WorldWideScience

Sample records for acid mediates hypothalamic

  1. Fatty-acid-mediated hypothalamic inflammation and epigenetic programming.

    Science.gov (United States)

    Cesar, Helena C; Pisani, Luciana Pellegrini

    2017-04-01

    A high-fat diet is the main environmental cue that has been studied in the hypothalamus since the discovery of its connection with hypothalamic inflammation. Current evidence shows hypothalamic inflammation as a likely mechanism for the dysregulation on the homeostatic control of energy balance, which leads to metabolic alterations and obesity. Although this mechanism seems to be reversible when set during adulthood, we argue whether dietary fatty acids, during critical periods of development, could affect hypothalamic function permanently and set an increased susceptibility to obesity. We found few experimental studies that looked at programming induced by different fatty acids on the hypothalamus. They clearly showed a connection between maternal fat diet, hypothalamic inflammation and metabolic alterations in the offspring. We found that not only a high-fat diet but also a normolipidic diet with unbalanced quantities of different fatty acids produced diverse inflammatory responses on the hypothalamus. Therefore, strategies of manipulating dietary fatty acids in pregnant and lactating women may have great impact on the population's future health. However, more research is still needed on the effects of fatty acids and the hypothalamic inflammation on programming. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats.

    Directory of Open Access Journals (Sweden)

    Valentine S Moullé

    Full Text Available Variations in plasma fatty acid (FA concentrations are detected by FA sensing neurons in specific brain areas such as the hypothalamus. These neurons play a physiological role in the control of food intake and the regulation of hepatic glucose production. Le Foll et al. previously showed in vitro that at least 50% of the FA sensing in ventromedial hypothalamic (VMH neurons is attributable to the interaction of long chain FA with FA translocase/CD36 (CD36. The present work assessed whether in vivo effects of hypothalamic FA sensing might be partly mediated by CD36 or intracellular events such as acylCoA synthesis or β-oxidation. To that end, a catheter was implanted in the carotid artery toward the brain in male Wistar rats. After 1 wk recovery, animals were food-deprived for 5 h, then 10 min infusions of triglyceride emulsion, Intralipid +/- heparin (IL, IL(H, respectively or saline/heparin (SH were carried out and food intake was assessed over the next 5 h. Experimental groups included: 1 Rats previously injected in ventromedian nucleus (VMN with shRNA against CD36 or scrambled RNA; 2 Etomoxir (CPT1 inhibitor or saline co-infused with IL(H/S(H; and 3 Triacsin C (acylCoA synthase inhibitor or saline co-infused with IL(H/S(H. IL(H significantly lowered food intake during refeeding compared to S(H (p<0.001. Five hours after refeeding, etomoxir did not affect this inhibitory effect of IL(H on food intake while VMN CD36 depletion totally prevented it. Triacsin C also prevented IL(H effects on food intake. In conclusion, the effect of FA to inhibit food intake is dependent on VMN CD36 and acylCoA synthesis but does not required FA oxidation.

  3. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    Science.gov (United States)

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  4. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  5. The role of NPY in hypothalamic mediated food intake.

    Science.gov (United States)

    Mercer, Rebecca E; Chee, Melissa J S; Colmers, William F

    2011-10-01

    Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Hypothalamic ceramide levels regulated by CPT1C mediate the orexigenic effect of ghrelin.

    Science.gov (United States)

    Ramírez, Sara; Martins, Luís; Jacas, Jordi; Carrasco, Patricia; Pozo, Macarena; Clotet, Josep; Serra, Dolors; Hegardt, Fausto G; Diéguez, Carlos; López, Miguel; Casals, Núria

    2013-07-01

    Recent data suggest that ghrelin exerts its orexigenic action through regulation of hypothalamic AMP-activated protein kinase pathway, leading to a decline in malonyl-CoA levels and desinhibition of carnitine palmitoyltransferase 1A (CPT1A), which increases mitochondrial fatty acid oxidation and ultimately enhances the expression of the orexigenic neuropeptides agouti-related protein (AgRP) and neuropeptide Y (NPY). However, it is unclear whether the brain-specific isoform CPT1C, which is located in the endoplasmic reticulum of neurons, may play a role in this action. Here, we demonstrate that the orexigenic action of ghrelin is totally blunted in CPT1C knockout (KO) mice, despite having the canonical ghrelin signaling pathway activated. We also demonstrate that ghrelin elicits a marked upregulation of hypothalamic C18:0 ceramide levels mediated by CPT1C. Notably, central inhibition of ceramide synthesis with myriocin negated the orexigenic action of ghrelin and normalized the levels of AgRP and NPY, as well as their key transcription factors phosphorylated cAMP-response element-binding protein and forkhead box O1. Finally, central treatment with ceramide induced food intake and orexigenic neuropeptides expression in CPT1C KO mice. Overall, these data indicate that, in addition to formerly reported mechanisms, ghrelin also induces food intake through regulation of hypothalamic CPT1C and ceramide metabolism, a finding of potential importance for the understanding and treatment of obesity.

  7. Hypothalamic leptin action is mediated by histone deacetylase 5

    DEFF Research Database (Denmark)

    Kabra, Dhiraj G; Pfuhlmann, Katrin; García-Cáceres, Cristina

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake...... and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via...... reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data...

  8. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  9. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting

    Directory of Open Access Journals (Sweden)

    Bharath K. Mani

    2017-08-01

    Conclusions: These results suggest that 1 activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2 activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3 axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.

  10. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  11. Hypothalamic Ceramide Levels Regulated by CPT1C Mediate the Orexigenic Effect of Ghrelin

    OpenAIRE

    Ramirez, S.; Martins, L.; Jacas, J.; Carrasco, P.; Pozo, M.; Clotet, J.; Serra, D.; Hegardt, F G; Dieguez, C.; Lopez, M.; Casals, N

    2013-01-01

    Recent data suggest that ghrelin exerts its orexigenic action through regulation of hypothalamic AMP-activated protein kinase pathway, leading to a decline in malonyl-CoA levels and desinhibition of carnitine palmitoyltransferase 1A (CPT1A), which increases mitochondrial fatty acid oxidation and ultimately enhances the expression of the orexigenic neuropeptides agouti-related protein (AgRP) and neuropeptide Y (NPY). However, it is unclear whether the brain-specific isoform CPT1C, which is loc...

  12. Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin.

    Science.gov (United States)

    Rahmouni, Kamal; Sigmund, Curt D; Haynes, William G; Mark, Allyn L

    2009-03-01

    Leptin is an adipocyte hormone that plays a major role in energy balance. Leptin receptors in the hypothalamus are known to signal via distinct mechanisms, including signal transducer and activator of transcription-3 (STAT3) and phosphoinositol-3 kinase (PI 3-kinase). Here, we tested the hypothesis that extracellular signal-regulated kinase (ERK) is mediating leptin action in the hypothalamus. Biochemical, pharmacological, and physiological approaches were combined to characterize leptin activation of ERK in the hypothalamus in rats. Leptin activates ERK1/2 in a receptor-mediated manner that involves JAK2. Leptin-induced ERK1/2 activation was restricted to the hypothalamic arcuate nucleus. Pharmacological blockade of hypothalamic ERK1/2 reverses the anorectic and weight-reducing effects of leptin. The pharmacological antagonists of ERK1/2 did not attenuate leptin-induced activation of STAT3 or PI 3-kinase. Blockade of ERK1/2 abolishes leptin-induced increases in sympathetic nerve traffic to thermogenic brown adipose tissue (BAT) but does not alter the stimulatory effects of leptin on sympathetic nerve activity to kidney, hindlimb, or adrenal gland. In contrast, blockade of PI 3-kinase prevents leptin-induced sympathetic activation to kidney but not to BAT, hindlimb, or adrenal gland. Our findings indicate that hypothalamic ERK plays a key role in the control of food intake, body weight, and thermogenic sympathetic outflow by leptin but does not participate in the cardiovascular and renal sympathetic actions of leptin.

  13. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine.

    Science.gov (United States)

    Yu, C-H; Chu, S-C; Chen, P-N; Hsieh, Y-S; Kuo, D-Y

    2017-04-01

    Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance.

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-12-01

    Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia.

  15. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  16. Hypothalamic oxytocin mediates social buffering of the stress response.

    Science.gov (United States)

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  17. Relationship between the hypothalamic-pituitary-adrenal-axis and fatty acid metabolism in recurrent depression

    NARCIS (Netherlands)

    Mocking, Roel J. T.; Ruhé, Henricus G.; Assies, Johanna; Lok, Anja; Koeter, Maarten W. J.; Visser, Ieke; Bockting, Claudi L. H.; Schene, Aart H.

    2013-01-01

    Alterations in hypothalamic-pituitary-adrenal (HPA)-axis activity and fatty acid (FA)-metabolism have been observed in (recurrent) major depressive disorder (MDD). Through the pathophysiological roles of FAs in the brain and cardiovascular system, a hypothesized relationship between HPA-axis

  18. Relationship between the hypothalamic-pituitary-adrenal-axis and fatty acid metabolism in recurrent depression

    NARCIS (Netherlands)

    Mocking, R. J. T.; Ruhe, E.; Assies, J.; Lok, A.; Koeter, M. W. J.; Visser, I.; Bockting, C. L. H.; Schene, A. H.

    Alterations in hypothalamic-pituitary-adrenal (HPA)-axis activity and fatty acid (FA)-metabolism have been observed in (recurrent) major depressive disorder (MDD). Through the pathophysiological roles of FAs in the brain and cardiovascular system, a hypothesized relationship between HPA-axis

  19. Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions.

    Science.gov (United States)

    Dornellas, A P S; Watanabe, R L H; Pimentel, G D; Boldarine, V T; Nascimento, C M O; Oyama, L M; Ghebremeskel, K; Wang, Y; Bueno, A A; Ribeiro, E B

    2015-12-01

    Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting.

    Science.gov (United States)

    Mani, Bharath K; Osborne-Lawrence, Sherri; Mequinion, Mathieu; Lawrence, Sydney; Gautron, Laurent; Andrews, Zane B; Zigman, Jeffrey M

    2017-08-01

    -assisted stimulation of MBH GHSR neuronal activity was sufficient to induce food intake. Axonal projections of GHSR-expressing MBH neurons were observed in a subset of hypothalamic and extra-hypothalamic regions. These results suggest that 1) activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2) activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3) axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.

  1. Effects of an High-Fat Diet Enriched in Lard or in Fish Oil on the Hypothalamic Amp-Activated Protein Kinase and Inflammatory Mediators

    Science.gov (United States)

    Viggiano, Emanuela; Mollica, Maria Pina; Lionetti, Lillà; Cavaliere, Gina; Trinchese, Giovanna; De Filippo, Chiara; Chieffi, Sergio; Gaita, Marcello; Barletta, Antonio; De Luca, Bruno; Crispino, Marianna; Monda, Marcellino

    2016-01-01

    The high fat diet (HFD) rich in lard induces obesity, inflammation and oxidative stress, and the deregulation of hypothalamic nuclei plays an important role in this mechanism. One important factor involved in the food intake and inflammation is adenosine monophosphate-dependent kinase (AMPK), a serine/threonine kinase activated by phosphorylation. Omega (ω)3-polyunsaturated fatty acids (PUFA) are dietary compounds known to attenuate the obesity-related diseases, although the molecular mechanisms underlying their actions in the hypothalamus are not completely understood. We hypothesized that the beneficial effects of PUFA may be mediated by AMPK in the hypothalamus. To this aim, rats were fed a control diet (CD), or isocaloric HFD containing either fish oil (FD; rich in ω3-PUFA) or lard for 6 weeks, and the activation of AMPK, inflammatory state (IKKβ, TNF-α) and oxidative stress were analyzed in the hypothalamus. In addition, we also studied serum lipid profile, homeostatic model assessment (HOMA) index, and pro-inflammatory parameters. Our results showed, at the hypothalamic level of LD-fed rats, an increase of AMPK activation, inflammation and oxidative stress, while no modifications were detected in FD-fed animals compared to CD. In addition body weight gain, serum lipid profile, pro-inflammatory parameters and insulin resistance were reduced in FD animals compared to LD. In conclusion, our data indicate that the substitution of saturated by unsaturated fatty acids in the diet has beneficial effects on modulation of hypothalamic inflammation and function in obesity, underlying, at hypothalamic level, the interaction among insulin and/or leptin resistance, AMPK activation and hyperphagia. PMID:27375435

  2. Hypothalamic Phosphodiesterase 3B Pathway Mediates Anorectic and Body Weight-Reducing Effects of Insulin in Male Mice.

    Science.gov (United States)

    Sahu, Maitrayee; Anamthathmakula, Prashanth; Sahu, Abhiram

    2017-01-01

    Insulin action in the hypothalamus plays a critical role in the regulation of energy homeostasis, yet the intracellular signaling mechanisms mediating insulin action are incompletely understood. Although phosphodiesterase 3B (PDE3B) mediates insulin action in the adipose tissue and it is highly expressed in the hypothalamic areas implicated in energy homeostasis, its role, if any, in mediating insulin action in the hypothalamus is unknown. We tested the hypothesis that insulin action in the hypothalamus is mediated by PDE3B. Using enzymatic assay, we examined the effects of peripheral or central administration of insulin on hypothalamic PDE3B activity in adult mice. Western blotting and immunohistochemistry also examined p-Akt and p-STAT3 levels in the hypothalamus. Effects of leptin on these parameters were also compared. We injected cilostamide, a PDE3 inhibitor, prior to central injection of insulin and examined the 12- to 24-hour food intake and 24-hour body weight. Finally, we examined the effect of cilostamide on insulin-induced proopiomelanocortin (Pomc), neurotensin (Nt), neuropeptide Y (Npy) and agouti-related peptide (Agrp) gene expression in the hypothalamus by qPCR. Peripheral or central injection of insulin significantly increased PDE3B activity in the hypothalamus in association with increased p-Akt levels but without any change in p-STAT3 levels. However, leptin-induced increase in PDE3B activity was associated with an increase in both p-Akt and p-STAT3 levels in the hypothalamus. Prior administration of cilostamide reversed the anorectic and body weight-reducing effects as well as stimulatory effect of insulin on hypothalamic Pomc mRNA levels. Insulin did not alter Nt, Npy and Agrp mRNA levels. Insulin induction of hypothalamic PDE3B activity and the reversal of the anorectic and body weight-reducing effects and stimulatory effect of insulin on hypothalamic Pomc gene expression by cilostamide suggest that activation of PDE3B is a novel mechanism of

  3. gamma-Aminobutyric acid as an inhibitory neurotransmitter in the rat supraoptic nucleus: intracellular recordings in the hypothalamic slice.

    Science.gov (United States)

    Mason, W T; Poulain, D; Cobbett, P

    1987-01-27

    Intracellular recordings have been made from rat supraoptic neurones in the hypothalamic slice preparation. Application of gamma-aminobutyric acid (GABA) caused all neurones to hyperpolarise and this was accompanied by an increase in membrane conductance. GABA application examined on a variety of cells was found to have a potent influence on patterning of electrical activity, always consistent with an inhibitory action.

  4. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits.

    Directory of Open Access Journals (Sweden)

    Ana P García

    Full Text Available Nicotinic acetylcholine receptors (nAChRs play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine's (ACh regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE, an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO, oxytocin, and tyrosine hydroxylase (TH-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively whereas melanin concentrating hormone (MCH neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.

  5. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits.

    Science.gov (United States)

    García, Ana P; Aitta-aho, Teemu; Schaaf, Laura; Heeley, Nicholas; Heuschmid, Lena; Bai, Yunjing; Barrantes, Francisco J; Apergis-Schoute, John

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating appetite and have been shown to do so by influencing neural activity in the hypothalamus. To shed light on the hypothalamic circuits governing acetylcholine's (ACh) regulation of appetite this study investigated the influence of hypothalamic nAChRs expressing the α4 subunit. We found that antagonizing the α4β2 nAChR locally in the lateral hypothalamus with di-hydro-ß-erythroidine (DHβE), an α4 nAChR antagonist with moderate affinity, caused an increase in food intake following free access to food after a 12 hour fast, compared to saline-infused animals. Immunocytochemical analysis revealed that orexin/hypocretin (HO), oxytocin, and tyrosine hydroxylase (TH)-containing neurons in the A13 and A12 of the hypothalamus expressed the nAChR α4 subunit in varying amounts (34%, 42%, 50%, and 51%, respectively) whereas melanin concentrating hormone (MCH) neurons did not, suggesting that DHβE-mediated increases in food intake may be due to a direct activation of specific hypothalamic circuits. Systemic DHβE (2 mg/kg) administration similarly increased food intake following a 12 hour fast. In these animals a subpopulation of orexin/hypocretin neurons showed elevated activity compared to control animals and MCH neuronal activity was overall lower as measured by expression of the immediate early gene marker for neuronal activity cFos. However, oxytocin neurons in the paraventricular hypothalamus and TH-containing neurons in the A13 and A12 did not show differential activity patterns. These results indicate that various neurochemically distinct hypothalamic populations are under the influence of α4β2 nAChRs and that cholinergic inputs to the lateral hypothalamus can affect satiety signals through activation of local α4β2 nAChR-mediated transmission.

  6. Melanocortin receptor-mediated effects on obesity are distributed over specific hypothalamic regions.

    Science.gov (United States)

    de Backer, M W A; la Fleur, S E; Brans, M A D; van Rozen, A J; Luijendijk, M C M; Merkestein, M; Garner, K M; van der Zwaal, E M; Adan, R A H

    2011-05-01

    Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood. We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of the rat brain. Melanocortin signaling was inhibited by injection of a recombinant adeno-associated viral (rAAV) vector that overexpressed Agouti-related peptide (AgRP) into the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LH) or the accumbens shell (Acc). Overexpression of AgRP in the rat PVN, VMH or LH increased bodyweight, the percentage of white adipose tissue, plasma leptin and insulin concentrations and food intake. Food intake was mainly increased because of an increase in meal size in the light and dark phases, after overexpression of AgRP in the PVN, LH or VMH. Overexpression of AgRP in the PVN or VMH reduced average body core temperature in the dark on day 40 post injection, whereas AgRP overexpression in the LH did not affect temperature. In addition, overexpression of AgRP in the PVN, LH or VMH did not significantly alter mRNA expression of AgRP, neuropeptide Y (NPY), pro-opiomelanocortin (POMC) or suppressor of cytokine signaling 3 (SOCS3) in the arcuate. Overexpression of AgRP in the Acc did not have any effect on the measured parameters. Reduction of melanocortin signaling in several hypothalamic regions increased meal size. However, there were brain area-specific effects on other parameters such as core temperature and plasma leptin concentrations. In a previous study, where NPY was overexpressed with an rAAV vector in the PVN and LH, meal frequency and meal size were increased respectively, whereas locomotor activity was reduced by NPY overexpression at both nuclei. Taken together, AgRP and NPY have complementary roles in energy balance.

  7. Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben

    2014-01-01

    Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats. PMID:24944903

  8. Anorectic effects of estrogen may be mediated by decreased neuropeptide-Y release in the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Bonavera, J J; Dube, M G; Kalra, P S; Kalra, S P

    1994-06-01

    There is a considerable body of evidence to suggest that estrogen suppresses food intake and body weight gain by an action in the hypothalamus. However, the neurotransmitter/neuromodulator mediating the anorectic effects of estrogen are unknown. Neuropeptide-Y (NPY) is the most potent orexigenic signal known, and NPY-producing neurons in the hypothalamus concentrate 17 beta-estradiol (E2). In these studies we tested the hypothesis that estrogen-induced anorectic effects may be due to decreased NPY levels and release in hypothalamic sites previously implicated in the control of food intake. The results show that uninterrupted physiological levels of E2 in ovariectomized rats suppressed daily food intake and body weight gain. Evaluation of NPY concentrations in five hypothalamic sites showed that NPY levels were decreased selectively in the paraventricular nucleus (PVN) and neighboring perifornical nucleus of E2-treated rats. In contrast, concentrations of beta-endorphin, another less potent orexigenic peptide, were not changed by E2 in any hypothalamic site. In the next experiment, the effects of similar E2 treatment on NPY release in vitro from the PVN and ventromedial nucleus were studied in rats killed at the onset of the dark phase when food intake increases in conjunction with increased PVN NPY secretion. The results show that basal and KCl-induced NPY release were significantly decreased from the PVN of E2-treated compared to those in control rats. In contrast, both basal and KCl-induced NPY release from the ventromedial nucleus of E2-treated rats were similar to those in control rats. Collectively, these results show that estrogen suppresses NPY levels and release selectively from the PVN. As NPY levels and release in the PVN have been shown to be highly correlated with appetite status, and the PVN is one of the important sites of NPY action, these findings imply that the anorectic effects of estrogen may be mediated by decreased NPY release from the PVN NPY

  9. Hypothalamic tumor

    Science.gov (United States)

    Hypothalamic glioma; Hypothalamus - tumor ... The exact cause of hypothalamic tumors is not known. It is likely that they result from a combination of genetic and environmental factors. In children, ...

  10. Role of the dorsomedial hypothalamus in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Stamper, Christopher E; Hennessey, Patrick A; Hale, Matthew W; Lukkes, Jodi L; Donner, Nina C; Lowe, Kenneth R; Paul, Evan D; Spencer, Robert L; Renner, Kenneth J; Orchinik, Miles; Lowry, Christopher A

    2015-01-01

    Previous studies suggest that multiple corticolimbic and hypothalamic structures are involved in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, including the dorsomedial hypothalamus (DMH), but a potential role of the DMH has not been directly tested. To investigate the role of the DMH in glucocorticoid-mediated negative feedback, adult male Sprague Dawley rats were implanted with jugular cannulae and bilateral guide cannulae directed at the DMH, and finally were either adrenalectomized (ADX) or were subjected to sham-ADX. ADX rats received corticosterone (CORT) replacement in the drinking water (25 μg/mL), which, based on initial studies, restored a rhythm of plasma CORT concentrations in ADX rats that was similar in period and amplitude to the diurnal rhythm of plasma CORT concentrations in sham-ADX rats, but with a significant phase delay. Following recovery from surgery, rats received microinjections of either CORT (10 ng, 0.5 μL, 0.25 μL/min, per side) or vehicle (aCSF containing 0.2% EtOH), bilaterally, directly into the DMH, prior to a 40-min period of restraint stress. In sham-ADX rats, bilateral intra-DMH microinjections of CORT, relative to bilateral intra-DMH microinjections of vehicle, decreased restraint stress-induced elevation of endogenous plasma CORT concentrations 60 min after the onset of intra-DMH injections. Intra-DMH CORT decreased the overall area under the curve for plasma CORT concentrations during the intermediate time frame of glucocorticoid negative feedback, from 0.5 to 2 h following injection. These data are consistent with the hypothesis that the DMH is involved in feedback inhibition of HPA axis activity at the intermediate time frame.

  11. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression

    NARCIS (Netherlands)

    Wu, Xueyan; Balesar, R.A.; Lu, Jing; Farajnia, Sahar; Zhu, Qiongbin; Huang, Manli; Bao, Ai-Min; Swaab, D.F.

    2017-01-01

    In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We,

  12. Fundectomy-evoked osteopenia in pigs is mediated by the gastric-hypothalamic-pituitary axis.

    Science.gov (United States)

    Tatara, Marcin R; Krupski, Witold; Sliwa, Ewa; Maciejewski, Ryszard; Dabrowski, Andrzej

    2007-12-01

    The aim of the study was to determine the effects of gastric impairment in pigs on the axial and peripheral skeletal system properties and to test the hypothesis that fundectomy-evoked osteopenia is related to disturbed gastric-hypothalamic-pituitary axis function. Forty-day-old male piglets were subjected to experimental fundectomy (FX group, n = 6) to induce osteopenia, while sham operation was performed in the controls (SHO group, n = 6). At the age of 8 months, serum samples were collected, and the animals were sacrificed to obtain lumbar vertebrae (L1-L6) and right humerus for analysis. Using quantitative computed tomography (QCT) and dual-energy x-ray absorptiometry (DEXA) methods, bone mineral density and bone mineral content of the vertebrae and humerus were measured. The compression and three-point bending tests were applied to determine mechanical properties of lumbar vertebrae and humerus, respectively. Furthermore, geometric properties of humerus were assessed. Serum concentrations of ghrelin, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and selected macro- and microelements were also determined. Performed fundectomy decreased body weight in pigs by 66% compared with pair-fed sham operated pigs (P pigs (P pigs, respectively (all P iron and copper in the fundectomized animals were significantly decreased by 15.5%, 45.3%, 26.7%, and 26.2%, respectively (P pigs.

  13. Adenovirus-mediated gene delivery to hypothalamic magnocellular neurons in mice

    Science.gov (United States)

    Vasquez, E. C.; Beltz, T. G.; Meyrelles, S. S.; Johnson, A. K.

    1999-01-01

    Vasopressin is synthesized by magnocellular neurons in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei and released by their axon terminals in the neurohypophysis (NH). With its actions as an antidiuretic hormone and vasoactive agent, vasopressin plays a pivotal role in the control of body fluids and cardiovascular homeostasis. Because of its well-defined neurobiology and functional importance, the SON/PVN-NH system is ideal to establish methods for gene transfer of genetic material into specific pathways in the mouse central nervous system. In these studies, we compared the efficiency of transferring the gene lacZ, encoding for beta-galactosidase (beta-gal), versus a gene encoding for green fluorescent protein by using replication-deficient adenovirus (Ad) vectors in adult mice. Transfection with viral concentrations up to 2 x 10(7) plaque-forming units per coverslip of NH, PVN, and SON in dissociated, cultured cells caused efficient transfection without cytotoxicity. However, over an extended period of time, higher levels (50% to 75% of the cells) of beta-gal expression were detected in comparison with green fluorescent protein (5% to 50% of the cells). With the use of a stereotaxic approach, the pituitary glands of mice were injected with Ad (4 x 10(6) plaque-forming units). In material from these animals, we were able to visualize the expression of the beta-gal gene in the NH and in magnocellular neurons of both the PVN and SON. The results of these experiments indicate that Ad-Rous sarcoma virus promoter-beta-gal is taken up by nerve terminals at the injection site (NH) and retrogradely transported to the soma of the neurons projecting to the NH. We conclude that the application of these experimental approaches will provide powerful tools for physiological studies and potential approaches to deliver therapeutic genes to treat diseases.

  14. Involvement of hypothalamic PI3K–STAT3 signalling in regulating appetite suppression mediated by amphetamine

    Science.gov (United States)

    Chu, Shu-Chen; Chen, Pei-Ni; Hsieh, Yih-Shou; Yu, Ching-Han; Lin, Meng-Hsuan; Lin, Yan-Han; Kuo, Dong-Yih

    2014-01-01

    BACKGROUND AND PURPOSE Appetite suppression induced by amphetamine has been attributed to its inhibition of neuropeptide Y (NPY) neurons and activation of pro-opiomelanocortin (POMC) neurons in the hypothalamus. This study examined whether STAT3 was involved in these actions of amphetamine. EXPERIMENTAL APPROACH Rats were given amphetamine daily for 4 days. Changes in the expression of NPY, POMC, melanocortin MC3 receptors, PI3K and STAT3 in the hypothalamus were assessed by RT-PCR and Western blotting. Antisense oligonucleotides to STAT3 were also used. KEY RESULTS Expression of NPY decreased with a maximum effect day 2 of amphetamine treatment. Expression of POMC, MC3 receptors, PI3K and STAT3 increased with a maximum response on day 2. Moreover, phosphorylation of STAT3 and its DNA binding activity increased and was expressed in a similar pattern. Infusion (i.c.v.) of STAT3 antisense at 60 min before amphetamine treatment, partly blocked amphetamine-induced anorexia and modulated expression of NPY, POMC, MC3 receptors and PI3K, indicating the involvement of STAT3 in amphetamine-treated rats. CONCLUSIONS AND IMPLICATIONS Hypothalamic PI3K–STAT3 signalling participated in the regulation of NPY- and POMC-mediated appetite suppression. These findings may contribute to a better understanding of anorectic drugs. PMID:24597972

  15. Hypothalamic ERK Mediates the Anorectic and Thermogenic Sympathetic Effects of Leptin

    OpenAIRE

    Rahmouni, Kamal; Sigmund, Curt D.; Haynes, William G.; Mark, Allyn L.

    2009-01-01

    OBJECTIVE?Leptin is an adipocyte hormone that plays a major role in energy balance. Leptin receptors in the hypothalamus are known to signal via distinct mechanisms, including signal transducer and activator of transcription-3 (STAT3) and phosphoinositol-3 kinase (PI 3-kinase). Here, we tested the hypothesis that extracellular signal?regulated kinase (ERK) is mediating leptin action in the hypothalamus. RESEARCH DESIGN AND METHODS?Biochemical, pharmacological, and physiological approaches wer...

  16. Nicotine-induced norepinephrine release in hypothalamic paraventricular nucleus and amygdala is mediated by N-methyl-D-aspartate receptors and nitric oxide in the nucleus tractus solitarius.

    Science.gov (United States)

    Zhao, Rongjie; Chen, Hao; Sharp, Burt M

    2007-02-01

    The noradrenergic projections from brainstem nucleus tractus solitarius (NTS) to hypothalamic paraventricular nucleus (PVN) and amygdala (AMYG) are involved in nicotine-related stress responses and drug craving. Previous studies demonstrated that i.v. nicotine-induced norepinephrine (NE) release in the PVN and AMYG depends on nicotinic cholinergic receptors in the brainstem. However, the direct site and mechanism of nicotine's action in brainstem are unknown. The present study determined the roles of NTS ionotropic glutamate receptors and nitric oxide (NO) in the effects of both local and systemic nicotine on NE release in PVN and AMYG. In male rats, an intra-NTS microinjection of nicotine (1.2 microg free base) or i.v. nicotine infusion (0.065 or 0.09 mg/kg) significantly increased NE levels in PVN and AMYG microdialysates. Prior microinjection of the N-methyl-D-aspartate (NMDA) receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (0.75 or 1.5 microg), but not an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist, dose dependently nearly abolished both PVN and AMYG NE responses to nicotine administered into NTS or systemically. NO involvement was assessed with intra-NTS microinjections of the nonselective nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester hydrochloride (10-30 nmol), or the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (0.1-0.2 nmol); both agents dose dependently inhibited i.v. nicotine-induced NE release. These results indicate that nicotine-induced NE release in PVN and AMYG is mediated entirely through the local effects of nicotine on NTS glutamate afferents and NMDA receptors that, in part, stimulate NO production, resulting in activation of noradrenergic neurons. Therefore, nicotine acts indirectly on noradrenergic NTS neurons to elicit NE release in forebrain structures.

  17. Proteomic analysis of hypothalamic injury in heatstroke rats.

    Science.gov (United States)

    Chao, Chien-Ming; Cheng, Bor-Chih; Chen, Chia-Ying; Lin, Mao-Tsun; Chang, Ching-Ping; Yang, Shun-Tai

    2015-06-01

    Ischemic and oxidative damage to the hypothalamus may be associated with decreased heat tolerance as well as heatstroke formation. The present study explores the hypothalamic proteome mechanisms associated with heatstroke-mediated hypothalamic ischemia, and oxidative damage. Heatstroke rats had hypotension, hypothalamic ischemia, and lethality. In addition, they had hyperthermia and hypothalamic blood-brain-barrier disruption, oxidative stress, activated inflammation, and neuronal apoptosis and degeneration. 2DE combined LC-MS/MS revealed that heatstroke-induced ischemic injury and apoptosis were associated with upregulation of L-lactate dehydrogenase but downregulation of both dihydropyriminase-related protein and 14-3-3 Zeta isoform protein. Heat-induced blood-brain-barrier disruption might be related to upregulation of glial fibrillary acidic protein. Oxidative stress caused by heatstroke might be related to upregulation of cytosolic dehydrogenase-1. Also, heat-induced overproduction of proinflammatory cytokines might be associated with downregulation of stathmin 1. Heat-induced hypothalamic ischemia, apoptosis, injury (or upregulation of L-lactate dehydrogenase), blood-brain-barrier disruption (or upregulation of glial fibrillary acidic protein), oxidative stress (or upregulation of cytosolic dehydrogenase-1), and activated inflammation (or downregulation of stathmin 1) were all significantly reversed by whole body cooling. Our data indicate that cooling therapy improves outcomes of heatstroke by modulating hypothalamic proteome mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fatty acid metabolism and its longitudinal relationship with the hypothalamic-pituitary-adrenal axis in major depression : Associations with prospective antidepressant response

    NARCIS (Netherlands)

    Mocking, Roel J. T.; Verburg, Hanka F.; Westerink, Anne M.; Assies, Johanna; Vaz, Frederic M.; Koeter, Maarten W. J.; Ruhe, Henricus G.; Schene, Aart H.

    Background: Metabolism of dietary fatty acids (FAs), and its relationship with the hypothalamic-pituitary-adrenal (HPA)-axis, have been found to be altered in major depressive disorder (MDD). Moreover, indications exist that these factors are associated with antidepressant-response. If we better

  19. Fatty acid metabolism and its longitudinal relationship with the hypothalamic-pituitary-adrenal axis in major depression: Associations with prospective antidepressant response

    NARCIS (Netherlands)

    Mocking, Roel J. T.; Verburg, Hanka F.; Westerink, Anne M.; Assies, Johanna; Vaz, Frédéric M.; Koeter, Maarten W. J.; Ruhé, Henricus G.; Schene, Aart H.

    2015-01-01

    Metabolism of dietary fatty acids (FAs), and its relationship with the hypothalamic-pituitary-adrenal (HPA)-axis, have been found to be altered in major depressive disorder (MDD). Moreover, indications exist that these factors are associated with antidepressant-response. If we better understand

  20. Fatty acid metabolism and its longitudinal relationship with the hypothalamic-pituitary-adrenal axis in major depression: Associations with prospective antidepressant response

    NARCIS (Netherlands)

    Mocking, R.J.T.; Verburg, H.F.; Westerink, A.M.; Assies, J.; Vaz, F.M.; Koeter, M.W.; Ruhe, H.G.; Schene, A.H.

    2015-01-01

    BACKGROUND: Metabolism of dietary fatty acids (FAs), and its relationship with the hypothalamic-pituitary-adrenal (HPA)-axis, have been found to be altered in major depressive disorder (MDD). Moreover, indications exist that these factors are associated with antidepressant-response. If we better

  1. Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats.

    Science.gov (United States)

    Yu, Ching-Han; Chu, Shu-Chen; Chen, Pei-Ni; Hsieh, Yih-Shou; Kuo, Dong-Yih

    2017-06-01

    Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) have been documented to participate in amphetamine (AMPH)-induced appetite suppression. This study investigated whether ghrelin signalling is associated with changes in NPY/POMC-mediated appetite control. Rats were given AMPH daily for four days, and changes in food intake, body weight, plasma ghrelin, hypothalamic NPY, melanocortin 3 receptor (MC3R), ghrelin O-acyltransferase (GOAT), acyl ghrelin (AG) and ghrelin receptor (GHSR1a) were examined and compared. Food intake, body weight and NPY expression decreased, while MC3R expression increased and expressed reciprocally to NPY expression during AMPH treatment. Plasma ghrelin and hypothalamic AG/GOAT/GHSR1a expression decreased on Day 1 and Day 2, which was associated with the positive energy metabolism, and returned to normal levels on Day 3 and Day 4, which was associated with the negative energy metabolism; this expression pattern was similar to that of NPY. Infusion with a GHSR1a antagonist or an NPY antisense into the brain enhanced the decrease in NPY and AG/GOAT/GHSR1a expression and the increase in MC3R expression compared to the AMPH-treated group. Peripheral ghrelin and the central ghrelin system participated in the regulation in AMPH-induced appetite control. These results shed light on the involvement of ghrelin signalling in reciprocal regulation of NPY/POMC-mediated appetite control and may prove useful for the development of anti-obesity drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons.

    Directory of Open Access Journals (Sweden)

    Ramón A Piñol

    Full Text Available Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2 expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV. We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs, neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

  3. Role of testosterone in mediating prenatal ethanol effects on hypothalamic-pituitary-adrenal activity in male rats.

    Science.gov (United States)

    Lan, Ni; Hellemans, Kim G C; Ellis, Linda; Viau, Victor; Weinberg, Joanne

    2009-10-01

    Prenatal ethanol (E) exposure programs the fetal hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes such that E rats show HPA hyperresponsiveness to stressors and altered HPG and reproductive function in adulthood. Importantly, prenatal ethanol may differentially alter stress responsiveness in adult male and female offspring compared to their control counterparts. To test the hypothesis that alterations in HPA activity in E males are mediated, at least in part, by ethanol-induced changes in the capacity of testosterone to regulate HPA activity, we explored dose-related effects of testosterone on HPA and HPG function in adult male offspring from prenatal E, pair-fed (PF) and ad libitum-fed control (C) dams. Our data suggest that E males show changes in both HPA and HPG regulation, as well as altered sensitivity to the inhibitory effects of testosterone. While gonadectomy (GDX) reduced weight gain in all animals, low testosterone replacement restored body weights in PF and C but not E males. Further, sensitivity of the thymus and adrenal to circulating testosterone was reduced in E rats. In addition, stress-induced corticosterone (CORT) levels were increased in PF and C but not E males following GDX, and while low dose testosterone replacement restored CORT levels for PF and C, high testosterone levels were needed to normalize CORT levels for E males. A negative correlation between pre-stress testosterone and post-stress CORT levels in C but not in E and PF males further supports the finding of reduced sensitivity to testosterone. Importantly, testosterone appeared to have reduced effects on central corticotrophin releasing hormone (CRH) pathways in E, but greater effects on central arginine vasopressin (AVP) pathways in E and/or PF compared to C males. Testosterone also had less of an inhibitory effect on stress-induced luteinizing hormone increases in E than in PF and C males following GDX. In addition, androgen receptor mRNA levels in the medial preoptic

  4. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    Directory of Open Access Journals (Sweden)

    Kazuo Nakamoto

    Full Text Available GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA. However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP, an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol, a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg and GW9508 (1.0 µg, a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg, a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long

  5. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    Science.gov (United States)

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  6. Hypothalamic GPR40 Signaling Activated by Free Long Chain Fatty Acids Suppresses CFA-Induced Inflammatory Chronic Pain

    Science.gov (United States)

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  7. Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism.

    Science.gov (United States)

    Brown, Whitney H; Gillum, Matthew P; Lee, Hui-Young; Camporez, Joao Paulo G; Zhang, Xian-man; Jeong, Jin Kwon; Alves, Tiago C; Erion, Derek M; Guigni, Blas A; Kahn, Mario; Samuel, Varman T; Cravatt, Benjamin F; Diano, Sabrina; Shulman, Gerald I

    2012-09-11

    Fatty acid amide hydrolase (FAAH) knockout mice are prone to excess energy storage and adiposity, whereas mutations in FAAH are associated with obesity in humans. However, the molecular mechanism by which FAAH affects energy expenditure (EE) remains unknown. Here we show that reduced energy expenditure in FAAH(-/-) mice could be attributed to decreased circulating triiodothyronine and thyroxine concentrations secondary to reduced mRNA expression of both pituitary thyroid-stimulating hormone and hypothalamic thyrotropin-releasing hormone. These reductions in the hypothalamic-pituitary-thyroid axis were associated with activation of hypothalamic peroxisome proliferating-activated receptor γ (PPARγ), and increased hypothalamic deiodinase 2 expression. Infusion of NAEs (anandamide and palmitoylethanolamide) recapitulated increases in PPARγ-mediated decreases in EE. FAAH(-/-) mice were also prone to diet-induced hepatic insulin resistance, which could be attributed to increased hepatic diacylglycerol content and protein kinase Cε activation. Our data indicate that FAAH deletion, and the resulting increases in NAEs, predispose mice to ectopic lipid storage and hepatic insulin resistance by promoting centrally mediated hypothyroidism.

  8. Acetic acid mediated interactions between alumina surfaces

    Science.gov (United States)

    Sato, Kimiyasu; Yılmaz, Hüseyin; Ijuin, Atsuko; Hotta, Yuji; Watari, Koji

    2012-02-01

    Low-molecular-weight organic acids have been known to modify colloidal stability of alumina-based suspensions. We investigated interaction forces between alumina surfaces mediated by acetic acid which is one of the simplest organic acids. Forces between alumina surfaces were measured using the colloid-probe method of atomic force microscope (AFM). Repulsive forces attributed to steric repulsion due to adsorbed molecules and electrostatic repulsion dominated the interaction. Results of rheological characterization of the alumina slurry containing acetic acid supported the finding.

  9. Chronic Sleep Fragmentation During the Sleep Period Induces Hypothalamic Endoplasmic Reticulum Stress and PTP1b-Mediated Leptin Resistance in Male Mice

    Science.gov (United States)

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Background: Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Methods: Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP −/+ transgenic mice. Results: Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP −/+ mice. Conclusions: Sleep fragmentation (SF) induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of endoplasmic reticulum (ER) stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. Citation: Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep

  10. The nutritional induction of COUP-TFII gene expression in ventromedial hypothalamic neurons is mediated by the melanocortin pathway.

    Directory of Open Access Journals (Sweden)

    Lina Sabra-Makke

    Full Text Available BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation.

  11. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  12. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  13. Hypothalamic integration of immune function and metabolism.

    Science.gov (United States)

    Guijarro, Ana; Laviano, Alessandro; Meguid, Michael M

    2006-01-01

    dopamine (DA) and an increase in serotonin concentration in tumor-bearing rats, in first- and second-order hypothalamic nuclei, while tumor resection reverted these changes and normalized food intake, suggesting negative regulation of NPY and DA systems by cytokines during anorexia, probably mediated by serotonin that appears to play a pivotal role in the regulation of food intake in cancer. Among the different forms of therapy, nutritional manipulation of diet in tumor-bearing state has been investigated. Supplementation of tumor bearing rats with omega-3 fatty acid vs. control diet delayed the appearance of tumor, reduced tumor-growth rate and volume, negated onset of anorexia, increased body weight, decreased cytokines production and increased expression of NPY and decreased alpha-melanocyte-stimulating hormone (alpha-MSH) in hypothalamic nuclei. These data suggest that omega-3 fatty acid suppressed pro-inflammatory cytokines production and improved food intake by normalizing hypothalamic food intake-related peptides and point to the possibility of a therapeutic use of these fatty acids. The sum of these data support the concept that immune cell-derived cytokines are closely related with the regulation of metabolism and have both central and peripheral actions, inducing anorexia via hypothalamic anorectic factors, including serotonin and dopamine, and inhibiting NPY leading to a reduction in food intake and body weight, emphasizing the interconnection of the immune and neuroendocrine systems in regulating metabolism during infectious process, cachexia and obesity.

  14. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Controls Stimulus-Transcription Coupling in the Hypothalamic-Pituitary-Adrenal Axis to Mediate Sustained Hormone Secretion During Stress

    Science.gov (United States)

    Stroth, Nikolas; Liu, Ying; Aguilera, Greti; Eiden, Lee E.

    2011-01-01

    External and internal stimuli that threaten homeostasis trigger coordinated stress responses through activation of specialised neuroendocrine circuits. In mammals, the hypothalamic-pituitary-adrenal (HPA) axis mediates responses to stressors such as restraint, ultimately enhancing adrenocortical hormone secretion. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in central control of the HPA axis, and we have recently shown PACAP-dependent expression of corticotropin-releasing hormone (CRH) and secretion of corticosterone in response to restraint. We now provide a more detailed analysis of PACAP-dependent HPA axis stimulation in the mouse, indicating that the hypothalamic paraventricular nucleus (PVN) is the primary site of action. We demonstrate by quantitative PCR and in situ hybridisation that upregulation of mRNAs encoding CRH and inducible transcription factors from the Nr4a family (Nur77, Nor1) in the PVN is PACAP-dependent. Furthermore, CRH hnRNA is rapidly upregulated in cultured hypothalamic neurones after treatment with PACAP. Induction of Nr4a factors (Nur77, Nurr1) in response to restraint is attenuated in the pituitary gland of PACAP-deficient mice. In the adrenal glands, restraint elicits a marked PACAP-dependent increase in adrenocortical mRNA levels of all three Nr4a transcription factors, SF-1 (steroidogenic factor 1; Nr5a1), steroidogenic acute regulatory protein (StAR) and steroid 21-hydroxylase. Taken together, our results show that PACAP controls HPA responses to restraint primarily at the level of the hypothalamus by upregulating CRH, possibly involving transcription factors such as Nur77 and Nor1. Subsequent adrenocortical steroidogenesis also appears to involve PACAP-dependent stimulus-transcription coupling, suggesting a mechanism by which PACAP exerts control over HPA axis function during stress. PMID:21824204

  15. [Essential fatty acids and lipid mediators. Endocannabinoids].

    Science.gov (United States)

    Caramia, G

    2012-01-01

    In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA) as precursors of "lipid mediator" molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body's inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer's. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA) were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP) epoxygenases convert AA to four epoxyeicosatrienoic acid (EET) regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxye-icosatetraenoic acids (EETR) and hydroxyeicosapentaenoic acids (19- and 20-HEPE), whereas DHA include epoxydocosapentaenoic acids (EDPs) hydroxydocosahexaenoic acids (21- and 22-HDoHE). For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as hashish and

  16. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice.

    Directory of Open Access Journals (Sweden)

    Rebecca E Mercer

    Full Text Available Prader-Willi Syndrome is the most common syndromic form of human obesity and is caused by the loss of function of several genes, including MAGEL2. Mice lacking Magel2 display increased weight gain with excess adiposity and other defects suggestive of hypothalamic deficiency. We demonstrate Magel2-null mice are insensitive to the anorexic effect of peripherally administered leptin. Although their excessive adiposity and hyperleptinemia likely contribute to this physiological leptin resistance, we hypothesized that Magel2 may also have an essential role in intracellular leptin responses in hypothalamic neurons. We therefore measured neuronal activation by immunohistochemistry on brain sections from leptin-injected mice and found a reduced number of arcuate nucleus neurons activated after leptin injection in the Magel2-null animals, suggesting that most but not all leptin receptor-expressing neurons retain leptin sensitivity despite hyperleptinemia. Electrophysiological measurements of arcuate nucleus neurons expressing the leptin receptor demonstrated that although neurons exhibiting hyperpolarizing responses to leptin are present in normal numbers, there were no neurons exhibiting depolarizing responses to leptin in the mutant mice. Additional studies demonstrate that arcuate nucleus pro-opiomelanocortin (POMC expressing neurons are unresponsive to leptin. Interestingly, Magel2-null mice are hypersensitive to the anorexigenic effects of the melanocortin receptor agonist MT-II. In Prader-Willi Syndrome, loss of MAGEL2 may likewise abolish leptin responses in POMC hypothalamic neurons. This neural defect, together with increased fat mass, blunted circadian rhythm, and growth hormone response pathway defects that are also linked to loss of MAGEL2, could contribute to the hyperphagia and obesity that are hallmarks of this disorder.

  17. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells.

    Science.gov (United States)

    Wang, Songbo; Xiang, Nana; Yang, Liusong; Zhu, Canjun; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-03-18

    The regulation of food intake is a promising way to combat obesity. It has been implicated that various fatty acids exert different effects on food intake and body weight. However, the underlying mechanism remains poorly understood. The aim of the present study was to investigate the effects of linoleic acid (LA) and stearic acid (SA) on agouti-related protein (AgRP) expression and secretion in immortalized mouse hypothalamic N38 cells and to explore the likely underlying mechanisms. Our results demonstrated that LA inhibited, while SA stimulated AgRP expression and secretion of N38 cells in a dose-dependent manner. In addition, LA suppressed the protein expression of toll-like receptor 4 (TLR4), phosphorylation levels of JNK and IKKα/β, suggesting the inhibition of TLR4-dependent inflammation pathway. However, the above mentioned inhibitory effects of LA were eliminated by TLR4 agonist lipopolysaccharide (LPS). In contrast, SA promoted TLR4 protein expression and activated TLR4-dependent inflammation pathway, with elevated ratio of p-JNK/JNK. While TLR4 siRNA reversed the stimulatory effects of SA on AgRP expression and TLR4-dependent inflammation. Moreover, we found that TLR4 was also involved in LA-enhanced and SA-impaired leptin/insulin signal pathways in N38 cells. In conclusion, our findings indicated that LA elicited inhibitory while SA exerted stimulatory effects on AgRP expression and secretion via TLR4-dependent inflammation and leptin/insulin pathways in N38 cells. These data provided a better understanding of the mechanism underlying fatty acids-regulated food intake and suggested the potential role of long-chain unsaturated fatty acids such as LA in reducing food intake and treating obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Role of Circulating Amino Acids in the Hypothalamic Regulation of Liver Glucose Metabolism.

