WorldWideScience

Sample records for acid low-sensitive mutant

  1. Highly Energetic, Low Sensitivity Aromatic Peroxy Acids.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2016-02-18

    The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene. Additionally, the calculated detonation velocities of 3,5-dinitrobenzoperoxoic acid and 2,4,6-trinitrobenzoperoxoic acid exceed that of 2,4,6-trinitrotoluene. The solid-state structure of 3,5-dinitrobenzoperoxoic acid contains intermolecular O-H⋅⋅⋅O hydrogen bonds and numerous N⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O close contacts. These attractive lattice interactions may account for the less sensitive nature of 3,5-dinitrobenzoperoxoic acid.

  2. PHAGE RESISTANT LACTIC ACID BACTERIAL MUTANTS

    DEFF Research Database (Denmark)

    2001-01-01

    Method of obtaining mutated lactic acid bacteria having a reduced susceptibility towards attack by bacteriophages, the method comprising mutating a gene involved in the pyrimidine metabolism, including pyrG encoding CTP synthetase. Such lactic acid bacteria are useful in starter cultures in the p......Method of obtaining mutated lactic acid bacteria having a reduced susceptibility towards attack by bacteriophages, the method comprising mutating a gene involved in the pyrimidine metabolism, including pyrG encoding CTP synthetase. Such lactic acid bacteria are useful in starter cultures...

  3. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  4. Identification and characterization of two low phytic acid soybean mutants

    International Nuclear Information System (INIS)

    By seed gamma irradiation (150 Gy) of two commercial cultivars, Taiwan 75 and Zhechun no. 3, two soybean low phytic acid (LPA) mutants Gm-lpa-TW-1and Gm-lpa-ZC-2 were obtained. Analysis of seed phosphorus fractions indicated that both two mutants had phytic acid reduction of ∼50% comparing with their wild type parents, and the inorganic portion of seed P was increased. Meanwhile, Gm-lpa-ZC-2 had significantly increased in myo-inositol phosphates containing five and four P ester. Genetic analysis suggested that the LPA characteristics were both controlled by single non-allelic recessive genes in the two mutants. The gene conditioning the LPA mutation in Gm-lpa-ZC-2 was mapped on LG B2, closely linked with microsatellite loci satt416 and satt168, at genetic distances of ∼4.63 and ∼9.25 cM, respectively, while the mutation in Gm-lpa-TW-1 was proven to have happened to the D-myo-inositol 3-phosphate synthase (MIPS1 EC 5.5.1.4) gene 1 (MIPS1), and sequencing results indicated that Gm-lpa-TW-1 lpa mutation resulted from a 2 bp deletion of the MIPS1 gene. The mutant line Gm-lpa-TW-1 had a significantly reduced field emergence when seeds were produced in subtropical environments while Gm-lpa-ZC-2 mutation does not negatively affect plant yield traits and seed field emergence. The novel LPA mutation in Gm-lpa-ZC-2, together with linked SSR markers, would be of value for breeding productive LPA soybeans. (author)

  5. Salmonella typhimurium mutants defective in acetohydroxy acid synthases I and II.

    OpenAIRE

    Shaw, K J; Berg, C M; Sobol, T J

    1980-01-01

    An analysis of transposon-induced mutants shows that Salmonella typhimurium possesses two major isozymes of acetohydroxy acid synthase, the enzymes which mediate the first common step in isoleucine and valine biosynthesis. A third (minor) acetohydroxy acid synthase is present, but its significance in isoleucine and valine synthesis may be negligible. Mutants defective in acetohydroxy acid synthase II (ilvG::Tn10) require isoleucine, alpha-ketobutyrate, or threonine for growth, a mutant defect...

  6. Induced mutants of Streptococcus lactis by gamma irradiation and its effect on milk acidity

    International Nuclear Information System (INIS)

    Streptococus lactis was exposed to different doses of gamma-irradiation (10, 50, 100 and 150 Kr). The results of acidity production in sterilized milk inoculated by isolates from radiation treatments and control could be summarized in the following: 1. The mean acidity produced by S. lactis isolates after irradiation at 10 Kr increased to be 0.66% than that of control isolates (0.62%). The acidity produced by the isolates of the 50 Kr treatment showed more increment to reach the peak (0.7%). Thereafter, acidity production decreased by isolates of the 100 Kr (0.53%) and 150 Kr (0.51%) treatments. Heme, the 50 Kr treatment could be considered activation dose to S. lactis starter for acid production. 2. Two mutants were selected. Acidity production by mutant I (from 10 Kr treatment) was 0.95%, and that of mutant II (from 50 Kr treatment) was 1.0%, while acid production by the parent S. lactis culture was 0.62%. Concerning the stability of the isolates, it was found that acid production by mutant I and mutant II slightly decreased by time. The mutants were re-irradiated after 37 and 60 days at doses 10, 25 and 50 Kr. Acid production in milk by isolates of the radiation treatments was determined. The following results were obtained: -The re-irradiation of the mutants decreased the ability of the isolates for acid production than that of parent mutants. -The re-irradiation of the mutants after 60 days yielded isolates which showed more reduction in acid produced than of isolates obtained from re-irridation of the mutants after 37-days. -The higher the dose of the re-irradiation of the mutants, the lower the mean of acid production by isolates of the treatment

  7. Analysis of nutritional quality of low phytic acid mutants in maize

    International Nuclear Information System (INIS)

    Major nutritional quality and components of eight low phytic acid (lpa) mutants and their corresponding wild types were studied. Compared to their corresponding wild types, the content of inorganic P (Pi) was all increased several times, while the content of total P (TP) in mutants was almost the same as their wild types. The contents of crude lipid and amylose were similar, but total starch was significantly different. Crude protein in some of mutants was increased significantly. Most of amino acids were increased, and essential amino acid-Lysine was increased except mutants derived from Q319 and X178. Mineral macronutrients and micronutrients were similar. All results showed that the lpa mutation in maize could enhance the nutritional quality and bioactivities. (authors)

  8. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    the amino acids valine, isoleucine, and leucine, and required the short branched chain acids 2-methylbutanoic acid or 2-methylpropanoic acid for growth in a defined medium. The isoleucine related metabolites, alpha-keto-beta-methylvaleric acid and 2-methylbutanal also served as growth factors. Growth...... was observed. Despite the deficiency in IlvE activity, the mutant strain was still able to produce the short chain carboxylic acids, 3-methylbutanoic acid and 2-methylpropanoic acid when cultivated in rich medium. Supplementation experiments employing deuterated glucose induced the valine biosynthetic pathway...

  9. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    Science.gov (United States)

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g.

  10. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    Science.gov (United States)

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g. PMID:27339313

  11. Biological and photosynthetic characteristics of low phytic acid maize inbred line mutant

    International Nuclear Information System (INIS)

    In this paper, the main biological characteristics and photosynthetic rate of low-phytic acid (LPA) maize mutant and its wildtype were compared through field experiment and nutrient solution culture experiment respectively. The results showed that, compared with wildtype, many changes had taken place in low phytic acid maize mutant. For example, the durations from seeding to tasselling and from seeding to silking were prolonged; the leaf area was diminished; the shoot and root dry matter weight were all reduced; root-shoot ratio was increased; chlorophyll SPAD value was reduced, however, the net photosynthetic rate was increased. Furthermore, the countermeasures and proposals about the breeding improvement using low-phytic acid maize were suggested according to the biological characteristics of low phytic acid maize mutant. (authors)

  12. Over-expression of gluconic acid in Aspergillus oryzae RP-21 mutants generated by a random mutagenesis approach

    OpenAIRE

    Raksha, Sunhare; Srinivasan, Sharmila; Prasant, Garima; Prabu, Rajagopalan

    2012-01-01

    Random mutagenesis with N-methyl-N′ nitro-N-nitrosoguanidine (NTG) was used to mutate Aspergillus oryzae RP-21 to develop high gluconic acid-producing mutants. Forty mutant colonies (designated as A. oryzae strains RP-NTG-01 to RP-NTG-40) screened for gluconic acid, glucose dehydrogenase and glucose oxidase production using a 12-well plate method showed that 17 strains (positive mutants) produced high concentrations of these three products, whereas 12 strains (negative mutants) showed low con...

  13. The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid.

    Science.gov (United States)

    Afitlhile, Meshack; Duffield-Duncan, Kayla; Fry, Morgan; Workman, Samantha; Hum-Musser, Sue; Hildebrand, David

    2015-11-01

    A null and heterozygous mutant for the Arabidopsis thaliana TOC132 and TOC120 genes accumulates increased levels of 16:0 and decreased 16:3, suggesting altered homeostasis in fatty acid synthesis. The FAD5 gene encodes a plastid desaturase that catalyzes the first step in the synthesis of 16:3 in monogalactosyldiacylglycerol (MGDG). In non-acclimated toc132toc120+/- mutant plants, the FAD5 gene was repressed and this correlated with decreased levels of 16:3. In cold-acclimated mutant however, the FAD5 gene was upregulated and there was a small increase in 16:3 levels relative to the non-acclimated mutant plants. The MGD1 gene was expressed at control levels and the mutant accumulated levels of MGDG that were similar to the wild type. In the mutant however, MGDG had decreased 16:3 levels, suggesting that the activity of FAD5 desaturase was compromised. In the mutant, the FAD2 and FAD3 genes were downregulated but levels of 18:3-PC were increased, suggesting posttranscriptional regulation for the ER-localized fatty acid desaturases. The Toc120 or Toc159 receptor is likely to compensate for a defective Toc132 receptor. In the cold-acclimated mutant, the TOC159 gene was repressed ca. 300-fold, whereas the TOC120 gene was repressed 7-fold relative to the non-acclimated wild type. Thus, the TOC159 gene is more sensitive to cold-stress and might not compensate for defect in the TOC132 gene under these conditions. Overall, these data show that a mutation in the TOC132 gene results in decreased 16:3 levels, indicating the need for an intact Toc132/Toc120 receptor, presumably to facilitate the import of the FAD5 preprotein into chloroplasts.

  14. Kinetics Studies on citric acid production by gamma ray induced mutant of Aspergillus niger

    International Nuclear Information System (INIS)

    Effect of cultural pH and incubation temperature on citric acid yield and kinetic patterns of citric acid fermentation by a natural isolate of aspergillus niger as CA16 and one of its gamma ray induced mutants were studied using cane molasses as growth and fermentation substrate. Mutant strain, 277/30 gave maximum citric acid yield of 85 g/l at pH 3.5 and 28 degree centigrade in molasses medium adjusted to 16% sugar and 25% prescott salt in the medium. Parent strain, CA16 gave a maximum yield of 34 g/l at pH 4.0 and 26 degree centigrade in molasses medium adjusted to 16% sugar and 100% prescott salt in the medium. In kinetic studies, strains showed combination kinetics of citric acid fermentation where product formation is directly related to growth and cell mass and indirectly related to carbohydrate uptake

  15. Molecular Marker Development and Linkage Analysis in Three Low Phytic Acid Barley (Hordeum vulgare) Mutant Lines

    Science.gov (United States)

    Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases...

  16. Semi-pilot scale production of citric acid in cane molasses by gamma-ray induced mutants of Aspergillus niger

    International Nuclear Information System (INIS)

    Utilizing cane molasses as substrate, semi-pilot scale production of citric acid was investigated in fermentation trays (40 x 35 cm) with several gamma-ray induced mutants of Aspergillus niger. Of the mutants tested, two were found to have high yield efficiency (14/20, 51.06%; 79/20, 50.35%) of sugar to citric acid. The yield of other mutants (HB3, 10/20, 164/20, 277/30 and 112/40) ranged between 30 to 42%. The prospect of utilizing the high yielding mutants for commercial production of citric acid has been discussed. (author)

  17. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions

    Directory of Open Access Journals (Sweden)

    Valeria eMuñoz

    2015-11-01

    Full Text Available To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient and flacca (flc, ABA-deficient mutants together with the naphthalene/salicylate hydroxylase (NahG transgenic (SA-deficient line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1 and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3 expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1 was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress.

  18. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    Science.gov (United States)

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  19. Simultaneous production of catalase, glucose oxidase and gluconic acid by Aspergillus niger mutant.

    Science.gov (United States)

    Fiedurek, J; Gromada, A; Pielecki, J

    1998-01-01

    The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.

  20. Citric acid production by selected mutants of Aspergillus niger from cane molasses.

    Science.gov (United States)

    Ikram-Ul, Haq; Ali, Sikander; Qadeer, M A; Iqbal, Javed

    2004-06-01

    The present investigation deals with citric acid production by some selected mutant strains of Aspergillus niger from cane molasses in 250 ml Erlenmeyer flasks. For this purpose, a conidial suspension of A. niger GCB-75, which produced 31.1 g/l citric acid from 15% (w/v) molasses sugar, was subjected to UV-induced mutagenesis. Among the 3 variants, GCM-45 was found to be a better producer of citric acid (50.0 +/- 2a) and it was further improved by chemical mutagenesis using N-methyl, N-nitro-N-nitroso-guanidine (MNNG). Out of 3,2-deoxy-D-glucose resistant variants, GCMC-7 was selected as the best mutant, which produced 96.1 +/- 1.5 g/l citric acid 168 h after fermentation of potassium ferrocyanide and H2SO4 pre-treated blackstrap molasses in Vogel's medium. On the basis of kinetic parameters such as volumetric substrate uptake rate (Qs), and specific substrate uptake rate (qs), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and produced more citric acid. The mutant GCMC-7 has greater commercial potential than the parental strain with regard to citrate synthase activity. The addition of 2.0 x 10(-5) M MgSO4 x 5H2O into the fermentation medium reduced the Fe2+ ion concentration by counter-acting its deleterious effect on mycelial growth. The magnesium ions also induced a loose-pelleted form of growth (0.6 mm, diameter), reduced the biomass concentration (12.5 g/l) and increased the volumetric productivity of citric acid monohydrate (113.6 +/- 5 g/l).

  1. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241)

    DEFF Research Database (Denmark)

    Pilu, R.; Panzeri, D.; Gavazzi, G.;

    2003-01-01

    of potassium and magnesium, although phytates contain other mineral cations such as iron and zinc. During germination, phytates are broken down by the action of phytases, releasing their P, minerals and myo-inositol which become available to the growing seedling. Phytic acid represents an anti...... 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization...

  2. Optimisation of fermentation conditions for gluconic acid production by a mutant of Aspergillus niger.

    Science.gov (United States)

    Singh, O V; Sharma, A; Singh, R P

    2001-11-01

    Aspergillus niger ORS-4, isolated from the sugarcane industry waste materials was found to produce notable level of gluconic acid. From this strain, a mutant Aspergillus niger ORS-4.410 having remarkable increase in gluconic acid production was isolated and compared for fermentation properties. Among the various substrates used, glucose resulted into maximum production of gluconic acid (78.04 g/L). 12% concentration led to maximum production. Effect of spore age and inoculum level on fermentation indicated an inoculum level of 2% of the 4-7 days old spores were best suited for gluconic acid production. Maximum gluconate production could be achieved after 10-12 days of the fermentation at 30 degrees C and at a pH of 5.5. Kinetic analysis of production indicated that growth of the mutant was favoured during initial stages of the fermentation (4-8 days) and production increased during the subsequent 8-12 days of the fermentation. CaCO3 and varying concentrations of different nutrients affected the production of gluconic acid. Analysis of variance for the factors evaluated the significant difference in the production levels.

  3. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter;

    acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new......Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development......’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic...

  4. Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions.

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2007-01-01

    Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. PMID:16325963

  5. Gluconic acid production by Aspergillus niger mutant ORS-4.410 in submerged and solid state surface fermentation.

    Science.gov (United States)

    Singh, O V; Sharma, A; Singh, R P

    2001-07-01

    Aspergillus niger ORS-4.410, a mutant of Aspergillus niger ORS-4 was produced by repeated irradiation with UV rays. Treatments with chemical mutagnes also resulted into mutant strains. The mutants differed from the parent strain morphologically and in gluconic acid production. The relationship between UV treatment dosage, conidial survival and frequency of mutation showed the maximum frequency of positive mutants (25%) was obtained along with a conidial survival of 59% after second stage of UV irradiation. Comparison of gluconic acid production of the parent and mutant ORS-4.410 strain showed a significant increase in gluconic acid production that was 87% higher than the wild type strain. ORS-4.410 strain when transferred every 15 days and monitored for gluconic acid levels for a total period of ten months appeared stable. Mutant ORS-4.410 at 12% substrate concentration resulted into significantly higher i.e. 85-87 and 94-97% yields of gluconic acid under submerged and solid state surface conditions respectively. Further increase in substrate concentration appeared inhibitory. Maximum yield of gluconic acid was obtained after 6 days under submerged condition and decreased on further cultivation. Solid state surface culture condition on the other hand resulted into higher yield after 12 days of cultivation and similar levels of yields continued thereafter.

  6. Determination of Essential Fatty Acid Composition among Mutant Lines of Canola (Brassica napus), through High Pressure Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    Ghulam Raza; Aquil Siddique; Imtiaz Ahmad Khan; Muhammed Yasin Ashraf; Abdullah Khatri

    2009-01-01

    The present study aimed to quantify the methyl esters of lenoleic acid (LA), γ-lenolenic acid (LNA) and oleic acid (OL) in the oil of Brassica napus mutants. Five stable mutants (ROO-75/1, ROO-100/6, ROO-125/12, ROO-125/14, and ROO-125/17)of B. napus cv. 'Rainbow' (P) and three mutants (W97-95116, W97-0.75/11 and W97-.075/13) of B. napus cv. 'Westar' (P) at M6 stage, exhibiting better yield and yield components, were analyzed for essential fatty acids. The highest seed yield was observed in the mutant (ROO-100/6) followed by ROO-125/14 of Rainbow, that is, 34% and 32% higher than their parent plants, respectively. Westar mutant W97-75/11 also showed 30% higher seed yield than its parent plant. High performance liquid chromatography analysis of the composition of fatty acids indicated that OL was the most dominant fatty acid, ranging from 39.1 to 66.3%; LA was second (15.3-41.6%) and LNA was third (18.1-28.9%). Mutant ROO-125/14 showed higher OL contents than parent (Rainbow). These results are expected to support the approval of ROO-125/14 in the National Uniform Varietal Yield Trials (NUVYT) as a new variety based on high oil quality.

  7. Production of orotic acid by a Klura3Δ mutant of Kluyveromyces lactis.

    Science.gov (United States)

    Carvalho, Nuno; Coelho, Eduardo; Gales, Luís; Costa, Vítor; Teixeira, José António; Moradas-Ferreira, Pedro

    2016-06-01

    We demonstrated that a Klura3Δ, mutant of the yeast Kluyveromyces lactis is able to produce and secrete into the growth medium considerable amounts of orotic acid. Using yeast extract-peptone-glucose (YPD) based media we optimized production conditions in flask and bioreactor cultures. With cells grown in YPD 5% glucose medium, the best production in flask was obtained with a 1:12.5 ratio for flask: culture volume, 180 rpm, 28°C and 200 mM MOPS for pH stabilization at neutral values (initial culture pH at 8.0). The best production in a 2 L bioreactor was achieved at 500 rpm with 1 vvm aeration, 28°C and pH 7.0. Under these optimum conditions, similar rates of orotic acid production were obtained and maximum concentration achieved after 96 h was 6.7 g/L in flask and bioreactor cultures. These results revealed an excellent reproducibility between both systems and provided evidence for the biotechnological potential of Klura3Δ strain to produce orotic acid since the amounts obtained are comparable to the production in flask using a similar mutant of the industrially valuable Corynebacterium glutamicum. PMID:26707627

  8. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  9. Induction of cat-86 by chloramphenicol and amino acid starvation in relaxed mutants of Bacillus subtilis.

    Science.gov (United States)

    Ambulos, N P; Rogers, E J; Alexieva, Z; Lovett, P S

    1988-12-01

    The chloramphenicol acetyltransferase gene cat-86 is induced through a mechanism that is a variation of classical attenuation. Induction results from the destabilization of an RNA stem-loop that normally sequesters the cat-86 ribosome-binding site. Destabilization of the stem-loop is due to the stalling of a ribosome in the leader region of cat-86 mRNA at a position that places the A site of the stalled ribosome at leader codon 6. Two events can stall ribosomes at the correct location to induce cat-86 translation: addition of chloramphenicol to cells and starvation of cells for the amino acid specified by leader codon 6. Induction by amino acid starvation is an anomaly because translation of the cat-86 coding sequence requires all 20 amino acids. To explain this apparent contradiction we postulated that amino acid starvation triggers intracellular proteolysis, thereby providing levels of the deprived amino acid sufficient for cat-86 translation. Here we show that a mutation in relA, the structural gene for stringent factor, blocks intracellular proteolysis that is normally triggered by amino acid starvation. The relA mutation also blocks induction of cat-86 by amino acid starvation, but the mutation does not interfere with chloramphenicol induction. Induction by amino acid starvation can be demonstrated in relA mutant cells if the depleted amino acid is restored at very low levels (e.g., 2 micrograms/ml). A mutation in relC, which may be the gene for ribosomal protein L11, blocks induction of cat-86 by either chloramphenicol or amino acid starvation. We believe this effect is due to a structural alteration of the ribosome resulting from the relC mutation and not to the relaxed phenotype of the cells.

