical interest only and is based on the above mentioned relationship. The second approach solves a series of mixed integer linear programming problems. We compared the computed minimal precursor sets to experimentally obtained growth media of several Escherichia coli strains using genome-scale metabolic networks. The results show that the second approach efficiently enumerates minimal precursor sets taking stoichiometry into account, and allows for broad in silico studies of strains or species interactions that may help to understand e.g. pathotype and niche-specific metabolic capabilities. sasita is written in Java, uses cplex as LP solver and can be downloaded together with all networks and input files used in this paper at http://www.sasita.gforge.inria.fr.

  13. (Im) Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    NARCIS (Netherlands)

    He, F.; Fromion, V.; Westerhoff, H.V.

    2013-01-01

    Background: Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a

  14. The effect of fractionated plasma separation and adsorption on cerebral amino acid metabolism and oxidative metabolism during acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Hauerberg, John; Frederiksen, Hans-Jørgen

    2012-01-01

    Patients with acute liver failure have a disturbed amino acid metabolism and a compromised oxidative metabolism in the brain. A limited number of clinically neuroprotective interventions are available. This study aimed at assessing the effect of fractionated plasma separation and adsorption (FPSA......), an extracorporeal liver support system, on cerebral amino acids and lactate to pyruvate ratio....

  15. A Combined Proteomic and Transcriptomic Analysis on Sulfur Metabolism Pathways of Arabidopsis thaliana under Simulated Acid Rain

    Science.gov (United States)

    Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B.; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress. PMID:24595051

  16. Uric acid metabolism in pre-hypertension and the metabolic syndrome.

    Science.gov (United States)

    Rizzo, Manfredi; Obradovic, Milan; Labudovic-Borovic, Milica; Nikolic, Dragana; Montalto, Giuseppe; Rizvi, Ali A; Mikhailidis, Dimitri P; Isenovic, Esma R

    2014-01-01

    In humans uric acid (UA) is the end product of degradation of purines. The handling of UA by the renal system is a complex process which is not fully understood. To date, several urate transporters in the renal proximal tubule have been identified. Among them, urate transporter 1 (URAT1) and a glucose transporter 9 (GLUT9) are considered of greater importance, as potential targets for treatment of hyperuricemia and the potential associated cardio-metabolic risk. Therefore, the recognition of the metabolic pathway of UA and elucidation of occurrence of hyperuricemia may provide important insights about the relationship between UA, pre-hypertension (preHT) and the metabolic syndrome (MetS). We also review the available clinical studies in this field, including experimental studies dealing with the mechanisms of UA transport via different transporters, as well as current treatment options for hyperuricemia in patients with MetS, preHT or cardiovascular risk factors.

  17. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 1

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1981-01-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations in 15 N-labelled rats and the part of labelled endogenous amino acids in feces was calculated by the isotope dilution method. The excretion of amino acids and MFAA in feces are described as functions of the amino acid intake for 17 amino acids and calculated regressively. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to N-free feeding, the MFAA increase to the 2- to 4.5-fold value in feeding with pure maize (16.5% crude protein). The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below ascertained according to the 15 N method. The limiting amino acids lysine and threonine revealed the greatest difference. Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize by the isotope method is above 90%. (author)

  18. Effect of acute acid loading on acid-base and calcium metabolism

    DEFF Research Database (Denmark)

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  19. Association between serum uric acid level and metabolic syndrome components.

    Science.gov (United States)

    Nejatinamini, Sara; Ataie-Jafari, Asal; Qorbani, Mostafa; Nikoohemat, Shideh; Kelishadi, Roya; Asayesh, Hamid; Hosseini, Saeed

    2015-01-01

    Serum uric acid levels is reported to be associated with a variety of cardiometabolic risk factors; however, its direct association with metabolic syndrome (MetS) remains controversial. Thus, we examined the association of serum uric acid concentrations with the MetS components. MetS was defined according to the National Cholesterol Education Program (NCEP) criteria. This case-control study comprised 101 non-smoking individuals (41 in the MetS group and 60 in the non-MetS group). Blood pressure, fasting plasma glucose, insulin, HOMA-IR, lipid profiles, uric acid, and anthropometric measures were determined, and body composition was assessed by using bioelectrical impedance analysis (BIA). After adjustment for confounding factors, serum uric acid was significantly higher in MetS group than non-MetS group (5.70 ± 1.62 vs 4.97 ± 1.30 mg/dL, respectively, P = 0.001). After controlling for age, sex and body mass index in partial correlation analysis, uric acid was positively correlated with triglycerides, and negatively with HDL-C. In multiple logistic regression analysis, every 1 mg/dl elevation in the serum uric acid level increased the risk of MetS approximately by 2-folds (OR: 2.11, 95 % CI: 1.30-3.41). This study showed that those individuals with MetS have higher uric acid levels; the association of uric acid and MetS components supports that it might be an additional components of MetS.

  20. Metabolic Relations between Methylxanthines and Methyluric Acids in Coffea L.

    Science.gov (United States)

    Petermann, J B; Baumann, T W

    1983-12-01

    Metabolism of purine alkaloids in the leaves of Coffea dewevrei De Wild et Durand var excelsa Chev, Coffea liberica Bull ex Hiern and Coffea abeokutae Cramer was studied by analyzing leaf discs collected during vegetative development and by feeding the following radioactive tracers: [(14)C]theobromine, [(14)C]caffeine, and [(14)C]theacrine (1,3,7,9-tetramethyluric acid). Their principal metabolites were quantitatively and qualitatively determined. All three species convert the precursors to the same radioactive products, and proceed through the same four maturity stages characterized by the alkaloid accumulation pattern and by a particular transformation potency: (stage 1) young plant accumulating caffeine, transforms theobromine to caffeine; (stage 2) caffeine is gradually replaced by theacrine, theobromine and caffeine are converted to theacrine; (stage 3) theacrine disappears whereas liberine (O(2), 1,9-thrimethyluric acid) accumulates, theacrine is metabolized to liberine; (stage 4) branched-out plant containing liberine but no theacrine, caffeine is converted rapidly to liberine via theacrine. Methylliberine (O(2),1,7,9-tetramethyluric acid), presumably the direct precursor of liberine, is occasionally found in low concentrations at stage 3 and 4.The collective term ;liberio-excelsoid' introduced by geneticists for the numerous races or species of Pachycoffea is in accordance with the phytochemical equality found in this work.

  1. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    Science.gov (United States)

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Serum uric acid and appropriate cutoff value for prediction of metabolic syndrome among Chinese adults

    OpenAIRE

    Zhang, Mei-lin; Gao, Yu-xia; Wang, Xuan; Chang, Hong; Huang, Guo-wei

    2012-01-01

    The relation between serum uric acid and metabolic syndrome is observed not only with frank hyperuricemia but also with serum uric acid levels within the normal range. The current ?normal? range set for hyperuricemia often fails to identify patients with potential metabolic disorders. We investigate the association between serum uric acid within the normal range and incident metabolic syndrome risk, and further to determine the optimal cut-off value of serum uric acid for the diagnosis or pre...

  3. Incremental parameter estimation of kinetic metabolic network models

    Directory of Open Access Journals (Sweden)

    Jia Gengjie

    2012-11-01

    Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.

  4. Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Neelam Redekar

    2017-11-01

    Full Text Available A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/.

  5. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  6. Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network

    Directory of Open Access Journals (Sweden)

    Ina Häuslein

    2017-06-01

    Full Text Available The human pathogen Coxiella burnetii causes Q-fever and is classified as a category B bio-weapon. Exploiting the development of the axenic growth medium ACCM-2, we have now used 13C-labeling experiments and isotopolog profiling to investigate the highly diverse metabolic network of C. burnetii. To this aim, C. burnetii RSA 439 NMII was cultured in ACCM-2 containing 5 mM of either [U-13C3]serine, [U-13C6]glucose, or [U-13C3]glycerol until the late-logarithmic phase. GC/MS-based isotopolog profiling of protein-derived amino acids, methanol-soluble polar metabolites, fatty acids, and cell wall components (e.g., diaminopimelate and sugars from the labeled bacteria revealed differential incorporation rates and isotopolog profiles. These data served to decipher the diverse usages of the labeled substrates and the relative carbon fluxes into the core metabolism of the pathogen. Whereas, de novo biosynthesis from any of these substrates could not be found for histidine, isoleucine, leucine, lysine, phenylalanine, proline and valine, the other amino acids and metabolites under study acquired 13C-label at specific rates depending on the nature of the tracer compound. Glucose was directly used for cell wall biosynthesis, but was also converted into pyruvate (and its downstream metabolites through the glycolytic pathway or into erythrose 4-phosphate (e.g., for the biosynthesis of tyrosine via the non-oxidative pentose phosphate pathway. Glycerol efficiently served as a gluconeogenetic substrate and could also be used via phosphoenolpyruvate and diaminopimelate as a major carbon source for cell wall biosynthesis. In contrast, exogenous serine was mainly utilized in downstream metabolic processes, e.g., via acetyl-CoA in a complete citrate cycle with fluxes in the oxidative direction and as a carbon feed for fatty acid biosynthesis. In summary, the data reflect multiple and differential substrate usages by C. burnetii in a bipartite-type metabolic network

  7. Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment

    International Nuclear Information System (INIS)

    Billi de Catabbi, Silvia C.; Faletti, Alicia; Fuentes, Federico; San Martin de Viale, Leonor C.; Cochon, Adriana C.

    2005-01-01

    Hexaclorobenzene (HCB), one of the most persistent environmental pollutants, can cause a wide range of toxic effects including cancer in animals, and hepatotoxicity and porphyria both in humans and animals. In the present study, liver microsomal cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolism, hepatic PGE production, and cytosolic phospholipase A 2 (cPLA 2 ) activity were investigated in an experimental model of porphyria cutanea tarda induced by HCB. Female Wistar rats were treated with a single daily dose of HCB (100 mg kg -1 body weight) for 5 days and were sacrificed 3, 10, 17, and 52 days after the last dose. HCB treatment induced the accumulation of hepatic porhyrins from day 17 and increased the activities of liver ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and aminopyrine N-demethylase (APND) from day 3 after the last dose. Liver microsomes from control and HCB-treated rats generated, in the presence of NADPH, hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), 11,12-Di HETE, and ω-OH/ω-1-OH AA. HCB treatment caused an increase in total NADPH CYP-dependent AA metabolism, with a higher response at 3 days after the last HCB dose than at the other time points studied. In addition, HCB treatment markedly enhanced PGE production and release in liver slices. This HCB effect was time dependent and reached its highest level after 10 days. At this time cPLA 2 activity was shown to be increased. Unexpectedly, HCB produced a significant decrease in cPLA 2 activity on the 17th and 52nd day. Our results demonstrated for the first time that HCB induces both the cyclooxygenase and CYP-dependent AA metabolism. The effects of HCB on AA metabolism were previous to the onset of a marked porphyria and might contribute to different aspects of HCB-induced liver toxicity such as alterations of membrane fluidity and membrane-bound protein function. Observations also suggested that a possible role of cPLA 2 in

  8. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  9. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver.

    Science.gov (United States)

    H V, Sudeep; K, Venkatakrishna; Patel, Dipak; K, Shyamprasad

    2016-08-05

    Plasma free fatty acids (FFA) are involved in blood lipid metabolism as well as many health complications. The present study was conducted to evaluate the potential role of chlorogenic acid complex from green coffee bean (CGA7) on FFA metabolism in high fat diet fed rats. Hyperlipidemia was induced in Wistar rats using high-fat diet. The animals were given CGA7/orlistat concurrently for 42 days. The parameters analysed during the study include plasma and liver total cholesterol (TC), Triglycerides (TG) and FFA. AMPK activation in the liver was analysed through ELISA. The multiple factors involved in AMPK mediated FFA metabolism were analysed using western blotting. CGA7 (50, 100, 150 mg/kg BW) decreased triglycerides (TG) and FFA levels in plasma and liver. CGA7 administration led to the activation of AMP-activated protein kinase (AMPK) and a subsequent increase in the levels of carnitine palmitoyltransferase 1 (CPT-1). There was a decrease in acetyl-CoA carboxylase (ACC) activity as evident by the increase in its phosphorylation level. Chlorogenic acids improved the blood lipid metabolism in rats by alleviating the levels of FFA and TG, modulating the multiple factors in liver through AMPK pathway. The study concludes that CGA7 complex can be promoted as an active ingredient in nutrition for obesity management.

  11. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  12. The initial metabolic conversion of levulinic acid in Cupriavidus necator.

    Science.gov (United States)

    Jaremko, Matt; Yu, Jian

    2011-09-20

    Levulinic acid or 4-ketovaleric acid is a potential renewable substrate for production of polyhydroxyalkanoates. In this work, the initial reactions of LA metabolism by Cupriavidus necator were examined in vitro. The organic acid was converted by membrane-bound crude enzymes obtained from the cells pre-grown on LA, while no LA activity was detected from cells pre-grown on acetic acid. Acetyl-CoA and propionyl-CoA were two major intermediates in the initial reactions of LA conversion. A mass balance on propionyl-CoA accounts for 84 mol% of LA added in vitro. It explains an interesting phenomenon that 3-hydroxbutyrate and 3-hydroxyvalerate are two major monomers of the biopolyester formed from LA, instead of 4-hydroxvalerate that has the similar chemical structure of LA as the precursor. A Monod model was used to describe the kinetics of LA utilization as a sole carbon source or a co-substrate of glucose and fructose. The μ(max) and K(m) of LA alone were 0.26 h⁻¹ and 0.01 g/L, respectively. The content and composition of PHA are also dependent on the culture conditions such as carbon to nitrogen ratio. The in vitro observation is supported by the high utilization rate of LA and the high molar percentage of 3HB and 3HV in the PHA derived from LA. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context.

    Directory of Open Access Journals (Sweden)

    Aurélie Vega

    Full Text Available Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα and the G-protein coupled receptor (TGR5. These recent studies have led to the idea that molecules derived from bile acids (BAs and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases.

  14. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    Science.gov (United States)

    Baptissart, Marine; De Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor (TGR5). These recent studies have led to the idea that molecules derived from bile acids (BAs) and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases. PMID:26439743

  15. Fats for thoughts: An update on brain fatty acid metabolism.

    Science.gov (United States)

    Romano, Adele; Koczwara, Justyna Barbara; Gallelli, Cristina Anna; Vergara, Daniele; Micioni Di Bonaventura, Maria Vittoria; Gaetani, Silvana; Giudetti, Anna Maria

    2017-03-01

    Brain fatty acid (FA) metabolism deserves a close attention not only for its energetic aspects but also because FAs and their metabolites/derivatives are able to influence many neural functions, contributing to brain pathologies or representing potential targets for pharmacological and/or nutritional interventions. Glucose is the preferred energy substrate for the brain, whereas the role of FAs is more marginal. In conditions of decreased glucose supply, ketone bodies, mainly formed by FA oxidation, are the alternative main energy source. Ketogenic diets or medium-chain fatty acid supplementations were shown to produce therapeutic effects in several brain pathologies. Moreover, the positive effects exerted on brain functions by short-chain FAs and the consideration that they can be produced by intestinal flora metabolism contributed to the better understanding of the link between "gut-health" and "brain-health". Finally, attention was paid also to the regulatory role of essential polyunsaturated FAs and their derivatives on brain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases.

    Science.gov (United States)

    Cascio, Giuseppe; Schiera, Gabriella; Di Liegro, Italia

    2012-01-01

    In the last few decades, the prevalence of overweight and essential obesity has been undergoing a fast and progressive worldwide increase. Obesity has been in turn linked to type II diabetes, with the total number of diabetic patients worryingly increasing, in the last fifteen years, suggesting a pandemic phenomenon. At the same time, an increase in the prevalence of cardiovascular diseases has been also recorded. Increasing evidence suggests that the diet is involved in such escalation. In particular, the progressive globalization of food industry allowed massive supply, at a relatively low price, of a great variety of pre-packed food and bakery products, with very high energy content. Most of this food contains high amounts of saturated fatty acids (SFA) and of hydrogenated or trans fatty acids (TFA), that probably represent the prominent risk factors in the diet. Herein we will report diffusion and possible impact on health of such molecules, with reference to coronary heart disease, insulin resistance, metabolic syndrome and diabetes. We will also discuss the cellular and molecular mechanisms of action of fatty acids and fatty acid-derivatives which have been involved either in promoting or in preventing human pathologies. Free fatty acids (FFA) are not indeed only essential fuels for the organism. They also act as ligands for both membrane and nuclear receptors involved in different signaling pathways. Notably, some of these pathways can induce cell stress and apoptosis. Most important, FFA can affect glucose-induced insulin secretion and activate β-cell death. These events can be at least in part counteracted by polyunsaturated fatty acids.

  17. Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction

    NARCIS (Netherlands)

    van Straten, Esther M. E.; Bloks, Vincent W.; van Dijk, Theo H.; Baller, Julius F. W.; Huijkman, Nicolette C. A.; Kuipers, Irma; Verkade, Henkjan J.; Plosch, Torsten

    Background: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. Objective: We

  18. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  19. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    Directory of Open Access Journals (Sweden)

    Aziz Mithani

    2010-08-01

    Full Text Available The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions or complex (incorporating dependencies among reactions stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  20. Metabolism of eicosapentaenoic acid relative to arachidonic acid in the phospholipids of human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, B.J.

    1987-01-01

    The platelet phospholipids of human subjects consuming fish or fish oil contain decreased levels of arachidonic acid (AA) and increased levels of eicosapentaenoic acid (EPA). Furthermore, the ratio of AA/EPA in phosphatidylcholine (PC) is much lower than that in phosphatidylinositol (PI). This thesis examines the metabolic and remodeling pathways for fatty acid selectivity which might account for the decrease in arachidonate and the differences in AA/EPA ratios among the individual phospholipids PC, PI, phosphatidylethanolamine (PE), and phosphatidylserine (PS). The incorporation of AA and EPA into the phospholipids of washed human platelets and human platelet microsomes was studied using radiolabeled fatty acids ((/sup 14/C)AA alone or (/sup 3/H)AA plus (/sup 14/C)EPA).

  1. A consensus yeast metabolic network obtained from a community approach to systems biology.

    NARCIS (Netherlands)

    Herrgard, M.J.; Swainston, N.; Dobson, P.; Dunn, W.B.; Arga, K.Y.; Arvas, M.; Bluthgen, N.; Borger, S.; Costenoble, E.R.; Heinemann, M.; Hucka, M.; Li, P.; Liebermeister, W.; Mo, M.L.; Oliveira, A.P.; Petranovic, D.; Pettifer, S.; Simeonides, E.; Smallbone, K.; Spasi, I.; Weichart, D.; Brent, R.; Broomhead, D.S.; Westerhoff, H.V.; Kirdar, B.; Penttila, M.; Klipp, E.; Paton, N.; Palsson, B.O.; Sauer, U.; Oliver, S.G.; Mendes, P.; Nielsen, J.; Kell, D.B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  2. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  3. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    DEFF Research Database (Denmark)

    Herrgard, Markus; Swainston, Neil; Dobson, Paul

    2008-01-01

    a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously...... of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms....

  4. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from......, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism....... Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice....

  5. Signal transduction by interferon-α through arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Hannigan, G.E.; Williams, B.R.G.