    Science.gov (United States)

    Arrieta-Cruz, Isabel; Gutiérrez-Juárez, Roger

    2016-07-01

    A pandemic of diabetes and obesity has been developing worldwide in close association with excessive nutrient intake and a sedentary lifestyle. Variations in the protein content of the diet have a direct impact on glucose homeostasis because amino acids (AAs) are powerful modulators of insulin action. In this work we review our recent findings on how elevations in the concentration of the circulating AAs leucine and proline activate a metabolic mechanism located in the mediobasal hypothalamus of the brain that sends a signal to the liver via the vagus nerve, which curtails glucose output. This neurogenic signal is strictly dependent on the metabolism of leucine and proline to acetyl-coenzyme A (CoA) and the subsequent production of malonyl-CoA; the signal also requires functional neuronal ATP-sensitive potassium channels. The liver then responds by lowering the rate of gluconeogenesis and glycogenolysis, ultimately leading to a net decrease in glucose production and in concentrations of circulating glucose. Furthermore, we review here how our work with proline suggests a new role of astrocytes in the central regulation of glycemia. Last, we outline how factors such as the consumption of fat-rich diets can interfere with glucoregulatory mechanisms and, in the long term, may contribute to the development of hyperglycemia, a hallmark of type 2 diabetes. © 2016 American Society for Nutrition.

  19. A genomic atlas of mouse hypothalamic development

    Science.gov (United States)

    Shimogori, Tomomi; Lee, Daniel A; Miranda-Angulo, Ana; Yang, Yanqin; Wang, Hong; Jiang, Lizhi; Yoshida, Aya C; Kataoka, Ayane; Mashiko, Hiromi; Avetisyan, Marina; Qi, Lixin; Qian, Jiang; Blackshaw, Seth

    2014-01-01

    The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction. PMID:20436479

  20. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  1. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  2. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.

    Science.gov (United States)

    Day, Felix R; Ruth, Katherine S; Thompson, Deborah J; Lunetta, Kathryn L; Pervjakova, Natalia; Chasman, Daniel I; Stolk, Lisette; Finucane, Hilary K; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D; Elks, Cathy E; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A; Franke, Lude L; Huffman, Jennifer E; Keller, Margaux F; McArdle, Patrick F; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M; Schick, Ursula M; Smith, Jennifer A; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V; Tanaka, Toshiko; Abecasis, Goncalo; Andrulis, Irene L; Anton-Culver, Hoda; Antoniou, Antonis C; Arndt, Volker; Arnold, Alice M; Barbieri, Caterina; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J; Chapman, J Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J; Coviello, Andrea D; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dunning, Alison M; Eicher, John D; Fasching, Peter A; Faul, Jessica D; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E; García-Closas, Montserrat; Giles, Graham G; Girotto, Giorgia G; Goldberg, Mark S; González-Neira, Anna; Goodarzi, Mark O; Grove, Megan L; Gudbjartsson, Daniel F; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A; Hall, Per; Hamann, Ute; Henderson, Brian E; Hocking, Lynne J; Hofman, Albert; Homuth, Georg; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Huang, Jinyan; Humphreys, Keith; Hunter, David J; Jakubowska, Anna; Jones, Samuel E; Kabisch, Maria; Karasik, David; Knight, Julia A; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian'an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Ben M; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B; Nordestgaard, Børge G; Olson, Janet E; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D P; Pirastu, Nicola N; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F; Sanna, Serena; Sawyer, Elinor J; Schlessinger, David; Schmidt, Marjanka K; Schmidt, Frank; Schmutzler, Rita K; Schoemaker, Minouk J; Scott, Robert A; Seynaeve, Caroline M; Simard, Jacques; Sorice, Rossella; Southey, Melissa C; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D; Thorsteinsdottir, Unnur; Toland, Amanda E; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F; Winqvist, Robert; Wolffenbuttel, Bruce B H R; Wright, Alan F; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I; Buring, Julie E; Ferrucci, Luigi; Montgomery, Grant W; Gudnason, Vilmundur; Spector, Tim D; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F; Gasparini, Paolo P; Gieger, Christian; Harris, Tamara B; Hayward, Caroline; Kardia, Sharon L R; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C; Reiner, Alex P; Ridker, Paul M; Rotter, Jerome I; Toniolo, Daniela; Uitterlinden, André G; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J; Weir, David R; Yerges-Armstrong, Laura M; Price, Alkes L; Stefansson, Kari; Visser, Jenny A; Ong, Ken K; Chang-Claude, Jenny; Murabito, Joanne M; Perry, John R B; Murray, Anna

    2015-11-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.

  3. Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

    Science.gov (United States)

    Lunetta, Kathryn L.; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K.; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D.; Elks, Cathy E.; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A.; Franke, Lude L.; Huffman, Jennifer E.; Keller, Margaux F.; McArdle, Patrick F.; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Smith, Jennifer A.; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V.; Tanaka, Toshiko; Abecasis, Goncalo; Andrulis, Irene L.; Anton-Culver, Hoda; Antoniou, Antonis C.; Arndt, Volker; Arnold, Alice M.; Barbieri, Caterina; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J.; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Boutin, Thibaud S; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J.; Chapman, J. Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J.; Coviello, Andrea D.; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Dörk, Thilo; dos-Santos-Silva, Isabel; Dunning, Alison M.; Eicher, John D.; Fasching, Peter A.; Faul, Jessica D.; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E.; García-Closas, Montserrat; Giles, Graham G.; Girotto, Giorgia G.; Goldberg, Mark S.; González-Neira, Anna; Goodarzi, Mark O.; Grove, Megan L.; Gudbjartsson, Daniel F.; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Henderson, Brian E.; Hocking, Lynne J.; Hofman, Albert; Homuth, Georg; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Huang, Jinyan; Humphreys, Keith; Hunter, David J.; Jakubowska, Anna; Jones, Samuel E.; Kabisch, Maria; Karasik, David; Knight, Julia A.; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian’an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G.; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Ben M.; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B.; Nordestgaard, Børge G.; Olson, Janet E.; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D.P.; Pirastu, Nicola N.; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M.; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J.; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Ruggiero, Daniela; Sala, Cinzia F.; Sanna, Serena; Sawyer, Elinor J.; Schlessinger, David; Schmidt, Marjanka K.; Schmidt, Frank; Schmutzler, Rita K.; Schoemaker, Minouk J.; Scott, Robert A.; Seynaeve, Caroline M.; Simard, Jacques; Sorice, Rossella; Southey, Melissa C.; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D.; Thorsteinsdottir, Unnur; Toland, Amanda E.; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T.; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F.; Winqvist, Robert; Wolffenbuttel, Bruce B.H.R.; Wright, Alan F.; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I.; Buring, Julie E.; Ferrucci, Luigi; Montgomery, Grant W.; Gudnason, Vilmundur; Spector, Tim D.; van Duijn, Cornelia M; Alizadeh, Behrooz Z.; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F.; Gasparini, Paolo P.; Gieger, Christian; Harris, Tamara B.; Hayward, Caroline; Kardia, Sharon L.R.; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C.; Reiner, Alex P.; Ridker, Paul M.; Rotter, Jerome I.; Toniolo, Daniela; Uitterlinden, André G.; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J.; Weir, David R.; Yerges-Armstrong, Laura M.; Price, Alkes L.; Stefansson, Kari; Visser, Jenny A.; Ong, Ken K.; Chang-Claude, Jenny; Murabito, Joanne M.; Perry, John R.B.; Murray, Anna

    2015-01-01

    Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ~70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two harbouring additional rare missense alleles of large effect. We found enrichment of signals in/near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses revealed a major association with DNA damage-response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomisation analyses supported a causal effect of later ANM on breast cancer risk (~6% risk increase per-year, P=3×10−14), likely mediated by prolonged sex hormone exposure, rather than DDR mechanisms. PMID:26414677

  4. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

    Directory of Open Access Journals (Sweden)

    Eric Koesema

    Full Text Available The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1 and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr, the Kruppel-like factors (Klf, and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1, resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

  5. HYPOTHALAMIC NEUROHORMONES AND IMMUNE RESPONSES

    Directory of Open Access Journals (Sweden)

    J. Luis eQuintanar

    2013-08-01

    Full Text Available The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone, Corticotropin-releasing hormone and Gonadotropin-releasing hormone. In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  6. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    Science.gov (United States)

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-02-07

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly

  7. Phosphoric Acid-Mediated Synthesis of Vinyl Sulfones through Decarboxylative Coupling Reactions of Sodium Sulfinates with Phenylpropiolic Acids.

    Science.gov (United States)

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-08-07

    A novel phosphoric acid -mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids is described. This transformation is efficient and environmentally friendly.

  8. Docosapentaenoic acid derived metabolites and mediators - The new world of lipid mediator medicine in a nutshell.

    Science.gov (United States)

    Weylandt, Karsten-H

    2016-08-15

    Recent years have seen the description and elucidation of a new class of anti-inflammatory and pro-resolving lipid mediators. The arachidonic acid (AA)-derived compounds in this class are called lipoxins and have been described in great detail since their discovery thirty years ago. The new players are mediators derived from fish oil omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), called resolvins, protectins and maresins. Taken together, these mediators are also called specialized pro-resolution mediators (SPMs). As compared to the AA/EPA/DHA-derived compounds, research regarding mediators formed from the n-3 and n-6 docosapentaenoic acids (DPAn-3 and DPAn-6) is sparse. However, mono- di- and trihydroxy derivates of the DPAs have anti-inflammatory properties as well, even though mechanisms of their anti-inflammatory action have not been fully elucidated. This review aims to summarize current knowledge regarding the DPA-derived SPMs and their actions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fatty acids, lipid mediators and T cell function

    Directory of Open Access Journals (Sweden)

    Anja ede Jong

    2014-10-01

    Full Text Available Research towards the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns, have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidised in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidised fatty acids have been studied especially in relation to macrophage and T cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T cells will be summarized. Finally, the mechanisms involved in modulation of T cells by fatty acids will be addressed, including cellular signalling and metabolism of T cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review we summarize the latest findings on the immune modulatory function of lipids on T cells and will point out novel directions for future research.

  10. Bardoxolone methyl prevents obesity and hypothalamic dysfunction.

    Science.gov (United States)

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Wang, Hongqin; Dinh, Chi H L; Huang, Xu-Feng

    2016-08-25

    High-fat (HF) diet-induced obesity is associated with hypothalamic leptin resistance and low grade chronic inflammation, which largely impairs the neuroregulation of negative energy balance. Neuroregulation of negative energy balance is largely controlled by the mediobasal and paraventricular nuclei regions of the hypothalamus via leptin signal transduction. Recently, a derivative of oleanolic acid, bardoxolone methyl (BM), has been shown to have anti-inflammatory effects. We tested the hypothesis that BM would prevent HF diet-induced obesity, hypothalamic leptin resistance, and inflammation in mice fed a HF diet. Oral administration of BM via drinking water (10 mg/kg daily) for 21 weeks significantly prevented an increase in body weight, energy intake, hyperleptinemia, and peripheral fat accumulation in mice fed a HF diet. Furthermore, BM treatment prevented HF diet-induced decreases in the anorexigenic effects of peripheral leptin administration. In the mediobasal and paraventricular nuclei regions of the hypothalamus, BM administration prevented HF diet-induced impairments of the downstream protein kinase b (Akt) pathway of hypothalamic leptin signalling. BM treatment also prevented an increase in inflammatory cytokines, tumour necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in these two hypothalamic regions. These results identify a potential novel neuropharmacological application for BM in preventing HF diet-induced obesity, hypothalamic leptin resistance, and inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus

    Science.gov (United States)

    Luchtman, Dirk W.; Chee, Melissa J. S.; Doslikova, Barbora; Marks, Daniel L.; Baracos, Vickie E.; Colmers, William F.

    2015-01-01

    Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint. PMID:26444289

  12. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus.

    Science.gov (United States)

    Luchtman, Dirk W; Chee, Melissa J S; Doslikova, Barbora; Marks, Daniel L; Baracos, Vickie E; Colmers, William F

    2015-01-01

    Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks' refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.

  13. Role of developmental factors in hypothalamic function

    Directory of Open Access Journals (Sweden)

    Jakob eBiran

    2015-04-01

    Full Text Available The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors, secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.

  14. Copper(I) mediated cross-coupling of amino acid derived organozinc reagents with acid chlorides

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Tanner, David Ackland

    2006-01-01

    This paper describes the development of a straightforward experimental protocol for copper-mediated cross-coupling of amino acid derived beta-amido-alkylzinc iodides 1 and 3 with a range of acid chlorides. The present method uses CuCN center dot 2LiCl as the copper source and for organozinc reagent...... 1 the methodology appears to be limited to reaction with more stable acid chlorides, providing the desired products in moderate yields. When applied to organozinc reagent 3, however, the protocol is more general and provides the products in good yields in all but one of the cases tested....

  15. Efficient liposome fusion mediated by lipid-nucleic acid conjugates

    DEFF Research Database (Denmark)

    Ries, O; Löffler, P M G; Rabe, A

    2017-01-01

    The fusion of biomembranes with release of encapsulated content in a controlled way is crucial for cell signaling, endo- and exocytosis and intracellular trafficking. Programmable fusion of liposomes and an efficient mixing of their contents have the potential to enable the study of chemical...... and enzymatic processes in a confined environment and under crowded conditions outside biological systems. We report on DNA-controlled fusion of lipid bilayer membranes using lipid-nucleic acid conjugates (LiNAs) to mediate lipid and content mixing of liposomes. Screening of different membrane anchor and linker...

  16. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  17. Hypothalamic inflammation: a double-edged sword to nutritional diseases

    Science.gov (United States)

    Cai, Dongsheng; Liu, Tiewen

    2015-01-01

    The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and non-neuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases. PMID:22417140

  18. Hypothalamic lipid-laden astrocytes induce microglia migration and activation.

    Science.gov (United States)

    Kwon, Yoon-Hee; Kim, Jiye; Kim, Chu-Sook; Tu, Thai Hien; Kim, Min-Seon; Suk, Kyoungho; Kim, Dong Hee; Lee, Byung Ju; Choi, Hye-Seon; Park, Taesun; Choi, Myung-Sook; Goto, Tsuyoshi; Kawada, Teruo; Ha, Tae Youl; Yu, Rina

    2017-06-01

    Obesity-induced hypothalamic inflammation is closely associated with various metabolic complications and neurodegenerative disorders. Astrocytes, the most abundant glial cells in the central nervous system, play a crucial role in pathological hypothalamic inflammatory processes. Here, we demonstrate that hypothalamic astrocytes accumulate lipid droplets under saturated fatty acid-rich conditions, such as obese environment, and that the lipid-laden astrocytes increase astrogliosis markers and inflammatory cytokines (TNFα, IL-1β, IL-6, MCP-1) at the transcript and/or protein level. Medium conditioned by the lipid-laden astrocytes stimulate microglial chemotactic activity and upregulate transcripts of the microglia activation marker Iba-1 and inflammatory cytokines. These findings indicate that the lipid-laden astrocytes formed in free fatty acid-rich obese condition may participate in obesity-induced hypothalamic inflammation through promoting microglia migration and activation. © 2017 Federation of European Biochemical Societies.

  19. DFT study of the Lewis acid mediated synthesis of 3-acyltetramic acids.

    Science.gov (United States)

    Mikula, Hannes; Svatunek, Dennis; Skrinjar, Philipp; Horkel, Ernst; Hametner, Christian; Fröhlich, Johannes

    2014-05-01

    The synthesis of 3-acyltetramic acids by C-acylation of pyrrolidine-2,4-diones was studied by density functional theory (DFT). DFT was applied to the mycotoxin tenuazonic acid (TeA), an important representative of these bioactive natural compounds. Lewis acid mediated C-acylation in combination with previous pH-neutral domino N-acylation-Wittig cyclization can be used for the efficient preparation of 3-acyltetramic acids. Nevertheless, quite harsh conditions are still required to carry out this synthetic step, leading to unwanted isomerization of stereogenic centers in some cases. In the presented study, the reaction pathway for the C-acetylation of (5S,6S-5-s-butylpyrrolidine-2,4-dione was studied in terms of mechanism, solvent effects, and Lewis acid activation, in order to obtain an appropriate theoretical model for further investigations. Crucial steps were identified that showed rather high activation barriers and rationalized previously reported experimental discoveries. After in silico optimization, aluminum chlorides were found to be promising Lewis acids that promote the C-acylation of pyrrolidine-2,4-diones, whereas calculations performed in various organic solvents showed that the solvent had only a minor effect on the energy profiles of the considered mechanisms. This clearly indicates that further synthetic studies should focus on the Lewis-acidic mediator rather than other reaction parameters. Additionally, given the results obtained for different reaction routes, the stereochemistry of this C-acylation is discussed. It is assumed that the formation of Z-configured TeA is favored, in good agreement with our previous studies.

  20. Ellagic acid inhibits iron-mediated free radical formation

    Science.gov (United States)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  1. Acid Chlorides as Formal Carbon Dianion Linchpin Reagents in the Aluminum Chloride-Mediated Dieckmann Cyclization of Dicarboxylic Acids.

    Science.gov (United States)

    Armaly, Ahlam M; Bar, Sukanta; Schindler, Corinna S

    2017-08-04

    The development of acid chlorides as formal dianion linchpin reagents that enable access to cyclic 2-alkyl- and 2-acyl-1,3-alkanediones from dicarboxylic acids is described herein. Mechanistic experiments relying on (13)C-labeling studies confirm the role of acid chlorides as carbon dianion linchpin reagents and have led to a revised reaction mechanism for the aluminum(III)-mediated Dieckmann cyclization of dicarboxylic acids with acid chlorides.

  2. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits.

    Science.gov (United States)

    Bonasera, Stephen J; Arikkath, Jyothi; Boska, Michael D; Chaudoin, Tammy R; DeKorver, Nicholas W; Goulding, Evan H; Hoke, Traci A; Mojtahedzedah, Vahid; Reyelts, Crystal D; Sajja, Balasrinivasa; Schenk, A Katrin; Tecott, Laurence H; Volden, Tiffany A

    2016-09-20

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits.

  3. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents

    Science.gov (United States)

    Kalló, Imre; Molnár, Csilla S.; Szöke, Sarolta; Fekete, Csaba; Hrabovszky, Erik; Liposits, Zsolt

    2015-01-01

    The ventral tegmental area (VTA) is a main regulator of reward and integrates a wide scale of hormonal and neuronal information. Feeding-, energy expenditure-, stress, adaptation- and reproduction-related hypothalamic signals are processed in the VTA and influence the reward processes. However, the neuroanatomical origin and chemical phenotype of neurons mediating these signals to the VTA have not been fully characterized. In this study we have systematically mapped hypothalamic neurons that project to the VTA using the retrograde tracer Choleratoxin B subunit (CTB) and analyzed their putative gamma-aminobutyric acid (GABA) and/or glutamate character with in situ hybridization in male rats. 23.93 ± 3.91% of hypothalamic neurons projecting to the VTA was found in preoptic and 76.27 ± 4.88% in anterior, tuberal and mammillary hypothalamic regions. Nearly half of the retrogradely-labeled neurons in the preoptic, and more than one third in the anterior, tuberal and mammillary hypothalamus appeared in medially located regions. The analyses of vesicular glutamate transporter 2 (VGLUT2) and glutamate decarboxylase 65 (GAD65) mRNA expression revealed both amino acid markers in different subsets of retrogradely-labeled hypothalamic neurons, typically with the predominance of the glutamatergic marker VGLUT2. About one tenth of CTB-IR neurons were GAD65-positive even in hypothalamic nuclei expressing primarily VGLUT2. Some regions were populated mostly by GAD65 mRNA-containing retrogradely-labeled neurons. These included the perifornical part of the lateral hypothalamus where 58.63 ± 19.04% of CTB-IR neurons were GABAergic. These results indicate that both the medial and lateral nuclear compartments of the hypothalamus provide substantial input to the VTA. Furthermore, colocalization studies revealed that these projections not only use glutamate but also GABA for neurotransmission. These GABAergic afferents may underlie important inhibitory mechanism to fine-tune the

  4. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  5. Hypothalamic hamartoma: Neuropathology and epileptogenesis.

    Science.gov (United States)

    Kerrigan, John F; Parsons, Angela; Tsang, Candy; Simeone, Kristina; Coons, Stephen; Wu, Jie

    2017-06-01

    Hypothalamic hamartomas (HHs) are congenital malformations of the ventral hypothalamus resulting in treatment-resistant epilepsy and are intrinsically epileptogenic for the gelastic seizures that are the hallmark symptom of this disorder. This paper reviews the neuropathologic features of HHs associated with epilepsy, with an emphasis on characterizing neuron phenotypes and an ultimate goal of understanding the cellular model of ictogenesis occurring locally within this tissue. We also present previously unpublished findings on Golgi staining of HH. The microarchitecture of HH is relatively simple, with nodular clusters of neurons that vary in size and abundance with poorly defined boundaries. Approximately 80-90% of HH neurons have an interneuron-like phenotype with small, round soma and short, unbranched processes that lack spines. These neurons express glutamic acid decarboxylase and likely utilize γ-aminobutyric acid (GABA) as their primary neurotransmitter. They have intrinsic membrane properties that lead to spontaneous pacemaker-like firing activity. The remaining HH neurons are large cells with pleomorphic, often pyramidal, soma and dendrites that are more likely to be branched and have spines. These neurons appear to be excitatory, projection-type neurons, and have the functionally immature behavior of depolarizing and firing in response to GABA ligands. We hypothesize that the irregular neuronal clusters are the functional unit for ictogenesis. Further research to define and characterize these local networks is required to fully understand the cellular mechanisms responsible for gelastic seizures. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  6. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    Science.gov (United States)

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  7. Relation between Ocular Comfort, Arachidonic Acid Mediators, and Histamine.

    Science.gov (United States)

    Masoudi, Simin; Zhao, Zhenjun; Willcox, Mark

    2017-06-01

    Contact lenses are associated with discomfort during wear. This may be the result of stimulation of the ocular surface and production of pro-inflammatory mediators which are then released into the tears. This study examined changes in the concentration in tears of arachidonic acid metabolites (AAM) prostaglandins, cysteinyl leukotrienes, and resolvin-D1, as well as histamine in a general contact lens population in the morning and evening. Tears were collected twice a day (morning and evening) for up to 10 days on two different occasions (with and without contact lens wear) from 30 experienced contact lens wearers for analysis of AAM and a separate group (N = 33) for analysis of histamine. Ocular comfort was rated subjectively on an ordinal scale at each time of tear collection. Tears were analyzed using commercial immunoassay-based kits. Statistical analysis was performed using linear mixed model test. Ocular comfort decreased from morning to evening with and without contact lenses (p = 0.001), and the difference in comfort in the evening was greater with contact lens wear (80.9 ± 16.2 vs. 75.5 ± 16.8; p = 0.008). The total concentration of PGs (10.7 ± 10.8 ng/ml), cysteinyl leukotrienes (8.7 ± 0.38 ng/ml), resolvin-D1 (1.6 ± 0.5 ng/ml), or histamine 13.8 ± 10.4 ng/ml) did not change during the day or during contact lens wear (p > 0.05). Prostaglandins, cysteinyl leukotrienes, resolvin-D1, or histamine concentrations did not alter in relation to changes in comfort of the eye during the day or during contact lens wear. These results suggest that release of these mediators is not responsible for contact lens discomfort.

  8. Ursolic acid mediates photosensitization by initiating mitochondrial-dependent apoptosis

    Science.gov (United States)

    Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D.

    2013-02-01

    The signaling pathways PI3K/Akt and MAPK play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways may be modulated or inhibited by naturally-occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-kB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. Our current work indicates that UA causes these effects via the mTOR and insulin-mediated pathways. UA-modulated apoptosis, following exposure to UV radiation, is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. Flow cytometry analysis, DHE (dihydroethidium) staining and membrane permeability assay showed that UA pretreatment potentiated cell cycle arrest and radiation-induced apoptosis selectively on SM cells while DNA photo-oxidative damage (i.e. strand breakage) was reduced, presumably by some antioxidant activity of UA in RPE cells. The UA-mediated NF-κB activation in SM cells was reduced by rapamycin pretreatment, which indicates that these agents exert inter-antagonistic effects in the PI3K/Akt/mTOR pathway. In contrast, the antagonistic effect of UA on the PI3K/Akt pathway was reversed by insulin leading to greater NF-κB and p53 activation in RPE cells. MitoTracker, a mitochondrial functional assay, indicated that mitochondria in RPE cells experienced reduced oxidative stress while those in SM cells exhibited increased oxidative stress upon UA pretreatment. When rapamycin administration was followed by UA, mitochondrial oxidative stress was increased in RPE cells but decreased in SM cells. These results indicate that UA modulates p53 and NF-κB, initiating a mitogenic response to radiation that triggers mitochondria-dependent apoptosis.

  9. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice

    Science.gov (United States)

    Miranda-Angulo, Ana L.; Byerly, Mardi S.; Mesa, Janny; Wang, Hong; Blackshaw, Seth

    2013-01-01

    The wall of the ventral third ventricle is composed of two distinct cell populations: tanycytes and ependymal cells. Tanycytes regulate many aspects of hypothalamic physiology, but little is known about the transcriptional network that regulates their development and function. We observed that the retina and anterior neural fold homeobox transcription factor (Rax) is selectively expressed in hypothalamic tanycytes, and showed a complementary pattern of expression to markers of hypothalamic ependymal cells, such as Rarres2 (retinoic acid receptor responder). To determine whether Rax controls tanycyte differentiation and function, we generated Rax haploinsufficient mice and examined their cellular and molecular phenotype in adulthood. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of both tanycyte and ependymal markers. These experiments show that Rax is required for hypothalamic tanycyte and ependymal cell differentiation. Rax haploinsufficiency also resulted in the ectopic presence of ependymal cells in the α2 tanycytic zone, where few ependymal cells are normally found, suggesting that Rax is selectively required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma, with no apparent repercussion on the gross anatomical or behavioral phenotype of these mice. In conclusion, we have provided evidence that Rax is required for the normal differentiation and patterning of hypothalamic tanycytes and ependymal cells, as well as for maintenance of the cerebrospinal fluid-hypothalamus barrier. PMID:23939786

  10. Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation.

    Science.gov (United States)

    Harada, Shinichi; Nozaki, Yudai; Matsuura, Wataru; Yamazaki, Yui; Tokuyama, Shogo

    2017-04-15

    Activation of vagus nerve exerts orexin-A (OXA)-mediated suppression of post-ischemic glucose intolerance and cerebral ischemic neuronal damage. Cerebral ischemia induces hepatic inflammatory factors and contributes to the development of hepatic insulin resistance by activating sympathetic nerves. However, it is not enough to understand whether OXA regulates these phenomena through activation of vagus nerve. In this study, we demonstrated that the involvement of OXA-induced activation of vagus nerve in the induction of hepatic inflammatory factors by cerebral ischemia. Focal cerebral ischemic model construction was performed by 2h of middle cerebral artery occlusion (MCAO) in ddY male mice. OXA-positive neurons were visualized using the retrograde tracer Fluoro-Gold™. Intrahypothalamic OXA (5pmol/mouse) administration significantly suppressed the MCAO-induced post-ischemic glucose intolerance and neuronal damage. The MCAO-induced decrease in hepatic insulin receptors and increase in hepatic gluconeogenic enzymes were suppressed by OXA administration. These effects were canceled by N-butylscopolamine (a muscarinic receptor antagonist). MCAO-induced increases in hepatic F4/80, tumor necrosis factor-α, and interleukin-1β on day 1 after MCAO were reversed by OXA administration. These effects were abolished by N-butylscopolamine or hepatic vagotomy. These results suggest that OXA-induced activation of vagus nerve regulates the post-ischemic elevation of hepatic inflammatory factors, and which may be contributed to part of OXA-mediated regulation of post-ischemic glucose intolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions.

    Science.gov (United States)

    Ohno, Masaki; Ito, Masataka; Ohkura, Ryouichi; Mino A, Esteban R; Kose, Tomohiro; Okuda, Tetsuji; Nakai, Satoshi; Kawata, Kuniaki; Nishijima, Wataru

    2014-03-15

    The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe(3+) ion. Although Fe(3+) ion is consumed and is transformed to Fe(2+) ion by photochemical decomposition of PFOA and its intermediates, the produced Fe(2+) ion will change to Fe(3+) ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH)(2+). At pH 3.7 or higher pH, Fe(3+) ion will only be produced from the oxidation of Fe(2+) ion by hydroxyl radical produced by Fe(OH)(2+) under UV irradiation. These different mechanisms of Fe(3+) regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    Science.gov (United States)

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  13. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    Science.gov (United States)

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  14. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masaki, E-mail: mohno@hiroshima-u.ac.jp [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Ito, Masataka; Ohkura, Ryouichi [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Mino A, Esteban R. [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Nakai, Satoshi [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Kawata, Kuniaki [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Nishijima, Wataru [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan)

    2014-03-01

    Highlights: • Perfluorooctanoic acid (PFOA) was decomposed based on ferric ion performance. • Complete decomposition of PFOA was confirmed in strongly acidic conditions. • Fe{sup 2+} changed to Fe{sup 3+} to restore chemical equilibrium in this condition. • Fe{sup 3+} was only produced from Fe{sup 2+} by hydroxyl radical in weakly acidic conditions. • The Fe{sup 3+} regeneration mechanisms resulted in the performance of Fe{sup 3+} for PFOA. - Abstract: The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe{sup 3+} ion. Although Fe{sup 3+} ion is consumed and is transformed to Fe{sup 2+} ion by photochemical decomposition of PFOA and its intermediates, the produced Fe{sup 2+} ion will change to Fe{sup 3+} ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH){sup 2+}. At pH 3.7 or higher pH, Fe{sup 3+} ion will only be produced from the oxidation of Fe{sup 2+} ion by hydroxyl radical produced by Fe(OH){sup 2+} under UV irradiation. These different mechanisms of Fe{sup 3+} regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  15. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    Science.gov (United States)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  16. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    Science.gov (United States)

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.

  17. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

    Science.gov (United States)

    Bakos, Jan; Zatkova, Martina; Bacova, Zuzana; Ostatnikova, Daniela

    2016-01-01

    The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits. PMID:26881105

  18. [Hypothalamic dysfunction in obesity].

    Science.gov (United States)

    van de Sande-Lee, Simone; Velloso, Licio A

    2012-08-01

    Obesity, defined as abnormal or excessive fat accumulation that may impair life quality, is one of the major public health problems worldwide. It results from an imbalance between food intake and energy expenditure. The control of energy balance in animals and humans is performed by the central nervous system (CNS) by means of neuroendocrine connections, in which circulating peripheral hormones, such as leptin and insulin, provide signals to specialized neurons of the hypothalamus reflecting body fat stores, and induce appropriate responses to maintain the stability of these stores. The majority of obesity cases are associated with central resistance to both leptin and insulin actions. In experimental animals, high-fat diets can induce an inflammatory process in the hypothalamus, which impairs leptin and insulin intracellular signaling pathways, and results in hyperphagia, decreased energy expenditure and, ultimately, obesity. Recent evidence obtained from neuroimaging studies and assessment of inflammatory markers in the cerebrospinal fluid of obese subjects suggests that similar alterations may be also present in humans. In this review, we briefly present the mechanisms involved with the loss of homeostatic control of energy balance in animal models of obesity, and the current evidence of hypothalamic dysfunction in obese humans.

  19. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.

    Science.gov (United States)

    Takanaga, H; Tamai, I; Tsuji, A

    1994-07-01

    The transport of monocarboxylic acid drugs such as salicylic acid was examined in the human colon adenocarcinoma cell line, Caco-2 cells that possess intestinal epithelia-like properties. [14C]Salicylic acid transport was pH-dependent and appeared to follow the pH-partition hypothesis. However, 10 mM unlabelled salicylic acid significantly reduced the permeability coefficient of [14C]salicylic acid. Kinetic analysis of the concentration dependence of the permeation rate of salicylic acid across Caco-2 cells showed both saturable (Kt = 5.28 +/- 0.72 mM Jmax = 36.6 +/- 3.54 nmol min-1 (mg protein)-1) and nonsaturable (kd = 0.37 +/- 0.08 microL min-1 (mg protein)-1) processes. The permeation rate of [14C]salicylic acid was competitively inhibited by both acetic acid and benzoic acid, which were demonstrated in our previous studies to be transported in the carrier-mediated-transport mechanism which is responsible for monocarboxylic acids. Furthermore, certain monocarboxylic acids significantly inhibited [14C]salicylic acid transport, whereas salicylamide and dicarboxylic acids such as succinic acid did not. From these results, it was concluded that the transcellular transport of [14C]salicylic acid across Caco-2 cells is by the pH-dependent and carrier-mediated transport mechanism specific for monocarboxylic acids.

  20. Exploring the association between bipolar disorder and uric acid: A mediation analysis.

    Science.gov (United States)

    Bartoli, Francesco; Crocamo, Cristina; Gennaro, Giulia Maria; Castagna, Gloria; Trotta, Giulia; Clerici, Massimo; Carrà, Giuseppe

    2016-05-01

    Recent evidence shows that bipolar disorder might be associated with a purinergic system dysfunction. This study aimed at (i) testing the association between bipolar disorder and uric acid serum levels, and (ii) clarifying whether this relationship is mediated by metabolic syndrome and other relevant metabolic parameters. Patients consecutively admitted to a Mental Health Inpatient Unit, with a diagnosis of bipolar disorder or other severe mental disorders, and an appropriate healthy control sample, were included in this cross-sectional, exploratory study. We performed linear regression analyses, to explore factors associated with uric acid levels, and formal tests of mediation to assess mediating effect of candidate variables. 176 individuals with mental disorders and 89 healthy controls met inclusion criteria. Bipolar disorder was the only diagnostic subgroup significantly associated with increased uric acid levels. Furthermore, male gender, metabolic syndrome, as well as abdominal circumference and triglycerides levels, had a significant effect on uric acid. Relevant mediation analyses showed that the estimated effect between bipolar disorder and uric acid levels was only partially mediated by metabolic abnormalities. This study suggests a direct association between bipolar disorder and uric acid levels, only partially mediated by metabolic abnormalities. It seems consistent with results of previous studies highlighting a purinergic dysfunction in bipolar disorder and the role that purinergic modulators, lowering uric acid levels, could have in clinical practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Chemotaxis to cyclic AMP and folic acid is mediated by different G proteins in Dictyostelium discoideum

    NARCIS (Netherlands)

    Kesbeke, Fanja; Haastert, Peter J.M. van; Wit, René J.W. de; Snaar-Jagalska, B. Ewa

    1990-01-01

    Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Gα2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated

  2. Uric acid as a mediator of diabetic nephropathy

    DEFF Research Database (Denmark)

    Jalal, Diana I; Maahs, David M; Hovind, Peter

    2011-01-01

    evidence has emerged in the past decade to suggest uric acid is an inflammatory factor and may play a role in endothelial dysfunction. This has lead our group and others to explore the role of uric acid in the onset and progression of DN. In this review, we highlight some of the animal and human studies...... that implicate uric acid in DN. Based on the evidence we review, we conclude the need for properly planned randomized controlled studies to decrease uric acid levels and assess the impact of such therapy on diabetic kidney disease....

  3. The hypothalamic peptides, beta-endorphin, neuropeptide K and interleukin-1 beta, and the opiate morphine, enhance the excitatory amino acid-induced LH release under the influence of gonadal steroids.

    Science.gov (United States)

    Bonavera, J J; Sahu, A; Kalra, S P; Kalra, P S

    1994-10-01

    Several hypothalamic neuropeptides and amino acids are known to inhibit or excite pituitary luteinizing hormone (LH) release, but the precise interplay between these 2 classes of signals in episodic LH discharge is not known. In this study, we have evaluated the interaction between neuropeptides shown previously to inhibit LH release in castrated rats and the excitatory amino acid agonist, N-methyl-D-aspartate (NMDA), on LH release in intact male rats. Rats received a permanent intracerebroventricular (i.c.v.) cannula and 9-12 days later an intrajugular cannula for frequent blood sampling. The next day, rats received i.c.v. either saline (SAL, 3 microliters, controls) or a neuropeptide: the opioid beta-endorphin (beta-END; 2.9 nmol), the tachykinin neuropeptide K (NPK, 2.5 nmol) or the cytokine interleukin-1 beta (IL-1 beta, 5.9 pmol) in SAL. The LH response to 2 consecutive i.v. injections of NMDA (5 mg/kg) at 30 min intervals was evaluated. In control rats, each NMDA injection evoked a significant release of LH at 10 min. Quite unexpectedly, the three peptides, instead of exerting an inhibitory effect, enhanced the LH response to NMDA. The peak plasma LH levels after each NMDA injection and the cumulative LH responses were significantly higher in peptide-treated than in control rats. This peculiar ability of the peptides that inhibit LH release in castrated rats, to potentiate the NMDA-induced LH release in the presence of gonadal steroids was further validated in female rats treated with an opiate receptor agonist, morphine (MOR) which is also known to suppress LH release in ovariectomized rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Lipase-mediated resolution of branched chain fatty acids

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Franssen, M.C.R.; Padt, A. van der; Boom, R.M.; Riet, K. van 't; Groot, A.E. de

    2002-01-01

    Branched chain fatty acids (BCFAs) are fatty acids substituted with alkyl groups. Many of them are chiral and therefore occur in two enantiomeric forms. This review describes their occurrence in Nature, their biosynthesis, their properties as flavours, and their enzymatic kinetic resolution. Many

  5. The Zinc Mediated Condensation of Amino Acid Esters with Imines to b-Lactams

    NARCIS (Netherlands)

    Koten, G. van; Jastrzebski, J.T.B.H.

    1993-01-01

    An experimentally attractive stereoselectie 'one pot' synthesis of beta-lactams is described. This route is based on the zinc mediated condensation of an alpha-amino acid ester with an imine via a zinc ester enolate. Making use of proper substituents in both the amino acid ester and the imine the

  6. α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Shi Hongyang

    2011-05-01

    Full Text Available Abstract Aims Lipid accumulation in non-adipose tissues leads to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Unsaturated fatty acids may offset the lipotoxicity associated with saturated fatty acids. Stearic acid induced endoplasmic reticulum (ER stress and caused apoptotic and necrotic cell death in the primary rat hepatocytes. Methods Cell viability was investigated using MTT assay, and apoptosis was evaluated with Hoechst 33342 staining. Western blot analysis was used to examine the changes in the expression levels of glucose regulated protein 78 (GRP78, glucose regulated protein 94 (GRP94, and C/EBP homologous protein (CHOP. Caspase-3 activity was evaluated using a Caspase-3 substrate kit. Results We have studied the ability of α-linolenic acid to prevent endoplasmic reticulum stress-mediated apoptosis of rat hepatocytes elicited by stearic acid and thapsigargin. Incubation of primary rat hepatocytes for 16 h with stearic acid produced a significant increase in cell death. Stearic acid also increased levels of three indicators of ER stress -- GRP78, CHOP, and GRP94. α-Linolenic acid distinctly reduced cell death and levels of all three indicators of ER stress brought about by stearic acid. Thapsigargin, which induces ER stress produced similar effects to those obtained using stearic acid; its effects were partly reversed by α-linolenic acid. Conclusion These results suggest that α-linolenic acid prevents ER stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes might become a target to develop new antiapoptotic compounds in nonalcoholic fatty liver disease (NAFLD.

  7. Are the Adaptogenic Effects of Omega 3 Fatty Acids Mediated via Inhibition of Proinflammatory Cytokines?

    Directory of Open Access Journals (Sweden)

    Joanne Bradbury

    2012-01-01

    Full Text Available The study was undertaken to estimate the size of the impact of n-3 fatty acids in psychological stress and the extent to which it is mediated via proinflammatory cytokines. Structural equation modeling (SEM was used to analyze data from 194 healthy Australians. Biomarkers used were erythrocyte polyunsaturated fatty acids (docosahexaenoic acid (DHA and arachidonic acid (AA, ex-vivo stimulated secretion of proinflammatory cytokines (interleukins (IL-1 and IL-6, and tumor necrosis factor (TNF. Stress was measured with the perceived stress scale (PSS-10, found to comprise three factors: Coping (items 4, 7, 5, Overwhelm (2, 10, 6 and 8, and Emotional (1, 9 and 3. This modeling demonstrated that the effects of DHA on coping are largely direct effects (0.26, t=2.05 and were not significantly mediated via the suppression of proinflammatory cytokines. Future modeling should explore whether adding EPA to the model would increase the significance of the mediation pathways.

  8. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin

    Science.gov (United States)

    Fujikawa, Teppei; Berglund, Eric D.; Patel, Vishal R.; Ramadori, Giorgio; Vianna, Claudia R.; Vong, Linh; Thorel, Fabrizio; Chera, Simona; Herrera, Pedro L.; Lowell, Bradford B.; Elmquist, Joel K.; Baldi, Pierre; Coppari, Roberto

    2013-01-01

    Summary The dogma that life without insulin is incompatible has recently been challenged by results showing viability of insulin-deficient rodents undergoing leptin mono-therapy. Yet, the mechanisms underlying these actions of leptin are unknown. Here, the metabolic outcomes of intracerebroventricular (icv) administration of leptin in mice devoid of insulin and lacking or re-expressing leptin receptors (LEPRs) only in selected neuronal groups were assessed. Our results demonstrate that concomitant re-expression of LEPRs only in hypothalamic γ-aminobutyric acid (GABA)ergic and pro-opiomelanocortin (POMC) neurons is sufficient to fully mediate the life-saving and anti-diabetic actions of leptin in insulin deficiency. Our analyses indicate that enhanced glucose uptake by brown adipose tissue and soleus muscle, as well as improved hepatic metabolism, underlie these effects of leptin. Collectively, our data elucidate a hypothalamic-dependent pathway enabling life without insulin and hence pave the way for developing better treatments for diseases of insulin deficiency. PMID:24011077

  9. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    Science.gov (United States)

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  11. Fulvic Acid Mediated Photolysis of Ibuprofen in Water.

    Science.gov (United States)

    Photolysis of the nonsteroidal anti-inflammatory drug ibuprofen was studied in solutions of fulvic acid (FA) isolated from Pony Lake, Antarctica; Suwannee River, GA, USA; and Old Woman Creek, OH, USA. At an initial concentration of 10 µM ibuprofen degrades by direct photolysis...

  12. Enzymatically mediated incorporation of 2-chlorophenol 4-chlorophenol into humic acids

    DEFF Research Database (Denmark)

    Lassen, P.; Randall, A.; Jørgensen, O.

    1994-01-01

    A possible route to chlorinated humic substances in the environment, is an indirect chlorination of humic material by enzymatically mediated incorporation of low molecular weight organo-chlorine compounds into the humic skeleton. The enzymatically mediated incorporation of 2-chlorophenol and 4-ch......-chlorophenol into humic acids by Horseradish Peroxidase is reported. The incorporation is accompanied by a significant polymerization of the chlorophenols. The stability of the chlorinated humic acids as well as the environmental implication are discussed.......A possible route to chlorinated humic substances in the environment, is an indirect chlorination of humic material by enzymatically mediated incorporation of low molecular weight organo-chlorine compounds into the humic skeleton. The enzymatically mediated incorporation of 2-chlorophenol and 4...

  13. Tannic acid-mediated surface functionalization of polymeric nanoparticles.

    Science.gov (United States)

    Abouelmagd, Sara A; Meng, Fanfei; Kim, Bieong-Kil; Hyun, Hyesun; Yeo, Yoon

    2016-12-12

    Polymeric nanoparticles (NPs) are decorated with various types of molecules to control their functions and interactions with specific cells. We previously used polydopamine (pD) to prime-coat poly(lactic-co-glycolic acid) (PLGA) NPs and conjugated functional ligands onto the NPs via the pD coating. In this study, we report tannic acid (TA) as an alternative prime coating that is functionally comparable to pD but does not have drawbacks of pD such as optical properties and interference of ligand characterization. TA forms a stable and optically inert coating on PLGA NPs, which can accommodate albumin, chitosan, and folate-terminated polyethylene glycol to control the cell-NP interactions. Moreover, TA coating allows for surface loading of polycyclic planar aromatic compounds. TA is a promising reactive intermediate for surface functionalization of polymeric NPs.

  14. Leptin Elongates Hypothalamic Neuronal Cilia via Transcriptional Regulation and Actin Destabilization.

    Science.gov (United States)

    Kang, Gil Myoung; Han, Yu Mi; Ko, Hyuk Whan; Kim, Joon; Oh, Byung Chul; Kwon, Ijoo; Kim, Min-Seon

    2015-07-17

    Terminally differentiated neurons have a single, primary cilium. The primary cilia of hypothalamic neurons play a critical role in sensing metabolic signals. We recently showed that mice with leptin deficiency or resistance have shorter cilia in the hypothalamic neurons, and leptin treatment elongates cilia in hypothalamic neurons. Here, we investigated the molecular mechanisms by which leptin controls ciliary length in hypothalamic neurons. In N1 hypothalamic neuronal cells, leptin treatment increased the expression of intraflagellar transport proteins. These effects occurred via phosphatase and tensin homolog/glycogen synthase kinase-3β-mediated inhibition of the transcriptional factor RFX1. Actin filament dynamics were also involved in leptin-promoted ciliary elongation. Both leptin and cytochalasin-D treatment induced F-actin disruption and cilium elongation in hypothalamic neurons that was completely abrogated by co-treatment with the F-actin polymerizer phalloidin. Our findings suggest that leptin elongates hypothalamic neuronal cilia by stimulating the production of intraflagellar transport proteins and destabilizing actin filaments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  16. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    Science.gov (United States)

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  17. Hyaluronic acid: A promising mediator for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Bansal Jyoti

    2010-01-01

    Full Text Available Hyaluronic acid (HA is a natural-non sulphated high molecular weight glycosaminoglycan that forms a critical component of the extracellular matrix and contributes significantly to tissue hydrodynamics, cell migration and proliferation. The use of HA in the treatment of inflammatory process is established in medical areas such as orthopedics, dermatology and ophthalmology. In the field of dentistry, hyaluronate has shown anti-inflammatory, antiedematous and anti-bacterial effects for the treatment of gingivitis and periodontitis. Due to its potential role in modulation of wound healing, its administration to periodontal wound sites could achieve comparable beneficial effects in periodontal tissue regeneration and periodontal disease treatment.

  18. Hypothalamic obesity: causes, consequences, treatment.

    Science.gov (United States)

    Lustig, Robert H

    2008-12-01

    Hypothalamic obesity, or intractable weight gain after hypothalamic damage, is one of the most pernicious and agonizing late effects of CNS insult. Such patients gain weight even in response to caloric restriction, and attempts at lifestyle modification are useless to prevent or treat the obesity. The pathogenesis of this condition involves the inability to transduce afferent hormonal signals of adiposity, in effect mimicing a state of CNS starvation. Efferent sympathetic activity drops, resulting in malaise and reduced energy expenditure, and vagal activity increases, resulting in increased insulin secretion and adipogenesis. Pharmacologic treatment is difficult, consisting of adrenergics to mimick sympathetic activity, or suppression of insulin secretion with octreotide, or both. Recently, bariatric surgery (Roux-en-Y gastric bypass, laparoscopic gastric banding, vagotomy) have also been attempted with variable results. Early and intensive management is required to stave off the obesity and its consequences.

  19. Hypothalamic signaling mechanisms in hypertension.

    Science.gov (United States)

    Carmichael, Casey Y; Wainford, Richard D

    2015-05-01

    The etiology of hypertension, a critical public health issue affecting one in three US adults, involves the integration of the actions of multiple organ systems, including the central nervous system. Increased activation of the central nervous system, driving enhanced sympathetic outflow and increased blood pressure, has emerged as a major contributor to the pathogenesis of hypertension. The hypothalamus is a key brain site acting to integrate central and peripheral inputs to ultimately impact blood pressure in multiple disease states that evoke hypertension. This review highlights recent advances that have identified novel signal transduction mechanisms within multiple hypothalamic nuclei (e.g., paraventricular nucleus, arcuate nucleus) acting to drive the pathophysiology of hypertension in neurogenic hypertension, angiotensin II hypertension, salt-sensitive hypertension, chronic intermittent hypoxia, and obesity-induced hypertension. Increased understanding of hypothalamic activity in hypertension has the potential to identify novel targets for future therapeutic interventions designed to treat hypertension.

  20. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization*

    Science.gov (United States)

    Krauson, Aram J.; Carattino, Marcelo D.

    2016-01-01

    Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization. PMID:27015804

  1. Caffeine and uric acid mediate glutathione synthesis for neuroprotection.

    Science.gov (United States)

    Aoyama, K; Matsumura, N; Watabe, M; Wang, F; Kikuchi-Utsumi, K; Nakaki, T

    2011-05-05

    Several lines of epidemiological studies have indicated that caffeine consumption and plasma uric acid (UA) level were negatively correlated with the incidence of some neurodegenerative diseases. We report here a novel mechanism by which these purine derivatives increase neuronal glutathione (GSH) synthesis. Intraperitoneal injection of caffeine or UA into male C57BL/6 mice significantly increased total GSH levels in the hippocampus. Neither SCH58261, an adenosine A2A receptor antagonist, nor rolipram, a phosphodiesterase-4 inhibitor, increased GSH levels. Pretreatment with allopurinol, a drug to inhibit UA production, did not change the GSH level in the caffeine-treated mice. Hippocampal CA1 pyramidal neurons treated with caffeine or UA were resistant to oxidant exposure in the slice culture experiments. In experiments with the SH-SY5Y cell line, cysteine uptake was sodium-dependent and pretreatment with caffeine or UA increased cysteine uptake significantly as compared with the control conditions. Slice culture experiments using the hippocampus also showed increased cysteine and GSH contents after the treatment with caffeine or UA. Immunohistochemical analysis showed increased GSH levels in the hippocampal excitatory amino acid carrier-1 (EAAC1)-positive neurons of mice treated with caffeine or UA. These findings suggest that purine derivatives caffeine and UA induce neuronal GSH synthesis by promoting cysteine uptake, leading to neuroprotection. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice.