  10. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    Directory of Open Access Journals (Sweden)

    Eliton da Silva Vasconcelos

    2013-12-01

    Full Text Available Clavulanic acid (CA is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064. The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  11. Breeding of clavulanic acid mutant%克拉维酸高产菌的选育

    Institute of Scientific and Technical Information of China (English)

    张汝玲

    2011-01-01

    以带小棒链霉菌bs1574为出发菌株,经γ射线照射,并结合甘油耐受性菌株的理性筛选,选育得到较佳诱变菌株bs2325,效价达2 569μg/mL.采用摇瓶发酵初筛和复筛,选育出甘油耐受性正向突变菌株,是出发菌株(效价为968 μg/mL)的2.65倍,该突变菌株在琼脂斜面培养基上连续转接传代4代,克拉维酸的产量保持稳定.%The method of screening and selecting better mutants of bs2325 by γ-ray irradiation onto streptomyces bs1574 is put forward, and the titer is 2 569 μg/mL. By fermentation screening and secondary screening, strains of mutant glycerol positive tolerance is selected, whose titer is 2. 65 times that of the original strain(968 μg/mL). The mutant strain grows well during four generations on the agar slant medium, and the yield of clavulanic acid remains stable.

  12. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064.

    Science.gov (United States)

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-12-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant.

  13. Evaluate The Fluctuation Of Phytic Acid Content In Seed From Mutant Lines By Gamma Ray

    International Nuclear Information System (INIS)

    Phytic acid is a molecule composed of myo-inositol 1,2,3,4,5,6 hexakis dihydrogen phosphate (Ins P6), a major component in the source of phosphorus (P) reserves of about 50 plants - 80% of total seed phosphorus (Lott, 1984). At physiological pH in the form of phytic acid have negatively charged ions hold together the complex mineral nutrition creates indigestion. Moreover, phosphorus in the form of phytate or phytic humans and monogastric animals can not absorb, are all discharged polluted environment transitions. In rice OM819, OM4900, OM3536, D4 and D8 are irradiated with gamma rays at 5 doses: 100, 200, 300, 400 and 500 Gy to create mutant strains with low levels of phytic acid. Results in radiation levels may appear 100 Gy line grain phytic acid expression is low. At the level 200 Gy of radiation is three populations OM819, OM4900 and OM3536 with 8 lines for grain phytic acid expression is low. At 300 Gy extent, appeared seven lines with low nuclear expression of phytic acid 4 populations OM819, OM4900, OM3536 and D4. At the level 400 Gy of radiation there are 4 populations appear only 5 lines expressed low phytic acid, with 3-line expression levels 3 and 2 lines with level 4 expression. At the level of radiation 500 Gy only one line appears at level 3 of phytic acid this is OM819 populations. For genotype analysis using marker RM 261 with 66.67% of the rice low phytic acid content of the expression analysis of biochemical polymorphisms. (author)

  14. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in Batch Fermentation▿

    OpenAIRE

    Dumbrepatil, Arti; Adsul, Mukund; Chaudhari, Shivani; Khire, Jayant; Gokhale, Digambar

    2007-01-01

    Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity...

  15. Brief report on screening maize mutants with high inorganic phosphorus and low phytic acid content

    International Nuclear Information System (INIS)

    Four and two mutants with high inorganic phosphorus (IP) and low phytic acid (LP) content were identified from 'Huang C' and 'X178', the parents of the leading commercial hybrid maize cultivar 'Nongda 108', when the dry seeds were irradiated by 200 Gy Cobalt-60 gamma rays. The mutation frequencies for 'Huang C' and 'X178' in panical basis were 8.04 x 10-4 and 10.48 x 10-4, respectively. Compared to the wild type, the contents of total phosphorus (TP) were basically unchanged, phytic acid phosphorus (PAP) were detected with 79.09%, 66.06%, 47.58%, 43.94%, 70.00%, 48.28% decreases, and IP with 11.22, 9.91, 7.04, 6.43, 6.43, 4.33 times increases in six mutants, H-lpa1, H-lpa2, H-lpa3, H-lpa4, X-lpa1, X-lpa2, respectively. (authors)

  16. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation.

    Science.gov (United States)

    Dumbrepatil, Arti; Adsul, Mukund; Chaudhari, Shivani; Khire, Jayant; Gokhale, Digambar

    2008-01-01

    Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale. PMID:17981933

  17. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  18. Lauric acid production in a glycogen-less Synechococcus sp. PCC 7002 mutant

    Directory of Open Access Journals (Sweden)

    Victoria H. Work

    2015-04-01

    Full Text Available The cyanobacterium Synechococcus sp. PCC 7002 was genetically engineered to synthesize biofuel compatible medium-chain fatty acids during photoautotrophic growth. Expression of a heterologous lauroyl-acyl carrier protein (C12:0-ACP thioesterase with concurrent deletion of the endogenous putative acyl-ACP synthetase led to secretion of transesterifiable C12:0 fatty acid in CO2-supplemented batch cultures. When grown at steady state over a range of light intensities in an LED turbidostat photobioreactor, the C12-secreting mutant exhibited a modest reduction in growth rate and increased O2 evolution relative to the wildtype. Inhibition of i glycogen synthesis by deletion of the glgC-encoded ADP-glucose pyrophosphorylase (AGPase, and ii protein synthesis by nitrogen deprivation were investigated as potential mechanisms for metabolite redistribution to increase fatty acid synthesis. Deletion of AGPase led to a ten-fold decrease in reducing carbohydrates and secretion of organic acids during nitrogen deprivation consistent with an energy spilling phenotype. When the carbohydrate-deficient background (∆glgC was modified for C12 secretion, no increase in C12 was achieved during nutrient replete growth, and no C12 was recovered from any strain upon nitrogen deprivation under the conditions used. At steady state, the growth rate of the ∆glgC strain saturated at a lower light intensity than the wildtype, but O2 evolution was not compromised and became increasingly decoupled from growth rate with rising irradiance. Photophysiological properties of the ∆glgC strain suggest energy dissipation from photosystem II and reconfiguration of electron flow at the level of the plastoquinone pool.

  19. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation.

    Science.gov (United States)

    Gravot, Antoine; Larbat, Romain; Hehn, Alain; Lièvre, Karine; Gontier, Eric; Goergen, Jean Louis; Bourgaud, Frédéric

    2004-02-01

    Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.

  20. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.

    Science.gov (United States)

    Liang, Xiaofei; Liberti, Daniele; Li, Moyi; Kim, Young-Tae; Hutchens, Andrew; Wilson, Ron; Rollins, Jeffrey A

    2015-08-01

    The oxaloacetate acetylhydrolase (OAH, EC 3.7.1.1)-encoding gene Ss-oah1 was cloned and functionally characterized from Sclerotinia sclerotiorum. Ss-oah1 transcript accumulation mirrored oxalic acid (OA) accumulation with neutral pH induction dependent on the pH-responsive transcriptional regulator Ss-Pac1. Unlike previously characterized ultraviolet (UV)-induced oxalate-deficient mutants ('A' mutants) which retain the capacity to accumulate OA, gene deletion Δss-oah1 mutants did not accumulate OA in culture or during plant infection. This defect in OA accumulation was fully restored on reintroduction of the wild-type (WT) Ss-oah1 gene. The Δss-oah1 mutants were also deficient in compound appressorium and sclerotium development and exhibited a severe radial growth defect on medium buffered at neutral pH. On a variety of plant hosts, the Δss-oah1 mutants established very restricted lesions in which the infectious hyphae gradually lost viability. Cytological comparisons of WT and Δss-oah1 infections revealed low and no OA accumulation, respectively, in subcuticular hyphae. Both WT and mutant hyphae exhibited a transient association with viable host epidermal cells at the infection front. In summary, our experimental data establish a critical requirement for OAH activity in S. sclerotiorum OA biogenesis and pathogenesis, but also suggest that factors independent of OA contribute to the establishment of primary lesions. PMID:25285668

  1. Isolation of a spontaneous CHO amino acid transport mutant by a combination of tritium suicide and replica plating

    International Nuclear Information System (INIS)

    A spontaneous transport mutant of Chinese hamster ovary cells, CHY-1, was isolated by a combination of [3H]proline suicide and replica plating. The mutant took up less tritium than the parent, resulting in a lower killing rate during storage. Transport by four separate amino acid transport systems (A, ASC, L, Ly+) was examined. The CHY-1 mutant exhibited normal uptake via the ASC, L, and Ly+ systems. By contrast, uptake of the most specific substrate of the A system, 2-(methylamino)-isobutyric acid, was significantly reduced at low, but not high, concentrations, due to a 3.5-fold increase in Km and a 1.5-fold increase in Vmax. Taken together, these data suggest that the CHY-1 mutation may be in the structural gene coding for the A transport protein. The tritium suicide procedure is discussed, and general equations are derived to predict the maximum storage time for the survival of one mutant cell and the optimum size of the cell population for maximum mutant enrichment

  2. Induction and evaluation of low phytic acid mutants in basmati rice

    International Nuclear Information System (INIS)

    Induced mutations are successfully used to alter a character in an otherwise very well adapted variety. Keeping in view the adverse effects of high phytate contents in various cereal and legume crops, present work was started to develop the low phytate basmati rice through induced mutation. Paddy seeds of Super Basmati (well-adapted variety) were exposed to different doses of gamma rays (150, 200, 250, 300, 350 and 400 Gy) and screened for high levels of inorganic phosphorus (Biologically available form of phosphorus) in the M2 generation. Subsequently, selected mutants were evaluated up to M5 generation using the colorimetric assay technique. One progeny in M5 and two progenies in M4 generation were found stable for low phytic acid (Lpa) mutations and were confirmed through HPLC exhibiting 58.33%, 54.4% and 53.98% inorganic-P respectively as compared to Super Basmati (9.86%). Agronomic traits and physical paddy parameters in the selected progenies were comparable with Super Basmati except one progeny which had short paddy length. The results based on these studies are discussed. (author)

  3. Abscisic acid content of a nondormant sunflower (Helianthus annuus L.) mutant

    Science.gov (United States)

    A sunflower (Helianthus annuus L.) mutant was observed in the progeny of a cross between the sunflower cultivar HA 89 and an amphiploid of a H. divaricatus L. x P21 cross that exhibited loss of dormancy induction in the developing embryo. Seeds of this mutant frequently germinate on the head about 4...

  4. Identification of key uric acid synthesis pathway in a unique mutant silkworm Bombyx mori model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hiroko Tabunoki

    Full Text Available Plasma uric acid (UA levels decrease following clinical progression and stage development of Parkinson's disease (PD. However, the molecular mechanisms underlying decreases in plasma UA levels remain unclear, and the potential to apply mutagenesis to a PD model has not previously been discovered. We identified a unique mutant of the silkworm Bombyx mori (B.mori op. Initially, we investigated the causality of the phenotypic "op" by microarray analysis using our constructed KAIKO functional annotation pipeline. Consequently, we found a novel UA synthesis-modulating pathway, from DJ-1 to xanthine oxidase, and established methods for large-scale analysis of gene expression in B. mori. We found that the mRNA levels of genes in this pathway were significantly lower in B. mori op mutants, indicating that downstream events in the signal transduction cascade might be prevented. Additionally, levels of B.mori tyrosine hydroxylase (TH and DJ-1 mRNA were significantly lower in the brain of B. mori op mutants. UA content was significantly lower in the B. mori op mutant tissues and hemolymph. The possibility that the B. mori op mutant might be due to loss of DJ-1 function was supported by the observed vulnerability to oxidative stress. These results suggest that UA synthesis, transport, elimination and accumulation are decreased by environmental oxidative stress in the B. mori op mutant. In the case of B. mori op mutants, the relatively low availability of UA appears to be due both to the oxidation of DJ-1 and to its expenditure to mitigate the effects of environmental oxidative stress. Our findings are expected to provide information needed to elucidate the molecular mechanism of decreased plasma UA levels in the clinical stage progression of PD.

  5. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    Science.gov (United States)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  6. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    International Nuclear Information System (INIS)

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects

  7. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    Energy Technology Data Exchange (ETDEWEB)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.; Shilov, Aleksandr A.; Krylov, Petr S. [D.I. Ivanovsky Institute of Virology, 123098 Moscow (Russian Federation); Ilyushina, Natalia A., E-mail: Natalia.Ilyushina@fda.hhs.gov [FDA CDER, 29 Lincoln Drive, Bethesda, MD 20892 (United States); Kaverin, Nikolai V., E-mail: nik.kaverin@gmail.com [D.I. Ivanovsky Institute of Virology, 123098 Moscow (Russian Federation)

    2013-12-15

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.

  8. Construction and Verification of LuxS-negative Mutants of Streptococcus Mutans and the Effect of the Absence of LuxS Gene on the Acid Tolerance

    Institute of Scientific and Technical Information of China (English)

    YU Dan-ni; CHEN Jie; ZHANG Yao-chao; HAN Yu-zhi

    2009-01-01

    Objective: To knock out the entire Luxs gene of Streptococcus mutans(S.mutans) UA159 strain via homologous recombination and construct a Luxs-deleted mutant strain of S. Mutans. To study the difference between the acid resistance of S. Mutans Ingbritt C international standard strain and the acid resistance of LuxS mutant strain. Methods: Two DNA fragments locating in the upper and downstream of Luxs gene were amplified and a erythromycin resistance gene of PJT10 between them were engineered into PUC19 plasmid for constructing the recombination plasmid pUCluxKO. Electrotransformation of S.mutans cells with pUCluxKO-mutant resulted in isolation of erythromycin resistant S. Mutans transformants, which was identified by polymerase chain reaction, V.harveyi BB170 luminescence bioassay and sequencing analysis. Solutions of S. Mutans standard strain and LuxS mutant strain with same density were made and cultured at pH 3.5 to 7.0 BHI liquid for the same period.Terminal growth situation was compared.Firstly acidized in pH 5.5 BHI liquid,the two strains were cultured at pH 3.0 BHI liquid. The acid tolerance responses of the two strains were compared.Results:Restriction endonuclease analyses showed that pUCluxKO-mutant vector had been successfully recombined. The Luxs-deleted status of S.mutans mutants was confirmed by PCR with primers which were specific for the genes of Luxs and Erythromycin resistance. S.mutans mutant can not induce bioluminescence, indiating the mutant had been successfully recombined. After twenty generations of culture, the constructed Chinese S.mutans mutants were confirmed to be stable. Significant difference of aciduricity was observed between S.mutans standard strain and LuxS mutant strain.The acid resistance of standard strain was stronger than that of LuxS mutant strain.The two strains both displayed the capability of acid tolerance responses. Conclusion:The S.mutans gene allelic exchange plasmid is constructed correctively and a Luxs

  9. Identification of a natural mutant of HBV X protein truncated 27 amino acids at the COOH terminal and its effect on liver cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Hang ZHANG; Xiao-dong ZHANG; Chang-liang SHAN; Nan LI; Xuan ZHANG; Xue-zhi ZHANG; Fu-qing XU; Shuai ZHANG; Li-yan QIU; Li-hong YE

    2008-01-01

    Aim:To identify mutants of the hepatitis B virus (HBV) X (HBx) gene and inves-tigate the effect of the natural mutant on liver cell proliferation. Methods:We identified natural mutants of the HBx gene from 188 sera and 48 tissues of Chinese patients infected with HBV by PCR, respectively. Based on the identification of the mutants ofHBx gene, we cloned the fragments of the mutants into the pcDNA3 vector. The biological activities of the mutants were investigated. Results:We identified a natural mutant of the HBx gene with deletion from 382 to 401 base pairs from 3 sera out of 188 patients, which resulted in the expression deletion of the HBx protein from the 128th amino acid at the COOH terminal. The similar mutant with deletion from 382 base pair at the COOH terminal was identified from 5 cases of genomes out of 48 hepatocellular carcinoma tissues. Regarding the biological activities of the mutant, we found that the mutant of the HBx protein failed to induce apoptosis by transient transfection, but promoted proliferation of human liver immortalized L-O2 cells by stable transfection, compared with the wild-type HBx protein. The data showed that the proliferation of the mutant stably-trans-fected L-O2-X-Sera cells and fragment stably-transfected L-O2-X△127 cells was enhanced by the BrdU incorporation assay and flow cytometry analysis. Lu-ciferase reporter gene assay showed that the transcriptional activities of NF-kB, survivin, and human telomerase reverse transcriptase were upregulated, and West-ern blot analysis revealed that the expression levels of c-Myc and proliferating cell nuclear antigen (PCNA) were upregulated in the cells. Conclusion:Our find-ings suggest that the natural HBx mutant truncated 27 amino acids at the COOH terminal promotes cell proliferation.

  10. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    Science.gov (United States)

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. PMID:26225744

  11. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor

    DEFF Research Database (Denmark)

    Poulsen, Peter; Gaber, Richard F.; Kielland-Brandt, Morten

    2008-01-01

    T639I) turned out to be hyporesponsive, i.e., it signals only at high inducer concentration. In accordance with a transporter-like mechanism for Ssy1p function we suggest that the hyper- and hyporesponsive mutant forms differ from the wild-type sensor by being more and less inclined, respectively......, to adopt an outward-facing, signaling conformation. Coordinate conformational dynamics of the sensor complex was supported by additive effects of combinations of constitutive SSY1, PTR3 and SSY5 alleles. Assuming structural similarity of Ssy1p to the distantly related bacterial leucine transporter Leu...

  12. Development of PCR-Based DNA markers flanking three low phytic acid mutant loci in barley

    Science.gov (United States)

    Phytic acid (PA) is the most abundant form of phosphorus (P) in cereal grains. PA chelates mineral cations to form an indigestible salt, and is thus regarded as an antinutritional agent and a contributor to water pollution. Grain with low phytic acid (lpa) genotypes could aid in mitigating this prob...

  13. SaliCylic Acid-Altering Arabidopsis Mutants Response to Cd Stress

    Institute of Scientific and Technical Information of China (English)

    Lu; Tian; Liang; Wu

    2012-01-01

    To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress.

  14. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice

    Directory of Open Access Journals (Sweden)

    Charles J. Billington

    2015-02-01

    Full Text Available Holoprosencephaly (HPE is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP antagonist twisted gastrulation (Twsg1, which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA teratogenesis. Pregnant Twsg1+/− dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight. Embryos were analyzed between embryonic day (E9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs, 100% of Twsg1−/− mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1+/− mutants also showed HPE (23% or NTDs (7%. The majority of shape variation among Twsg1+/− mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions.

  15. ABA biosynthesis defective mutants reduce some free amino acids accumulation under drought stress in tomato leaves in comparison with Arabidopsis plants tissues

    Directory of Open Access Journals (Sweden)

    Adnan Ali Al.Asbahi

    2012-05-01

    Full Text Available The ability of plants to tolerate drought conditions is crucial for plant survival and crop production worldwide. The present data confirm previous findings reported existence of a strong relation between abscisic acid (ABA content and amino acid accumulation as response water stress which is one of the most important defense mechanism activated during water stress in many plant species. Therefore, free amino acids were measured to determine any changes in the metabolite pool in relation to ABA content. The ABA defective mutants of Arabidopsis plants were subjected to leaf dehydration for Arabidopsis on Whatman 3 mm filter paper at room temperature while, tomato mutant plants were subjected to drought stresses for tomato plants by withholding water. To understand the signal transduction mechanisms underlying osmotic stress-regulating gene induction and activation of osmoprotectant free amino acid synthesizing genes, we carried out a genetic screen to isolate Arabidopsis mutants defective in ABA biosynthesis under drought stress conditions. The present results revealed an accumulation of specific free amino acid in water stressed tissues in which majority of free amino acids are increased especially those playing an osmoprotectant role such as proline and glycine. Drought stress related Amino acids contents are significantly reduced in the mutants under water stress condition while they are increased significantly in the wild types plants. The exhibited higher accumulation of other amino acids under stressed condition in the mutant plants suggest that, their expressions are regulated in an ABA independent pathways. In addition, free amino acids content changes during water stress condition suggest their contribution in drought toleration as common compatible osmolytes.

  16. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Directory of Open Access Journals (Sweden)

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  17. Improving the Bioavailability of Seed Phosphorous in Low Phytic Acid Soybean Mutants

    OpenAIRE

    Ashok Badigannavar and J. G. Manjaya

    2012-01-01

    Phytic acid, the heat stable anti-nutritional factor forms 75% of the total Phosphorous (P) in soybean seeds. It acts as strong chelatingagent binding to metal ions reducing the bioavailability of Fe, Zn, Mg and Ca in human and non-ruminant livestock. In the presentstudy, 106 soybean germplasm lines were screened to estimate the seed phytate. It ranged from 0.16 to 4.741mg per g soy flour. Highyielding, low phytate cultivar were selected and subjected to 250 Gy gamma ray irradiation. In M3 ge...