    1991-01-01

    Molecular mechanisms that mediate signal transduction by growth inhibitory cytokines are poorly understood. Type 1 (α and β) interferons (IFNs) are potent growth inhibitory cytokines whose biological activities depend on induced changes in gene expression. IFN-α induced the transient activation of phospholipase A 2 in 3T3 fibroblasts and rapid hydrolysis of [ 3 H]arachidonic acid (AA) from prelabeled phospholipid pools. The phospholipase inhibitor, bromophenacyl bromide (BPB), specifically blocked IFN-induced binding of nuclear factors to a conserved, IFN-regulated enhancer element, the interferon-stimulated response element (ISRE). BPB also caused a dose-dependent inhibition of IFN-α-induced ISRE-dependent transcription in transient transfection assays. Specific inhibition of AA oxygenation by eicosatetraynoic acid prevented IFN-α induction of factor binding to the ISRE. Treatment of intact cells with inhibitors of fatty acid cyclooxygenase or lipoxygenase enzymes resulted in amplification of IFN-α-induced ISRE binding and gene expression. Thus, IFN-α receptor-coupled AA hydrolysis may function in activation of latent transcription factors by IFN-α and provides a system for studying the role of AA metabolism in transduction of growth inhibitory signals

  6. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    Science.gov (United States)

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  7. Uric acid metabolism in patients with primary gout and the metabolic syndrome.

    Science.gov (United States)

    Fraile, J M; Puig, J G; Torres, Rosa J; de Miguel, Eugenio; Martínez, Pedro; Vázquez, J J

    2010-06-01

    Forty-four patients (40 males) with a mean age of 58 years were included in this pilot study. Mean serum urate concentration in patients with and without the metabolic syndrome (MS) was 8.8 mg/dL and 8.1 mg/dL, respectively. Urinary uric acid excretion was 543 mg/day/1.73 m(2) in the former and 609 mg/day/1.73 m(2) in the latter. Uric acid to creatinine ratio was 0.37 mg/mg in patients with the MS and 0.42 mg/mg in those without the MS. Mean serum urate increased from 8.6 mg/dL in subjects with three or more MS components to 10.3 mg/dL in those with five MS components. Serum urate was markedly lower in patients with mild MS (9 patients, 8.6 mg/dL) as compared to severe MS (10 patients, 9.2 mg/dL). In contrast, urinary uric acid to creatinine ratio was 0.42 mg/mg in patients with gout and mild MS and 0.33 mg/mg in gout patients with severe MS. Uric acid underexcretion appears to be more severe in gout patients with the MS. This disturbance appears to be related to the severity of the MS.

  8. Using the reconstructed genome-scale human metabolic network to study physiology and pathology

    OpenAIRE

    Bordbar, Aarash; Palsson, Bernhard O.

    2012-01-01

    Metabolism plays a key role in many major human diseases. Generation of high-throughput omics data has ushered in a new era of systems biology. Genome-scale metabolic network reconstructions provide a platform to interpret omics data in a biochemically meaningful manner. The release of the global human metabolic network, Recon 1, in 2007 has enabled new systems biology approaches to study human physiology, pathology, and pharmacology. There are currently over 20 publications that utilize Reco...

  9. Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Directory of Open Access Journals (Sweden)

    Weinberger Klaus M

    2009-01-01

    Full Text Available Abstract Background The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress. Results A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to

  10. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  11. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients

    Directory of Open Access Journals (Sweden)

    Cedric Simillion

    2017-10-01

    Full Text Available About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV or C (HCV, with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.

  12. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Science.gov (United States)

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Megaloblastic anaemia: Folic acid and vitamin B12 metabolism

    Directory of Open Access Journals (Sweden)

    H.B. Castellanos-Sinco

    2015-07-01

    Full Text Available Folic acid and cobalamin are B-group vitamins that play an essential role in many cellular processes. Deficiency in one or both of these vitamins causes megaloblastic anaemia, a disease characterized by the presence of megaloblasts. Megaloblasts occur when inhibition of DNA synthesis causes asynchronous maturation between the nucleus and the cytoplasm. Clinical manifestations are similar to those of other types of anaemia, with the exception of cobalamin deficiency megaloblastic anaemia, which presents distinctive neurological symptoms. An understanding of the metabolism of these vitamins will enable clinicians to make the best use and interpretation of laboratory studies and monitor therapeutic strategies, which consist mainly of administering supplements to restore body reserves.

  14. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    Young, V.R.

    1981-01-01

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [ 13 ] - leucine and α- [ 15 N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15 N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  15. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    International Nuclear Information System (INIS)

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with 3 H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED 50 ) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED 50 values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM

  16. A metabolic pathway for catabolizing levulinic acid in bacteria

    International Nuclear Information System (INIS)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; Thiede, Joshua M.; Mehrer, Christopher R.

    2017-01-01

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

  17. Metabolic capabilities of Actinobacillus succinogenes for succinic acid production

    Directory of Open Access Journals (Sweden)

    R. Rafieenia

    2014-12-01

    Full Text Available Attention has been focused on microbial succinic acid production as an alternative for conventional chemical synthesis that is associated with environmental pollution. A metabolic model for Actinobacillus succinogenes 130Z was developed with a mixture of glucose and xylose as substrate. The metabolic fluxes during succinicate production were determined using flux balance analysis by linear programming optimization in the MATLAB environment. Different glucose ratios (0.3, 0.4 and 0.7 mol.mol-1substrate were used as model assumptions to calculate optimal fluxes, maximum growth and succinate production. The model revealed that higher growth rates and product yields were correlated with higher glucose content in the substrate mixture. When glucose constituted 0.5 mol.mol-1 substrate, a lower succinate yield (0.64 mol.mol-1 substrate was obtained, compared to 0.73 mol.mol-1 substrate when glucose was used individually. Deletion of different unessential reactions in the model showed that a knockout of the acetate formation pathway would increase the succinate yield by 21% when glucose and xylose were used in equal molar ratios.

  18. Uric acid in metabolic syndrome: From an innocent bystander to a central player

    Science.gov (United States)

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A.; Nakagawa, Takahiko; Johnson, Richard J.

    2016-01-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. PMID:26703429

  19. Uric acid in metabolic syndrome: From an innocent bystander to a central player.

    Science.gov (United States)

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A; Nakagawa, Takahiko; Johnson, Richard J

    2016-04-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. Copyright © 2015 European Federation of Internal Medicine. All rights reserved.

  20. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism.

    Science.gov (United States)

    Germain, Arnaud; Ruppert, David; Levine, Susan M; Hanson, Maureen R

    2017-01-31

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remains a continuum spectrum disease without biomarkers or simple objective tests, and therefore relies on a diagnosis from a set of symptoms to link the assortment of brain and body disorders to ME/CFS. Although recent studies show various affected pathways, the underlying basis of ME/CFS has yet to be established. In this pilot study, we compare plasma metabolic signatures in a discovery cohort, 17 patients and 15 matched controls, and explore potential metabolic perturbations as the aftermath of the complex interactions between genes, transcripts and proteins. This approach to examine the complex array of symptoms and underlying foundation of ME/CFS revealed 74 differentially accumulating metabolites, out of 361 (P metabolism and glycerophospholipid metabolism, combined with primary bile acid metabolism, as well as glyoxylate and dicarboxylate metabolism and a few other pathways, all involved broadly in fatty acid metabolism. Purines, including ADP and ATP, pyrimidines and several amino acid metabolic pathways were found to be significantly disturbed. Finally, glucose and oxaloacetate were two main metabolites affected that have a major effect on sugar and energy levels. Our work provides a prospective path for diagnosis and understanding of the underlying mechanisms of ME/CFS.

  1. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    Energy Technology Data Exchange (ETDEWEB)

    Abian, J.; Gelpi, E.; Pages, M. (Centro de Investigacion y Desarrollo, Barcelona (Spain))

    1991-04-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-({sup 14}C)LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. {alpha}- and {gamma}-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed.

  2. Metabolism of polyunsaturated fatty acids and ketogenesis: an emerging connection.

    Science.gov (United States)

    Cunnane, Stephen C

    2004-03-01

    This paper summarizes the emerging literature indicating that at least two polyunsaturated fatty acids (PUFA; linoleate, alpha-linolenate) are moderately ketogenic and that via ketone bodies significant amounts of carbon are recycled from these fatty acids into de novo synthesis of lipids including cholesterol, palmitate, stearate and oleate. This pathway (PUFA carbon recycling) is particularly active in several tissues during the suckling period when, depending on the tissue, >200 fold more carbon from alpha-linolenate can be recycled into newly synthesized lipids than is used to make docosahexaenoate. At least in rats, PUFA carbon recycling also occurs in adults and even during extreme linoleate deficiency. Hence, this pathway should be considered an obligatory component of PUFA metabolism. It is still speculative but part of the clinical benefit of the very high fat ketogenic diet in intractable seizures may be achieved by raising plasma levels of PUFA that have anti-seizure effects, especially arachidonate and docosahexaenoate. Hence, in addition to some PUFA being ketogenic substrates, the state of ketosis involves potentially beneficial changes in PUFA homeostasis. Both the molecular controls on these pathways and their clinical significance still need elucidation.

  3. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  4. Serum uric acid and appropriate cutoff value for prediction of metabolic syndrome among Chinese adults.

    Science.gov (United States)

    Zhang, Mei-Lin; Gao, Yu-Xia; Wang, Xuan; Chang, Hong; Huang, Guo-Wei

    2013-01-01

    The relation between serum uric acid and metabolic syndrome is observed not only with frank hyperuricemia but also with serum uric acid levels within the normal range. The current "normal" range set for hyperuricemia often fails to identify patients with potential metabolic disorders. We investigate the association between serum uric acid within the normal range and incident metabolic syndrome risk, and further to determine the optimal cut-off value of serum uric acid for the diagnosis or prediction of metabolic syndrome. A total of 7399 Chinese adults (2957 men and 4442 women; ≥20 years) free of metabolic syndrome were followed for 3 years. During the 3-year follow-up, 1190 normouricemic individuals developed metabolic syndrome (16.1%). After adjusting the associated variables, the top quartile of serum uric acid levels was associated with higher metabolic syndrome development compared with the bottom quartile in men (hazard ratio (HR), 1.29; puric acid to identify metabolic syndrome were 6.3 mg/dl in men and 4.9 mg/dl in women. Our results suggested that high baseline serum uric acid levels within the normal range predict future development of metabolic syndrome after 3 y of follow-up.

  5. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro

    2010-01-01

    mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...... factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic...

  6. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  7. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  8. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    Science.gov (United States)

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  9. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  10. Computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Benjamin eMerlet

    2016-02-01

    Full Text Available This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc and flat file formats (SBML and Matlab files. We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics and Glasgow Polyomics on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks.In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks.In order to achieve this goal we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  11. 'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.

    Science.gov (United States)

    O'Connell, T C

    2017-06-01

    Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.

  12. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    Science.gov (United States)

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-09-01

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry); Seib, P.A. (Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  14. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry; Seib, P.A. [Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  15. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism

    DEFF Research Database (Denmark)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich

    2016-01-01

    , is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host......The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids....... Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also...

  16. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D.

    2012-01-01

    Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predic......Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary...

  17. Trade-offs between efficiency and robustness in bacterial metabolic networks are associated with niche breadth.

    Science.gov (United States)

    Morine, Melissa J; Gu, Hong; Myers, Ransom A; Bielawski, Joseph P

    2009-05-01

    The relation between structure and function in biologic networks is a central point of systems biology research. Key functional features--notably, efficiency and robustness--are linked to the topologic structure of a network, and there appears to be a degree of trade-off between these features, i.e., simulation studies indicate that more efficient networks tend to be less robust. Here, we investigate this issue in metabolic networks from 105 lineages of bacteria having a wide range of ecologies. We take quantitative measurements on each network and integrate this network data with ecologic data using a phylogenetic comparative model. In this setting, we find that biologic conclusions obtained with classical phylogenetic comparative methods are sensitive to correlations between model covariates and phylogenetic branch length. To avoid this problem, we propose a revised statistical framework--hierarchical mixed-effect regression--to accommodate phylogenetic nonindependence. Using this approach, we show that the cartography of metabolic networks does indeed reflect a trade-off between efficiency and robustness. Furthermore, ecologic characteristics related to niche breadth are strong predictors of network shape. Given the broad variation in niche breadth seen among species, we predict that there is no universally optimal balance between efficiency and robustness in bacterial metabolic networks and, thus, no universally optimal network structure. These results highlight the biologic relevance of variation in network structure and the potential role of niche breadth in shaping metabolic strategies of efficiency and robustness.

  18. A Topological Description of Hubs in Amino Acid Interaction Networks

    Directory of Open Access Journals (Sweden)

    Omar Gaci

    2010-01-01

    Full Text Available We represent proteins by amino acid interaction networks. This is a graph whose vertices are the proteins amino acids and whose edges are the interactions between them. Once we have compared this type of graphs to the general model of scale-free networks, we analyze the existence of nodes which highly interact, the hubs. We describe these nodes taking into account their position in the primary structure to study their apparition frequency in the folded proteins. Finally, we observe that their interaction level is a consequence of the general rules which govern the folding process.

  19. The Amino Acid Metabolic and Carbohydrate Metabolic Pathway Play Important Roles during Salt-Stress Response in Tomato.

    Science.gov (United States)

    Zhang, Zhi; Mao, Cuiyu; Shi, Zheng; Kou, Xiaohong

    2017-01-01

    Salt stress affects the plant quality, which affects the productivity of plants and the quality of water storage. In a recent study, we conducted the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis and RNA-Seq, bioinformatics study methods, and detection of the key genes with qRT-PCR. Our findings suggested that the optimum salt treatment conditions are 200 mM and 19d for the identification of salt tolerance in tomato. Based on the RNA-Seq, we found 17 amino acid metabolic and 17 carbohydrate metabolic pathways enriched in the biological metabolism during the response to salt stress in tomato. We found 7 amino acid metabolic and 6 carbohydrate metabolic pathways that were significantly enriched in the adaption to salt stress. Moreover, we screened 17 and 19 key genes in 7 amino acid metabolic and 6 carbohydrate metabolic pathways respectively. We chose some of the key genes for verifying by qRT-PCR. The results showed that the expression of these genes was the same as that of RNA-seq. We found that these significant pathways and vital genes occupy an important roles in a whole process of adaptation to salt stress. These results provide valuable information, improve the ability to resist pressure, and improve the quality of the plant.

  20. Metabolic Effects of a Succinic Acid

    Directory of Open Access Journals (Sweden)

    B. N. Shakh

    2014-01-01

    Full Text Available The paper discusses promises for clinical use of substrate antihypoxants.Objective: to investigate the efficacy of succinate containing  substrate  antihypoxants  on  systemic  oxygen  consumption,  blood  buffer  capacity,  and  changes  in  the  mixed venous blood level of lactate when they are used in gravely sick patients and victims with marked metabolic posthypoxic disorders.Subjects and methods. The trial enrolled 30 patients and victims who had sustained an episode of severe hypoxia of mixed genesis, the severity of which was evaluated by the APACHE II scale and amounted to 23 to 30 scores with a 46 to 70.3% risk of death. The standard infusion program in this group involved the succinate-containing drug 1.5% reamberin solution  in  a  total  dose  of  800  ml.  A  comparison  group  included  15  patients  who  had  undergone  emergency  extensive surgery for abdominal diseases. 400 ml of 10% glucose solution was used as an infusion medium. Oxygen consumption (VO2ml/min and carbon dioxide production (VCO2ml/min were measured before infusion and monitored for 2 hours. Arterial blood gases and acid-base balance (ABB parameters and mixed venous blood lactate levels were examined. Measurements were made before and 30 minutes after the infusion of reamberin or glucose solution.Results. Infusion of 1.5% reamberin solution was followed by a significant increase in minute oxygen consumption from 281.5±21.2 to 310.4±24.4 ml/min. CO2 production declined (on average, from 223.3±6.5 to 206.5±7.59 ml/min. During infusion of 10% glucose solution, all the patients of the comparison group showed a rise in oxygen consumption from 303.6±33.86 to 443.13±32.1 ml/min, i.e. about 1.5-fold. VCO2 changed similarly. The intravenous infusion of 800 ml of 1.5% reamberin solution raised arterial blood buffer capacity, which was reflected by changes in pH, BE, and HCO3. There was a clear trend for lactate values to drop in the

  1. Metabolic network analysis on Phaffia rhodozyma yeast using C-13-labeled glucose and gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Cannizzaro, C.; Christensen, B.; Nielsen, Jens

    2004-01-01

    high NADPH requirements for lipid biosynthesis. Although common to other oleaginous yeast, there was no, or very little, malic enzyme activity for carbon-limited growth. In addition, there was no evidence of phosphoketolase activity. The central carbon metabolism of the mutant strain was similar......Carotenoid production by micro organisms, as opposed to chemical synthesis, could fulfill an ever-increasing demand for 'all natural' products. The yeast Phaffia rhodozyma has received considerable attention because it produces the red pigment astaxanthin, commonly used as an animal feed supplement....... In order to have a better understanding of its metabolism, labeling experiments with [1-C-13]glucose were conducted with the wildtype strain (CBS5905T) and a hyper-producing carotenoid strain (J4-3) in order to determine their metabolic network structure and estimate intracellular fluxes. Amino acid...

  2. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution.

    Science.gov (United States)

    Belda, Eugeni; Silva, Francisco J; Peretó, Juli; Moya, Andrés

    2012-01-01

    Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius. The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association. Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.

  3. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Science.gov (United States)

    Stibůrková, Blanka; Pavlíková, Markéta; Sokolová, Jitka; Kožich, Viktor

    2014-01-01

    Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals. The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i) demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii) the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii) selected genetic variants of the MTHFR (c.665C>T, c.1286A>C), SLC2A9 (c.844G>A, c.881G>A) and ABCG2 genes (c.421C>A). A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables. The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations. Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  4. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Directory of Open Access Journals (Sweden)

    Blanka Stibůrková

    Full Text Available Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals.The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii selected genetic variants of the MTHFR (c.665C>T, c.1286A>C, SLC2A9 (c.844G>A, c.881G>A and ABCG2 genes (c.421C>A. A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables.The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations.Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  5. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    Science.gov (United States)

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Role of Bile Acids in Glucose Metabolism and Their Relation with Diabetes.

    Science.gov (United States)

    González-Regueiro, José Alberto; Moreno-Castañeda, Lidia; Uribe, Misael; Chávez-Tapia, Norberto C

    2017-11-01

    Bile acids (BAs), the end products of cholesterol catabolism, are essential for the absorption of lipids and fat-soluble vitamins; but they have also emerged as novel signaling molecules that act as metabolic regulators. It has been well described that the enterohepatic circulation, a nuclear (FXR) and a cytoplasmic (TGR5/M-BAR) receptor aid in controlling hepatic bile acid synthesis. Modulating bile acid synthesis greatly impacts in metabolism, because these receptors also are implicated in glucose, lipid, and energy expenditure. Recent studies had revealed the way these receptors participate in regulating gluconeogenesis, peripheral insulin sensitivity, glycogen synthesis, glucagon like peptide 1 (GLP-1) and insulin secretion. Nowadays, it is demonstrated that enhancing bile acid signaling in the intestine contributes to the metabolic benefits of bile acid sequestrants and bariatric surgery on glucose homeostasis. This paper discusses the role of bile acid as regulators of glucose metabolism and their potential as therapeutic targets for diabetes.