    Science.gov (United States)

    Foglesong, Grant D; Huang, Wei; Liu, Xianglan; Slater, Andrew M; Siu, Jason; Yildiz, Vedat; Salton, Stephen R J; Cao, Lei

    2016-03-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF.

  3. Pentavalent Bismuth-Mediated Glycosylation Methods to Activate Sialic and Uronic Acids and the Incorporation of Sialic Acids Into Insulin

    Science.gov (United States)

    Kabotso, Daniel Elorm Kwame

    The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.

  4. Current Advances in 5-Aminolevulinic Acid Mediated Photodynamic Therapy

    Science.gov (United States)

    Thunshelle, Connor; Yin, Rui; Chen, Qiquan

    2016-01-01

    Kennedy and Pottier discovered that photodynamic therapy (PDT) could be carried out using a procedure consisting of topical application of the porphyrin-precursor, 5-aminolevulinic acid (ALA) to the skin, followed after some time by illumination with various light parameters in the 1980s. Since then, ALA-PDT has expanded enormously and now covers most aspects of dermatological disease. The purpose of this review is to discuss a range of ingenious strategies that investigators have devised for improving the overall outcome (higher efficiency and lower side effects) of ALA-PDT. The big advance of using ALA esters instead of the free acid to improve skin penetration was conceived in the 1990s. A variety of more recent innovative approaches can be divided into three broad groups: (a) those relying on improving delivery or penetration of ALA into the skin; (b) those relying on ways to increase the synthesis of protoporphyrin IX inside the skin; (c) those relying on modification of the illumination parameters. In the first group, we have improved delivery of ALA with penetration-enhancing chemicals, iontophoresis, intracutaneous injection, or fractionated laser. There is also a large group of nanotechnology-related approaches with ALA being delivered using liposomes/ethosomes, ALA dendrimers, niosomes, mesoporous silica nanoparticles, conjugated gold nanoparticles, polymer nanoparticles, fullerene nanoparticles, and carbon nanotubes. In the second group, we can find the use of cellular differentiating agents, the use of iron chelators, and the effect of increasing the temperature. In the third group, we find methods designed to reduce pain as well as improve efficiency including fractionated light, daylight PDT, and wearable light sources for ambulatory PDT. This active area of research is expected to continue to provide a range of intriguing possibilities. PMID:28163981

  5. Regulation of energy balance by the hypothalamic lipoprotein lipase regulator Angptl3.

    Science.gov (United States)

    Kim, Hyun-Kyong; Shin, Mi-Seon; Youn, Byung-Soo; Kang, Gil Myoung; Gil, So Young; Lee, Chan Hee; Choi, Jong Han; Lim, Hyo Sun; Yoo, Hyun Ju; Kim, Min-Seon

    2015-04-01

    Hypothalamic lipid sensing is important for the maintenance of energy balance. Angiopoietin-like protein 3 (Angptl3) critically regulates the clearance of circulating lipids by inhibiting lipoprotein lipase (LPL). The current study demonstrated that Angptl3 is highly expressed in the neurons of the mediobasal hypothalamus, an important area in brain lipid sensing. Suppression of hypothalamic Angptl3 increased food intake but reduced energy expenditure and fat oxidation, thereby promoting weight gain. Consistently, intracerebroventricular (ICV) administration of Angptl3 caused the opposite metabolic changes, supporting an important role for hypothalamic Angptl3 in the control of energy balance. Notably, ICV Angptl3 significantly stimulated hypothalamic LPL activity. Moreover, coadministration of the LPL inhibitor apolipoprotein C3 antagonized the effects of Angptl3 on energy metabolism, indicating that LPL activation is critical for the central metabolic actions of Angptl3. Increased LPL activity is expected to promote lipid uptake by hypothalamic neurons, leading to enhanced brain lipid sensing. Indeed, ICV injection of Angptl3 increased long-chain fatty acid (LCFA) and LCFA-CoA levels in the hypothalamus. Furthermore, inhibitors of hypothalamic lipid-sensing pathways prevented Angptl3-induced anorexia and weight loss. These findings identify Angptl3 as a novel regulator of the hypothalamic lipid-sensing pathway. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Uric Acid Produces an Inflammatory Response through Activation of NF-κB in the Hypothalamus: Implications for the Pathogenesis of Metabolic Disorders

    Science.gov (United States)

    Lu, Wenjie; Xu, Youzhi; Shao, Xiaoni; Gao, Fabao; Li, Yan; Hu, Jing; Zuo, Zeping; Shao, Xue; Zhou, Liangxue; Zhao, Yinglan; Cen, Xiaobo

    2015-01-01

    Epidemiological studies have shown that an elevated uric acid (UA) level predicts the development of metabolic syndrome and diabetes; however, there is no direct evidence of this, and the underlying mechanism remains unclear. Here, we showed that a high-UA diet triggered the expression of pro-inflammatory cytokines, activated the NF-κB pathway, and increased gliosis in the hypothalamus. Intracerebroventricular injection of UA induced hypothalamic inflammation and reactive gliosis, whereas these effects were markedly ameliorated by the inhibition of NF-κB. Moreover, magnetic resonance imaging confirmed that hyperuricemia in rodents and humans was associated with gliosis in the mediobasal hypothalamus. Importantly, the rats administered UA exhibited dyslipidemia and glucose intolerance, which were probably mediated by hypothalamic inflammation and hypothalamic neuroendocrine alterations. These results suggest that UA can cause hypothalamic inflammation via NF-κB signaling. Our findings provide a potential therapeutic strategy for UA-induced metabolic disorders. PMID:26179594

  7. In vitro effects of Panax ginseng in aristolochic acid-mediated renal tubulotoxicity: apoptosis versus regeneration.

    Science.gov (United States)

    Bunel, Valérian; Antoine, Marie-Hélène; Nortier, Joëlle; Duez, Pierre; Stévigny, Caroline

    2015-03-01

    This in vitro study aimed to determine the effects of a Panax ginseng extract on aristolochic acid-mediated toxicity in HK-2 cells. A methanolic extract of ginseng (50 µg/mL) was able to reduce cell survival after treatment with 50 µM aristolochic acid for 24, 48, and 72 h, as evidenced by a resazurin reduction assay. This result was confirmed by a flow cytometric evaluation of apoptosis using annexin V-PI staining, and indicated higher apoptosis rates in cells treated with aristolochic acid and P. ginseng extract compared with aristolochic acid alone. However, P. ginseng extract by itself (5 and 50 µg/mL) increased the Ki-67 index, indicating an enhancement in cellular proliferation. Cell cycle analysis excluded a P. ginseng extract-mediated induction of G2/M cell cycle arrest such as the one typically observed with aristolochic acid. Finally, β-catenin acquisition was found to be accelerated when cells were treated with both doses of ginseng, suggesting that the epithelial phenotype of renal proximal tubular epithelial cells was maintained. Also, ginseng treatment (5 and 50 µg/mL) reduced the oxidative stress activity induced by aristolochic acid after 24 and 48 h. These results indicate that the ginseng extract has a protective activity towards the generation of cytotoxic reactive oxygen species induced by aristolochic acid. However, the ginseng-mediated alleviation of oxidative stress did not correlate with a decrease but rather with an increase in aristolochic acid-induced apoptosis and death. This deleterious herb-herb interaction could worsen aristolochic acid tubulotoxicity and reinforce the severity and duration of the injury. Nevertheless, increased cellular proliferation and migration, along with the improvement in the epithelial phenotype maintenance, indicate that ginseng could be useful for improving tubular regeneration and the recovery following drug-induced kidney injury. Such dual activities of ginseng certainly warrant further in vivo

  8. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis.

    Science.gov (United States)

    Westfall, Corey S; Sherp, Ashley M; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M

    2016-11-29

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A thaliana This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants.

  9. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne

    2015-01-01

    BACKGROUND: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic si...

  10. Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA)

    DEFF Research Database (Denmark)

    Vollmer, Jörg; Jepsen, Jan Stenvang; Uhlmann, Eugen

    2004-01-01

    Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have...

  11. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  12. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids

    OpenAIRE

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-01-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induce...

  13. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines

    Directory of Open Access Journals (Sweden)

    Ophélia Le Thuc

    2017-08-01

    Full Text Available The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  14. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines.

    Science.gov (United States)

    Le Thuc, Ophélia; Stobbe, Katharina; Cansell, Céline; Nahon, Jean-Louis; Blondeau, Nicolas; Rovère, Carole

    2017-01-01

    The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  15. Suppression of experimental autoimmune encephalomyelitis by ultraviolet light is not mediated by isomerization of urocanic acid.

    Science.gov (United States)

    Irving, Amy A; Marling, Steven J; Plum, Lori A; DeLuca, Hector F

    2017-01-05

    Ultraviolet B irradiation confers strong resistance against experimental autoimmune encephalomyelitis, a model of multiple sclerosis. This protection by ultraviolet B is independent of vitamin D production but causes isomerization of urocanic acid, a naturally occurring immunosuppressant. To determine whether UCA isomerization from trans to cis is responsible for the protection against experimental autoimmune encephalomyelitis afforded by ultraviolet B, trans- or cis-urocanic acid was administered to animals and their disease progression was monitored. Disease incidence was reduced by 74% in animals exposed to ultraviolet B, and skin cis-urocanic acid levels increased greater than 30%. However, increasing skin cis-urocanic acid levels independent of ultraviolet B was unable to alter disease onset or progression. It is unlikely that urocanic acid isomerization is responsible for the ultraviolet B-mediated suppression of experimental autoimmune encephalomyelitis. Additional work is needed to investigate alternative mechanisms by which UVB suppresses disease.

  16. Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors.

    Science.gov (United States)

    Gould, Nathan D; Liana Allen, C; Nam, Brandon C; Schepartz, Alanna; Miller, Scott J

    2013-12-15

    Biomimetic conditions for a synthetic glycosylation reaction, inspired by the highly conserved functionality of carbohydrate active enzymes, were explored. At the outset, we sought to generate proof of principle for this approach to developing catalytic systems for glycosylation. However, control reactions and subsequent kinetic studies showed that a stoichiometric, irreversible reaction of the catalyst and glycosyl donor was occurring, with a remarkable rate variance depending upon the structure of the carboxylic acid. It was subsequently found that a combination of Brønsted acid (carboxylic acid) and Lewis acid (MgBr2) was unique in catalyzing the desired glycosylation reaction. Thus, it was concluded that the two acids act synergistically to catalyze the desired transformation. The role of the catalytic components was tested with a number of control reactions and based on these studies a mechanism is proposed herein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Acid mediated chemical treatment to remove sugar from waste acid stream from nano-crystalline cellulose manufacturing process.

    Science.gov (United States)

    Maiti, Sampa; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Pulicharla, Rama; Berry, Richard

    2017-08-01

    Nano-crystalline cellulose (NCC) is a nano-scale biomaterial derived from highly abundant natural polymer cellulose. It is industrially produced by concentrated acid hydrolysis of cellulosic materials. However, presences of as high as 5-10% of sugar monomers in spent sulphuric acid during the manufacturing process, makes it unsuitable for such recycling or reuse of sulphuric acid. Currently, the industry has been using membrane and ion exchange technology to remove such sugars, however, such technologies cannot achieve the target of 80-90% removal. In the current investigation, thermal treatment and acid mediated thermal treatment have been evaluated for sugar removal from the spent sulphuric acid. Almost complete removal of sugar has been achieved by this approach. Maximum sugar removal efficiency (99.9%) observed during this study was at 120±1°C for 60min using 0.8 ratio (sample: acid) or at 100±1°C for 40min using 1.5 ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells.

    Science.gov (United States)

    Cho, Young Sik; Kim, Chi Hyun; Kim, Ki Young; Cheon, Hyae Gyeong

    2012-05-01

    Saturated fatty acids have been considered major contributing factors in type 2 diabetes, whereas unsaturated fatty acids have beneficial effects for preventing the development of diabetes. However, the effects of polyunsaturated fatty acids in pancreatic β cells have not been reported. Here, we examined the effects of arachidonic acid (AA) on palmitic acid (PA)-mediated lipotoxicity in clonal HIT-T15 pancreatic β cells. AA prevented the PA-induced lipotoxicity as indicated by cell viability, DNA fragmentation and mitochondrial membrane potential, whereas eicosatetraynoic acid (ETYA), a non-metabolizable AA, had little effect on PA-induced lipotoxicity. In parallel with its protective effects against PA-induced lipotoxicity, AA restored impaired insulin expression and secretion induced by PA. AA but not ETYA increased intracellular triglyceride (TG) in the presence of PA compared with PA alone, and xanthohumol, a diacylglycerol acyltransferase (DGAT) inhibitor, reversed AA-induced protection from PA. Taken together, our results suggest that AA protects against PA-induced lipotoxicity in clonal HIT-T15 pancreatic β cells, and the protective effects may be associated with TG accumulation, possibly through sequestration of lipotoxic PA into TG.

  19. Bariatric surgery in hypothalamic obesity

    Directory of Open Access Journals (Sweden)

    Nathan eBingham

    2012-02-01

    Full Text Available Craniopharyngiomas (CP are epithelial neoplasms generally found in the area of the pituitary and hypothalamus. Despite benign histology, these tumors and/or their treatment often result in significant, debilitating disorders of endocrine, neurological, behavioral, and metabolic systems. Severe obesity is observed in a high percentage of patients with CP resulting in significant comorbidities and negatively impacting quality of life. Obesity occurs as a result of hypothalamic damage and disruption of normal homeostatic mechanisms regulating energy balance. Such pathological weight gain, termed hypothalamic obesity (HyOb, is often severe and refractory to therapy.Unfortunately, neither lifestyle intervention nor pharmacotherapy has proven truly effective in the treatment of CP-HyOb. Given the limited choices and poor results of these treatments, several groups have examined bariatric surgery as a treatment alternative for patients with CP-HyOb. While a large body of evidence exists supporting the use of bariatric surgery in the treatment of exogenous obesity and its comorbidities, its role in the treatment of HyOb has yet to be well defined. To date, the existing literature on bariatric surgery in CP-HyOb is largely limited to case reports and series with short term follow-up. Here we review the current reports on the use of bariatric surgery in the treatment of CP-HyOb. We also compare these results to those reported for other populations of HyOb, including Prader-Willi Syndrome and patients with melanocortin signaling defects. While initial reports of bariatric surgery in CP-HyOb are promising, their limited scope makes it difficult to draw any substantial conclusions as to the long term safety and efficacy of bariatric surgery in CP-HyOb. There continues to be a need for more robust, controlled, prospective trials with long term follow-up in order to better define the role of bariatric surgery in the treatment of all types of hypothalamic

  20. Zoledronic acid and atorvastatin inhibit αvβ3-mediated adhesion of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Maria Wilke

    2014-03-01

    Full Text Available Bone metastases represent common long term complications of patients with breast cancer. Zoledronic acid, an amino-bisphosphonate and mevalonate pathway inhibitor, is an established agent for the treatment of bone metastases. Direct antitumor effects of zoledronic acid have been proposed in breast cancer. Statins are another group of mevalonate pathway inhibitors that have been repeatedly discussed for potential anti-tumor activity. In this study, we tested the hypothesis, whether these agents regulate adhesion of breast cancer cells to extracellular matrix components. Treatment of breast cancer cells with zoledronic acid and atorvastatin, significantly impaired MDA-MB-231 breast cancer cell adhesion on the αvβ3 ligands gelatin and vitronectin, but had no effect on collagen type 1 (α2β1-ligand and fibronectin (α5β1-ligand. Anti-adhesive effects of zoledronic acid were fully reversed by geranylgeranyl pyrophosphate (GGPP, but not by farnesylpyrophosphate (FPP. Furthermore, effects of zoledronic acid and atorvastatin were mimicked by a specific inhibitor of geranylgeranylation GGTI-298. Functional (using integrin array and quantitative (using FACS integrin analyses on MDA-231 cells following zoledronic acid exposure revealed decreased levels of αv and αvβ3 expression. In addition to its effects on integrin mediated adhesion of breast cancer cells, the presence of zoledronic acid caused pronounced morphological changes in MDA-231 cells as seen by F-actin and vinculin rearrangement. Furthermore, phosphorylation of the focal adhesion kinase was inhibited by zoledronic acid. In both cases, changes were fully reversed by GGPP. These results emphasize the role of mevalonate pathway mediated impairment of geranylgeranylation in the anti-adhesive effects of zoledronic acid in breast cancer cells.

  1. Altered hypothalamic function in diet-induced obesity

    National Research Council Canada - National Science Library

    Velloso, L A; Schwartz, M W

    2011-01-01

    Energy homeostasis involves a complex network of hypothalamic and extra-hypothalamic neurons that transduce hormonal, nutrient and neuronal signals into responses that ultimately match caloric intake...

  2. Protective effect of carbenoxolone on ER stress-induced cell death in hypothalamic neurons.

    Science.gov (United States)

    Kim, Jongwan; Jung, Eun Jung; Moon, Seong-Su; Seo, Minchul

    2015-12-25

    Hypothalamic endoplasmic reticulum (ER) stress is known to be increased in obesity. Induction of ER stress on hypothalamic neurons has been reported to cause hypothalamic neuronal apoptosis and malfunction of energy balance, leading to obesity. Carbenoxolone is an 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor that converts inactive glucocorticoid into an active form. In addition to its metabolic effect via enzyme inhibitory action, carbenoxolone has shown anti-apoptotic activity in several studies. In this study, the direct effects of carbenoxolone on ER stress and cell death in hypothalamic neurons were investigated. Carbenoxolone attenuated tunicamycin induced ER stress-mediated molecules such as spliced XBP1, ATF4, ATF6, CHOP, and ROS generation. In vivo study also revealed that carbenoxolone decreased tunicamycin-induced ER stress in the hypothalamus. In conclusion, the results of this study show that carbenoxolone has protective effects against tunicamycin induced-ER stress and apoptosis in hypothalamic neurons, suggesting its direct protective effects against obesity. Further study is warranted to clarify the effects of carbenoxolone on hypothalamic regulation of energy balance in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hypothalamic Sirt1 regulates food intake in a rodent model system.

    Directory of Open Access Journals (Sweden)

    Işin Cakir

    2009-12-01

    Full Text Available Sirt1 is an evolutionarily conserved NAD(+ dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRNA mediated knock down of hypothalamic Sirt1 showed to decrease food intake and body weight gain. Central administration of a specific melanocortin antagonist, SHU9119, reversed the anorectic effect of hypothalamic Sirt1 inhibition, suggesting that Sirt1 regulates food intake through the central melanocortin signaling. We also showed that fasting increases hypothalamic Sirt1 expression and decreases FoxO1 (Forkhead transcription factor acetylation suggesting that Sirt1 regulates the central melanocortin system in a FoxO1 dependent manner. In addition, hypothalamic Sirt1 showed to regulate S6K signaling such that inhibition of the fasting induced Sirt1 activity results in up-regulation of the S6K pathway. Thus, this is the first study providing a novel role for the hypothalamic Sirt1 in the regulation of food intake and body weight. Given the role of Sirt1 in several peripheral tissues and hypothalamus, potential therapies centered on Sirt1 regulation might provide promising therapies in the treatment of metabolic diseases including obesity.

  4. Dorsomedial hypothalamic NPY and energy balance control.

    Science.gov (United States)

    Bi, Sheng; Kim, Yonwook J; Zheng, Fenping

    2012-12-01

    Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity?

    Science.gov (United States)

    López, Miguel

    2017-05-01

    AMP-activated protein kinase (AMPK) is a cellular gauge that is activated under conditions, such as low energy, increasing energy production and reducing energy waste. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence links hypothalamic AMPK with feeding, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), as well as muscle metabolism, hepatic function and glucose homeostasis. The relevance of these data is interesting from a therapeutic point of view as several agents with potential anti-obesity and/or antidiabetic effects, some currently in clinical use, such as nicotine, metformin and liraglutide are known to act through AMPK, either peripherally or centrally. Furthermore, the orexigenic and weight-gaining effects of the worldwide use of antipsychotic drugs (APDs), such as olanzapine, are also mediated by hypothalamic AMPK. Overall, this evidence makes hypothalamic AMPK signaling an interesting target for the drug development, with its potential for controlling both sides of the energy balance equation, namely feeding and energy expenditure through defined metabolic pathways. © 2017 The authors.

  6. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization....... From the perspective of mediatization research, the most important effect of the media stems from their embeddedness in culture and society....

  7. Lewis base mediated β-elimination and Lewis acid mediated insertion reactions of disilazido zirconium compounds.

    Science.gov (United States)

    Yan, KaKing; Duchimaza Heredia, Juan J; Ellern, Arkady; Gordon, Mark S; Sadow, Aaron D

    2013-10-09

    The reactivity of a series of disilazido zirconocene complexes is dominated by the migration of anionic groups (hydrogen, alkyl, halide, OTf) between the zirconium and silicon centers. The direction of these migrations is controlled by the addition of two-electron donors (Lewis bases) or two-electron acceptors (Lewis acids). The cationic nonclassical [Cp2ZrN(SiHMe2)2](+) ([2](+)) is prepared from Cp2Zr{N(SiHMe2)2}H (1) and B(C6F5)3 or [Ph3C][B(C6F5)4], while reactions of B(C6F5)3 and Cp2Zr{N(SiHMe2)2}R (R = Me (3), Et (5), n-C3H7 (7), CH═CHSiMe3 (9)) provide a mixture of [2](+) and [Cp2ZrN(SiHMe2)(SiRMe2)](+). The latter products are formed through B(C6F5)3 abstraction of a β-H and R group migration from Zr to the β-Si center. Related β-hydrogen abstraction and X group migration reactions are observed for Cp2Zr{N(SiHMe2)2}X (X = OTf (11), Cl (13), OMe (15), O-i-C3H7 (16)). Alternatively, addition of DMAP (DMAP = 4-(dimethylamino)pyridine) to [2](+) results in coordination to a Si center and hydrogen migration to zirconium, giving the cationic complex [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}H](+) ([19](+)). Related hydrogen migration occurs from [Cp2ZrN(SiHMe2)(SiMe2OCHMe2)](+) ([18](+)) to give [Cp2Zr{N(SiMe2DMAP)(SiMe2OCHMe2)}H](+) ([22](+)), whereas X group migration is observed upon addition of DMAP to [Cp2ZrN(SiHMe2)(SiMe2X)](+) (X = OTf ([12](+)), Cl ([14](+))) to give [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}X](+) (X = OTf ([26](+)), Cl ([20](+))). The species involved in these transformations are described by resonance structures that suggest β-elimination. Notably, such pathways are previously unknown in early metal amide chemistry. Finally, these migrations facilitate direct Si-H addition to carbonyls, which is proposed to occur through a pathway that previously had been reserved for later transition metal compounds.

  8. Colonic short chain fatty acids mediate jejunal growth by increasing gastrin.

    OpenAIRE

    Reilly, K J; Frankel, W L; Bain, A M; Rombeau, J. L.

    1995-01-01

    Colonic infusion of short chain fatty acids (SCFAs) is trophic to rat jejunum and is associated with raised jejunal gastrin concentration. This study examined the hypothesis that the jejunal trophic effects of colonic SCFAs are mediated in part by gastrin. Forty six adult rats underwent caecectomy to reduce endogenous production of SCFA, ileocolonic anastomosis, and placement of a colonic infusion catheter. SCFA (70 mM acetate, 35 mM propionate, 20 mM butyrate) or saline were continuously inf...

  9. Hypothalamic effects of thyroid hormones on metabolism.

    Science.gov (United States)

    Martínez-Sánchez, Noelia; Alvarez, Clara V; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2014-10-01

    Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex.

    Science.gov (United States)

    Muthu Prabhu, Subbaiah; Meenakshi, Sankaran

    2016-04-01

    The present investigation describes the preparation of hydrogen bonded chitosan-polyaniline/zirconium biopolymeric matrix by grafting method under dicarboxylic acid medium for the removal of fluoride, first time. Herein, the dicarboxylic acids, oxalic acid, malonic acid, succinic acid were used as medium. The synthesized complex was characterized by usual analytical techniques like FTIR, XRD, SEM and EDAX analysis. From the batch equilibrium experiments, the maximum defluoridation capacity (DC) was found to be 8.713 mg/g at room temperature with the minimum contact time of 24 min at 100mg of the sorbent dosage. The temperature study results of adsorption kinetics showed the adsorption behavior could be better described by the pseudo-second-order equation than pseudo-first-order kinetic model. The adsorption isotherm was well fitted by the Freundlich equation rather than Langmuir and D-R isotherms. The mechanism of fluoride removal was ligand exchange at neutral pH and electrostatic attraction at acidic pH of the medium. Regeneration studies were carried out to identify the best regenerant which makes the process cost-effective. Conclusions of this work demonstrate the potential applicability of the dicarboxylic acid mediated chitosan-polyaniline/zirconium complex as an effective adsorbent for fluoride removal from water. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.

    Science.gov (United States)

    Le Thuc, Ophélia; Rovère, Carole

    2016-01-01

    The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from

  12. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    Directory of Open Access Journals (Sweden)

    Young Hee Lee

    2014-09-01

    Full Text Available Two cultivars Buram-3-ho (susceptible and CR-Hagwang (moderate resistant of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum, black spot (Alternaria brassicicola and black rot (Xanthomonas campestris pv. campestris, Xcc diseases in our previous study. Defense-related hormones salicylic acid (SA, jasmonic acid (JA and ethylene led to different transcriptional regulation of pathogenesis-related (PR gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  13. Humic acids enhance the microbially mediated release of sedimentary ferrous iron.

    Science.gov (United States)

    Chang, Chun-Han; Wei, Chia-Cheng; Lin, Li-Hung; Tu, Tzu-Hsuan; Liao, Vivian Hsiu-Chuan

    2016-03-01

    Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95 ± 1.16 mg/L (original non-sterilized sediments), 32.50 ± 0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50 ± 1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00 ± 0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50 ± 10 μg/L (original non-sterilized sediments) to 110 ± 45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids

  14. Retinoic acid-induced expression of CD38 antigen in myeloid cells is mediated through retinoic acid receptor-alpha.

    Science.gov (United States)

    Drach, J; McQueen, T; Engel, H; Andreeff, M; Robertson, K A; Collins, S J; Malavasi, F; Mehta, K

    1994-04-01

    CD38 is a leukocyte differentiation antigen that has been thought to be a phenotypic marker of different subpopulations of T- and B-lymphocytes. In myeloid cells, CD38 is expressed during early stages of differentiation. Virtually no information is available on regulation and functions of CD38. Recently we reported that all-trans-retinoic acid (ATRA) is a potent and highly specific inducer of CD38 expression in human promyelocytic leukemia cells. Here we report that ATRA-induced expression of CD38 antigen in myeloid cells is mediated through retinoic acid-alpha receptor (RAR alpha). ATRA failed to induce CD38 expression in a mutant subclone of the HL-60 myeloid leukemia cell line (designated HL-60R) that is relatively resistant to ATRA-induced granulocytic differentiation. Retroviral vector-mediated transduction of RA receptor (RAR alpha) into this HL-60R subclone completely restored the sensitivity of these cells to ATRA in terms of their ability to express CD38. In contrast, CD38 expression was not inducible by ATRA in HL-60R cells, transfected with a functional RAR beta, RAR gamma, or RXR alpha receptor. Induction of CD38 in acute promyelocytic and acute myeloblastic leukemia cells was independent of ATRA-induced cytodifferentiation. Following culture with ATRA, increased CD38 protein levels were also observed in normal CD34+ bone marrow cells, but not on normal circulating granulocytes. From these results, we conclude that CD38 is ATRA inducible in myeloid leukemia cells and normal CD34+ bone marrow cells. This effect is independent of differentiation and is mediated by RAR alpha in HL-60 cells, suggesting a similar role for RAR alpha in CD38 expression in other hematopoietic cells.

  15. Tumour–stromal interactions in acid-mediated invasion: A mathematical model

    KAUST Repository

    Martin, Natasha K.

    2010-12-01

    It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several \\'acid-mediated tumour invasion\\' models where the acidic environment facilitates normal cell death and permits tumour invasion. In this paper, we extend the acid-invasion model developed by Gatenby and Gawlinski (1996) to include both the competitive and cooperative interactions between tumour and normal cells, by incorporating the influence of extracellular matrix and protease production at the tumour-stroma interface. Our model predicts an optimal level of tumour acidity which produces both cell death and matrix degradation. Additionally, very aggressive tumours prevent protease production and matrix degradation by excessive normal cell destruction, leading to an acellular (but matrix filled) gap between the tumour and normal tissue, a feature seen in encapsulated tumours. These results suggest, counterintuitively, that increasing tumour acidity may, in some cases, prevent tumour invasion.

  16. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    Science.gov (United States)

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  17. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    Science.gov (United States)

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  18. Hypothalamic hamartoma: Is the epileptogenic zone always hypothalamic? Arguments for independent (third stage) secondary epileptogenesis

    National Research Council Canada - National Science Library

    Scholly, Julia; Valenti, Maria‐Paola; Staack, Anke M; Strobl, Karl; Bast, Thomas; Kehrli, Pierre; Steinhoff, Bernhard J; Hirsch, Edouard

    2013-01-01

    Gelastic seizures associated with hypothalamic hamartomas ( HH s) are a clinicoradiologic syndrome presenting with a variety of symptoms, including pharmacoresistant epilepsy with multiple seizure types, electroencephalography ( EEG...

  19. FAX1, a novel membrane protein mediating plastid fatty acid export.

    Science.gov (United States)

    Li, Nannan; Gügel, Irene Luise; Giavalisco, Patrick; Zeisler, Viktoria; Schreiber, Lukas; Soll, Jürgen; Philippar, Katrin

    2015-02-01

    Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism.

  20. FAX1, a novel membrane protein mediating plastid fatty acid export.

    Directory of Open Access Journals (Sweden)

    Nannan Li

    2015-02-01

    Full Text Available Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1, a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism.

  1. Metabolic Actions of Hypothalamic SIRT1

    Science.gov (United States)

    Coppari, Roberto

    2012-01-01

    The hypothalamus is a small structure located in the ventral diencephalon. Hypothalamic neurons sense changes in circulating metabolic cues (e.g.: leptin, insulin, glucose), and coordinate responses aimed at maintaining normal body weight and glucose homeostasis. Recent findings indicate that a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase (namely, SIRT1) expressed by hypothalamic neurons is crucial for mounting responses against diet-induced obesity and type 2 diabetes mellitus (T2DM). Here, the repercussions of these findings will be discussed and particular emphasis will be given to the potential exploitation of hypothalamic SIRT1 as a target for the treatment of the rapidly-spreading metabolic disorders of obesity and T2DM. The possible roles of hypothalamic SIRT1 on regulating metabolic ageing processes will also be addressed. PMID:22382036

  2. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system.

    Science.gov (United States)

    Song, Zhou; Tang, Heqing; Wang, Nan; Zhu, Lihua

    2013-11-15

    A method for reductive degradation of perfluorooctanoic acid (PFOA) was established by using a sulfite/UV process. This process led to a PFOA removal of 100% at about 1h and a defluorination ratio of 88.5% at reaction time of 24h under N2 atmosphere, whereas the use of either UV irradiation or SO3(2-) alone induced little defluorination of PFOA under the same conditions. It was confirmed that the reductive defluorination of PFOA was achieved by hydrated electrons being generated from the photo-conversion of SO3(2-) as a mediator. Theoretical reaction kinetic analysis demonstrated that the generation of hydrated electrons was promoted by increasing either SO3(2-) concentration or solution pH, leading to the acceleration of the PFOA defluorination. Accompanying the reduction of PFOA, a small amount of short-chain perfluorocarboxylic acids, less fluorinated carboxylic acids and perfluorinated alkyl sulfonates were generated, all of which were able to be further degraded with further releasing of fluoride ions. Based on the generation, accumulation and distribution of intermediates, hydrated electrons induced defluorination pathway of PFOA was proposed in a sulfite-mediated UV photochemical system. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Structure-activity relationship studies of 1-substituted 3-dodecanoylindole-2-carboxylic acids as inhibitors of cytosolic phospholipase A2-mediated arachidonic acid release in intact platelets.

    Science.gov (United States)

    Griessbach, Klaus; Klimt, Monika; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2002-01-01

    A series of 3-dodecanoylindole-2-carboxylic acid derivatives with varied carboxylic acid substituents at the indole 1-position were synthesized and evaluated for their ability to inhibit arachidonic acid release in human platelets mediated by the cytosolic phospholipase A(2). Structure-activity relationship studies revealed that increasing the polarity of these substituents by the introduction of additional polar groups in the proximity of the carboxylic acid moiety reduced activity. Conformational restriction of the indole-1-carboxylic acid substituents in distinct positions as well as extending the length of these residues led to compounds which did not substantially differ in their potencies.

  5. Hypothalamic adipsic syndrome: diagnosis and management.

    Science.gov (United States)

    Ball, S G; Vaidja, B; Baylis, P H

    1997-10-01

    Patients with hypothalamic adipsic syndrome, especially in conjunction with diabetes insipidus, pose management difficulties. They are at risk of both under- and over-hydration. We present 4 patients with hypothalamic adipsic syndromes, due to different causes, illustrating the practical difficulties encountered in this condition. The principles of management, with a sliding scale of water intake related to changes in daily body weight, are discussed.

  6. Neuropeptide Y stimulates autophagy in hypothalamic neurons.

    Science.gov (United States)

    Aveleira, Célia A; Botelho, Mariana; Carmo-Silva, Sara; Pascoal, Jorge F; Ferreira-Marques, Marisa; Nóbrega, Clévio; Cortes, Luísa; Valero, Jorge; Sousa-Ferreira, Lígia; Álvaro, Ana R; Santana, Magda; Kügler, Sebastian; Pereira de Almeida, Luís; Cavadas, Cláudia

    2015-03-31

    Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y1 and Y5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging.

  7. Transcriptional profiling of fetal hypothalamic TRH neurons.

    Science.gov (United States)

    Guerra-Crespo, Magdalena; Pérez-Monter, Carlos; Janga, Sarath Chandra; Castillo-Ramírez, Santiago; Gutiérrez-Rios, Rosa María; Joseph-Bravo, Patricia; Pérez-Martínez, Leonor; Charli, Jean-Louis

    2011-05-10

    During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons.

  8. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis.

    Science.gov (United States)

    Blouet, Clémence; Ono, Hiraku; Schwartz, Gary J

    2008-12-01

    p70 S6 kinase 1 (S6K) is a major downstream effector of the mammalian target of rapamycin (mTOR), primarily implicated in the control of protein synthesis, cell growth, and proliferation. Here we demonstrate that specific bidirectional molecular targeting of mediobasal hypothalamic (MBH) S6K activity in rats is sufficient to significantly alter food intake, body weight, hypothalamic orexigenic neuropeptide expression, hypothalamic leptin sensitivity, and the metabolic and feeding responses to a fast. In addition, adenoviral-mediated constitutive activation of MBH S6K improved cold tolerance and protected against high-fat diet-induced overeating, fat deposition, and insulin resistance. Our results provide direct evidence that MBH S6K activity bidirectionally drives behavioral and metabolic determinants of energy balance and promote the assessment of MBH S6K activity as a therapeutic target in metabolic diseases.

  9. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhou [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tang, Heqing, E-mail: tangheqing@mail.scuec.edu.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Wang, Nan, E-mail: nwang83@sina.com [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhu, Lihua [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-11-15

    Highlights: • A new reductive method for PFOA defluorination was established by sulfite-mediated photolysis. • The defluorination of PFOA was dependent on sulfite concentration and solution pH. • A defluorination ratio of PFOA as high as 88.5% was achieved after reaction of 24 h. • A few of perfluorinated sulfonates were detected as intermediates during the degradation of PFOA. • A mechanism was proposed for the reductive defluorination of PFOA by hydrated electrons. -- Abstract: A method for reductive degradation of perfluorooctanoic acid (PFOA) was established by using a sulfite/UV process. This process led to a PFOA removal of 100% at about 1 h and a defluorination ratio of 88.5% at reaction time of 24 h under N{sub 2} atmosphere, whereas the use of either UV irradiation or SO{sub 3}{sup 2−} alone induced little defluorination of PFOA under the same conditions. It was confirmed that the reductive defluorination of PFOA was achieved by hydrated electrons being generated from the photo-conversion of SO{sub 3}{sup 2−} as a mediator. Theoretical reaction kinetic analysis demonstrated that the generation of hydrated electrons was promoted by increasing either SO{sub 3}{sup 2−} concentration or solution pH, leading to the acceleration of the PFOA defluorination. Accompanying the reduction of PFOA, a small amount of short-chain perfluorocarboxylic acids, less fluorinated carboxylic acids and perfluorinated alkyl sulfonates were generated, all of which were able to be further degraded with further releasing of fluoride ions. Based on the generation, accumulation and distribution of intermediates, hydrated electrons induced defluorination pathway of PFOA was proposed in a sulfite-mediated UV photochemical system.

  10. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification.

    Science.gov (United States)

    Borysiak, Mark D; Kimura, Kevin W; Posner, Jonathan D

    2015-04-07

    Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications.

  11. Crystal Structure of Autotaxin, a Lysophospholipase D that Produces Lipid Mediator Lysophosphatidic Acids

    Science.gov (United States)

    Nishimasu, Hiroshi; Takagi, Junichi; Aoki, Junken; Nureki, Osamu

    Autotaxin (ATX), also known as Enpp2, is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine to generate lysophosphatidic acid (LPA), a lipid mediator that activates G-protein coupled receptors to evoke various cellular responses. We solved the crystal structures of mouse ATX alone and in complex with LPAs with different acyl-chain lengths and saturations. The structures reveal a multidomain architecture that may maintain the structure of the hydrophobic pocket, in which the respective LPA molecules are accommodated in distinct conformations. Moreover, our data suggest that the produced LPAs are transferred from the catalytic pocket to cognate receptors through a hydrophobic channel.

  12. Intimacy and a deadly feud: the interplay of autophagy and apoptosis mediated by amino acids.

    Science.gov (United States)

    Wu, Zhenlong; Hu, Chien-An A; Wu, Guoyao; Zhaorigetu, Siqin; Chand, Hitendra; Sun, Kaiji; Ji, Yun; Wang, Bin; Dai, Zhaolai; Walton, Brian; Miao, Yubin; Hou, Yongqing

    2015-10-01

    Autophagy (i.e., "self-eating") and apoptosis (i.e., type I programmed cell death) are essential and intimately involved in molecular, cellular, and whole-body homeostasis in humans and animals. Autophagy has been categorized as a mechanism of intracellular degradation, recycling, defense, and survival. To date, three types of autophagy have been identified: macroautophagy, microautophagy, and chaperone-mediated autophagy. Recent discoveries strongly suggest that macroautophagy also modulates type II programmed cell death under specific circumstances. Autophagy and apoptosis are fundamentally distinct processes, but are interconnected by common stress initiators and intermediate regulators. During the past two decades, the role of amino acid metabolism and signaling in the regulation of apoptosis and autophagy has been intensively studied. In this review, we summarize recent advances in our understanding of the molecular mechanisms that regulate both autophagy and apoptosis in the context of amino acid signaling.

  13. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  14. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids.

    Science.gov (United States)

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-02-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8(-/-)) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin- and αvβ5 integrin-dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.

  15. Dietary supplementation of calcium may counteract obesity in mice mediated by changes in plasma fatty acids.

    Science.gov (United States)

    Laraichi, Sarah; Parra, Pilar; Zamanillo, Rocío; El Amarti, Ahmed; Palou, Andreu; Serra, Francisca

    2013-08-01

    The scope of this study was to assess the impact of calcium and conjugated linoleic acid (CLA) supplementation on plasma fatty acid profiles and to evaluate potential synergistic effects of both compounds against dietary obesity. Mice separated into five experimental groups were followed: control (C), high-fat diet (HF), HF with calcium (Ca), HF plus CLA and HF with both Ca and CLA. Plasma metabolites and fatty acids were determined by commercial kits and gas chromatography, respectively. Both dietary calcium and CLA supplementation contributed to lower body fat gain under a HF diet. Maximum efficacy was seen with calcium; no additional effect was associated with the combined treatment with CLA. Plasma leptin, adiponectin and HOMA index were in accordance with an altered glucose/insulin homeostasis in the HF and HF + CLA groups, whereas control levels were attained under Ca-enriched diets. Plasma fatty acids showed minor changes associated to CLA treatment, but a high impact on PUFA was observed under Ca-enriched diets. Our results show that the mechanism underlying the anti-obesity effects of calcium supplementation is mediated mainly by changes in PUFA plasma profile. In addition, the lack of synergy on body weight reduction in combination with associated lipid profiles of calcium and CLA suggests that calcium may interfere with absorption and/or bioactivity of CLA, which can be of relevance when using CLA-fortified dairy products against human obesity.

  16. Ursolic acid attenuates oxidative stress-mediated hepatocellular carcinoma induction by diethylnitrosamine in male Wistar rats.

    Science.gov (United States)

    Gayathri, Renganathan; Priya, D Kalpana Deepa; Gunassekaran, G R; Sakthisekaran, Dhanapal

    2009-01-01

    Hepatocellular carcinoma is the most common primary cancer of the liver in Asian countries. For more than a decade natural dietary agents including fruits, vegetables and spices have drawn a great deal of attention in the prevention of diseases, preferably cancer. Ursolic acid is a natural triterpenoid widely found in food, medicinal herbs, apple peel and other products it has been extensively studied for its anticancer and antioxidant properties. The purpose of this study was to evaluate the effect of ursolic acid in diethylnitrosamine (DEN) induced and phenobarbital promoted hepatocarcinogenesis in male Wistar rats. Antioxidant status was assessed by alterations in level of lipid peroxides and protein carbonyls. Damage to plasma membranes was assessed by levels of membrane and tissue ATPases. Liver tissue was homogenized and utilized for estimation of lipid peroxides, protein carbonyls and glycoproteins. Anticoagulated blood was utilized for erythrocyte membrane isolation. Oral administration of UA 20 mg/kg bodyweight for 6 weeks decreased the levels of lipid peroxides and protein carbonyls at a significance of poxidative stress mediated changes in liver of rats. Since UA has been found to be a potent antioxidant, it can be suggested as an excellent chemopreventive agent in overcoming diseases like cancer which are mediated by free radicals.

  17. NF-kappaB mediated transcriptional repression of acid modifying hormone gastrin.

    Science.gov (United States)

    Datta De, Dipanjana; Datta, Arindam; Bhattacharjya, Sumana; Roychoudhury, Susanta

    2013-01-01

    Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFkB.

  18. NF-kappaB mediated transcriptional repression of acid modifying hormone gastrin.

    Directory of Open Access Journals (Sweden)

    Dipanjana Datta De

    Full Text Available Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFkB.

  19. Edwardsiella tarda Tunes Tricarboxylic Acid Cycle to Evade Complement-Mediated Killing

    Directory of Open Access Journals (Sweden)

    Zhi-xue Cheng

    2017-12-01

    Full Text Available Evasion of complement-mediated killing is a common phenotype for many different types of pathogens, but the mechanism is still poorly understood. Most of the clinic isolates of Edwardsiella tarda, an important pathogen infecting both of human and fish, are commonly found serum-resistant. To explore the potential mechanisms, we applied gas chromatography-mass spectrometry (GC-MS-based metabolomics approaches to profile the metabolomes of E. tarda EIB202 in the presence or absence of serum stress. We found that tricarboxylic acid (TCA cycle was greatly enhanced in the presence of serum. The quantitative real-time PCR (qRT-PCR and enzyme activity assays validated this result. Furthermore, exogenous succinate that promotes the TCA cycle increased serum resistance, while TCA cycle inhibitors (bromopyruvate and propanedioic acid that inhibit TCA cycle, attenuated serum resistance. Moreover, the enhanced TCA cycle increased membrane potential, thus decreased the formation of membrane attack complex at cell surface, resulting serum resistance. These evidences suggested a previously unknown membrane potential-dependent mechanism of serum resistance. Therefore, our findings reveal that pathogen mounts a metabolic trick to cope with the serum complement-mediated killing.

  20. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro.

    Science.gov (United States)

    Willemsen, Linette E M; Koetsier, Marleen A; Balvers, Martin; Beermann, Christopher; Stahl, Bernd; van Tol, Eric A F

    2008-06-01

    The intestinal mucosa functions as a barrier against harmful dietary and microbial antigens. An intact gut barrier forms a prerequisite for protection against infection and allergy. Both allergic and inflammatory mediators (e.g. IL-4, IFN-gamma) are known to compromise the epithelial barrier integrity by enhancing permeability. Breast milk provides protection against infection and allergy and contains polyunsaturated fatty acids (PUFA). Although PUFA are commonly used in infant formulas their effect on intestinal barrier is still poorly understood. Therefore the effects of distinct PUFA (n-6: LA, GLA, DGLA, AA; n-3: ALA, EPA, DHA) and a fat blend with PUFA composition similar to that of the human breast milk fat fraction, on barrier integrity were investigated. Human intestinal epithelial cells (T84) were pre-incubated with individual PUFA or a lipase treated fat blend, with or without subsequent IL-4 exposure. Barrier integrity was evaluated by measuring transepithelial resistance and permeability. Membrane phospholipid composition was determined by capillary gas chromatography. DGLA, AA, EPA, DHA and to a lesser extend GLA enhanced basal TER and strongly reduced IL-4 mediated permeability, while LA and ALA were ineffective. Furthermore, the lipase treated fat blend effectively supported barrier function. PUFA were incorporated in the membrane phospholipid fraction of T84 cells. Long chain PUFA DGLA, AA, EPA and DHA were particularly effective in supporting barrier integrity by improving resistance and reducing IL-4 mediated permeability. Fat blends that release specific PUFA upon digestion in the gastrointestinal tract may support natural resistance.

  1. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism

    Directory of Open Access Journals (Sweden)

    Capilla Mata-Pérez

    2017-04-01

    Full Text Available Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs. They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO, which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their

  3. Surface-Mediated Hydrogen Bonding of Proteinogenic α-Amino Acids on Silicon.

    Science.gov (United States)

    Rahsepar, Fatemeh R; Moghimi, Nafiseh; Leung, K T

    2016-05-17

    Understanding the adsorption, film growth mechanisms, and hydrogen bonding interactions of biological molecules on semiconductor surfaces has attracted much recent attention because of their applications in biosensors, biocompatible materials, and biomolecule-based electronic devices. One of the most challenging questions when studying the behavior of biomolecules on a metal or semiconductor surface is "What are the driving forces and film growth mechanisms for biomolecular adsorption on these surfaces?" Despite a large volume of work on self-assembly of amino acids on single-crystal metal surfaces, semiconductor surfaces offer more direct surface-mediated interactions and processes with biomolecules. This is due to their directional surface dangling bonds that could significantly perturb hydrogen bonding arrangements. For all the proteinogenic biomolecules studied to date, our group has observed that they generally follow a "universal" three-stage growth process on Si(111)7×7 surface. This is supported by corroborating data obtained from a three-pronged approach of combining chemical-state information provided by X-ray photoelectron spectroscopy (XPS) and the site-specific local density-of-state images obtained by scanning tunneling microscopy (STM) with large-scale quantum mechanical modeling based on the density functional theory with van der Waals corrections (DFT-D2). Indeed, this three-stage growth process on the 7×7 surface has been observed for small benchmark biomolecules, including glycine (the simplest nonchiral amino acid), alanine (the simplest chiral amino acid), cysteine (the smallest amino acid with a thiol group), and glycylglycine (the smallest (di)peptide of glycine). Its universality is further validated here for the other sulfur-containing proteinogenic amino acid, methionine. We use methionine as an example of prototypical proteinogenic amino acids to illustrate this surface-mediated process. This type of growth begins with the formation of

  4. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  5. Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia.