  18. Comparative effects of wild type Stenotrophomonas maltophilia and its indole acetic acid-deficient mutants on wheat.

    Science.gov (United States)

    Hassan, T U; Bano, A

    2016-09-01

    The present investigation evaluated the role of Stenotrophomonas maltophilia and its IAA-deficient mutant on soil health and plant growth under salinity stress in the presence of tryptophan. In the first phase, S. maltophilia isolated from roots of the halo- phytic herb, Cenchrus ciliaris was used as bio-inoculant on wheat grown in saline sodic soil. A field experiment was conducted at Soil Salinity Research Institute during 2010-2011. Treatments included seed inoculation with S. maltophilia with or without tryptophan; uninoculated untreated plants were taken as control. An aqueous solution of tryptophan was added to rhizosphere soil at 1 μg l(_1) after seed germination. Inoculation with S. maltophilia significantly increased soil organic matter, enhanced (20-30%) availability of P, K, Ca and NO3 -N and decreased Na content and electrical conductivity of rhizosphere soil. Plant height, fresh weight, proline and phytohormone content of leaves were increased 30-40% over the control. Activities of superoxide dismutase (SOD) and peroxidase (POD) were 40-50% higher than control. Addition of tryptophan further augmented (10-15%) growth parameters, whereas NO3 -N, P, K and Ca content, proline content and SOD and POD increased 20-30%. In a second phase, indoleacetic acid (IAA)-deficient mutants of S. maltophilia were constructed and evaluated for conversion of tryptophan to IAA at the University of Calgary, Canada, during 2013-2014. About 1800 trans-conjugants were constructed that were unable to produce IAA in the presence of tryptophan. The results suggest that tryptophan assisted S. maltophilia in the amelioration of salt stress, and that IAA played positive role in induction of salt tolerance. PMID:27263526

  19. Optimization of L(+)-Lactic Acid Production from Xylose with Rhizopus Oryzae Mutant RLC41-6 Breeding by Low-Energy Ion Implantation

    Science.gov (United States)

    Yang, Yingge; Fan, Yonghong; Li, Wen; Wang, Dongmei; Wu, Yuejin; Zheng, Zhiming; Yu, Zengliang

    2007-10-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation. A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.

  20. Optimization of L(+)-Lactic Acid Production from Xylose with Rhizopus Oryzae Mutant RLC41-6 Breeding by Low-Energy Ton Implantation

    Institute of Scientific and Technical Information of China (English)

    YANG Yingge; FAN Yonghong; LI Wen; WANG Dongmei; WU Yuejin; ZHENG Zhiming; YU Zengliang

    2007-01-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation. A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.

  1. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.

    Science.gov (United States)

    Mayers, Jared R; Torrence, Margaret E; Danai, Laura V; Papagiannakopoulos, Thales; Davidson, Shawn M; Bauer, Matthew R; Lau, Allison N; Ji, Brian W; Dixit, Purushottam D; Hosios, Aaron M; Muir, Alexander; Chin, Christopher R; Freinkman, Elizaveta; Jacks, Tyler; Wolpin, Brian M; Vitkup, Dennis; Vander Heiden, Matthew G

    2016-09-01

    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements. PMID:27609895

  2. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations

    DEFF Research Database (Denmark)

    Capoferri, Luigi; Leth, Rasmus; Ter Haar, Ernst;

    2016-01-01

    active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain...

  3. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two olei

  4. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage

    Institute of Scientific and Technical Information of China (English)

    LIU YongZhong; LIU Qing; XIONG JingJing; DENG XiuXin

    2007-01-01

    'Fengjiewancheng' (FW) (Citrus sinensis), a bud sport of 'Fengjie 72-1' navel orange (FJ), ripens one month later than its parental line. Differences in sugar and acid content and the transcript level of sucrose- and citric-metabolic enzymes for the two cultivars were investigated during fruit ripening. Resuits showed that both sugar and acid metabolisms of the mutant were affected by the mutation. In the pulp of FW, sugar content was significantly lower than that in FJ before 227 DAF (days after flowering)and higher at 263 DAF; the mutant's gene expression of one isoform of citrus sucrose synthase (CitSS1)was delayed, and its gene expression of citrus acid invertase (CitAI) was stronger than that in its parental cultivars at 207 and 263 DAF. In the peel, only the sucrose content in FW was significantly lower than those in FJ at the early periods of fruit ripening (165 and 187 DAF); however the transcripts of the sucrose-cleaving enzymes in the mutant were higher than those in FJ at different ripening points. As regards acid accumulation in the two cultivars, it was observed that in the pulp of the mutant, the malic acid content was significantly lower than that in its parental cultivars from 187 to 263 DAF, and in the peel, remarkably higher during the whole fruit ripening period. The citric acid content in both the pulp and the peel of FW was higher than that in those of FJ during the early ripening period and lower during the late ripening period, which were correspondingly associated in part with the higher transcript level of citrus mitochondrial citrate synthase (CitCS) and with lower or undetectable transcript level of citrus cytosolic aconitase (CitAC). Hence, it could be concluded that the mutation in FW affected sugar and acid metabolism, which might be related with other late-ripening phenotypes.

  5. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    Science.gov (United States)

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. PMID:27299847

  6. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation.

    Science.gov (United States)

    Zhou, Xiang; Yang, Zhen; Jiang, Ting-Ting; Wang, Shu-Yang; Liang, Jian-Ping; Lu, Xi-Hong; Wang, Liang

    2016-01-01

    End-product inhibition is a key factor limiting the production of organic acid during fermentation. Two rounds of heavy-ion beam irradiation may be an inexpensive, indispensable and reliable approach to increase the production of butyric acid during industrial fermentation processes. However, studies of the application of heavy ion radiation for butyric acid fermentation engineering are lacking. In this study, a second (12)C(6+) heavy-ion irradiation-response curve is used to describe the effect of exposure to a given dose of heavy ions on mutant strains of Clostridium tyrobutyricum. Versatile statistical elements are introduced to characterize the mechanism and factors contributing to improved butyric acid production and enhanced acid tolerance in adapted mutant strains harvested from the fermentations. We characterized the physiological properties of the strains over a large pH value gradient, which revealed that the mutant strains obtained after a second round of radiation exposure were most resistant to harsh external pH values and were better able to tolerate external pH values between 4.5 and 5.0. A customized second round of heavy-ion beam irradiation may be invaluable in process engineering. PMID:27426447

  7. Optimization of L-lactic Acid Production of Rhizopus Oryzae Mutant RLC41-6 by Ion Beam Implantation at Low-Energy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L~137 g/L after 36 h cultivation, indicating that the It was almost a 115% increase in lactic acid production compared with the original strain RF3608.

  8. Chaperone protein HYPK interacts with the first 17 amino acid region of Huntingtin and modulates mutant HTT-mediated aggregation and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Kamalika Roy [Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Centre for Neuroscience, Indian Institute of Science, Bangalore 560012 (India); Bhattacharyya, Nitai P., E-mail: nitai_sinp@yahoo.com [Biomedical Genomics Centre, PG Polyclinic Building, 5, Suburbun Hospital Road, Kolkata 700020 (India)

    2015-01-02

    Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.

  9. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    DEFF Research Database (Denmark)

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.;

    2015-01-01

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme...... production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination...... was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production...

  10. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ‘Fengjiewancheng’(FW) (Citrus sinensis), a bud sport of‘Fengjie 72-1’navel orange (FJ), ripens one month later than its parental line. Differences in sugar and acid content and the transcript level of su-crose- and citric-metabolic enzymes for the two cultivars were investigated during fruit ripening. Re-sults showed that both sugar and acid metabolisms of the mutant were affected by the mutation. In the pulp of FW, sugar content was significantly lower than that in FJ before 227 DAF (days after flowering) and higher at 263 DAF; the mutant’s gene expression of one isoform of citrus sucrose synthase (CitSS1) was delayed, and its gene expression of citrus acid invertase (CitAI) was stronger than that in its pa-rental cultivars at 207 and 263 DAF. In the peel, only the sucrose content in FW was significantly lower than those in FJ at the early periods of fruit ripening (165 and 187 DAF); however the transcripts of the sucrose-cleaving enzymes in the mutant were higher than those in FJ at different ripening points. As regards acid accumulation in the two cultivars, it was observed that in the pulp of the mutant, the malic acid content was significantly lower than that in its parental cultivars from 187 to 263 DAF, and in the peel, remarkably higher during the whole fruit ripening period. The citric acid content in both the pulp and the peel of FW was higher than that in those of FJ during the early ripening period and lower during the late ripening period, which were correspondingly associated in part with the higher transcript level of citrus mitochondrial citrate synthase (CitCS) and with lower or undetectable transcript level of citrus cytosolic aconitase (CitAC). Hence, it could be concluded that the mutation in FW affected sugar and acid metabolism, which might be related with other late-ripening phenotypes.

  11. Optimization of flask culture medium and conditions for hyaluronic acid production by a streptococcus equisimilis mutant nc2168

    Directory of Open Access Journals (Sweden)

    Yong-Hao Chen

    2012-12-01

    Full Text Available A mutant designated NC2168, which was selected from wild-type Streptococcus equisimilis CVCC55116by ultraviolet ray combined with60Co-γ ray treatment and does not produce streptolysin, was employed to produce hyaluronic acid (HA. In order to increase the output of HA in a flask, the culture medium and conditions for NC2168 were optimized in this study. The influence of culture medium ingredients including carbon sources, nitrogen sources and metal ions on HA production was evaluated using factional factorial design. The mathematical model, which represented the effect of each medium component and their interaction on the yield of HA, was established by the quadratic rotary combination design and response surface method. The model estimated that, a maximal yield of HA could be obtained when the concentrations of yeast extract, peptone, glucose, and MgSO4 were set at 3 g/100 mL, 2 g/100 mL, 0.5 g/100 mL and 0.15 g/100 mL, respectively. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a remarkable increase in the output of HA and the maximum of the predicted HA production was 174.76 mg/L. The model developed was accurate and reliable for predicting the production of HA by NC2168.Cultivation conditions were optimized by an orthogonal experimental design and the optimal conditions were as follows: temperature 33ºC, pH 7.8, agitation speed 200 rpm, medium volume 20 mL.

  12. Absence of Malolactic Activity Is a Characteristic of H+-ATPase-Deficient Mutants of the Lactic Acid Bacterium Oenococcus oeni

    OpenAIRE

    Galland, Delphine; Tourdot-Maréchal, Raphaëlle; Abraham, Maud; Chu, Ky Son; Guzzo, Jean

    2003-01-01

    The lack of malolactic activity in H+-ATPase-deficient mutants of Oenococcus oeni selected previously was analyzed at the molecular level. Western blot experiments revealed a spot at 60 kDa corresponding to the malolactic enzyme only in the parental strain. Moreover, the mleA transcript encoding the malolactic enzyme was not detected by reverse transcription (RT)-PCR analysis of mutants. These results suggest that the malolactic operon was not transcribed in ATPase-deficient mutants. The mleR...

  13. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Vaezeslami, Soheila [Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States); Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H., E-mail: geiger@chemistry.msu.edu [Chemistry Department, Michigan State University, East Lansing, MI 48824-1322 (United States); Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 (United States)

    2008-12-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII.

  14. Improvement of an l-Leucine-Producing Mutant of Brevibacterium lactofermentum 2256 by Genetically Desensitizing It to α-Acetohydroxy Acid Synthetase

    OpenAIRE

    Tsuchida, Takayasu; Momose,Haruo

    1986-01-01

    Genetic improvement of l-leucine productivity in strain 218, an ile− 2-thiazolealanine-resistant mutant of Brevibacterium lactofermentum 2256, was attempted. In strain 218, which produced 28 mg of l-leucine per ml from 13% glucose, α-isopropylmalate synthetase was genetically desensitized and derepressed to the effect of l-leucine, whereas α-acetohydroxy acid synthetase remained unaltered, although it could be derepressed phenotypically by limiting the isoleucine concentration in the culture....

  15. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid: Growth profiles and catalase activities in relation to microbody proliferation

    OpenAIRE

    van der Klei, Ida J.; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T-) high catalase activities were found; catalase activity invariably remained low in the A-T+ strain and was never detected in the A-T- strain. The levels of β-...

  16. Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and postgermination stages

    Directory of Open Access Journals (Sweden)

    Silvia eSalas-Muñoz

    2016-02-01

    Full Text Available DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid. The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher abscisic acid sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signalling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance.

  17. Optimization of L(+)-Lactic Acid Fermentation Without Neutralisation of Rhizopus Oryzae Mutant RK02 by Low-Energy Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    LI Wen; YU Zengliang; WANG Tao; YANG Yingge; LIU Dan; FAN Yonghong; WANG Dongmei; YANG Qian; YAO Jianming; ZHENG Zhiming

    2008-01-01

    In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation. A mutant RK02 was screened, and the factors such as the substrate concentration, nitrogen source concentration, inoculum size, seed age, aeration and temperature that affect the production of lactic acid were studied in detail. Under optimal conditions, the maximum concentration of L(+)-lactic acid reached 34.85 g/L after 30 h shake-flask cultivation without adding any neutralisation (5% Glucose added), which was a 146% increase in lactic acid production after ion implantation compared with the original strain. It was also shown that RK02 can be used in ISPR to reduce the number of times of separation.

  18. Genetic, molecular and expression features of the Pervenets mutant leading to high oleic acid content of seed oil in sunflower

    Directory of Open Access Journals (Sweden)

    Lacombe Séverine

    2002-01-01

    Full Text Available Pervenets is a sunflower population that displays seed oil with a high oleic acid content [HOAC]. Our aim is to reconcile all the data gathered on this mutant in a unique explanatory mechanism. All Pervenets-derived [HOAC] lines display no accumulation or a very reduced accumulation of the DELTA12-desaturase transcript in the embryos during the stages for oil accumulation. They also carry oleHOS specific RFLP markers revealed by an DELTA12-desaturase cDNA used as a probe. The linoleic or [LO] genotypes do not carry this RFLP marker, but another allele: oleLOR (oleHL locus. Linkage disequilibrium between the oleHOS allele and [HOAC] was verified. We studied the mode of inheritance of [HOAC] in two segregating populations. A F2 progenies revealed one dominant allele for [HOAC] that co-segregated with the oleHOS allele showing that the Pervenets mutation and oleHOS were closely linked. F6 recombinant inbred lines, showed the [HOAC] trait due to two independent loci: the locus carrying the oleHOS allele and another locus sup. One allele, supole, at this second locus may suppress the effect of the oleHOS allele on the [HOAC] trait. Northern analyses performed on [HOAC] lines and F1 ([HOAC] x [LO] hybrids revealed under-accumulation of DELTA12-desaturase transcript. Thus Pervenets mutation acts in trans. The oleHOS genomic region that may carry the Pervenets mutation was cloned. A genomic library was constructed in lambdafixII with the DNA from the RHA345 [HOAC] line and screened with a DELTA12-desaturase cDNA as a probe. Two overlapping clones were entirely sequenced and revealed carrying a gene for an DELTA12-desaturase probably located in the RE. This corresponds to the invariant part of the oleHL locus. Another clone (11.1 probably carries DELTA12-desaturase repeated sequences that cause instability of the clone. We showed that the 11.1 clone carries most of cDNA sequence, but due to its organization it is not yet sequenced. A mutation mechanism

  19. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    Science.gov (United States)

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  20. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H. (MSU); (Rigaku)

    2009-09-02

    The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the {alpha} 2 helix at its entrance. This chain of interactions acts as a 'pillar' that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the {alpha}2 helix adopting an altered conformation compared with wild-type CRABPII.

  1. Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing.

    Science.gov (United States)

    Mizuno, Akihiro; Tabei, Hideaki; Iwahuti, Masahumi

    2006-01-01

    We isolated a mutant with low acetic acid and high ethanol productivities from 2-deoxyglucose-resistant mutants of brewers' yeast NCYC1245 (Saccharomyces cerevisiae). To determine the mechanism for these properties in the mutant (2DGR19) during fermentation, gene expression and enzyme activity related to acetic acid and ethanol production were investigated. DNA microarray analysis revealed that the transcriptional levels of many genes involved in glycolysis were higher in 2DGR19 than in NCYC1245. Among these transcriptional levels of 2DGR19 relative to NCYC1245, the expression level of ADH4 encoding alcohol dehydrogenase (ADH) was highest, which corresponded to the high ADH activity in 2DGR19. Quantitative PCR analysis also revealed that the transcriptional level of ADH4 was the highest among ADH1 to ADH4. Although no significant differences in the transcriptional levels of ALD2 to ALD6 encoding acetaldehyde dehydrogenase (ALD) between 2DGR19 and NCYC1245 were observed, ALD activity in 2DGR19 was lower. Using quantitative PCR analysis, ALD6 was found to be the most highly expressed among the ALD2 to ALD6 genes. These results indicate that ALD6 contributes to a low ALD activity, depending on post-transcriptional regulation. A high ADH activity appeared to be the major reason for the high ethanol productivity of 2DGR19. A low ALD activity was considered to be principally responsible for a low acetic acid productivity, although a high ADH activity also might have played a role. Beer brewed using 2DGR19 in pilot-scale high-gravity brewing contained about half as much acetic acid and 1.1% more ethanol compared with that brewed using NCYC1245. The use of 2DGR19 may overcome difficulties associated with high-gravity brewing.

  2. Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages

    Science.gov (United States)

    Salas-Muñoz, Silvia; Rodríguez-Hernández, Aída A.; Ortega-Amaro, Maria A.; Salazar-Badillo, Fatima B.; Jiménez-Bremont, Juan F.

    2016-01-01

    DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid (ABA). The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher ABA sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signaling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance. PMID:26941772

  3. Importin α3/Qip1 is involved in multiplication of mutant influenza virus with alanine mutation at amino acid 9 independently of nuclear transport function.

    Directory of Open Access Journals (Sweden)

    Yutaka Sasaki

    Full Text Available The nucleoprotein (NP of influenza A virus is transported into the nucleus via the classical importin α/β pathway, and proceeds via nuclear localization signals (NLSs recognized by importin α molecules. Although NP binds to importin α isoforms Rch1, Qip1 and NPI-1, the role of each individual isoform during the nuclear transport of NP and replication of the influenza virus remains unknown. In this study, we examined the contribution of importin α isoforms for nuclear localization of NP and viral growth using a panel of NP mutants containing serial alanine replacements within an unconventional NLS of NP. Alanine mutation at amino acid 8 (R8A caused a significant reduction in the nuclear localization and binding to the three importin isoforms. The R8A NP mutant virus did not generate by reverse-genetics approach. This indicates that position 8 is the main site that mediates nuclear localization via interactions with Rch1, Qip1 and NPI-1, and subsequent viral production. This was confirmed by the finding that the conservation of amino acid 8 in human- and avian-origin influenza virus NP was necessary for virus propagation. By contrast, another mutant, S9A NP, which localized in the nucleus, caused a reduction in viral growth and vRNA transcription, suggesting that the unconventional NLS within NP may be associated with nuclear transport, vRNA transcription and viral replication through independent pathways. Interestingly, the N-terminal 110-amino acid region, which contained the unconventional NLS with S9A mutation, mainly bound to Qip1. Furthermore, activities of vRNA transcription and replication of S9A NP mutants were decreased by silencing Qip1 in without changing nuclear localization, indicating that Qip1 involves in multiplication of S9A mutant virus independently of nuclear transport function. Collectively, our results demonstrate the unconventional NLS within NP might have the additional ability to regulate the viral replication that

  4. Covalent modification of mutant rat P2X2 receptors with a thiol-reactive fluorophore allows channel activation by zinc or acidic pH without ATP.

    Directory of Open Access Journals (Sweden)

    Shlomo S Dellal

    Full Text Available Rat P2X2 receptors open at an undetectably low rate in the absence of ATP. Furthermore, two allosteric modulators, zinc and acidic pH, cannot by themselves open these channels. We describe here the properties of a mutant receptor, K69C, before and after treatment with the thiol-reactive fluorophore Alexa Fluor 546 C(5-maleimide (AM546. Xenopus oocytes expressing unmodified K69C were not activated under basal conditions nor by 1,000 µM ATP. AM546 treatment caused a small increase in the inward holding current which persisted on washout and control experiments demonstrated this current was due to ATP independent opening of the channels. Following AM546 treatment, zinc (100 µM or acidic external solution (pH 6.5 elicited inward currents when applied without any exogenous ATP. In the double mutant K69C/H319K, zinc elicited much larger inward currents, while acidic pH generated outward currents. Suramin, which is an antagonist of wild type receptors, behaved as an agonist at AM546-treated K69C receptors. Several other cysteine-reactive fluorophores tested on K69C did not cause these changes. These modified receptors show promise as a tool for studying the mechanisms of P2X receptor activation.