  7. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  8. The role of uric acid in metabolic syndrome in patients with psoriasis

    Directory of Open Access Journals (Sweden)

    Berna Solak

    2017-06-01

    Full Text Available Background and Design: Psoriasis patients have increased risk of obesity, metabolic syndrome and cardiovascular disease. Uric acid is a metabolic marker associated with metabolic syndrome and cardiovascular diseases. Uric acid levels increase in psoriasis as well. The aim of this study was to investigate the role of uric acid in metabolic syndrome in patients with psoriasis. Materials and Methods: Chronic plaque psoriasis patients who presented to the dermatology outpatient clinics in a university-affiliated training and research hospital and age- and gender-matched healthy individuals were included in the study. Waist circumference, height and weight measurements in both groups were recorded, and body mass index was calculated. Serum uric acid, urea, creatinine, C-reactive protein, fasting blood glucose, high-density lipoprotein cholesterol, total cholesterol, triglyceride and insulin levels were determined. Metabolic syndrome and insulin resistance status were evaluated. The findings were compared statistically. Results: Seventy patients with chronic plaque psoriasis (37 females, 33 males and 60 healthy individuals (31 females, 29 males were included in the study. The prevalence of metabolic syndrome and uric acid levels were found to be higher in the psoriasis group than in control group (p=0.003 and p=0.008, respectively. Serum uric acid levels and Psoriasis Area and Severity Index scores were higher in psoriasis patients with metabolic syndrome than in those without metabolic syndrome when psoriasis patients were evaluated separately (p=0.041, p=0.024, respectively. A positive correlation was observed between abdominal circumference and serum uric acid levels in psoriasis patients (p=0.003, r=0.350 Conclusion: The results of this study show that uric acid levels are elevated in psoriasis patients with metabolic syndrome. The prevalence of metabolic syndrome was also significantly higher. Hence, patients should be followed up for development

  9. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    Science.gov (United States)

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Quantification of Bone Fatty Acid Metabolism and Its Regulation by Adipocyte Lipoprotein Lipase

    Directory of Open Access Journals (Sweden)

    Alexander Bartelt

    2017-06-01

    Full Text Available Adipocytes are master regulators of energy homeostasis. Although the contributions of classical brown and white adipose tissue (BAT and WAT, respectively to glucose and fatty acid metabolism are well characterized, the metabolic role of adipocytes in bone marrow remains largely unclear. Here, we quantify bone fatty acid metabolism and its contribution to systemic nutrient handling in mice. Whereas in parts of the skeleton the specific amount of nutrients taken-up from the circulation was lower than in other metabolically active tissues such as BAT or liver, the overall contribution of the skeleton as a whole organ was remarkable, placing it among the top organs involved in systemic glucose as well as fatty acid clearance. We show that there are considerable site-specific variations in bone marrow fatty acid composition throughout the skeleton and that, especially in the tibia, marrow fatty acid profiles resemble classical BAT and WAT. Using a mouse model lacking lipoprotein lipase (LPL, a master regulator of plasma lipid turnover specifically in adipocytes, we show that impaired fatty acid flux leads to reduced amounts of dietary essential fatty acids while there was a profound increase in de novo produced fatty acids in both bone marrow and cortical bone. Notably, these changes in fatty acid profiles were not associated with any gross skeletal phenotype. These results identify LPL as an important regulator of fatty acid transport to skeletal compartments and demonstrate an intricate functional link between systemic and skeletal fatty acid and glucose metabolism.

  12. Regulation of glycolysis and level of the Crassulacean acid metabolism.

    Science.gov (United States)

    Pierre, J N; Queiroz, O

    1979-01-01

    Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase - 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.

  13. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    Directory of Open Access Journals (Sweden)

    Orth Jeffrey D

    2012-05-01

    Full Text Available Abstract Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

  14. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    Science.gov (United States)

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses. © 2015 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  16. Improving the description of metabolic networks: the TCA cycle as example

    NARCIS (Netherlands)

    Stobbe, Miranda D.; Houten, Sander M.; van Kampen, Antoine H. C.; Wanders, Ronald J. A.; Moerland, Perry D.

    2012-01-01

    To collect the ever-increasing yet scattered knowledge on metabolism, multiple pathway databases like the Kyoto Encyclopedia of Genes and Genomes have been created. A complete and accurate description of the metabolic network for human and other organisms is essential to foster new biological

  17. Uric Acid, Metabolic Syndrome and Atherosclerosis: The Chicken or the Egg, Which Comes First?

    Science.gov (United States)

    De Pergola, Giovanni; Cortese, Francesca; Termine, Gaetano; Meliota, Giovanni; Carbonara, Rossella; Masiello, Michele; Cortese, Anna M; Silvestris, Francesco; Caccavo, Domenico; Ciccone, Marco Matteo

    2018-01-01

    A great debate in literature exists nowadays on the role of uric acid as a marker of cardiovascular and metabolic organ damage or a risk factor for cardiovascular and metabolic disease. The study aimed to determine the relationship among serum uric acid and metabolic syndrome and atherosclerosis, by means of carotid intima media-thickness, in a cohort of 811 otherwise healthy overweight/obese subjects, without overt atherosclerosis not using any kind of drug. Uric acid levels were positively related to male gender, waist circumference, BMI, systolic and diastolic pressure levels, fasting insulin, fasting glucose, HOMA-IR, triglycerides, total cholesterol, LDL cholesterol, the presence of metabolic syndrome and the number of the components of metabolic syndrome and negatively related to HDL cholesterol levels. No correlation was found between uric acid and carotid intima media thickness. At the multiple regression analysis, only waist circumference and triglycerides (positively) and HDL-cholesterol (negatively) maintained an independent association with uric acid as dependent variable, while age, female gender and uric acid showed a significant independent association with metabolic syndrome as dependent variable. Moreover, the analysis of the odd ratios showed that the risk of developing metabolic syndrome was consistent with uric acid levels ranging from 3 mg/dl to 8 mg/dl. The presence of metabolic syndrome does not seem to provide hyperuricemia. By contrast, higher serum uric acid level may predict the risk of metabolic syndrome. Moreover, our results suggest that uric acid cannot be considered a risk factor for early atherosclerosis, at least when assessed using carotid ultrasound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network.

    Science.gov (United States)

    Xie, L; Wang, D I

    1996-12-05

    A metabolic reaction network is developed for the estimation of the stoichiometric production of adenosine triphosphate (ATP) in animal cell culture. By using the material balance data from fed-batch and batch cultures of hybridoma cells, the stoichiometric ATP productions are determined with estimated effective P/O ratios of 2 for NADH and 1.2 for FADH(2). A significant percentage of the ATP requirement (16-41%) in hybridoma cells is generated directly from free energy release without the participation of oxygen. The oxidative phosphorylation of NADH accounts for about 60% of the total ATP production in the fed-batch cultures and about 47% in the batch culture. The oxidative phosphorylation of FADH(2) accounts for less then 20% of the total ATP production in all cases.A fractional model is devised to analyze the contribution of each nutrient to the ATP production. Results show that a majority of the ATP is produced from glucose metabolism (60-76%). Less than 30% of the ATP is derived from glutamine, and less than 11% is derived from other essential amino acids. The analysis also shows that the glycolytic pathway generates more ATP in the batch (41%) than in the fed-batch (demand estimated from the dry cell weight and cell composition is significantly lower than that calculated from the maximum ATP yield, indicating that the non-growth-associated ATP demand may contain other factors than what is considered in the estimation of the biosynthetic ATP demand.

  19. Genome-Scale Model of Streptococcus thermophilus LMG18311 for Metabolic Comparison of Lactic Acid Bacteria

    NARCIS (Netherlands)

    Pastink, M.I.; Teusink, B.; Hols, P.; Visser, S.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    In this report we describe amino acid-metabolism and amino acid-dependency of the dairy bacterium Streptococcus thermophilus LMG18311 and compare that with two other characterized lactic acid bacteria, Lactococcus lactis and Lactobacillus plantarum. Through the construction of a genome-scale

  20. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes

    DEFF Research Database (Denmark)

    Väremo, Leif; Scheele, Camilla; Broholm, Christa

    2015-01-01

    -analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism......Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome...

  1. Metabolic network modeling approaches for investigating the "hungry cancer".

    Science.gov (United States)

    Sharma, Ashwini Kumar; König, Rainer

    2013-08-01

    Metabolism is the functional phenotype of a cell, at a given condition, resulting from an intricate interplay of various regulatory processes. The study of these dynamic metabolic processes and their capabilities help to identify the fundamental properties of living systems. Metabolic deregulation is an emerging hallmark of cancer cells. This deregulation results in rewiring of the metabolic circuitry conferring an exploitative metabolic advantage for the tumor cells which leads to a distinct benefit in survival and lays the basis for unbound progression. Metabolism can be considered as a thermodynamic open-system in which source substrates of high value are being processed through a well established interconnected biochemical conversion system, strictly obeying physiochemical principles, generating useful intermediates and finally resulting in the release of byproducts. Based on this basic principle of an input-output balance, various models have been developed to interrogate metabolism elucidating its underlying functional properties. However, only a few modeling approaches have proved computationally feasible in elucidating the metabolic nature of cancer at a systems level. Besides this, statistical approaches have been set up to identify biochemical pathways being more relevant for specific types of tumor cells. In this review, we are briefly introducing the basic statistical approaches followed by the major modeling concepts. We have put an emphasis on the methods and their applications that have been used to a greater extent in understanding the metabolic remodeling of cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  3. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1982-05-01

    Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.

  4. Polymorphisms in genes encoding acetylsalicylic acid metabolizing enzymes are unrelated to upper gastrointestinal health in cardiovascular patients on acetylsalicylic acid

    NARCIS (Netherlands)

    van Oijen, Martijn G. H.; Huybers, Sylvie; Peters, Wilbert H. M.; Drenth, Joost P. H.; Laheij, Robert J. F.; Verheugt, Freek W. A.; Jansen, Jan B. M. J.

    2005-01-01

    Background As acetylsalicylic acid is metabolized by UDP-glucuronosyltransferase 1A6 (UGT1A6) and cytochrome P450 2C9 (CYP2C9), interindividual differences in activity of these enzymes may modulate the effects and side-effects of acetylsalicylic acid. The objective of this study was to assess

  5. Polymorphisms in genes encoding acetylsalicylic acid metabolizing enzymes are unrelated to upper gastrointestinal health in cardiovascular patients on acetylsalicylic acid.

    NARCIS (Netherlands)

    Oijen, M.G.H. van; Huybers, S.; Peters, W.H.M.; Drenth, J.P.H.; Laheij, R.J.F.; Verheugt, F.W.A.; Jansen, J.B.M.J.

    2005-01-01

    BACKGROUND: As acetylsalicylic acid is metabolized by UDP-glucuronosyltransferase 1A6 (UGT1A6) and cytochrome P450 2C9 (CYP2C9), interindividual differences in activity of these enzymes may modulate the effects and side-effects of acetylsalicylic acid. The objective of this study was to assess

  6. Metabolic pathway of non-alcoholic fatty liver disease: Network properties and robustness

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2017-03-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a systematic and complex disease involving various cytokines/metabolites. In present article, we use methodology of network biology to analyze network properties of NAFLD metabolic pathway. It is found that the metabolic pathway of NAFLD is not a typical complex network with power-law degree distribution, p(x=x^(-4.4275, x>=5. There is only one connected component in the metabolic pathway. The calculated cut cytokines/metabolites of the metabolic pathway are SREBP-1c, ChREBP, ObR, AMPK, IRE1alpha, ROS, PERK, elF2alpha, ATF4, CHOP, Bim, CASP8, Bid, CxII, Lipogenic enzymes, XBP1, and FFAs. The most important cytokine/metabolite for possible network robustness is FFAs, seconded by TNF-alpha. It is concluded that FFAs is the most important cytokine/metabolite in the metabolic pathway, seconded by ROS. FFAs, LEP, ACDC, CYP2E1, and Glucose are the only cytokines/metabolites that affect others without influences from other cytokines/metabolites. Finally, the IDs matrix for identifying possible sub-networks/modules is given. However, jointly combining the results of connectedness analysis and sub-networks/modules identification, we hold that there are not significant sub-networks/modules in the pathway.

  7. Computational Modeling of Competitive Metabolism between ω3- and ω6-Polyunsaturated Fatty Acids in Inflammatory Macrophages.

    Science.gov (United States)

    Gupta, Shakti; Kihara, Yasuyuki; Maurya, Mano R; Norris, Paul C; Dennis, Edward A; Subramaniam, Shankar

    2016-08-25

    Arachidonic acid (AA), a representative ω6-polyunsaturated fatty acid (PUFA), is a precursor of 2-series prostaglandins (PGs) that play important roles in inflammation, pain, fever, and related disorders including cardiovascular diseases. Eating fish or supplementation with the ω3-PUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is widely assumed to be beneficial in preventing cardiovascular diseases. A proposed mechanism for a cardio-protective role of ω3-PUFAs assumes competition between AA and ω3-PUFAs for cyclooxygenases (COX), leading to reduced production of 2-series PGs. In this study, we have used a systems biology approach to integrate existing knowledge and novel high-throughput data that facilitates a quantitative understanding of the molecular mechanism of ω3- and ω6-PUFA metabolism in mammalian cells. We have developed a quantitative computational model of the competitive metabolism of AA and EPA via the COX pathway through a two-step matrix-based approach to estimate the rate constants. This model was developed by using lipidomic data sets that were experimentally obtained from EPA-supplemented ATP-stimulated RAW264.7 macrophages. The resulting model fits the experimental data well for all metabolites and demonstrates that the integrated metabolic and signaling networks and the experimental data are consistent with one another. The robustness of the model was validated through parametric sensitivity and uncertainty analysis. We also validated the model by predicting the results from other independent experiments involving AA- and DHA-supplemented ATP-stimulated RAW264.7 cells using the parameters estimated with EPA. Furthermore, we showed that the higher affinity of EPA binding to COX compared with AA was able to inhibit AA metabolism effectively. Thus, our model captures the essential features of competitive metabolism of ω3- and ω6-PUFAs.

  8. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  9. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects.

    Science.gov (United States)

    Tremblay-Mercier, Jennifer; Tessier, Daniel; Plourde, Mélanie; Fortier, Mélanie; Lorrain, Dominique; Cunnane, Stephen C

    2010-07-01

    Our objective was to determine whether bezafibrate, a hypotriglyceridemic drug and peroxisome proliferator-activated receptor (PPAR)-alpha agonist, is ketogenic and increases fatty acid oxidation in humans. We measured fatty acid metabolism and ketone levels in 13 mildly hypertriglycemic adults (67 +/- 11 years old) during 2 metabolic study days lasting 6 h, 1 day before and 1 day after bezafibrate (400 mg of bezafibrate per day for 12 weeks). beta-Hydroxybutyrate, triglycerides, free fatty acids, fatty acid profiles, insulin, and glucose were measured in plasma, and fatty acid beta-oxidation was measured in breath after an oral 50-mg dose of the fatty acid tracer [U-(13)C]linoleic acid. As expected, 12 weeks on bezafibrate decreased plasma triglycerides by 35%. Bezafibrate tended to raise postprandial beta-hydroxybutyrate, an effect that was significant after normalization to the fasting baseline values (p = 0.03). beta-Oxidation of [U-(13)C]linoleic acid increased by 30% (p = 0.03) after treatment. On the metabolic study day after bezafibrate treatment, postprandial insulin decreased by 26% (p = 0.01), and glucose concentrations were lower 2 to 5 h postprandially. Thus, in hypertriglyceridemic individuals, bezafibrate is mildly ketogenic and significantly changes fatty acid metabolism, effects that may be linked to PPARalpha stimulation and to moderately improved glucose metabolism.

  10. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    Science.gov (United States)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  11. Fish oil and the pan-PPAR agonist tetradecylthioacetic acid affect the amino acid and carnitine metabolism in rats.

    Science.gov (United States)

    Bjørndal, Bodil; Brattelid, Trond; Strand, Elin; Vigerust, Natalya Filipchuk; Svingen, Gard Frodahl Tveitevåg; Svardal, Asbjørn; Nygård, Ottar; Berge, Rolf Kristian

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.

  12. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  13. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    DEFF Research Database (Denmark)

    Drachmann, Tue

    dairy fat in general and phytanic acid on metabolic parameters, we performed several studies. First, we investigated effects on hepatic lipid metabolism, glucose homeostasis, and circulating metabolic markers, of high fat diets based on butter from high- or low-yield production, a diet based on high...... oleic acid sunflower oil, and a diet based on grape-seed oil with high amount of linoleic acid, in diet induced obese mice. Second, we investigated phytanic acid effects on similar parameters in obese mice, both as dose response in butter based diets, and in grape-seed oil based diets with and without...... intervention in mice Obesity was induced in mice, by addition of sucrose to the drinking water, and giving high fat diets, based on butter from either grazing or conventional fed cattle, high oleic acid (monounsaturated fatty acid) sunflower oil, or finally from grape-seed oil with high content of the n-6 poly...

  14. [Percentage of uric acid calculus and its metabolic character in Dongjiang River valley].

    Science.gov (United States)

    Chong, Hong-Heng; An, Geng

    2009-02-15

    To study the percentage of uric acid calculus in uroliths and its metabolic character in Dongjiang River valley. To analyze the chemical composition of 290 urinary stones by infrared (IR) spectroscopy and study the ratio changes of uric acid calculus. Uric acid calculus patients and healthy people were studied. Personal characteristics, dietary habits were collected. Conditional logistic regression was used for data analysis and studied the dietary risk factors of uric acid calculus. Patients with uric acid calculus, calcium oxalate and those without urinary calculus were undergone metabolic evaluation analysis. The results of uric acid calculus patients compared to another two groups to analysis the relations between the formation of uric acid calculus and metabolism factors. Uric acid calculi were found in 53 cases (18.3%). The multiple logistic regression analysis suggested that low daily water intake, eating more salted and animal food, less vegetable were very closely associated with uric acid calculus. Comparing to calcium oxalate patients, the urine volume, the value of pH, urine calcium, urine oxalic acid were lower, but uric acid was higher than it. The value of pH, urine oxalic acid and citric acid were lower than them, but uric acid and urine calcium were higher than none urinary calculus peoples. Blood potassium and magnesium were lower than them. The percentage of uric acid stones had obvious advanced. Less daily water intake, eating salted food, eating more animal food, less vegetables and daily orange juice intake, eating sea food are the mainly dietary risk factors to the formation of uric acid calculus. Urine volume, the value of pH, citric acid, urine calcium, urine uric acid and the blood natrium, potassium, magnesium, calcium, uric acid have significant influence to the information of uric acid stones.

  15. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  16. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis

    Science.gov (United States)

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2017-01-01

    Objective This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Methods Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Results Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 μm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. Conclusions This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. PMID:24225059

  17. Integrating data from biological experiments into metabolic networks with the DBE information system.

    Science.gov (United States)

    Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk

    2005-01-01

    Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.

  18. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology.

    Science.gov (United States)

    Herrgård, Markus J; Swainston, Neil; Dobson, Paul; Dunn, Warwick B; Arga, K Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Le Novère, Nicolas; Li, Peter; Liebermeister, Wolfram; Mo, Monica L; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S; Westerhoff, Hans V; Kirdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø; Sauer, Uwe; Oliver, Stephen G; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B

    2008-10-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and content, and use different terminologies to describe the same chemical entities. This makes comparisons between them difficult and underscores the desirability of a consolidated metabolic network that collects and formalizes the 'community knowledge' of yeast metabolism. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language (http://www.comp-sys-bio.org/yeastnet). It can be maintained as a resource that serves as a common denominator for studying the systems biology of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms.

  19. Dead end metabolites--defining the known unknowns of the E. coli metabolic network.

    Directory of Open Access Journals (Sweden)

    Amanda Mackie

    Full Text Available The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database--these are metabolites which lack the requisite reactions (either metabolic or transport that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12--these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.