    Science.gov (United States)

    Kim, Eun Ran; Wu, Zhaofei; Sun, Hao; Xu, Yuanzhong; Mangieri, Leandra R; Xu, Yong; Tong, Qingchun

    2015-07-22

    The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and

  6. Hypothalamic Apelin/Reactive Oxygen Species Signaling Controls Hepatic Glucose Metabolism in the Onset of Diabetes

    Science.gov (United States)

    Drougard, Anne; Duparc, Thibaut; Brenachot, Xavier; Carneiro, Lionel; Gouazé, Alexandra; Fournel, Audren; Geurts, Lucie; Cadoudal, Thomas; Prats, Anne-Catherine; Pénicaud, Luc; Vieau, Didier; Lesage, Jean; Leloup, Corinne; Benani, Alexandre; Cani, Patrice D.; Valet, Philippe

    2014-01-01

    Abstract Aims: We have previously demonstrated that central apelin is implicated in the control of peripheral glycemia, and its action depends on nutritional (fast versus fed) and physiological (normal versus diabetic) states. An intracerebroventricular (icv) injection of a high dose of apelin, similar to that observed in obese/diabetic mice, increase fasted glycemia, suggesting (i) that apelin contributes to the establishment of a diabetic state, and (ii) the existence of a hypothalamic to liver axis. Using pharmacological, genetic, and nutritional approaches, we aim at unraveling this system of regulation by identifying the hypothalamic molecular actors that trigger the apelin effect on liver glucose metabolism and glycemia. Results: We show that icv apelin injection stimulates liver glycogenolysis and gluconeogenesis via an over-activation of the sympathetic nervous system (SNS), leading to fasted hyperglycemia. The effect of central apelin on liver function is dependent of an increased production of hypothalamic reactive oxygen species (ROS). These data are strengthened by experiments using lentiviral vector-mediated over-expression of apelin in hypothalamus of mice that present over-activation of SNS associated to an increase in hepatic glucose production. Finally, we report that mice fed a high-fat diet present major alterations of hypothalamic apelin/ROS signaling, leading to activation of glycogenolysis. Innovation/Conclusion: These data bring compelling evidence that hypothalamic apelin is one master switch that participates in the onset of diabetes by directly acting on liver function. Our data support the idea that hypothalamic apelin is a new potential therapeutic target to treat diabetes. Antioxid. Redox Signal. 20, 557–573. PMID:23879244

  7. Coping with dehydration: sympathetic activation and regulation of glutamatergic transmission in the hypothalamic PVN

    Science.gov (United States)

    Bardgett, Megan E.; Chen, Qing-Hui; Guo, Qing; Calderon, Alfredo S.; Andrade, Mary Ann

    2014-01-01

    Autonomic and endocrine profiles of chronic hypertension and heart failure resemble those of acute dehydration. Importantly, all of these conditions are associated with exaggerated sympathetic nerve activity (SNA) driven by glutamatergic activation of the hypothalamic paraventricular nucleus (PVN). Here, studies sought to gain insight into mechanisms of disease by determining the role of PVN ionotropic glutamate receptors in supporting SNA and mean arterial pressure (MAP) during dehydration and by elucidating mechanisms regulating receptor activity. Blockade of PVN N-methyl-d-aspartate (NMDA) receptors reduced (P dehydrated (DH) (48 h water deprivation) rats, but had no effect in euhydrated (EH) controls. Blockade of PVN α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors had no effect in either group. NMDA in PVN caused dose-dependent increases of renal SNA and MAP in both groups, but the maximum agonist evoked response (Emax) of the renal SNA response was greater (P dehydration increases excitatory NMDA receptor tone in PVN. Reduced glial-mediated glutamate uptake was identified as a key contributing factor. Defective glutamate uptake in PVN could therefore be an important, but as yet unexplored, mechanism driving sympathetic hyperactivity in chronic cardiovascular diseases. PMID:24671240

  8. Wnt/β-catenin signalling pathway mediated aberrant hippocampal neurogenesis in kainic acid-induced epilepsy.

    Science.gov (United States)

    Qu, Zhengyi; Su, Fang; Qi, Xueting; Sun, Jianbo; Wang, Hongcai; Qiao, Zhenkui; Zhao, Hong; Zhu, Yulan

    2017-10-01

    Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid-induced rat epilepsy model to investigate whether Wnt/β-catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of β-catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up-regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid-induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down β-catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/β-catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/β-catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella.

    Science.gov (United States)

    Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon

    2017-07-03

    Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.

  10. POSSIBLE RELATIONSHIP OF FOLIC ACID SUPPLEMENTATION AND IMPROVED FLOW-MEDIATED DILATION IN PREMENOPAUSAL, EUMENORRHEIC ATHLETIC WOMEN

    Directory of Open Access Journals (Sweden)

    Anne Z. Hoch

    2009-03-01

    Full Text Available The purpose of this study was to determine if six weeks of folic acid supplementation would improve brachial artery endothelial-dependent flow-mediated dilation in eumenorrheic female runners with previously normal serum folate levels. This was a prospective, double-blinded, randomized pilot study with convenience sampling. Sixteen eumenorrheic subjects who were not taking birth control pills and who ran at least 20 miles/week were randomly assigned to 10 mg/day of folic acid supplementation or placebo for at least 6 weeks. Serum folate levels and brachial artery measurements were made during the early follicular phase of the menstrual cycle, in a sedentary state, following an 8 hour fast; a standard ultrasound technique was used. The brachial artery vasodilator response to reactive hyperemia was similar between the folic acid (6.6% ± 0.8%, mean ± SE and placebo groups (6.5% ± 0.7% at baseline. After six weeks, there was a significantly higher change in flow-mediated dilation for the folic acid group (3.5% ± 0.6% compared to the placebo group (0.1% ± 0.2% (p = 0.01. Serum folate levels also increased significantly in the folic acid group following six weeks of folic acid supplementation. This study demonstrates that brachial artery flow-mediated dilation improves significantly in eumenorrheic female runners with previously normal serum folate levels after 6 weeks of supplementation with folic acid

  11. Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK.

    Science.gov (United States)

    Jayanthy, Govindaraj; Roshana Devi, Vellai; Ilango, Kaliappan; Subramanian, Sorimuthu Pillai

    2017-07-01

    Rosmarinic acid (RA), a polyphenol, is known to improve hepatic insulin sensitivity in experimental type 2 diabetes. However, its effect on skeletal muscle insulin resistance is meagerly understood. The present study was aimed to investigate the up- and downstream mediators of the molecular targets of RA in attenuating insulin resistance in the skeletal muscle both in vivo and in vitro. We found that supplementation of RA increased the expression of key genes involved in the mitochondrial biogenesis like PGC-1α, SIRT-1, and TFAM via activation of AMPK in the skeletal muscle of insulin resistant rats as well as in L6 myotubes. Further, RA treatment increased the glucose uptake and decreased the phosphorylation of serine IRS-1 while increasing the translocation of GLUT 4. Together, our findings evidenced that RA treatment significantly inhibit insulin resistance in skeletal muscle cells by enhancing mitochondrial biogenesis. J. Cell. Biochem. 118: 1839-1848, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism

    Science.gov (United States)

    Kain, Vasundhara; Kapadia, Bandish; Misra, Parimal; Saxena, Uday

    2015-01-01

    Statins are a class of oral drugs that are widely used for treatment of hypercholesterolemia. Recent clinical data suggest that chronic use of these drugs increases the frequency of new onset diabetes. Studies to define the risks of statin-induced diabetes and its underlying mechanisms are clearly necessary. We explored the possible mechanism of statin induced insulin resistance using a well-established cell based model and simvastatin as a prototype statin. Our data show that simvastatin induces insulin resistance in a cholesterol biosynthesis inhibition independent fashion but does so by a fatty acid mediated effect on insulin signaling pathway. These data may help design strategies for prevention of statin induced insulin resistance and diabetes in patients with hypercholesterolemia. PMID:26345110

  13. Ultramild protein-mediated click chemistry creates efficient oligonucleotide probes for targeting and detecting nucleic acids

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Madsen, Charlotte Stahl; Jensen, Knud Jørgen

    2015-01-01

    Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid...... conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine-based fluorescent probes in vitro and rationalize our...... results by electronic structure calculations. Functionalized oligonucleotides were prepared in good yields by protein-mediated CuAAC click reactions for the first time with a human copper-binding chaperon. The carbohydrate, peptide, and fluorescent derivatives display high binding affinity and selectivity...

  14. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid

    Science.gov (United States)

    Singh, Anirudha; Corvelli, Michael; Unterman, Shimon A.; Wepasnick, Kevin A.; McDonnell, Peter; Elisseeff, Jennifer H.

    2014-10-01

    Lubrication is key for the efficient function of devices and tissues with moving surfaces, such as articulating joints, ocular surfaces and the lungs. Indeed, lubrication dysfunction leads to increased friction and degeneration of these systems. Here, we present a polymer-peptide surface coating platform to non-covalently bind hyaluronic acid (HA), a natural lubricant in the body. Tissue surfaces treated with the HA-binding system exhibited higher lubricity values, and in vivo were able to retain HA in the articular joint and to bind ocular tissue surfaces. Biomaterials-mediated strategies that locally bind and concentrate HA could provide physical and biological benefits when used to treat tissue-lubricating dysfunction and to coat medical devices.

  15. Fluorescent fatty acid transfer from bovine serum albumin to phospholipid vesicles: collision or diffusion mediated uptake.

    Science.gov (United States)

    Elmadhoun, Bassam M; Swairjo, Manal A; Burczynski, Frank J

    2012-01-01

    The extent of palmitate uptake by hepatocytes is dependent upon the surface charge of the extracellular binding protein. Specifically, hepatocyte uptake is greater when palmitate is bound to cationic binding proteins than when it is bound to anionic proteins. To further understand the role of protein surface charge on the uptake process of protein-bound ligands, we examined the rate of transfer of fluorescent anthroyloxy palmitic acid (AOPA) in the presence of anionic and cationic extracellular proteins to model membranes containing different surface charged groups. AOPA transfer rate in the presence of bovine serum albumin (ALB; isoelectric point pI = 4.8-5.0) or modified ALB (ALBe; pI = 7.0-7.5) to negative, positive and neutral lipid vesicles was investigated using a fluorescence resonance energy transfer assay. The rate of AOPA transfer from both proteins was decreased when ionic strength was increased; directly dependent on the concentration of acceptor lipid vesicles; and was affected by both the lipid membrane surface charge and protein-bound concentration. The data support the notion that AOPA transfer from binding proteins to lipid membranes occurred through two concomitant processes, aqueous diffusion of the unbound ligand (diffusion-mediated process) and a collisional interaction between the protein-ligand complex and acceptor membrane. The contribution of diffusional mediated transfer to the overall uptake process was determined to be 3 to 4 times less than the contribution of a collisional interaction. This study strengthened the hypothesis that charged amino acid residues on proteins are important for effective collisional interaction between protein-ligand complexes and cell membranes through which more free ligand could be supplied for the uptake process.

  16. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  17. Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway.

    Science.gov (United States)

    Zhang, Xinrui; Chen, Yiling; Cai, Guangsheng; Li, Xin; Wang, Di

    2017-11-01

    Carnosic acid (CA), an important bioactive phenolic diterpene mainly found in labiate plants, exerts various biological functions, including antioxidant, anti-inflammatory, antitumor, and neuroprotective activities. In the present study, we proved the deleterious effects of CA against hepatocellular carcinoma (HCC) in both in vitro and in vivo models. In vitro, CA significantly decreased cell viability, inhibited cell proliferation and migration, enhanced apoptosis, and increased caspase-3, -8, and -9 activities in HepG2 and SMMC-7721 cells. Specifically, CA led to a decreased mitochondrial membrane potential (MMP) and increases in intracellular reactive oxygen species (ROS) levels and apoptosis-related protein expression. Pre-incubation of HCC cells with N-Acetyl-l-cysteine (NAC), a ROS inhibitor, strongly suppressed CA-induced apoptotic phenomena, including reduced cell viability, excessive ROS levels, MMP decreases, and abnormal protein expression, suggesting an association of CA-induced apoptosis with oxidative stress-mediated mitochondrial pathways. In HepG2-and SMMC-7721-xenograft tumor mouse models, treatment with CA inhibited tumor growth and modulated apoptosis-related protein expression, confirming the anti-HCC effects of this chemical. Moreover, the CA-mediated anti-HCC effects associated with oxidative stress provide experimental evidence to support the potential use of CA as a drug therapy for HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cullin-RING Ubiquitin Ligases in Salicylic Acid-Mediated Plant Immune Signaling

    Directory of Open Access Journals (Sweden)

    James J. Furniss

    2015-03-01

    Full Text Available Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA. SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e. the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs, which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing (NLR immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.

  19. Saturated phosphatidic acids mediate saturated fatty acid–induced vascular calcification and lipotoxicity

    Science.gov (United States)

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L.; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M.; Kuro-o, Makoto; Miyazaki, Makoto

    2015-01-01

    Recent evidence indicates that saturated fatty acid–induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  20. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Krzysztof Bilmin

    2016-10-01

    Full Text Available Sonodynamic therapy (SDT is a promising technique based on the ability of certain substances, called sonosensitizers, to sensitize cancer cells to non-thermal effects of low-energy ultrasound waves, allowing their destruction. Sonosensitization is thought to induce cell death by direct physical effects such as cavitation and acoustical streaming as well as by complementary chemical reactions generating oxygen free radicals. One of the promising sonosensitizers is 5-aminolevulinic acid (ALA which upon selective uptake by cancer cells is metabolized and accumulated as protoporphyrin IX. The objective of the study was to describe ALA-mediated sonodynamic effects in vitro on a rat RG2 glioma cell line. Glioma cells, seeded at the bottom of 96-well plates and incubated with ALA (10 µg/ml for 6 h, were exposed to the sinusoidal US pulses with a resonance frequency of 1 MHz, 1000 µs duration, 0.4 duty-cycle, and average acoustic power varying from 2 W to 6 W. Ultrasound waves were generated by a flat circular piezoelectric transducer with a diameter of 25 mm. Cell viability was determined by MTT assay. Structural cellular changes were visualized with a fluorescence microscope. Signs of cytotoxicity such as a decrease in cell viability, chromatin condensation and apoptosis were found. ALA-mediated SDT evokes cytotoxic effects of low intensity US on rat RG2 glioma cells in vitro . This cell line is indicated for further preclinical assessment of SDT in in vivo conditions.

  1. Colonic short chain fatty acids mediate jejunal growth by increasing gastrin.

    Science.gov (United States)

    Reilly, K J; Frankel, W L; Bain, A M; Rombeau, J L

    1995-07-01

    Colonic infusion of short chain fatty acids (SCFAs) is trophic to rat jejunum and is associated with raised jejunal gastrin concentration. This study examined the hypothesis that the jejunal trophic effects of colonic SCFAs are mediated in part by gastrin. Forty six adult rats underwent caecectomy to reduce endogenous production of SCFA, ileocolonic anastomosis, and placement of a colonic infusion catheter. SCFA (70 mM acetate, 35 mM propionate, 20 mM butyrate) or saline were continuously infused into the colon for seven days. Rats received either a gastrin receptor blocker (L-365,260) or a control solution and animals were killed on day 8. SCFA infused into the colon acted systemically to significantly improve jejunal structure and increase jejunal gastrin concentrations. Gastrin receptor blockade abolished effects of SCFA on jejunal DNA, protein, crypt cell proliferation, and gastrin. Gastrin blockade did not reduce SCFA induced augmentation of villous height or crypt depth. It is concluded that the jejunal trophic effects of colonically infused SCFA are mediated in part by gastrin.

  2. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid.

    Science.gov (United States)

    Cox, Georgina; Thompson, Gary S; Jenkins, Huw T; Peske, Frank; Savelsbergh, Andreas; Rodnina, Marina V; Wintermeyer, Wolfgang; Homans, Steve W; Edwards, Thomas A; O'Neill, Alexander J

    2012-02-07

    Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G.

  3. 5-aminolevulinic acid (ALA) mediated photodynamic therapy of bladder cancer cell lines

    Science.gov (United States)

    Fickweiler, Sonja; Krieg, Rene C.; Stepp, Herbert G.; Hofstaedter, Ferdinand; Knuechel, Ruth

    1999-02-01

    Topical application of 5-aminolevulinic acid (ALA) can be effectively used for photodynamic therapy and diagnosis of superficial bladder cancer. Administration of the heme precursor ALA leads to the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in certain types of tissue. The aim of this study was to determine the cellular PPIX concentration and the effect of photodynamic therapy mediated by ALA on two bladder cancer cell lines (RT4, J82) and a fibroblast cell line (N1). Following incubation with ALA the kinetics of cellular PPIX were examined using flow cytometry combined with extraction. The cancer cell lines showed considerably higher PPIX concentrations than the fibroblast cell line: RT4 1030, J82 710, and N1 110 ng PPIX/mg protein. Photodynamic therapy was performed with an incoherent light source (580 - 740 nm, 40 mW/cm2, 30 J/cm2). In contrast to the fibroblast cell line, which was resistant to photodynamic therapy, the cancer cell lines were effectively killed following the treatment as determined by MTT assay. This study suggests that ALA-mediated photodynamic therapy may be effective in transitional cell carcinoma of the bladder. Based on these findings, this therapeutic method should be further evaluated clinically.

  4. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat

    DEFF Research Database (Denmark)

    Larsen, P J; Hay-Schmidt, Anders; Mikkelsen, J D

    1994-01-01

    , iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast...

  5. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Sang-Keun Oh

    2014-09-01

    Full Text Available Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBS-LRR motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD. To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA, jasmonic acid (JA, and ethylene (ET in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

  6. Critical amino acid residues involved in the electrogenic sodium–bicarbonate cotransporter kNBC1-mediated transport

    Science.gov (United States)

    Abuladze, Natalia; Azimov, Rustam; Newman, Debra; Sassani, Pakan; Liu, Weixin; Tatishchev, Sergei; Pushkin, Alexander; Kurtz, Ira

    2005-01-01

    We have previously reported a topological model of the electrogenic Na+–HCO3− cotransporter (NBC1) in which the cotransporter spans the plasma membrane 10 times with N- and C-termini localized intracellularly. An analysis of conserved amino acid residues among members of the SLC4 superfamily in both the transmembrane segments (TMs) and intracellular/extracellular loops (ILs/ELs) provided the basis for the mutagenesis approach taken in the present study to determine amino acids involved in NBC1-mediated ion transport. Using large-scale mutagenesis, acidic and basic amino acids putatively involved in ion transport mediated by the predominant variant of NBC1 expressed in the kidney (kNBC1) were mutated to neutral and/or oppositely charged amino acids. All mutant kNBC1 cotransporters were expressed in HEK-293T cells and the Na+-dependent base flux of the mutants was determined using intracellular pH measurements with 2′,7′-bis-(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Critical glutamate, aspartate, lysine, arginine and histidine residues in ILs/ELs and TMs were detected that were essential for kNBC1-mediated Na+-dependent base transport. In addition, critical phenylalanine, serine, tyrosine, threonine and alanine residues in TMs and ILs/ELs were detected. Furthermore, several amino acid residues in ILs/ELs and TMs were shown to be essential for membrane targeting. The data demonstrate asymmetry of distribution of kNBC1 charged amino acids involved in ion recognition in putative outward-facing and inward-facing conformations. A model summarizing key amino acid residues involved in kNBC1-mediated ion transport is presented. PMID:15817634

  7. Rapid adhesion of nerve cells to muscle fibers from adult rats is mediated by a sialic acid-binding receptor

    OpenAIRE

    1986-01-01

    Single viable muscle fibers isolated from adult rats by collagenase digestion rapidly bind dissociated spinal neurons or PC-12 cells but not a variety of other cells tested. The adhesion process is calcium- independent, temperature-sensitive, and is not blocked by pretreating cells with inhibitors of energy metabolism or actin polymerization. Adhesion is mediated by a carbohydrate-binding protein and can be inhibited by N-acetylneuraminic acid or mucin, a glycoprotein with high sialic acids c...

  8. Role of Indigenous Lactobacilli in Gastrin-Mediated Acid Production in the Mouse Stomach ▿

    Science.gov (United States)

    Takahashi, Hidenori; Nakano, Yasuhiro; Matsuoka, Takashi; Kumaki, Nobue; Asami, Yukio; Koga, Yasuhiro

    2011-01-01

    It is known that the stomach is colonized by indigenous lactobacilli in mice. The aim of this study was to examine the role of such lactobacilli in the development of the stomach. For a DNA microarray analysis, germ-free BALB/c mice were orally inoculated with 109 CFU lactobacilli, and their stomachs were excised after 10 days to extract RNA. As a result, lactobacillus-associated gnotobiotic mice showed dramatically decreased expression of the gastrin gene in comparison to germ-free mice. The mean of the log2 fold change in the gastrin gene was −4.3. Immunohistochemistry also demonstrated the number of gastrin-positive (gastrin+) cells to be significantly lower in the lactobacillus-associated gnotobiotic mice than in the germ-free mice. However, there was no significant difference in the number of somatostatin+ cells in these groups of mice. Consequently, gastric acid secretion also decreased in the mice colonized by lactobacilli. In addition, an increase in the expression of the genes related to muscle system development, such as nebulin and troponin genes, was observed in lactobacillus-associated mice. Moreover, infection of germ-free mice with Helicobacter pylori also showed the down- and upregulation of gastrin and muscle genes, respectively, in the stomach. These results thus suggested that indigenous lactobacilli in the stomach significantly affect the regulation of gastrin-mediated gastric acid secretion without affecting somatostatin secretion in mice, while H. pylori also exerts such an effect on the stomach. PMID:21803885

  9. Hypothalamic inflammation and gliosis in obesity.

    Science.gov (United States)

    Dorfman, Mauricio D; Thaler, Joshua P

    2015-10-01

    Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments. In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. Nevertheless, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit.

  10. Evolution of Gelastic Epilepsy with Hypothalamic Hamartoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available The patterns of clinical presentation, evolution of the epilepsy, and electoclinical diagnostic features of hypothalamic hamartoma (HH in 19 patients (8 children and 11 adults, seen between 1991 and 2001, were evaluated at Kings College Hospital and the Institute of Epileptology, London, UK.

  11. Hypothalamic functions in patients with pituitary insufficiency

    NARCIS (Netherlands)

    Borgers, A.J.F.

    2013-01-01

    The main objective of this thesis is to increase our understanding of hypothalamic (dys)function in patients with pituitary insufficiency. This goal is driven by the clinical experience of persisting symptoms in patients adequately treated for pituitary insufficiency. We focus primarily on patients

  12. The TRH neuron: a hypothalamic integrator of energy metabolism.

    Science.gov (United States)

    Lechan, Ronald M; Fekete, Csaba

    2006-01-01

    Thyrotropin-releasing hormone (TRH) has an important role in the regulation of energy homeostasis not only through effects on thyroid function orchestrated through hypophysiotropic neurons in the hypothalamic paraventricular nucleus (PVN), but also through central effects on feeding behavior, thermogenesis, locomotor activation and autonomic regulation. Hypophysiotropic TRH neurons are located in the medial and periventricular parvocellular subdivisions of the PVN and receive direct monosynaptic projections from two, separate, populations of leptin-responsive neurons in the hypothalamic arcuate nucleus containing either alpha-melanocyte-stimulating hormone (alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART), peptides that promote weight loss and increase energy expenditure, or neuropeptide Y (NPY) and agouti-related protein (AGRP), peptides that promote weight gain and reduce energy expenditure. During fasting, the reduction in TRH mRNA in hypophysiotropic neurons mediated by suppression of alpha-MSH/CART simultaneously with an increase in NPY/AGRP gene expression in arcuate nucleus neurons contributes to the fall in circulating thyroid hormone levels, presumably by increasing the sensitivity of the TRH gene to negative feedback inhibition by thyroid hormone. Endotoxin administration, however, has the paradoxical effect of increasing circulating levels of leptin and melanocortin signaling and CART gene expression in arcuate nucleus neurons, but inhibiting TRH gene expression in hypophysiotropic neurons. This may be explained by an overriding inhibitory effect of endotoxin to increase type 2 iodothyroine deiodinase (D2) in a population of specialized glial cells, tanycytes, located in the base and infralateral walls of the third ventricle. By increasing the conversion of T4 into T3, tanycytes may increase local tissue concenetrations of thyroid hormone, and thereby induce a state of local tissue hyperthyroidism in the region of hypophysisotrophic

  13. Genetic Approaches to Hypothalamic-Pituitary-Adrenal Axis Regulation

    Science.gov (United States)

    Arnett, Melinda G; Muglia, Lisa M; Laryea, Gloria; Muglia, Louis J

    2016-01-01

    The normal function of the hypothalamic-pituitary-adrenal (HPA) axis, and resultant glucocorticoid (GC) secretion, is essential for human health. Disruption of GC regulation is associated with pathologic, psychological, and physiological disease states such as depression, post-traumatic stress disorder, hypertension, diabetes, and osteopenia, among others. As such, understanding the mechanisms by which HPA output is tightly regulated in its responses to environmental stressors and circadian cues has been an active area of investigation for decades. Over the last 20 years, however, advances in gene targeting and genome modification in rodent models have allowed the detailed dissection of roles for key molecular mediators and brain regions responsible for this control in vivo to emerge. Here, we summarize work done to elucidate the function of critical neuropeptide systems, GC-signaling targets, and inflammation-associated pathways in HPA axis regulation and behavior, and highlight areas for future investigation. PMID:26189452

  14. Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1

    Science.gov (United States)

    Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling

    2015-01-01

    As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels. PMID:26537450

  15. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.

    Science.gov (United States)

    Gilkerson, Jonathan; Kelley, Dior R; Tam, Raymond; Estelle, Mark; Callis, Judy

    2015-06-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data

  16. Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity.

    Science.gov (United States)

    Bazan, Nicolas G; Musto, Alberto E; Knott, Eric J

    2011-10-01

    The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention

  17. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats

    OpenAIRE

    Eduardo R. Ropelle; Pauli, Jose R.; Prada, Patricia; Cintra, Dennys E.; Rocha, Guilherme Z; Juliana C Moraes; Frederico, Marisa J.S.; Luz,Gabrielle da; Pinho, Ricardo A.; Carvalheira, Jose B. C.; Velloso, Licio A.; Saad, Mario A.; Souza, Claudio T. de

    2009-01-01

    Insulin signalling in the hypothalamus plays a role in maintaining body weight. the forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induce...

  18. Embryonic development of the hypothalamic feeding circuitry: Transcriptional, nutritional, and hormonal influences

    Directory of Open Access Journals (Sweden)

    Harry MacKay

    2014-12-01

    Major conclusions: Emerging data suggest that developmental mechanisms can be perturbed not only by genetic manipulation, but also by manipulations to maternal nutrition during the gestational period, leading to long-lasting behavioral, neurobiological, and metabolic consequences. Leptin is neurotrophic in the embryonic brain, and given that it varies in proportion to maternal energy balance, may mediate these effects through an interaction with the mechanisms of hypothalamic development.

  19. Expanding the definition of hypothalamic obesity.

    Science.gov (United States)

    Hochberg, I; Hochberg, Z

    2010-10-01

    Hypothalamic obesity (HyOb) was first defined as the significant polyphagia and weight gain that occurs after extensive suprasellar operations for excision of hypothalamic tumours. However, polyphagia and weight gain complicate other disorders related to the hypothalamus, including those that cause structural damage to the hypothalamus like tumours, trauma, radiotherapy; genetic disorders such as Prader-Willi syndrome; side effects of psychotropic drugs; and mutations in several genes involved in hypothalamic satiety signalling. Moreover, 'simple' obesity is associated with polymorphisms in several genes involved in hypothalamic weight-regulating pathways. Thus, understanding HyOb may enhance our understanding of 'simple' obesity. This review will claim that HyOb is a far wider phenomenon than hitherto understood by the narrow definition of post-surgical weight gain. It will emphasize the similarity in clinical characteristics and therapeutic approaches for HyOb, as well as its mechanisms. HyOb, regardless of its aetiology, is a result of impairment in hypothalamic regulatory centres of body weight and energy expenditure. The pathophysiology includes loss of sensitivity to afferent peripheral humoral signals, such as, leptin on the one hand and dysfunctional afferent signals, on the other hand. The most important afferent signals deranged are energy regulation by the sympathetic nervous system and regulation of insulin secretion. Dys-regulation of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity and melatonin may also have a role in the development of HyOb. The complexity of the syndrome requires simultaneous targeting of several mechanisms that are deranged in the HyOb patient. We review the studies evaluating possible treatment strategies, including sympathomimetics, somatostatin analogues, triiodothyronine, sibutramine, and surgery. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.

  20. Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress

    OpenAIRE

    Erdos, Benedek; Clifton, Rebekah R.; Liu, Meng; Li, Hongwei; McCowan, Michael L.; Sumners, Colin; Scheuer, Deborah A.

    2015-01-01

    Exaggerated activation of the sympathetic nervous system and/or the hypothalamic-pituitary-adrenal (HPA) axis increases cardiovascular disease risk. The present study demonstrates that macrophage migration inhibitory factor (MIF) in paraventricular nucleus (PVN) neurons is a novel mechanism mediating attenuation of both the sympathetic and HPA axis responses to acute stress.

  1. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  2. Thioredoxin Reductase Mediates Cell Death Effects of the Combination of Beta Interferon and Retinoic Acid

    Science.gov (United States)

    Hofman, Edward R.; Boyanapalli, Madanamohan; Lindner, Daniel J.; Weihua, Xiao; Hassel, Bret A.; Jagus, Rosemary; Gutierrez, Peter L.; Kalvakolanu, Dhananjaya V.

    1998-01-01

    Interferons (IFNs) and retinoids are potent biological response modifiers. By using JAK-STAT pathways, IFNs regulate the expression of genes involved in antiviral, antitumor, and immunomodulatory actions. Retinoids exert their cell growth-regulatory effects via nuclear receptors, which also function as transcription factors. Although these ligands act through distinct mechanisms, several studies have shown that the combination of IFNs and retinoids synergistically inhibits cell growth. We have previously reported that IFN-β–all-trans-retinoic acid (RA) combination is a more potent growth suppressor of human tumor xenografts in vivo than either agent alone. Furthermore, the IFN-RA combination causes cell death in several tumor cell lines in vitro. However, the molecular basis for these growth-suppressive actions is unknown. It has been suggested that certain gene products, which mediate the antiviral actions of IFNs, are also responsible for the antitumor actions of the IFN-RA combination. However, we did not find a correlation between their activities and cell death. Therefore, we have used an antisense knockout approach to directly identify the gene products that mediate cell death and have isolated several genes associated with retinoid-IFN-induced mortality (GRIM). In this investigation, we characterized one of the GRIM cDNAs, GRIM-12. Sequence analysis suggests that the GRIM-12 product is identical to human thioredoxin reductase (TR). TR is posttranscriptionally induced by the IFN-RA combination in human breast carcinoma cells. Overexpression of GRIM-12 causes a small amount of cell death and further enhances the susceptibility of cells to IFN-RA-induced death. Dominant negative inhibitors directed against TR inhibit its cell death-inducing functions. Interference with TR enzymatic activity led to growth promotion in the presence of the IFN-RA combination. Thus, these studies identify a novel function for TR in cell growth regulation. PMID:9774665

  3. Astragalosidic Acid: A New Water-Soluble Derivative of Astragaloside IV Prepared Using Remarkably Simple TEMPO-Mediated Oxidation.

    Science.gov (United States)

    Qing, Lin-Sen; Peng, Shu-Lin; Liang, Jian; Ding, Li-Sheng

    2017-07-31

    There is an urgent need for a water-soluble derivative of astragaloside IV for drug R&D. In the present study, a remarkably simple method for the preparation of such a water-soluble derivative of astragaloside IV has been developed. This protocol involves oxidative 2,2,6,6-tetramethylpiperidine-1-oxyl free radical (TEMPO)-mediated transformation of astragaloside IV to its carboxylic acid derivative, which is a new compound named astragalosidic acid. The structure of astragalosidic acid was elucidated by means of spectroscopic analysis. Its cardioprotective activity was investigated using an in vitro model of cardiomyocyte damage induced by hypoxia/reoxygenation in H9c2 cells. The oxidative TEMPO-mediated transformation proposed in the present study could be applied to other natural saponins, offering an effective and convenient way to develop a new compound with greatly improved structure-based druggability.

  4. Antagonism Between Saturated and Unsaturated Fatty Acids in ROS Mediated Lipotoxicity in Rat Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Wiebke Gehrmann

    2015-05-01

    Full Text Available Background/Aims: Elevated levels of non-esterified fatty acids (NEFAs are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. Methods: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. Results: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. Conclusion: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal β-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.

  5. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  6. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation*

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. PMID:26553874

  7. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation.

    Science.gov (United States)

    Das, Sudipto; Foley, Niamh; Bryan, Kenneth; Watters, Karen M; Bray, Isabella; Murphy, Derek M; Buckley, Patrick G; Stallings, Raymond L

    2010-10-15

    Neuroblastoma is an often fatal pediatric cancer arising from precursor cells of the sympathetic nervous system. 13-Cis retinoic acid is included in the treatment regimen for patients with high-risk disease, and a similar derivative, all-trans-retinoic acid (ATRA), causes neuroblastoma cell lines to undergo differentiation. The molecular signaling pathways involved with ATRA-induced differentiation are complex, and the role that DNA methylation changes might play are unknown. The purpose of this study was to evaluate the genome-wide effects of ATRA on DNA methylation using methylated DNA immunoprecipitation applied to microarrays representing all known promoter and CpG islands. Four hundred and two gene promoters became demethylated, whereas 88 were hypermethylated post-ATRA. mRNA expression microarrays revealed that 82 of the demethylated genes were overexpressed by >2-fold, whereas 13 of the hypermethylated genes were underexpressed. Gene ontology analysis indicated that demethylated and re-expressed genes were enriched for signal transduction pathways, including NOS1, which is required for neural cell differentiation. As a potential mechanism for the DNA methylation changes, we show the downregulation of methyltransferases, DNMT1 and DNMT3B, along with the upregulation of endogenous microRNAs targeting them. Ectopic overexpression of miR-152, targeting DNMT1, also negatively affected cell invasiveness and anchorage-independent growth, contributing in part to the differentiated phenotype. We conclude that functionally important, miRNA-mediated DNA demethylation changes contribute to the process of ATRA-induced differentiation resulting in the activation of NOS1, a critical determinant of neural cell differentiation. Our findings illustrate the plasticity and dynamic nature of the epigenome during cancer cell differentiation.

  9. Resolvin RvD2 reduces hypothalamic inflammation and rescues mice from diet-induced obesity.

    Science.gov (United States)

    Pascoal, Livia B; Bombassaro, Bruna; Ramalho, Albina F; Coope, Andressa; Moura, Rodrigo F; Correa-da-Silva, Felipe; Ignacio-Souza, Leticia; Razolli, Daniela; de Oliveira, Diogo; Catharino, Rodrigo; Velloso, Licio A

    2017-01-05

    Diet-induced hypothalamic inflammation is an important mechanism leading to dysfunction of neurons involved in controlling body mass. Studies have shown that polyunsaturated fats can reduce hypothalamic inflammation. Here, we evaluated the presence and function of RvD2, a resolvin produced from docosahexaenoic acid, in the hypothalamus of mice. Male Swiss mice were fed either chow or a high-fat diet. RvD2 receptor and synthetic enzymes were evaluated by real-time PCR and immunofluorescence. RvD2 was determined by mass spectrometry. Dietary and pharmacological approaches were used to modulate the RvD2 system in the hypothalamus, and metabolic phenotype consequences were determined. All enzymes involved in the synthesis of RvD2 were detected in the hypothalamus and were modulated in response to the consumption of dietary saturated fats, leading to a reduction of hypothalamic RvD2. GPR18, the receptor for RvD2, which was detected in POMC and NPY neurons, was also modulated by dietary fats. The substitution of saturated by polyunsaturated fats in the diet resulted in increased hypothalamic RvD2, which was accompanied by reduced body mass and improved glucose tolerance. The intracerebroventricular treatment with docosahexaenoic acid resulted in increased expression of the RvD2 synthetic enzymes, increased expression of anti-inflammatory cytokines and improved metabolic phenotype. Finally, intracerebroventricular treatment with RvD2 resulted in reduced adiposity, improved glucose tolerance and increased hypothalamic expression of anti-inflammatory cytokines. Thus, RvD2 is produced in the hypothalamus, and its receptor and synthetic enzymes are modulated by dietary fats. The improved metabolic outcomes of RvD2 make this substance an attractive approach to treat obesity.

  10. Sweet taste signaling functions as a hypothalamic glucose sensor

    Directory of Open Access Journals (Sweden)

    Xueying Ren

    2009-06-01

    Full Text Available Brain glucosensing is essential for normal body glucose homeostasis and neuronal function. However, the exact signaling mechanisms involved in the neuronal sensing of extracellular glucose levels remain poorly understood. Of particular interest is the identification of candidate membrane molecular sensors allowing neurons to change firing rates independently of intracellular glucose metabolism. Here we describe for the first time the expression of the taste receptor genes Tas1r1, Tas1r2 and Tas1r3, and their associated G-protein genes, in the mammalian brain. Neuronal expression of taste genes was detected in different nutrient-sensing forebrain regions, including the paraventricular and arcuate nuclei of the hypothalamus, the CA fields and dentate gyrus of the hippocampus, the habenula, and cortex. Expression was also observed in the intra-ventricular epithelial cells of the choroid plexus. These same regions were found to express the corresponding gene products that form the heterodimeric T1R2/T1R3 and T1R1/T1R3 sweet and L-amino acid taste G-protein coupled receptors, respectively. These regions were also found to express the taste G-protein α-Gustducin. Moreover, in vivo studies in mice demonstrate that the hypothalamic expression of taste-related genes is regulated by the nutritional state of the animal, with food deprivation significantly increasing expression levels of Tas1r1 and Tas1r2 in hypothalamus, but not in cortex. Furthermore, exposing mouse hypothalamic cells to a low-glucose medium, while maintaining normal L-amino acid concentrations, specifically resulted in higher expression levels of the sweet-associated gene Tas1r2. This latter effect was reversed by adding the non-metabolizable artificial sweetener sucralose to the low-glucose medium, indicating that taste-like signaling in hypothalamic neurons does not require intracellular glucose oxidation. Our findings suggest that the G-protein coupled sweet receptor T1R2/T1R3 is a

  11. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model.

    Science.gov (United States)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Zhao, Feng; Luan, Hansen; Wang, Xiuli

    2015-01-01

    Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  12. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa.

    Science.gov (United States)

    Bullen, Hayley E; Soldati-Favre, Dominique

    2016-08-01

    Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa. © 2016 Federation of European Biochemical Societies.

  13. Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UV irradiation.

    Science.gov (United States)

    Li, Aimin; Zhang, Zhe; Li, Peifeng; Cai, Lejuan; Zhang, Lizhi; Gong, Jingming

    2017-12-01

    Effective decomposition of perfluorooctanoic acid (PFOA) has received increasing attention in recent years because of its global occurrence and resistance to most conventional treatment processes. In this study, the complete mineralization of PFOA was achieved by the UV-photolysis of nitrate aqueous solution (UV/Nitrate), where the in-situ generated nitrogen dioxide radicals (NO2) efficiently mediated the degradation of PFOA. In particular, when the twinborn hydroxyl radicals were scavenged, the production of more NO2 radicals realized the complete mineralization of PFOA. DFT calculations further confirm the feasibility of PFOA removal with NO2. Near-stoichiometric equivalents of fluoride released rather than the related intermediates were detected in solution after decomposition of PEOA, further demonstrating the complete degradation of PFOA. Possible PFOA degradation pathways were proposed on the basis of experimental results. This work offers an efficient strategy for the complete mineralization of perfluorinated chemicals, and also sheds light on the indispensable roles of nitrogen dioxide radicals for environmental pollutants removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    Science.gov (United States)

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment.

    Directory of Open Access Journals (Sweden)

    Denis Evseenko

    Full Text Available Lysophosphatidic acid (LPA is a pleiotropic phospholipid present in the blood and certain tissues at high concentrations; its diverse effects are mediated through differential, tissue specific expression of LPA receptors. Our goal was to determine if LPA exerts lineage-specific effects during normal human hematopoiesis. In vitro stimulation of CD34+ human hematopoietic progenitors by LPA induced myeloid differentiation but had no effect on lymphoid differentiation. LPA receptors were expressed at significantly higher levels on Common Myeloid Progenitors (CMP than either multipotent Hematopoietic Stem/Progenitor Cells (HSPC or Common Lymphoid Progenitors (CLP suggesting that LPA acts on committed myeloid progenitors. Functional studies demonstrated that LPA enhanced migration, induced cell proliferation and reduced apoptosis of isolated CMP, but had no effect on either HSPC or CLP. Analysis of adult and fetal human bone marrow sections showed that PPAP2A, (the enzyme which degrades LPA was highly expressed in the osteoblastic niche but not in the perivascular regions, whereas Autotaxin (the enzyme that synthesizes LPA was expressed in perivascular regions of the marrow. We propose that a gradient of LPA with the highest levels in peri-sinusoidal regions and lowest near the endosteal zone, regulates the localization, proliferation and differentiation of myeloid progenitors within the bone marrow marrow.

  16. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid

    Science.gov (United States)

    Rostami, Simindokht; Mehdinia, Ali; Jabbari, Ali

    2017-06-01

    A simple and sensitive approach was demonstrated for detection of ascorbic acid (AA) based on seed-mediated growth of silver nanoparticles (Ag NPs). According to the seeding strategy, silver ions existing in the growth solution were reduced to silver atoms on the surface of silver seeds via redox reaction between silver ions and AA. This process -led to appear an absorption band in near 420 nm owing to the localized surface plasmon resonance peak of the generated Ag NPs. This change in absorption spectra of Ag NPs caused a change in color of the mixture from colorless to yellow. It was found that the changes in absorption intensity at 420 nm have a good relationship with the concentration of AA. Also, detection of AA was achieved through the established colorimetric sensor in the range of 0.25-25 μM with detection limit of 0.054 μM. Moreover, the selectivity of the method was evaluated with considering potential interferences. The method showed high selectivity toward AA rather than potential interferences and coexisted molecules with AA. It was successfully applied for detection and determination of AA in pharmaceutical tablets and commercial lemonade.

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  18. AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment.

    Science.gov (United States)

    Kells, A P; Henry, R A; Connor, B

    2008-07-01

    Maintenance and plasticity of striatal neurons is dependent on brain-derived neurotrophic factor (BDNF), which is depleted in the Huntington's disease striatum due to reduced expression and disrupted corticostriatal transportation. In this study we demonstrate that overexpression of BDNF in the striatum attenuates motor impairment and reduces the extent of striatal damage following quinolinic acid lesioning. Transfer of the BDNF gene to striatal neurons using serotype 1/2 adeno-associated viral vectors enhanced BDNF protein levels in the striatum, but induced weight loss and seizure activity following long-term high-level expression. Lower concentration BDNF expression supported striatal neurons against excitotoxic insult, as demonstrated by enhanced krox-24 immunopositive neuron survival, reduction of striatal atrophy and maintenance of the patch/matrix organization. Additionally, BDNF expression attenuated motor impairment in the forelimb use cylinder test, sensorimotor neglect in the corridor food selection task and reversed apomorphine-induced rotational behaviour. Direct correlations were shown for the first time between BDNF-mediated attenuation of behavioural impairment and the integrity of the globus pallidus, seemingly independent from the severity of striatal lesioning. These results demonstrate that BDNF holds considerable therapeutic potential for alleviating both neuropathological and motor function deficits in the Huntington's disease brain, and the critical role of pallidal neurons in facilitating motor performance.

  19. Poly(methacrylic acid)-mediated morphosynthesis of PbWO{sub 4} micro-crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.G.; Zhao, X.F.; Liu, S.W. [Wuhan University of Technology, State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan (China); Li, M.; Mann, S. [University of Bristol, School of Chemistry, Bristol (United Kingdom); Ng, D.H.L. [The Chinese University of Hong Kong, Department of Physics, Hong Kong (China)

    2007-04-15

    PbWO{sub 4} crystals with various morphologies were fabricated via a facile poly(methacrylic acid)-mediated hydrothermal route. Novel microsized PbWO{sub 4} single crystals with a needle-like shape as well as other morphologies, such as a fishbone, dendrite, sphere, spindle, ellipsoid, rod, and dumbbell with two dandelion-like heads, could be produced. The presence of PMAA, [Pb{sup 2+}]/[WO{sub 4} {sup 2-}] molar ratio (R), and aging temperature played key roles in the formation of the PbWO{sub 4} needle-like structures. Between temperatures of 60 to 150 C, the length and photoluminescence intensities of the PbWO{sub 4} micro needles significantly increased with aging temperature, while the diameter did not change remarkably. Time-dependent experiments revealed that the formation of PbWO{sub 4} microneedles involved an unusual growth process, involving nucleation, oriented assembly and controlled mesoscale restructuring of nanoparticle building blocks. (orig.)

  20. GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling

    Science.gov (United States)

    Stretton, Clare; Hoffmann, Thorsten M.; Munson, Michael J.; Prescott, Alan; Taylor, Peter M.; Ganley, Ian G.; Hundal, Harinder S.

    2015-01-01

    The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser859. We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation. PMID:26348909

  1. Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity

    Science.gov (United States)

    Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.

    2012-01-01

    Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601

  2. Evaluation of 5-aminolevulinic acid-mediated photorejuvenation of neck skin.

    Science.gov (United States)

    Zhang, Hai-yan; Ji, Jie; Tan, Yi-mei; Zhang, Ling-lin; Wang, Xiao-jie; Wang, Pei-ru; Yang, De-gang; Shi, Lei; Huang, Zheng; Chen, Shun-ying; Wang, Xiu-Li

    2014-12-01

    To evaluate the outcomes of the combination of red light or intense pulsed laser (IPL) with 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) in the treatment of photodamaged neck skin. The anterior of the neck was divided into four 2 cm × 2 cm sections and randomly assigned to red-light, red-light-PDT, IPL or IPL-PDT group. ALA cream of 5% was applied to PDT regions for 2h prior to light irradiation. Treatment was repeated once. The stratum corneum (SC) hydration, transepidermal water loss (TEWL), L(*), a(*), b(*) values, melanin index (MI), erythema index (EI), skin elasticity and skin thickness were examined by a blinded investigator. The function and volume of thyroid were also measured. After red-light-PDT, IPL-PDT and IPL treatment, the appearance of photoaging lesion was improved. The SC hydration, L(*) value, elasticity and thickness increased, whereas the TEWL and MI value decreased. These changes in red-light-PDT and IPL-PDT group were more obvious than IPL group. The a(*) and EI value increased in red-light-PDT group. No significant change was noticed in red-light group. Partial irradiation of the thyroid did not affect the function and volume of the thyroid. IPL-PDT and red-light-PDT showed better rejuvenation effect than IPL or red light alone on the neck skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages

    Czech Academy of Sciences Publication Activity Database

    Rombaldová, Martina; Janovská, Petra; Kopecký, Jan; Kuda, Ondřej

    2017-01-01

    Roč. 490, č. 3 (2017), s. 1080-1085 ISSN 0006-291X R&D Projects: GA ČR(CZ) GA16-05151S; GA MŠk(CZ) LTAUSA17173 Institutional support: RVO:67985823 Keywords : adipose tissue * macrophages * omega-3 PUFA * fatty acid re-esterification * lipolysis * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.466, year: 2016

  4. Hypothalamic survival circuits: blueprints for purposive behaviors.

    Science.gov (United States)

    Sternson, Scott M

    2013-03-06

    Neural processes that direct an animal's actions toward environmental goals are critical elements for understanding behavior. The hypothalamus is closely associated with motivated behaviors required for survival and reproduction. Intense feeding, drinking, aggressive, and sexual behaviors can be produced by a simple neuronal stimulus applied to discrete hypothalamic regions. What can these "evoked behaviors" teach us about the neural processes that determine behavioral intent and intensity? Small populations of neurons sufficient to evoke a complex motivated behavior may be used as entry points to identify circuits that energize and direct behavior to specific goals. Here, I review recent applications of molecular genetic, optogenetic, and pharmacogenetic approaches that overcome previous limitations for analyzing anatomically complex hypothalamic circuits and their interactions with the rest of the brain. These new tools have the potential to bridge the gaps between neurobiological and psychological thinking about the mechanisms of complex motivated behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Hormonal regulation of the hypothalamic melanocortin system.

    Science.gov (United States)

    Kim, Jung D; Leyva, Stephanie; Diano, Sabrina

    2014-01-01

    Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

  6. Hormonal regulation of the hypothalamic melanocortin system

    Directory of Open Access Journals (Sweden)

    Jung Dae eKim

    2014-12-01

    Full Text Available Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.

  7. Ontogeny of the hypothalamic neuropeptide Y system.

    Science.gov (United States)

    Grove, Kevin L; Smith, M Susan

    2003-06-01

    Early onset obesity and type II diabetes is rapidly becoming an epidemic, especially within the United States. This dramatic increase is likely due to many factors including both prenatal and postnatal environmental cues. The purpose of this review is to highlight some of the recent advances in our knowledge of the development of the hypothalamic circuits involved in the regulation of energy balance, with a focus on the neuropeptide Y (NPY) system. Unlike the adult rat, during the postnatal period NPY is transiently expressed in several hypothalamic regions, along with the expected expression within the arcuate nucleus (ARH). These transient populations of NPY neurons during the postnatal period may provide local NPY production to sustain the necessary energy intake during this critical growth phase. This may be physiologically important since ARH-NPY projections do not fully develop until the 3rd postnatal week. The significance of this ontogeny is that many peripheral metabolic signals have little effect of feeding prior to the development of the ARH projections. The essential questions now are whether prenatal and/or postnatal exposure to high levels of insulin or leptin during development can cause permanent changes in the function of hypothalamic circuits. It is vital to understand not only the natural development of the hypothalamic circuits that regulate energy homeostasis, but also their abnormal development caused by maternal and postnatal environmental cues. This will be pivotal for designing intervention and therapeutics to treat early onset obesity/type II diabetes, which may very well need to be different from those designed to prevent/treat adult onset obesity/type II diabetes.