  5. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells.

    Science.gov (United States)

    Martelli, Maria Paola; Gionfriddo, Ilaria; Mezzasoma, Federica; Milano, Francesca; Pierangeli, Sara; Mulas, Floriana; Pacini, Roberta; Tabarrini, Alessia; Pettirossi, Valentina; Rossi, Roberta; Vetro, Calogero; Brunetti, Lorenzo; Sportoletti, Paolo; Tiacci, Enrico; Di Raimondo, Francesco; Falini, Brunangelo

    2015-05-28

    Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics. PMID:25795919

  6. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  7. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.

    Science.gov (United States)

    Medeiros, David B; Martins, Samuel C V; Cavalcanti, João Henrique F; Daloso, Danilo M; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M; Fernie, Alisdair R; Araújo, Wagner L

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. PMID:26542441

  8. Genetically Engineered Ascorbic acid-deficient Live Mutants of Leishmania donovani induce long lasting Protective Immunity against Visceral Leishmaniasis.

    Science.gov (United States)

    Anand, Sneha; Madhubala, Rentala

    2015-06-02

    Visceral leishmaniasis caused by Leishmania donovani is the most severe systemic form of the disease. There are still no vaccines available for humans and there are limitations associated with the current therapeutic regimens for leishmaniasis. Recently, we reported functional importance of Arabino-1, 4-lactone oxidase (ALO) enzyme from L. donovani involved in ascorbate biosynthesis pathway. In this study, we have shown that ΔALO parasites do not affect the ability of null mutants to invade visceral organs but severely impair parasite persistence beyond 16 week in BALB/c mice and hence are safe as an immunogen. Both short term (5 week) and long term (20 week) immunization with ΔALO parasites conferred sustained protection against virulent challenge in BALB/c mice, activated splenocytes and resulted in induction of pro-inflammatory cytokine response. Protection in immunized mice after challenge correlated with the stimulation of IFN-γ producing CD4(+) and CD8(+) T cells. Antigen-mediated cell immunity correlated with robust nitrite and superoxide generation, macrophage-derived oxidants critical in controlling Leishmania infection. Our data shows that live attenuated ΔALO parasites are safe, induce protective immunity and can provide sustained protection against Leishmania donovani. We further conclude that the parasites attenuated in their anti-oxidative defence mechanism can be exploited as vaccine candidates.

  9. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    DEFF Research Database (Denmark)

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay;

    2002-01-01

    exhibits a male-sterile phenotype. The dde2-2 phenotype can be rescued by application of methyl jasmonate, indicating that the mutant is affected in jasmonic acid biosynthesis. The combination of genetic mapping and a candidate-gene approach identified a frameshift mutation in the ALLENE OXIDE SYNTHASE...

  10. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing; Arentshorst, Mark; Nair, Deepa; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F.

    2016-01-11

    Rapid acidification of the culture medium by the production of organic acids and the production of acid-induced proteases are key characteristics of the filamentous fungus Aspergillus niger. The D15 mutant of A. niger is non-acidifying mutant and used often for the expression of recombinant proteins in A. niger, because of its reduced production of extracellular proteases under non-acidic conditions. In this study, the D15 mutant is characterized in detail. Strongly reduced levels of citric and oxalic acid were observed in the D15 mutant both in shake flask cultures and in controlled batch cultivations. To identify the mutation in the D15 mutant, we successfully combined high-throughput sequencing (Illumina) with bulk segregant analysis. Because of the lack of a sexual cycle for A. niger, the parasexual cycle was used to generate a pool of segregants. From the 52 single nucleotide polymorphisms (SNPs) between the parental strains, three SNPs were homozygous in the genomic DNA of pool of segregants. These three SNPs mapped to all the right arm of chromosome II, indicating that this region contains the genetic locus affecting the phenotype related to acid production. Of the three SNPs, one mutation resulted in a missense mutation in the gene encoding the A. niger homologue of the A. nidulans methyltransferase gene laeA. Complementation analysis of the original mutant with the laeA gene and targeted disruption of laeA further confirmed that LaeA is involved in citric acid production in A. niger lab (N402) and citric acid production strains (ATCC 11414). Analysis of the secondary metabolite (SM) profile of the laeA mutants indicate that LaeA is required for the production of several SMs (asperrubrol, atromentin and JBIR86), but deletion of laeA also resulted in the presence of SMs (aspernigrin A/B and BMS-192548) that were not detected in the wild-type strain. The levels of ten other SMs were not strongly affected as a result of laeA deletion indicating that only a

  11. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    Science.gov (United States)

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  12. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites.

    Science.gov (United States)

    Niu, Jing; Arentshorst, Mark; Nair, P Deepa S; Dai, Ziyu; Baker, Scott E; Frisvad, Jens C; Nielsen, Kristian F; Punt, Peter J; Ram, Arthur F J

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  13. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Jing Niu

    2016-01-01

    Full Text Available The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402 and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  14. A Mutant of Hepatitis B Virus X Protein (HBxΔ127 Promotes Cell Growth through A Positive Feedback Loop Involving 5-Lipoxygenase and Fatty Acid Synthase

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2010-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignant tumors worldwide. Hepatitis B virus X protein (HBx contributes to the development of HCC, whereas HBx with COOH-terminal deletion is a frequent event in the HCC tissues. Previously, we identified a natural mutant of HBx-truncated 27 amino acids at the COOH-terminal (termed HBxΔ127, which strongly enhanced cell growth. In the present study, we focused on investigating the mechanism. Accordingly, fatty acid synthase (FAS plays a crucial role in cancer cell survival and proliferation; thus, we examined the signaling pathways involving FAS. Our data showed that HBxΔ127 strongly increased the transcriptional activities of FAS in human hepatoma HepG2 and H7402 cells. Moreover, we found that 5-lipoxygenase (5-LOX was responsible for the up-regulation of FAS by using MK886 (an inhibitor of 5-LOX and 5-LOX small interfering RNA. We observed that HBxΔ127 could upregulate 5-LOX through phosphorylated extracellular signal-regulated protein kinases 1/2 and thus resulted in the increase of released leukotriene B4 (LTB4, a metabolite of 5-LOX by ELISA. The additional LTB4 could upregulate the expression of FAS in the cells as well. Interestingly, we found that FAS was able to upregulate the expression of 5-LOX in a feedback manner by using cerulenin (an inhibitor of FAS. Collectively, HBxΔ127 promotes cell growth through a positive feedback loop involving 5-LOX and FAS, in which released LTB4 is involved in the up-regulation of FAS. Thus, our finding provides a new insight into the mechanism involving the promotion of cell growth mediated by HBxΔ127.

  15. Improved Succinic Acid Production in the Anaerobic Culture of an Escherichia coli pflB ldhA Double Mutant as a Result of Enhanced Anaplerotic Activities in the Preceding Aerobic Culture▿

    OpenAIRE

    Wu, Hui; Li, Zhi-Min; Zhou, Li; Ye, Qin

    2007-01-01

    Escherichia coli NZN111 is a pflB ldhA double mutant which loses its ability to ferment glucose anaerobically due to redox imbalance. In this study, two-stage culture of NZN111 was carried out for succinic acid production. It was found that when NZN111 was aerobically cultured on acetate, it regained the ability to ferment glucose with succinic acid as the major product in subsequent anaerobic culture. In two-stage culture carried out in flasks, succinic acid was produced at a level of 11.26 ...

  16. Determination of free D-proline and D-leucine in the brains of mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Hamase, K; Inoue, T; Morikawa, A; Konno, R; Zaitsu, K

    2001-11-15

    A new procedure to accurately measure a trace amount of d-proline in biological samples has been developed. This D-amino acid was derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and was determined by a column-switching HPLC system, a combination of a micro-ODS column and a chiral column. The detection limit for D-proline spiked in a mouse cerebrum sample is 1 fmol (injection amount, S/N = 3). Within-day precision and day-to-day precision obtained for spiked d-proline (10 fmol) are 2.14 and 5.35% (RSD), respectively. Using the new method, the amount of free D-proline in eight brain regions and sera of mutant ddY/DAO- mice, lacking D-amino acid oxidase activity, and control ddY/DAO+ mice was determined. The amount of free D-leucine was also investigated. The amount and distribution of D-proline in the brains of ddY/DAO+ mice and ddY/DAO- mice are almost the same, and relatively high amounts of D-proline have been observed in the pituitary gland and in the pineal gland. On the other hand, the amount of D-leucine is different between the two strains. In the brains of ddY/DAO+ mice, a relatively high amount of D-leucine has been observed in the pineal gland compared with other regions. In the brains of ddY/DAO- mice, D-leucine amounts are approximately 10 times higher than those obtained in ddY/DAO+ mice and regional difference has not been observed, while the amounts of L-proline and L-leucine are not significantly different between the two strains. In the serum, the amounts of both free D-proline and d-leucine are significantly higher in the ddY/DAO- mice than those obtained in ddY/DAO+ mice. PMID:11700980

  17. The novel Arabidopsis thaliana svt2 suppressor of the ascorbic acid-deficient mutant vtc1-1 exhibits phenotypic and genotypic instability [v1; ref status: indexed, http://f1000r.es/o2

    Directory of Open Access Journals (Sweden)

    Chase F Kempinski

    2013-01-01

    Full Text Available Ascorbic acid is a potent antioxidant that detoxifies reactive oxygen species when plants are exposed to unfavorable environmental conditions. In addition to its antioxidant properties, ascorbic acid and its biosynthetic precursors fulfill a variety of other physiological and molecular functions. A mutation in the ascorbic acid biosynthesis gene VTC1, which encodes GDP-mannose pyrophosphorylase, results in conditional root growth inhibition in the presence of ammonium. To isolate suppressors of vtc1-1, which is in the Arabidopsis Columbia-0 background, seeds of the mutant were subjected to ethyl methanesulfonate mutagenesis. A suppressor mutant of vtc1-1 2, svt2, with wild-type levels of ascorbic acid and root growth similar to the wild type in the presence of ammonium was isolated. Interestingly, svt2 has Arabidopsis Landsberg erecta features, although svt2 is delayed in flowering and has an enlarged morphology. Moreover, the svt2 genotype shares similarities with Ler polymorphism markers and sequences, despite the fact that the mutant derived from mutagenesis of Col-0 vtc1-1 seed. We provide evidence that svt2 is not an artifact of the experiment, a contamination of Ler seed, or a result of outcrossing of the svt2 mutant with Ler pollen. Instead, our results show that svt2 exhibits transgenerational genotypic and phenotypic instability, which is manifested in a fraction of svt2 progeny, producing revertants that have Col-like phenotypic and genotypic characteristics. Some of those Col-like revertants then revert back to svt2-like plants in the subsequent generation. Our findings have important implications for undiscovered phenomena in transmitting genetic information in addition to the Mendelian laws of inheritance. Our results suggest that stress can trigger a genome restoration mechanism that could be advantageous for plants to survive environmental changes for which the ancestral genes were better adapted.

  18. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix

    Science.gov (United States)

    Nogi, Masaya; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2005-12-01

    Transparent polymers were reinforced by bacterial cellulose (BC) nanofibers, which are 10×50nm ribbon-shaped fibers. They exhibited high luminous transmittance at a fiber content as high as 60 wt %, and low sensitivity to a variety of refractive indices of matrix resins. Due to the nanofiber size effect, high transparency was obtained against a wider distribution of refractive index of resins from 1.492 to 1.636 at 20 °C. The optical transparency was also surprisingly insensitive to temperature increases up to 80 °C. As such, BC nanofibers appear to be viable candidates for optically transparent reinforcement.

  19. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rahul C [Los Alamos National Laboratory; Johnson, Randall P [Los Alamos National Laboratory; Shimada, Tsutomu [Los Alamos National Laboratory; Hegelich, Bjorn M [Los Alamos National Laboratory

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  20. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  1. A Truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1,AtNAP1;3T,Alters Plant Growth Responses to Abscisic Acid and Salt in the Atnap 1;3-2 Mutant

    Institute of Scientific and Technical Information of China (English)

    Zi-Qiang Liu; Juan Gao; Ai-Wu Dong

    2009-01-01

    Chromatin remodeling is thought to have crucial roles in plant adaptive response to environmental stimulus.Here,we report that,in Arebidopsis,the evolutionarily conserved histone chaperone,NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1),is involved in plant response to abscisic acid (ABA),a phytohormone important in stress adaptation.We show that simultaneous loss-of-function of AtNAP1;1,AtNAP1;2,and AtNAP1;3 (the triple mutant m123-1) caused a slight hypersensitive response to ABA in seedling growth.Strikingly,the other triple mutant m123-2 containing a different mutant allele of AtNAP1;3,the Atnap1;3-2 allele,showed a hyposensitive response to ABA and a decreased tolerance to salt stress.This ABAhyposensitive and salt response phenotype specifically associated with the Atnap1;3-2 mutant allele.We show that this mutant allele produced a truncated protein,AtNAP1;3T,which lacks 34 amino acids at the C-terminus compared to the wild-type protein AtNAP1;3.We further show that the heterozygous plants containing the Atnap1;3-2 mutant allele as well as transgenic plants overexpressing AtNAP1;3T exhibit ABA-hyposensitive phenotype.It thus indicates that AtNAP1;3T functions as a dominant negative factor in ABA response.The expression of some ABA-responsive genes,including genes encoding protein kinases and transcription regulators,was found perturbed in the mutant and in the AtNAP1;3T transgenic plants.Taken together,our study uncovered AtNAP1 proteins as positive regulators and AtNAP1;3T as a negative regulator in ABA signaling pathways,providing a novel link of chromatin remodeling to hormonal and stress responses.

  2. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin

    Science.gov (United States)

    Lazarova, Tzvetana; Mlynarczyk, Krzysztof; Querol, Enric; Tenchov, Boris; Filipek, Slawomir; Padrós, Esteve

    2016-01-01

    In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants. The DSC data display reappearance of the reversible thermal transition, higher Tm of denaturation and an increase in the enthalpy of unfolding of the mutants in 1 M KCl solutions. Molecular dynamics simulations indicate high affinity binding of Cl- to Arg82 and to Gln204 and Gln194 residues in the mutants. Analysis of the experimental data suggests that simultaneous elimination of the negatively charged side chain of Glu194 and Glu204 is the major cause for mutants’ alterations. Specific Cl- binding efficiently coordinates distorted hydrogen bonding interactions of the EC region and reconstitutes the conformation and structure stability of mutated bR in WT-like fashion. PMID:27657718

  3. Visual modeling mutants for D-lactate dehydrogenase form aquifex aeolicus and the effect of mutants on the production of phenyl lactate acid in E.coli%耐热菌D-乳酸脱氢酶突变体的可视化建模和大肠杆菌中突变体对产苯乳酸的影响

    Institute of Scientific and Technical Information of China (English)

    田晋红; 刘琦; 战丽萍; 李小丽

    2012-01-01

    Based on bioinformatics,the amino acid residues of conservative and activity center of D-lactate dehydrogenase(D-LDH),and the three-dimensional structure model of protein was analysised.The space conformation of visualization mutant had been constructed by homology modeling,the best mutant models were selected by the calculation of the distance and angle.The results showed that the 4 amino acid residues were relevant to the activity center in 20 conservative residues of D-LDH.After the models were compared,it was found that the big molecules substrates were obstructed by the benzyl of the residues of Phenylalanine(phe)or Tyrosine(try)on the 49 and 297 position.When F49A,Y279A,F49A and Y279A were mutated,the obstacles would disappear or weaken.The three mutants constructed were made a preliminary study,the results showed that IPTG or lactose could induce mutant to produce phenyl lactic acid in E.coli.The yield of phenyl lactic acid was higher in static culture than in vibration incubator,and the one of the F49A mutant(A.a.D-LDH-F49A strains)was higher than the one of the wild type(A.a.D-LDH strains)with lactose inducing.It would be a method of constructing gene engineering strain that visualization mutants models were compared and selected.%以生物信息学为基础,分析D-乳酸脱氢酶(D-LDH)的保守氨基酸残基、活性中心氨基酸残基、蛋白质三维结构和同源建模,可视化比较建模突变体空间构象,优选最佳突变体模型。结果显示,在D-LDH的20个保守氨基酸中,4个与酶活性中心有关。比较突变体模型发现,49和297位的phe或try的苯环形成空间位阻,F49A或Y279A及F49A和Y279A双突变体可解除位阻。对已构建的三个突变体初步发酵显示,IPTG和乳糖都能诱导突变体酶在大肠杆菌中产生苯乳酸,静置培养比摇振培养产量高,用乳糖诱导时,突变体F49A(A.a D-LDH-F49A株)苯乳酸的量比野生型(A.a.D-LDH株)的高。优选可视化突变体可

  4. Low sensitivity of counter-current immuno-electrophoresis for serodiagnosis of typhoid fever.

    Science.gov (United States)

    Sharma, M; Datta, U; Roy, P; Verma, S; Sehgal, S

    1997-12-01

    Counter-current immuno-electrophoresis was evaluated as a diagnostic test for the serodiagnosis of typhoid fever with somatic (O), flagellar (H) and capsular polysaccharide (Vi) antigens of Salmonella typhi on the sera of patients who were blood culture positive (confirmed typhoid cases) or had high Widal agglutination titres, > or = 320, (presumptive typhoid cases). Of the 37 sera from confirmed cases, 30% showed positivity with O antigen, 24% with H antigens and 51% with Vi antigen. In patients with a presumptive diagnosis, 45% were positive for O antibody, 27% for flagellar antibody and 52% for Vi antibody. When all three antigens were combined the reactivity to any of the antigens was found to be 59% in confirmed typhoid cases, 79% in presumptive typhoid cases and 93% in patients who were simultaneously positive by blood culture and Widal agglutination. However, none of the sera from 45 controls gave a positive precipitation reaction with any of the antigens. It is concluded that counter-current immuno-electrophoresis is a rapid test with low sensitivity and high specificity with Vi antigen, a panel of antigens being most effective, and is, therefore, recommended for rapid diagnosis of typhoid fever.

  5. TEM-109 (CMT-5), a Natural Complex Mutant of TEM-1 β-Lactamase Combining the Amino Acid Substitutions of TEM-6 and TEM-33 (IRT-5)†

    OpenAIRE

    Robin, F.; Delmas, J.; Chanal, C; Sirot, D.; Sirot, J; Bonnet, R.

    2005-01-01

    Escherichia coli CF349 exhibited a complex β-lactam resistance phenotype, including resistance to amoxicillin and ticarcillin alone and in combination with clavulanate and to some extended-spectrum cephalosporins. The double-disk synergy test was positive. CF349 harbored an 85-kb conjugative plasmid which encoded a β-lactamase of pI 5.9. The corresponding bla gene was identified by PCR and sequencing as a blaTEM gene. The deduced protein sequence revealed a new complex mutant of TEM-1 β-lacta...

  6. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar

    2016-04-05

    Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  7. Development of a highly sensitive bioluminescent enzyme immunoassay for hepatitis B virus surface antigen capable of detecting divergent mutants.

    Science.gov (United States)

    Minekawa, Takayuki; Takehara, Shizuka; Takahashi, Masaharu; Okamoto, Hiroaki

    2013-08-01

    Hepatitis B virus (HBV) infections are sometimes overlooked when using commercial kits to measure hepatitis B virus surface antigen (HBsAg) due to their low sensitivities and reactivities to mutant strains of various genotypes. We developed an ultrasensitive bioluminescent enzyme immunoassay (BLEIA) for HBsAg using firefly luciferase, which is adaptable to a variety of HBsAg mutants, by combining four monoclonal antibodies with a polyclonal antibody against HBsAg. The measurement of seroconversion panels showed trace amounts of HBsAg during the early infection phase by the BLEIA because of its high sensitivity of 5 mIU/ml. The BLEIA detected HBsAg as early as did PCR in five of seven series and from 2.1 to 9.4 days earlier than commercial immunoassay methods. During the late infection phase, the BLEIA successfully detected HBsAg even 40 days after the disappearance of HBV DNA and the emergence of antibodies against HBsAg. The HBsAg BLEIA successfully detected all 13 recombinant HBsAg and 45 types of HBsAg mutants with various mutations within amino acids 90 to 164 in the S gene product. Some specimens had higher values determined by the BLEIA than those by a commercial chemiluminescent immunoassay; this suggests that such discrepancies were caused by the dissociation of preS1/preS2 peptides from the particle surface. With its highly sensitive detection of low-titer HBsAg, including various mutants, the HBsAg BLEIA is considered to be useful for the early diagnosis and prevention of HBV infection because of the shorter window of infection prior to detection, which facilitates early prediction of recurrence in HBV-infected individuals. PMID:23761660

  8. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease.