  20. Bacterial metabolism in immediate response to nutritional perturbation with temporal and network view of metabolites.

    Science.gov (United States)

    Yukihira, Daichi; Fujimura, Yoshinori; Wariishi, Hiroyuki; Miura, Daisuke

    2015-09-01

    In this study, the initial propagation of metabolic perturbation in Escherichia coli was visualized to understand the dynamic characteristics of the metabolic pathways without the association of transcription alterations. E. coli cells were exposed to the sudden relief of glucose starvation, and time-dependent variances in metabolite balances were traced in the second scale. The acquired time-course data were represented by structural variations of the metabolite-metabolite correlation network. The initial correlation structure was altered immediately by the glucose pulse, followed by further structural variations within a few minutes. It was demonstrated that one metabolite temporally correlated with distinct metabolites with different timings, and such a behavior could imply a regulatory role for the metabolite in the metabolic network. Centrality analysis of the networks and partial correlation analysis indicated that preparation for growth and oxidative stress could be coupled as a structural property of the metabolic pathways.

  1. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  2. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  3. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  4. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    Science.gov (United States)

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  5. Plasticity of crassulacean acid metabolism at subtropical latitudes: a pineapple case study.

    Science.gov (United States)

    Rainha, Nuno; Medeiros, Violante P; Câmara, Mariana; Faustino, Hélder; Leite, João P; Barreto, Maria do Carmo; Cruz, Cristina; Pacheco, Carlos A; Ponte, Duarte; Bernardes da Silva, Anabela

    2016-01-01

    Plants with the crassulacean acid metabolism (CAM) express high-metabolic plasticity, to adjust to environmental stresses. This article hypothesizes that irradiance and nocturnal temperatures are the major limitations for CAM at higher latitudes such as the Azores (37°45'N). Circadian CAM expression in Ananas comosus L. Merr. (pineapple) was assessed by the diurnal pattern of leaf carbon fixation into l-malate at the solstices and equinoxes, and confirmed by determining maximal phosphoenolpyruvate carboxylase (PEPC) activity in plant material. Metabolic adjustments to environmental conditions were confirmed by gas exchange measurements, and integrated with environmental data to determine CAM's limiting factors: light and temperature. CAM plasticity was observed at the equinoxes, under similar photoperiods, but different environmental conditions. In spring, CAM expression was similar between vegetative and flowering plants, while in autumn, flowering (before anthesis) and fructifying (with fully developed fruit before ripening) plants accumulated more l-malate. Below 100 µmol m(-2) s(-1) , CAM phase I was extended, reducing CAM phase III during the day. Carbon fixation inhibition may occur by two major pathways: nocturnal temperature (<15°C) inhibiting PEPC activity and l-malate accumulation; and low irradiance influencing the interplay between CAM phase I and III, affecting carboxylation and decarboxylation. Both have important consequences for plant development in autumn and winter. Observations were confirmed by flowering time prediction using environmental data, emphasizing that CAM expression had a strong seasonal regulation due to a complex network response to light and temperature, allowing pineapple to survive in environments not suitable for high productivity. © 2015 Scandinavian Plant Physiology Society.

  6. Dietary fatty acids affecting hepatic metabolism and atherosclerosis - mechanisms unravelled using a proteomics approach

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Gutierrez, G.; Roos, B. de

    2009-07-01

    Dietary fatty acids play an important role in the aetiology of coronary heart disease. The effects of dietary fatty acids on lipoprotein metabolism are well described, but additional or alternative mechanisms relating to potential influence on coronary heart disease are not known. This review describes how proteomics techniques have been used to identify proteins that are differentially regulated by dietary fatty acids. Such proteins may reveal pathways by which dietary fatty acids influence disease risk. (Author) 40 refs.

  7. Metabolic Syndrome, Alcohol Consumption and Genetic Factors Are Associated with Serum Uric Acid Concentration

    OpenAIRE

    Stibůrková, Blanka; Pavlíková, Markéta; Sokolová, Jitka; Kožich, Viktor

    2014-01-01

    Objective Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals. Methods The cohort consisted of 589 healthy subjects aged 18–65 years. We studied the associations between the serum uric acid concentration and the following: (i) demographic, anthropometric and ...

  8. Analyzing lipid metabolism: activation and beta-oxidation of fatty acids.

    Science.gov (United States)

    Wheeler, Paul Robert

    2009-01-01

    There is massive gene replication predicted for the activation of fatty acids and their entry into the beta-oxidation cycle for fatty acid oxidation. These two steps in fatty acid metabolism are catalyzed by FadD and FadE enzymes with 36 genes predicted for each of these respective activities in Mycobacterium tuberculosis. Here we present methods for the cell-free assay of types of enzymes in live bacteria, as well as for fatty acid oxidation overall.

  9. Systems metabolic engineering design: fatty acid production as an emerging case study.

    Science.gov (United States)

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  10. Effects of Diets High in Palmitoleic Acid on Serum Lipid Levels and Metabolism

    Science.gov (United States)

    1996-03-01

    Metabolism . 1993 Feb; 42(2): 247-57. 21. Grant-KI; Marais-MP; Dhansay-MA. Sucrose in a lipid -rich meal amplifies the postprandial excursion of serum and...PAGE IS UNCLASSIFIED AD GRANT NUMBER: DAMD17-93-J-3071 TITLE: Effects of Diets High in Palmitoleic Acid on Serum Lipid Levels and Metabolism PRINCIPAL...the first blood drawing. 8 Subjects taking medications which might interfere with lipid metabolism or with plasma cholesterol or triglyceride (TG

  11. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.

    Science.gov (United States)

    Asplund-Samuelsson, Johannes; Janasch, Markus; Hudson, Elton P

    2018-01-01

    Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The use of dilute hydrochloric acid and cimetidine to reverse severe metabolic alkalosis.

    Science.gov (United States)

    Rowlands, B. J.; Tindall, S. F.; Elliott, D. J.

    1978-01-01

    Two cases of severe metabolic alkalosis associated with gastric hypersecretion were successfully treated with dilute hydrochloric acid and a histamine H2-receptor antagonist given by intravenous infusion. This combined therapy with electrolyte replacement and suppression of gastric secretion is valuable in the control of this serious metabolic abnormality when conventional treatment is unsuccessful or contraindicated. PMID:634873

  13. The role of energy & fatty acid metabolism in obesity and insulin resistance

    NARCIS (Netherlands)

    Heemskerk, Mattijs Maria

    2015-01-01

    In today’s world, more people die from complications of overweight than from underweight. But not all individuals are equally prone to develop metabolic complications, such as obesity and insulin resistance. This thesis focuses on the differences in the energy and fatty acid metabolism that play a

  14. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana

    2014-01-01

    in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t...... (pAmoxicillin did not affect any of these parameters. CONCLUSIONS: Oral administration...

  15. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome

    NARCIS (Netherlands)

    Krzystek-Korpacka, Malgorzata; Patryn, Eliza; Bednarz-Misa, Iwona; Mierzchala, Magdalena; Hotowy, Katarzyna; Czapinska, Elzbieta; Kustrzeba-Wojcicka, Irena; Gamian, Andrzej; Noczynska, Anna

    2011-01-01

    Adipocyte fatty acid-binding protein (A-FABP) links obesity and metabolic syndrome (MetS) and might be targeted in future therapies. Its utility as a MetS biomarker has been suggested in adults but has not been examined in children/adolescents. Our objectives were to identify metabolic parameters

  16. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  17. Effects of Diet High in Palmitoleic Acid on Serum Lipid Levels and Metabolism

    Science.gov (United States)

    2000-07-01

    High in Palmitoleic Acid on Serum Lipid Levels and Metabolism , Phase 2 PRINCIPAL INVESTIGATOR: Jesse David Curb, M.D., MPH CONTRACTING ORGANIZATION...FUNDING NUMBERS Effects of Diet High in Palmitoleic Acid on Serum Lipid DAMD17-97-2-7003 Levels and Metabolism , Phase 2 6. AUTHOR(S) Jesse David Curb... postprandial states, as well as the artheropathogenesis among lipids and lipoproteins in dietary interventions. It not only can help us to evaluate

  18. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study

    OpenAIRE

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and ...

  19. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome

    OpenAIRE

    Tochikubo, O; Nakamura, H; Jinzu, H; Nagao, K; Yoshida, H; Kageyama, N; Miyano, H

    2016-01-01

    Objectives: The prevalence of metabolic syndrome is increasing worldwide, especially in Asian populations. Early detection and effective intervention are vital. Plasma free amino acid profile is a potential biomarker for the early detection for lifestyle-related diseases. However, little is known about whether the altered plasma free amino acid profiles in subjects with metabolic syndrome are related to the effectiveness of dietary and exercise interventions. Methods: Eighty-five Japanese sub...

  20. Metabolism of 2-deoxyglyconic acid in plants and bakers yeast

    International Nuclear Information System (INIS)

    Gakhokidze, R.A.; Beriashvili, L.T.; Chigvinadze, T.D.

    1996-01-01

    During photosynthesis in Phaseolus vulgaris haricot bean and Zea mays leaves, assimilated carbon 14 CO 2 is rapidly incorporated into aldonic acids including 2-deoxygluconic acid whose radioactivity was relatively high. In these plants, radioactive carbon of 2-deoxy-D-gluconic acid prepared from 1-6 14 C-D-glucose is actively involved in the formation of sugars, organic acids, and amino acids. In baking yeast Saccharomyces cerevisiae, the rate of respiration-dependent oxidation of 2-deoxy-D-gluconic acid differs versus the rate of D-glucose oxidation [ru

  1. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    OpenAIRE

    Dziuba, Bartłomiej; Nalepa, Beata

    2012-01-01

    In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs) and Fourier transform infrared spectroscopy (FTIR). Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evalu...

  2. Reconciled Rat and Human Metabolic Networks for Comparative Toxicogenomics and Biomarker Predictions

    Science.gov (United States)

    2017-02-08

    reactions. ETC, electron transport chain; PPP, pentose phosphate pathway. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14250 ARTICLE NATURE COMMUNICATIONS...CDCA) Alpha-muricholic acid (αMCA) x Beta-muricholic acid (βMCA) x Secondary bile acids Deoxycholic acid (DCA) Lithocholic acid ( LCA ) Hyocholic acid...than rats Neu5Ac Lewisa ManNAc Microbial metabolism MDCA Cyp3a18 Cyp3a18 CDCA LCA CDCA LCA SharedRat-specific Human-specific Figure 3 | Functional

  3. Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors

    Science.gov (United States)

    Filannino, Pasquale; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-01-01

    ABSTRACT Fructophilic lactic acid bacteria (FLAB) are strongly associated with the gastrointestinal tracts (GITs) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GITs of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of the Apulia region of Italy. Almost all of the isolates showed fructophilic tendencies: these isolates were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray targeting 190 carbon sources was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic, or gallic acids, as electron acceptors was investigated in fructose-based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by the 4 FLAB showing the highest phenolic acid reductase activity was investigated in glucose-based medium supplemented with p-coumaric acid. Metabolic responses observed through a phenotypic microarray suggested that FLAB may use p-coumaric acid as an external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid. IMPORTANCE Fructophilic lactic acid bacteria (FLAB) remain to be fully explored. This study intends to link unique biochemical features of FLAB with their habitat. The quite unique FLAB phenome within the group lactic acid bacteria (LAB) may have practical relevance

  4. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    OpenAIRE

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-01-01

    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitin...

  5. Relationship between uric acid and metabolic syndrome according to menopausal status.

    Science.gov (United States)

    Lee, Hee Jung; Park, Hyun Tae; Cho, Geum Joon; Yi, Kyung Wook; Ahn, Ki Hoon; Shin, Jung-Ho; Kim, Tak; Kim, Young Tae; Hur, Jun Young; Kim, Sun Haeng

    2011-06-01

    Uric acid, the levels of which have been shown to increase after menopause, has been associated with metabolic syndrome. The prevalence of metabolic syndrome has also been determined to increase after menopause. Therefore, we surmised that menopausal status-specific analyses for the characterisation of the relationship between uric acid and the metabolic syndrome were warranted. We included 1644 patients: 1018 premenopausal women and 626 postmenopausal women, all of whom participated in annual health examinations at Anam Hospital in Seoul, Korea, from January 2008 through December 2008. On the multivariate logistic regression analysis, uric acid was identified as an independent risk factor for metabolic syndrome in both premenopausal and postmenopausal women. Uric acid levels had different relationships with blood pressure based on menopausal status, however, no such relationships with fasting glucose or age were found. Increased uric acid levels were associated with increased risk for metabolic syndrome in both premenopausal and postmenopausal women. In studies regarding uric acid and metabolic syndrome in women, the effects of menopausal status should be considered.

  6. Evolution of the Aroma Volatiles of Pear Fruits Supplemented with Fatty Acid Metabolic Precursors

    Directory of Open Access Journals (Sweden)

    Gaihua Qin

    2014-12-01

    Full Text Available To examine the biochemical metabolism of aroma volatiles derived from fatty acids, pear fruits were incubated in vitro with metabolic precursors of these compounds. Aroma volatiles, especially esters, were significantly increased, both qualitatively and quantitatively, in pear fruits fed on fatty acid metabolic precursors. Cultivars having different flavor characteristics had distinctly different aroma volatile metabolisms. More esters were formed in fruity-flavored “Nanguoli” fruits than in green-flavored “Dangshansuli” fruits fed on the same quantities of linoleic acid and linolenic acid. Hexanal and hexanol were more efficient metabolic intermediates for volatile synthesis than linoleic acid and linolenic acid. Hexyl esters were the predominant esters produced by pear fruits fed on hexanol, and their contents in “Dangshansuli” fruits were higher than in “Nanguoli” fruits. Hexyl esters and hexanoate esters were the primary esters produced in pear fruits fed on hexanal, however the content of hexyl ester in “Dangshansuli” was approximately three times that in “Nanguoli”. The higher contents of hexyl esters in “Dangshansuli” may have resulted from a higher level of hexanol derived from hexanal. In conclusion, the synthesis of aroma volatiles was largely dependent on the metabolic precursors presented.

  7. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  8. Application of radioamino acid analyzer to the study of the metabolism of glutamic acid analogs in tea trees

    International Nuclear Information System (INIS)

    Mori, Satoshi; Hoshina, Tsuguo.

    1983-01-01

    The metabolic pattern of glutamic acid in tea trees was examined using a radioamino acid analyzer. The radioactivity of 1- 14 C ethylamine absorbed through the roots of the seedlings of the variety Yabukita, was incorporated only into theanine in both roots and shoots. When 1- 14 C ethylamine was directly absorbed into the 3 topmost leaves, a low radioactivity was detected only in theanine. Ethylamine was metabolized into theanine in both roots and leaves, but the enzymatic activity in the roots was 12.5 - 20.5 times as high as that of the leaves. When 14 C methylamine was given through the roots, the radioactivity was specifically incorporated into γ-glutamylmethylamide in both roots and shoots. The metabolism of U- 14 C glutamic acid, U- 14 C alanine and 1- 14 C alanine given through the roots showed that alanine entered mainly the glutamic acid skeleton of theanine. Furthermore, the metabolism of alanine to theanine was slower than its incorporation into glutamic acid and aminobutyric acid. The possibility was suggested that some compounds other than alanine could also be the precursors of the ethylamino group of theanine. (Kaihara, S.)

  9. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    Science.gov (United States)

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  10. Hyaluronic acid metabolism is increased in unstable plaques

    NARCIS (Netherlands)

    Bot, Pieter T.; Pasterkamp, Gerard; Goumans, Marie-José; Strijder, Chaylendra; Moll, Frans L.; de Vries, Jean-Paul; Pals, Steven T.; de Kleijn, Dominique P.; Piek, Jan J.; Hoefer, Imo E.

    2010-01-01

    P>Background Hyaluronic acid is expressed in atherosclerotic lesions, but its exact role in atherosclerotic disease remains unknown. As degradation of hyaluronic acid by hyaluronidase into low molecular weight hyaluronic acid (LMW-HA) is associated with inflammation and Matrix Metalloproteinase

  11. Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders?

    Science.gov (United States)

    de Souza, Camila O; Vannice, Gretchen K; Rosa Neto, José C; Calder, Philip C

    2018-01-01

    Although dietary fatty acids can modulate metabolic and immune responses, the effects of palmitoleic acid (16:1n-7) remain unclear. Since this monounsaturated fatty acid is described as a lipokine, studies with cell culture and rodent models have suggested it enhances whole body insulin sensitivity, stimulates insulin secretion by β cells, increases hepatic fatty acid oxidation, improves the blood lipid profile, and alters macrophage differentiation. However, human studies report elevated blood levels of palmitoleic acid in people with obesity and metabolic syndrome. These findings might be reflection of the level or activity of stearoyl-CoA desaturase-1, which synthesizes palmitoleate and is enhanced in liver and adipose tissue of obese patients. The aim of this review is to describe the immune-metabolic effects of palmitoleic acid observed in cell culture, animal models, and humans to answer the question of whether palmitoleic acid is a plausible nonpharmacological strategy to prevent, control, or ameliorate chronic metabolic and inflammatory disorders. Despite the beneficial effects observed in cell culture and in animal studies, there are insufficient human intervention studies to fully understand the physiological effects of palmitoleic acid. Therefore, more human-based research is needed to identify whether palmitoleic acid meets the promising therapeutic potential suggested by the preclinical research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...... cells with increased content of ARA and EPA. The invention especially involves improvement of the PUFA content in the host organism through various over-expression of e.g. cytochrome b5 and cytochrome b5 reductase involved in fatty acid desaturation, and heterologous expression of cytochrome b5...... and cytochrome b5 reductase and expression of heterologous fatty acid synthases....

  13. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  14. Alteration of tricarboxylic acid cycle metabolism in rat brain slices by halothane

    International Nuclear Information System (INIS)

    Cheng, S.C.; Brunner, E.A.

    1978-01-01

    Metabolism of [2- 14 C] pyruvate, [1- 14 C] acetate and [5- 14 C] citrate in rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamineγ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloracetic acid insoluble precipitate and its lipid extract were also studied. In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labelled ACh, but to a lesser extent than pyruvate. Acetate also labelled lipids and glutamine. Citrate labelled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism. Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine. Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the large metabolic compartment which includes the nerve endings. Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloroacetic acid extract. Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased. The differential effects of halothane on acetate and citrate utilization suggest that the small metabolic compartment should be subdivided. Therefore, at least three metabolic compartments are demonstrated. Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle. (author)

  15. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks

    Directory of Open Access Journals (Sweden)

    Chang Jeong-Ho

    2006-06-01

    Full Text Available Abstract Background To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. Results To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. Conclusion By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway

  16. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  17. Beneficial role of dietary folic acid on cholesterol and bile acid metabolism in ethanol-fed rats.