  8. Hypothalamic innate immune reaction in obesity.

    Science.gov (United States)

    Kälin, Stefanie; Heppner, Frank L; Bechmann, Ingo; Prinz, Marco; Tschöp, Matthias H; Yi, Chun-Xia

    2015-06-01

    Findings from rodent and human studies show that the presence of inflammatory factors is positively correlated with obesity and the metabolic syndrome. Obesity-associated inflammatory responses take place not only in the periphery but also in the brain. The hypothalamus contains a range of resident glial cells including microglia, macrophages and astrocytes, which are embedded in highly heterogenic groups of neurons that control metabolic homeostasis. This complex neural-glia network can receive information directly from blood-borne factors, positioning it as a metabolic sensor. Following hypercaloric challenge, mediobasal hypothalamic microglia and astrocytes enter a reactive state, which persists during diet-induced obesity. In established mouse models of diet-induced obesity, the hypothalamic vasculature displays angiogenic alterations. Moreover, proopiomelanocortin neurons, which regulate food intake and energy expenditure, are impaired in the arcuate nucleus, where there is an increase in local inflammatory signals. The sum total of these events is a hypothalamic innate immune reactivity, which includes temporal and spatial changes to each cell population. Although the exact role of each participant of the neural-glial-vascular network is still under exploration, therapeutic targets for treating obesity should probably be linked to individual cell types and their specific signalling pathways to address each dysfunction with cell-selective compounds.

  9. Estrogen is neuroprotective against hypoglycemic injury in murine N38 hypothalamic cells.

    Science.gov (United States)

    Chakraborty, Tandra R; Cohen, Joshua; Yohanan, Darien; Alicea, Eilliut; Weeks, Benjamin S; Chakraborty, Sanjoy

    2016-12-01

    Estrogen (E2) has been demonstrated to possess protective effects from hypoglycemic toxicity, particularly in the pancreas. In the central nervous system, several brain regions, such as the hypothalamus, are highly vulnerable to hypoglycemic injuries that may lead to seizures, coma, and mortality. The present study performed a novel in vitro assay of hypoglycemic injury to hypothalamic cells, and is the first study, to the best of our knowledge, to demonstrate that E2 protects hypothalamic cells from hypoglycemic toxicity. The toxic effects of hypoglycemia on hypothalamic cells in vitro was determined by performing cell counts, together with MTT and lactate dehydrogenase assays, using the N38 murine hypothalamic cell line. Following 24 and 48 h in hypoglycemic conditions, a 60 and 75% reduction in cell number and mitochondrial function was observed, which reached 80 and ~100% by 72 and 96 h, respectively. E2 treatment prevented the hypoglycemia‑induced loss in cell number and mitochondrial toxicity at 24 and 48 h. However at 72 and 96 h of hypoglycemic conditions, the neuroprotective effects of E2 on cell number or mitochondrial function was not significant or not present at all. In order to determine whether E2 exerted its effects through the AKT signaling pathway, the expression of proline‑rich AKT substrate of 40 kDa (PRAS40) was analyzed. No alterations in PRAS40 expression were observed when N38 cells were exposed to hypoglycemic shock. From the biochemical and molecular data obtained, the authors speculated that E2 exhibits neuroprotective effects against hypoglycemic shock in hypothalamic cells, which dissipates with time. Despite demonstrating no significant effect on total AKT/PRS40 activity, it is possible that E2 may mediate these neuroprotective effects by upregulating the phosphorylated‑AKT/pPRAS40 signaling pathway. The present study presented, to the best of our knowledge, the first in vitro model for hypoglycemic toxicity to

  10. Electro-acupuncture relieves visceral sensitivity and decreases hypothalamic corticotropin-releasing hormone levels in a rat model of irritable bowel syndrome.

    Science.gov (United States)

    Wu, Huan-gan; Liu, Hui-rong; Zhang, Zeng-an; Zhou, En-hua; Wang, Xiao-mei; Jiang, Bin; Shi, Zheng; Zhou, Ci-li; Qi, Li; Ma, Xiao-peng

    2009-11-20

    Previous studies into electro-acupuncture (EA) treatment of irritable bowel syndrome (IBS) have principally focused on the peripheral effects of EA in a rat model of IBS. It is not known whether EA exerts central effects in this rat model. We have examined the effects of EA on hypothalamic corticotropin-releasing hormone (CRH) levels in a rat model of IBS provoked by colorectal distension (CRD) and forelimb immobilization. EA was administered once daily to IBS model rats over a period of 7 d; untreated IBS rats and controls were also studied. The behavioral response to distension was rated according to the abdominal withdrawal reflex (AWR) score; hypothalamic CRH levels were measured by radioimmunoassay. We report that EA treatment significantly decreased visceral sensitivity to CRD in this rat model. In treated animals, EA also decreased hypothalamic CRH to control levels. Reduced hypothalamic CRH levels may mediate the beneficial effects of EA in this rat IBS model.

  11. Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamic-pituitary-adrenal axis adaptations to repeated stress.

    Science.gov (United States)

    Radley, Jason J; Sawchenko, Paul E

    2015-12-15

    Emotional stressors activate a stereotyped set of limbic forebrain cell groups implicated in constraining stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation by inhibiting hypophysiotropic neurons in the paraventricular hypothalamic nucleus (PVH). We previously identified a circumscribed, anterior part of the bed nuclei of the stria terminalis (aBST) that houses stress-sensitive, PVH-projecting, γ-aminobutyric acid (GABA)-ergic neurons as representing a site of convergence of stress-inhibitory influences originating from medial prefrontal and hippocampal cortices. Here we investigate whether exaggerated HPA axis responses associated with chronic variable stress (CVS; daily exposure to different stressors at unpredictable times over 14 days, followed by restraint stress on day 15) and diminished HPA output seen following repeated (14 days) restraint-stress exposure are associated with differential engagement of the limbic modulatory network. Relative to acutely restrained rats, animals subjected to CVS showed the expected increase (sensitization) in HPA responses and diminished levels of activation (Fos) of GABAergic neurons and glutamic acid decarboxylase (GAD) mRNA expression in the aBST. By contrast, repeated restraint stress produced habituation in HPA responses, maintained levels of activation of GABAergic neurons, and increased GAD expression in the aBST. aBST-projecting neurons in limbic sites implicated in HPA axis inhibition tended to show diminished activational responses in both repeated-stress paradigms, with the exception of the paraventricular thalamic nucleus, in which responsiveness was maintained in repeatedly restrained animals. The results are consistent with the view that differential engagement of HPA inhibitory mechanisms in the aBST may contribute to alterations in HPA axis responses to emotional stress in sensitization and habituation paradigms. © 2015 Wiley Periodicals, Inc.

  12. Sulfated Cholecystokinin-8 Promotes CD36—Mediated Fatty Acid Uptake into Primary Mouse Duodenal Enterocytes

    Directory of Open Access Journals (Sweden)

    Claire Demenis

    2017-09-01

    Full Text Available Cholecystokinin (CCK is an archetypal incretin hormone secreted by intestinal enteroendocrine cells (EEC in response to ingested nutrients. The aim of this study was to determine whether CCK modulates enterocyte fatty acid uptake by primary mouse duodenal cells. Exposure of primary mouse duodenal cells to 10 pM sulfated CCK-8 caused a two fold increase in dodecanoic acid fatty acid (FA uptake. The selective CCK A receptor antagonist loxiglumide (100 μM completely abolished the CCK-8 induced FA uptake. The CD36 fatty acid translocase-specific inhibitor sulfo-N-succinimidyl oleate (1 μM also completely inhibited CCK-8 induced FA uptake, as did treatment with 200 μM phloretin. Together these data show CCK induces FA uptake into duodenal enterocytes; this action involves the CCK-RA receptor and is carrier mediated by CD36.

  13. 5-Aminolevulinic acid-mediated photodynamic therapy for oral cancers and precancers

    Directory of Open Access Journals (Sweden)

    Hsin-Ming Chen

    2012-12-01

    Full Text Available Previous studies have used both systemic and topical 5-aminolevulinic acid (ALA-mediated photodynamic therapy (PDT to treat oral precancers including oral leukoplakia (OL, oral erythroleukoplakia (OEL, and oral verrucous hyperplasia (OVH as well as oral cancers including oral verrucous carcinoma (OVC and oral squamous cell carcinoma (OSCC. Systemic ALA-PDT has been used to treat oral dysplastic lesions and oral cancers with promising clinical outcomes. The efficacy of a regular topical ALA-PDT (fluence rate, 100 mW/cm2; light dose, 100 J/cm2 was tested on an extensive buccal OVC and an enhanced topical ALA-PDT (fluence rate, 200 mW/cm2; light dose, 200 J/cm2 on an early-invasive OSCC; complete regression of the carcinomas was demonstrated after 28 and 18 PDT treatments, respectively. Several previous studies showed relatively good outcomes for OL lesions treated with topical ALA-PDT. However, it was found that the regular topical ALA-PDT is very effective for OVH and OEL lesions but less so for OL lesions. Better PDT outcomes are significantly associated with OVH and OEL lesions with smaller size, pink to red color, epithelial dysplasia, or thinner surface keratin layer. Moreover, the thicker surface keratin layer on the OL lesions is responsible for the relatively poorer PDT outcomes for OL lesions. In addition, both light emitting diode light- and laser light-mediated topical ALA-PDTs are comparative treatment modalities for OVH and OEL lesions. Methotrexate- or vitamin D3-preconditioned prostate or skin carcinoma cells can accumulate more intracellular protoporphyrin IX, resulting in an increased killing of these preconditioned cells by subsequent ALA-PDT. Because chemotherapy can help destroy carcinoma cells and tumor-associated vasculatures and cryotherapy pretreatment may help the diffusion of ALA into lesional epithelial cells, the chemotherapy or cryotherapy-combined topical ALA-PDT may be a new effective PDT alternative for

  14. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    Science.gov (United States)

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance.

    Science.gov (United States)

    Leshan, Rebecca L; Greenwald-Yarnell, Megan; Patterson, Christa M; Gonzalez, Ian E; Myers, Martin G

    2012-05-01

    Few effective measures exist to combat the worldwide obesity epidemic(1), and the identification of potential therapeutic targets requires a deeper understanding of the mechanisms that control energy balance. Leptin, an adipocyte-derived hormone that signals the long-term status of bodily energy stores, acts through multiple types of leptin receptor long isoform (LepRb)-expressing neurons (called here LepRb neurons) in the brain to control feeding, energy expenditure and endocrine function(2-4). The modest contributions to energy balance that are attributable to leptin action in many LepRb populations(5-9) suggest that other previously unidentified hypothalamic LepRb neurons have key roles in energy balance. Here we examine the role of LepRb in neuronal nitric oxide synthase (NOS1)-expressing LebRb (LepRb(NOS1)) neurons that comprise approximately 20% of the total hypothalamic LepRb neurons. Nos1(cre)-mediated genetic ablation of LepRb (Lepr(Nos1KO)) in mice produces hyperphagic obesity, decreased energy expenditure and hyperglycemia approaching that seen in whole-body LepRb-null mice. In contrast, the endocrine functions in Lepr(Nos1KO) mice are only modestly affected by the genetic ablation of LepRb in these neurons. Thus, hypothalamic LepRb(NOS1) neurons are a key site of action of the leptin-mediated control of systemic energy balance.

  16. Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice.

    Directory of Open Access Journals (Sweden)

    Bruno Pillot

    Full Text Available The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia, and agouti-related protein (AgRP, antagonist, inducing hyperphagia--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.

  17. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    Science.gov (United States)

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  18. Mitochondria-mediated disturbance of fatty acid metabolism in proximal tubule epithelial cells leads to renal interstitial fibrosis.

    Science.gov (United States)

    Shen, W; Jiang, X-X; Li, Y-W; He, Q

    2018-02-01

    To investigate the role of mitochondria-mediated fatty acid metabolism in proximal tubule cells in renal interstitial fibrosis. Intraperitoneal injection of folate was performed to induce renal interstitial fibrosis in mice. Polymerase chain reaction (PCR) was used to detect the expression of cytochrome c oxidase subunit IV (COX4IL) and phosphoenolpyruvate carboxykinase 1 (PCK1) in samples. Electron microscope was used to detect the activity of mitochondria. Serum creatinine and urea nitrogen were chosen as evaluation criteria for renal function. Western-blotting was used to detect protein expression of cells. Immunohistochemistry was used to test renal structure and deposition of collagen. In renal interstitial fibrosis, mitochondria mediated the dysfunction and the promotion of tubulointerstitial fatty acid metabolism. Besides, it could also reduce renal interstitial fibrosis and alleviate the fatty acid metabolism of tubulointerstitial fibrosis. Mitochondrial dysfunction induced fatty acid metabolism is an important factor to promote the progress of renal interstitial fibrosis. Intervention of related targets of fatty acid metabolism is expected to become a new treatment for renal interstitial fibrosis.

  19. ABCA1-dependent but apoA-I-independent cholesterol efflux mediated by fatty acid-bile acid conjugates (FABACs)

    NARCIS (Netherlands)

    Goldiner, Ilana; van der Velde, Astrid E.; Vandenberghe, Kristin E.; van Wijland, Michel A.; Halpern, Zamir; Gilat, Tuvia; Konikoff, Fred M.; Veldman, Robert Jan; Groen, Albert K.

    2006-01-01

    FABACs (fatty acid-bile acid conjugates) are synthetic molecules that are designed to treat a range of lipid disorders. The compounds prevent cholesterol gallstone formation and diet-induced fatty liver, and increase reverse cholesterol transport in rodents. The aim of the present study was to

  20. Early life origins of metabolic disease: Developmental programming of hypothalamic pathways controlling energy homeostasis.

    Science.gov (United States)

    Dearden, Laura; Ozanne, Susan E

    2015-10-01

    A wealth of animal and human studies demonstrate that perinatal exposure to adverse metabolic conditions - be it maternal obesity, diabetes or under-nutrition - results in predisposition of offspring to develop obesity later in life. This mechanism is a contributing factor to the exponential rise in obesity rates. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of energy homeostasis as an underlying cause. Perinatal development of the hypothalamus (a brain region key to metabolic regulation) is plastic and sensitive to metabolic signals during this critical time window. Recent research in non-human primate and rodent models has demonstrated that exposure to adverse maternal environments impairs the development of hypothalamic structure and consequently function, potentially underpinning metabolic phenotypes in later life. This review summarizes our current knowledge of how adverse perinatal environments program hypothalamic development and explores the mechanisms that could mediate these effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses.

    Science.gov (United States)

    Matarese, Giuseppe; Procaccini, Claudio; Menale, Ciro; Kim, Jae Geun; Kim, Jung Dae; Diano, Sabrina; Diano, Nadia; De Rosa, Veronica; Dietrich, Marcelo O; Horvath, Tamas L

    2013-04-09

    Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4(+) T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3(+)) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response.

  2. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets.

    Science.gov (United States)

    Becker, Katrin Anne; Beckmann, Nadine; Adams, Constantin; Hessler, Gabriele; Kramer, Melanie; Gulbins, Erich; Carpinteiro, Alexander

    2017-01-01

    Metastatic dissemination of cancer cells is one of the hallmarks of malignancy and accounts for approximately 90 % of human cancer deaths. Within the blood vasculature, tumor cells may aggregate with platelets to form clots, adhere to and spread onto endothelial cells, and finally extravasate to form metastatic colonies. We have previously shown that sphingolipids play a central role in the interaction of tumor cells with platelets; this interaction is a prerequisite for hematogenous tumor metastasis in at least some tumor models. Here we show that the interaction between melanoma cells and platelets results in rapid and transient activation and secretion of acid sphingomyelinase (Asm) in WT but not in P-selectin-deficient platelets. Stimulation of P-selectin resulted in activation of p38 MAPK, and inhibition of p38 MAPK in platelets prevented the secretion of Asm after interaction with tumor cells. Intravenous injection of melanoma cells into WT mice resulted in multiple lung metastases, while in P-selectin-deficient mice pulmonary tumor metastasis and trapping of tumor cells in the lung was significantly reduced. Pre-incubation of tumor cells with recombinant ASM restored trapping of B16F10 melanoma cells in the lung in P-selectin-deficient mice. These findings indicate a novel pathway in tumor metastasis, i.e., tumor cell mediated activation of P-selectin in platelets, followed by activation and secretion of Asm and in turn release of ceramide and tumor metastasis. The data suggest that p38 MAPK acts downstream from P-selectin and is necessary for the secretion of Asm.

  3. Fusaric Acid Production in Fusarium oxysporum Transformants Generated by Restriction Enzyme-Mediated Integration Procedure

    Directory of Open Access Journals (Sweden)

    Theresa Lee

    2013-12-01

    Full Text Available Fusaric acid (FA is a mycotoxin produced by Fusarium species. Its toxicity is relatively low but often associated with other mycotoxins, thus enhancing total toxicity. To date, biosynthetic genes or enzymes for FA have not been identified in F. oxysporum. In order to explore the genetic element(s for FA biosynthesis, restriction enzyme mediated integration (REMI procedure as an insertional mutagenesis was employed using FA producing-F. oxysporum strains. Genetic transformation of two F. oxysporum strains by REMI yielded more than 7,100 transformants with efficiency of average 3.2 transformants/μg DNA. To develop a screening system using phytotoxicity of FA, eleven various grains and vegetable seeds were tested for germination in cultures containing FA: Kimchi cabbage seed was selected as the most sensitive host. Screening for FA non-producer of F. oxysporum was done by growing each fungal REMI transformant in Czapek-Dox broth for 3 weeks at 25oC then observing if the Kimchi cabbage seeds germinated in the culture filtrate. Of more than 5,000 REMI transformants screened, fifty-three made the seeds germinated, indicating that they produced little or fewer FA. Among them, twenty-six were analyzed for FA production by HPLC and two turned out to produce less than 1% of FA produced by a wild type strain. Sequencing of genomic DNA regions (252 bp flanking the vector insertion site revealed an uncharacterized genomic region homologous (93% to the F. fujikuroi genome. Further study is necessary to determine if the vector insertion sites in FA-deficient mutants are associated with FA production.

  4. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction.

    Science.gov (United States)

    Wang, Jian; Yang, Yaping; Zhang, Ruihua; Shen, Xiaolin; Chen, Zhenya; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2018-01-01

    2-Methylsuccinic acid (2-MSA) is a C5 branched-chain dicarboxylate that serves as an attractive synthon for the synthesis of polymers with extensive applications in coatings, cosmetic solvents and bioplastics. However, the lack of natural pathways for 2-MSA biosynthesis has limited its application as a promising bio-replacement. Herein, we conceived a non-natural three-step biosynthetic route for 2-MSA, via employing the citramalate pathway in combination with enoate reductase-mediated bioreduction of the pathway intermediate citraconate. First, over-expression of codon-optimized citramalate synthase variant CimA* from Methanococcus jannaschii, endogenous isopropylmalate isomerase EcLeuCD and enoate reductase YqjM from Bacillus subtilis allowed the production of 2-MSA in Escherichia coli for the first time, with a titer of 0.35g/L in shake flask experiments. Subsequent screening of YqjM-like enoate reductases of different bacterial origins enabled identification and characterization of a new NAD(P)H-dependent enoate reductase KpnER from Klebsiella pneumoniae, which exhibited higher activity towards citraconate than YqjM. Incorporation of KpnER into the 2-MSA biosynthetic pathway led to 2-MSA production improvement to a titer of 0.96g/L in aerobic condition. Subsequent optimizations including cofactor regeneration, microaerobic cultivation and host strain engineering, boosted 2-MSA titer to 3.61g/L with a molar yield of 0.36 in shake flask experiments. This work established a promising platform for 2-MSA bioproduction, which enabled the highest titer of 2-MSA production in microbial hosts so far. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells.

    Science.gov (United States)

    Jiang, Ying; Sverdlov, Maria S; Toth, Peter T; Huang, Long Shuang; Du, Guangwei; Liu, Yiyao; Natarajan, Viswanathan; Minshall, Richard D

    2016-09-23

    Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling.

    Science.gov (United States)

    Grosskinsky, Dominik K; Naseem, Muhammad; Abdelmohsen, Usama Ramadan; Plickert, Nicole; Engelke, Thomas; Griebel, Thomas; Zeier, Jürgen; Novák, Ondrej; Strnad, Miroslav; Pfeifhofer, Hartwig; van der Graaff, Eric; Simon, Uwe; Roitsch, Thomas

    2011-10-01

    Cytokinins are phytohormones that are involved in various regulatory processes throughout plant development, but they are also produced by pathogens and known to modulate plant immunity. A novel transgenic approach enabling autoregulated cytokinin synthesis in response to pathogen infection showed that cytokinins mediate enhanced resistance against the virulent hemibiotrophic pathogen Pseudomonas syringae pv tabaci. This was confirmed by two additional independent transgenic approaches to increase endogenous cytokinin production and by exogenous supply of adenine- and phenylurea-derived cytokinins. The cytokinin-mediated resistance strongly correlated with an increased level of bactericidal activities and up-regulated synthesis of the two major antimicrobial phytoalexins in tobacco (Nicotiana tabacum), scopoletin and capsidiol. The key role of these phytoalexins in the underlying mechanism was functionally proven by the finding that scopoletin and capsidiol substitute in planta for the cytokinin signal: phytoalexin pretreatment increased resistance against P. syringae. In contrast to a cytokinin defense mechanism in Arabidopsis (Arabidopsis thaliana) based on salicylic acid-dependent transcriptional control, the cytokinin-mediated resistance in tobacco is essentially independent from salicylic acid and differs in pathogen specificity. It is also independent of jasmonate levels, reactive oxygen species, and high sugar resistance. The novel function of cytokinins in the primary defense response of solanaceous plant species is rather mediated through a high phytoalexin-pathogen ratio in the early phase of infection, which efficiently restricts pathogen growth. The implications of this mechanism for the coevolution of host plants and cytokinin-producing pathogens and the practical application in agriculture are discussed.

  7. Involvement of progranulin in hypothalamic glucose sensing and feeding regulation.

    Science.gov (United States)

    Kim, Hyun-Kyong; Shin, Mi-Seon; Youn, Byung-Soo; Namkoong, Churl; Gil, So Young; Kang, Gil Myoung; Yu, Ji Hee; Kim, Min-Seon

    2011-12-01

    Progranulin (PGRN) is a secreted glycoprotein with multiple biological functions, including modulation of wound healing and inflammation. Hypothalamic PGRN has been implicated in the development of sexual dimorphism. In the present study, a potential role for PGRN in the hypothalamic regulation of appetite and body weight was investigated. In adult rodents, PGRN was highly expressed in periventricular tanycytes and in hypothalamic neurons, which are known to contain glucose-sensing machinery. Hypothalamic PGRN expression levels were decreased under low-energy conditions (starvation and 2-deoxy-D-glucose administration) but increased under high-energy condition (postprandially). Intracerebrovetricular administration of PGRN significantly suppressed nocturnal feeding as well as hyperphagia induced by 2-deoxyglucose, neuropeptide Y, and Agouti-related peptide. Moreover, the inhibition of hypothalamic PGRN expression or action increased food intake and promoted weight gain, suggesting that endogenous PGRN functions as an appetite suppressor in the hypothalamus. Investigation of the mechanism of action revealed that PGRN diminished orexigenic neuropeptide Y and Agouti-related peptide production but stimulated anorexigenic proopiomelanocortin production, at least in part through the regulation of hypothalamic AMP-activated protein kinase. Notably, PGRN was also expressed in hypothalamic microglia. In diet-induced obese mice, microglial PGRN expression was increased, and the anorectic response to PGRN was blunted. These findings highlight a physiological role for PGRN in hypothalamic glucose-sensing and appetite regulation. Alterations in hypothalamic PGRN production or action may be linked to appetite dysregulation in obesity.

  8. Syndrome of alternating hypernatremia and hyponatremia after hypothalamic hamartoma surgery

    National Research Council Canada - National Science Library

    Abla, Adib A; Wait, Scott D; Forbes, Jonathan A; Pati, Sandipan; Johnsonbaugh, Roger E; Kerrigan, John F; Ng, Yu-Tze

    2011-01-01

    In this paper, the authors' goal was to describe the occurrence of alternating hypernatremia and hyponatremia in pediatric patients who underwent resection of hypothalamic hamartomas (HHs) for epilepsy...

  9. Hypothalamic effects of neonatal diet: reversible and only partially leptin dependent.

    Science.gov (United States)

    Sominsky, Luba; Ziko, Ilvana; Nguyen, Thai-Xinh; Quach, Julie; Spencer, Sarah J

    2017-07-01

    Early life diet influences metabolic programming, increasing the risk for long-lasting metabolic ill health. Neonatally overfed rats have an early increase in leptin that is maintained long term and is associated with a corresponding elevation in body weight. However, the immediate and long-term effects of neonatal overfeeding on hypothalamic anorexigenic pro-opiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP)/neuropeptide Y (NPY) circuitry, and if these are directly mediated by leptin, have not yet been examined. Here, we examined the effects of neonatal overfeeding on leptin-mediated development of hypothalamic POMC and AgRP/NPY neurons and whether these effects can be normalised by neonatal leptin antagonism in male Wistar rats. Neonatal overfeeding led to an acute (neonatal) resistance of hypothalamic neurons to exogenous leptin, but this leptin resistance was resolved by adulthood. While there were no effects of neonatal overfeeding on POMC immunoreactivity in neonates or adults, the neonatal overfeeding-induced early increase in arcuate nucleus (ARC) AgRP/NPY fibres was reversed by adulthood so that neonatally overfed adults had reduced NPY immunoreactivity in the ARC compared with controls, with no further differences in AgRP immunoreactivity. Short-term neonatal leptin antagonism did not reverse the excess body weight or hyperleptinaemia in the neonatally overfed, suggesting factors other than leptin may also contribute to the phenotype. Our findings show that changes in the availability of leptin during early life period influence the development of hypothalamic connectivity short term, but this is partly resolved by adulthood indicating an adaptation to the metabolic mal-programming effects of neonatal overfeeding. © 2017 Society for Endocrinology.

  10. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    OpenAIRE

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenyl...

  11. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.

  12. Cytosolic phospholipase A2 alpha/arachidonic acid signaling mediates depolarization-induced suppression of excitation in the cerebellum.

    Directory of Open Access Journals (Sweden)

    De-Juan Wang

    Full Text Available Depolarization-induced suppression of excitation (DSE at parallel fiber-Purkinje cell synapse is an endocannabinoid-mediated short-term retrograde plasticity. Intracellular Ca(2+ elevation is critical for the endocannabinoid production and DSE. Nevertheless, how elevated Ca(2+ leads to DSE is unclear.We utilized cytosolic phospholipase A(2 alpha (cPLA(2α knock-out mice and whole-cell patch clamp in cerebellar slices to observed the action of cPLA(2α/arachidonic acid signaling on DSE at parallel fiber-Purkinje cell synapse. Our data showed that DSE was significantly inhibited in cPLA(2α knock-out mice, which was rescued by arachidonic acid. The degradation enzyme of 2-arachidonoylglycerol (2-AG, monoacylglycerol lipase (MAGL, blocked DSE, while another catabolism enzyme for N-arachidonoylethanolamine (AEA, fatty acid amide hydrolase (FAAH, did not affect DSE. These results suggested that 2-AG is responsible for DSE in Purkinje cells. Co-application of paxilline reversed the blockade of DSE by internal K(+, indicating that large conductance Ca(2+-activated potassium channel (BK is sufficient to inhibit cPLA(2α/arachidonic acid-mediated DSE. In addition, we showed that the release of 2-AG was independent of soluble NSF attachment protein receptor (SNARE, protein kinase C and protein kinase A.Our data first showed that cPLA(2α/arachidonic acid/2-AG signaling pathway mediates DSE at parallel fiber-Purkinje cell synapse.

  13. Trans monounsaturated fatty acids and saturated fatty acids have similar effects on postprandial flow-mediated vasodilation

    NARCIS (Netherlands)

    de Roos, NM; Siebelink, E; Bots, ML; van Tol, A; Katan, MB

    Objective: Several studies suggest that a fatty meal impairs flow-mediated vasodilation (FMD), a measure of endothelial function. We tested whether the impairment was greater for trans fats than for saturated fats. We did this because we previously showed that replacement of saturated fats by trans

  14. Trans monounsaturated fatty acids and saturated fatty acids have similar effects on postprandial flow-mediated vasodilation

    NARCIS (Netherlands)

    Roos, de N.M.; Siebelink, E.; Bots, M.L.; Tol, van A.; Schouten, E.G.; Katan, M.B.

    2002-01-01

    Objective: Several studies suggest that a fatty meal impairs flow-mediated vasodilation (FMD), a measur9e of endothelial function. We tested whether the impairment was greater for trans fats than for saturated fats. We did this because we previously showed that replacement of saturated fats by trans

  15. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  16. Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia.

    Science.gov (United States)

    Linnartz, Bettina; Kopatz, Jens; Tenner, Andrea J; Neumann, Harald

    2012-01-18

    Microglial cells are professional phagocytes of the CNS responsible for clearance of unwanted structures. Neuronal processes are marked by complement C1 before they are removed in development or during disease processes. Target molecules involved in C1 binding and mechanisms of clearance are still unclear. Here we show that the terminal sugar residue sialic acid of the mouse neuronal glycocalyx determines complement C1 binding and microglial-mediated clearance function. Several early components of the classical complement cascade including C1q, C1r, C1s, and C3 were produced by cultured mouse microglia. The opsonin C1q was binding to neurites after enzymatic removal of sialic acid residues from the neuronal glycocalyx. Desialylated neurites, but not neurites with intact sialic acid caps, were cleared and taken up by cocultured microglial cells. The removal of the desialylated neurites was mediated via the complement receptor-3 (CR3; CD11b/CD18). Data demonstrate that mouse microglial cells via CR3 recognize and remove neuronal structures with an altered neuronal glycocalyx lacking terminal sialic acid.

  17. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse.

    Science.gov (United States)

    Gaillard, Dany; Laugerette, Fabienne; Darcel, Nicolas; El-Yassimi, Abdelghani; Passilly-Degrace, Patricia; Hichami, Aziz; Khan, Naim Akhtar; Montmayeur, Jean-Pierre; Besnard, Philippe

    2008-05-01

    The sense of taste informs the body about the quality of ingested foods. Tastant-mediated signals are generated by a rise in free intracellular calcium levels ([Ca(2+)]i) in the taste bud cells and then are transferred to the gustatory area of brain via connections between the gustatory nerves (chorda tympani and glossopharyngeal nerves) and the nucleus of solitary tract in the brain stem. We have recently shown that lingual CD36 contributes to fat preference and early digestive secretions in the mouse. We show here that 1) the induction of an increase in [Ca(2+)]i by linoleic acid is CD36-dependent in taste receptor cells, 2) the spontaneous preference for or conversely conditioned aversion to linoleic acid requires intact gustatory nerves, and 3) the activation of gustatory neurons in the nucleus of the solitary tract elicited by a linoleic acid deposition on the tongue in wild-type mice cannot be reproduced in CD36-null animals. We conclude that the CD36-mediated perception of long-chain fatty acids involves the gustatory pathway, suggesting that the mouse may have a "taste" for fatty foods. This system would constitute a potential physiological advantage under conditions of food scarcity by leading the mouse to select and absorb fatty foods. However, it might also lead to a risk of obesity and associated diseases in a context of constantly abundant food.

  18. Four-base codon mediated mRNA display to construct peptide libraries that contain multiple nonnatural amino acids

    Science.gov (United States)

    Muranaka, Norihito; Hohsaka, Takahiro; Sisido, Masahiko

    2006-01-01

    In vitro selection and directed evolution of peptides from mRNA display are powerful strategies to find novel peptide ligands that bind to target biomolecules. In this study, we expanded the mRNA display method to include multiple nonnatural amino acids by introducing three different four-base codons at a randomly selected single position on the mRNA. Another nonnatural amino acid may be introduced by suppressing an amber codon that may appear from a (NNK)n nucleotide sequence on the mRNA. The mRNA display was expressed in an Escherichia coli in vitro translation system in the presence of three types of tRNAs carrying different four-base anticodons and a tRNA carrying an amber anticodon, the tRNAs being chemically aminoacylated with different nonnatural amino acids. The complexity of the starting mRNA-displayed peptide library was estimated to be 1.1 × 1012 molecules. The effectiveness of the four-base codon mediated mRNA display method was demonstrated in the selection of biocytin-containing peptides on streptavidin-coated beads. Moreover, a novel streptavidin-binding nonnatural peptide containing benzoylphenylalanine was obtained from the nonnatural peptide library. The nonnatural peptide library from the four-base codon mediated mRNA display provides much wider functional and structural diversity than conventional peptide libraries that are constituted from 20 naturally occurring amino acids. PMID:16397292

  19. Catalytic Biodiesel Production Mediated by Amino Acid-Based Protic Salts.

    Science.gov (United States)

    Li, Jingbo; Guo, Zheng

    2017-04-22

    Hetero- and homogeneous acid catalysts are effective catalysts for the production of biodiesel from oils containing high free fatty acids. The protic salts synthesized from natural amino acids were examined for catalytic activity and efficiency for the esterification of oleic acid after structural identification and characterization. In the esterification reaction of oleic acid with methanol, [Asp][NO3 ] was the best catalyst, and its high activity correlated to its high Hammett acidity. The optimal reaction conditions for the esterification of oleic acid to achieve 97 % biodiesel yield were: 70 °C, 10 % catalyst loading (w/w, on oleic acid basis), methanol/oleic acid ratio 7.5:1, and 5 h. Generally, [Asp][NO3 ] could be a good catalyst for the esterification of oleic acid with alcohols with chain lengths of up to six. The biodiesel yield of 93.86 % obtained from palm fatty acid distillate implies that the catalyst has potential for industrial application. A study of the kinetics indicated that the reaction followed pseudo-first-order kinetics with an activation energy and pre-exponential of 57.36 kJ mol(-1) and 44.24×10(5)  min(-1) , respectively. The aspartic acid-derived protic salt is a promising, operationally simply, sustainable, renewable, and possibly biodegradable catalyst for the conversion of free fatty acids into biodiesel. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Fatty Acids Mixture Reduces Anxiety-Like Behaviors in Infant Rats Mediated by GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Blandina Bernal-Morales

    2017-01-01

    Full Text Available Fatty acids (C6–C18 found in human amniotic fluid, colostrum, and maternal milk reduce behavioral indicators of experimental anxiety in adult Wistar rats. Unknown, however, is whether the anxiolytic-like effects of fatty acids provide a natural mechanism against anxiety in young offspring. The present study assessed the anxiolytic-like effect of a mixture of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, and linoleic acid in Wistar rats on postnatal day 28. Infant rats were subjected to the elevated plus maze, defensive burying test, and locomotor activity test. Diazepam was used as a reference anxiolytic drug. A group that was pretreated with picrotoxin was used to explore the participation of γ-aminobutyric acid-A (GABAA receptors in the anxiolytic-like effects. Similar to diazepam, the fatty acid mixture significantly increased the frequency of entries into and time spent on the open arms of the elevated plus maze and decreased burying behavior in the defensive burying test, without producing significant changes in spontaneous locomotor activity. These anxiolytic-like effects were blocked by picrotoxin. Results suggest that these fatty acids that are contained in maternal fluid may reduce anxiety-like behavior by modulating GABAergic neurotransmission in infant 28-day-old rats.

  1. Angiotensin II-mediated GFR decline in subtotal nephrectomy is due to acid retention associated with reduced GFR.

    Science.gov (United States)

    Wesson, Donald E; Jo, Chan-Hee; Simoni, Jan

    2015-05-01

    Angiotensin II (AII) mediates glomerular filtration rate (GFR) decline in animals with subtotal nephrectomy (Nx), but the mechanisms for increased AII activity are unknown. Because reduced GFR of Nx is associated with acid (H(+)) retention that increases kidney AII, AII-mediated GFR decline might be induced by H(+) retention. We measured GFR and kidney microdialyzate H(+) and AII content in Sham and 2/3 Nx rats in response to amelioration of H(+) retention with dietary NaHCO3, to AII receptor antagonism and to both. GFR was lower in Nx than that in Sham. Nx but not Sham GFR was lower at Week 24 than that at Week 1. Despite no differences in plasma acid-base parameters or urine net acid excretion, kidney H(+) content was higher in Nx than that in Sham, consistent with H(+) retention. Plasma and kidney microdialyzate AII were higher in Nx than that in Sham and dietary NaHCO3 reduced each in Nx but not in Sham. AII receptor antagonism was associated with higher Week 24 GFR in Nx with H(+) retention but not in Sham or in Nx in which H(+) retention had been corrected with dietary NaHCO3. Week 24 GFR after dietary NaHCO3 was higher than after AII receptor antagonism. Week 24 GFR was not different after adding AII receptor antagonism to dietary NaHCO3. AII-mediated GFR decline in 2/3 Nx was induced by H(+) retention and its amelioration with dietary HCO3 conserved GFR better than AII receptor antagonism in this CKD model. H(+) retention might induce AII-mediated GFR decline in patients with reduced GFR, even without metabolic acidosis. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  2. Cytokinin Antagonizes Abscisic Acid-Mediated Inhibition of Cotyledon Greening by Promoting the Degradation of ABSCISIC ACID INSENSITIVE5 Protein in Arabidopsis1[C][W

    Science.gov (United States)

    Guan, Chunmei; Wang, Xingchun; Feng, Jian; Hong, Sulei; Liang, Yan; Ren, Bo; Zuo, Jianru

    2014-01-01

    In higher plants, seed germination is followed by postgerminative growth. One of the key developmental events during postgerminative growth is cotyledon greening, which enables a seedling to establish photosynthetic capacity. The plant phytohormone abscisic acid (ABA) plays a vital role by inhibiting seed germination and postgerminative growth in response to dynamically changing internal and environmental cues. It has been shown that ABSCISIC ACID INSENSITIVE5 (ABI5), a basic leucine zipper transcription factor, is an important factor in the regulation of the ABA-mediated inhibitory effect on seed germination and postgerminative growth. Conversely, the phytohormone cytokinin has been proposed to promote seed germination by antagonizing the ABA-mediated inhibitory effect. However, the underpinning molecular mechanism of cytokinin-repressed ABA signaling is largely unknown. Here, we show that cytokinin specifically antagonizes ABA-mediated inhibition of cotyledon greening with minimal effects on seed germination in Arabidopsis (Arabidopsis thaliana). We found that the cytokinin-antagonized ABA effect is dependent on a functional cytokinin signaling pathway, mainly involved in the cytokinin receptor gene CYTOKININ RESPONSE1/ARABIDOPSIS HISTIDINE KINASE4, downstream histidine phosphotransfer protein genes AHP2, AHP3, and AHP5, and a type B response regulator gene, ARR12, which genetically acts upstream of ABI5 to regulate cotyledon greening. Cytokinin has no apparent effect on the transcription of ABI5. However, cytokinin efficiently promotes the proteasomal degradation of ABI5 in a cytokinin signaling-dependent manner. These results define a genetic pathway through which cytokinin specifically induces the degradation of ABI5 protein, thereby antagonizing ABA-mediated inhibition of postgerminative growth. PMID:24443524

  3. Uptake of the β-Lactam Precursor α-Aminoadipic Acid in Penicillium chrysogenum Is Mediated by the Acidic and the General Amino Acid Permease

    NARCIS (Netherlands)

    Trip, H.; Evers, M.E; Kiel, J.A.K.W.; Driessen, A.J.M.

    2004-01-01

    External addition of the β-lactam precursor α-aminoadipic acid to the filamentous fungus Penicillium chrysogenum leads to an increased intracellular α-aminoadipic acid concentration and an increase in penicillin production. The exact route for α-aminoadipic acid uptake is not known, although the

  4. Fatty Acid-Binding Protein 5 Mediates the Uptake of Fatty Acids, but not Drugs, Into Human Brain Endothelial Cells.

    Science.gov (United States)

    Lee, Gordon S; Pan, Yijun; Scanlon, Martin J; Porter, Christopher J H; Nicolazzo, Joseph A

    2017-12-14

    The purpose of this study was to examine the involvement of fatty acid-binding protein 5 (FABP5), a lipid-binding protein expressed at the blood-brain barrier (BBB), in fatty acid and drug uptake into human brain endothelial cells. Following transfection with siRNA against hFABP5, human brain endothelial cell (hCMEC/D3) uptake of lipophilic ligands with varying affinity to FABP5 was assessed with intracellular concentrations quantified by liquid scintillation counting, HPLC, or LCMS/MS. The in situ BBB transport of [3H]-diazepam was also assessed in wild type and FABP5-deficient mice. hFABP5 siRNA reduced FABP5 expression in hCMEC/D3 cells by 39.9 ± 3.8% (mRNA) and 38.8 ± 6.6% (protein; mean ± SEM), leading to a reduction in uptake of [14C]-lauric acid, [3H]-oleic acid, and [14C]-stearic acid by 37.5 ± 8.8%, 41.7 ± 11.6%, and 50.7 ± 13.6%, respectively, over 1 min. No significant changes in [14C]-diazepam, pioglitazone, and troglitazone uptake were detected following FABP5 knockdown in hCMEC/D3 cells. Similarly, no difference in BBB transport of [3H]-diazepam was observed between wild type and FABP5-deficient mice. Therefore, although FABP5 facilitates brain endothelial cell uptake of fatty acids, it has limited effects on brain endothelial cell uptake and BBB transport of drugs with lower affinity for FABP5. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  5. Hypothalamic, rectal, and muscle temperatures in exercising dogs - Effect of cooling

    Science.gov (United States)

    Kruk, B.; Kaciuba-Uscilko, H.; Nazar, K.; Greenleaf, J. E.; Kozlowski, S.

    1985-01-01

    An experimental investigation of the mechanisms of performance prolongation during exercise is presented. Measurements were obtained of the rectal, muscle, and hypothalamic temperature of dogs during treadmill exercise at an ambient temperature of 22 + or - 1 C, with and without cooling by use of ice packs. In comparison with exercise without cooling, exercise with cooling was found to: (1) increase exercise duration from 90 + or - 14 to 145 + or - 15 min; (2) attenuate increases in hypothalamic, rectal and muscle temperature; (3) decrease respiratory and heart rates; and (4) lower blood lactic acid content. It is shown that although significant differences were found between the brain, core, and muscle temperatures during exercise with and without cooling, an inverse relation was observed between muscle temperature and the total duration of exercise. It is suggested that sustained muscle hyperthermia may have contributed to the limitation of working ability in exercise with and without cooling.

  6. Ferrous iron mediated oxidation of arachidonic acid: studies employing nitroblue tetrazolium (NBT).

    Science.gov (United States)

    Peterson, D A; Gerrard, J M; Rao, G H; Krick, T P; White, J G

    1978-10-01

    The oxidation of arachidonic acid by ferrous sulfate provides a useful model to study the role of iron in lipid oxidation reactions. We have employed nitroblue tetrazolium (NBT) in the present investigation to evaluate the mechanism of this reaction. In the presence of arachidonic acid, Fe +++, and O2, the yellow dye NBT was rapidly reduced to the blue form, NBTH2. The molar ratio of arachidonic acid to Fe++ in this rapid reaction was 1:1, showing an interaction of one fatty acid molecule per iron molecule. Approximately one molecule of NBT was reduced per four molecules of arachidonic acid and Fe++. Reduction of NBT was accompanied by oxidation of Fe++ to Fe+++, suggesting the transfer of four electrons from the Fe++ to NBT to reduce the dye. Arachidonic acid was found to be unchanged when extracted at the end of the reaction, indicating formation of a complex that could dissociate leaving intact arachidonic acid. Evidence for the presence of such a complex which slowly dissociates during the reaction was obtained after longer incubations with small amounts of arachidonic acid. NBT reduction was not inhibited by agents which hydrolyze superoxide, by catalase or by agents which trap hydroxy radicals. We, therefore, propose a model in which NBT traps a radical generated on the arachidonic acid molecule. The proposed model suggests mechanisms for other fatty acid oxidation reactions such as prostaglandin and hydroperoxy fatty acid synthesis.

  7. Hypothalamic abnormality in patients with inflammatory demyelinating disorders.

    Science.gov (United States)

    Gao, Cong; Wu, Linzhan; Chen, Xiaohui; Long, Youming; Zhong, Rong; Yang, Ning; Chen, Yaotang

    2016-11-01

    Hypothalamic lesions in neuromyelitis optica (NMO) patients might be more specific for NMO than multiple sclerosis (MS). However, this is controversial. To characterize clinical features of patients with inflammatory demyelinating disorders (IDDs) with visible hypothalamic lesions using magnetic resonance imaging (MRI). Patients with IDDs (n = 429) were recruited retrospectively. Of 52 patients with hypothalamic images enrolled, 42 were positive for aquaporin-4 (AQP4) antibodies, including 28 patients with NMO, 6 with recurrent transverse myelitis, 3 with recurrent optic neuritis, and 5 with brainstem and brain syndrome. The remaining 10 patients were anti-AQP4-negative, including 3 with MS, 3 with acute disseminated encephalomyelitis, and 4 with other disorders. In the AQP4-positive group, manifestations, including ataxia, intractable hiccup and nausea, syndrome of inappropriate antidiuretic hormone secretion and encephalopathy were more frequent in those with hypothalamic lesions than those without. Cell counts of cerebrospinal fluid in patients with hypothalamic lesions differed from patients without lesions. Brain MRI abnormalities were more frequent in brainstem and hemisphere of the hypothalamic lesion group. Hypothalamic lesions were observed frequently in patients with AQP4 antibodies. Clinical manifestations and paraclinical features in AQP4-positive patients with hypothalamic lesions differed from those without lesions.

  8. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

    Science.gov (United States)

    Yi Ding; Bo Du; Xuebing Zhao; J.Y. Zhu; Dehua Liu

    2017-01-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12...

  9. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  10. Hypothalamic eIF2α Signaling Regulates Food Intake

    Directory of Open Access Journals (Sweden)

    Anne-Catherine Maurin

    2014-02-01

    Full Text Available The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.

  11. Hypothalamic AMPK: a canonical regulator of whole-body energy balance.

    Science.gov (United States)

    López, Miguel; Nogueiras, Rubén; Tena-Sempere, Manuel; Diéguez, Carlos

    2016-07-01

    AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.

  12. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats.

    Science.gov (United States)

    Ropelle, Eduardo R; Pauli, José R; Prada, Patrícia; Cintra, Dennys E; Rocha, Guilherme Z; Moraes, Juliana C; Frederico, Marisa J S; da Luz, Gabrielle; Pinho, Ricardo A; Carvalheira, José B C; Velloso, Licio A; Saad, Mario A; De Souza, Cláudio T

    2009-05-15

    Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.

  13. Exercise training does not enhance hypothalamic responsiveness to leptin or ghrelin in male mice.

    Science.gov (United States)

    Borg, M L; Andrews, Z B; Watt, M J

    2014-02-01

    The detection of hormone and nutrient signals by the hypothalamus is blunted in obesity and contributes to dysregulated energy homeostasis. We investigated whether aerobic exercise training would improve long-term hypothalamic sensitivity to both leptin and ghrelin, independent of acute exercise-induced signalling. Male C57Bl/6J mice were fed either a chow or high-fat diet for 6 weeks, then remained sedentary on their respective diet, or completed 6 weeks of treadmill exercise training with a progressive increase in exercise volume and intensity. Food intake and hypothalamic signalling were assessed in mice injected with leptin or ghrelin at least 24 h after the last exercise bout. Exercise training reduced body mass, increased daily food intake and improved glucose tolerance. Intraperitoneal leptin administration reduced food intake in lean and obese mice, and this was not enhanced after exercise training. Leptin-mediated activation of phosphorylated signal transducer and activator of transcription 3 in the arcuate nucleus and ventromedial nucleus of the hypothalamus was not enhanced with exercise training. Ghrelin increased food intake and c-Fos positive neurones in the hypothalamus in lean and obese mice, and these physiological and molecular responses were not enhanced with exercise training. This suggests that the previously reported exercise effects on sensitising hypothalamic signalling and food intake responses may be limited to the period immediately after an exercise bout, and are not a result of stable structural or molecular changes that occur with exercise training. © 2014 British Society for Neuroendocrinology.