    Directory of Open Access Journals (Sweden)

    Richie Khanna

    Full Text Available Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER-retained P545L mutant form of human GAA (P545L GAA. AT2220 increased the specific activity of P545L GAA toward both natural (glycogen and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As

  9. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    Science.gov (United States)

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  10. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Erdmann, Ralf; Veenhuis, Marten; Mertens, Daphne; Kunau, Wolf-H.

    1989-01-01

    Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absen

  11. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid.

    Science.gov (United States)

    Chen, Jui-Hung; Jiang, Han-Wei; Hsieh, En-Jung; Chen, Hsing-Yu; Chien, Ching-Te; Hsieh, Hsu-Liang; Lin, Tsan-Piao

    2012-01-01

    Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.

  12. Productive mutants of niger

    International Nuclear Information System (INIS)

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  13. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive never ripe tomato mutants.

    Science.gov (United States)

    Tari, Irma; Poór, Péter; Gémes, Katalin

    2011-09-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of RO S and a higher NO content in the apical root cells. In wild-type plants NO production seems to be RO S(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant RO S accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10(-3) M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.

  14. Assessment and utilization of spontaneous sport mutant of grape

    International Nuclear Information System (INIS)

    The spontaneous sport mutant of Fujiminori was discovered in grape garden of Xiaying county at Ningbo city in 1993. The biological, botanical characteristics and fruit quality trait (such as total soluble solid, titratable acid, total water soluble sugar, reducing sugar, free Vc, organic acid and aroma etc.) of the mutant were continuously investigated from 1994 to 1999. The results showed that the sport mutant grew more vigorously, having multiple-bearing capacity in the year cycle. Fruit quality determination demonstrated that total soluble sugar, reducing sugar, soluble solids content and aroma contents of the mutant were higher than those of maternal plant in different degree, while titratable acid content of mutant was deceased. Meanwhile, it was also found that the berries of mutant are firmer and have longer storage life. The RAPD analysis of the genomic DNAs extracted from the young leaves of the spontaneous sport mutant indicated that there were some differential bands in the PCR amplified products using the arbitrary primers, which indicated the genotype diversity happened in the spontaneous mutation of grape.The mutant had been successfully developed the new grape variety named as 'Yongyou No. 1' via selection breeding method. The variety was approved by Ningbo Science and Technology Bureau in 1999 and was rapidly planted at other regions, such as Fenghua County, Yuyao County, Cixi County, Ninghai County, Shaoxing City, Jiaxing City and Hangzhou City, etc. Due to its high quality and productivity, it exhibits the extensive application potential in the future. (author)

  15. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders;

    2014-01-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development...... of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR...... was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC. Refinement of sensitivity for the mutation-specific antibodies is warranted to improve molecular diagnosis using EGFR immunohistochemistry....

  16. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.

    Science.gov (United States)

    Reynolds, C Michael; Kalb, Suzanne R; Cotter, Robert J; Raetz, Christian R H

    2005-06-01

    Addition of a phosphoethanolamine (pEtN) moiety to the outer 3-deoxy-D-manno-octulosonic acid (Kdo) residue of lipopolysaccharide (LPS) in WBB06, a heptose-deficient Escherichia coli mutant, occurs when cells are grown in 5-50 mM CaCl2 (Kanipes, M. I., Lin, S., Cotter, R. J., and Raetz, C. R. H. (2001) J. Biol. Chem. 276, 1156-1163). A Ca2+-induced, membrane-bound enzyme was responsible for the transfer of the pEtN unit to the Kdo domain. We now report the identification of the gene encoding the pEtN transferase. E. coli yhjW was cloned and overexpressed, because it is homologous to a putative pEtN transferase implicated in the modification of the beta-chain heptose residue of Neisseria meningitidis lipo-oligosaccharide (Mackinnon, F. G., Cox, A. D., Plested, J. S., Tang, C. M., Makepeace, K., Coull, P. A., Wright, J. C., Chalmers, R., Hood, D. W., Richards, J. C., and Moxon, E. R. (2002) Mol. Microbiol. 43, 931-943). In vitro assays with Kdo2-4'-[32P]lipid A as the acceptor showed that YhjW (renamed EptB) utilizes phosphatidylethanolamine in the presence of Ca2+ to transfer the pEtN group. Stoichiometric amounts of diacylglycerol were generated during the EptB-catalyzed transfer of pEtN to Kdo2-lipid A. EptB is an inner membrane protein of 574 amino acid residues with five predicted trans-membrane segments within its N-terminal region. An in-frame replacement of eptB with a kanamycin resistance cassette rendered E. coli WBB06 (but not wild-type W3110) hypersensitive to CaCl2 at 5 mM or higher. Ca2+ hypersensitivity was suppressed by excess Mg2+ in the medium or by restoring the LPS core of WBB06. The latter was achieved by reintroducing the waaC and waaF genes, which encode LPS heptosyl transferases I and II, respectively. Our data demonstrate that pEtN modification of the outer Kdo protected cells containing heptose-deficient LPS from damage by high concentrations of Ca2+. Based on its sequence similarity to EptA(PmrC), we propose that the active site of Ept

  17. Does Cytological Laboratory Holds the Responsibility for the Low Sensitivity of the PAP Test in Detecting Endometrial Cancer?

    Science.gov (United States)

    Milicić, Valerija; Matić, Tereza Solocki; Martinek, Vjenceslav; Tomasković, Igor; Ramljak, Vesna

    2015-09-01

    Endometrial cancer is the most common gynecological cancer but there is no economically justified screening method. Although we can detect endometrial cells in the sample using PAP test, many studies show low sensitivity and positive predictive value of PAP test for the diagnosis of endometrial cancer. The goal of this research was to determine significance of PAP test for the diagnostics of endometrial carcinoma. Sensitivity and specificity were analyzed with statistical parameters. VCE (vaginal, cervical, endocervical) smears of patients with histologically proven endometrial carcinoma were re-examined in order to determine the proportion of false negative results for endometrial cancer cells in the VCE samples. Study group consisted of all consecutive patients with PAP test performed at the Department of Clinical Cytology of the University Hospital Center Osijek from 2002 until the end of 2014. There was one inclusion criteria: subsequent hysterectomy or curettage within the six month after the PAP test, regardless of histological finding. From a total of 263 patients with previous PAP test and histologically proven endometrial cancer, endometrial cancer was cytologicaly diagnosed in 24.7% (including suspicious and positive findings), while 66.2% patients had normal cytological findings. The diagnostic value of PAP test in detection of endometrial cancer was statistically revealed with 25% sensitivity and 99% specificity. To determine false negative rate VCE samples were reviewed for patients with histologically proven endometrial cancer and negative VCE findings. There were a total of five negative results. In one case revision did not changed the original negative diagnosis, but benign endometrial cells, a lot of blood and inadequate cytohormonal status were found. In three out of four reviewed samples there were missed cells of endometrial adenocarcinoma. Review of remaining VCE sample upgraded the diagnosis from negative to suspicious for endometrial cancer

  18. Metabolite profiling of induced mutants of rice and soybean

    International Nuclear Information System (INIS)

    The study objects of the investigation were two low phytic acid (lpa) rice (Os-lpa-XS110-1, Os-lpa-XS110-2) and soybean (Gm-lpa-TW-75-1, Gm-lpa-ZC-2) mutants generated by irradiation. The aim was to compare these mutants to the corresponding wild-types by means of capillary gas chromatography metabolite profiling and to explore the usefulness of this approach to assist in the elucidation of the types of mutation resulting in the reduced contents of phytic acid. Metabolite profiling aspires to provide a comprehensive picture of the metabolites present in biological systems. It aims at extracting, detecting, identifying, and quantifying a broad spectrum of compounds in a single sample to provide a deeper insight into complex biological systems. The extraction and fractionation method used in the study allowed a comprehensive coverage of a broad spectrum of low molecular weight metabolites ranging from lipophilic (fatty acids methyl esters, hydrocarbons, free fatty acids, sterols, tocopherols) to hydrophilic (sugars, sugar alcohols, organic acids, amino acids) compounds. For rice, considerable amounts of the peaks detected were statistically significantly different between wild-types and lpa mutants within one field trial. However, only a few of these differences could be consistently observed in all analyzed field trials indicating a strong influence of the biological variability. Metabolites shown to be consistently statistically significantly different between wild-type and lpa rice mutants were found to be closely related to the biogenetic pathways leading to phytic acid. This allowed a prediction of the mutation targets for the lpa rice mutants in the biosynthetic pathway of phytic acid. Similar effects, e.g. clustering of wild-types and lpa mutants on the basis of metabolite profiling data, were observed for soybean. (author)

  19. Stomatal responses to carbon dioxide of isolated epidermis from a C/sub 3/ plant, the Argenteum mutant of Pisum sativum L. , and a crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr

    Energy Technology Data Exchange (ETDEWEB)

    Jewer, P.C.; Neales, T.F.; Incoll, L.D.

    1985-01-01

    The response of stomata in isolated epidermis to the concentration of CO/sub 2/ in the gaseous phase was examined in a C/sub 3/ species, the Argenteum mutant of Pisum sativum, and a crassulacean-acid-metabolism (CAM) species, Kalanchoe daigremontiana. Epidermis from leaves of both species was incubated on buffer solutions in the presence of air containing various volume fractions of CO/sub 2/ (0 to 10,000 x 10/sup -6/). In both species and in the light and in darkness, the effect of CO/sub 2/ was to inhibit stomatal opening, the maximum inhibition of opening occurring in the range 0 to 360 x 10/sup -6/. The inhibition of opening per unit change in concentration was greatest between volume fractions of 0 and 240 x 10/sup -6/. There was little further closure above the volume fraction of 360 x 10/sup -6/, i.e. approximately ambient concentration of CO/sub 2/. Thus, although leaves of CAM species may experience much higher internal concentrations of CO/sub 2/ in the light than those of C/sub 3/ plants, this does not affect the sensitivity of their stomata to CO/sub 2/ concentration or the range over which they respond. Stomatal responses to CO/sub 2/ were similar in both the light and the dark, indicating that effects of CO/sub 2/ on stomata occur via mechanisms which are independent of light. The responses of stomata to CO/sub 2/ in the gaseous phase took place without the treatments changing the pH of the buffered solutions. Thus, it is unlikely that CO/sub 2/ elicited stomatal movement by changing either the pH or the HCO/sub 3//sup -//CO/sub 3//sup 2 -/ equilibria. It is suggested that the concentration of dissolved unhydrated CO/sub 2/ may be the effector of stomatal movement and that its activity is related to its reactivity with amines.

  20. Metabolite Profiling of Induced Mutants of Rice and Soybean

    International Nuclear Information System (INIS)

    The low phytic acid (lpa) rice (Os-lpa-XS110-1, Os-lpa-XS110-2) and soybean (Gm-lpa-TW-75-1, Gm-lpa-ZC-2) mutants generated by γ-irradiation were studied, aimed at comparing these mutants to the corresponding wild-types by means of metabolite profiling based on capillary gas chromatography/mass spectrometry. The usefulness of this approach to assist in the elucidation of the types of mutation resulting in reduced contents of phytic acid should be explored. Metabolite profiling aspires to provide a comprehensive picture of the metabolites present in biological systems. It aims at extracting, detecting, identifying, and quantifying a broad spectrum of compounds in a single sample, to provide a deeper insight into complex biological systems. The extraction and fractionation method used allowed a comprehensive coverage of a broad spectrum of low molecular weight metabolites ranging from lipophilic (fatty acids methyl esters, hydrocarbons, free fatty acids, sterols, tocopherols) to hydrophilic (sugars, sugar alcohols, organic acids, amino acids) compounds. For rice, considerable amounts of the peaks detected were statistically significantly different between wild-types and lpa mutants grown in the same field trial. However, only a few of these differences could be consistently observed in all analyzed field trials, indicating a strong influence of the biological variability. Metabolites consistently shown to be significantly different between wild-type and lpa rice mutants, were found to be closely related to the biogenetic pathways leading to phytic acid. This allowed a prediction of the mutation targets for the lpa rice mutants in the biosynthetic pathway of phytic acid. Similar effects, i.e. statistically significantly different levels of metabolites closely related to the biosynthesis of phytic acid, were consistently observed for soybean. (author)

  1. Selection and characterization of L-ethionine resistant mutants of Trichosporon cutaneum.

    Science.gov (United States)

    Georgieva, Nelly; Alexieva, Zlatka

    2005-01-01

    Trichosporon cutaneum R57 and its L-ethionine resistant mutant NZ94 strain were investigated. The amino acid analyses of cell content of both strains were carried out. The pool of free methionine in the mutant strain is enhanced 16.5 times. The total amount of sulphur-containing amino acids in the mutant cells was significantly increased from 36.8 in the wild strain to 113.4 mg/g protein in the mutant strain. In the process of mutant strain cultivation there was found a high excretion of free methionine (259 microg/ml) in the medium. It was shown that the amino acid content of both wild and mutant strains would be helpful for formulating of new improved animal nutritional diets.

  2. Selection of mutants of capsicum annuum induced by gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. I.; Lee, Y. B. [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Lee, E. K. [Chungnam National Univ., Taejeon (Korea, Republic of)

    1998-06-01

    For induction and selection of mutations of Capsicum annuum L., dry seeds of pure lines No.1 and No.2 were irradiated with gamma ray of 150Gy, 200Gy and 250Gy. Various mutants were selected such as showing early maturity, short plant height, long fruit and chlorophyll mutations. Mutation frequency of No.1 line was 3.4% in the dose of 150Gy, while the frequency of No.2 line was 2.7% in the dose of 250Gy. For selection of resistant mutant to amino acid analog, the optimum concentration of 5-methyltryptophan (5-MT) and S-(2-aminoethyl)-L-cysteine were 25 ppm and 30 ppm, respectively. Four resistant mutant lines to 5-MT were selected among 400 mutant lines.

  3. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  4. Auxin autonomy in cultured tobacco teratoma tissues transformed by an auxin-mutant strain of Agrobacterium tumefaciens.

    Science.gov (United States)

    Campell, B R; Su, L Y; Pengelly, W L

    1992-08-01

    We have studied the mechanism of auxin autonomy in tobacco (Nicotiana tabacum L.) crowngall tissues transformed by the auxin-mutant (tms (-)) A66 strain of Agrobacterium tumefaciens. Normally, tms (-) tobacco tumor tissues require the formation of shoots to exhibit auxin-independent growth in culture. We have isolated from tms (-) tobacco cells several stable variants that are fully hormone-independent and grow rapidly as friable, unorganized tissues, thus mimicking the growth and morphology of tms (+) tobacco cells that produce high levels of auxin. However, none of the variants contained the high levels of auxin found in tms (+) tumor cells. The variants could be divided into two classes with respect to their response to applied auxin. The first class was highly sensitive to applied auxin: low concentrations (1 μM) of α-naphthaleneacetic acid (NAA) severely inhibited growth and markedly stimulated the accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). The second class of variants showed a low sensitivity to applied auxin: growth was promoted by concentrations of NAA up to 10 μM, and growth inhibition and high ACC levels were observed only at high NAA concentrations (100 μM). Unorganized variants with low auxin sensitivity were also isolated from a variant line with high auxin sensitivity. The isolation of tumor cells that exhibited the growth phenotype of tms (+) cells while retaining the low auxin content and low auxin sensitivity of tms (-) cells indicates that full hormone autonomy, characteristic of wild-type crown-gall tumors, can be achieved by a mechanism that is independent of changes in the auxin physiology of the cells. PMID:24178208

  5. Auxin physiology of the tomato mutant diageotropica

    Science.gov (United States)

    Daniel, S. G.; Rayle, D. L.; Cleland, R. E.

    1989-01-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  6. Auxin physiology of the tomato mutant diageotropical

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, S.G.; Rayle, D.L. (San Diego State Univ., CA (USA)); Cleland, R.E. (Univ. of Washington, Seattle (USA))

    1989-11-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  7. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    activity was also induced by the protein kinase inhibitor staurosporine and antagonized by the protein phosphatase inhibitor okadaic acid. FLUC bio-imaging, RNA gel-blot analysis and progeny analyses identified three recessive mutants that underexpress the FLUC reporter, designated jue1, 2 and 3, as well...

  8. An Aberrant Sequence in a Connexin46 Mutant Underlies Congenital Cataracts*

    OpenAIRE

    Minogue, Peter J.; Liu, Xiaoqin; Ebihara, Lisa; Beyer, Eric C.; Berthoud, Viviana M.

    2005-01-01

    An increasing number of diseases have been mapped to genes coding for ion channel proteins, including the gap junction proteins, connexins. Here, we report on the identification of an amino acid sequence underlying the behavior of a non-functional mutant connexin46 (CX46) associated with congenital cataracts. The mutant protein, CX46fs380, is 31 amino acids longer than CX46 and contains 87 aberrant amino acids in its C terminus. When expressed in mammalian cells, the mutant CX46 was not found...

  9. Molecular analysis of mutants of the Neurospora adenylosuccinate synthetase locus

    Indian Academy of Sciences (India)

    A. Wiest; A. J. McCarthy; R. Schnittker; K. McCluskey

    2012-08-01

    The ad-8 gene of Neurospora crassa, in addition to being used for the study of purine biology, has been extensively studied as a model for gene structure, mutagenesis and intralocus recombination. Because of this there is an extensive collection of well-characterized N. crassa ad-8 mutants in the Fungal Genetics Stock Center collection. Among these are spontaneous mutants and mutants induced with X-ray, UV or chemical mutagens. The specific lesions in these mutants have been genetically mapped at high resolution. We have sequenced the ad-8 locus from 13 of these mutants and identified the molecular nature of the mutation in each strain. We compare the historical fine-structure map to the DNA and amino acid sequence of each allele. The placement of the individual lesions in the fine-structure map was more accurate at the 5′ end of the gene and no mutants were identified in the 3′ untranslated region of this gene. We additionally analysed ad-8+ alleles in 18 N. crassa strains subjected to whole-genome sequence analysis and describe the variability among Neurospora strains and among fungi and other organisms.

  10. Exploitation of Physical Mapping Technologies for Breeding of Canola Mutants in Oilseed Brassicas

    International Nuclear Information System (INIS)

    A mutant population of oilseed rape (Brassica napus) and mustard (Brassica juncea) consisting of 25,748 M2 mutants developed and screened through non-destructive quality analysis using Near Infrared Spectroscopy (NIRS) for modified fatty acid profile. The genetic stability of mutant lines with desirable fatty acid profile ascertained in the M2:4 population. The DNA molecular polymorphism survey was conducted using DNA extracted from stable mutant lines. A total of 80% of the SSR primers screened yielded amplification products in all the selected lines. The polymorphism for the mutated genetic makeup of selected mutant plants of brassica with respective initial parents were studied using fluorescence in situ hybridization (FISH) to characterize the distribution of rDNA probes. With modified fatty acid composition 14 brassica mutant lines of the M2:5 generation were tested for yield performance under replicated yield trials for two consecutive years at Nuclear Institute for Food and Agriculture (NIFA). The yield and quality performance of these 14 mutant lines were also evaluated under diversified agro-climatic conditions across the country. All the brassica mutant lines confirmed the genetic stability in modified fatty acid composition and yield potential. (author)

  11. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant.

    Science.gov (United States)

    Chen, Junmei; Thammina, Chandra; Li, Wei; Yu, Hao; Yer, Huseyin; El-Tanbouly, Rania; Marron, Manon; Katin-Grazzini, Lorenzo; Chen, Yongqin; Inguagiato, John; McAvoy, Richard J; Guillard, Karl; Zhang, Xian; Li, Yi

    2016-01-01

    Prostrate turf varieties are desirable because of their increased low mowing tolerance, heat resistance, traffic resistance and ground coverage compared with upright varieties. Mutation breeding may provide a powerful tool to create prostrate varieties, but there are no simple, straightforward methods to screen for such mutants. Elucidation of the molecular basis of the major 'green revolution' traits, dwarfism and semi-dwarfism, guided us to design a simple strategy for isolating dwarf mutants of perennial ryegrass (Lolium perenne L.). We have shown that gamma-ray-mediated dominant dwarf mutants can be easily screened for at the three-leaf stage. About 10% of dwarf mutant lines also displayed a prostrate phenotype at mature stages (>10 tillers). One prostrate line, Lowboy I, has been characterized in detail. Lowboy I had significantly shorter canopy, leaf blade and internode lengths compared with wild type. Lowboy I also exhibited greater tolerance to low mowing stress than wild type. Exogenous gibberellic acid (GA) restored Lowboy I to a wild-type phenotype, indicating that the dwarf and prostrate phenotypes were both due to GA deficiency. We further showed that phenotypes of Lowboy I were dominant and stably inherited through sexual reproduction. Prostrate turfgrass mutants are difficult to screen for because the phenotype is not observed at young seedling stages, therefore our method represents a simple strategy for easily isolating prostrate mutants. Furthermore, Lowboy I may provide an outstanding germplasm for breeding novel prostrate perennial ryegrass cultivars. PMID:26955481

  12. Allele specific gain-of-function activity of p53 mutants in lung cancer cells

    OpenAIRE

    Vaughan, Catherine A.; Frum, Rebecca; Pearsall, Isabella; Singh, Shilpa; Windle, Brad; Yeudall, Andrew; Deb, Swati P.; Deb, Sumitra

    2012-01-01

    p53 mutations are mostly single amino acid changes resulting in expression of a stable mutant protein with “gain of function” (GOF) activity having a dominant oncogenic role rather than simple loss of function of wild-type p53. Knock-down of mutant p53 in human lung cancer cell lines with different endogenous p53 mutants results in loss of GOF activity as shown by lowering of cell growth rate. Two lung cancer cell lines, ABC1 and H1437 carrying endogenous mutants p53–P278S and –R267P, both sh...