    Science.gov (United States)

    Delgado-Villa, Maria Jesus; Ojeda, Maria Luisa; Rubio, Jose Maria; Murillo, Maria Luisa; Sánchez, Olimpia Carreras

    2009-07-01

    Cholesterol metabolism is altered by chronic ethanol consumption. In previous articles, we demonstrated the anti-oxidant capacity of folic acid, which may be useful in the prevention of damage provoked by ethanol. We want to determine the effects of ethanol on cholesterol and bile metabolism and whether a folic acid-supplemented diet could change alterations provoked by a chronic ethanol intake in rats. We used four experimental groups: (1) control, (2) alcohol, (3) alcohol supplemented with folic acid, and (4) control supplemented with folic acid. In all the experimental groups, we measured hepatic 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and cholesterol and bile acids in serum, liver, bile, and feces. We have found that the alcohol-fed groups showed high hepatic HMG-CoA reductase activity, total hepatic and serum cholesterol concentration, bile cholesterol secretion concentration, and cholesterol enterohepatic circulation. Total serum and hepatic cholesterol levels decreased when alcohol-fed rats were supplemented with folic acid. The hepatic bile acid concentration increased in both chronic ethanol groups. Folic acid supplementation significantly increased bile cholesterol secretion, the bile acids in bile, and fecal bile acid excretion in ethanol-exposed rats. The independent bile acid fraction showed no significant differences between both ethanol groups with respect to Na+, K+, and Cl- concentrations. Folic acid increases bile flow, bile acid synthesis from cholesterol, and bile acid excretion via feces, thus provoking a decrease in serum and hepatic cholesterol. However none of these actions were observed in supplemented control rats. This, therefore, could be yet another beneficial effect of folic acid on alcoholic patients.

  18. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  19. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2016-03-01

    Full Text Available The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome and metabolome has become a common part of many systems biology studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e. first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e. second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

  20. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  1. Preparation, properties and metabolism of 5,6-monoepoxyretinoic acid

    Science.gov (United States)

    John, K. V.; Lakshmanan, M. R.; Cama, H. R.

    1967-01-01

    1. Methyl retinoate has been converted into methyl 5,6-monoepoxyretinoate by reaction with monoperphthalic acid. The epoxy acid ester on alkaline hydrolysis gave 5,6-monoepoxyretinoic acid. 2. Treatment of the 5,6-monoepoxy compounds with ethanolic hydrochloric acid gave the corresponding 5,8-epoxy (furanoid) compounds. 3. With lithium aluminium hydride, the acid and the ester groups were selectively reduced to primary alcohols. 4. Administration of methyl 5,6-monoepoxyretinoate intraperitoneally and subcutaneously had good growth response in vitamin A-deficient rats. 5. 5,6-Monoepoxyretinoic acid, when given intraperitoneally as the sodium salt, was 157% as active as all-trans-retinyl acetate. 6. Methyl 5,6-monoepoxyretinoate was hydrolysed to the epoxy acid by rat-liver homogenate. It had 35% of the biological activity of all-trans-retinyl acetate in the rat when given orally. PMID:6032985

  2. Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk

    OpenAIRE

    Silva, Hellen Abreu da; Carraro, Júlia Cristina Cardoso; Bressan, Josefina; Hermsdorff, Helen Hermana Miranda

    2015-01-01

    Objective To identify possible relations between serum uric acid levels and metabolic syndrome and its components in a population with cardiometabolic risk. Methods This cross-sectional study included 80 subjects (46 women), with mean age of 48±16 years, seen at the Cardiovascular Health Program. Results The prevalence of hyperuricemia and metabolic syndrome was 6.3% and 47.1%, respectively. Uric acid level was significantly higher in individuals with metabolic syndrome (5.1±1.6mg/dL), a...

  3. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2. Diagnostic aids for inborn error of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-09-01

    Analysis of urine from patients with inborn error of metabolism were studied by /sup 1/H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening andor diagnosis of inherited metabolic diseases of amino acid and organic acid.

  4. Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals.

    Science.gov (United States)

    Ni, Yan; Zhao, Linjing; Yu, Haoyong; Ma, Xiaojing; Bao, Yuqian; Rajani, Cynthia; Loo, Lenora W M; Shvetsov, Yurii B; Yu, Herbert; Chen, Tianlu; Zhang, Yinan; Wang, Congrong; Hu, Cheng; Su, Mingming; Xie, Guoxiang; Zhao, Aihua; Jia, Wei; Jia, Weiping

    2015-10-01

    Obesity is not a homogeneous condition across individuals since about 25-40% of obese individuals can maintain healthy status with no apparent signs of metabolic complications. The simple anthropometric measure of body mass index does not always reflect the biological effects of excessive body fat on health, thus additional molecular characterizations of obese phenotypes are needed to assess the risk of developing subsequent metabolic conditions at an individual level. To better understand the associations of free fatty acids (FFAs) with metabolic phenotypes of obesity, we applied a targeted metabolomics approach to measure 40 serum FFAs from 452 individuals who participated in four independent studies, using an ultra-performance liquid chromatograph coupled to a Xevo G2 quadruple time-of-flight mass spectrometer. FFA levels were significantly elevated in overweight/obese subjects with diabetes compared to their healthy counterparts. We identified a group of unsaturated fatty acids (UFAs) that are closely correlated with metabolic status in two groups of obese individuals who underwent weight loss intervention and can predict the recurrence of diabetes at two years after metabolic surgery. Two UFAs, dihomo-gamma-linolenic acid and palmitoleic acid, were also able to predict the future development of metabolic syndrome (MS) in a group of obese subjects. These findings underscore the potential role of UFAs in the MS pathogenesis and also as important markers in predicting the risk of developing diabetes in obese individuals or diabetes remission after a metabolic surgery.

  5. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  6. Urine acidification and mineral metabolism in growing pigs feddiets supplemented with dietary methionine and benzoic acid

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Eriksen, Jørgen

    2010-01-01

    Benzoic acid (BA) reduces pH of urine and thereby reduces the emission of ammonia and possibly also odorous sulphur-compounds from slurry. The effect of BA on mineral metabolism in growing pigs is not clear. The objective was therefore to study the effect of BA and methionine (Met) as a sulphur (S......) source in diets for pigs on urine acidification and mineral metabolism. Twenty-four 45 kg pigs in a 2 × 2 factorial design were fed one of 4 diets, containing 0 or 2% BA and a low or high dietary S level provided through diet supplementation of 0 or 1% Met. The pigs were placed in metabolic cages for a 5...... d adaptation period and a 7 d period with collection of faeces and urine. Benzoic acid was metabolized into hippuric acid which reduced urinary pH by 0.8 pH units (P 

  7. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Eoin Barrett

    Full Text Available The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15 were orally gavaged with either B. breve DPC6330 (10(9 microorganisms/day alone or in combination with 0.5% (w/w linoleic acid & 0.5% (w/w α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11 in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05. Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11 in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05, whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05 compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01 and α-linolenic acid in adipose tissue (p<0.001, whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05, and α-linolenic acid in adipose tissue (p<0.001. B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated

  8. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  9. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  10. Metabolic Effects of Bile Acids in the Gut in Health and Disease

    NARCIS (Netherlands)

    Boesjes, Marije; Brufau Dones, Gemma

    2014-01-01

    In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly,

  11. Microbial transglutaminase production by Streptoverticillium mobaraense: Analysis of amino acid metabolism using mass balances

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Bonarius, H.P.J.; Tramper, J.; Bol, J.

    1998-01-01

    Metabolic flows, especially those of amino acids, were determined and analyzed at different stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense. The method is mainly based on mass balances and measurements of amino acids and other metabolites.

  12. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  13. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  14. Uric acid, an important screening tool to detect inborn errors of metabolism: a case series.

    Science.gov (United States)

    Jasinge, Eresha; Kularatnam, Grace Angeline Malarnangai; Dilanthi, Hewa Warawitage; Vidanapathirana, Dinesha Maduri; Jayasena, Kandana Liyanage Subhashinie Priyadarshika Kapilani Menike; Chandrasiri, Nambage Dona Priyani Dhammika; Indika, Neluwa Liyanage Ruwan; Ratnayake, Pyara Dilani; Gunasekara, Vindya Nandani; Fairbanks, Lynette Dianne; Stiburkova, Blanka

    2017-09-06

    Uric acid is the metabolic end product of purine metabolism in humans. Altered serum and urine uric acid level (both above and below the reference ranges) is an indispensable marker in detecting rare inborn errors of metabolism. We describe different case scenarios of 4 Sri Lankan patients related to abnormal uric acid levels in blood and urine. CASE 1: A one-and-half-year-old boy was investigated for haematuria and a calculus in the bladder. Xanthine crystals were seen in microscopic examination of urine sediment. Low uric acid concentrations in serum and low urinary fractional excretion of uric acid associated with high urinary excretion of xanthine and hypoxanthine were compatible with xanthine oxidase deficiency. CASE 2: An 8-month-old boy presented with intractable seizures, feeding difficulties, screaming episodes, microcephaly, facial dysmorphism and severe neuro developmental delay. Low uric acid level in serum, low fractional excretion of uric acid and radiological findings were consistent with possible molybdenum cofactor deficiency. Diagnosis was confirmed by elevated levels of xanthine, hypoxanthine and sulfocysteine levels in urine. CASE 3: A 3-year-10-month-old boy presented with global developmental delay, failure to thrive, dystonia and self-destructive behaviour. High uric acid levels in serum, increased fractional excretion of uric acid and absent hypoxanthine-guanine phosphoribosyltransferase enzyme level confirmed the diagnosis of Lesch-Nyhan syndrome. CASE 4: A 9-year-old boy was investigated for lower abdominal pain, gross haematuria and right renal calculus. Low uric acid level in serum and increased fractional excretion of uric acid pointed towards hereditary renal hypouricaemia which was confirmed by genetic studies. Abnormal uric acid level in blood and urine is a valuable tool in screening for clinical conditions related to derangement of the nucleic acid metabolic pathway.

  15. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation.

    Science.gov (United States)

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [14C]-lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells (94.8 +/- 2.2% of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low (24.6 +/- 4.2% of initial radioactivity after 4 h), due to the high beta-oxidation of lauric acid in hepatocytes (38.7 +/- 4.4% after the same time). Among cellular lipids, lauric acid was preferentially incorporated into triglycerides (10.6 +/- 4.6% of initial radioactivity after 4 h). Lauric acid was also rapidly converted to palmitic acid by two successive elongations. Protein acylation was detected after metabolic labeling of the cells with [11,12-3H]-lauric acid. Two-dimensional electrophoresis separation of the cellular proteins and autoradiography evidenced the incorporation of radioactivity into 35 well-resolved proteins. Radiolabeling of several proteins resulted from covalent linkage to the precursor [11,12-3H]-lauric acid or to its elongation product, myristic acid. The covalent linkages between these proteins and lauric acid were broken by base hydrolysis, indicating that the linkage was of the thioester or ester-type. Endogenous myristic acid produced by lauric acid elongation was used for both protein N-myristoylation and protein S-acylation. Therefore, these results show for the first time that, although it is rapidly metabolized in hepatocytes, exogenous lauric acid is a substrate for the acylation of liver proteins.

  16. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  17. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids

    Directory of Open Access Journals (Sweden)

    Courtney B. Ferrebee

    2015-03-01

    Full Text Available The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR and the G-protein-coupled bile acid receptor (TGR5.

  18. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  19. Investigation into the Metabolism of Phenyllactic Acid in Datura Stramonium.

    Directory of Open Access Journals (Sweden)

    Morteza Ansarin

    1990-06-01

    Full Text Available The administration of phenyllactic acid (l,3-C to Datura.stramonium plants"nyielded labelled Hyoscyamin and hyoscine. proton noise decoupled CNMR spectra of"n13 13 these alkaloids revealed the presence of satellite peaks, due to C-C spin-spin"ncoupling, symmetrically located about the singlet peaks arising from C. and C of the tropic acid moiety of these alkaloids. This result indicated that the rearr¬angement of phenyllactic acid to tropic acid involves an intramolecular migration of the carboxyl group.

  20. The hypothalamic neural-glial network and the metabolic syndrome

    NARCIS (Netherlands)

    Jastroch, Martin; Morin, Silke; Tschöp, Matthias H.; Yi, Chun-Xia

    2014-01-01

    Despite numerous educational interventions and biomedical research efforts, modern society continues to suffer from obesity and its associated metabolic diseases, such as type 2 diabetes mellitus, and these diseases show little sign of abating. One reason for this is an incomplete understanding of

  1. Addressing unknown constants and metabolic network behaviors through petascale computing: understanding H2 production in green algae

    International Nuclear Information System (INIS)

    Chang, Christopher; Alber, David; Graf, Peter; Kim, Kwiseon; Seibert, Michael

    2007-01-01

    The Genomics Revolution has resulted in a massive and growing quantity of whole-genome DNA sequences, which encode the metabolic catalysts necessary for life. However, gene annotations can rarely be complete, and measurement of the kinetic constants associated with the encoded enzymes can not possibly keep pace, necessitating the use of careful modeling to explore plausible network behaviors. Key challenges are (1) quantitatively formulating kinetic laws governing each transformation in a fixed model network; (2) characterizing the stable solution (if any) of the associated ordinary differential equations (ODEs); (3) fitting the latter to metabolomics data as it becomes available; and (4) optimizing a model output against the possible space of kinetic parameters, with respect to properties such as robustness of network response, or maximum consumption/production. This SciDAC-2 project addresses this large-scale uncertainty in the genome-scale metabolic network of the water-splitting, H 2 -producing green alga Chlamydomonas reinhardtii. Each metabolic transformation is formulated as an irreversible steady-state process, such that the vast literature on known enzyme mechanisms may be incorporated directly. To start, glycolysis, the tricarboxylic acid cycle, and basic fermentation pathways have been encoded in Systems Biology Markup Language (SBML) with careful annotation and consistency with the KEGG database, yielding a model with 3 compartments, 95 species, 38 reactions, and 109 kinetic constants. To study and optimize such models with a view toward larger models, we have developed a system which takes as input an SBML model, and automatically produces C code that when compiled and executed optimizes the model's kinetic parameters according to test criteria. We describe the system and present numerical results. Further development, including overlaying of a parallel multistart algorithm, will allow optimization of thousands of parameters on high-performance systems

  2. Genome scale metabolic network reconstruction of Spirochaeta cellobiosiphila

    Directory of Open Access Journals (Sweden)

    Bharat Manna

    2017-10-01

    Full Text Available Substantial rise in the global energy demand is one of the biggest challenges in this century. Environmental pollution due to rapid depletion of the fossil fuel resources and its alarming impact on the climate change and Global Warming have motivated researchers to look for non-petroleum-based sustainable, eco-friendly, renewable, low-cost energy alternatives, such as biofuel. Lignocellulosic biomass is one of the most promising bio-resources with huge potential to contribute to this worldwide energy demand. However, the complex organization of the Cellulose, Hemicellulose and Lignin in the Lignocellulosic biomass requires extensive pre-treatment and enzymatic hydrolysis followed by fermentation, raising overall production cost of biofuel. This encourages researchers to design cost-effective approaches for the production of second generation biofuels. The products from enzymatic hydrolysis of cellulose are mostly glucose monomer or cellobiose unit that are subjected to fermentation. Spirochaeta genus is a well-known group of obligate or facultative anaerobes, living primarily on carbohydrate metabolism. Spirochaeta cellobiosiphila sp. is a facultative anaerobe under this genus, which uses a variety of monosaccharides and disaccharides as energy sources. However, most rapid growth occurs on cellobiose and fermentation yields significant amount of ethanol, acetate, CO2, H2 and small amounts of formate. It is predicted to be promising microbial machinery for industrial fermentation processes for biofuel production. The metabolic pathways that govern cellobiose metabolism in Spirochaeta cellobiosiphila are yet to be explored. The function annotation of the genome sequence of Spirochaeta cellobiosiphila is in progress. In this work we aim to map all the metabolic activities for reconstruction of genome-scale metabolic model of Spirochaeta cellobiosiphila.

  3. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  4. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    Science.gov (United States)

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-07-01

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of metabolic enzyme on organic acids in developing ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... dehydrogenase (NAD-MDH) and NADP-malic enzyme (NADP-ME), were examined during the process of leaf development in 'Dangshansuli' pear. The citric acid content exhibited an overall slightly decreasing trend and the malic acid content exhibited an overall appreciably increasing trend in developing ...

  6. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly

  7. Beyond intestinal soap-bile acids in metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Bloks, Vincent W.; Groen, Albert K.

    Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that

  8. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is

  9. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Carlotta Lassandro

    2015-08-01

    Full Text Available Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF criteria has been suggested in children. Docosahexaenoic acid (DHA has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  10. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Directory of Open Access Journals (Sweden)

    Brian R Granger

    2016-04-01

    Full Text Available The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space, a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  11. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  12. Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus.

    Science.gov (United States)

    Wang, Baohua; Liu, Jiao; Liu, Huanhuan; Huang, Di; Wen, Jianping

    2015-06-01

    Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and anticancer activity produced by Streptomyces hygroscopicus. In this study, a mutant strain obtained by ultraviolet mutagenesis displayed higher rapamycin production capacity compared to the wild-type S. hygroscopicus ATCC 29253. To gain insights into the mechanism of rapamycin overproduction, comparative metabolic profiling between the wild-type and mutant strain was performed. A total of 86 metabolites were identified by gas chromatography-mass spectrometry. Pattern recognition methods, including principal component analysis, partial least squares and partial least squares discriminant analysis, were employed to determine the key biomarkers. The results showed that 22 potential biomarkers were closely associated with the increase of rapamycin production and the tremendous metabolic difference was observed between the two strains. Furthermore, metabolic pathway analysis revealed that amino acids metabolism played an important role in the synthesis of rapamycin, especially lysine, valine, tryptophan, isoleucine, glutamate, arginine and ornithine. The inadequate supply of amino acids, or namely "nitrogen starvation" occurred in the mutant strain. Subsequently, the exogenous addition of amino acids into the fermentation medium of the mutant strain confirmed the above conclusion, and rapamycin production of the mutant strain increased to 426.7 mg/L after adding lysine, approximately 5.8-fold of that in the wild-type strain. Finally, the results of real-time PCR and enzyme activity assays demonstrated that dihydrodipicolinate synthase involved with lysine metabolism played vital role in the biosynthesis of rapamycin. These findings will provide a theoretical basis for further improving production of rapamycin.

  13. Study on the metabolism of 15 p-131iodine phenyl pentadecanoic acid [p-iodine phenyl pentadecanoic acid] as a tracer of free fatty acids in comparison to 1-14C-palmitic acid (C-palmitic acid)

    International Nuclear Information System (INIS)

    Sauer, J.W.

    1986-01-01

    In an animal experiment under identical metabolic influences the metabolism of a new radiopharmaceutical, 15 p- 131 iodine phenyl pentadecanoic acid (IPPA), was compared to the marked physiological fatty acid, 1- 14 C-palmitic acid (PA). The pharmacological kinetics of both tracers in tissues with widely varied turnover rates of fatty acids (heart, lung, liver, kidney, spleen, small intestine, skeletal muscle) was studied. By alkali extraction of the tissue lipids and then a chromatographic separation of the lipid fractions quantitatively comparable statements about the metabolism of PA and IPPA were made possible. The analyses of autoradiographs of the chromatographically separated lipids show a qualitatively congruous assimilation of both markers in the major lipid fractions. The quantitative evaluation shows minor differences as a result of a preferred assimilation of IPPA in triglycerides and of PA in phospholipids. The fractionated separation of tissue lipids which had been marked with PA and IPPA in vivo agrees very well with values which have been determined by other authors using 14 C- or 3 H-marked fatty acids. The close correlation of the tissue-specific metabolism kinetics of both markers makes it clear that both fatty acids are metabolized by similar, respectively, primarily identical metabolic pathyways. In conclusion, this study makes clear the extensive congruence of the metabolism kinetics of IPPA and the kinetics of the physiological palmitic acid. As a result of the presented results of the γ-radiating radiopharmaceutical IPPA as a free fatty acid analog new possibilities for the non-invasive external comprehension of lipid metabolism are opened up, whose use especially in the diagnostic of heart diseases promises success. (orig./MG) [de

  14. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics

    Science.gov (United States)

    2013-01-01

    Background Dietary supplementation with botanical oils that contain n-6 and n-3 eighteen carbon chain (18C)-PUFA such as γ linolenic acid (GLA, 18:3n-6), stearidonic acid (SDA, 18:4n-3) and α linolenic acid (ALA, 18:3n-3) have been shown to impact PUFA metabolism, alter inflammatory processes including arachidonic acid (AA) metabolism and improve inflammatory disorders. Methods The diet of mild asthmatics patients was supplemented for three weeks with varying doses of two botanical seed oils (borage oil [Borago officinalis, BO] and echium seed oil [Echium plantagineum; EO]) that contain SDA, ALA and GLA. A three week wash out period followed. The impact of these dietary manipulations was evaluated for several biochemical endpoints, including in vivo PUFA metabolism and ex vivo leukotriene generation from stimulated leukocytes. Results Supplementation with several EO/BO combinations increased circulating 20–22 carbon (20–22C) PUFAs, including eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and dihommo-gammalinolenic acid (DGLA), which have been shown to inhibit AA metabolism and inflammation without impacting circulating AA levels. BO/EO combinations also inhibited ex vivo leukotriene generation with some combinations attenuating cysteinyl leukotriene generation in stimulated basophils by >50% and in stimulated neutrophils by >35%. Conclusions This study shows that dietary supplementation with BO/EO alters 20–22C PUFA levels and attenuates leukotriene production in a manner consistent with a reduction in inflammation. PMID:24088297

  15. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study.