  14. Ascorbic Acid Inhibition of Candida albicans Hsp90-Mediated Morphogenesis Occurs via the Transcriptional Regulator Upc2

    Science.gov (United States)

    Van Hauwenhuyse, Frédérique; Fiori, Alessandro

    2014-01-01

    Morphogenetic transitions of the opportunistic fungal pathogen Candida albicans are influenced by temperature changes, with induction of filamentation upon a shift from 30 to 37°C. Hsp90 was identified as a major repressor of an elongated cell morphology at low temperatures, as treatment with specific inhibitors of Hsp90 results in elongated growth forms at 30°C. Elongated growth resulting from a compromised Hsp90 is considered neither hyphal nor pseudohyphal growth. It has been reported that ascorbic acid (vitamin C) interferes with the yeast-to-hypha transition in C. albicans. In the present study, we show that ascorbic acid also antagonizes the morphogenetic change caused by hampered Hsp90 function. Further analysis revealed that Upc2, a transcriptional regulator of genes involved in ergosterol biosynthesis, and Erg11, the target of azole antifungals, whose expression is in turn regulated by Upc2, are required for this antagonism. Ergosterol levels correlate with elongated growth and are reduced in cells treated with the Hsp90 inhibitor geldanamycin (GdA) and restored by cotreatment with ascorbic acid. In addition, we show that Upc2 appears to be required for ascorbic acid-mediated inhibition of the antifungal activity of fluconazole. These results identify Upc2 as a major regulator of ascorbic acid-induced effects in C. albicans and suggest an association between ergosterol content and elongated growth upon Hsp90 compromise. PMID:25084864

  15. Exposure to a highly caloric palatable diet during pregestational and gestational periods affects hypothalamic and hippocampal endocannabinoid levels at birth and induces adiposity and anxiety-like behaviors in male rat offspring

    Directory of Open Access Journals (Sweden)

    Maria Teresa eRamírez-López

    2016-01-01

    Full Text Available Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and, although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory and emotions.

  16. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice.

    Science.gov (United States)

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R; Lawrence, Catherine B; Coll, Anthony P; White, Anne

    2016-11-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.

  17. The SnRK2-APC/C(TE) regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways.

    Science.gov (United States)

    Lin, Qibing; Wu, Fuqing; Sheng, Peike; Zhang, Zhe; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Cheng, Zhijun; Wang, Jie; Wang, Haiyang; Wan, Jianmin

    2015-08-14

    Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/C(TE) complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/C(TE) activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/C(TE)-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/C(TE) regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants.

  18. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

    Science.gov (United States)

    Mutka, Andrew M; Fawley, Stephen; Tsao, Tiffany; Kunkel, Barbara N

    2013-06-01

    Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  20. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara (Japan); Ishizuka, Tamotsu [Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Tsurumaki, Hiroaki [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Aoki, Haruka; Mogi, Chihiro [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo (Japan); Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Hisada, Takeshi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi (Japan); Yamada, Masanobu [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan)

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  1. A computational study on the mechanism of ynamide-mediated amide bond formation from carboxylic acids and amines.

    Science.gov (United States)

    Zhang, Song-Lin; Wan, Hai-Xing; Deng, Zhu-Qin

    2017-08-02

    This paper reports a computational study elucidating the reaction mechanism for ynamide-mediated amide bond formation from carboxylic acids and amines. The mechanisms have been studied in detail for ynamide hydrocarboxylation and the subsequent aminolysis of the resulting adduct by an amine. Ynamide hydrocarboxylation is kinetically favorable and thermodynamically irreversible, resulting in the formation of a key low-lying intermediate CP1 featuring geminal vinylic acyloxy and sulfonamide groups. The aminolysis of CP1 by the amine is proposed to be catalyzed by the carboxylic acid itself that imparts favourable bifunctional effects. In the proposed key transition state TSaminolysis-acid-iso2, the amine undergoes direct nucleophilic substitution at the acyl of CP1 to replace the enolate group in a concerted way, which is promoted by secondary hydrogen bonding of carboxylic acid with both the amine and CP1. These secondary interactions are suggested to increase the nucleophilicity of the amine and to activate the Cacyl-O bond to be cleaved, thereby stabilizing the aminolysis transition state. The concerted aminolysis mechanism is competitive with the classic stepwise nucleophilic acyl substitution mechanism that features sequential amine addition to acyl/intramolecular proton transfer/C-O bond cleavage and a key tetrahedral intermediate. Based on the mechanistic model, the carboxylic acid substrate effect and studies of more acidic CF3SO3H as the catalyst are in good agreement with the experimental observations, lending further support for the mechanistic model. The bifunctional catalytic effect of the carboxylic acid substrate may widely play a role in related amide bond-forming reactions and peptide formation chemistry.

  2. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression.

    Science.gov (United States)

    Nilaweera, Kanishka N; Cabrera-Rubio, Raul; Speakman, John R; O'Connor, Paula M; McAuliffe, AnneMarie; Guinane, Caitriona M; Lawton, Elaine M; Crispie, Fiona; Aguilera, Mònica; Stanley, Maurice; Boscaini, Serena; Joyce, Susan; Melgar, Silvia; Cryan, John F; Cotter, Paul D

    2017-07-01

    We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway. Copyright © 2017 the American Physiological Society.

  3. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  4. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8+ T-cell-mediated immunity in colorectal cancer

    OpenAIRE

    Bhattacharya, Nupur; Yuan, Robert; Prestwood, Tyler R.; Penny, Hweixian Leong; DiMaio, Michael A.; Reticker-Flynn, Nathan E.; Krois, Charles R.; Kenkel, Justin A.; Pham, Tho D.; Carmi, Yaron; Tolentino, Lorna; Choi, Okmi; Hulett, Reyna; Wang, Jinshan; Winer, Daniel

    2016-01-01

    Although all-trans retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA...

  5. Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Javakhishvili, Irakli; Han, Junyoung

    2016-01-01

    the phosphoric acid uptake and to obtain mechanically robust membranes, the amino-functional polybenzimidazole derivative is blended with high molecular weight poly [2,2′-(m-phenylene)-5,5′-bisbenzimidazole] at different ratios. Due to the high acid uptake, the homogenous blend membranes show enhanced proton...

  6. Characterization of the laccase-mediated oligomerization of 4-hydroxybenzoic acid

    NARCIS (Netherlands)

    Slagman, S.; Escorihuela Fuentes, J.; Zuilhof, H.; Franssen, M.C.R.

    2016-01-01

    Modifying inert poly(ethersulfone) membranes using laccase has proven to be an environmentally benign and easily applicable process to alter the membrane's surface properties. By this method phenolic acid monomers such as 4-hydroxybenzoic acid are grafted from the membrane surface to make it

  7. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum.

    Science.gov (United States)

    Wu, Chen-Gao; Tian, Jia-Long; Liu, Rui; Cao, Peng-Fei; Zhang, Tian-Jun; Ren, Ang; Shi, Liang; Zhao, Ming-Wen

    2017-10-15

    Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC -silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC -silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC -silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC -silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes. IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC -silenced strains. The content of

  8. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues.

    Science.gov (United States)

    Ralston, Jessica C; Lyons, Claire L; Kennedy, Elaine B; Kirwan, Anna M; Roche, Helen M

    2017-08-21

    Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

  9. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C. (Materials Science Division); (Univ. of Chicago)

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  10. Lateral Hypothalamic Neurotensin Neurons Orchestrate Dual Weight Loss Behaviors via Distinct Mechanisms

    Directory of Open Access Journals (Sweden)

    Hillary L. Woodworth

    2017-12-01

    Full Text Available The central mechanism by which neurotensin (Nts potentiates weight loss has remained elusive. We leveraged chemogenetics to reveal that Nts-expressing neurons of the lateral hypothalamic area (LHA promote weight loss in mice by increasing volitional activity and restraining food intake. Intriguingly, these dual weight loss behaviors are mediated by distinct signaling pathways: Nts action via NtsR1 is essential for the anorectic effect of the LHA Nts circuit, but not for regulation of locomotor or drinking behavior. Furthermore, although LHA Nts neurons cannot reduce intake of freely available obesogenic foods, they effectively restrain motivated feeding in hungry, weight-restricted animals. LHA Nts neurons are thus vital mediators of central Nts action, particularly in the face of negative energy balance. Enhanced action via LHA Nts neurons may, therefore, be useful to suppress the increased appetitive drive that occurs after lifestyle-mediated weight loss and, hence, to prevent weight regain.

  11. Intravenous beta-endorphin administration fails to alter hypothalamic blood flow in rats expressing normal or reduced nitric oxide synthase activity

    NARCIS (Netherlands)

    Benyo, Z.; Szabo, C; Velkel, M.H; Bohus, B.G J; Wahl, M.A; Sandor, P

    1996-01-01

    beta-Endorphin (beta-END) significantly contributes to the maintenance of hypothalamic blood flow (HBF) autoregulation during hemorrhagic hypotension in rats. Recently, several natural and synthetic opioid peptides were reported to induce nitric oxide (NO)-mediated dilation in the cerebrovascular

  12. Melatonin and hypothalamic-pituitary-gonadal axis.

    Science.gov (United States)

    Shi, L; Li, N; Bo, L; Xu, Z

    2013-01-01

    Melatonin (N-acetyl-5-methoxy-tryptamine), a principal product of the pineal gland, is produced mainly during the dark phase of the circadian cycle. This hormone plays a crucial role in the regulation of circadian and seasonal changes in various aspects of physiology and neuroendocrine functions. In mammals, melatonin can influence sexual maturation and reproductive functions via activation of its receptors and binding sites in the hypothalamic-pituitary-gonadal (HPG) axis. This review summarizes current knowledge of melatonin on the hypothalamus, pituitary gland, and gonads. We also review recent progress in clinical applications of melatonin or potentials of using melatonin, as a reducer of oxidative stress, to improve reproductive functions for the diseases such as women infertility.

  13. Interleukin-7, a new cytokine targeting the mouse hypothalamic arcuate nucleus: role in body weight and food intake regulation.

    Directory of Open Access Journals (Sweden)

    Laurence Macia

    Full Text Available Body weight is controlled through peripheral (white adipose tissue and central (mainly hypothalamus mechanisms. We have recently obtained evidence that overexpression of interleukin (IL-7, a critical cytokine involved in lymphopoiesis, can protect against the development of diet-induced obesity in mice. Here we assessed whether IL-7 mediated its effects by modulating hypothalamic function. Acute subcutaneous injection of IL-7 prevented monosodium glutamate-induced obesity, this being correlated with partial protection against cell death in the hypothalamic arcuate nucleus (ARC. Moreover, we showed that IL-7 activated hypothalamic areas involved in regulation of feeding behavior, as indicated by induction of the activation marker c-Fos in neural cells located in the ventromedial part of the ARC and by inhibition of food intake after fasting. Both chains of the IL-7 receptor (IL-7Ralpha and gamma(c were expressed in the ARC and IL-7 injection induced STAT-3 phosphorylation in this area. Finally, we established that IL-7 modulated the expression of neuropeptides that tune food intake, with a stimulatory effect on the expression of pro-opiomelanocortin and an inhibitory effect on agouti-related peptide expression in accordance with IL-7 promoting anorectic effects. These results suggest that the immunomodulatory cytokine IL-7 plays an important and unappreciated role in hypothalamic body weight regulation.

  14. Interleukin-7, a new cytokine targeting the mouse hypothalamic arcuate nucleus: role in body weight and food intake regulation.

    Science.gov (United States)

    Macia, Laurence; Viltart, Odile; Delacre, Myriam; Sachot, Christelle; Héliot, Laurent; Di Santo, James P; Wolowczuk, Isabelle

    2010-04-01

    Body weight is controlled through peripheral (white adipose tissue) and central (mainly hypothalamus) mechanisms. We have recently obtained evidence that overexpression of interleukin (IL)-7, a critical cytokine involved in lymphopoiesis, can protect against the development of diet-induced obesity in mice. Here we assessed whether IL-7 mediated its effects by modulating hypothalamic function. Acute subcutaneous injection of IL-7 prevented monosodium glutamate-induced obesity, this being correlated with partial protection against cell death in the hypothalamic arcuate nucleus (ARC). Moreover, we showed that IL-7 activated hypothalamic areas involved in regulation of feeding behavior, as indicated by induction of the activation marker c-Fos in neural cells located in the ventromedial part of the ARC and by inhibition of food intake after fasting. Both chains of the IL-7 receptor (IL-7Ralpha and gamma(c)) were expressed in the ARC and IL-7 injection induced STAT-3 phosphorylation in this area. Finally, we established that IL-7 modulated the expression of neuropeptides that tune food intake, with a stimulatory effect on the expression of pro-opiomelanocortin and an inhibitory effect on agouti-related peptide expression in accordance with IL-7 promoting anorectic effects. These results suggest that the immunomodulatory cytokine IL-7 plays an important and unappreciated role in hypothalamic body weight regulation.

  15. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides during the Stress Response

    Science.gov (United States)

    Balkan, Burcu; Pogun, Sakire

    2017-07-19

    The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in diverse functions mediated by the hypothalamus, including the regulation of the stress responses. The nicotinic cholinergic system lies at the intersection of homeostatic and reward pathways and shows sex differences in some of its effects. Furthermore, nicotinic acetylcholine receptor modulation offers significant potential for future drug development targeting pathologies related to hypothalamic functions. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on HPA axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. LPLRFamide exerts short-term anorexigenic effects that coincide with magnocellular division of the hypothalamic paraventricular nucleus activation.

    Science.gov (United States)

    Scheel, Amy; Deal, Nick; St John, Natalie; Wells, Amy; Caruso, Maggie; Gilbert, Elizabeth R; Cline, Mark

    2017-05-15

    LPLRFamide is a member of the RFamide peptide family that elicits an anorexigenic effect when centrally injected in chicks although the mechanism mediating this response is poorly understood. Therefore, the purpose of this experiment was to elucidate the hypothalamic mechanism of short-term anorexia after central administration of LPLRFamide in chicks. In Experiment 1 chicks centrally injected with LPLRFamide decreased food intake at 15min but not 30min following administration compared to vehicle-injected chicks. For Experiment 2, c-Fos immunoreactivity was quantified in several appetite-associated hypothalamic nuclei and in LPLRF-injected chicks, compared to vehicle-injected chicks, there was an increase in the number of reactive cells in the magnocellular division of the paraventricular nucleus. Lastly in Experiment 3, real time-PCR was performed and hypothalamic proopiomelanocortin (POMC) mRNA abundance was increased in LPRLFamide-injected chicks compared to vehicle-injected chicks. Thus, following central injection of LPLRFamide there is activation of the paraventricular nucleus of the hypothalamus and increased expression of hypothalamic POMC mRNA in chicks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Meta-analysis of global transcriptomics reveals conserved genetic pathways of Quercetin and Tannic acid mediated longevity in C. elegans

    Directory of Open Access Journals (Sweden)

    Kerstin ePietsch

    2012-04-01

    Full Text Available Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension, lifespan extending or toxic. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published data sets derived from i longevity mutants or ii infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the formulation of mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling and the p38 MAPK pathway and Tannic acid’s impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, therefore seems to be a crucial regulator for both polyphenols.

  18. Management of optic chiasmatic/hypothalamic astrocytomas in children

    Energy Technology Data Exchange (ETDEWEB)

    Steinbok, P.; Hentschel, S.; Almqvist, P.; Cochrane, D.D. [Univ. of British Columbia, British Columbia' s Children' s Hospital, Div. of Pediatric Neurosurgery, Dept. of Surgery, Vancouver, British Columbia (Canada); Poskitt, K. [Univ. of British Columbia, British Columbia' s Children' s Hospital, Dept. of Radiology, Vancouver, British Columbia (Canada)

    2002-05-01

    The management of optic chiasmatic gliomas is controversial, partly related to failure to separate out those tumors involving the optic chiasm only (chiasmatic tumors) from those also involving the hypothalamus (chiasmatic/hypothalamic tumors). The purpose of this study was: (i) to analyze the outcomes of chiasmatic and chiasmatic/hypothalamic tumors separately; and (ii) to determine the appropriateness of recommending radical surgical resection for the chiasmatic/hypothalamic tumors. A retrospective chart review of all newly diagnosed tumors involving the optic chiasm from 1982-1996 at British Columbia's Children's Hospital was performed. There were 32 patients less than 16 years of age, 14 with chiasmatic and 18 with chiasmatic/hypothalamic astrocytomas, with an average duration of follow-up of 5.8 years and 6.3 years, respectively. Ten of the patients with chiasmatic tumors and none with chiasmatic/hypothalamic tumors had neurofibromatosis I. Thirteen of the 14 chiasmatic tumors were managed with observation only, and none had progression requiring active intervention. For the chiasmatic/hypothalamic tumors. eight patients had subtotal resections (>95% resection), six had partial resections (50-95%), three had limited resections (<50%), and one had no surgery. There were fewer complications associated with the limited resections, especially with respect to hypothalamic dysfunction. There was no correlation between the extent of resection (subtotal, partial, or limited) and the time to tumor progression (average 18 months). In conclusion, chiasmatic and chiasmatic/hypothalamic tumors are different entities, which should be separated out for the Purposes of any study. For the chiasmatic/hypothalamic tumors, there was more morbidity and no prolongation of time to progression when radical resections were compared to more limited resections. Therefore, if surgery is performed, it may be appropriate to do a surgical procedure that strives only to provide a

  19. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro.

    NARCIS (Netherlands)

    Willemsen, L.E.M.; Koetsier, Marjolein; Balvers, M.; Beermann, C.; Stahl, B.; Tol, EA van

    2008-01-01

    BACKGROUND: The intestinal mucosa functions as a barrier against harmful dietary and microbial antigens. An intact gut barrier forms a prerequisite for protection against infection and allergy. Both allergic and inflammatory mediators (e.g. IL-4, IFN-gamma) are known to compromise the epithelial

  20. A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids

    OpenAIRE

    Park, Woo Jung; Kothapalli, Kumar S. D.; Reardon, Holly T; Lawrence, Peter; Qian, Shu-Bing; Brenna, J. Thomas

    2012-01-01

    The fatty acid desaturase (FADS) genes code for the rate-limiting enzymes required for the biosynthesis of long-chain polyunsaturated fatty acids (LCPUFA). Here we report discovery and function of a novel FADS1 splice variant. FADS1 alternative transcript 1 (FADS1AT1) enhances desaturation of FADS2, leading to increased production of eicosanoid precursors, the first case of an isoform modulating the enzymatic activity encoded by another gene. Multiple protein isoforms were detected in primate...

  1. The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1.

    Science.gov (United States)

    Kim, Juewon; Kang, Young-Gyu; Lee, Jee-young; Choi, Dong-hwa; Cho, Young-uk; Shin, Jae-Min; Park, Jun Seong; Lee, John Hwan; Kim, Wan Gi; Seo, Dae Bang; Lee, Tae Ryong; Miyamoto, Yusei; No, Kyoung Tai

    2015-09-05

    Dehydroabietic acid (DAA) is a naturally occurring diterpene resin acid of confers, such as pinus species (P. densiflora, P. sylvestris) and grand fir (Abies grandis), and it induces various biological actions including antimicrobial, antiulcer, and cardiovascular activities. The cellular targets that mediate these actions are largely unknown yet. In this report, we suggest that DAA is an anti-aging reagent. DAA has lifespan extension effects in Caenorhabditis elegans, prevents lipofuscin accumulation, and prevents collagen secretion in human dermal fibroblasts. We found that these anti-aging effects are primarily mediated by SIRT1 activation. Lifespan extension effects by DAA were ameliorated in sir-2.1 mutants and SIRT1 protein expression was increased, resulting in the deacetylation of SIRT1 target protein PGC-1α. Moreover, DAA binds directly to the SIRT1 protein independent of the SIRT1 substrate NAD(+) levels. Through a molecular docking study, we also propose a binding model for DAA-SIRT1. Taken together, our results demonstrate that the anti-aging effects are the first identified biological property of DAA and that the direct activation of SIRT1 enzymatic activity suggests the potential use of this natural diterpene, or related compounds, in age-related diseases or as a preventive reagent against the aging process. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

    Science.gov (United States)

    Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T

    2017-04-03

    In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs

  3. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid.

    Directory of Open Access Journals (Sweden)

    Faten Shaeib

    Full Text Available Myeloperoxidase (MPO generated hypochlorous acid (HOCl formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.

  4. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model.

    Science.gov (United States)

    Lin, Sy-Yu; Lin, Chen-Jou; Liao, Jiunn-Wang; Peir, Jinn-Jer; Chen, Wei-Lin; Chi, Chin-Wen; Lin, Yung-Chang; Liu, Yu-Ming; Chou, Fong-In

    2013-11-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Boron neutron capture therapy (BNCT) may provide an alternative therapy for HCC. This study investigated the therapeutic efficacy of boric acid (BA)-mediated BNCT for HCC in a rat model. The pharmacokinetic and biodistribution of BA in N1S1 tumor-bearing rats were analyzed. Rats were injected with 25 mg B/kg body weight via tail veins before neutron irradiation at the Tsing Hua Open-pool Reactor, and the efficacy of BNCT was evaluated from the tumor size, tumor blood flow, and biochemical analyses. HCC-bearing rats administered BNCT showed reductions in tumor size on ultrasound imaging, as well as an obvious reduction in the distribution of tumor blood flow. The lesion located in livers had disappeared on the 80th day after BNCT; a recovery of values to normal levels was also recorded. BA-mediated BNCT is a promising alternative for liver cancer therapy since the present study demonstrated the feasibility of curing a liver tumor and restoring liver function in rats. Efforts are underway to investigate the histopathological features and the detailed mechanisms of BA-mediated BNCT.

  5. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

    Directory of Open Access Journals (Sweden)

    Sunita Gulati

    2015-12-01

    Full Text Available Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT structure of lipooligosaccharide (LOS is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP-activated forms of the nine-carbon nonulosonate (NulO sugar N-acetyl-neuraminic acid (Neu5Ac, a sialic acid (Sia abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH, an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance". We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac and pseudaminic acid (Pse5Ac7Ac, to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition, Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate reduced clearance times and infection burden. Bacteria recovered

  6. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

    Science.gov (United States)

    Gulati, Sunita; Schoenhofen, Ian C; Whitfield, Dennis M; Cox, Andrew D; Li, Jianjun; St Michael, Frank; Vinogradov, Evgeny V; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A; Taylor, Rachel E; Landig, Corinna S; Diaz, Sandra; Reed, George W; Varki, Ajit; Rice, Peter A; Ram, Sanjay

    2015-12-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP

  7. Hypothalamic pituitary adrenal axis and prolactin abnormalities in suicidal behavior.

    Science.gov (United States)

    Pompili, Maurizio; Serafini, Gianluca; Palermo, Mario; Seretti, Maria Elena; Stefani, Henry; Angeletti, Gloria; Lester, David; Amore, Mario; Girardi, Paolo

    2013-11-01

    Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity measured with the dexamethasone suppression test and the dexamethesone/CRH test may have some predictive power for suicidal behavior in patients with mood disorders. Increased prolactin (PRL) levels may be related both to physiological and pathological conditions. HPA-axis abnormalities and increased levels of PRL may coexist, and common neuroendocrine changes may activate both HPA axis and PRL release. HPA-axis hyperactivity is presumably present in a large subpopulation of depressed subjects. Suicidal behavior is considered to be a form of inward-directed aggression, and aggressive behavior has been connected to high androgen levels. However, lower plasma total testosterone levels have also been reported in subjects with depression and higher suicidality. Lipid/immune dysregulations, the increased ratio of blood fatty acids, and increased PRL levels may each be associated with the increased production of pro-inflammatory cytokines, which have been reported in patients with major depression and patients engaging in suicidal behavior. Although no studies have been done to determine whether ante-mortem physical stress may be detected by raised post-mortem PRL, this would be of great interest for physicians.

  8. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  9. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    Science.gov (United States)

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid

    Directory of Open Access Journals (Sweden)

    Yu Diqiu

    2009-07-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are key regulators in certain developmental programs. A number of studies have suggested that WRKY genes may mediate seed germination and postgermination growth. However, it is unclear whether WRKY genes mediate ABA-dependent seed germination and postgermination growth arrest. Results To determine directly the role of Arabidopsis WRKY2 transcription factor during ABA-dependent seed germination and postgermination growth arrest, we isolated T-DNA insertion mutants. Two independent T-DNA insertion mutants for WRKY2 were hypersensitive to ABA responses only during seed germination and postgermination early growth. wrky2 mutants displayed delayed or decreased expression of ABI5 and ABI3, but increased or prolonged expression of Em1 and Em6. wrky2 mutants and wild type showed similar levels of expression for miR159 and its target genes MYB33 and MYB101. Analysis of WRKY2 expression level in ABA-insensitive and ABA-deficient mutants abi5-1, abi3-1, aba2-3 and aba3-1 further indicated that ABA-induced WRKY2 accumulation during germination and postgermination early growth requires ABI5, ABI3, ABA2 and ABA3. Conclusion ABA hypersensitivity of the wrky2 mutants during seed germination and postgermination early seedling establishment is attributable to elevated mRNA levels of ABI5, ABI3 and ABI5-induced Em1 and Em6 in the mutants. WRKY2-mediated ABA responses are independent of miR159 and its target genes MYB33 and MYB101. ABI5, ABI3, ABA2 and ABA3 are important regulators of the transcripts of WRKY2 by ABA treatment. Our results suggest that WRKY2 transcription factor mediates seed germination and postgermination developmental arrest by ABA.

  11. Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder.

    Science.gov (United States)

    Deats, Sean P; Adidharma, Widya; Yan, Lily

    2015-08-18

    Light has profound effects on mood regulation as exemplified in seasonal affective disorder (SAD) and the therapeutic benefits of light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD. Following housing conditions of either 12:12 h dim light:dark (DLD) or 8:16 h short photoperiod (SP), which mimic the lower light intensity or short day-length of winter, respectively, grass rats exhibit an increase in depression-like behavior compared to those housed in a 12:12 h bright light:dark (BLD) condition. Furthermore, we have shown that the orexinergic system is involved in mediating the effects of light on mood and anxiety. To explore other potential neural substrates involved in the depressive phenotype, the present study examined hypothalamic dopaminergic (DA) and somatostatin (SST) neurons in the brains of grass rats housed in DLD, SP and BLD. Using immunostaining for tyrosine hydroxylase (TH) and SST, we found that the number of TH- and SST-ir cells in the hypothalamus was significantly lower in the DLD and SP groups compared to the BLD group. We also found that treating BLD animals with a selective orexin receptor 1 (OX1R) antagonist SB-334867 significantly reduced the number of hypothalamic TH-ir cells. The present study suggests that the hypothalamic DA neurons are sensitive to daytime light deficiency and are regulated by an orexinergic pathway. The results support the hypothesis that the orexinergic pathways mediate the effects of light on other neuronal systems that collectively contribute to light-dependent changes in the affective state. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Altered hypothalamic inflammatory gene expression correlates with heat stroke severity in a conscious rodent model.

    Science.gov (United States)

    Audet, Gerald N; Dineen, Shauna M; Quinn, Carrie M; Leon, Lisa R

    2016-04-15

    It has been suggested that heat-induced hypothalamic damage mediates core temperature (Tc) disturbances during heat stroke (HS) recovery; this is significant as hypothermia and/or fever have been linked to severity and overall pathological insult. However, to date there has been a lack of histological evidence in support of these claims. We hypothesized that local hypothalamic cytokines and/or chemokines, known regulators of Tc, are mediating the elevation in Tc during HS recovery even in the absence of histological damage. In experiment 1, the hypothalamus of Fischer 344 rats was examined for 84 cytokine/chemokine genes (real-time PCR) at multiple time points (Tc,Max, 1, 3, and 10 days) during mild HS recovery. In experiment 2, the hypothalamus of three different HS severities (MILD, moderate [MOD], and severe [SEV]) in rats were examined for the same genes as experiment 1 as well as six oxidative damage markers, at a single intermediate time point (1 day). Systemic cytokines were also analyzed in experiment 2 across the three severities. There were significant alterations in 25 cytokines/chemokines expression at Tc,Max, but little or no changes in expression at longer time points in experiment 1. In experiment 2 there were significant changes in gene expression in SEV rats only, with MILD and MOD rats showing baseline expression at 1 day, despite an absence of systemic cytokine expression in any severity. There was also no change in any oxidative marker of damage at 1 day, regardless of severity. In conclusion, we show only limited changes during long term recovery from HS, but demonstrate differences in hypothalamic gene expression patterns that may be driving HS pathology and morbidity. These findings contribute to our overall understanding of HS pathology in the CNS, as well as providing avenues for future pharmacological intervention. Published by Elsevier B.V.

  13. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    Science.gov (United States)

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  14. The Modification of Cellulosic Surface with Fatty Acids via Plasma Mediated Reactions

    Science.gov (United States)

    Nada, Ahmed Ali Ahmed

    Much attention has been paid recently to understand the healing process made by the human body, in order to develop new approaches for promoting healing. The wound healing process includes four main phases, namely, hemostatic, inflammatory, proliferation, and remodeling, which take place successively. The human body can provide all the requirements of the healing process in normal wounds, unless there is a kind of deficiency of the skin function or massive fluid losses of vast wounds. Therefore, wound care of non-healing wounds has recently been the growing concern of many applications. The goal of this work is to explore the development of a new cellulose-based wound dressing composite that contain or release wound healing agents attained via dry textile chemical finishing techniques (thermal curing-plasma treatment). The synthesis of different wound healing agents derived from fatty acids and attached chemically to cellulose or even delivered through cyclodextrine modified cellulose are reported in this work. First, free fatty acids, which are obtained from commercial vegetable oils, were identified as wound healing agents. Many of these free acids are known to bind with and deactivate the proteases associated with inflammation at a wound site. Linoleic acid is extracted from commercial products of safflower seed oil while ricinoleic acid is obtained from castor oil. Conjugated linoleic acid was synthesized. Un-conjugated linoleic acid was used to prepare two derivatives namely linoleic azide and allylic ketone of linoleic acid. Different cellulose derivatives such as cellulose peroxide, iododeoxycellulose and cellulose diazonium salt in different degree of substitutions were synthesized in order to facilitate the free radical reaction with the fatty acid derivatives. New modified cellulosic products were synthesized by reacting the cellulosic and the linoleic acid derivatives via thermal or plasma technique and characterized by FT-IR ATR, the wettability test

  15. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.

    Science.gov (United States)

    Mazumder, Vismadeb; Sun, Shouheng

    2009-04-08

    We report a facile synthesis of monodisperse Pd nanoparticles by the reduction of Pd(acac)(2) with oleylamine and borane tributylamine complex. The oleylamine-coated Pd nanoparticles are readily "cleaned" with a 99% acetic acid wash, and the Pd particles supported on Ketjen carbon are catalytically active for formic acid oxidation in HClO(4) solution. The catalyst shows no obvious activity degradation after 1500 cyclic voltammetry cycles under ambient conditions. These Pd particles hold promise as a highly active non-Pt catalyst for fuel cell applications.

  16. Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain

    Directory of Open Access Journals (Sweden)

    Aoki Junken

    2009-11-01

    Full Text Available Abstract Background We previously reported that intrathecal injection of lysophosphatidylcholine (LPC induced neuropathic pain through activation of the lysophosphatidic acid (LPA-1 receptor, possibly via conversion to LPA by autotaxin (ATX. Results We examined in vivo LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA1 receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA3, but not LPA1 or LPA2 receptors. Similar time-related and LPA3 receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an in vitro study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA3 receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA1 or LPA3 receptors. Conclusion These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.

  17. Histamine is released following aminolevulinic acid-photodynamic therapy of human skin and mediates an aminolevulinic acid dose-related immediate inflammatory response.

    Science.gov (United States)

    Brooke, Rebecca C C; Sinha, Animesh; Sidhu, Meneka K; Watson, Rachel E B; Church, Martin K; Friedmann, Peter S; Clough, Geraldine F; Rhodes, Lesley E

    2006-10-01

    Acute skin inflammation occurs following topical aminolevulinic acid-photodynamic therapy (ALA-PDT), but its nature and mediation are ill defined. As we observed an urticarial response, a potential role for histamine was explored. In 13 healthy volunteers, we assessed the time course and dose-response of the acute cutaneous response(s) to ALA-PDT, the impact of H(1) antihistamine blockade, and measured dermal histamine release. An ALA dose series was iontophoresed into ventral forearm skin and exposed to red light. All participants exhibited an immediate urticarial response, both wheal and flare correlating with log ALA dose. Subsequently, a dose-related erythema developed at treatment sites by 3 hours and persisted at 24 hours. H(1) blockade with oral cetirizine doubled the median minimal urticating dose of ALA and reduced the slope of dose-response for wheal and flare, whereas at the highest ALA dose, mean wheal and flare areas reduced by 68 and 60%, respectively. In contrast, cetirizine did not influence the 24 hour minimal phototoxic dose or erythema dose-response. Histamine release after ALA-PDT mirrored the urticarial response, levels peaking within 30 minutes and returning to baseline by 24 hours. Thus, two discrete acute inflammatory responses to topical ALA-PDT occur in human skin; histamine mediates the immediate response, but does not appear involved in the delayed phototoxicity.

  18. Delineating the regulation of energy homeostasis using hypothalamic cell models.

    Science.gov (United States)

    Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D

    2015-01-01

    Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    Science.gov (United States)

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a ‘self-patterning’ strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. PMID:25670790

  20. Hypothalamic obesity in children: pathophysiology to clinical management.

    Science.gov (United States)

    Haliloglu, Belma; Bereket, Abdullah

    2015-05-01

    Hypothalamic obesity (HyOb) is a complex neuroendocrine disorder caused by damage to the hypothalamus, which results in disruption of energy regulation. The key hypothalamic areas of energy regulation are the ARC (arcuate nucleus), the VMH (ventromedial hypothalamus), the PVN (paraventriculer nuclei) and the LHA (lateral hypothalamic area). These pathways can be disrupted mechanically by hypothalamic tumors, neurosurgery, inflammatory disorders, radiotherapy and trauma or functionally as such seen in genetic diseases. Rapid weight gain and severe obesity are the most striking features of HyOb and caused by hyperphagia, reduced basal metabolic rate (BMR) and decreased physical activity. HyOb is usually unresponsive to diet and exercise. Although, GLP-1 and its anologs seem to be a new agent, there is still no curative treatment. Thus, prevention is of prime importance and the clinicians should be alert and vigilant in patients at risk for development of HyOb.

  1. Indirect evidence for decreased hypothalamic somatostatinergic tone in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Andersen, M; Flyvbjerg, A

    2002-01-01

    in the central feeding mechanism in anorexia nervosa (AN). Peripheral administration of pyridostigmine (PD) minimizes the release of hypothalamic SRIH. DESIGN: To study the influence of hypothalamic somatostatinergic inhibition on the exaggerated somatotroph responsiveness to GHRH in patients with severe AN, two...... indirectly to greater SRIH withdrawal and greater GHRH release in anorexia nervosa. Moreover, hypothalamic SRIH activity seems to be inversely related to cortisol levels, indirectly supporting the hypothesis that SRIH and CRH neuronal activity are inversely related in anorexia nervosa. Leptin, which...... is believed to act on hypothalamic feeding mechanisms, seems to be positively related to SRIH activity. Finally, the present data demonstrate that the potentiating effect of pyridostigmine in anorexia nervosa is related to body mass index and increases upon weight gain, suggesting that the low...

  2. Preparation of nickel and Ni{sub 3}Sn nanoparticles via extension of conventional citric acid and ethylene diamine tetraacetic acid mediated sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pingyun, E-mail: lpyljr@126.com; Deng, Guodong; Guo, Xiaode; Liu, Hongying; Jiang, Wei; Li, Fengsheng

    2016-05-25

    This work aims to extend the application field of sol–gel process from conventional oxides, carbides, sulfides to metallic nanocrystalline materials. Metallic ions were coordinated with chelating agents of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) in aqueous solution. Then the solutions were dried at 383 K, resulting in the formation of sol and gel. Heating treatments of dried gels were then carried out with protection of N{sub 2} atmosphere. Ni and Ni{sub 3}Sn alloy nanoparticles were obtained by this sol–gel method in the range of 623–823 K. The as-prepared Ni and Ni{sub 3}Sn alloy nanoparticles have average grain sizes of 15 and 30 nm, and have face-centred-cubic (fcc) crystalline phase. Our results provide new insight into the application of conventional sol–gel method. - Graphical abstract: Sol–gel method is conventionally applied to prepare oxides, carbides, and sulfides. In this work, the application field of sol–gel method is extended to metallic nanoparticles. By using citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) mediated sol–gel method, metallic Ni (a and c) and Ni{sub 3}Sn (b and d) alloy nanoparticles can be prepared when the heating treatments are performed under N{sub 2} protecting atmosphere. The Ni and Ni{sub 3}Sn nanoparticles have face-centered-cubic (fcc) crystalline phase and ultrafine grain sizes. Diffraction peaks of (110) superstructure reflection plane of Ni{sub 3}Sn nanoparticles can also be observed in Figure b, which can be considered as direct evidence of formation of alloy crystalline phase by performing this sol–gel method. - Highlights: • Ni and Ni{sub 3}Sn alloy nanoparticles have been prepared by sol–gel processes. • Citric acid and ethylene diamine tetraacetic acid were applied as chelating agent. • Diffraction peak of superstructure reflection plane of Ni{sub 3}Sn was detected by XRD. • A novel strategy for preparation of alloy nanoparticles has been presented.

  3. Protection of palmitic acid-mediated lipotoxicity by arachidonic acid via channeling of palmitic acid into triglycerides in C2C12

    Science.gov (United States)

    2014-01-01

    Background Excessive saturated fatty acids have been considered to be one of major contributing factors for the dysfunction of skeletal muscle cells as well as pancreatic beta cells, leading to the pathogenesis of type 2 diabetes. Results PA induced cell death in a dose dependent manner up to 1.5 mM, but AA protected substantially lipotoxicity caused by PA at even low concentration of 62 μM, at which monounsaturated fatty acids including palmitoleic acid (POA) and oleic acid (OA) did not protect as much as AA did. Induction of cell death by PA was resulted from mitochondrial membrane potential loss, and AA effectively blocked the progression of apoptosis. Furthermore, AA rescued significantly PA-impaired glucose uptake and -signal transduction of Akt in response to insulin. Based on the observations that polyunsaturated AA generated competently cellular droplets at low concentration within the cytosol of myotubes compared with other monounsaturated fatty acids, and AA-driven lipid droplets were also enhanced in the presence of PA, we hypothesized that incorporation of harmful PA into inert triglyceride (TG) may be responsible for the protective effects of AA against PA-induced lipotoxicity. To address this assumption, C2C12 myotubes were incubated with fluorescent probed-PA analogue 4, 4-difluoro-5, 7-dimethyl-4-boro-3a,4a-diaza-s-indacene-3-hexadecanoic acid (BODIPY FL C16) in the presence of AA and their subsequent lipid profiles were analyzed. The analyses of lipids on thin layer chromatograpy (TLC) showed that fluorescent PA analogue was rapidly channeled into AA-driven TG droplets. Conclusion Taken together, it is proposed that AA diverts PA into inert TG, therefore reducing the availability of harmful PA into intracellular target molecules. PMID:24521082

  4. Protection of palmitic acid-mediated lipotoxicity by arachidonic acid via channeling of palmitic acid into triglycerides in C2C12.

    Science.gov (United States)

    Cheon, Hyae Gyeong; Cho, Young Sik

    2014-02-12

    Excessive saturated fatty acids have been considered to be one of major contributing factors for the dysfunction of skeletal muscle cells as well as pancreatic beta cells, leading to the pathogenesis of type 2 diabetes. PA induced cell death in a dose dependent manner up to 1.5 mM, but AA protected substantially lipotoxicity caused by PA at even low concentration of 62 μM, at which monounsaturated fatty acids including palmitoleic acid (POA) and oleic acid (OA) did not protect as much as AA did. Induction of cell death by PA was resulted from mitochondrial membrane potential loss, and AA effectively blocked the progression of apoptosis. Furthermore, AA rescued significantly PA-impaired glucose uptake and -signal transduction of Akt in response to insulin.Based on the observations that polyunsaturated AA generated competently cellular droplets at low concentration within the cytosol of myotubes compared with other monounsaturated fatty acids, and AA-driven lipid droplets were also enhanced in the presence of PA, we hypothesized that incorporation of harmful PA into inert triglyceride (TG) may be responsible for the protective effects of AA against PA-induced lipotoxicity. To address this assumption, C2C12 myotubes were incubated with fluorescent probed-PA analogue 4, 4-difluoro-5, 7-dimethyl-4-boro-3a,4a-diaza-s-indacene-3-hexadecanoic acid (BODIPY FL C16) in the presence of AA and their subsequent lipid profiles were analyzed. The analyses of lipids on thin layer chromatography (TLC) showed that fluorescent PA analogue was rapidly channeled into AA-driven TG droplets. Taken together, it is proposed that AA diverts PA into inert TG, therefore reducing the availability of harmful PA into intracellular target molecules.

  5. A time-course transcriptional kinetics of the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes in zebrafish eleutheroembryos after exposure to norgestrel.

    Science.gov (United States)

    Liang, Yan-Qiu; Huang, Guo-Yong; Ying, Guang-Guo; Liu, Shuang-Shuang; Jiang, Yu-Xia; Liu, Shan; Peng, Feng-Jiao

    2015-01-01

    The objective of the present study was to investigate the effects of norgestrel on the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes in zebrafish eleutheroembryos. Zebrafish embryos were exposed to different concentrations of norgestrel (0 ng L(-1) , 5 ng L(-1) , 50 ng L(-1) , and 100 ng L(-1) ) for 144 h post fertilization (hpf), and the transcriptional profiles of the HPG and HPA axes were examined every day. Norgestrel modulated the expression of Pgr and Vtg1 messenger (m)RNAs mainly at 96 hpf for all treatment groups. In addition, norgestrel strongly altered the expression of Cyp11a1 mRNA above 5 ng L(-1) (significant upregulation from 48 hpf to 120 hpf and significant downregulation for 144 hpf). Norgestrel treatment could significantly induce expression of Cyp19a1a, Cyp11b, Gnrh2, Gnrh3, and Lhb mRNAs but inhibit transcripts of Hsd11b2 and Crh genes above 5 ng L(-1) at different time points. The transcriptional expression levels of Esr1, Ar, Star, Hsd17b3, Fshb, and Pomc were also mediated by 5 ng L(-1) norgestrel or higher during different exposure periods. Taken together, the overall results imply that the transcriptional changes in zebrafish eleutheroembryos may pose a potential effect on embryonic development, in particular in the brain and gonadogenesis. © 2014 SETAC.

  6. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line.

    Science.gov (United States)

    Luque, Raul M; Kineman, Rhonda D; Tena-Sempere, Manuel

    2007-10-01

    It is well established that reproductive function is metabolically gated. However, the mechanisms whereby energy stores and metabolic cues influence fertility are yet to be completely deciphered. Recently, the hypothalamic KiSS-1/GPR54 system has emerged as a fundamental regulator of the gonadotropic axis, which conveys the modulatory actions of sex steroids to GnRH neurons. Evidence is also mounting that KiSS-1 neurons may also represent the link between systemic metabolic signals and central control of reproduction. To further explore this possibility, we examined the impact of changes in energy status and key metabolic regulators on the hypothalamic expression of KiSS-1 and GPR54 genes, using different mouse models and the hypothalamic cell line N6. Time-course analysis of the effects of short-term fasting revealed a rapid (12- and 24-h) decline in KiSS-1 and GPR54 mRNA levels, which preceded that of GnRH (48 h). In contrast, diet-induced obesity or obesity associated with leptin deficiency (ob/ob vs. wild-type mice) failed to induce overt changes in hypothalamic expression of KiSS-1 and GPR54 genes. However, leptin infusion of ob/ob mice evoked a significant increase in KiSS-1 and GPR54 mRNA levels compared with pair-fed controls. Moreover, leptin, but not insulin or IGF-I, stimulated KiSS-1 mRNA expression in the mouse hypothalamic cell line N6. In addition, neuropeptide Y (NPY) null mice showed decreased KiSS-1 mRNA levels at the hypothalamus, whereas exposure to NPY increased expression of KiSS-1 in hypothalamic N6 cells. In sum, our present data further characterize the functional relevance and putative key mediators (such as leptin and NPY) of the metabolic regulation of the hypothalamic KiSS-1 system in the mouse.

  7. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M J; Flors, Victor; Ton, Jurriaan

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

  8. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, E.; Van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.; Burrell, M.; Van de Meene, A.; Pieterse, C.M.J.; Flors, V.; Ton, J.

    2014-01-01

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

  9. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics

    NARCIS (Netherlands)

    Mariman, R.; Kremer, S.H.A.; Erk, M. van; Lagerweij, T.; Koning, F.; Nagelkerken, L.

    2012-01-01

    Background: Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis

  10. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms

    NARCIS (Netherlands)

    van der Harst, Pim; Bakker, Stephan J. L.; de Boer, Rudolf A.; Wolffenbuttel, Bruce H. R.; Johnson, Toby; Caulfield, Mark J.; Navis, Gerjan

    2010-01-01

    Uric acid (UA) is the final catabolic product of purine metabolism and elevated levels are associated with diabetes and cardiovascular disease. A recent meta-analysis of genome-wide association studies totalling 28 141 participants identified five novel loci associated with serum UA levels. In our

  11. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes...

  12. ON THE PECULIARITIES OF THE RING CONTRACTION REACTIONS OF HOMODRIMANES VIA ACID MEDIATED EPOXIDE REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Veaceslav Kulciţki

    2011-06-01

    Full Text Available A selective rearrangement of a epoxy-homodrimanic substrate is described. Using fluorosulfonic acid at low temperature leads by ring contraction to a perhydrindanic structure. On the contrary, using boron trifluoride-diethyl ether at r.t. selectively brings about angular methyl migration.

  13. Na+/H+ Exchanger Regulates Amino Acid-Mediated Autophagy in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Huiying Shi

    2017-08-01

    Full Text Available Background/Aims: Dysfunctional autophagy has been reported to be associated with aberrant intestinal metabolism. Amino acids can regulate autophagic activity in intestinal epithelial cells (IECs. Na+/H+-exchanger 3 (NHE3 has been found to participate in the absorption of amino acids in the intestine, but whether NHE3 is involved in the regulation of autophagy in IECs is unclear. Methods: In the present study, an amino acid starvation-induced autophagic model was established. Then, the effects of alanine and proline with or without the NHE inhibitor 5-(N-ethyl-N-isopropyl amiloride (EIPA were evaluated. Autophagy was examined based on the microtubule-associated light chain 3 (LC3 levels, transmission electron microscopy (TEM, tandem GFP-mCherry-LC3 construct, sequestosome-1 (SQSTM1, P62 mRNA and protein levels, and autophagy-related gene (ATG 5, 7, and 12 expression levels. The autophagic flux was evaluated as the ratio of yellow (autophagosomes to red (autolysosomes LC3 puncta. Results: Following amino acid starvation, we found the LC3-II and ATG expression levels were enhanced in the IEC-18 cells. An increase in the number of autophagic vacuoles was concomitantly observed by TEM and confocal microscopy. Based on the results, supplementation with either alanine or proline depressed autophagy in the IEC-18 cells. Consistent with the elevated LC3-II levels, ATG expression increased upon NHE3 inhibition. Moreover, the mCherry-GFP-LC3 autophagic puncta representing both autophagosomes and autolysosomes per cell increased after EIPA treatment. Conclusions: These results demonstrate that NHE (most likely NHE3 may participate in the amino acid regulation of autophagy in IECs, which would aid in the design of better treatments for intestinal inflammation.

  14. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  15. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta).

    Science.gov (United States)

    Sinhal, V K; Srivastava, Alok; Singh, V P

    2010-05-01

    Phytoextraction is an emerging cost-effective solution for remediation of contaminated soils which involves the removal of toxins, especially heavy metals and metalloids, by the roots of the plants with subsequent transport to aerial plant organs. The aim of the present investigation is to study the effects of EDTA and citric acid on accumulation potential of marigold (Tagetes erecta) to Zn, Cu, Pb, and Cd and also to evaluate the impacts of these chelators (EDTA and citric acid) in combination with all the four heavy metals on the growth of marigold. The plants were grown in pots and treated with Zn (7.3 mg l(-1)), Cu (7.5 mg I(-1)), Pb (3.7 mg l(-1)) and Cd (0.2 mg l(-1)) alone and in combination with different doses of EDTA i.e., 10, 20 and 30 mg l(-1). All the three doses of EDTA i.e., 10, 20 and 30 mg l(-1) significantly increased the accumulation of Zn, Cu, Pb and Cd by roots, stems and leaves as compared to control treatments. The 30 mg l(-1) concentration of citric acid showed reduced accumulation of these metals by root, stem and leaves as compared to lower doses i.e., 10 and 20 mg l(-1). Among the four heavy metals, Zn accumulated in the great amount (526.34 mg kg(-1) DW) followed by Cu (443.14 mg kg(-1) DW), Pb (393.16 mg kg(-1) DW) and Cd (333.62 mg kg(-1) DW) in leaves with 30 mg l(-1) EDTA treatment. The highest concentration of EDTA and citric acid (30 mg l(-1)) caused significant reduction in growth of marigold in terms of plant height, fresh weight of plant, total chlorophyll, carbohydrate content and protein content. Thus EDTA and citric acid efficiently increased the phytoextractability of marigold which can be used to remediate the soil contaminated with these metals.