  13. Wild Accessions and Mutant Resources

    DEFF Research Database (Denmark)

    Kawaguchi, Masayoshi; Sandal, Niels Nørgaard

    2014-01-01

    Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129...

  14. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin.

    OpenAIRE

    Deforce, L; Tomizawa, K; Ito, N; Farrens, D; Song, P S; Furuya, M.

    1991-01-01

    Recombinant pea type I phytochrome apoprotein expressed in yeast is shown to assemble in vitro with phycocyanobilin to produce a photoreversible phytochrome-like adduct. As an initial investigation of the amino acid sequence requirements for chromophore incorporation, three phyA gene product deletion mutants were produced in yeast. Truncation of the N-terminal tail to residue 46 demonstrates that this region is not critical to bilin attachment, but a deletion mutant lacking 222 amino acids fr...

  15. [Composition of cell walls of 2 mutant strains of Streptomyces chrysomallus].

    Science.gov (United States)

    Zaretskaia, M Sh; Nefelova, M V; Baratova, L A; Polin, A N

    1984-12-01

    The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.

  16. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  17. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    Science.gov (United States)

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

  18. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    Science.gov (United States)

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme. PMID:25139657

  19. Characterization of epitopes on the rabies virus glycoprotein by selection and analysis of escape mutants.

    Science.gov (United States)

    Fallahi, Firouzeh; Wandeler, Alexander I; Nadin-Davis, Susan A

    2016-07-15

    The glycoprotein (G) is the only surface protein of the lyssavirus particle and the only viral product known to be capable of eliciting the production of neutralizing antibodies. In this study, the isolation of escape mutants resistant to monoclonal antibody (Mab) neutralization was attempted by a selection strategy employing four distinct rabies virus strains: the extensively passaged Evelyn Rokitnicki Abelseth (ERA) strain and three field isolates representing two bat-associated variants and the Western Canada skunk variant (WSKV). No escape mutants were generated from either of the bat-associated viral variants but two neutralization mutants were derived from the WSKV isolate. Seven independent ERA mutants were recovered using Mabs directed against antigenic sites I (four mutants) and IIIa (three mutants) of the glycoprotein. The cross-neutralization patterns of these viral mutants were used to determine the precise location and nature of the G protein epitopes recognized by these Mabs. Nucleotide sequencing of the G gene indicated that those mutants derived using Mabs directed to antigenic site (AS) III all contained amino acid substitutions in this site. However, of the four mutants selected with AS I Mabs, two bore mutations within AS I as expected while the remaining two carried mutations in AS II. WSKV mutants exhibited mutations at the sites appropriate for the Mabs used in their selection. All ERA mutant preparations were more cytopathogenic than the parental virus when propagated in cell culture; when in vivo pathogenicity in mice was examined, three of these mutants exhibited reduced pathogenicity while the remaining four mutants exhibited comparable pathogenic properties to those of the parent virus. PMID:27132040

  20. 基于PTS缺陷型大肠杆菌构建莽草酸生产菌%Construction of shikimic acid-producing engineered Escherichia coli strains based on ptsHIcrr mutants

    Institute of Scientific and Technical Information of China (English)

    邹永康; 周军智; 孙旭; 蔡亚非; 戴红梅; 李树龙; 周长林; 方宏清

    2011-01-01

    对大肠杆菌芳香族氨基酸合成途径进行代谢流改造,以实现高效的生物制备莽草酸.以磷酸烯醇式丙酮酸-糖磷酸转移酶系统(PTS系统)敲除菌DH5αΔptsHIcrr(DHP)为基础,特异性敲除aroL,ydiB基因并转入受阿拉伯糖诱导表达的T7-RNA聚合酶基因,最终构建一系列产莽草酸宿主菌.再将aroE、aroB、tktA、glk、aroF组成的系列基因串联起来置于质粒上,在T7启动子控制下表达,经摇瓶培养检测得知,不同重组菌产莽草酸能力与对照相比均有明显提高,其中DHPYA-T7/pAOC-TGEFB菌株产量最高,可达到392 mg/L.为进一步构建高表达莽草酸工程菌奠定基础.%Metabolic engineering for aromatic amino acid biosynthesis pathway in Escherichia coli to acquire high-level biosynthesis of shikimic acid was reported. Knockout of aroL, ydiB genes and knock-in of T7-RNA-Polymerase gene which expression was controlled by L-arabinose based on the initial strain DH5α△ptsHlcrr (DHP), resulted in a series of shikimic acid-producing host strains. A series of tandem genes consisting of aroE, aroB, tktA, glk or aroFfbr were controlled by T7 promoter on plasmids were transformed into these host strains. According to the concentration of shikimic acid in shake-flask culture, all the engineered strains displayed high-potentiality compared to the control strain DHP, and the strain DHPYA-T7/pAOC-TGEFB synthesized the highest yield of 392 mg/L of shikimic acid. This study layed a strong foundation for constructing a high-level shikimic acid-producing engineered strain.

  1. Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1

    Science.gov (United States)

    Gottschalk, Leda Maria Fortes; de Sousa Paredes, Raquel; Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant’Ana; da Silva Bon, Elba Pinto

    2013-01-01

    The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture. PMID:24294256

  2. Yeast mutants auxotrophic for choline or ethanolamine.

    OpenAIRE

    Atkinson, K D; Jensen, B.; Kolat, A I; Storm, E M; Henry, S. A.; Fogel, S

    1980-01-01

    Three mutants of the yeast Saccharomyces cerevisiae which require exogenous ethanolamine or choline were isolated. The mutants map to a single locus (cho1) on chromosome V. The lipid composition suggests that cho1 mutants do not synthesize phosphatidylserine under any growth conditions. If phosphatidylethanolamine or phosphatidylcholine, which are usually derived from phosphatidylserine, were synthesized from exogenous ethanolamine or choline, the mutants grew and divided relatively normally....

  3. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M2 to M4 generation. In the M4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  4. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  5. Dihydrodipicolinate synthase in opaque and floury maize mutants

    NARCIS (Netherlands)

    Varisi, V.A.; Medici, L.O.; Meer, van der I.M.; Lea, P.J.; Azevedo, J.L.

    2007-01-01

    Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) was isolated and studied in four high-lysine maize mutants (Oh43o1, Oh43o2, Oh43fl1 and Oh43fl2). The activity of DHDPS was analyzed at 16, 20, and 24 DAP and characterized in the presence of the amino acids, lysine, S-(2-aminoethyl)-l-cysteine (AEC)

  6. Functional Analysis of Jasmonates in Rice through Mutant Approaches

    Directory of Open Access Journals (Sweden)

    Rohit Dhakarey

    2016-03-01

    Full Text Available Jasmonic acid, one of the major plant hormones, is, unlike other hormones, a lipid-derived compound that is synthesized from the fatty acid linolenic acid. It has been studied intensively in many plant species including Arabidopsis thaliana, in which most of the enzymes participating in its biosynthesis were characterized. In the past 15 years, mutants and transgenic plants affected in the jasmonate pathway became available in rice and facilitate studies on the functions of this hormone in an important crop. Those functions are partially conserved compared to other plant species, and include roles in fertility, response to mechanical wounding and defense against herbivores. However, new and surprising functions have also been uncovered by mutant approaches, such as a close link between light perception and the jasmonate pathway. This was not only useful to show a phenomenon that is unique to rice but also helped to establish this role in plant species where such links are less obvious. This review aims to provide an overview of currently available rice mutants and transgenic plants in the jasmonate pathway and highlights some selected roles of jasmonate in this species, such as photomorphogenesis, and abiotic and biotic stress.

  7. Brucella abortus Cyclic β-1,2-Glucan Mutants Have Reduced Virulence in Mice and Are Defective in Intracellular Replication in HeLa Cells

    OpenAIRE

    Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; VIGLIOCCO, ANA; Paulo, Patricia Silva; Ugalde, Rodolfo A.

    2001-01-01

    Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abort...

  8. Molecular and biochemical characterization of xrs mutants defective in Ku80.

    Science.gov (United States)

    Singleton, B K; Priestley, A; Steingrimsdottir, H; Gell, D; Blunt, T; Jackson, S P; Lehmann, A R; Jeggo, P A

    1997-01-01

    The gene product defective in radiosensitive CHO mutants belonging to ionizing radiation complementation group 5, which includes the extensively studied xrs mutants, has recently been identified as Ku80, a subunit of the Ku protein and a component of DNA-dependent protein kinase (DNA-PK). Several group 5 mutants, including xrs-5 and -6, lack double-stranded DNA end-binding and DNA-PK activities. In this study, we examined additional xrs mutants at the molecular and biochemical levels. All mutants examined have low or undetectable levels of Ku70 and Ku80 protein, end-binding, and DNA-PK activities. Only one mutant, xrs-6, has Ku80 transcript levels detectable by Northern hybridization, but Ku80 mRNA was detectable by reverse transcription-PCR in most other mutants. Two mutants, xrs-4 and -6, have altered Ku80 transcripts resulting from mutational changes in the genomic Ku80 sequence affecting RNA splicing, indicating that the defects in these mutants lie in the Ku80 gene rather than a gene controlling its expression. Neither of these two mutants has detectable wild-type Ku80 transcript. Since the mutation in both xrs-4 and xrs-6 cells results in severely truncated Ku80 protein, both are likely candidates to be null mutants. Azacytidine-induced revertants of xrs-4 and -6 carried both wild-type and mutant transcripts. The results with these revertants strongly support our model proposed earlier, that CHO-K1 cells carry a copy of the Ku80 gene (XRCC5) silenced by hypermethylation. Site-directed mutagenesis studies indicate that previously proposed ATP-binding and phosphorylation sites are not required for Ku80 activity, whereas N-terminal deletions of more than the first seven amino acids result in severe loss of activities. PMID:9032253

  9. New ABA-Hypersensitive Arabidopsis Mutants Are Affected in Loci Mediating Responses to Water Deficit and Dickeya dadantii Infection

    OpenAIRE

    Anne Plessis; Raphaël Cournol; Delphine Effroy; Viridiana Silva Pérez; Lucy Botran; Yvan Kraepiel; Anne Frey; Bruno Sotta; Gabriel Cornic; Jeffrey Leung; Jérôme Giraudat; Annie Marion-Poll; North, Helen M.

    2011-01-01

    On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no ...

  10. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M1V1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  11. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  12. Investigation of intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-pseudomonas syringae interactions using a fast neutron-generated mutant allele of EDS5 identified by genetic mapping and whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Jessie L Carviel

    Full Text Available A whole-genome sequencing technique developed to identify fast neutron-induced deletion mutations revealed that iap1-1 is a new allele of EDS5 (eds5-5. RPS2-AvrRpt2-initiated effector-triggered immunity (ETI was compromised in iap1-1/eds5-5 with respect to in planta bacterial levels and the hypersensitive response, while intra- and intercellular free salicylic acid (SA accumulation was greatly reduced, suggesting that SA contributes as both an intracellular signaling molecule and an antimicrobial agent in the intercellular space during ETI. During the compatible interaction between wild-type Col-0 and virulent Pseudomonas syringae pv. tomato (Pst, little intercellular free SA accumulated, which led to the hypothesis that Pst suppresses intercellular SA accumulation. When Col-0 was inoculated with a coronatine-deficient strain of Pst, high levels of intercellular SA accumulation were observed, suggesting that Pst suppresses intercellular SA accumulation using its phytotoxin coronatine. This work suggests that accumulation of SA in the intercellular space is an important component of basal/PAMP-triggered immunity as well as ETI to pathogens that colonize the intercellular space.

  13. NaCl 胁迫对低植酸小麦突变体材料种子萌发特性的影响%The Effect of NaCl Stress on Seed Germination of Wheat Mutants with Low Phytic Acid

    Institute of Scientific and Technical Information of China (English)

    郎淑平; 马燕欣

    2016-01-01

    植酸广泛存在于禾谷类和豆类等作物种子中,近年来利用诱变技术选育低植酸作物新品种已成研究热点。本研究在不同 NaCl 浓度处理下,对前期通过60 Co -γ辐射获得的9份低植酸小麦突变体材料进行萌发试验。结果表明,0.5%NaCl 能促进种子萌发,而1.0%、1.5%NaCl 明显抑制种子萌发,在其胁迫下,种子幼苗和主根生长受到抑制。初步筛选到耐盐性较好的低植酸小麦突变体材料4份,分别为 lp14、lp49、lp55、lp50。%Phytic acid (PA)is naturally stored in seeds of a wide range of cereal and legume crops.In recent years,it has become a research hotspot to breed crop varieties with low phytic acid (LPA)by using mutagenesis technology.In the current research,we ob-tained nine LPA wheat mutants by 60 Co -γradiation,and then assessed their salt tolerance using a germination test with different con-centrations of NaCl.As a result,their seed germination was promoted at 0.5% NaCl concentration,but substantially inhibited at 1.0% and 1.5% NaCl concentrations;all tested NaCl concentrations produced an inhibitory effect on seedling growth and primary root growth.Among the nine LPA wheat mutants,four (lp14,lp49,lp50,and lp55)showed higher salt tolerance,which may be used as materials for breeding wheat varieties with salt tolerance in the future.

  14. Studies on cytological, physiological and genetic characteristics in somatic mutant strains of Sugi (Cryptomeria japonica D. Don)

    International Nuclear Information System (INIS)

    From microscopic observation of the pollen of induced mutant strains in Sugi (Cryptomeria japonica D. Don), it was found that there were large differences in pollen fertility among the mutant strains, and that it deviated year to year from the mother plants. The large differences in frequency of sterile pollen among mutant strains depended on the genetic characteristics of each mutant strain. Higher frequencies of sterile pollen were observed at the terminal part of branchlets in some mutant strains, and this was considered to be induced by the lateness of flower-bud formation at low temperature conditions in late summer. Delayed formation and gibberellic acid treatment applied for flower induction resulted in low fertility and abnormality of pollen in mutant strains. Chromosome aberration in mutant strains was caused either by gamma irradiation or by some mutational events that responded to environmental conditions. In the former case, aberration might have been maintained for a long period through vegetative propagation. Some of the irregularities were due to mitotic cell division, because cells with micronuclei at the pacytene stage in pollen mother cells and with fragments at MI were observed. Somatic mutability of Kuma-sugi mutants after re-irradiation was investigated. From waxless mutants morphological somatic mutations, which have fat or stout stems and thick and short needles, were frequently produced, whereas from morphological mutants the lowest somatic mutation frequency was induced. In some mutant strains higher rooting ability than the mother plants was found, and the possibility of character improvement was pointed out. (author)

  15. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid.

    OpenAIRE

    Rosner, J. L.

    1993-01-01

    Escherichia coli and Salmonella typhimurium are normally resistant to > 500 micrograms of the antituberculosis drug isonicotinic acid hydrazide (isoniazid; INH) per ml. Susceptibility to INH (< 50 micrograms/ml) has now been found for mutants that are deficient in OxyR, the oxidative stress response regulator. Two OxyR-regulated enzymes, alkyl hydroperoxide reductase and hydroperoxidase I, were identified as playing important roles in INH resistance. OxyR regulon mutants should be useful for ...

  16. Similarity in properties and mapping of three rec mutants of Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Kooistra, J.; Setlow, J.K.

    1976-07-01

    Three Rec/sup -/ mutants of Haemophilus influenzae have been studied with respect to their transformability, ultraviolet and mitomycin C sensitivities, spontaneous and ultraviolet-induced deoxyribonucleic acid breakdown, inducibility of lysogens, and the linkage of the three mutations to a streptomycin resistance marker. The data indicate that the three mutations cause the same phenotypic changes, and that they are all on the same gene. Transformability of the mutants is different when two different media are used for competence development, although transformability with the two competence methods is not different in a Rec/sup -/ strain that is mutant at another gene.

  17. Regulation of Mutant p53 Protein Expression

    OpenAIRE

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be e...

  18. E Sequence Analysis of Persistently Infected Mutant Japanese Encephalitis Virus Strains

    Institute of Scientific and Technical Information of China (English)

    LI Qi; XU Keshu; WANG Huafeng; ZHOU Xia

    2006-01-01

    A persistent infection model was established after human hepatoma cells infected by Japanese encephalitis viruses were subcultured for several times. Viral titers of mutant viruses in persistently infected cells were examined by plaque methods using BHK cells. Nucleotides of the E coding region of two wild and two mutant viruses were amplified by RT-PCR. PCR products were sequenced by ABI-PRSMTM310 sequencing system. Compared to JaGAr-01 wild strains, four amino acids were replaced (E61Tyr→Asp, E219His→Tyr, E384Val→Glu, E418Pro→Ala) in the E sequence of JaGAr-01 persistently-infected mutant strains. Eleven amino acid replacement (E51Arg→Ser, E61Tyr→Asp, E83Lys→Glu, E123Ser→Arg, E209Arg→Lys, E227Pro→Ser, E276Asp→Ser,E290Arg→Lys, E387Lys→Arg, E418Leu→Pro, E454Arg→Gly) was also noted when we compared the E sequence between persistently infected Nakayama and its wild strains. A lot of similarities of amino acid sequence between mutant strains JaGAr-01 and Nakayama were also noted. It was concluded that geno-variation existed in E region of mutant viruses and the mutant protein encoded by E region, especially the mutation of E61 (Tyr→Asp) may contribute to the maintenance of the persistent infection of Japanese encephalitis virus.

  19. Allele Specific p53 Mutant Reactivation

    OpenAIRE

    Yu, Xin; Vazquez, Alexei; Levine, Arnold J.; Carpizo, Darren R.

    2012-01-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tu...

  20. Biochemical and histological characterization of tomato mutants

    Directory of Open Access Journals (Sweden)

    Carolina C. Monteiro

    2012-06-01

    Full Text Available Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT, we observed that the malondialdehyde (MDA content was enhanced in the diageotropica (dgt and lutescent (l mutants, whilst the highest levels of hydrogen peroxide (H2O2 were observed in high pigment 1 (hp1 and aurea (au mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT activity when compared to MT. Guaiacol peroxidase (GPOX was enhanced in both sitiens (sit and notabilis (not mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX. Based on PAGE analysis, the activities of glutathione reductase (GR isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD isoform III was reduced in leaves of sit, epi, Never ripe (Nr and green flesh (gf mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.Neste trabalho, analisamos as respostas bioquímicas inerentes ao sistema antioxidante, assim como propriedades morfológicas e anatômicas de mutantes fotomorfogenéticos e hormonais de tomateiro. Comparados ao não mutante Micro-Tom (MT, observamos que o conteúdo de malondialdeído (MDA aumentou nos mutantes diageotropica (dgt e lutescent (l, enquanto os maiores níveis de H2O2 foram encontrados nos mutantes high pigment 1 (hp1 e aurea (au. Análises de enzimas antioxidantes mostraram que todos os mutantes reduziram a atividade de catalase (CAT quando comparado a MT. A

  1. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  2. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    Science.gov (United States)

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems. PMID:19251512

  3. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  4. Radiation-sensitive mutants of yeast

    International Nuclear Information System (INIS)

    Nomenclature for various radiosensitive mutants of Saccharomyces cerevisiae is briefly discussed. Tables are presented to show results of allelism tests of most of the radiosensitive mutants isolated by various investigators together with a standardized rad locus designation and map positions of a number of rad loci in yeast

  5. Systematic structure-function analysis of androgen receptor Leu 701 mutants explains the properties of the prostate cancer mutant L701H

    NARCIS (Netherlands)

    D.J. van de Wijngaart (Dennis); M. Molier; S.J. Lusher (Scott); R. Hersmus (Remko); G.W. Jenster (Guido); J. Trapman (Hans); H.J. Dubbink (Erik Jan)

    2010-01-01

    textabstractOne mechanism of prostate tumors for escape from androgen ablation therapies is mutation of the androgen receptor (AR). Weinvestigated the unique properties of theARL701H mutant, which is strongly stimulated by cortisol, by a systematic structure-function analysis. Most amino acid substi

  6. CMPD: cancer mutant proteome database.

    Science.gov (United States)

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.