    Directory of Open Access Journals (Sweden)

    Hai-Lun Sun

    Full Text Available The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively, a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05. However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05. The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders.

  16. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study.

    Science.gov (United States)

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; puric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; puric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders.

  17. Effect of genotype on estimated indexes of fatty acid metabolism in rabbits

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Bosco

    2014-03-01

    Full Text Available To analyse the effect of rabbit genotype on fatty acid metabolism, 60 weaned rabbits (30 d old, sex ratio 1:1; 20 New Zealand White, 20 Leprino of Viterbo and 20 rabbits of a Local grey population were reared in bicellular standard cages. At 80 d, 10 rabbits per group were selected and slaughtered. The muscle fatty acid composition and relative indexes of metabolism of the longissmus lumborum of these rabbits were determined. The New Zealand White and Leprino rabbits exhibited lower percentages of myristic acid and higher percentages of palmitic acid and palmitoleic acid, and the levels of monounsaturated fatty acids were significantly higher in these rabbits. The grey-coloured rabbits exhibited the highest values of total n-3 fatty acids. With respect to fatty acid metabolism, the New Zealand White and Leprino rabbits exhibited higher thioesterase and Δ9-desaturase indexes and lower elongase and Δ5- Δ6-desaturase indexes. The estimated Δ5- Δ6-desaturase activity was significantly higher in the Local grey rabbits, suggesting a genetic effect on the desaturase and elongase mechanisms responsible for the synthesis of long-chain n-3 fatty acids.

  18. Genetics of mesophilic citrate metabolizing lactic acid bacteria

    NARCIS (Netherlands)

    David, S.

    1992-01-01

    A prerequisite for the stabilization of important features, such as aroma production, in starter strains used in dairy fermentations, is an extensive knowledge of the genetic basis of these properties. In this thesis the genetic basis of citrate metabolism in Lactococcus

  19. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  20. Differential RNA-seq, Multi-Network Analysis and Metabolic Regulation Analysis of Kluyveromyces marxianus Reveals a Compartmentalised Response to Xylose.

    Directory of Open Access Journals (Sweden)

    Du Toit W P Schabort

    Full Text Available We investigated the transcriptomic response of a new strain of the yeast Kluyveromyces marxianus, in glucose and xylose media using RNA-seq. The data were explored in a number of innovative ways using a variety of networks types, pathway maps, enrichment statistics, reporter metabolites and a flux simulation model, revealing different aspects of the genome-scale response in an integrative systems biology manner. The importance of the subcellular localisation in the transcriptomic response is emphasised here, revealing new insights. As was previously reported by others using a rich medium, we show that peroxisomal fatty acid catabolism was dramatically up-regulated in a defined xylose mineral medium without fatty acids, along with mechanisms to activate fatty acids and transfer products of β-oxidation to the mitochondria. Notably, we observed a strong up-regulation of the 2-methylcitrate pathway, supporting capacity for odd-chain fatty acid catabolism. Next we asked which pathways would respond to the additional requirement for NADPH for xylose utilisation, and rationalised the unexpected results using simulations with Flux Balance Analysis. On a fundamental level, we investigated the contribution of the hierarchical and metabolic regulation levels to the regulation of metabolic fluxes. Metabolic regulation analysis suggested that genetic level regulation plays a major role in regulating metabolic fluxes in adaptation to xylose, even for the high capacity reactions, which is unexpected. In addition, isozyme switching may play an important role in re-routing of metabolic fluxes in subcellular compartments in K. marxianus.

  1. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  2. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].

    Science.gov (United States)

    Rabyk, M V; Ostash, B O; Fedorenko, V O

    2014-01-01

    Current advances in the research and practical applications of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms found in these bacteria are outlined. Examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of the actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches towards the induction of "cryptic" part of the actinomycetes secondary metabolome, which capacity for production of biologically active compounds is much bigger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides the practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters and regulons, involved in the control of secondary metabolism and morphogenesis of actinomycetes.

  3. Human-Centered Development of an Online Social Network for Metabolic Syndrome Management.

    Science.gov (United States)

    Núñez-Nava, Jefersson; Orozco-Sánchez, Paola A; López, Diego M; Ceron, Jesus D; Alvarez-Rosero, Rosa E

    2016-01-01

    According to the International Diabetes Federation (IDF), a quarter of the world's population has Metabolic Syndrome (MS). To develop (and assess the users' degree of satisfaction of) an online social network for patients who suffer from Metabolic Syndrome, based on the recommendations and requirements of the Human-Centered Design. Following the recommendations of the ISO 9241-210 for Human-Centered Design (HCD), an online social network was designed to promote physical activity and healthy nutrition. In order to guarantee the active participation of the users during the development of the social network, a survey, an in-depth interview, a focal group, and usability tests were carried out with people suffering from MS. The study demonstrated how the different activities, recommendations, and requirements of the ISO 9241-210 are integrated into a traditional software development process. Early usability tests demonstrated that the user's acceptance and the effectiveness and efficiency of the social network are satisfactory.

  4. Positive association between metabolic syndrome and serum uric acid in Wuhan.

    Science.gov (United States)

    Fu, Yuan-Qing; Yang, Hong; Zheng, Ju-Sheng; Zeng, Xiao-Yun; Zeng, Wen; Fan, Zhi-Fen; Chen, Min; Wang, Ling; Li, Duo

    2017-03-01

    The objective was to determine whether serum uric acid concentrations were associated with metabolic syndrome in a population from Wuhan. 5,628 subjects (2,838 men, 2,790 women) aged 18-80 years were recruited in Wuhan, China. Biochemical parameters of venous blood were measured by standard methods and metabolic syndrome was defined by Chinese Diabetes Society criteria. Association analysis was performed by logistic regression. 8.2% of the included subjects were confirmed as having metabolic syndrome and 14.4% were confirmed as having hyperuricemia. After multivariable adjustment, logistic regression showed the odds ratios of metabolic syndrome for subjects in the highest quartile of serum uric acid concentration was 2.84 (95% CI: 2.09-3.86) compared with those in the lowest quartile and no gender difference was found. For each component of metabolic syndrome, subjects in the highest quartile of serum uric acid concentrations had increased multivariable odds ratios for high BMI (OR: 3.29, 95% CI: 2.71-3.98), for hypertension (OR: 3.54, 95% CI: 2.93-3.86), for dyslipidemia (OR: 2.49, 95% CI: 1.98-3.14), but not for hyperglycemia (OR: 1.21, 95% CI: 0.87-1.67). Odd ratio of metabolic syndrome was significantly positively associated with serum uric acid concentration among the present sample of 5,628 subjects in Wuhan.

  5. PREVALENCE OF HYPERURICAEMIA IN PATIENTS WITH METABOLIC SYNDROME AND ITS ASSOCIATION WITH SERUM URIC ACID

    Directory of Open Access Journals (Sweden)

    Aakassh Sreedharan

    2017-10-01

    Full Text Available BACKGROUND Metabolic syndrome is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. According to International Diabetes Federation, the risk factor associated with metabolic syndrome are central obesity, hypertension, increased fasting glucose, triglyceride level and decreased HDL. Recent studies also found that hyperuricaemia is also associated with insulin resistance and increased cardiovascular disease related morbidity. A cross-sectional study was conducted at Pondicherry Institute of Medical Sciences with an objective to find the prevalence of hyperuricaemia among patients with metabolic syndrome and also to find the association of risk factor of metabolic syndrome with serum uric acid level. MATERIALS AND METHODS 103 patients (49 males and 54 females who fulfilled the inclusion criteria were included in the study. Detailed medical history and physical examination including height, weight, BMI, waist circumference and blood pressure were recorded. Five millilitre of fasting blood sample was taken for lipid profile, serum uric acid and fasting blood glucose. Chi-square test was done to find out the association between metabolic syndrome and risk factors of hyperuricaemia with ‘p’ value of 0.05. Exercise had negative influence on uric acid level in both gender, 41% less in males and 14% less in females. Diet also had positive influence on uric acid levels in both male and female. CONCLUSION The prevalence of hyperuricaemia among males is higher than females. The risk factors of metabolic syndrome like obesity, hypertension and increased cholesterol level are associated with hyperuricaemia.

  6. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.

    Science.gov (United States)

    Suri, Shalu; Schmidt, Christine E

    2009-09-01

    To engineer complex tissues, it is necessary to create hybrid scaffolds with micropatterned structural and biomechanical properties, which can closely mimic the intricate body tissues. The current report describes the synthesis of a novel photocrosslinkable interpenetrating polymeric network (IPN) of collagen and hyaluronic acid (HA) with precisely controlled structural and biomechanical properties. Both collagen and HA are present in crosslinked form in IPNs, and the two networks are entangled with each other. IPNs were also compared with semi-IPNs (SIPN), in which only collagen was in network form and HA chains were entangled in the collagen network without being photocrosslinked. Scanning electron microscopy images revealed that IPNs are denser than SIPNs, which results in their molecular reinforcement. This was further confirmed by rheological experiments. Because of the presence of the HA crosslinked network, the storage modulus of IPNs was almost two orders of magnitude higher than SIPNs. The degradation of the collagen-HA IPNs was slower than the SIPNs because of the presence of the crosslinked HA network. Increasing concentration of HA further altered the properties among IPNs. Cytocompatibility of IPNs was confirmed by Schwann cell and dermal fibroblasts adhesion and proliferation studies. We also fabricated patterned scaffolds with regions of IPNs and SIPNs within a bulk hydrogel, resulting in zonal distribution of crosslinking densities, viscoelasticities, water content and pore sizes at the micro- and macro-scales. With the ability to fine-tune the scaffold properties by performing structural modifications and to create patterned scaffolds, these hydrogels can be employed as potential candidates for regenerative medicine applications.

  7. Metabolism of methyl-branched iodo palmitic acids in cultured hepatocytes

    International Nuclear Information System (INIS)

    Thomas, G.; Pepin, D.; Loriette, C.; Chambaz, J.; Bereziat, G.; Vidal, M.; Apparu, M.; Coornaert, S.

    1989-01-01

    The metabolic fate of methyl-branched iodo fatty acids was studied in primary culture of rat hepatocytes. We compared 16-iodo-2-R,S-methyl palmitic acid (2-Me), which can be β oxidized, with 16-iodo-3-R,S-methyl palmitic acid (3-Me) which can be β oxidized only after an initial α oxydation and with 16-iodo-2,2-dimethyl palmitic acid (2,2-Me 2 ) and 16-iodo-3,3-dimethyl palmitic acid (3,3-Me 2 ) which cannot be β oxidized at all. The normal fate of natural fatty acids was given by comparative experiments with [1- 14 C] palmitic acid. Monomethyl-branched iodo fatty acids were taken up in the same range as palmitic acid but more than dimethyl-branched iodo fatty acids. After a 15-h incubation, acido-soluble products (ASP) accounted for 75% of the radioactivity taken up as 16-iodo-2-methyl palmitic acid, 50% as other methyl-branched iodo fatty acids and only 30% as palmitic acid. Cultured hepatocytes, labelled for 3 h with the various fatty acids and reincubated for 12 h without fatty acid, secreted large amounts of free dimethyl-branched iodo fatty acids as compared to the monomethyl ones and palmitic acid. Only hepatocytes prelabelled with 16-[ 125 I]iodo-2,2-dimethyl palmitic acid exhibited an appreciable secretion of labeled triglycerides, but at a lower rate than with [1- 14 C] palmitic acid. Conversely, the 16-iodo-monomethyl palmitic acids remained chiefly in hepatocyte triglycerides. Minute amounts of 16-iodo-methyl-branched palmitic acids were found in hepatocyte or secreted phospholipids as compared with palmitic acid. (orig.)

  8. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  9. Metabolic network as a progression biomarker of premanifest Huntington's disease

    NARCIS (Netherlands)

    Tang, Chris C.; Feigin, Andrew; Ma, Yilong; Habeck, Christian; Paulsen, Jane S.; Leenders, Klaus L.; Teune, Laura K.; van Oostrom, Joost C. H.; Guttman, Mark; Dhawan, Vijay; Eidelberg, David

    Background. The evaluation of effective disease-modifying therapies for neurodegenerative disorders relies on objective and accurate measures of progression in at-risk individuals. Here we used a computational approach to identify a functional brain network associated with the progression of

  10. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions

    DEFF Research Database (Denmark)

    Schmidt, R.; Waschina, S.; Boettger-Schmidt, D.

    2015-01-01

    are neglected by other gap-finding methods. We tested our method on the Model SEED, which is the largest repository for automatically generated genome-scale network reconstructions. In this way, we were able to identify a significant number of missing pathways in several of these reconstructions. Hence...

  11. Using isotopic tracers to assess the impact of tillage and straw management on the microbial metabolic network in soil

    Science.gov (United States)

    Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.

    2013-12-01

    By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.

  12. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  13. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    International Nuclear Information System (INIS)

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T.

    1991-01-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of 14 C oleic, 14 C linoleic, and 3H arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and 3 H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations

  14. Cerebral metabolic correlates of attention networks in Alzheimer's Disease: A study of the Stroop.

    Science.gov (United States)

    Melrose, Rebecca J; Young, Stephanie; Weissberger, Gali H; Natta, Laura; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-11-01

    Patients with Alzheimer's Disease (AD) show difficulties with attention. Cognitive neuroscience models posit that attention can be broken down into alerting, orienting, and executive networks. We used the Stroop Color-Word test to interrogate the neural correlates of attention deficits in AD. We hypothesized that the Word, Color, and Color-Word conditions of the Stroop would all tap into the alerting and orienting networks. The Color-Word condition would additionally tap into the executive network. A ratio of Color-Word to Color naming performance would isolate the executive network from the others. To identify the neural underpinnings of attention in AD we correlated performance on the Stroop with brain metabolic activity. Sixty-six patients with probable AD completed [ 18 F] fluorodeoxyglucose PET scanning and neuropsychological testing. Analysis was conducted with SPM12 (p<0.001 uncorrected, extent threshold 50 voxels). Performance on the Word, Color, and Color-Word conditions directly correlated with metabolic rate in right inferior parietal lobules/intraparietal sulci. The Color-Word/Color ratio revealed associations with metabolic rate in right medial prefrontal cortex and insula/operculum. Overall findings were largely consistent with the hypothesized neuroanatomical substrates of the alerting, orienting, and executive networks. As such, attention deficits in AD reflect compromise to multiple large-scale networks. Published by Elsevier Ltd.

  15. Anaerobic carbon metabolism by the tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Vanlerberghe, G.C.; Horsey, A.K.; Weger, H.G.; Turpin, D.H.

    1989-01-01

    Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH 4 + in the dark under anaerobic conditions. Addition of NH 4 + to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO 2 efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenspyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H 14 CO 3 - to anaerobic cells assimilating NH 4 + results in the incorporation of radiolabel into the α-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH 4 + addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply αketoglutarate for glutamate production. During dark aerobic NH 4 + assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH 4 + assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH 4 + assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity

  16. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    Science.gov (United States)

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  17. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses

    Science.gov (United States)

    Rajagopalan, Sridhar; Mcintire, Larry V.; Hall, Elizabeth R.; Wu, Kenneth K.

    1988-01-01

    The effects of stimulating human platelets by thrombin and by hydrodynamic stresses on the platelets' arachidonic acid metabolism were investigated using (1-C-14)-arachidonic acid label and a specially designed viscometer that ensured laminar shear flow with a nearly uniform shear rate throughout the flow region. It was found that platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy 5,8,10-heptadecatrienoic acid and 12-hydroxy 5,8,10,14-eicosatetraenoic acid (12-HETE). On the other hand, platelets activated by shear, formed only 12-HETE (although arachidonic acid metabolism was stimulated); no cyclooxygenase metabolites were detected. Results indicate that platelets may greatly increase their 12-HETE production when activated by passage through a high-stress region of the circulation, such as an atherosclerotic stenosis.

  18. Autophagy and amino acid metabolism in the brain: implications for epilepsy.

    Science.gov (United States)

    Bejarano, Eloy; Rodríguez-Navarro, José Antonio

    2015-10-01

    Autophagy is a catabolic pathway responsible for the maintenance of the tissue and organism homeostasis. Several amino acids regulate autophagic activity in different tissues, such as liver and muscle, but much less is known about this regulation in the brain. The lack of autophagy in neurons leads to a strong neurodegenerative phenotype and epileptic disorders. We summarize the current knowledge about the regulation of autophagy mediated by amino acids and how macroautophagy could serve as source of amino acids. We review the contribution of macroautophagy in the brain physiology and pathology emphasizing the relevancy of the proper control of amino acid levels such as glutamate and GABA in the brain due to its role as neurotransmitters and energy source. Furthermore, we discuss how malfunction in autophagy may result in pathological consequences, because many genetic epileptic disorders are related to signaling or metabolic pathways controlling both macroautophagy and amino acid metabolism in the brain.

  19. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.

    Science.gov (United States)

    Li, Zhenhua; Zhang, Jie; Liu, Yiling; Zhao, Jiehong; Fu, Junjie; Ren, Xueliang; Wang, Guoying; Wang, Jianhua

    2016-02-09

    Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH2O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH2O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in β-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH2O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and

  20. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    Science.gov (United States)

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.

  1. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes.

    Science.gov (United States)

    Zelezniak, Aleksej; Pers, Tune H; Soares, Simão; Patti, Mary Elizabeth; Patil, Kiran Raosaheb

    2010-04-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites--metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM.

  2. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  3. Clinical relevance of the bile acid receptor TGR5 in metabolism

    DEFF Research Database (Denmark)

    van Nierop, F Samuel; Scheltema, Matthijs J; Eggink, Hannah M

    2017-01-01

    The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex...... such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus...... on the translation of preclinical studies into clinically applicable findings. Studies in rodents suggest an important role for Tgr5 in Glp-1 secretion, insulin sensitivity, and energy expenditure. However, evidence of effects on these processes from human studies is less convincing. Ultimately, safe and selective...