  16. Hypothalamic germinoma masquerading as superior mesenteric artery (SMA) syndrome.

    Science.gov (United States)

    Vethakkan, Shireene R; Venugopal, Yogeswari; Tan, Alexander T B; Paramasivam, Sharmila S; Ratnasingam, Jeyakantha; Razak, Rohaya A; Alias, Azmi; Kassim, Fauziah; Choong, Karen

    2013-01-01

    To report a case of superior mesenteric artery (SMA) syndrome secondary to hypothalamic germinoma. We describe the clinical presentation, diagnostic work-up, management, and clinical course of a patient admitted with SMA syndrome who was subsequently found to have a hypothalamic germinoma. An adolescent boy was admitted to the surgical ward with progressive weight loss over a 2 year period and postprandial vomiting. He was diagnosed with SMA syndrome based on evidence of proximal duodenal dilatation, extrinsic compression of the distal duodenum, and a narrowed aortomesenteric angle (16°). Investigations performed to exclude thyrotoxicosis unexpectedly revealed secondary hypothyroidism and further evaluation demonstrated evidence of pan-hypopituitarism. Psychiatric evaluation excluded anorexia nervosa and bulimia. Magnetic resonance imaging (MRI) of the brain revealed a heterogeneously enhancing hypothalamic lesion, but a normal pituitary gland. Hormone replacement with hydrocortisone, desmopressin, testosterone, and thyroxine resulted in weight gain and resolution of gastrointestinal symptoms. A transventricular endoscopic biopsy subsequently confirmed a hypothalamic germinoma and he was referred to an oncologist. SMA syndrome secondary to severe weight loss is an uncommon cause of upper gastrointestinal obstruction. While there have been reports of poorly controlled diabetes mellitus and thyrotoxicosis manifesting as SMA syndrome, there are no published reports to date of SMA syndrome secondary to hypothalamic/pituitary disease. Management of SMA syndrome is conservative, as symptoms of intestinal obstruction resolve with weight gain following treatment of the underlying cause. Awareness of this uncommon presentation of endocrine cachexia/hypothalamic disease will prevent unnecessary laparotomies and a misdiagnosis of an eating disorder.

  17. A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Ting; Xu, Wei; Deng, Chenguang; Xu, Shaoxin; Li, Fanghua; Wu, Yuejin; Wu, Lijun; Bian, Po

    Although radiation-induced bystander effects (RIBE) in Arabidopsis thaliana have been well demonstrated in vivo, little is known about their underlying mechanisms, particularly with regard to the participating signaling molecules and signaling pathways. In higher plants, jasmonic acid (JA) and its bioactive derivatives are well accepted as systemic signal transducers that are produced in response to various environmental stresses. It is therefore speculated that the JA signal pathway might play a potential role in mediating radiation-induced bystander signaling of root-to-shoot. In the present study, pretreatment of seedlings with Salicylhydroxamic acid, an inhibitor of lipoxigenase (LOX) in JA biosynthesis, significantly suppressed RIBE-mediated expression of the AtRAD54 gene. After root irradiation, the aerial parts of A. thaliana mutants deficient in JA biosynthesis (aos) and signaling cascades (jar1-1) showed suppressed induction of the AtRAD54 and AtRAD51 genes and TSI and 180-bp repeats, which have been extensively used as endpoints of bystander genetic and epigenetic effects in plants. These results suggest an involvement of the JA signal pathway in the RIBE of plants. Using the root micro-grafting technique, the JA signal pathway was shown to participate in both the generation of bystander signals in irradiated root cells and radiation responses in the bystander aerial parts of plants. The over-accumulation of endogenous JA in mutant fatty acid oxygenation up-regulated 2 (fou2), in which mutation of the Two Pore Channel 1 (TPC1) gene up-regulates expression of the LOX and allene oxide synthase (AOS) genes, inhibited RIBE-mediated expression of the AtRAD54 gene, but up-regulated expression of the AtKU70 and AtLIG4 genes in the non-homologous end joining (NHEJ) pathway. Considering that NHEJ is employed by plants with increased DNA damage, the switch from HR to NHEJ suggests that over-accumulation of endogenous JA might enhance the radiosensitivity of plants

  18. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice.

    Directory of Open Access Journals (Sweden)

    Daniel eLee

    2014-06-01

    Full Text Available The hypothalamus is the central regulator of a broad range of homeostatic and instinctive physiological processes, such as the sleep-wake cycle, food intake, and sexually dimorphic behaviors. These behaviors can be modified by various environmental and physiological cues, although the molecular and cellular mechanisms that mediate these effects remain poorly understood. Recently, it has become clear that both the juvenile and adult hypothalamus exhibit ongoing neurogenesis, which serve to modify homeostatic neural circuitry. In this report, we share new findings on the contributions of sex-specific and dietary factors to regulating neurogenesis in the hypothalamic mediobasal hypothalamus, a recently identified neurogenic niche. We report that high fat diet (HFD selectively activates neurogenesis in the median eminence of young adult female but not male mice, and that focal irradiation of HFD-fed mice likewise reduces weight gain in females but not males. These findings suggest that the physiological effects of high fat diet may be mediated by the stimulation of neurogenesis in the hypothalamic median eminence in a sexually dimorphic manner. We discuss these results in the context of recent advances in understanding the cellular and molecular mechanisms that regulate neurogenesis in postnatal and adult hypothalamus.

  19. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    Science.gov (United States)

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin.

    Science.gov (United States)

    Liou, Alice P; Lu, Xinping; Sei, Yoshitatsu; Zhao, Xilin; Pechhold, Susanne; Carrero, Ricardo J; Raybould, Helen E; Wank, Stephen

    2011-03-01

    Long-chain fatty acid receptors G-protein-coupled receptor 40 (GPR40) (FFAR1) and GPR120 have been implicated in the chemosensation of dietary fats. I cells in the intestine secrete cholecystokinin (CCK), a peptide hormone that stimulates digestion of fat and protein, but these cells are rare and hard to identify. We sought to determine whether dietary fat-induced secretion of CCK is directly mediated by GPR40 expressed on I cells. We used fluorescence-activated cell sorting to isolate a pure population of I cells from duodenal mucosa in transgenic mice that expressed green fluorescent protein under the control of the CCK promoter (CCK-enhanced green fluorescent protein [eGFP] bacterial artificial chromosome mice). CCK-eGFP cells were evaluated for GPR40 expression by quantitative reverse transcription polymerase chain reaction and immunostaining. GPR40(-/-) mice were bred with CCK-eGFP mice to evaluate functional relevance of GPR40 on long-chain fatty acid-stimulated increases in [Ca(2+)]i and CCK secretion in isolated CCK-eGFP cells. Plasma levels of CCK after olive oil gavage were compared between GPR40(+/+) and GPR40(-/-) mice. Cells that expressed eGFP also expressed GPR40; expression of GPR40 was 100-fold greater than that of cells that did not express eGFP. In vitro, linoleic, oleic, and linolenic acids increased [Ca(2+)]i; linolenic acid increased CCK secretion by 53% in isolated GPR40(+/+) cells that expressed eGFP. In contrast, in GPR40(-/-) that expressed eGFP, [Ca(2+)]i response to linoleic acid was reduced by 50% and there was no significant CCK secretion in response to linolenic acid. In mice, olive oil gavage significantly increased plasma levels of CCK compared with pregavage levels: 5.7-fold in GPR40(+/+) mice and 3.1-fold in GPR40(-/-) mice. Long-chain fatty acid receptor GPR40 induces secretion of CCK by I cells in response to dietary fat. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit

    DEFF Research Database (Denmark)

    Larsen, P J; Seier, V; Fink-Jensen, A

    2003-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic...

  2. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri.

    Science.gov (United States)

    Brennan, Caitlin A; DeLoney-Marino, Cindy R; Mandel, Mark J

    2013-03-01

    Flagellar motility and chemotaxis by Vibrio fischeri are important behaviors mediating the colonization of its mutualistic host, the Hawaiian bobtail squid. However, none of the 43 putative methyl-accepting chemotaxis proteins (MCPs) encoded in the V. fischeri genome has been previously characterized. Using both an available transposon mutant collection and directed mutagenesis, we isolated mutants for 19 of these genes, and screened them for altered chemotaxis to six previously identified chemoattractants. Only one mutant was defective in responding to any of the tested compounds; the disrupted gene was thus named vfcA (Vibrio fischeri chemoreceptor A; locus tag VF_0777). In soft-agar plates, mutants disrupted in vfcA did not exhibit the serine-sensing chemotactic ring, and the pattern of migration in the mutant was not affected by the addition of exogenous serine. Using a capillary chemotaxis assay, we showed that, unlike wild-type V. fischeri, the vfcA mutant did not undergo chemotaxis toward serine and that expression of vfcA on a plasmid in the mutant was sufficient to restore the behavior. In addition to serine, we demonstrated that alanine, cysteine, and threonine are strong attractants for wild-type V. fischeri and that the attraction is also mediated by VfcA. This study thus provides the first insights into how V. fischeri integrates information from one of its 43 MCPs to respond to environmental stimuli.

  3. Nitrated fatty acids suppress angiotensin II-mediated fibrotic remodelling and atrial fibrillation

    Czech Academy of Sciences Publication Activity Database

    Rudolph, T.K.; Ravekes, T.; Klinke, A.; Friedrichs, K.; Mollenhauer, M.; Pekarová, Michaela; Ambrožová, Gabriela; Martíšková, Hana; Kaur, J.J.; Matthes, B.; Schwoerer, A.; Woodcock, S.R.; Kubala, Lukáš; Freeman, B.A.; Baldus, S.; Rudolph, V.

    2016-01-01

    Roč. 109, č. 1 (2016), s. 174-184 ISSN 0008-6363 R&D Projects: GA ČR(CZ) GP13-40824P; GA MŠk(CZ) EE2.3.30.0030 Grant - others:GAAV(CZ) M200041208 Institutional support: RVO:68081707 Keywords : Atrial fibrillation * Fibrosis * Nitro-fatty acids Subject RIV: BO - Biophysics Impact factor: 5.878, year: 2016

  4. Recent advances in the chemistry and biology of anti-inflammatory and specialized pro-resolving mediators biosynthesized from n-3 docosapentaenoic acid.

    Science.gov (United States)

    Vik, Anders; Dalli, Jesmond; Hansen, Trond Vidar

    2017-06-01

    Several novel oxygenated polyunsaturated lipid mediators biosynthesized from n-3 docosapentaenoic acid were recently isolated from murine inflammatory exudates and human primary cells. These compounds belong to a distinct family of specialized pro-resolving mediators, and display potent in vivo anti-inflammatory and pro-resolution effects. The endogenously formed specialized pro-resolving mediators have attracted a great interest as lead compounds in drug discovery programs towards the development of new classes of drugs that dampen inflammation without interfering with the immune response. Detailed information on the chemical structures, cellular functions and distinct biosynthetic pathways of specialized pro-resolving lipid mediators is a central aspect of these biological actions. Herein, the isolation, structural elucidation, biosynthetic pathways, total synthesis and bioactions of the n-3 docosapentaenoic acid derived mediators PD1 n-3 DPA and MaR1 n-3 DPA are discussed. In addition, a brief discussion of a novel family of mediators derived from n-3 docosapentaenoic acid, termed 13-series resolvins is included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085 (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang Pengyi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: zpy@tsinghua.edu.cn; Pan Gang; Chen Hao [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085 (China)

    2008-12-15

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 {mu}M ferric ion, 47.3% of initial PFOA (48 {mu}M) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 {mu}M, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu{sup 2+} and Zn{sup 2+} also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way.

  6. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shunqing [Department of Biomedical Engineering, Jinan University, Guangzhou 510632 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Boston, MA 02130 (United States)

    2007-09-15

    Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.

  7. Hyperactivation of BDNF-TrkB signaling cascades in human hypothalamic hamartoma (HH): a potential mechanism contributing to epileptogenesis.

    Science.gov (United States)

    Semaan, Suzan; Wu, Jie; Gan, Yan; Jin, Yu; Li, Guo-Hui; Kerrigan, John F; Chang, Yong-Chang; Huang, Yao

    2015-02-01

    Although compelling evidence suggests that human hypothalamic hamartoma (HH) is intrinsically epileptogenic for gelastic seizures, the molecular mechanisms responsible for epileptogenesis within HH remain to be elucidated. The aim of this study was to test the hypothesis that hyperactivation of BDNF-TrkB signaling pathways in surgically resected HH tissue is a possible mechanism for downregulation of KCC2 expression, which in turn underlies GABA-mediated excitation within HH. Activation of three major BDNF-TrkB signaling pathways including MAPKs, Akt, and PLCγ1 were evaluated in surgically resected HH tissue (n = 14) versus human hypothalamic control tissue (n = 8) using combined methodologies of biochemistry, molecular biology, cell biology, and electrophysiology. Our data show that compared with hypothalamic control tissue, in HH tissue, (i) activation of TrkB and expression of mature BDNF are elevated; (ii) MAPKs (including ERK1/2, p38, and JNK), Akt, and PLCγ1 are highly activated; (iii) KCC2 expression is downregulated; and (iv) pharmacological manipulation of TrkB signaling alters HH neuronal firing rate. Our findings suggest that multiple BDNF-TrkB signaling pathways are activated in HH. They act independently or collaboratively to downregulate KCC2 expression, which is the key component for GABA-mediated excitation associated with gelastic seizures. © 2014 John Wiley & Sons Ltd.

  8. Anomalous hypothalamic responses to humor in cataplexy.

    Directory of Open Access Journals (Sweden)

    Allan L Reiss

    2008-05-01

    Full Text Available Cataplexy is observed in a subset of patients with narcolepsy and affects approximately 1 in 2,000 persons. Cataplexy is most often triggered by strong emotions such as laughter, which can result in transient, yet debilitating, muscle atonia. The objective of this study was to examine the neural systems underlying humor processing in individuals with cataplexy.While undergoing functional Magnetic Resonance Imaging (fMRI, we showed ten narcolepsy-cataplexy patients and ten healthy controls humorous cartoons. In addition, we examined the brain activity of one subject while in a full-blown cataplectic attack. Behavioral results showed that participants with cataplexy rated significantly fewer humorous cartoons as funny compared to controls. Concurrent fMRI showed that patients, when compared to controls and in the absence of overt cataplexy symptoms, showed pronounced activity in the emotional network including the ventral striatum and hypothalamus while viewing humorous versus non-humorous cartoons. Increased activity was also observed in the right inferior frontal gyri--a core component of the inhibitory circuitry. In comparison, the one subject who experienced a cataplectic attack showed dramatic reductions in hypothalamic activity.These findings suggest an overdrive of the emotional circuitry and possible compensatory suppression by cortical inhibitory regions in cataplexy. Moreover, during cataplectic attacks, the hypothalamus is characterized by a marked decrease in activity similar to that observed during sleep. One possible explanation for these findings is an initial overdrive and compensatory shutdown of the hypothalamus resulting in full cataplectic symptoms.

  9. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering

    Science.gov (United States)

    2017-01-01

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  10. Retinoic acid mediates long-paced oscillations in retinoid receptor activity: evidence for a potential role for RIP140.

    Directory of Open Access Journals (Sweden)

    Kelly C Heim

    Full Text Available Mechanisms that underlie oscillatory transcriptional activity of nuclear receptors (NRs are incompletely understood. Evidence exists for rapid, cyclic recruitment of coregulatory complexes upon activation of nuclear receptors. RIP140 is a NR coregulator that represses the transactivation of agonist-bound nuclear receptors. Previously, we showed that RIP140 is inducible by all-trans retinoic acid (RA and mediates limiting, negative-feedback regulation of retinoid signaling.Here we report that in the continued presence of RA, long-paced oscillations of retinoic acid receptor (RAR activity occur with a period ranging from 24 to 35 hours. Endogenous expression of RIP140 and other RA-target genes also oscillate in the presence of RA. Cyclic retinoid receptor transactivation is ablated by constitutive overexpression of RIP140. Further, depletion of RIP140 disrupts cyclic expression of the RA target gene HOXA5. Evidence is provided that RIP140 may limit RAR signaling in a selective, non-redundant manner in contrast to the classic NR coregulators NCoR1 and SRC1 that are not RA-inducible, do not cycle, and may be partially redundant in limiting RAR activity. Finally, evidence is provided that RIP140 can repress and be induced by other nuclear receptors in a manner that suggests potential participation in other NR oscillations.We provide evidence for novel, long-paced oscillatory retinoid receptor activity and hypothesize that this may be paced in part, by RIP140. Oscillatory NR activity may be involved in mediating hormone actions of physiological and pathological importance.

  11. Protein Kinase C-dependent Ubiquitination and Clathrin-mediated Endocytosis of the Cationic Amino Acid Transporter CAT-1*

    Science.gov (United States)

    Vina-Vilaseca, Arnau; Bender-Sigel, Julia; Sorkina, Tatiana; Closs, Ellen Ildicho; Sorkin, Alexander

    2011-01-01

    Cationic amino acid transporter 1 (CAT-1) is responsible for the bulk of the uptake of cationic amino acids in most mammalian cells. Activation of protein kinase C (PKC) leads to down-regulation of the cell surface CAT-1. To examine the mechanisms of PKC-induced down-regulation of CAT-1, a functional mutant of CAT-1 (CAT-1-HA-GFP) was generated in which a hemagglutinin antigen (HA) epitope tag was introduced into the second extracellular loop and GFP was attached to the carboxyl terminus. CAT-1-HA-GFP was stably expressed in porcine aorthic endothelial and human epithelial kidney (HEK) 293 cells. Using the HA antibody internalization assay we have demonstrated that PKC-dependent endocytosis was strongly inhibited by siRNA depletion of clathrin heavy chain, indicating that CAT-1-HA-GFP internalization requires clathrin-coated pits. Internalized CAT-1-HA-GFP was accumulated in early, recycling, and late endosomes. PKC activation also resulted in ubiquitination of CAT-1. CAT-1 ubiquitination and endocytosis in phorbol ester-stimulated porcine aorthic endothelial and HEK293 cells were inhibited by siRNA knockdown of NEDD4-2 and NEDD4-1 E3 ubiquitin ligases, respectively. In contrast, ubiquitination and endocytosis of the dopamine transporter was dependent on NEDD4-2 in all cell types tested. Altogether, our data suggest that ubiquitination mediated by NEDD4-2 or NEDD4-1 leading to clathrin-mediated endocytosis is the common mode of regulation of various transporter proteins by PKC. PMID:21212261

  12. Rhythmic activities of hypothalamic magnocellular neurons: autocontrol mechanisms.

    Science.gov (United States)

    Richard, P; Moos, F; Dayanithi, G; Gouzènes, L; Sabatier, N

    1997-12-01

    Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20-40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.

  13. Posterior hypothalamic and brainstem activation in hemicrania continua.

    Science.gov (United States)

    Matharu, Manjit S; Cohen, Anna S; McGonigle, David J; Ward, Nick; Frackowiak, Richard S; Goadsby, Peter J

    2004-09-01

    To determine the brain structures involved in mediating the pain of hemicrania continua using positron emission tomography. Hemicrania continua is a strictly unilateral, continuous headache of moderate intensity, with superimposed exacerbations of severe intensity that are accompanied by trigeminal autonomic features and migrainous symptoms. The syndrome is exquisitely responsive to indomethacin. Its clinical phenotype overlaps with that of the trigeminal autonomic headaches and migraine in which the hypothalamus and the brainstem, respectively, have been postulated to play central pathophysiologic roles. We hypothesized, based on the clinical phenotype, that hemicrania continua may involve activations in the hypothalamus, or dorsal rostral pons, or both. Seven patients with hemicrania continua were studied in two sessions each. In one session, the patients were scanned during baseline pain and when rendered completely pain free after being administered indomethacin 100 mg intramuscularly. In the other session, the patients were scanned during baseline pain and when still in pain after being administered placebo intramuscularly. Seven age- and sex-matched nonheadache subjects acted as the control group. The scan images were processed and analyzed using SPM99. There was a significant activation of the contralateral posterior hypothalamus and ipsilateral dorsal rostral pons in association with the headache of hemicrania continua. In addition, there was activation of the ipsilateral ventrolateral midbrain, which extended over the red nucleus and the substantia nigra, and bilateral pontomedullary junction. No intracranial vessel dilatation was obvious. This study demonstrated activations of various subcortical structures, in particular the posterior hypothalamus and the dorsal rostral pons. If posterior hypothalamic and brainstem activation are considered as markers of trigeminal autonomic headaches and migrainous syndromes, respectively, then the activation pattern

  14. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  15. Salicylic acid is involved in the Nb-mediated defense responses to Potato virus X in Solanum tuberosum.

    Science.gov (United States)

    Sánchez, Gerardo; Gerhardt, Nadia; Siciliano, Florencia; Vojnov, Adrián; Malcuit, Isabelle; Marano, María Rosa

    2010-04-01

    To evaluate the role of salicylic acid (SA) in Nb-mediated hypersensitive resistance to Potato virus X (PVX) avirulent strain ROTH1 in Solanum tuberosum, we have constructed SA-deficient transgenic potato plant lines by overexpressing the bacterial enzyme salicylate hydroxylase (NahG), which degrades SA. Evaluation of these transgenic lines revealed hydrogen peroxide accumulation and spontaneous lesion formation in an age- and light-dependent manner. In concordance, NahG potato plants were more sensitive to treatment with methyl viologen, a reactive oxygen species-generating compound. In addition, when challenged with PVX ROTH1, NahG transgenic lines showed a decreased disease-resistance response to infection and were unable to induce systemic acquired resistance. However, the avirulent viral effector, the PVX 25-kDa protein, does induce expression of the pathogenesis-related gene PR-1a in NahG potato plants. Taken together, our data indicate that SA is involved in local and systemic defense responses mediated by the Nb gene in Solanum tuberosum. This is the first report to show that basal levels of SA correlate with hypersensitive resistance to PVX.

  16. A novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancer.

    Science.gov (United States)

    Maurmann, L; Belkacemi, L; Adams, N R; Majmudar, P M; Moghaddas, S; Bose, R N

    2015-07-01

    Platinum-based anticancer drugs, including cisplatin and carboplatin, have been cornerstones in the treatment of solid tumors. We report here that these DNA-damaging agents, particularly cisplatin, induce apoptosis through plasma membrane disruption, triggering FAS death receptor via mitochondrial (intrinsic) pathways. Our objectives were to: quantify the composition of membrane metabolites; and determine the potential involvement of acid sphingomyelinase (ASMase) in the FAS-mediated apoptosis in ovarian cancer after cisplatin treatment. The resulting analysis revealed enhanced apoptosis as measured by: increased phosphocholine, and glycerophosphocholine; elevated cellular energetics; and phosphocreatine and nucleoside triphosphate concentrations. The plasma membrane alterations were accompanied by increased ASMase activity, leading to the upregulation of FAS, FASL and related pro-apoptotic BAX and PUMA genes. Moreover FAS, FASL, BAX, PUMA, CASPASE-3 and -9 proteins were upregulated. Our findings implicate ASMase activity and the intrinsic pathways in cisplatin-mediated membrane demise, and contribute to our understanding of the mechanisms by which ovarian tumors may become resistant to cisplatin.

  17. Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer.

    Science.gov (United States)

    Bhattacharya, Nupur; Yuan, Robert; Prestwood, Tyler R; Penny, Hweixian Leong; DiMaio, Michael A; Reticker-Flynn, Nathan E; Krois, Charles R; Kenkel, Justin A; Pham, Tho D; Carmi, Yaron; Tolentino, Lorna; Choi, Okmi; Hulett, Reyna; Wang, Jinshan; Winer, Daniel A; Napoli, Joseph L; Engleman, Edgar G

    2016-09-20

    Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon.

    Science.gov (United States)

    Frankel, W L; Zhang, W; Singh, A; Klurfeld, D M; Don, S; Sakata, T; Modlin, I; Rombeau, J L

    1994-02-01

    Short-chain fatty acids (SCFAs) are trophic to small intestinal and colonic mucosa. This study determined whether SCFAs infused into the cecum out of continuity stimulated jejunal and colonic cellularity and whether these effects were mediated by the autonomic nervous system and/or enterotrophic hormones. To eliminate direct trophic effects of SCFAs in contact with mucosa, 60 rats underwent cecal isolation with placement of an infusion catheter into the proximal cecum, formation of distal cecocutaneous stoma, and restoration of intestinal continuity with ileocolonic anastomosis. Rats underwent cecal denervation or remained normally innervated and received 1 of 3 infusions for 10 days: SCFAs, saline, or no infusion. Twenty-four additional rats were assigned to the same groups but underwent infusion into the proximal colon (in circuit). Cecal infusion of SCFAs into innervated rats increased (P < 0.05) jejunal DNA, villous height, surface area, crypt depth, and gastrin without increasing colonic variables. In denervated rats, SCFAs did not significantly affect these variables. However, direct intracolonic infusions of SCFAs increased (P < 0.05) colonic mucosal DNA and crypt depth. Jejunotrophic effects of cecally infused SCFAs are mediated afferently by the autonomic nervous system and are associated with increased jejunal gastrin. SCFAs have local trophic effects on the colon.

  19. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis

    Science.gov (United States)

    Kim, Dong-Hyun; Kwon, Sanghoon; Byun, Sangwon; Xiao, Zhen; Park, Sean; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Kemper, Byron; Kemper, Jongsook Kim

    2016-01-01

    Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity. PMID:27412403

  20. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  1. Vascular alterations after photodynamic therapy mediated by 5-aminolevulinic acid in oral leukoplakia.

    Science.gov (United States)

    Rosin, Flávia Cristina Perillo; Barcessat, Ana Rita Ribeiro; Borges, Giuliana Gadoni Giovanni; Ferreira, Luciana Gonçalves Valente; Corrêa, Luciana

    2017-02-01

    Impairment of vascular functions after photodynamic therapy (PDT) is frequently associated with tumor remission and is considered one of the main antineoplastic PDT effects. Vascular alterations in oral leukoplakia (OL) treated with PDT have not yet been described. The aim of this study was to evaluate the effect of topical 5-ALA-mediated PDT on the vascular network of 4NQO-induced OL in rats. After applying 4NQO topically on the tongue during 16 weeks, there was induction of dysplastic lesions, which were treated with two PDT sessions (with an interval of 72 h between them), using topical application of 5-ALA and posterior irradiation with a laser (90 J/cm2 fluency). Histological sections of the tongues were obtained and analyzed concerning plasmatic exudation and microvessel density after immunolabeling with CD31 and CD34 vessel markers. There was intense plasmatic exudation after 6 h of the first PDT session; at 6 h of the second PDT session, there was a significant reduction in the density of CD31- and CD34-positive microvessels in comparison to controls (p < 0.05). In the PDT intervals, there was an increase in the density of CD31 and CD34 microvessels, suggesting angiogenesis. Topical application of 5-ALA-mediated PDT caused an immediate deleterious effect on the vascular network, increasing vessel permeability and reducing vessel density, mainly after two sessions of the treatment. However, secondary angiogenesis emerged in these lesions during intervals of the PDT session. This fact may be considered during the adoption of a PDT protocol, to avoid OL resistance and recurrence after the treatment.

  2. Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese females Neotomodon alstoni: effect of fasting.

    Science.gov (United States)

    Báez-Ruiz, Adrián; Luna-Moreno, Dalia; Carmona-Castro, Agustín; Cárdenas-Vázquez, René; Díaz-Muñoz, Mauricio; Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Manuel, Miranda-Anaya

    2014-01-01

    Obesity is a world problem that requires a better understanding of its physiological and genetic basis, as well as the mechanisms by which the hypothalamus controls feeding behavior. The volcano mouse Neotomodon alstoni develops obesity in captivity when fed with regular chow diet, providing a novel model for the study of obesity. Females develop obesity more often than males; therefore, in this study, we analysed in females, in proestrous lean and obese, the differences in hypothalamus expression of receptors for leptin, ghrelin (growth hormone secretagogue receptor GHS-R), and VPAC, and correlates for plasma levels of total ghrelin. The main comparisons are between mice fed ad libitum and mice after 24 hours of fasting. Mice above 65 g body weight were considered obese, based on behavioral and physiological parameters such as food intake, plasma free fatty acids, and glucose tolerance. Hypothalamic tissue from obese and lean mice was analysed by western blot. Our results indicate that after ad libitum food access, obese mice show no significant differences in hypothalamic leptin receptors, but a significant increase of 60% in the GHS-R, and a nearly 62% decrease in VPAC2 was noted. After a 24-hour fast, plasma ghrelin increased nearly two fold in both lean and obese mice; increases of hypothalamic leptin receptors and GHS-R were also noted, while VPAC2 did not change significantly; levels of plasma free fatty acids were 50% less after fasting in obese than in lean animals. Our results indicate that in obese N. alstoni mice, the levels of orexigenic receptors in the hypothalamus correlate with overfeeding, and the fact that lean and obese females respond in different ways to a metabolic demand such as a 24-hour fast.

  3. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  4. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  5. The hypothalamic-pituitary-adrenal and the hypothalamic- pituitary-gonadal axes interplay.

    Science.gov (United States)

    Mastorakos, George; Pavlatou, Maria G; Mizamtsidi, Maria

    2006-01-01

    Vertebrates respond to stress with activation of the hypothalamic-pituitary-adrenal (HPA) axis, the adrenergic and the autonomic nervous systems. The principal central nervous system regulators of the HPA axis are corticotropin releasing hormone (CRH) and antidiuretic hormone (AVP). Apart from in the central nervous system, CRH has been found in the adrenal medulla, ovaries, myometrium, endometrium, placenta, testis and elsewhere. The activation of the HPA axis during stress affects all body systems. The reproductive axis is inhibited by the HPA axis for the sake of saving energy. The changes to the hypothalamic-pituitary-gonadal (HPG) axis during stress are species-specific, and depend on the type and duration of the stimulus. Several conditions may be associated with altered regulation of the HPA axis. Polycystic ovary syndrome, anorexia nervosa and pregnancy in the third trimester are all characterized by HPA axis activation. In contrast, during the postpartum period, HPA axis suppression is implicated in the "postpartum blues". The actions of CRH are also essential in fetal development and neonatal survival.

  6. D-lactic acidosis simulating a hypothalamic syndrome after bowel bypass.

    Science.gov (United States)

    Carr, D B; Shih, V E; Richter, J M; Martin, J B

    1982-02-01

    A 36-year-old man had one year of periodic symptoms suggestive of episodic hypothalamic dysfunction: hypersomnia, thirst, ravenous hunger and gorging behavior, pallor, and irritability. However, neuroendocrine testing proved normal. A mild transient acidosis at the onset of his attacks and a history of bowel bypass five years earlier prompted metabolic screening. Markedly increased urinary D-lactic and phenolic acids were present, as were intermittent elevations of plasma D-lactic acid during two symptomatic episodes. Prompt and sustained clinical remission coincided with disappearance of abnormal organic acid excretion during oral antibiotic therapy. D-Lactic acidosis must be considered in the differential diagnosis of otherwise unexplained neurological syndromes, particularly in patients with altered bowel anatomy.

  7. 2,4,6-Trichloro-1,3,5-triazine (TCT) mediated one pot direct synthesis of N-benzoylthioureas from carboxylic acids

    OpenAIRE

    Somnath Gholap; Navanath Gunjal

    2017-01-01

    An efficient 2,4,6-trichloro-1,3,5-triazine (TCT) mediated synthesis of N-benzoylthiourea derivatives from carboxylic acid has been described. The reaction of TCT (1), triethyl amine in dichloromethane gives tris-quaternary ammonium salt (A), reacted with carboxylic acid to form activated ester as an intermediate (B). Aroylthiocyanate was formed by the reaction of activated ester ‘B’ and ammonium isothiocyanate followed by aliphatic or aromatic amines affording structurally diverse N-benzoylt...

  8. Potential Protective Effects of Ursolic Acid against Gamma Irradiation-Induced Damage Are Mediated through the Modulation of Diverse Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2017-06-01

    Full Text Available This study was aimed to evaluate the possible protective effects of ursolic acid (UA against gamma radiation induced damage both in vitro as well as in vivo. It was observed that the exposure to gamma radiation dose- and time-dependently caused a significant decrease in the cell viability, while the treatment of UA attenuated this cytotoxicity. The production of free radicals including reactive oxygen species (ROS and NO increased significantly post-irradiation and further induced lipid peroxidation and oxidative DNA damage in cells. These deleterious effects could also be effectively blocked by UA treatment. In addition, UA also reversed gamma irradiation induced inflammatory responses, as indicated by the decreased production of TNF-α, IL-6, and IL-1β. NF-κB signaling pathway has been reported to be a key mediator involved in gamma radiation-induced cellular damage. Our results further demonstrated that gamma radiation dose- and time-dependently enhanced NF-κB DNA binding activity, which was significantly attenuated upon UA treatment. The post-irradiation increase in the expression of both phospho-p65, and phospho-IκBα was also blocked by UA. Moreover, the treatment of UA was found to significantly prolong overall survival in mice exposed to whole body gamma irradiation, and reduce the excessive inflammatory responses. Given its radioprotective efficacy as described here, UA as an antioxidant and NF-κB pathway blocker, may function as an important pharmacological agent in protecting against gamma irradiation-induced injury.

  9. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

    Science.gov (United States)

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin R.; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  10. Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid-Base-Mediated Bifunctional/Cascade Catalysis.

    Science.gov (United States)

    Li, Hu; Fang, Zhen; He, Jian; Yang, Song

    2017-02-22

    The development of functional metal-organic materials that are robust and active for bifunctional/cascade catalysis is of great significance. Herein, a series of mesoporous and orderly layered nanohybrids were synthesized for the first time through simple and template-free assembly of ortho-, meta-, or para-xylylenediphosphonates (o-, p-, or m-PhP) containing zirconium. It was found that m-PhPZr nanoparticles (20-50 nm) with mesopores centered at 7.9 nm and high Lewis acid-base site ratio (1:0.7) showed excellent performance under mild conditions (as low as 82 °C) in transfer hydrogenation of carbonyl compounds, including bioaldehydes and alcohols, with near quantitative yields and little Zr leaching. Isotopic labeling studies indicated the occurrence of direct hydrogen transfer rather than metal hydride route by bifunctional catalysis. Lewis acidic (Zr) and basic (PO 3 ) centers of the heterogeneous catalyst were further revealed to play a synergistic role in one-pot cascade transformations, for example, of ethyl levulinate to γ-valerolactone and glucose to 5-hydroxymethylfurfural. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transformation of Mortierella alpina (fatty acid supplier myceliums via AMT system (Agrobacterium Mediated Transformation

    Directory of Open Access Journals (Sweden)

    Aida Javanmard

    2016-09-01

    Full Text Available Introduction: Mortierella alpina is one of the most important fungi in food industry because of having ability of synthesizing unsaturated fatty acids, particularly Arashidonic Acid. This is a precursor of Eicosanoidregulate-lipoprotein metabolism which is involved in blood rheology, platelet activation and leukocyte-function, and the functional characteristics of the cell membrane. Materials and methods: In this study genetic transformation of M. alpina CBS754.68 fungus was evaluated via Agrobacterium tumefaciens and Agrobacterium rhizogenes. Agrobacteriums containing pBI121 vector were used for transformation of three days of old mycelia. Three days old hyphae were exposed to the bacteria with three level of time (one, two and three hours in the present of acetosyringone. Mitotic stability of the third generation of transgenic (T2 was confirmed by GUS assay and amplification of CaMV 35S promoter by polymerase chain reaction. Results: The highest percentage of transformation and mitotic stability were obtained by using A. tumefaciens and A. rhizogenese, respectively. Discussion and conclusion: The results showed that to obtain more efficient and more stable transformation, the fundamental factor is the use of suitable species of Agrobacterium. It is the first report for transformation of autothroph strain of M. alpine via Agrobacterium.

  12. Drosophila Gr64e mediates fatty acid sensing via the phospholipase C pathway.

    Science.gov (United States)

    Kim, Hyeyon; Kim, Haein; Kwon, Jae Young; Seo, Jeong Taeg; Shin, Dong Min; Moon, Seok Jun

    2018-02-08

    Animals use taste to sample and ingest essential nutrients for survival. Free fatty acids (FAs) are energy-rich nutrients that contribute to various cellular functions. Recent evidence suggests FAs are detected through the gustatory system to promote feeding. In Drosophila, phospholipase C (PLC) signaling in sweet-sensing cells is required for FA detection but other signaling molecules are unknown. Here, we show Gr64e is required for the behavioral and electrophysiological responses to FAs. GR64e and TRPA1 are interchangeable when they act downstream of PLC: TRPA1 can substitute for GR64e in FA but not glycerol sensing, and GR64e can substitute for TRPA1 in aristolochic acid but not N-methylmaleimide sensing. In contrast to its role in FA sensing, GR64e functions as a ligand-gated ion channel for glycerol detection. Our results identify a novel FA transduction molecule and reveal that Drosophila Grs can act via distinct molecular mechanisms depending on context.

  13. Prostaglandin H synthase-mediated bioactivation of the amino acid pyrolysate product Trp P-2

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Krauss, R.S.; Eling, T.E.

    1986-08-01

    We report evidence that the mutagen and carcinogen 3-amino-1-methyl-5H pyrido(4,3b)indole (Trp P-2) is a substrate for co-oxidation by prostaglandin H synthase (PHS) in ram seminal vesicle (RSV) microsomes. Trp P-2 serves as a reducing cofactor for the hydroperoxidase activity of PHS as shown by the concentration-dependent inhibition of the hydroperoxidase catalyzed incorporation of molecular oxygen into phenylbutazone. Spectral data suggest that this metabolism results in disruption of the double bond conjugation within the nucleus of the molecule. A single metabolite peak which was dependent upon arachidonic acid and substrate concentration was separated from the parent compound by h.p.l.c. following incubation with RSV microsomes. Co-oxidation of Trp P-2 produced reactive intermediates which bound covalently to microsomal protein (9 nmol/mg) and to calf thymus DNA (475 pmol/mg). Binding was inhibited by indomethacin, and supported by substitution of hydrogen peroxide for arachidonic acid. These data suggest a possible role for PHS in the in situ activation of Trp P-2 to its ultimate carcinogenic form in tissues which contain PHS.

  14. Do sensory neurons mediate adaptive cytoprotection of gastric mucosa against bile acid injury?

    Science.gov (United States)

    Mercer, D W; Ritchie, W P; Dempsey, D T

    1992-01-01

    Pretreatment with the mild irritant 1 mmol acidified taurocholate protects the gastric mucosa from the injury induced by the subsequent application of 5 mmol acidified taurocholate, a phenomenon referred to as "adaptive cytoprotection." How this occurs remains an enigma. The purpose of this study was to investigate the role of sensory neurons and mucus secretion in this phenomenon. Prior to injury with 5 mmol acidified taurocholate (pH 1.2), the stomachs of six groups of rats were subjected to the following protocol. Two groups were topically pretreated with either saline or the mild irritant 1 mmol acidified taurocholate. Two other groups received the topical anesthetic 1% lidocaine prior to pretreatment with either saline or 1 mmol acidified taurocholate. The last two groups got the mucolytic agent 10% N-acetylcysteine (NAC) after pretreatment with either saline or 1 mmol acidified taurocholate. Injury was assessed by measuring net transmucosal ion fluxes, luminal appearance of deoxyribonucleic acid (DNA), and gross and histologic injury. Pretreatment with the mild irritant 1 mmol acidified taurocholate significantly decreased bile acid-induced luminal ion fluxes and DNA accumulation, suggesting mucosal protection (corroborated by gross and histologic injury analysis). This effect was negated by lidocaine but not by NAC. Thus, it appears that sensory neurons, and not increased mucus secretion, play a critical role in adaptive cytoprotection.

  15. Tendon-muscle crosstalk controls muscle bellies morphogenesis, which is mediated by cell death and retinoic acid signaling.

    Science.gov (United States)

    Rodriguez-Guzman, Maria; Montero, Juan A; Santesteban, Elena; Gañan, Yolanda; Macias, Domingo; Hurle, Juan M

    2007-02-01

    Vertebrate muscle morphogenesis is a complex developmental process, which remains quite yet unexplored at cellular and molecular level. In this work, we have found that sculpturing programmed cell death is a key morphogenetic process responsible for the formation of individual foot muscles in the developing avian limb. Muscle fibers are produced in excess in the precursor dorsal and ventral muscle masses of the limb bud and myofibers lacking junctions with digital tendons are eliminated via apoptosis. Microsurgical experiments to isolate the developing muscles from their specific tendons are consistent with a role for tendons in regulating survival of myogenic cells. Analysis of the expression of Raldh2 and local treatments with retinoic acid indicate that this signaling pathway mediates apoptosis in myogenic cells, appearing also involved in tendon maturation. Retinoic acid inhibition experiments led to defects in muscle belly segmentation and myotendinous junction formation. It is proposed that heterogeneous local distribution of retinoids controlled through Raldh2 and Cyp26A1 is responsible for matching the fleshy and the tendinous components of each muscle belly.

  16. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Sarma, Birinchi Kumar; Singh, Harikesh Bahadur

    2015-05-01

    Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Acid-mediated reactions under microfluidic conditions: A new strategy for practical synthesis of biofunctional natural products

    Directory of Open Access Journals (Sweden)

    Katsunori Tanaka

    2009-08-01

    Full Text Available Microfluidic conditions were applied to acid-mediated reactions, namely, glycosylation, reductive opening of the benzylidene acetal groups, and dehydration, which are the keys to the practical synthesis of N-glycans and the immunostimulating natural product, pristane. A distinctly different reactivity from that in conventional batch stirring was found; the vigorous micromixing of the reactants with the concentrated acids is critical especially for the “fast” reactions to be successful. Such a common feature might be due to the integration of all favorable aspects of microfluidic conditions, i.e., efficient mixing, precise temperature control, and the easy handling of the reactive intermediate by controlling the residence time. The microfluidic reactions cited in this review indicate the need to reinvestigate the traditional or imaginary reactions which have so far been performed and evaluated only in batch apparatus, and therefore they could be recognized as a new strategy in synthesizing natural products of prominent biological activity in a “practical” and a “industrial” manner.

  18. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease.

    Directory of Open Access Journals (Sweden)

    Julio J Amaral

    Full Text Available Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.

  19. Chaperone-Mediated Autophagy Targets IFNAR1 for Lysosomal Degradation in Free Fatty Acid Treated HCV Cell Culture.

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    Full Text Available Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α-based combination therapy in chronic hepatitis C virus (HCV infection. Previously, we reported that free fatty acid (FFA-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1, which is why the antiviral activity of IFN-α against HCV is impaired.To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment.HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α and Type III IFN (IFN-λ was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA in the FFA-treated HCV cell culture model was investigated.FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ, which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture

  20. Chaperone-Mediated Autophagy Targets IFNAR1 for Lysosomal Degradation in Free Fatty Acid Treated HCV Cell Culture.

    Science.gov (United States)

    Kurt, Ramazan; Chandra, Partha K; Aboulnasr, Fatma; Panigrahi, Rajesh; Ferraris, Pauline; Aydin, Yucel; Reiss, Krzysztof; Wu, Tong; Balart, Luis A; Dash, Srikanta

    2015-01-01

    Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α)-based combination therapy in chronic hepatitis C virus (HCV) infection. Previously, we reported that free fatty acid (FFA)-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1), which is why the antiviral activity of IFN-α against HCV is impaired. To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment. HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate) and unsaturated (oleate) long-chain free fatty acids (FFA). Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α) and Type III IFN (IFN-λ) was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA) in the FFA-treated HCV cell culture model was investigated. FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ), which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture

  1. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    Science.gov (United States)

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis.

    Science.gov (United States)

    Anderson, Gregory G; Goller, Carlos C; Justice, Sheryl; Hultgren, Scott J; Seed, Patrick C

    2010-03-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharide capsule is a key constituent of the IBC matrix. Compared to prototypic E. coli K1 strain UTI89, a capsule assembly mutant had a fitness defect in functionally TLR4(+) and TLR4(-) mice, suggesting a protective role of capsule in inflamed and noninflamed hosts. K1 capsule assembly and synthesis mutants had dramatically reduced IBC formation, demonstrating the common requirement for K1 polysaccharide in IBC development. The capsule assembly mutant appeared dispersed in the cytoplasm of the bladder epithelial cells and failed to undergo high-density intracellular replication during later stages of infection, when the wild-type strain continued to form serial generations of IBC. Deletion of the sialic acid regulator gene nanR partially restored IBC formation in the capsule assembly mutant. These data suggest that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development. Together, these data demonstrate the complex but important roles of UPEC polysaccharide encapsulation and sialic acid signaling in multiple stages of UTI pathogenesis.

  3. γ-Aminobutyric acid transporter 2 mediates the hepatic uptake of guanidinoacetate, the creatine biosynthetic precursor, in rats.

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    Full Text Available Guanidinoacetic acid (GAA is the biosynthetic precursor of creatine which is involved in storage and transmission of phosphate-bound energy. Hepatocytes readily convert GAA to creatine, raising the possibility that the active uptake of GAA by hepatocytes is a regulatory factor. The purpose of this study is to investigate and identify the transporter responsible for GAA uptake by hepatocytes. The characteristics of [(14C]GAA uptake by hepatocytes were elucidated using the in vivo liver uptake method, freshly isolated rat hepatocytes, an expression system of Xenopus laevis oocytes, gene knockdown, and an immunohistochemical technique. In vivo injection of [(14C]GAA into the rat femoral vein and portal vein results in the rapid uptake of [(14C]GAA by the liver. The uptake was markedly inhibited by γ-aminobutyric acid (GABA and nipecotinic acid, an inhibitor of GABA transporters (GATs. The characteristics of Na(+- and Cl(--dependent [(14C]GAA uptake by freshly isolated rat hepatocytes were consistent with those of GAT2. The Km value of the GAA uptake (134 µM was close to that of GAT2-mediated GAA transport (78.9 µM. GABA caused a marked inhibition with an IC(50 value of 8.81 µM. The [(14C]GAA uptake exhibited a significant reduction corresponding to the reduction in GAT2 protein expression. GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. This distribution pattern was consistent with that of the creatine biosynthetic enzyme, S-adenosylmethionine:guanidinoacetate N-methyltransferase. GAT2 makes a major contribution to the sinusoidal GAA uptake by periportal hepatocytes, thus regulating creatine biosynthesis in the liver.

  4. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass.

    Science.gov (United States)

    Barkholt, Pernille; Pedersen, Philip J; Hay-Schmidt, Anders; Jelsing, Jacob; Hansen, Henrik H; Vrang, Niels

    2016-04-01

    The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance. Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain. RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery. RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats.

  5. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression.

    Science.gov (United States)

    Aubert, Grégory; Mansuy, Virginie; Voirol, Marie-Jeanne; Pellerin, Luc; Pralong, François P

    2011-03-01

    Metformin demonstrates anorectic effects in vivo and inhibits neuropeptide Y expression in cultured hypothalamic neurons. Here we investigated the mechanisms implicated in the modulation of feeding by metformin in animals rendered obese by long-term high-fat diet (diet-induced obesity [DIO]) and in animals resistant to obesity (diet resistant [DR]). Male Long-Evans rats were kept on normal chow feeding (controls) or on high-fat diet (DIO, DR) for 6 months. Afterward, rats were treated 14 days with metformin (75 mg/kg) or isotonic sodium chloride solution and killed. Energy efficiency, metabolic parameters, and gene expression were analyzed at the end of the high-fat diet period and after 14 days of metformin treatment. At the end of the high-fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic neuropeptide Y expression than DR or control rats, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pretreatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. These data identify the hypothalamic ObRb as a gene modulated after metformin treatment and suggest that the anorectic effects of the drug are potentially mediated via an increase in the central sensitivity to leptin. Thus, they provide a rationale for novel therapeutic approaches associating leptin and metformin in the treatment of obesity. Copyright © 2011. Published by Elsevier Inc.