  7. Study on culturing Trichodema mutants

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-ai; WANG Wei-ming

    2004-01-01

    @@ Trichodema mutants strains T5, T0803, T1010, T1003were cultured in different conditions and media, also in the presence of fungicides at 40 mg/kg (CK or procymidone + chlorothalonil, or maneb or phosethyl-Al) . The pH values of media were 5, 6, 7 and 8 and hyphae were grown at temperatures of 15, 20, 25 and 30 ℃. After being cultured for 3, 4, 5, or 6 days, the strains were transferred at a lower temperature to sporulate (20℃) Obtained data were analyzed statistically, with the orthogonal array and ranges (R) differing dependes on the treatments (R = 40.0,42.4, 48.0, 62.8,107.0). The results indicated that the most important factor was the nature of the strain (R =107.0), while the change in temperature and time of cultivation produced the lowest effect (R =40.0). Each factor variance was significant and A3B4C2D1E3 was the optimum combined condition, in which strain T1010 grew more quickly and sporulated most.

  8. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Li, Xiaobo; Zhang, Ru; Patena, Weronika; Gang, Spencer S; Blum, Sean R; Ivanova, Nina; Yue, Rebecca; Robertson, Jacob M; Lefebvre, Paul A; Fitz-Gibbon, Sorel T; Grossman, Arthur R; Jonikas, Martin C

    2016-02-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.

  9. Temperature-sensitive rubisco mutant of Chlamydomonas

    International Nuclear Information System (INIS)

    The Chlamydomonas reinhardtii mutant 68-4PP is a temperature-sensitive mutant that lacks photosynthetic ability at 350C, but is able to grow photosynthetically at 250C. Genetic analysis indicated that 68-4PP is a chloroplast mutant that is allelic with known Rubisco large-subunit structural-gene mutants, implying that 68-4PP also resulted from a mutation in the large-subunit gene. The 68-4PP mutant has about 35% of the wild-type level of Rubisco holoenzyme and carboxylase activity when grown at 250C, but it has less than 10% of normal holoenzyme and carboxylase activity when grown at 350C. However, [35S]-sulfate pulse labeling showed that Rubisco subunits were synthesized at normal rates at both temperatures. More significantly, the ratio of carboxylase activity in the absence and presence of oxygen at a limiting CO2 concentration (6.6 μM) was about 2.2 for the mutant enzyme, as compared to about 3.0 for the wild-type enzyme. The decreased ratio of the mutant enzyme is maternally inherited, indicating that this reduced oxygen sensitivity results from a mutation in chloroplast DNA. The authors have recently cloned the 68-4PP Rubisco large-subunit gene, and DNA sequencing is in progress

  10. Induction of Mutants in Durum Wheat

    International Nuclear Information System (INIS)

    This investigation presents a breeding program for induction and development of a new genotype of durum wheat, resistant to lodging with high yield, by irradiation durum wheat hybrids (F2) with gamma rays 100 Gy, during 1990-1997 cultivation seasons. This program involves: induction of variability, selection evaluation of the mutants at three locations: Twaitha (Baghdad) Latifya ( Babylon) and Swari (Kutt). All mutants showed resistance to lodging and there was a significant reduction in plant height. Mutant SIXIZ-22 surpassed other mutants and its origin in lodging resistance and plant height (83.5,82.8 and 89.4 cm) in the three locations at generation M5 and M6, respectively. Also, there were significant differences between mutant and their origin in the number of spikes/M2 and grain yild during the two successive generation. On the other hand, mutant IZxCO-105 surpassed other mutants in the number of spikes/M2 (231.8,242.3 and 292) and grain yield (4336,3376 and 5232 kg/ha) in all testing location, respectively . (authors) 14 refs., 4 tabs

  11. Generation and analysis of bacteriorhodopsin mutants with the potential for biotechnological applications.

    Science.gov (United States)

    Saeedi, P; Moosaabadi, J Mohammadian; Sebtahmadi, S Sina; Mehrabadi, J Fallah; Behmanesh, M; Nejad, H Rouhani; Nazaktabar, A

    2012-01-01

    The properties of bacteriorhodopsin (BR) can be manipulated by genetic engineering. Therefore, by the methods of gene engineering, Asp85 was replaced individually by two other amino acids (D85V, D85S). The resulting recombinant proteins were assembled into soybean vesicles retinylated to form functional BR-like nano-particles. Proton translocation was almost completely abrogated by the mutant D85S, while the D85V mutant was partially active in pumping protons. Compared with wild type, maximum absorption of the mutants, D85V and D85S, were 563 and 609 nm, which illustrated 5 nm reductions (blue shift) and 41 nm increases (red shift), respectively. Since proton transport activity and spectroscopic activities of the mutants are different, a wide variety of membrane bioreactors (MBr) have been developed. Modified proteins can be utilized to produce unique photo/Electro-chromic materials and tools. PMID:22976247

  12. Radiation-sensitive mutant of hypertoxinogenic strain 569B of Vibro cholerae

    International Nuclear Information System (INIS)

    A radiation-sensitive mutant of the hypertoxinogenic strain 569B of Vibrio cholerae was isolated and characterized. The mutant, designated V. cholerae 569Bsub(s), lacks both excision- and medium-dependent dark-repair mechanisms of UV-induced DNA damage while retaining the wild-type photoreactivating capability. Analysis of the UV-irradiated cell DNA by velocity sedimentation in alkaline sucrose gradient suggests that UV-induced pyrimidine dimers may not be incised in these cells. In contrast to the wild-type cells, the mutant cell DNA was degraded after treatment with nalidixic acid. The mutant cells failed to produce any detectable amount of cholera toxin as measured by ileal-loop assay. (orig.)

  13. Radiation-sensitive mutant of hypertoxinogenic strain 569B of Vibro cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.; Das, J. (Indian Inst. of Chemical Biology, Calcutta. Biophysics Div.)

    1983-04-01

    A radiation-sensitive mutant of the hypertoxinogenic strain 569B of Vibrio cholerae was isolated and characterized. The mutant, designated V. cholerae 569Bsub(s), lacks both excision- and medium-dependent dark-repair mechanisms of UV-induced DNA damage while retaining the wild-type photoreactivating capability. Analysis of the UV-irradiated cell DNA by velocity sedimentation in alkaline sucrose gradient suggests that UV-induced pyrimidine dimers may not be incised in these cells. In contrast to the wild-type cells, the mutant cell DNA was degraded after treatment with nalidixic acid. The mutant cells failed to produce any detectable amount of cholera toxin as measured by ileal-loop assay.

  14. Radiation-sensitive mutant of hypertoxinogenic strain 569B of Vibrio cholerae.

    Science.gov (United States)

    Das, G; Das, J

    1983-04-01

    A radiation-sensitive mutant of the hypertoxinogenic strain 569B of Vibrio cholerae was isolated and characterized. The mutant, designated V. cholerae 569Bs, lacks both excision- and medium-dependent dark-repair mechanisms of UV-induced DNA damage while retaining the wild-type photoreactivating capability. Analysis of the UV-irradiated cell DNA by velocity sedimentation in alkaline sucrose gradient suggests that UV-induced pyrimidine dimers may not be incised in these cells. In contrast to the wild-type cells, the mutant cell DNA was degraded after treatment with nalidixic acid. The mutant cells failed to produce any detectable amount of cholera toxin as measured by ileal-loop assay.

  15. Investigation into the resistance of lactoperoxidase tolerant Escherichia coli mutants to different forms of oxidative stress.

    Science.gov (United States)

    De Spiegeleer, Philipp; Vanoirbeek, Kristof; Lietaert, Annelies; Sermon, Jan; Aertsen, Abram; Michiels, Chris W

    2005-11-15

    Six lactoperoxidase tolerant Escherichia coli transposon mutants isolated and characterized in an earlier study, and some newly constructed double mutants, were subjected to peroxide, superoxide and hypochlorite stress, and their inactivation was compared to that of the wild type strain MG1655. Knock out mutants of waaQ and waaO, which owed their lactoperoxidase tolerance to an impaired outer membrane permeability due to a reduced porin content, also exhibited higher resistance to hypochlorite, as did a knock-out strain of lrp, encoding a regulatory protein affecting a wide range of cellular functions. Unlike the outer membrane mutants however, the lrp strain was also more resistant to t-butyl hydroperoxide, but more susceptible to the superoxide generating compound plumbagin. Finally, a lactoperoxidase tolerant knock-out strain of ulaA, involved in ascorbic acid uptake, did not show resistance to any of the other oxidants. The possible modes of action of these different oxidants are discussed.

  16. Productive potentials of short stemmed wheat mutants

    International Nuclear Information System (INIS)

    Air dry F2 seeds of the cross Skorospelka-35xMexipak were gamma irradiated (5 krad). It was established that the new short-stemmed wheat mutants can olay an important role both in hybrid combination breeding and as direct cultivars. Some of these mutants (No. 65, 67-I, 67-II, etc.), proved very promising because of their high productivity combined with other valuable biological and economic characters. The results obtained show also the great potentials and the perspectives of the method of combining hybrid and induced mutant variability. (author)

  17. Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.

    Science.gov (United States)

    Sun, J; Sampson, N S

    1999-08-31

    In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.

  18. Relations between protein production, protein quality and environmental factors in Pisum mutants

    International Nuclear Information System (INIS)

    The seed protein content of 138 radiation-induced Pisum mutants was determined. The variability of this genetically well-defined material agrees approximately with that of the world collection of Pisum sativum. Some environmental factors to a great extent influence the protein production of the mutants and the initial line. Therefore, it is necessary to consider the relations between the genetically controlled protein production and its dependence upon the environmental factors. This is especially evident if the protein situation of the same genotypes cultivated under the moderate climatic conditions of middle Europe is compared with the subtropical conditions of India. A generally firm correlation between seed size and protein content could not be found in material regarding 148 different mutants of our assortment. Therefore, the selection of small-grained mutants does not result in a selection of protein-rich genotypes in Pisum sativum. Considering all the criteria positively and negatively influencing the protein production, a positive situation could be found in some mutants, especially in the fasciated ones. Furthermore, an improvement of the protein quality could be reached by a genetically conditioned alteration of the globulin-albumin ratio leading to an increase of some essential amino acids such as methionine and lysine. The combined action of mutant genes results in unexpected changes of the protein quantity as well as the quality of the recombinants in relation to their parental mutants. The comparison of some essential amino acids of our useful mutants with those of the varieties of other genera of the Leguminosae shows certain trends of biochemical alterations realized during evolutionary development of the family. (author)

  19. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants.

    Directory of Open Access Journals (Sweden)

    Laura H Tsang

    Full Text Available Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases. Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results

  20. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    Science.gov (United States)

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  1. Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955.

    Directory of Open Access Journals (Sweden)

    Cheng Zhong

    Full Text Available A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955 using DEC (diethyl sulfate and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA cycle was obtained in mutant strain (57.0% compared with parent strain (17.0%. It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH, which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53-6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain.

  2. Induced mutants for rice functional genomics

    International Nuclear Information System (INIS)

    Induced mutations have been playing important roles in both crop germplasm enhancement and new variety development. With the completion of the rice genome sequence, the study on functional genomics in rice has become a major task. Construction of rice mutant library is an essential approach for rice functional genomics study. This paper briefly reviewed several common techniques for generation of rice mutant library and its application in rice functional research, taking examples of developing rice chloroplast development related mutant library to provide the basic materials for functional genes cloning. A rice Chlorophyll (Chl) deficient mutant, yellow-green leaf1 (ygl1), was isolated, which showed yellow-green leaves in young plants with decreased Chl synthesis, increased level of tetrapyrrole intermediates, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The ygl1 locus was mapped to chromosome 5. A missense mutation was found in a highly conserved residue of YGL1 in the ygl1 mutant, resulting in reduction of the enzymatic activity. Another green-revertible albino leaf (gral) mutant involved in chloroplast development was screened from a M2 population induced by 300Gy 60Co gamma rays irradiation to the seeds of rice male sterile line PA64S with the collaboration of Zhejiang University. The mutant seedling leaves exhibit albino firstly but turn to normal green after the sixth leaf extended thoroughly. Systematical research including photosynthetic pigment, chloroplast microscopic observation and gene cloning was carried out on the gral mutant. (author)

  3. Barley mutant line with high protein yield

    International Nuclear Information System (INIS)

    Mutation breeding was initiated in 1969 at the Agricultural Research Institute, Nicosia, aiming at developing high yielding barley lines having also high protein or lysine content. The final results were reported at the FAO/IAEA Research Co-ordination Meeting at Nicosia in 1980. At that time some lines were superior to their mother line in grain yield, protein content or protein yield. However, high yield is essential for feed-barley as there is no premium price for protein content or quality. In the experiments reported earlier, the mean grain yield of mutant M-Att-73-337-1 was 3202 kg/ha, 9.9% higher than the mother variety 'Attiki'. The Kjeldahl protein content was 12.7% for the mutant line and 13.4% for the mother variety. The mutant line was further evaluated in field trials (11 m2 plots and 6 replications) during 1983-88, along with other promising material from the breeding programme. The mutant line outyielded its mother variety by 9.7% in grain yield and 16% in straw yield. These increases are apparently the result of increased 1000-grain weight and a higher number of culms per m2. Protein content of the mutant line was slightly lower, but its protein yield was 5.5% higher. The yield of the mutant line over 16 trials during 1983-88 was also 4% higher than the yield of the main commercially grown variety Athenais

  4. A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia

    DEFF Research Database (Denmark)

    Kabernick, M.; Rohrlack, T.; Christoffersen, K.;

    2001-01-01

    of microcystins, mainly with the amino acid tyrosine in the molecule. Zooplankton studies with Daphnia galeata and D. pulicaria, using the mutant (MRC) and its' wild type (MRD), showed for the first time that microcystins other than microcystin-LR can be responsible for the poisoning of Daphnia by Microcystis...

  5. An Efficient Screen for Peroxisome-Deficient Mutants of Pichia pastoris

    NARCIS (Netherlands)

    Liu, Henry; Tan, Xuqiu; Veenhuis, Marten; McCollum, Dannel; Cregg, James M.

    1992-01-01

    We describe a rapid and efficient screen for peroxisome-deficient (per) mutants in the yeast Pichia pastoris. The screen relies on the unusual ability of P. pastoris to grow on two carbon sources, methanol and oleic acid, both of which absolutely require peroxisomes to be metabolized. A collection o

  6. Hepatitis B surface gene 145 mutant as a minor population in hepatitis B virus carriers

    Directory of Open Access Journals (Sweden)

    Komatsu Haruki

    2012-01-01

    Full Text Available Abstract Background Hepatitis B virus (HBV can have mutations that include the a determinant, which causes breakthrough infection. In particular, a single mutation at amino acid 145 of the surface protein (G145 is frequently reported in the failure of prophylactic treatment. The aim of this study was to evaluate the frequency of the a determinant mutants, especially the G145 variant, in Japan, where universal vaccination has not been adopted. Methods The present study was a retrospective study. The study cohorts were defined as follows: group 1, children with failure to prevent mother-to-child transmission despite immunoprophylaxis (n = 18, male/female = 8/10, age 1-14 years; median 6 years; group 2, HBV carriers who had not received vaccination or hepatitis B immunoglobulin (n = 107, male/female = 107, age 1-52 years; median 16 years. To detect the G145R and G145A mutants in patients, we designed 3 probes for real-time PCR. We also performed direct sequencing and cloning of PCR products. Results By mutant-specific real-time PCR, one subject (5.6% was positive for the G145R mutant in group 1, while the G145 mutant was undetectable in group 2. The a determinant mutants were detected in one (5.6% of the group 1 subjects and 10 (9.3% of the group 2 subjects using direct sequencing, but direct sequencing did not reveal the G145 mutant as a predominant strain in the two groups. However, the subject who was positive according to the mutant-specific real-time PCR in group 1 had overlapped peaks at nt 587 in the electropherogram. In group 2, 11 patients had overlapped peaks at nt 587 in the electropherogram. Cloning of PCR products allowed detection of the G145R mutant as a minor strain in 7 (group 1: 1 subject, group 2: 6 subjects of 12 subjects who had overlapped peaks at nt 587 in the electropherogram. Conclusions The frequency of the a determinant mutants was not high in Japan. However, the G145R mutant was often present as a minor population in

  7. Development of high oleic soybean mutant and its stability across the environments

    International Nuclear Information System (INIS)

    Modifying seed oil composition has become a major goal in soybean breeding programs. Elevated oleic acid and reduced linoleic and linolenic acid content can improve the oxidative stability, flavor and nutritional value of soybean oil. It is also important to study the effect of the environment on the altered fatty acid content in soybean to determine their stability over different growing conditions. The objectives of this study were to develop a high oleic acid soybean mutant and to determine the stability of fatty acid composition of the same across different environments. A high oleic acid mutant (HOM) containing 40% of oleic acid compared to 27% in parent cultivar 'MACS 450' was selected from a mutagen treatment of 200Gy and 0.15% Ethyl Methane Sulphonate (EMS). To study the influence of the environmental factors on fatty acid composition, the HOM along with other four soybean lines MACS 1034, MACS 1055, MACS 1092 and Bragg were grown at 12 locations. Seeds of each genotype from each location were analyzed for fatty acid composition by gas chromatography. Eberhart and Russell's model was used to study the stability of fatty acids. In general, all the fatty acids were influenced by the environmental factors. Elevated oleic acid in HOM was less stable across the environments compared to oleic acid in other four cultivars. The mean oleic acid content in 'HOM' was 31.26-45.18% over the 12 locations. Linoleic acid content in 'HOM' and 'MACS 1034' was also showed significant deviation from unity for regression coefficient showing its unstable nature. This study shows that the elevated oleic and reduced linoleic acids in 'HOM' are highly influenced by the environmental factors. (author)

  8. Development of a High Oleic Soybean Mutant and its Stability Across the Environments

    International Nuclear Information System (INIS)

    Modifying seed oil composition has become a major goal in soybean breeding programmes. Elevated oleic acid and reduced linoleic and linolenic acid content can improve the oxidative stability, flavor and nutritional value of soybean oil. The objectives of this study were (1) to develop a high oleic acid soybean mutant and (2) to determine the stability of its fatty acid composition across different environments. A high oleic acid mutant (HOM), containing 40% of oleic acid compared to 27% in parent cultivar MACS 450, was selected from a treatment with 200Gy γ-rays and 0.15% ethyl methane sulphonate (EMS). To investigate the influence of environmental factors on fatty acid composition, the HOM, along with four other soybean lines (MACS 1034, MACS 1055, MACS 1092 and Bragg) was grown at 12 locations. Seeds of each genotype from each location were analyzed for fatty acid composition by gas chromatography. Eberhart and Russell's linear regression model was used to study the environmental stability of fatty acid composition. In general, all the fatty acids studied were influenced by environmental factors. Elevated oleic acid in the HOM was less stable across environments than the oleic acid content in the other four cultivars. The mean oleic acid content in the HOM was 31.26 - 45.18% over the 12 locations. Linoleic acid content in the HOM and in MACS 1034 also showed significant deviation from unity for their regression coefficient, indicating significant environmental effects. This study shows that extent of the elevation of oleic acid and reduction of linoleic acid content in the HOM are strongly influenced by environmental factors. (author)

  9. Officially released mutant varieties in China

    International Nuclear Information System (INIS)

    The use of mutation techniques for crop improvement in China has a long and well-established tradition of more than 50 years. As the result of intensive research in many institutes dealing with application of nuclear technologies more than 620 cultivars of 44 crop species have been released. Numerous mutant varieties have been grown on a large scale bringing significant economic impact, sustaining crop production and greatly contributing to increase of food production also in stress prone areas of the country. However, there is still missing information not only on the number of mutant varieties released in particular crop species but also on mutagens applied, selection approaches and on the use of mutants in cross breeding. Numerous Chinese scientists collected and systematized this information. Results of their work were often published in local scientific journals in the Chinese language and as such were unavailable to breeders from other countries. Having this in mind, we requested Dr. Liu Luxiang, the Director of the Department of Plant Mutation Breeding and Genetics, Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences in Beijing to help us in finding as much information as possible on mutant varieties officially released in China. The data has been collected in close collaboration with his colleagues from various institutions all over the country and then evaluated, edited and prepared for publication by our team responsible for the FAO/IAEA Database of Officially Released Mutant Varieties. We would like to thank all Chinese colleagues who contributed to this list of Chinese mutant varieties. We hope that this publication will stimulate plant breeders in China to collect more information on released mutant varieties and especially on the use of mutated genes in cross breeding. (author)

  10. [A flavinogenic mutant of the yeast Pichia guilliermondii with impaired iron transport].