  4. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate l-pipecolic acid in Escherichia coli

    OpenAIRE

    Ying, Hanxiao; Tao, Sha; Wang, Jing; Ma, Weichao; Chen, Kequan; Wang, Xin; Ouyang, Pingkai

    2017-01-01

    Background The six-carbon circular non-proteinogenic compound l-pipecolic acid is an important chiral drug intermediate with many applications in the pharmaceutical industry. In the present study, we developed a metabolically engineered strain of Escherichia coli for the overproduction of l-pipecolic acid from glucose. Results The metabolic pathway from l-lysine to l-pipecolic acid was constructed initially by introducing lysine cyclodeaminase (LCD). Next, l-lysine metabolic flux from glucose...

  5. Transcriptional regulation and steady-state modeling of metabolic networks

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej

    with the changes in gene expression of both reactions that produce and reactions that consume a given metabolite. Analysis of a large compendium of gene expression data further suggested that, contrary to previous thinking, transcriptional regulation at metabolic branch points is highly plastic and, in several...... to exhibit a biodegradation performance superior to pure cultures, making them attractive research targets. It is believed that nutrition plays a crucial role in shaping microbial communities. Interspecies metabolite cross-feeding can confer several advantages to the community as a whole. For example, more...

  6. Flux Balance Analysis of Cyanobacterial Metabolism.The Metabolic Network of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Knoop, H.; Gründel, M.; Zilliges, Y.; Lehmann, R.; Hoffmann, S.; Lockau, W.; Steuer, Ralf

    2013-01-01

    Roč. 9, č. 6 (2013), e1003081-e1003081 ISSN 1553-7358 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : SP STRAIN PCC-6803 * SP ATCC 51142 * photoautotrophic metabolism * anacystis-nidulans * reconstructions * pathway * plants * models * growth Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.829, year: 2013

  7. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    OpenAIRE

    Pejin Dušanka J.; Vasić Vesna M.

    2005-01-01

    Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Sac...

  8. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501.

    Science.gov (United States)

    Babaei, Parizad; Marashi, Sayed-Amir; Asad, Sedigheh

    2015-11-01

    Pseudomonas stutzeri A1501 is an endophytic bacterium capable of nitrogen fixation. This strain has been isolated from the rice rhizosphere and provides the plant with fixed nitrogen and phytohormones. These interesting features encouraged us to study the metabolism of this microorganism at the systems-level. In this work, we present the first genome-scale metabolic model (iPB890) for P. stutzeri, involving 890 genes, 1135 reactions, and 813 metabolites. A combination of automatic and manual approaches was used in the reconstruction process. Briefly, using the metabolic networks of Pseudomonas aeruginosa and Pseudomonas putida as templates, a draft metabolic network of P. stutzeri was reconstructed. Then, the draft network was driven through an iterative and curative process of gap filling. In the next step, the model was evaluated using different experimental data such as specific growth rate, Biolog substrate utilization data and other experimental observations. In most of the evaluation cases, the model was successful in correctly predicting the cellular phenotypes. Thus, we posit that the iPB890 model serves as a suitable platform to explore the metabolism of P. stutzeri.

  9. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery.

    Science.gov (United States)

    Hansen, Jakob S; Zhao, Xinjie; Irmler, Martin; Liu, Xinyu; Hoene, Miriam; Scheler, Mika; Li, Yanjie; Beckers, Johannes; Hrabĕ de Angelis, Martin; Häring, Hans-Ulrich; Pedersen, Bente K; Lehmann, Rainer; Xu, Guowang; Plomgaard, Peter; Weigert, Cora

    2015-08-01

    The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite changes and the muscular transcriptional response using a complementary metabolomics/transcriptomics approach. We analysed 139 plasma metabolites and hormones at nine time points, and whole genome expression in skeletal muscle at three time points, during a 60 min bicycle ergometer exercise and a 180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13, RABGAP1 and CBLB), glycolysis (HK2, PFKFB1, PFKFB3, PFKM, FBP2 and LDHA) and insulin signal mediators in diabetic participants compared with controls. Notably, diabetic participants had normalised rates of lactate and insulin levels, and of glucose appearance and disappearance, after exercise. They also showed an exercise-induced compensatory regulation of genes involved in biosynthesis and metabolism of amino acids (PSPH, GATM, NOS1 and GLDC), which responded to differences in the amino acid profile (consistently lower plasma levels of glycine, cysteine and arginine). Markers of fat oxidation (acylcarnitines) and lipolysis (glycerol) did not indicate impaired metabolic flexibility during exercise in diabetic participants. Type 2 diabetic individuals showed specific exercise-regulated gene expression. These data provide novel insight into potential mechanisms to ameliorate the disturbed glucose and amino acid metabolism associated with type 2 diabetes.

  10. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    Science.gov (United States)

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  11. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  12. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  13. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  14. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  15. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    Science.gov (United States)

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  17. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  18. Effect of some metabolic inhibitors on citric acid production Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.K.; Bhatt, C.S.; Viswanathan, L.

    1983-09-01

    Stationary cultures of Aspergillus niger grown on a synthetic medium have been used to study the effect of some metabolic inhibitors on citric acid production. Addition of 0.05 to 1 mM sodium malonate or 0.01 to 0.1 mM potassium ferricyanide, iodoacetate, sodium azide, soldium arsenate or sodium fluoride stimulated citric acid production (3.6 to 45%), but not total titratable acids. Addition of higher concentrations (0.2 to 10 mM) of later inhibitors caused a marked inhibition of fungal growth and citric acid production. The implications of these preliminary findings are discussed. (Refs. 25).

  19. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  20. The association between serum uric acid and metabolic syndrome among adolescents in northeast China.

    Science.gov (United States)

    Wang, Zi-Nan; Li, Ping; Jiang, Ran-Hua; Li, Ling; Li, Xue; Li, Liang; Liu, Cong; Tian, Cong-Liang

    2015-01-01

    Data about the association between serum uric acid and metabolic syndrome in healthy adolescents are sparse. This study examined this association and determined the optimal cutoffs for serum uric acid to predict metabolic syndrome among healthy adolescents. During 2010-2011, we conducted a cross-sectional study of 927 adolescents (53.0% boys) aged 11-16 years from junior and senior high schools in northeast China. All participants received a physical examination and gave venous blood samples. Serum uric acid was positively associated with abdominal obesity, dyslipidemia and hypertension in boys and with abdominal obesity and dyslipidemia in girls. For those with hyperurecemia, the odds ratios (95% CI) for metabolic syndrome were 7.67 (95% CI, 2.58~22.78) for boys and 4.77 (95% CI, 1.01~22.60) for girls. SUA was a better predictor of metabolic syndrome than fasting glucose, though not as good as waist circumference. Among adolescents in China, serum uric acid level may be a useful predictor of metabolic syndrome.

  1. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    Science.gov (United States)

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  2. Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species.

    Science.gov (United States)

    Ecker, Josef; Liebisch, Gerhard

    2014-04-01

    Nature provides an enormous diversity of lipid molecules that originate from various pathways. To gain insight into the metabolism and dynamics of lipid species, the application of stable isotope-labeled tracers combined with mass spectrometric analysis represents a perfect tool. This review provides an overview of strategies to track fatty acid, glycerophospholipid, and sphingolipid metabolism. In particular, the selection of stable isotope-labeled precursors and their mass spectrometric analysis is discussed. Furthermore, examples of metabolic studies that were performed in cell culture, animal and clinical experiments are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  4. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation

    OpenAIRE

    Rioux, Vincent,; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe,

    2003-01-01

    International audience; This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [ 1-$^{14}$C] -lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells ($94.8 \\pm 2.2\\%$ of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low ($24.6 \\pm 4.2\\%$ of initial radioactivity after...

  5. Cerebral metabolism of ammonia and amino acids in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Strauss, Gitte Irene; Knudsen, Karen Birgitte Moos; Kondrup, Jens

    2001-01-01

    BACKGROUND & AIMS: High circulating levels of ammonia have been suggested to be involved in the development of cerebral edema and herniation in fulminant hepatic failure (FHF). The aim of this study was to measure cerebral metabolism of ammonia and amino acids, with special emphasis on glutamine...... metabolism. METHODS: The study consisted of patients with FHF (n = 16) or cirrhosis (n = 5), and healthy subjects (n = 8). Cerebral blood flow was measured by the 133Xe washout technique. Blood samples for determination of ammonia and amino acids were drawn simultaneously from the radial artery...

  6. Metabolic Effects of Dietary Proteins, Amino Acids and The Other Amine Consisting Compounds on Cardiovascular System.

    Directory of Open Access Journals (Sweden)

    Elif Uğur

    2017-01-01

    Full Text Available During the prevention and treatment of cardiovascular diseases, first cause of deaths in the world, diet has a vital role. While nutrition programs for the cardiovascular health generally focus on lipids and carbohydrates, effects of proteins are not well concerned. Thus this review is written in order to examine effect of proteins, amino acids, and the other amine consisting compounds on cardiovascular system. Because of that animal or plant derived proteins have different protein composition in different foods such as dairy products, egg, meat, chicken, fish, pulse and grains, their effects on blood pressure and regulation of lipid profile are unlike. In parallel amino acids made up proteins have different effect on cardiovascular system. From this point, sulfur containing amino acids, branched chain amino acids, aromatic amino acids, arginine, ornithine, citrulline, glycine, and glutamine may affect cardiovascular system in different metabolic pathways. In this context, one carbon metabolism, synthesis of hormone, stimulation of signaling pathways and effects of intermediate and final products that formed as a result of amino acids metabolism is determined. Despite the protein and amino acids, some other amine consisting compounds in diet include trimethylamine N-oxide, heterocyclic aromatic amines, polycyclic aromatic hydrocarbons and products of Maillard reaction. These amine consisting compounds generally increase the risk for cardiovascular diseases by stimulating oxidative stress, inflammation, and formation of atherosclerotic plaque.

  7. Studies of citric acid metabolism in heart muscle

    NARCIS (Netherlands)

    Meduski, J.W.

    1950-01-01

    1. The pentabromoacetone method for the determination of citric acid was studied; a modification of the procedure of Natelson, Lugovoy and Pincus was used. 2. Two tissue preparations were obtained. The first by washing with water, the second by washing with water and then with 0.5% sodium

  8. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    NARCIS (Netherlands)

    Vega, Aurélie; Martinot, Emmanuelle; Baptissart, Marine; de Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor

  9. Neridronic acid for the treatment of bone metabolic diseases.

    Science.gov (United States)

    Gatti, Davide; Viapiana, Ombretta; Idolazzi, Luca; Fracassi, Elena; Adami, Silvano

    2009-10-01

    Neridronic acid (6-amino-1-idroxyesilidene-1,1-bisphosphonate) is a nitrogen-containing bisphosphonate licensed in Italy for the treatment of osteogenesis imperfecta and Paget's disease of bone. The pharmacodynamic profile is similar to that of other nitrogen-containing bisphosphonates and is characterized by its high affinity for bone tissue particularly at sites undergoing a process of remodeling. In growing children affected by osteogenesis imperfect, neridronic acid rapidly increases bone mineral density as measured by dual X-ray absortiometry and this is associated with a significant decrease in fracture cumulative number. Similar results have been obtained also in newborns ( 75% of bone turnover markers) in 95% of the patients. Neridronic acid treatment has been reported to be effective also in other skeletal diseases such as osteoporosis, algodystrophy, hypercalcemia of malignancy and bone metastasis. Neridronic acid has been developed only for parenteral use, and it is the only one used as intramuscular injection. This avoids all the limitations of oral bisphosphonates and may be offered for a home treatment with simple nursing assistance.

  10. Data-driven integration of genome-scale regulatory and metabolic network models

    Science.gov (United States)

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert—a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system. PMID:25999934

  11. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  12. 1H NMR-Based Metabolic Profiling Reveals the Effects of Fluoxetine on Lipid and Amino Acid Metabolism in Astrocytes

    Directory of Open Access Journals (Sweden)

    Shunjie Bai

    2015-04-01

    Full Text Available Fluoxetine, a selective serotonin reuptake inhibitor (SSRI, is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte’s lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.

  13. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9.

    Science.gov (United States)

    DeBosch, Brian J; Kluth, Oliver; Fujiwara, Hideji; Schürmann, Annette; Moley, Kelle

    2014-08-07

    Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.

  14. Paradigm shift - Metabolic transformation of docosahexaenoic and eicosapentaenoic acids to bioactives exemplify the promise of fatty acid drug discovery.

    Science.gov (United States)

    Halade, Ganesh V; Black, Laurence M; Verma, Mahendra Kumar

    2018-02-28

    Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs. In reference to specific dietary benefits of differential omega-3 fatty acids, docosahexaenoic and eicosapentaenoic acids (DHA and EPA) are transformed to monohydroxy, dihydroxy, trihydroxy, and other complex mediators during infection, injury, and exercise to resolve inflammation. The presented FADD approach describes the metabolic transformation of DHA and EPA in response to injury, infection, and exercise to govern uncontrolled inflammation. Metabolic transformation of DHA and EPA into a number of pro-resolving molecules exemplifies a novel, inexpensive approach compared to traditional, expensive drug discovery. DHA and EPA have been recommended for prevention of cardiovascular disease since 1970. Therefore, the FADD approach is relevant to cardiovascular disease and resolution of inflammation in many injury models. Future research demands identification of novel action targets, receptors for biomolecules, mechanism(s), and drug-interactions with resolvins in order to maintain homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Endoplasmic Reticulum Stress Regulates Hepatic Bile Acid Metabolism in MiceSummary

    Directory of Open Access Journals (Sweden)

    Anne S. Henkel

    2017-03-01

    Full Text Available Background & Aims: Cholestasis promotes endoplasmic reticulum (ER stress in the liver, however, the effect of ER stress on hepatic bile acid metabolism is unknown. We aim to determine the effect of ER stress on hepatic bile acid synthesis and transport in mice. Methods: ER stress was induced pharmacologically in C57BL/6J mice and human hepatoma (HepG2 cells. The hepatic expression of genes controlling bile acid synthesis and transport was determined. To measure the activity of the primary bile acid synthetic pathway, the concentration of 7α-hydroxy-4-cholesten-3-1 was measured in plasma. Results: Induction of ER stress in mice and HepG2 cells rapidly suppressed the hepatic expression of the primary bile acid synthetic enzyme, cholesterol 7α-hydroxylase. Plasma levels of 7α-hydroxy-4-cholesten-3-1 were reduced in mice subjected to ER stress, indicating impaired bile acid synthesis. Induction of ER stress in mice and HepG2 cells increased expression of the bile salt export pump (adenosine triphosphate binding cassette [Abc]b11 and a bile salt efflux pump (Abcc3. The observed regulation of Cyp7a1, Abcb11, and Abcc3 occurred in the absence of hepatic inflammatory cytokine activation and was not dependent on activation of hepatic small heterodimer partner or intestinal fibroblast growth factor 15. Consistent with suppressed bile acid synthesis and enhanced bile acid export from hepatocytes, prolonged ER stress decreased the hepatic bile acid content in mice. Conclusions: Induction of ER stress in mice suppresses bile acid synthesis and enhances bile acid removal from hepatocytes independently of established bile acid regulatory pathways. These data show a novel function of the ER stress response in regulating bile acid metabolism. Keywords: Unfolded Protein Response, Cyp7a1, 7α-Hydroxy-4-Cholesten-3-1, Bile Acid Synthesis

  16. Folic acid, one-carbon metabolism & childhood cancer

    Directory of Open Access Journals (Sweden)

    Nirmalya Roy Moulik

    2017-01-01

    Full Text Available Folate has been studied in relation to many diseases, especially cancer. Although it has been postulated to exert a dual effect on development of cancer, its role remains to be clearly defined. Its effect on cancer is the result of gene-nutrient interaction between the genes in folate metabolic pathway and dietary folate availability; mutations in genes of folate metabolism have been shown to alter individual susceptibility to certain childhood cancers as well as response to cancer chemotherapy. Although mandatory fortification of food items with folate has been initiated in some countries, many countries are yet to adopt this due to concerns about undesired adverse effects of high folate levels on health, especially cancer. However, initial reports suggest that folate fortification has led to reduction in incidence of certain childhood cancers such as neuroblastoma, wilms tumour and leukaemias. Despite studies showing folate depletion during antifolate chemotherapy and higher toxicity of chemotherapy in folate-depleted individuals, folate supplementation during cancer chemotherapy is not routinely recommended. Studies investigating the precise effect of folate supplementation during chemotherapy on both short- and long-term outcomes of cancer are needed to arrive at a consensus guideline.

  17. Tracing the fate of dietary fatty acids: metabolic studies of postprandial lipaemia in human subjects.

    Science.gov (United States)

    Fielding, Barbara

    2011-08-01

    Most postprandial studies have investigated the response of a single meal, yet the ingestion of sequential meals is more typical in a Western society. The aim of this review is to explain how natural and stable isotope tracers of fatty acids have been used to investigate the metabolism of dietary fat after single and multiple meals, with a focus on in vivo measurements of adipose tissue metabolism. When stable isotope tracers are combined with arteriovenous difference measurements, very specific measurements of metabolic flux across tissues can be made. We have found that adipose tissue is a net importer of dietary fat for 5 h following a single test meal and for most of the day during a typical three-meal eating pattern. When dietary fat is cleared from plasma, some fatty acids 'spillover' into the plasma and contribute up to 50% of postprandial plasma NEFA concentrations. Therefore, plasma NEFA concentrations after a meal reflect the balance between intracellular and extracellular lipolysis in adipose tissue. This balance is altered after the acute ingestion of fructose. The enzyme lipoprotein lipase is a key modulator of fatty acid flux in adipose tissue and its rate of action is severely diminished in obese men. In conclusion, in vivo studies of human metabolism can quantify the way that adipose tissue fatty acid trafficking modulates plasma lipid concentrations. This has implications for the flux of fatty acids to tissues that are susceptible to ectopic fat deposition such as the liver and muscle.

  18. Relation between uric acid and metabolic syndrome in subjects with cardiometabolic risk.

    Science.gov (United States)

    Silva, Hellen Abreu da; Carraro, Júlia Cristina Cardoso; Bressan, Josefina; Hermsdorff, Helen Hermana Miranda

    2015-01-01

    Objective To identify possible relations between serum uric acid levels and metabolic syndrome and its components in a population with cardiometabolic risk. Methods This cross-sectional study included 80 subjects (46 women), with mean age of 48±16 years, seen at the Cardiovascular Health Program. Results The prevalence of hyperuricemia and metabolic syndrome was 6.3% and 47.1%, respectively. Uric acid level was significantly higher in individuals with metabolic syndrome (5.1±1.6mg/dL), as compared to those with no syndrome or with pre-syndrome (3.9±1.2 and 4.1±1.3mg/dL, respectively; puric acid levels were significantly higher in men presenting abdominal obesity, and among women with abdominal obesity, lower HDL-c levels and higher blood pressure (pUric acid concentrations were positively related to the occurrence of metabolic syndrome and its components, and there were differences between genders. Our results indicate serum uric acid as a potential biomarker for patients with cardiometabolic risk.

  19. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  20. Characterization of bile acid metabolism in man using bile acids labeled with stable isotopes. [/sup 13/C

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, A.F. Klein, P.D.