  6. Functional pharmacology of H1 histamine receptors expressed in mouse preoptic/anterior hypothalamic neurons

    Science.gov (United States)

    Tabarean, I V

    2013-01-01

    BACKGROUND AND PURPOSE Histamine H1 receptors are highly expressed in hypothalamic neurons and mediate histaminergic modulation of several brain-controlled physiological functions, such as sleep, feeding and thermoregulation. In spite of the fact that the mouse is used as an experimental model for studying histaminergic signalling, the pharmacological characteristics of mouse H1 receptors have not been studied. In particular, selective and potent H1 receptor agonists have not been identified. EXPERIMENTAL APPROACH Ca2+ imaging using fura-2 fluorescence signals and whole-cell patch-clamp recordings were carried out in mouse preoptic/anterior hypothalamic neurons in culture. KEY RESULTS The H1 receptor antagonists mepyramine and trans-triprolidine potently antagonized the activation by histamine of these receptors with IC50 values of 0.02 and 0.2 μM respectively. All H1 receptor agonists studied had relatively low potency at the H1 receptors expressed by these neurons. Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine had full-agonist activity with potencies similar to that of histamine. In contrast, 2-pyridylethylamine and betahistine showed only partial agonist activity and lower potency than histamine. The histamine receptor agonist, 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT) had no agonist activity at the H1 receptors H1 receptors expressed by mouse preoptic/anterior hypothalamic neurons but displayed antagonist activity. CONCLUSIONS AND IMPLICATIONS Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine were identified as full agonists of mouse H1 receptors. These results also indicated that histamine H1 receptors in mice exhibited a pharmacological profile in terms of agonism, significantly different from those of H1 receptors expressed in other species. PMID:23808378

  7. Decreased Hypothalamic Glucagon-Like Peptide-1 Receptor Expression in Type 2 Diabetes Patients.

    Science.gov (United States)

    Ten Kulve, Jennifer S; van Bloemendaal, Liselotte; Balesar, Rawien; IJzerman, Richard G; Swaab, Dick F; Diamant, Michaela; la Fleur, Susanne E; Alkemade, Anneke

    2016-05-01

    Glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonist treatment in type 2 diabetes (T2DM) reduce blood glucose and food intake. It has been suggested that these effects are partly mediated through central GLP-1 receptors (GLP-1Rs). The rodent and nonhuman primate hypothalamus show clear GLP-1R expression. However, a detailed description of GLP-1R expression in the human hypothalamus is lacking, and it is unknown whether this expression is altered in T2DM patients. The objective of the study was to investigate the GLP-1R distribution in the human postmortem hypothalamus and to determine whether hypothalamic GLP-1R expression is altered in T2DM patients. We investigated the distribution of GLP-1R expression throughout the human hypothalamus by means of in situ hybridization. We also performed quantifications of GLP-1R mRNA expression in two hypothalamic nuclei (ie, the paraventricular nucleus [PVN] and infundibular nucleus [IFN]), comparing patients with T2DM and control subjects. We found that GLP-1R mRNA was expressed in a number of hypothalamic nuclei including the PVN and the IFN, both involved in the regulation of energy metabolism. We observed sporadic colocalization of the GLP-1R in the IFN with the orgexigenic neuropeptide Y, agouti-related peptide, or proopiomelanocortin transcripts. Comparison of GLP-1R mRNA in the PVN and IFN between T2DM patients and control subjects revealed a decreased expression in T2DM patients. Our studies show that GLP-1R is widely expressed throughout the human hypothalamus. The decreased expression of GLP-1R in the PVN and IFN of T2DM patients may be related to the dysregulation of feeding behavior and glucose homeostasis in T2DM.

  8. Hypothalamic-specific proopiomelanocortin deficiency reduces alcohol drinking in male and female mice.

    Science.gov (United States)

    Zhou, Y; Rubinstein, M; Low, M J; Kreek, M J

    2017-04-01

    Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both humans and rodents. This study investigated whether hypothalamic proopiomelanocortin (POMC) neurons (producing beta-endorphin and melanocortins) play a role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two neuronal Pomc enhancers nPE1 and nPE2 (nPE-/-), resulting in hypothalamic-specific POMC deficiency, were studied in short-access (4-h/day) drinking-in-the-dark (DID, alcohol in one bottle, intermittent access (IA, 24-h cycles of alcohol access every other day, alcohol vs. water in a two-bottle choice) and alcohol deprivation effect (ADE) models. Wild-type nPE+/+ exposed to 1-week DID rapidly established stable alcohol drinking behavior with more intake in females, whereas nPE-/- mice of both sexes had less intake and less preference. Although nPE-/- showed less saccharin intake and preference than nPE+/+, there was no genotype difference in sucrose intake or preference in the DID paradigm. After 3-week IA, nPE+/+ gradually escalated to high alcohol intake and preference, with more intake in females, whereas nPE-/- showed less escalation. Pharmacological blockade of mu-opioid receptors with naltrexone reduced intake in nPE+/+ in a dose-dependent manner, but had blunted effects in nPE-/- of both sexes. When alcohol was presented again after 1-week abstinence from IA, nPE+/+ of both sexes displayed significant increases in alcohol intake (ADE or relapse-like drinking), with more pronounced ADE in females, whereas nPE-/- did not show ADE in either sex. Our results suggest that neuronal POMC is involved in modulation of alcohol 'binge' drinking, escalation and 'relapse', probably via hypothalamic-mediated mechanisms, with sex differences. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications.

    Science.gov (United States)

    Kim, Suyeob; Gim, Taewoo; Kang, Sung Min

    2015-04-01

    In this study, we report a facile and versatile approach to the formation of marine antifouling surface coatings. The approach consists of a combined coating of polydopamine (pDA) and tannic acid (TA) and subsequent immobilization of polyethylene glycol (PEG) on solid substrates. TA coating of a pDA-coated surface was carried out using iron(III) coordination chemistry, and PEG was immobilized on the TA-coated surface via hydrogen bond formation. Stainless steel and nylon were successfully modified by this approach, and the resulting substrates were used for marine antifouling applications, in which diatom adhesion was significantly inhibited. Advantageously, this approach allowed marine antifouling coatings to be prepared by a simple immersion process under environmentally friendly conditions.

  10. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation.

    Directory of Open Access Journals (Sweden)

    Mai Miura

    Full Text Available Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA, a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug.

  11. Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2013-12-01

    Full Text Available We describe herein the two-component charge-transfer (CT interaction induced organogel formation with 18β-glycyrrhetinic acid appended pyrene (GA-pyrene, 3 as the donor, and 2,4,7-trinitrofluorenone (TNF, 4 as the acceptor. The use of TNF (4 as a versatile electron acceptor in the formation of CT gels is demonstrated through the formation of gels in a variety of solvents. Thermal stability, stoichiometry, scanning electron microscopy (SEM, optical micrographs, and circular dichroism (CD are performed on these CT gels to investigate their thermal and assembly properties. UV–vis, fluorescence, mass spectrometric as well as variable-temperature 1H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels.

  12. Sugars and acid invertase mediate the physiological response of Schenkia spicata root cultures to salt stress.

    Science.gov (United States)

    Mišić, Danijela; Dragićević, Milan; Šiler, Branislav; Nestorović Živković, Jasmina; Maksimović, Vuk; Momčilović, Ivana; Nikolic, Miroslav

    2012-09-01

    A heterotrophic model system was established in our studies in order to differentiate the effect of high salt concentrations in external medium on growth and sugar metabolism in roots from the effect of reduced sugar availability resulting from decreased photosynthesis under salinity. Soluble sugar content and the activity of acid invertase in root cultures of salt-tolerant (ST) and salt-sensitive (SS) Schenkia spicata (L.) Mansion genotypes were investigated during exposure to different NaCl concentrations (0-200 mM). Their response to severe salinity was characterized by a metabolic adjustment that led to the accumulation of sucrose (Suc) in root tissues. There was clear evidence that cell wall invertase (CW-Inv) is the major contributor to the Suc/hexose ratio in roots during exposure to elevated salinity. The results of CW-Inv activity and immunodetection assays in our study suggest that the regulation of CW-Inv expression is most likely achieved in a salt stress dependent manner. Also, NaCl modulated soluble acid invertase (SA-Inv) expression differentially in SS and ST genotypes of S. spicata. Regardless of the salt treatment, genotype, or the amount of enzyme, SA-Inv activity was generally low, indicating regulation at the posttranslational level. The results suggest no direct role of SA-Inv in the regulation of the root tissue carbohydrate pool and therefore in the control of the availability of glucose and fructose for the primary metabolism and/or osmotic adjustment in the present heterotrophic model system. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. The human sodium-dependent ascorbic acid transporters SLC23A1 and SLC23A2 do not mediate ascorbic acid release in the proximal renal epithelial cell

    Science.gov (United States)

    Eck, Peter; Kwon, Oran; Chen, Shenglin; Mian, Omar; Levine, Mark

    2013-01-01

    Sodium-dependent ascorbic acid membrane transporters SLC23A1 and SLC23A2 mediate ascorbic acid (vitamin C) transport into cells. However, it is unknown how ascorbic acid undergoes cellular release, or efflux. We hypothesized that SLC23A1 and SLC23A2 could serve a dual role, mediating ascorbic acid cellular efflux as well as uptake. Renal reabsorption is required for maintaining systemic vitamin C concentrations. Because efflux from nephron cells is necessary for reabsorption, we studied whether SLC23A1 and SLC23A2 mediate efflux of ascorbic acid in the human renal nephron. We found high gene expression of SLC23A1 but no expression of SLC23A2 in the proximal convoluted and straight tubules of humans. These data rule out SLC23A2 as the ascorbic acid release protein in the renal proximal tubular epithelia cell. We utilized a novel dual transporter-based Xenopus laevis oocyte system to investigate the function of the SLC23A1 protein, and found that no ascorbate release was mediated by SLC23A1. These findings were confirmed in mammalian cells overexpressing SLC23A1. Taken together, the data for SLC23A1 show that it too does not have a role in cellular release of ascorbic acid across the basolateral membrane of the proximal tubular epithelial cell, and that SLC23A1 alone is responsible for ascorbic acid uptake across the apical membrane. These findings reiterate the physiological importance of proper functioning of SLC23A1 in maintaining vitamin C levels for health and disease prevention. The ascorbate efflux mechanism in the proximal tubule of the kidney remains to be characterized. PMID:24400138

  14. Metabolic Context Regulates Distinct Hypothalamic Transcriptional Responses to Antiaging Interventions

    Directory of Open Access Journals (Sweden)

    Alexis M. Stranahan

    2012-01-01

    Full Text Available The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db and nondiabetic wild-type (C57/Bl/6 animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds.

  15. Plasma Cholesteryl Ester Fatty Acids do not Mediate the Association of Ethnicity with Type 2 Diabetes: Results From the HELIUS Study

    NARCIS (Netherlands)

    Muilwijk, Mirthe; Celis-Morales, Carlos; Nicolaou, Mary; Snijder, Marieke B.; Gill, Jason M. R.; van Valkengoed, Irene G. M.

    2018-01-01

    Scope: Ethnic minority groups have a higher risk of type 2 diabetes (T2D) than the host population. Our aim is to identify whether plasma cholesteryl ester fatty acids (CEFA) mediate the ethnic differences in type 2 diabetes. Methods and results: We included 202 Dutch, 206 South-Asian Surinamese,

  16. Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes

    DEFF Research Database (Denmark)

    Habets, Daphna D. J.; Coumans, Will A.; El Hasnaoui, Mohammed

    2009-01-01

    Enhanced contractile activity increases cardiac long-chain fatty acid (LCFA) uptake via translocation of CD36 to the sarcolemma, similarly to increase in glucose uptake via GLUT4 translocation. AMP-activated protein kinase (AMPK) is assumed to mediate contraction-induced LCFA utilization. However...

  17. Asymmetric construction of binaphthyl by the chiral diether-mediated conjugate addition of naphthyllithium to naphthalenecarboxylic acid 2,6-di-t-butyl-4-methoxyphenyl ester.

    Science.gov (United States)

    Shindo, Mitsuru; Yamamoto, Yasutomo; Yamada, Ken-Ichi; Tomioka, Kiyoshi

    2009-07-01

    Two ways for the synthesis of binaphthyl were examined based on a chiral ligand-mediated asymmetric conjugate addition of 1-naphthyllithium to naththalene-2-carboxylic acid 2,6-di-t-butyl-4-methoxyphenyl esters. The one pot method by conjugate addition-elimination gave a relatively higher enantioselectivity than the two step synthesis based on addition and subsequent oxidative aromatization.

  18. Hyperlipidaemia is associated with increased insulin-mediated glucose metabolism, reduced fatty acid metabolism and normal blood pressure in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Koopmans, S.J.; Jong, M.C.; Que, I.; Dahlmans, V.E.; Pijl, H.; Radder, J.K.; Frolich, M.; Havekes, L.M.

    2001-01-01

    Aims/hypothesis. Insulin resistance for glucose metabolism is associated with hyperlipidaemia and high blood pressure. In this study we investigated the effect of primary hyperlipidaemia on basal and insulin-mediated glucose and on non-esterified fatty acid (NEFA) metabolism and mean arterial

  19. Beta-eleostearic acid induce apoptosis in T24 human bladder cancer cells through reactive oxygen species (ROS)-mediated pathway.

    Science.gov (United States)

    Sun, Zhongyan; Wang, Han; Ye, Shuhong; Xiao, Shan; Liu, Jing; Wang, Wenwen; Jiang, Dandan; Liu, Xiao; Wang, Jihui

    2012-10-01

    Beta-eleostearic acid (β-ESA, 9E11E13E-18:3), a linolenic acid isomer with a conjugated triene system, is a natural and biologically active compound. Herein, we investigated effects of β-eleostearic acid on T24 human bladder cancer cells. In this study, results showed that β-eleostearic acid had strong cytotoxicity to induce cell apoptosis, which was mediated by reactive oxygen species (ROS) in T24 cells. The cell viability assay results showed that incubation with β-eleostearic acid concentrations of 10-80μmol/L caused a dose- and time-dependent decrease of T24 cell viability, and the IC(50) value was 21.2μmol/L at 24h and 13.1μmol/L at 48h. Annexin V/PI double staining was used to assess apoptosis with flow cytometry. Treatment with β-eleostearic acid caused massive ROS accumulation and GSH decrease, which lead to activation of caspase-3 and down-regulation of Bcl-2 indicating induction of apoptosis. Subsequently, N-acetyl-l-cysteine (NAC) and PEG-catalase effectively blocked the ROS elevated effect of β-eleostearic acid, which suggested that β-eleostearic acid-induced apoptosis involved ROS generated. Additionally, we found that treating T24 cells with β-eleostearic acid induced activation of PPARγ. A PPARγ-activated protein kinase inhibitor was able to partially abrogate the effects of β-eleostearic acid. These results suggested that β-eleostearic acid can induce T24 cells apoptosis via a ROS-mediated pathway which may be involved PPARγ activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bile acid mediated effects on gut integrity and performance of early-weaned piglets

    DEFF Research Database (Denmark)

    de Diego-Cabero, Nuria; Mereu, Alessandro; Menoyo, David

    2015-01-01

    of body weight (BW) were randomly assigned (n = 18) to receive a standard prestarter diet or the same diet supplemented with 60 mg of CDC per kg of initial BW for ad libitum intake until day 14 postweaning. Thereafter, all pigs were fed the same untreated starter diet for 21 days until the end......Background Early weaning (EW) results in a transient period of impaired integrity of the intestinal mucosa that may be associated with reduced plasma concentration of glucagon-like peptide-(GLP) 2. We have previously shown that intragastric infusion of chenodeoxycholic acid (CDC) increases...... circulating GLP-2 in early-weaned piglets. The aim of this study was to expand previous work to establish whether feeding piglets a cereal-based diet supplemented with CDC can improve gut integrity and animal performance immediately after EW. A cohort of 36 piglets weaned at 20 days of age, 6.2 ± 0.34 kg...

  2. Peripheral mechanisms of neuropathic pain – involvement of lysophosphatidic acid receptor-mediated demyelination

    Directory of Open Access Journals (Sweden)

    Ueda Hiroshi

    2008-04-01

    Full Text Available Abstract Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications – decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanims of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Aβ- and noxious C- or Aδ-fibers to influence the molecular mechanisms of allodynia.

  3. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products.

    Science.gov (United States)

    Oliveira, Pedro M; Zannini, Emanuele; Arendt, Elke K

    2014-02-01

    Lactic acid bacteria (LAB) metabolites are a reliable alternative for reducing fungal infections pre-/post-harvest with additional advantages for cereal-base products which convene the food market's trend. Grain industrial use is in expansion owing to its applicability in generating functional food. The food market is directed towards functional natural food with clear health benefits for the consumer in detriment to chemical additives. The food market chain is becoming broader and more complex, which presents an ever-growing fungal threat. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. Cereal infections may occur in the field or post-processing, along the food chain. Consequently, the investigation of LAB metabolites with antifungal activity has gained prominence in the scientific research community. LAB bioprotection retards the development of fungal diseases in the field and inhibit pathogens and spoilage fungi in food products. In addition to the health safety improvement, LAB metabolites also enhance shelf-life, organoleptic and texture qualities of cereal-base foods. This review presents an overview of the fungal impact through the cereal food chain leading to investigation on LAB antifungal compounds. Applicability of LAB in plant protection and cereal industry is discussed. Specific case studies include Fusarium head blight, malting and baking. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 1-Oleoyl Lysophosphatidic Acid: A New Mediator of Emotional Behavior in Rats

    Science.gov (United States)

    Castilla-Ortega, Estela; Escuredo, Leticia; Bilbao, Ainhoa; Pedraza, Carmen; Orio, Laura; Estivill-Torrús, Guillermo; Santín, Luis J.; de Fonseca, Fernando Rodríguez; Pavón, Francisco Javier

    2014-01-01

    The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression. PMID:24409327

  5. Aberrant LPL Expression, Driven by STAT3, Mediates Free Fatty Acid Metabolism in CLL Cells.

    Science.gov (United States)

    Rozovski, Uri; Grgurevic, Srdana; Bueso-Ramos, Carlos; Harris, David M; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Jain, Preetesh; Wierda, William; Burger, Jan; O'Brien, Susan; Jain, Nitin; Ferrajoli, Alessandra; Keating, Michael J; Estrov, Zeev

    2015-05-01

    While reviewing chronic lymphocytic leukemia (CLL) bone marrow slides, we identified cytoplasmic lipid vacuoles in CLL cells but not in normal B cells. Because lipoprotein lipase (LPL), which catalyzes hydrolysis of triglycerides into free fatty acids (FFA), is aberrantly expressed in CLL, we investigated whether LPL regulates the oxidative metabolic capacity of CLL cells. We found that unlike normal B cells, CLL cells metabolize FFAs. Because STAT3 is constitutively activated in CLL cells and because we identified putative STAT3 binding sites in the LPL promoter, we sought to determine whether STAT3 drives the aberrant expression of LPL. Transfection of luciferase reporter gene constructs driven by LPL promoter fragments into MM1 cells revealed that STAT3 activates the LPL promoter. In addition, chromatin immunoprecipitation confirmed that STAT3 binds to the LPL promoter. Furthermore, transfection of CLL cells with STAT3-shRNA downregulated LPL transcripts and protein levels, confirming that STAT3 activates the LPL gene. Finally, transfection of CLL cells with LPL-siRNAs decreased the capacity of CLL cells to oxidize FFAs and reduced cell viability. Our study suggests that CLL cells adopt their metabolism to oxidize FFA. Activated STAT3 induces LPL, which catalyzes the hydrolysis of triglycerides into FFA. Therefore, inhibition of STAT3 is likely to prevent the capacity of CLL cells to utilize FFA. ©2015 American Association for Cancer Research.

  6. Water-Mediated Differential Binding of Strontium and Cesium Cations in Fulvic Acid.

    Science.gov (United States)

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2015-08-27

    The migration of potentially harmful radionuclides, such as cesium ((137)Cs) and strontium ((90)Sr), in soil is governed by the chemical and biological reactivity of soil components. Soil organic matter (SOM) that can be modeled through fulvic acid (FA) is known to alter the mobility of radionuclide cations, Cs(+) and Sr(2+). Shedding light on the possible interaction mechanisms at the atomic level of these two ions with FA is thus vital to explain their transport behavior and for the design of new ligands for the efficient extraction of radionuclides. Here we have performed molecular dynamics, metadynamics simulations, and density-functional-theory-based calculations to understand the binding mechanism of Sr(2+) and Cs(+) cations with FA. Our studies predict that interaction of Cs(+) to FA is very weak as compared with Sr(2+). While the water-FA interaction is largely responsible for the weak binding of Cs(+) to FA, leading to the outer sphere complexation of the ion with FA, the interaction between Sr(2+) and FA is stronger and thus can surpass the existing secondary nonbonding interaction between coordinated waters and FA, leading to inner sphere complexation of the ion with FA. We also find that entropy plays a dominant role for Cs(+) binding to FA, whereas Sr(2+) binding is an enthalpy-driven process. Our predicted results are found to be in excellent agreement with the available experimental data on complexation of Cs(+) and Sr(2+) with SOM.

  7. Triethylenetetramine Synergizes with Pharmacologic Ascorbic Acid in Hydrogen Peroxide Mediated Selective Toxicity to Breast Cancer Cell

    Directory of Open Access Journals (Sweden)

    Lianlian Wang

    2017-01-01

    Full Text Available Breast cancer is characterized by overexpression of superoxide dismutase (SOD and downregulation of catalase and more resistance to hydrogen peroxide (H2O2 than normal cells. Thus, relatively high H2O2 promotes breast cancer cell growth and proliferation. However, excessive intracellular H2O2 leads to death of breast cancer cells. In cancer cells, high level ascorbic acid (Asc is able to be autoxidized and thus provides an electron to oxygen to generate H2O2. In the present study, we demonstrated that triethylenetetramine (TETA enhances Asc autoxidation and thus elevates H2O2 production in MCF-7 cells. Furthermore, Asc/TETA combination significantly impaired cancer cell viability, while having much milder effects on normal cells, indicating Asc/TETA could be a promising therapy for breast cancer. Moreover, SOD1 and N-acetyl-L-cysteine failed to improve MCF-7 cells viability in the presence of Asc/TETA, while catalase significantly inhibited the cytotoxicity of Asc/TETA to breast cancer cells, strongly suggesting that the selective cytotoxicity of Asc/TETA to cancer cells is H2O2-dependent. In addition, Asc/TETA induces RAS/ERK downregulation in breast cancer cells. Animal studies confirmed that Asc/TETA effectively suppressed tumor growth in vivo. In conclusion, TETA synergizes pharmacologic Asc autoxidation and H2O2 overproduction in breast cancer cells, which suppresses RAS/ERK pathway and results in apoptosis.

  8. Functionalization of pectin with laccase-mediated oxidation products of ferulic acid.

    Science.gov (United States)

    Karaki, N; Aljawish, A; Muniglia, L; Bouguet-Bonnet, S; Leclerc, S; Paris, C; Jasniewski, J; Humeau-Virot, C

    2017-09-01

    Pectin is a natural biopolymer extracted mostly from citrus peel, sugar beet and apple pomace. In order to improve its functional properties and then to enlarge the field of its potential applications, functionalization reaction of citrus pectin with ferulic acid (FA)-oxidation products was performed in aqueous medium, at 30°C and pH7.5, in the presence of Myceliophthora thermophila laccase as biocatalyst. The conjugation between FA-oxidation products and pectin was confirmed using FTIR, UV-Vis and LC-MS analyses. The obtained results suggested that covalent bonds were between the pectin carboxyl groups and FA-oxidation products between the pectin carboxyl groups and FA-oxidation products. The determination of the total phenolic content showed that the modified pectin contained 5 times more phenols than the native pectin. In view of these results, this enzymatic procedure appears as a promising way to provide new pectin-based polymers that are expected to present new properties of interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  10. Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes.

    Science.gov (United States)

    Bruzzone, Santina; Basile, Giovanna; Mannino, Elena; Sturla, Laura; Magnone, Mirko; Grozio, Alessia; Salis, Annalisa; Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; De Flora, Antonio; Tossi, Vanesa; Cassia, Raul; Lamattina, Lorenzo; Zocchi, Elena

    2012-06-01

    UV-B is an abiotic environmental stress in both plants and animals. Abscisic acid (ABA) is a phytohormone regulating fundamental physiological functions in plants, including response to abiotic stress. We previously demonstrated that ABA is an endogenous stress hormone also in animal cells. Here, we investigated whether autocrine ABA regulates the response to UV-B of human granulocytes and keratinocytes, the cells involved in UV-triggered skin inflammation. The intracellular ABA concentration increased in UV-B-exposed granulocytes and keratinocytes and ABA was released into the supernatant. The UV-B-induced production of NO and of reactive oxygen species (ROS), phagocytosis, and cell migration were strongly inhibited in granulocytes irradiated in the presence of a monoclonal antibody against ABA. Moreover, presence of the same antibody strongly inhibited release of NO, prostaglandin E2 (PGE(2)), and tumor necrosis factor-α (TNF-α) by UV-B irradiated keratinocytes. Lanthionine synthetase C-like protein 2 (LANCL2) is required for the activation of the ABA signaling pathway in human granulocytes. Silencing of LANCL2 in human keratinocytes by siRNA was accompanied by abrogation of the UV-B-triggered release of PGE(2), TNF-α, and NO and ROS production. These results indicate that UV-B irradiation induces ABA release from human granulocytes and keratinocytes and that autocrine ABA stimulates cell functions involved in skin inflammation. Copyright © 2011 Wiley Periodicals, Inc.

  11. Dynein/Dynactin-mediated transport of kinetochore components off kinetochores and onto spindle poles induced by nordihydroguaiaretic acid.

    Directory of Open Access Journals (Sweden)

    Jakub K Famulski

    2011-01-01

    Full Text Available The mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in the silencing of the mitotic checkpoint by "stripping" checkpoint proteins off kinetochores. A recent study suggested that Nordihydroguaiaretic acid (NDGA stimulates dynein/dynactin-mediated transport of its cargo including ZW10 (Zeste White 10. We analyzed the effects of NDGA on dynein/dynactin dependent transport of the RZZ (Zeste White 10, Roughdeal, Zwilch complex as well as other kinetochore components from kinetochores to spindle poles. Through this approach we have catalogued several kinetochore and centromere components as dynein/dynactin cargo. These include hZW10, hZwilch, hROD, hSpindly, hMad1, hMad2, hCENP-E, hCdc27, cyclin-B and hMps1. Furthermore, we found that treatment with NDGA induced a robust accumulation and complete stabilization of hZW10 at spindle poles. This finding suggests that NDGA may not induce dynein/dynactin transport but rather interfere with cargo release. Lastly, we determined that NDGA induced accumulation of checkpoint proteins at the poles requires dynein/dynactin-mediated transport, hZW10 kinetochore localization and kinetochore-microtubule attachments but not tension or Aurora B kinase activity.

  12. Hypothalamic BOLD response to glucose intake and hypothalamic volume are similar in anorexia nervosa and healthy control subjects

    Directory of Open Access Journals (Sweden)

    Anna M Van Opstal

    2015-05-01

    Full Text Available Background. Inconsistent findings about the neurobiology of Anorexia Nervosa (AN hinder the development of effective treatments for this severe mental disorder. Therefore the need arises for elucidation of neurobiological factors involved in the pathophysiology of AN. The hypothalamus plays a key role in the neurobiological processes that govern food intake and energy homeostasis, processes that are disturbed in anorexia nervosa (AN. The present study will assess the hypothalamic response to energy intake and the hypothalamic structure in patients with AN and healthy controls. Methods. 10 women aged 18-30 years diagnosed with AN and 11 healthy, lean (BMI <23 kg/m2 women in the same age range were recruited. We used functional magnetic resonance imaging (MRI to determine function of the hypothalamus in response to glucose. Structural MRI was used to determine differences in hypothalamic volume and local grey volume using manual segmentation and voxel-based morphometry.Results. No differences were found in hypothalamic volume and neuronal activity in response to a glucose load between the patients and controls. Whole brain structural analysis showed a significant decrease in grey matter volume in the cingulate cortex in the AN patients, bilaterally.Conclusions. We argue that in spite of various known changes in the hypothalamus the direct hypothalamic response to glucose intake is similar in AN patients and healthy controls.

  13. Hypothalamic Obesity in Craniopharyngioma Patients: Disturbed Energy Homeostasis Related to Extent of Hypothalamic Damage and Its Implication for Obesity Intervention

    Directory of Open Access Journals (Sweden)

    Christian L. Roth

    2015-09-01

    Full Text Available Hypothalamic obesity (HO occurs in patients with tumors and lesions in the medial hypothalamic region. Hypothalamic dysfunction can lead to hyperinsulinemia and leptin resistance. This review is focused on HO caused by craniopharyngiomas (CP, which are the most common childhood brain tumors of nonglial origin. Despite excellent overall survival rates, CP patients have substantially reduced quality of life because of significant long-term sequelae, notably severe obesity in about 50% of patients, leading to a high rate of cardiovascular mortality. Recent studies reported that both hyperphagia and decreased energy expenditure can contribute to severe obesity in HO patients. Recognized risk factors for severe obesity include large hypothalamic tumors or lesions affecting several medial and posterior hypothalamic nuclei that impact satiety signaling pathways. Structural damage in these nuclei often lead to hyperphagia, rapid weight gain, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue. To date, most efforts to treat HO have shown disappointing long-term success rates. However, treatments based on the distinct pathophysiology of disturbed energy homeostasis related to CP may offer options for successful interventions in the future.

  14. Efficient Generation of Hypothalamic Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Wang, Liheng; Egli, Dieter; Leibel, Rudolph L

    2016-07-01

    The hypothalamus comprises neuronal clusters that are essential for body weight regulation and other physiological functions. Insights into the complex cellular physiology of this region of the brain are critical to understanding the pathogenesis of obesity, but human hypothalamic cells are largely inaccessible for direct study. Here we describe a technique for generation of arcuate-like hypothalamic neurons from human pluripotent stem (hPS) cells. Early activation of SHH signaling and inhibition of BMP and TGFβ signaling, followed by timed inhibition of NOTCH, can efficiently differentiate hPS cells into NKX2.1+ hypothalamic progenitors. Subsequent incubation with BDNF induces the differentiation and maturation of pro-opiomelanocortin and neuropeptide Y neurons, which are major cell types in the arcuate hypothalamus. These neurons have molecular and cellular characteristics consistent with arcuate neurons. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  15. Oxytocin Stimulates Extracellular Ca2+ Influx Through TRPV2 Channels in Hypothalamic Neurons to Exert Its Anxiolytic Effects.

    Science.gov (United States)

    van den Burg, Erwin H; Stindl, Julia; Grund, Thomas; Neumann, Inga D; Strauss, Olaf

    2015-12-01

    There is growing interest in anxiolytic and pro-social effects of the neuropeptide oxytocin (OXT), but the underlying intraneuronal mechanisms are largely unknown. Here we examined OXT-mediated anxiolysis in the hypothalamic paraventricular nucleus (PVN) of rats and effects of OXT administration on signaling events in hypothalamic primary and immortalized cells. In vivo, the application of SKF96365 prevented the anxiolytic activity of OXT in the PVN, suggesting that changes in intracellular Ca(2+) mediate the acute OXT behavioral effects. In vitro, mainly in the neurons with autonomous Ca(2+) oscillations, OXT increased intracellular Ca(2+) concentration and oscillation amplitude. Pharmacological intervention revealed OXT-dependent changes in Ca(2+) signaling that required activation of transient receptor potential vanilloid type-2 channel (TRPV2), mediated by phosphoinositide 3-kinase. TRPV2 induced the activation of the anxiolytic mitogen-activated protein kinase kinase (MEK1/2). In situ, immunohistochemistry revealed co-localization of TRPV2 and OXT in the PVN. Thus, functional and pharmacological analyses identified TRPV2 as a mediator of anxiolytic effects of OXT, conveying the OXT signal to MEK1/2 via modulation of intracellular Ca(2+).

  16. Epigenetic DNA Methylation Mediating Octopus vulgaris Early Development: Effect of Essential Fatty Acids Enriched Diet

    Directory of Open Access Journals (Sweden)

    Pablo García-Fernández

    2017-05-01

    Full Text Available The common octopus, Octopus vulgaris, is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout O. vulgaris life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival. In this sense, a full understanding of the epigenetic mechanisms operating during O. vulgaris development would contribute to optimizing the culture conditions for this species. Paralarvae of O. vulgaris were cultured over 28 days post-hatching (dph using two different Artemia sp. based diets: control and a long chain polyunsaturated fatty acids (LC-PUFA enriched diet. The effect of the diets on the paralarvae DNA global methylation was analyzed by Methyl-Sensitive Amplification Polymorphism (MSAP and global 5-methylcytosine enzyme-linked immunosorbent assay (ELISA approaches. The analysis of different methylation states over the time revealed a global demethylation phenomena occurring along O. vulgaris early development being directly driven by the age of the paralarvae. A gradual decline in methylated loci (hemimethylated, internal cytosine methylated, and hypermethylated parallel to a progressive gain in non-methylated (NMT loci toward the later sampling points was verified regardless of the diet provided and demonstrate a pre-established and well-defined demethylation program during its early development, involving a 20% of the MSAP loci. In addition, a differential behavior between diets was also observed at 20 dph, with a LC-PUFA supplementation effect over the methylation profiles. The present results show significant differences on the paralarvae methylation profiles

  17. Epigenetic DNA Methylation Mediating Octopus vulgaris Early Development: Effect of Essential Fatty Acids Enriched Diet

    Science.gov (United States)

    García-Fernández, Pablo; García-Souto, Danie; Almansa, Eduardo; Morán, Paloma; Gestal, Camino

    2017-01-01

    The common octopus, Octopus vulgaris, is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout O. vulgaris life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival. In this sense, a full understanding of the epigenetic mechanisms operating during O. vulgaris development would contribute to optimizing the culture conditions for this species. Paralarvae of O. vulgaris were cultured over 28 days post-hatching (dph) using two different Artemia sp. based diets: control and a long chain polyunsaturated fatty acids (LC-PUFA) enriched diet. The effect of the diets on the paralarvae DNA global methylation was analyzed by Methyl-Sensitive Amplification Polymorphism (MSAP) and global 5-methylcytosine enzyme-linked immunosorbent assay (ELISA) approaches. The analysis of different methylation states over the time revealed a global demethylation phenomena occurring along O. vulgaris early development being directly driven by the age of the paralarvae. A gradual decline in methylated loci (hemimethylated, internal cytosine methylated, and hypermethylated) parallel to a progressive gain in non-methylated (NMT) loci toward the later sampling points was verified regardless of the diet provided and demonstrate a pre-established and well-defined demethylation program during its early development, involving a 20% of the MSAP loci. In addition, a differential behavior between diets was also observed at 20 dph, with a LC-PUFA supplementation effect over the methylation profiles. The present results show significant differences on the paralarvae methylation profiles during its

  18. Acoustic cavitation-mediated delivery of small interfering ribonucleic acids with phase-shift nanoemulsions

    Science.gov (United States)

    Burgess, Mark T.; Porter, Tyrone M.

    2015-01-01

    Localized, targeted delivery of small interfering ribonucleic acid (siRNA) has been the foremost hurdle in the use of siRNA for the treatment of various diseases. Major advances have been achieved in the synthesis of siRNA, which has led to greater target messenger RNA (mRNA) silencing and stability in physiological conditions. Although numerous delivery strategies have shown promise, there are still limited options for targeted delivery and release of siRNA administered systemically. In this in vitro study, phase-shift nanoemulsions (PSNE) were explored as cavitation nuclei to facilitate free siRNA delivery to cancer cells via sonoporation. A cell suspension containing varying amounts of PSNE and siRNA was exposed to 5 MHz pulsed ultrasound at fixed settings (6.2 MPa peak negative pressure, 5 cycle pulses, 250 Hz pulse repetition frequency, and total exposure duration of 100 seconds). Inertial cavitation emissions were detected throughout the exposure using a passive cavitation detector. Successful siRNA delivery was achieved (i.e. > 50% cell uptake) with high viability (> 80% viability). The percentage of cells with siRNA uptake was correlated with the amount of inertial cavitation activity generated from vaporized PSNE. The siRNA remained functional after delivery, significantly reducing expression of green fluorescent protein (GFP) in a stably transfected cell line. These results show that vaporized PSNE can facilitate siRNA entry into the cytosol of a majority of sonicated cells and may provide a non-endosomal route for siRNA delivery. PMID:25979417

  19. Unnatural amino acid-mediated synthesis of silver nanoparticles and their antifungal activity against Candida species

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-08-01

    In this study, the biocompatible unnatural amino acid, 3,4-dihydroxy- l-phenylalanine ( l-dopa), which is used in protein engineering, was employed in the facile synthesis of silver nanoparticles (AgNPs). The surface plasmon resonance (SPR) band of the UV-Vis spectrum at 406 nm demonstrates the possibility of formation of smaller nanoparticles; the symmetrical shape of the band demonstrates a narrow size distribution of AgNPs, the formation of AgNPs, and the face-centered cubic (fcc) crystalline structure of nanoparticles was confirmed by X-ray diffraction (XRD). Additionally, transmission electron microscopic (TEM) images revealed that these particles were spherical in shape with diameters of 2.7-12.2 nm (average = 8.7 nm). These nanoparticles exhibited antifungal activity against both planktonic and biofilm yeast cells of Candida albicans and C. dubliniensis. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were determined by microdilution assays. C. albicans were shown to be less susceptible than C. dubliniensis to AgNPs based on the MIC (ranging from 7.8 to 15.6 µg ml-1) and MFC (ranging from 31.2 to 62.5 µg ml-1). With regard to biomass quantification, AgNPs did not induce a significant reduction of the biomass of Candida species; however, treatment of biofilm with 500 µg/ml of AgNPs induced a 2.99-log10 ( P antifungal agents would be an effective alternative to conventional drugs to overcome drug resistance in Candida-associated infections.

  20. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    Science.gov (United States)

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  1. Effects of halothane and methoxyflurane on the hypothalamic-pituitary-adrenal axis in rat.

    Science.gov (United States)

    Karuri, A R; Engelking, L R; Kumar, M S

    1998-10-01

    Effects of acute exposure (2 h) to either 1.5% halothane or 0.5% methoxyflurane on chemical mediators of the hypothalamic-pituitary-adrenal (HPA) axis were evaluated in male Sprague-Dawley rats immediately after exposure, after the righting reflex (4 h), or 24 h postexposure. Effects of these anesthetics on hippocampal corticotropin releasing factor (CRF) were also evaluated. Methoxyflurane caused significant elevations in pituitary adrenocorticotropin hormone (ACTH)-like immunoreactivities in all three of the experiment's time groups, yet halothane failed to cause the same response immediately after exposure. Serum ACTH-like immunoreactivities were significantly elevated immediately after exposure to both anesthetics, but were not elevated at 4 and 24 h postexposure. Corticosterone (CORT)-like immunoreactivities were significantly elevated by halothane in all experimental groups, and in the 2- and 24-h groups following methoxyflurane exposure. Hippocampal CRF-like immunoreactivities remained unaffected by either anesthetic. Results indicate that a 2-h exposure to either halothane or methoxyflurane results in significant activation of the rat hypothalamic-pituitary-adrenal axis, and that the activation appears to be sustained over a 24-h period.

  2. Meal patterns and hypothalamic NPY expression during chronic social stress and recovery.

    Science.gov (United States)

    Melhorn, Susan J; Krause, Eric G; Scott, Karen A; Mooney, Marie R; Johnson, Jeffrey D; Woods, Stephen C; Sakai, Randall R

    2010-09-01

    In the present study, we examined meal patterns during and after exposure to the visible burrow system (VBS), a rodent model of chronic social stress, to determine how the microstructure of food intake relates to the metabolic consequences of social subordination. Male Long-Evans rats were housed in mixed-sex VBS colonies (4 male, 2 female) for 2 wk, during which time a dominance hierarchy formed [1 dominant male (DOM) and 3 subordinate males (SUB)], and then male rats were individually housed for a 3-wk recovery period. Controls were individually housed with females during the 2-wk VBS period and had no changes in ingestive behavior compared with a habituation period. During the hierarchy-formation phase of VBS housing, DOM and SUB had a reduced meal frequency, whereas SUB also had a reduced meal size. However, during the hierarchy-maintenance phase of VBS housing, DOM meal patterns did not differ from controls, whereas SUB continued to display a reduced food intake via less frequent meals. During recovery, DOM had comparable meal patterns to controls, whereas SUB had an increased meal size. Hypothalamic neuropeptide Y (NPY) mRNA levels were not different between these groups during the experimental period. Together, the results suggest that exposure to chronic social stress alters ingestive behavior both acutely and in the long term, which may influence the metabolic changes that accompany bouts of stress and recovery; however, these differences in meal patterns do not appear to be mediated by hypothalamic NPY.

  3. Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior.

    Science.gov (United States)

    Reis, Wagner L; Yi, Chun-Xia; Gao, Yuanqing; Tschöp, Mathias H; Stern, Javier E

    2015-04-01

    Hypothalamic inflammation, involving microglia activation in the arcuate nucleus (ARC), is proposed as a novel underlying mechanism in obesity, insulin and leptin resistance. However, whether activated microglia affects ARC neuronal activity, and consequently basal and hormonal-induced food intake, is unknown. We show that lipopolysaccharide, an agonist of the toll-like receptor-4 (TLR4), which we found to be expressed in ARC microglia, inhibited the firing activity of the majority of orexigenic agouti gene-related protein/neuropeptide Y neurons, whereas it increased the activity of the majority of anorexigenic proopiomelanocortin neurons. Lipopolysaccharide effects in agouti gene-related protein/neuropeptide Y (but not in proopiomelanocortin) neurons were occluded by inhibiting microglia function or by blocking TLR4 receptors. Finally, we report that inhibition of hypothalamic microglia altered basal food intake, also preventing central orexigenic responses to ghrelin. Our studies support a major role for a TLR4-mediated microglia signaling pathway in the control of ARC neuronal activity and feeding behavior.

  4. Central Regulation of Hypothalamic-Pituitary-Thyroid Axis Under Physiological and Pathophysiological Conditions

    Science.gov (United States)

    Lechan, Ronald M.

    2014-01-01

    TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specialized glial cells called tanycytes. Hypophysiotropic TRH neurons also integrate other humoral and neuronal inputs that can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropic TRH may be pathophysiological. In this review, we discuss current knowledge about the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions. PMID:24423980

  5. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  6. Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice.

    Science.gov (United States)

    Jeong, Joo Yeon; Lee, Dong Hoon; Kang, Sang Soo

    2013-12-01

    Stress affects body weight and food intake, but the underlying mechanisms are not well understood. We evaluated the changes in body weight and food intake of ICR male mice subjected to daily 2 hours restraint stress for 15 days. Hypothalamic gene expression profiling was analyzed by cDNA microarray. Daily body weight and food intake measurements revealed that both parameters decreased rapidly after initiating daily restraint stress. Body weights of stressed mice then remained significantly lower than the control body weights, even though food intake slowly recovered to 90% of the control intake at the end of the experiment. cDNA microarray analysis revealed that chronic restraint stress affects the expression of hypothalamic genes possibly related to body weight control. Since decreases of daily food intake and body weight were remarkable in days 1 to 4 of restraint, we examined the expression of food intake-related genes in the hypothalamus. During these periods, the expressions of ghrelin and pro-opiomelanocortin mRNA were significantly changed in mice undergoing restraint stress. Moreover, daily serum corticosterone levels gradually increased, while leptin levels significantly decreased. The present study demonstrates that restraint stress affects body weight and food intake by initially modifying canonical food intake-related genes and then later modifying other genes involved in energy metabolism. These genetic changes appear to be mediated, at least in part, by corticosterone.

  7. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis.

    Science.gov (United States)

    Chandra-Shekara, A C; Navarre, DuRoy; Kachroo, Aardra; Kang, Hong-Gu; Klessig, Daniel; Kachroo, Pradeep

    2004-12-01

    Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Di-17 elicits a hypersensitive response (HR), which is accompanied by increased expression of pathogenesis-related (PR) genes. Previous genetic analyses revealed that the HR to TCV is conferred by HRT, which encodes a coiled-coil (CC), nucleotide-binding site (NBS) and leucine-rich repeat (LRR) class resistance (R) protein. In contrast to the HR, resistance to TCV requires both HRT and a recessive allele at a second locus designated rrt. Here, we demonstrate that unlike most CC-NBS-LRR R genes, HRT/rrt-mediated resistance is dependent on EDS1 and independent of NDR1. Resistance is also independent of RAR1 and SGT1. HRT/rrt-mediated resistance is compromised in plants with reduced salicylic acid (SA) content as a consequence of mutations eds5, pad4, or sid2. By contrast, HR is not affected by mutations in eds1, eds5, pad4, sid2, ndr1, rar1, or sgt1b. Resistance to TCV is restored in both SA-deficient Di-17 plants expressing the nahG transgene and mutants containing the eds1, eds5, or sid2 mutations by exogenous application of SA or the SA analog benzo(1,2,3)thiadiazole-7-carbothioic acid (BTH). In contrast, SA/BTH treatment failed to enhance resistance in HRT pad4, Col-0, or hrt homozygous progeny of a cross between Di-17 and Col-0. Thus, HRT and PAD4 are required for SA-induced resistance. Exogenously supplied SA or high endogenous levels of SA, due to the ssi2 mutation, overcame the suppressive effects of RRT and enhanced resistance to TCV, provided the HRT allele was present. High levels of SA upregulate HRT expression via a PAD4-dependent pathway. As Col-0 transgenic lines expressing high levels of HRT were resistant to TCV, but lines expressing moderate to low levels of HRT were not, we conclude that SA enhances resistance in the RRT background by upregulating HRT expression. These data suggest that the HRT-TCV interaction is unable to generate sufficient amounts of SA required for a

  8. Early leptin intervention reverses perturbed energy balance regulating hypothalamic neuropeptides in the pre- and postnatal calorie-restricted female rat offspring.

    Science.gov (United States)

    Gibson, Leena Caroline; Shin, Bo-Chul; Dai, Yun; Freije, William; Kositamongkol, Sudatip; Cho, John; Devaskar, Sherin U

    2015-06-01

    Pre- and postnatal calorie restriction is associated with postnatal growth restriction, reduced circulating leptin concentrations, and perturbed energy balance. Hypothalamic regulation of energy balance demonstrates enhanced orexigenic (NPY, AgRP) and diminished anorexigenic (POMC, CART) neuropeptide expression (PN21), setting the stage for subsequent development of obesity in female Sprague-Dawley rats. Leptin replenishment during the early postnatal period (PN2-PN8) led to reversal of the hypothalamic orexigenic:anorexigenic neuropeptide ratio at PN21 by reducing only the orexigenic (NPY, AgRP), without affecting the anorexigenic (POMC, CART) neuropeptide expression. This hypothalamic effect was mediated via enhanced leptin receptor (ObRb) signaling that involved increased pSTAT3/STAT3 but reduced PTP1B. This was further confirmed by an increase in body weight at PN21 in response to intracerebroventricular administration of antisense ObRb oligonucleotides (PN2-PN8). The change in the hypothalamic neuropeptide balance in response to leptin administration was associated with increased oxygen consumption, carbon dioxide production, and physical activity, which resulted in increased milk intake (PN14) with no change in body weight. This is in contrast to the reduction in milk intake with no effect on energy expenditure and physical activity observed in controls. We conclude that pre- and postnatal calorie restriction perturbs hypothalamic neuropeptide regulation of energy balance, setting the stage for hyperphagia and reduced energy expenditure, hallmarks of obesity. Leptin in turn reverses this phenotype by increasing hypothalamic ObRb signaling (sensitivity) and affecting only the orexigenic arm of the neuropeptide balance. © 2015 Wiley Periodicals, Inc.

  9. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward

    Directory of Open Access Journals (Sweden)

    Radomska Katarzyna J

    2009-10-01

    Full Text Available Abstract Background Polymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal. Results Deprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin. Conclusion We conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.

  10. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  11. Rosiglitazone Improves Insulin Resistance Mediated by 10,12 Conjugated Linoleic Acid in a Male Mouse Model of Metabolic Syndrome.

    Science.gov (United States)

    Wang, Shari; Goodspeed, Leela; Turk, Katherine E; Houston, Barbara; den Hartigh, Laura J

    2017-09-01

    Trans-10, cis-12 conjugated linoleic acid (10,12 CLA) is a dietary fatty acid that promotes weight loss and disproportionate fat loss. Obese mice fed a high-fat, high-sucrose (HFHS) diet containing 10,12 CLA are resistant to weight gain and contain markedly reduced subcutaneous fat and adiponectin, with a concurrent lack of improvement in insulin sensitivity despite significant weight loss. Taken together, 10,12 CLA promotes a phenotype resembling peroxisome proliferator-activated receptor (PPAR)γ antagonism. Because thiazolidinediones such as rosiglitazone (Rosi) are used clinically to improve insulin sensitivity by activating PPARγ, with particular efficacy in subcutaneous white adipose tissue, we hypothesized that Rosi would improve glucose metabolism in mice losing weight with 10,12 CLA. Obese low-density lipoprotein receptor-deficient mice were fed a HFHS control diet, or supplemented with 1% 10,12 CLA with or without Rosi (10 mg/kg) for 8 weeks. Body composition, glucose and insulin tolerance tests, tissue gene expression, and plasma lipid analyses were performed. Mice consuming 10,12 CLA with Rosi lost weight and body fat compared with control groups, but with a healthier redistribution of body fat toward more subcutaneous adipose tissue than with 10,12 CLA alone. Further, Rosi improved 10,12 CLA-mediated insulin resistance parameters and increased plasma and subcutaneous adipose tissue adiponectin levels without adverse effects on plasma or hepatic lipids. We conclude that cotreatment of mice with 10,12 CLA and Rosi promotes fat loss with a healthier fat distribution that leads to improved insulin sensitivity, suggesting that the combination treatment strategy of 10,12 CLA with Rosi could have therapeutic potential for obesity treatment. Copyright © 2017 Endocrine Society.

  12. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity.

    Science.gov (United States)

    Win, Sanda; Than, Tin Aung; Le, Bao Han Allison; García-Ruiz, Carmen; Fernandez-Checa, Jose C; Kaplowitz, Neil

    2015-06-01

    Sustained c-Jun N-terminal kinase (JNK) activation by saturated fatty acids plays a role in lipotoxicity and the pathogenesis of non-alcoholic steatohepatitis (NASH). We have reported that the interaction of JNK with mitochondrial Sab leads to inhibition of respiration, increased reactive oxygen species (ROS), cell death and hepatotoxicity. We tested whether this pathway underlies palmitic acid (PA)-induced lipotoxicity i