    1977-01-01

    Bile acids labeled with stable isotopes in the steroid moiety can be used to characterize bile acid metabolism in man. Isotope dilution studies give information on pool size and input. Biotransformations are easily characterized. Stable isotopically labeled bile acids offer the advantage of freedom from radiation hazard, and also offer the possibility of monitoring all pools simultaneously, since all bile acids are separated by gas chromatography before isotope measurements are made. Further, since the proportion of the pool labeled with stable isotopes is greater than that achieved when radioactive isotopes are used, stable isotopes may permit isotope dilution studies to be done on serum samples in which the absolute concentration of bile acids is very low. A major disadvantage is the complex technology required for stable isotope measurement which often makes remote processing necessary. Bile acid labeled with /sup 13/C in the amino acid moiety, e.g. cholylglycine-1-/sup 13/C can be used for detection of increased bile acid deconjugation by intestinal bacteria, since the glycine-/sup 13/C, when liberated, is rapidly converted to /sup 13/CO/sub 2/, which is expired in breath. Bile acids labeled with stable isotopes may also be used for quantitation by inverse isotope dilution, but the technique is still in the development stage and seems unlikely to compete successfully with radioimmunoassay.

  1. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.

    Directory of Open Access Journals (Sweden)

    Petra Tielen

    Full Text Available Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM. Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.

  3. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    Directory of Open Access Journals (Sweden)

    Carla Ferreri

    2016-12-01

    Full Text Available Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1; and (ii the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

  4. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    International Nuclear Information System (INIS)

    Hingorani, V.; Brecher, P.

    1987-01-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either [6- 14 C]glucose or [1- 14 C]oleic acid and the incorporation of radioactivity into 14 CO 2 , lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO 2 was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to 14 CO 2 was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO 2 and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously

  5. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes...... acid production was also 10-fold higher during exercise compared with that at rest (difference not significant). The net production rates of threonine, glycine and tyrosine and of the sum of the non-metabolized amino acids were about 1.5-2.5-fold higher during exercise with the leg with a low glycogen...... in the concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60...

  6. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells.

    Science.gov (United States)

    Fisher, Ciarán P; Plant, Nicholas J; Moore, J Bernadette; Kierzek, Andrzej M

    2013-12-15

    Dynamic simulation of genome-scale molecular interaction networks will enable the mechanistic prediction of genotype-phenotype relationships. Despite advances in quantitative biology, full parameterization of whole-cell models is not yet possible. Simulation methods capable of using available qualitative data are required to develop dynamic whole-cell models through an iterative process of modelling and experimental validation. We formulate quasi-steady state Petri nets (QSSPN), a novel method integrating Petri nets and constraint-based analysis to predict the feasibility of qualitative dynamic behaviours in qualitative models of gene regulation, signalling and whole-cell metabolism. We present the first dynamic simulations including regulatory mechanisms and a genome-scale metabolic network in human cell, using bile acid homeostasis in human hepatocytes as a case study. QSSPN simulations reproduce experimentally determined qualitative dynamic behaviours and permit mechanistic analysis of genotype-phenotype relationships. The model and simulation software implemented in C++ are available in supplementary material and at http://sysbio3.fhms.surrey.ac.uk/qsspn/.

  7. Metabolism of nonparticulate phosphorus in an acid bog lake

    International Nuclear Information System (INIS)

    Koenings, J.P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied

  8. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications

    Directory of Open Access Journals (Sweden)

    Gianfranca Carta

    2017-11-01

    Full Text Available Palmitic acid (PA has been for long time negatively depicted for its putative detrimental health effects, shadowing its multiple crucial physiological activities. PA is the most common saturated fatty acid accounting for 20–30% of total fatty acids in the human body and can be provided in the diet or synthesized endogenously via de novo lipogenesis (DNL. PA tissue content seems to be controlled around a well-defined concentration, and changes in its intake do not influence significantly its tissue concentration because the exogenous source is counterbalanced by PA endogenous biosynthesis. Particular physiopathological conditions and nutritional factors may strongly induce DNL, resulting in increased tissue content of PA and disrupted homeostatic control of its tissue concentration. The tight homeostatic control of PA tissue concentration is likely related to its fundamental physiological role to guarantee membrane physical properties but also to consent protein palmitoylation, palmitoylethanolamide (PEA biosynthesis, and in the lung an efficient surfactant activity. In order to maintain membrane phospholipids (PL balance may be crucial an optimal intake of PA in a certain ratio with unsaturated fatty acids, especially PUFAs of both n-6 and n-3 families. However, in presence of other factors such as positive energy balance, excessive intake of carbohydrates (in particular mono and disaccharides, and a sedentary lifestyle, the mechanisms to maintain a steady state of PA concentration may be disrupted leading to an over accumulation of tissue PA resulting in dyslipidemia, hyperglycemia, increased ectopic fat accumulation and increased inflammatory tone via toll-like receptor 4. It is therefore likely that the controversial data on the association of dietary PA with detrimental health effects, may be related to an excessive imbalance of dietary PA/PUFA ratio which, in certain physiopathological conditions, and in presence of an enhanced DNL, may

  9. Metabolism of nonparticulate phosphorus in an acid bog lake

    Energy Technology Data Exchange (ETDEWEB)

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  10. Metabolic regulation of amino acid uptake in marine waters

    International Nuclear Information System (INIS)

    Kirchman, D.L.; Hodson, R.E.

    1986-01-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis

  11. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    OpenAIRE

    Fonknechten, Nuria; Chaussonnerie, Sébastien; Tricot, Sabine; Lajus, Aurélie; Andreesen, Jan R; Perchat, Nadia; Pelletier, Eric; Gouyvenoux, Michel; Barbe, Valérie; Salanoubat, Marcel; Le Paslier, Denis; Weissenbach, Jean; Cohen, Georges N; Kreimeyer, Annett

    2010-01-01

    Abstract Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy m...

  12. Amino Acids As Mediators of Metabolic Cross Talk between Host and Pathogen

    Science.gov (United States)

    Ren, Wenkai; Rajendran, Ranjith; Zhao, Yuanyuan; Tan, Bie; Wu, Guoyao; Bazer, Fuller W.; Zhu, Guoqiang; Peng, Yuanyi; Huang, Xiaoshan; Deng, Jinping; Yin, Yulong

    2018-01-01

    The interaction between host and pathogen decidedly shapes the outcome of an infection, thus understanding this interaction is critical to the treatment of a pathogen-induced infection. Although research in this area of cell biology has yielded surprising findings regarding interactions between host and pathogen, understanding of the metabolic cross talk between host and pathogen is limited. At the site of infection, host and pathogen share similar or identical nutritional substrates and generate common metabolic products, thus metabolic cross talk between host and pathogen could profoundly affect the pathogenesis of an infection. In this review, we present results of a recent discovery of a metabolic interaction between host and pathogen from an amino acid (AA) metabolism-centric point of view. The host depends on AA metabolism to support defensive responses against pathogens, while the pathogens modulate AA metabolism for its own advantage. Some AA, such as arginine, asparagine, and tryptophan, are central points of competition between the host and pathogen. Thus, a better understanding of AA-mediated metabolic cross talk between host and pathogen will provide insight into fruitful therapeutic approaches to manipulate and prevent progression of an infection. PMID:29535717

  13. Network-based analysis of the sphingolipid metabolism in hypertension

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, Allan; Jeppesen, Jørgen

    2015-01-01

    of the complex genotype determines the state and dynamics of any trait, which may be modified to various extent by non-genetic factors. Thus, diseases are heterogenous ensembles of conditions with a common endpoint. Numerous studies have been performed to define genes of importance for a trait or disease......Common diseases like essential hypertension or diabetes mellitus are complex as they are polygenic in nature, such that each genetic variation only has a small influence on the disease. Genes operates in integrated networks providing the blue-print for all biological processes and conditional......, but only a few genes with small effect have been identified. The major reasons for this modest progress is the unresolved heterogeneity of the regulation of blood pressure and the shortcomings of the prevailing monogenic approach to capture genetic effects in a polygenic condition. Here, a two...

  14. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Science.gov (United States)

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  15. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  16. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    Science.gov (United States)

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Yuanhuapine-induced intestinal and hepatotoxicity were correlated with disturbance of amino acids, lipids, carbohydrate metabolism and gut microflora function: A rat urine metabonomic study.

    Science.gov (United States)

    Chen, Yanyan; Duan, Jin-Ao; Guo, Jianming; Shang, Erxin; Tang, Yuping; Qian, Yefei; Tao, Weiwei; Liu, Pei

    2016-07-15

    This research was designed to study metabonomic characteristics of the toxicity induced by yuanhuapine, a major bioactive diterpenoid in a well-known traditional Chinese medicine-Genkwa Flos. General observation, blood biochemistry and histopathological examination were used to reflect yuanhuapine-induced toxicity. Urine samples from rats in control and yuanhuapine treated rats were analyzed by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Pattern recognition methods including principal components analysis (PCA), partial least-squared discriminant analysis (PLS-DA), orthogonal partial least-squared discriminant analysis (OPLS-DA) and computational system analysis were integrated to obtain comprehensive metabonomic profiling and pathways of the biological data sets. The results suggested that yuanhuapine could induce intestinal and liver damage. And 14 endogenous metabolites as biomarkers related to the amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora were significantly changed in the urine of yuanhuapine treated rats, which were firstly constructed the metabolomic feature profiling and metabolite interaction network of yuanhuapine-induced injury using pattern recognition methods and Ingenuity Pathway Analysis (IPA) approach. The present study showed that yuanhuapine-induced intestinal and hepatic toxicity were correlated with disturbance of amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Association of serum uric acid and metabolic syndrome in type 2 diabetes.

    Science.gov (United States)

    Bonakdaran, Shokoufeh; Kharaqani, Banafsheh

    2014-03-01

    The relationship between elevated serum uric acid level and metabolic syndrome (MS) has been debated. There is no data concerning this relation in Iranian population-based studies. The aim of this study was to determine the prevalence of hyperuricamia and its association with MS in type 2 diabetes mellitus (DM). This was a cross- sectional study in 1978 diabetic patients. Hyperuricamia was defined as uric acid ≥ 7 and ≥ 5.5 mg/dl for men and women respectively. Diagnosis of metabolic syndrome was based on ATPIII criteria. Clinical and biochemical parameters in hyperuricaemic and normouricaemic patients compared with other. The prevalence of hyperuricaemia and metabolic syndrome was 12.7% and 65.5% respectively. The prevalence of MS significantly increased in the highest quartile of uric acid levels compared with lowest quartile (74.4% vs 55.9%, puric acid had positive association with cholesterol, triglyceride, non-HDL cholesterol and a negative association with fasting blood sugar (FBS), glycosylated hemoglobin (HbA1C) and HDL cholesterol. Possible independent biochemical predictors of hyperuricamia were cholesterol, triglyceride, creatnine and FBS. The prevalence of MS and its components increases with increasing levels of uric acid in type 2 diabetes. Regular assessment of uric acid could give information for predicting of MS and prevention of atherosclerosis in type 2 diabetes.

  19. Acetic Acid Influences BRL-3A Cell Lipid Metabolism via the AMPK Signalling Pathway.

    Science.gov (United States)

    Li, Lin; He, Meilin; Xiao, Hang; Liu, Xiaoqian; Wang, Kai; Zhang, Yuanshu

    2018-01-01

    Acetic acid (AcOH), a short-chain fatty acid, is reported to have some beneficial effects on metabolism. Therefore, the aim of this study was to investigate the regulatory mechanism of acetic acid on hepatic lipid metabolism in BRL-3A cells. We cultured and treated BRL-3A cells with different concentrations of sodium acetate (neutralized acetic acid) and BML-275 (an AMPKα inhibitor). The total lipid droplet area was measured by oil red O staining, and the triglyceride content was determined by a triglyceride detection kit. We detected mRNA and protein levels of lipid metabolism-related signalling molecules by RT-PCR and Western blot. Acetic acid treatment increased AMPKα phosphorylation, which subsequently increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α and upregulated the expression of lipid oxidation genes. These changes ultimate led to increasing levels of lipid oxidation in BRL-3A cells. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in BRL-3A cells. Consequently, triglyceride content in acetate-treated BRL-3A cells was significantly decreased. These results indicate that acetic acid activates the AMPKα signalling pathway, leading to increased lipid oxidation and decreased lipid synthesis in BRL-3A cells, thereby reducing liver fat accumulation in vitro. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Use of deuterated tyrosine and phenylalanine in the study of catecholamine and aromatic acid metabolism

    International Nuclear Information System (INIS)

    Curtius, H.C.; Redweik, U.; Steinmann, B.; Leimbacher, W.; Wegmann, H.

    1975-01-01

    Deuterated tyrosine and phenylalanine have been used for the study of their respective metabolism in patients with phenylketonuria (PKU) and in healthy persons. Urinary excretion of dopamine and its metabolites was studied by GC-MS after oral administration of deuterated L-tyrosine in 2 patients with PKU and in normal controls at low and high plasma phenylalanine levels. From these studies it seemed that the in vivo tyrosine 3-hydroxylase activity and thus the formation of L-dopa depend on the phenylalanine concentration in plasma and also in tissues. After loading 3 mentally retarded patients with 3,5-[ 2 H 2 ]-4-hydroxyphenylalanine, we found, among others, excretion of deuterated m-hydroxyphenyl-hydracrylic acid, p-hydroxymandelic acid, p-hydroxybenzoic acid, p-hydroxyhippuric acid, benzoic acid and hippuric acid. An intramolecular rearrangement is postulated. Deuterated phenylalanine was used to investigate phenylalanine and dopa metabolism in PKU. In addition, one untreated person with PKU of normal intelligence and normal excretion of catecholamines at high plasma phenylalanine concentration was investigated in order to see whether there exists an alternative metabolic pathway from phenylalanine to dopa formation

  1. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    Science.gov (United States)

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  2. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang Qin-Zeng

    2009-07-01

    Full Text Available Abstract Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR – attenuated total reflection (ATR detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  3. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... ionization (ESI) modes were performed to obtain the complete information about the metabolite content. Using sparse principal component analysis (Sparse PCA), we further identified those pairs of metabolites that significantly contribute to the separation. From the list of significant metabolite pairs, we...

  4. The effect of folic acid and folinic acid supplements on purine metabolism in methotrexate-treated rheumatoid arthritis.

    Science.gov (United States)

    Morgan, Sarah L; Oster, Robert A; Lee, Jeannette Y; Alarcón, Graciela S; Baggott, Joseph E

    2004-10-01

    To determine if folinic acid supplementation during methotrexate (MTX) therapy for rheumatoid arthritis (RA) reduces both urinary 5-aminoimidazole-4-carboxamide (AICA) and urinary adenosine excretion more than does folic acid supplementation. AICA and adenosine are markers for MTX interference with purine metabolism. Forty patients with RA who received MTX for 6 weeks were randomized to receive either daily folic acid or folinic acid supplements during an additional week of MTX therapy. Colorimetric and radioimmunocompetition assays were used to measure 24-hour urinary AICA and adenosine excretion levels, respectively. At the end of 6 weeks, 24-hour urinary levels of AICA, but not adenosine, were elevated as compared with baseline levels (i.e., prior to MTX therapy). Folinic acid, but not folic acid, supplementation normalized urinary AICA levels during MTX therapy. Relatively high urinary levels of AICA were correlated with reduced disease activity. No similar correlations were seen with urinary adenosine levels. The blockade of purine nucleotide biosynthesis by MTX at the AICA ribonucleotide transformylase-catalyzed step may be related to the efficacy of MTX, and this blockade is effectively relieved by folinic acid, but not by folic acid, supplementation. Copyright 2004 American College of Rheumatology

  5. Optimization of Bioprocess Productivity Based on Metabolic-Genetic Network Models with Bilevel Dynamic Programming.

    Science.gov (United States)

    Jabarivelisdeh, Banafsheh; Waldherr, Steffen

    2018-03-26

    One of the main goals of metabolic engineering is to obtain high levels of a microbial product through genetic modifications. To improve the productivity of such a process, the dynamic implementation of metabolic engineering strategies has been proven to be more beneficial compared to static genetic manipulations in which the gene expression is not controlled over time, by resolving the trade-off between growth and production. In this work, a bilevel optimization framework based on constraint-based models is applied to identify an optimal strategy for dynamic genetic and process level manipulations to increase productivity. The dynamic enzyme-cost flux balance analysis (deFBA) as underlying metabolic network model captures the network dynamics and enables the analysis of temporal regulation in the metabolic-genetic network. We apply our computational framework to maximize ethanol productivity in a batch process with Escherichia coli. The results highlight the importance of integrating the genetic level and enzyme production and degradation processes for obtaining optimal dynamic gene and process manipulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks.

    Science.gov (United States)

    Jol, Stefan J; Kümmel, Anne; Hatzimanikatis, Vassily; Beard, Daniel A; Heinemann, Matthias

    2010-11-17

    Thermodynamic analysis of metabolic networks has recently generated increasing interest for its ability to add constraints on metabolic network operation, and to combine metabolic fluxes and metabolite measurements in a mechanistic manner. Concepts for the calculation of the change in Gibbs energy of biochemical reactions have long been established. However, a concept for incorporation of cross-membrane transport in these calculations is still missing, although the theory for calculating thermodynamic properties of transport processes is long known. Here, we have developed two equivalent equations to calculate the change in Gibbs energy of combined transport and reaction processes based on two different ways of treating biochemical thermodynamics. We illustrate the need for these equations by showing that in some cases there is a significant difference between the proposed correct calculation and using an approximative method. With the developed equations, thermodynamic analysis of metabolic networks spanning over multiple physical compartments can now be correctly described. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    Science.gov (United States)

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  8. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  9. Comparative study of eicosapentaenoic acid metabolism by human platelets in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    von Schacky, C.; Siess, W.; Fischer, S.; Weber, P.C.

    1985-04-01

    During long-term dietary n-3 fatty acid supplementation, eicosapentaenoic acid (EPA) is not incorporated into phosphatidylinositol or -serine of human platelets in vivo and is not detectable in phosphatidic acid upon stimulation with thrombin. However, EPA is released from platelet phospholipids and metabolized to thromboxane B3 (TXB3). In contrast, in vitro, platelets incorporate (/sup 14/C)EPA into phosphatidylinositol, whether they contain endogenous EPA in their cellular lipids or not. Following platelet stimulation, (/sup 14/C)EPA appears in phosphatidic acid, as free fatty acid, and is transformed to TXB3. The authors conclude that the fatty acid compositions of platelet phospholipid subclasses are regulated with a high degree of specificity in vivo. Qualitative differences exist between in vivo and in vitro uptake of EPA into platelet phospholipid subclasses. After in vivo incorporation, EPA is released by action of a phospholipase A2.

  10. Tolerance response and metabolism of acetic acid by biodetoxification fungus Amorphotheca resinae ZN1.

    Science.gov (United States)

    Gao, Xiaochuang; Gao, Qiuqiang; Bao, Jie

    2018-03-27

    Removal of acetic acid from pretreated lignocellulose biomass is an important step for the consequent fermentation on production of cellulosic ethanol and biobased chemicals. This study elucidates the biological metabolism and tolerance response of acetic acid by a widely used biodetoxification fungus Amorphotheca resinae ZN1. Acetic acid is consumed as a prior substrate to glucose and xylose by A. resinae ZN1, and the consumption is highly accelerated by solid state culture. Acetic acid is metabolized through the tricarboxylic acid (TCA) cycle when glucose exists in the medium, while through the two cycles of both the TCA cycle and glyoxylate cycle when there is no sugar in the medium. The tolerance response of A. resinae ZN1 to acetic acid includes various biological processes such as activation of ions transport, increase in amino acids uptake and biosynthesis, as well as induction of ergosterol biosynthesis and ATP generation. The study provided important basis for the future biodetoxification strain modification for enhanced acetic acid removal. Copyright © 2018. Published by Elsevier B.V.

  11. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    Directory of Open Access Journals (Sweden)

    Zhimin Yang

    Full Text Available The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA, could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera, was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1 weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid, amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid, and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose. ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to