    Science.gov (United States)

    Shavlovskiĭ, G M; Fedorovich, D V; Zviagil'skais, R A

    1976-01-01

    A mutant of the yeast Pichia guilliermondii was produced by means of UV; the mutant was capable of riboflavin overproduction in the presence of high concentrations of iron in the medium. The content of total and non-hemin iron and cytochrome c, and the activity of catalase, were lower in the cells of the mutant than in the parent cells, while the activity of riboflavin synthetase was higher. The content of iron in the cells increased when the mutant was cultivated on media with citric acid, siderochromes of Klebsiella aerogenes, Neurospora crassa, Rhodotorula glutinis, cultural broth of Pichia ohmeri, and autolysate of brewer's yeast, whereas the flavinogenous activity of the cells decreased. Rotenone inhibited respiration of the intact cells of the mutant producing elevated amounts of riboflavin; therefore, flavinogenesis was not regulated by non-hemin iron on the first segment of the respiratory chain. Overproduction of riboflavin in the mutant of Pichia guilliermondii was proved to be a recessive property. PMID:933879

  11. Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker's yeast.

    Science.gov (United States)

    Shima, J; Hino, A; Yamada-Iyo, C; Suzuki, Y; Nakajima, R; Watanabe, H; Mori, K; Takano, H

    1999-07-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1), and double mutants (Deltanth1 ath1) by using commercial baker's yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Deltanth1 and Deltaath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Deltanth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  12. Construction of Pseudomonas sp.M18 relA mutant and its regulation on phenazine-1-carboxylic acid biosynthesis%假单胞菌M18relA突变株的构建及其对吩嗪-1-羧酸合成的调控

    Institute of Scientific and Technical Information of China (English)

    王金英; 张明月; 王国昊; 魏雪; 李雅乾; 黄显清; 许煜泉

    2011-01-01

    The rhizosphere bacterium Pseudomonas sp. M 18 can simultaneously produce two antibiotics:phenazine-1- carboxylic acid (PCA) and pyoluteorin. ppGpp, which is synthesized by Re1A, can mediate bacterial stringent response to nutritional starvation. The relA gene was PCR amplified from the M18 strain chromosomal DNA template. The relA mutant of M18 strain (M18RAG) was constructed through inserted inactivation of gentamicin resistance cassette and homologous recombination. PCA production was assayed in PPM media. It was showed that the relA mutation resulted in a significant enhancement of PCA production. PCA production of M 18RAG was about 1.5 to 2 times as much as that of the wild-type strain. The negative regulation of RelA on PCA biosynthesis and its gene expression was further confirmed by the trans complementation test of relA gene and the expression analysis of phzA '-'lacZ translational fusion.%假单胞菌M18是一株能同时合成吩嗪-1-羧酸(PCA)和藤黄绿菌素两种抗生素的植物根际分离细菌.RelA催化合成的效应分子ppGpp能介导细菌因营养饥饿引起的应激反应.以M18菌株染色体DNA为模板,PCR扩增获得relA基因,通过庆大霉素抗性片段插入失活与同源重组技术,构建假单胞菌M18的relA突变菌株M18RAG.在PPM培养基中进行PCA发酵分析,发现突变菌株M18RAG的PCA产量显著升高,约为野生型菌株的1.5-2倍.relA基因反式互补实验以及phzA'-'lacZ翻译融合测定结果,均进一步证明了RelA对PCA生物合成及其基因表达具有抑制作用.

  13. Temperature-sensitive Mutants of Sindbis Virus: Biochemical Correlates of Complementation

    Science.gov (United States)

    Burge, Boyce W.; Pfefferkorn, E. R.

    1967-01-01

    Temperature-sensitive mutants of Sindbis virus fail to grow at a temperature that permits growth of the wild type, but when certain pairs of these mutants, mixed together, infect cells at that temperature, viral growth (i.e., complementation) occurs. The yield from this complementation, however, is of the same order of magnitude as the infectivity in the inoculum. Since in animal virus infections the protein components of the virion probably enter the cell with the viral nucleic acid, it was necessary to demonstrate that the observed complementation required synthesis of new viral protein and nucleic acid rather than some sort of rearrangement of the structural components of the inoculum. To demonstrate that complementation does require new biosynthesis, three biochemical events of normal virus growth have been observed during complementation and correlated with the efficiency of viral growth seen in complementation. These events include: (i) entrance of parental viral ribonucleic acid (RNA) into a double-stranded form; (ii) subsequent synthesis of viral RNA; and (iii) synthesis and subsequent incorporation of viral protein(s) into cell membranes where they were detected by hemadsorption. Although the infecting single-stranded RNA genome of the wild type was converted to a ribonuclease-resistant form, the genome of a mutant (ts-11) incapable of RNA synthesis at a nonpermissive temperature was not so converted. However, during complementation with another mutant also defective in viral RNA synthesis, some of the RNA of mutant ts-11 was converted to a ribonuclease-resistant form, and total synthesis of virus-specific RNA was markedly enhanced. The virus-specific alteration of the cell surface, detected by hemadsorption, was also extensively increased during complementation. These observations support the view that complementation between temperature-sensitive mutants and replication of wild-type virus are similar processes. PMID:5630228

  14. Amphid defective mutant of Caenorhabditis elegans.

    Science.gov (United States)

    De Riso, L; Ristoratore, F; Sebastiano, M; Bazzicalupo, P

    1994-01-01

    Studies are reported on a chemoreception mutant which arose in a mutator strain. The mutant sensory neurons do not stain with fluoresceine isothiocyanate (Dyf phenotype), hence the name, dyf-1, given to the gene it identifies. The gene maps on LGI, 0.4 map units from dpy-5 on the unc-11 side. The response of mutant worms to various repellents has been studied and shown to be partially altered. Other chemoreception based behaviors are less affected. The cilia of the sensory neurons of the amphid are shorter than normal and the primary defect may be in the capacity of the sheath cells to secrete the matrix material that fills the space between cilia in the amphid channel. Progress toward the molecular cloning of the gene is also reported. Relevant results from other laboratories are briefly reviewed. PMID:7896139

  15. Aging Kit mutant mice develop cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lei Ye

    Full Text Available Both bone marrow (BM and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit(+ cells counts and ii. the stability of left ventricular (LV contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography in two groups of Kit mutant (W/Wv and W41/W42 and in wild type (WT mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF and LV fractional shortening rates (FS were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit(+ cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit(+ cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal.

  16. Behavioral characterization of system xc- mutant mice.

    Science.gov (United States)

    McCullagh, Elizabeth A; Featherstone, David E

    2014-05-15

    The slc7a11 gene encodes xCT, an essential component of 'system xc-', a plasma membrane exchanger that imports cystine and exports glutamate. Slc7a11 is expressed primarily in the brain, but its role there is not clear. We performed behavioral tests on two different strains of homozygous slc7a11 mutant mice ('sut' and 'xCT'), as well as heteroallelic offspring of these two strains ('xCT/sut') and their associated genetic backgrounds. Homozygous sut mutant males showed reduced spontaneous alternation in spontaneous alternation tasks as well as reduced movement in an open field maze, but xCT and xCT/sut strains did not show significant changes in these tasks compared to appropriate controls. Neither xCT nor sut mutants showed differences from controls in rotarod tests. Female behavioral phenotypes were independent of estrus cycle stage. To ensure that homozygous xCT, sut, and xCT/sut strains all represent protein null alleles, we measured whole brain xCT protein levels using immunoblots. xCT, sut and xCT/sut strains showed no detectable xCT protein expression, confirming them as null alleles. Previously published microdialysis experiments showed reduced striatal glutamate in xCT mutants. Using the same methods, we measured reduced interstitial glutamate levels in the striatum but not cerebellum of sut mutants. However, we detected no glutamate change in the striatum or cerebellum of sut/xCT mice. We detected no changes in whole brain EAAT-1, -2, or -3 expression. We conclude that the behavioral and chemical differences exist between slc7a11 mutant strains, but we were unable to definitively attribute any of these differences to loss of system xc-.

  17. Mutants of complement component C3 cleaved by the C4-specific C1-s protease.

    OpenAIRE

    Mathias, P; Carrillo, C J; Zepf, N E; Cooper, N R; Ogata, R T

    1992-01-01

    To identify some of the structural features determining specific protease recognition of complement components C3 and C4, we used site-specific mutagenesis to construct mutants of murine C3 that are cleaved by the C4-specific C1-s protease. Insertion of three amino acid residues corresponding to residues at the C1-s cleavage site of human C4 into murine C3 at the analogous C3 convertase cleavage site was adequate to render the mutant protein susceptible to C1-s cleavage. In addition, insertio...

  18. Effect of plant growth regulators on leaf anatomy of the has mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Janosević, D; Uzelac, B; Budimir, S

    2008-12-01

    In this study, the effect of plant growth regulators on leaf morphogenesis of the recessive T-DNA insertion mutant of Arabidopsis thaliana was analyzed. The morpho-anatomical analysis revealed that leaves of the has mutant are small and narrow, with lobed blades and disrupted tissue organization. When has plants were grown on the medium supplied with plant growth regulators: benzylaminopurine (BAP) or ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), the leaf anatomy was partially restored to the wild type, although plants still exhibited morphological abnormalities.

  19. Production of Coenzyme A by a Mutant of Brevibacterium ammoniagenes Resistant to Oxypantetheine

    OpenAIRE

    Shimizu, Sakayu; Esumi, Akihiko; Komaki, Ryohei; Yamada, Hideaki

    1984-01-01

    For improved production of coenzyme A (CoA), a mutant of Brevibacterium ammoniagenes IFO127071 resistant to oxypantetheine, the corresponding oxygen analog of pantetheine, was obtained. In the mutant, activity of pantothenate kinase (EC 2.7.1.33), the first-step enzyme for the biosynthesis of CoA from pantothenic acid, l-cysteine, and ATP, was about threefold higher than that in the parent strain. As the main regulation mechanism of CoA biosynthesis in this bacterium is negative feedback inhi...

  20. Lactose permease of Escherichia coli: properties of mutants defective in substrate translocation.

    OpenAIRE

    Overath, P; Weigel, U.; Neuhaus, J M; Soppa, J; Seckler, R.; Riede, I; Bocklage, H; Müller-Hill, B; Aichele, G; Wright, J K

    1987-01-01

    Mutants of lactose permease of Escherichia coli with amino acid changes (Gly-24----Glu; Gly-24----Arg; Pro-28---Ser; Gly-24, Pro-28----Glu-Ser and Gly-24, Pro-28----Arg-Ser) within a putative membrane-spanning alpha-helix (Phe-Gly-Leu-Phe-Phe-Phe-Phe-Tyr-Phe-Phe-Ile-Met-Gly- Ala-Tyr-Phe-Pro-Phe-Phe-Pro-Ile) are incorporated into the cytoplasmic membrane. The mutant proteins retain the ability to bind galactosides, and the affinity for several substrates is actually increased. However, the rat...

  1. Prediction of mutant activity and its application in molecular design of tumor necrosis factor-a

    Institute of Scientific and Technical Information of China (English)

    唐卫东; 奚涛; 王波; 郭冬林; 徐贤秀; 朱德煦

    1997-01-01

    Two models for prediction of the activity and stability of site-directed mutagenesis on tumor necrosis factor-α are established. The models are based on straightforward structural considerations, which do not require the elaboration of site-directed mutagenesis on the protein core and the hydrophobic surface area by analyzing the properties of the mutated amino acid residues. The reliabilities of the models have been tested by analyzing the mutants of tumor necrosis factor-α (TNF-α) whose two leucine residues (L29, L157) were mutated. Based on these models, a TNF-α mutant with high activity was created by molecular design.

  2. Helicobacter pylori arginase mutant colonizes arginase Ⅱ knockout mice

    Institute of Scientific and Technical Information of China (English)

    Songhee H Kim; Melanie L Langford; Jean-Luc Boucher; Traci L Testerman; David J McGee

    2011-01-01

    AIM: To investigate the role of host and bacterial argi-nases in the colonization of mice by Helicobacter pylori (H. Pylori).METHODS: H. Pylori produces a very powerful urease that hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Urease is absolutely essential to H. Pylori pathogenesis; therefore, the urea substrate must be in ample supply for urease to work efficiently. The urea substrate is most likely provided by arginase activity, which hydrolyzes L-arginine to L-ornithine and urea. Previous work has demonstrated that H. Pylori arginase is surprisingly not required for colonization of wild-type mice. Hence, another in vivo source of the critical urea substrate must exist. We hypothesized that the urea source was provided by host arginase Ⅱ, since this enzyme is expressed in the stomach, and H. Pylori has previously been shown to induce the expres-sion of murine gastric arginase Ⅱ. To test this hypoth-esis, wild-type and arginase (rocF) mutant H. Pylori strain SS1 were inoculated into arginase Ⅱ knockout mice. RESULTS: Surprisingly, both the wild-type and rocF mutant bacteria still colonized arginase Ⅱ knock-out mice. Moreover, feeding arginase Ⅱ knockout mice the host arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC), while inhibiting > 50% of the host arginase Ⅰactivity in several tissues, did not block the ability of the rocF mutant H. Pylori to colonize. In con-trast, BEC poorly inhibited H. Pylori arginase activity. CONCLUSION: The in vivo source for the essential urea utilized by H. Pylori urease is neither bacterial arginase nor host arginase Ⅱ; instead, either residual host arginase Ⅰor agmatinase is probably responsible.

  3. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.

    Science.gov (United States)

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  4. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    OpenAIRE

    ÇEVİK, Bayram; Richard F. Lee; NIBLETT, Charles L.

    2012-01-01

    Citrus paradisi Macfad. ‘Duncan’ was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from a CTV genome and used to generate the wild-type and 2 mutant RdRp constructs for plant transformation. One mutant had the key amino acids GDD changed to AAA (RdRp-mGDD), and the second mutant had a deletio...

  5. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  6. Straight Mutants of Spirillum volutans Can Swim

    OpenAIRE

    Padgett, P. J.; Friedman, M. W.; Krieg, N R

    1983-01-01

    Nonhelical mutant cells of Spirillum volutans ATCC 19554 can swim as fast as the helical cells. Consequently, a helical cell shape is not required for motility of this species, and the function of the polar flagellar fascicles is not merely to cause rotation, and therefore translocation, of the corkscrew-shaped cell.

  7. A dominant semi dwarf mutant in rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In the winter of 1997, a semi dwarf mutant was found in the F6 population of M9056/ R8018 xuan in Hainan Province. In the spring of 1998, the seeds were sown in Hefei, Anhui Province and the plant height of the population was measured at maturity.

  8. Induced mutants for cereal grain protein improvement

    International Nuclear Information System (INIS)

    Out of 17 papers and one summary presented, six dealing with the genetic improvement of seed protein using ionizing radiations fall within the INIS subject scope. Other topics discussed were non-radiation induced mutants used for cereal grain protein improvement

  9. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Institute of Scientific and Technical Information of China (English)

    Liu Qingmei; Yao Jianming; Pan Renrui; Yu Zengliang

    2005-01-01

    As reported in this paper, a strain of oil-degrading bacterium Sp- 5- 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery(MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 10TM N+/cm2 of dose - the optimum condition, a mutant,S - 34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  10. Changes in Thermostability of Photosystem Ⅱ and Leaf Lipid Composition of Rice Mutant with Deficiency of Light-harvesting Chlorophyll Protein Complexes

    Institute of Scientific and Technical Information of China (English)

    Yunlai Tang; Mei Chen; Yinong Xu; Tingyun Kuang

    2007-01-01

    We studied the difference in thermostability of photosystem Ⅱ (PSⅡ) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghua11. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSⅡ photochemistry (Fv/Fm) and oxygen-evolving activity of PSⅡ in leaves significantly decreased with increasing temperature. However, the PSⅡ activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of unsaturation of membrane lipids on the thermostability of PSll are discussed.

  11. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  12. Evaluation of high yielding mungbean mutants

    International Nuclear Information System (INIS)

    Mungbean is the second major (Vigna radiata (L.) Wilczek) pulse crop in Pakistan, after chickpea, and is the main pulse crop grown during the spring season in the province of Sindh. Its yield is very low (450 kg/ha) which is mainly due to the non-availability of pure seed of high yield potential genotypes. Keeping in view the importance of induced mutations in all field crops and particularly in the evolution of mungbean cultivars, an induced mutation programme was initiated at AEARC, Tandojam during 1985. Since then a large number of mutants have been developed and are at various stages of evaluation. Among them two mungbean mutants (AEM 6/20 and AEM 32/20) isolated from the treated population of a local cultivar '6601' with 200 Gy gamma-ray treatment gave very encouraging performance in station as well as zonal trials. On the basis of these results they were promoted in the National Trials, where they remained under evaluation for four years during spring as well as summer seasons. The pool data of four consecutive years of both seasons indicated that mutant lines AEM 32/20 and AEM 6/20 produced 1298 and 1246 kg/ha grain yield respectively as compared to the check variety 'NM 121-25' (1055 kg/ha) evolved at NIAB, Faisalabad through induced mutations. The seed yield increase over the check variety ranged from 18-23%. These two mungbean mutants have short stature combined with short duration and synchrony in maturity. Keeping in view the outstanding performance of these mutant lines, variety release proposals are being submitted to the Technical Sub-Committee for approval of varieties and techniques

  13. Application of gamma rays for induction of tolerance mutants to environmental stress conditions in canola

    International Nuclear Information System (INIS)

    The present study aimed to induce useful mutations in canola possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sina (saline) and Inshas (harsh and poor fertility). Canola seeds of four varieties (Serow 4, Serow 6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). Thirty mutant plants for number of pods/plant and changes in morphological criteria were selected at M2 generation. The mutants at M3 generation confirmed that induction of mutant lines possessed higher number of pods and seed yield/plant than the mother varieties. The mutant lines possessed homogeneity at M3 generation were 5, 8,10, 11, 18 and 22 at serow 4, 38 and 45 at serow 6, 63 and 66 at Pactol and mutant lines 74,75, 78,92 at Evita. Highest number of pods/plant (110) was recorded at line 74 derived from Evita variety. The results were appeared the same trend for seed yield/plant with number of pods/plant, the lines which possessed high number of pods/plant were had high seed yield/plant. The results at M4 and M5 generations for 13 homogeneity mutant lines selected from M3 generation contained different response of mutant genotypes for different conditions on the bases of number of pods and seed yield/plant. Promising mutant lines were detected under both conditions possessed significant increases at both M4 and M5 generations. Oil percent as well as acid value at M4 and M5 were recorded the highest mean value was found at Inshas in line 75 and the lowest acid value was noticed at line 5. Finally nine mutant lines possessed promising traits of this study, lines 11, 66 and 87 under both conditions (Suder and Inshas), lines 8, 38 and 63 under Ras-Sudr and lines 74, 75 and 92 under Inshas condition.

  14. Kinetic stability of designed glycosylation mutants of Coprinus cinereus peroxidase.

    Science.gov (United States)

    Tams, J W; Welinder, K G

    2001-08-31

    The effect of glycans and surface mutations on protein unfolding induced by heat or urea has been studied. Removal of the only native high mannose type glycan in the N142P, N142T, and N142D CIP mutants reduced the lifetime to half of that of wtCIP at irreversible conditions of unfolding. The effect was moderate at reversible conditions. Five glycomutants designed to have 0, 1, 2, 4 and 6N glycans showed a correlation between increased carbohydrate mass and increased stability toward irreversible unfolding. The results are in agreement with a dampening effect of glycans on backbone fluctuation in both the native and the unfolded states. However, experiments in reversible conditions were less clear because of additional effects of an increasing number of amino acid substitutions and aggregation. Examples of strong effects from minor surface changes were also observed.

  15. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    International Nuclear Information System (INIS)

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well

  16. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage.

    Science.gov (United States)

    Comeaux, Evan Q; Cuya, Selma M; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C; Mobley, James A; Bjornsti, Mary-Ann; van Waardenburg, Robert C A M

    2015-03-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.

  17. Genetic study of necrotic leaf pea (Pisum sativum L.) mutants

    International Nuclear Information System (INIS)

    Four pea (Pisum sativum L.) mutants characterized by necrotic leaves were isolated following mutagenesis. The mutants were shown to have single-gene recessive inheritance, characterized morphologically and for seed production. New mutants 1/704, 1/711M, XV/915 and 2/352 had similar phenotypes, respectively, to previously named mutants dgl (degenerating leaves), nec (necrosis), bls (brown leaf spots) and bls (brown leaf), but no allelism tests were made between the new and the previously reported mutants. Mutants 1/704 and 1/711M were shown to be non-allelic. The mutation in line 2/352 may be useful as a genetic marker

  18. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum.

    Science.gov (United States)

    Xu, Liangsheng; Xiang, Meichun; White, David; Chen, Weidong

    2015-08-01

    The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50 mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV-induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim was made without fulfilling the molecular Koch's postulates because the UV mutants are genetically undefined and harbour a developmental defect in sclerotial production. Here, we generated oxalate-minus mutants of S. sclerotiorum using two independent mutagenesis techniques, and tested the resulting mutants for growth at different pHs and for pathogenicity on four host plants. The oxalate-minus mutants accumulated fumaric acid, produced functional sclerotia and have reduced ability to acidify the environment. The oxalate-minus mutants retained pathogenicity on plants, but their virulence varied depending on the pH and buffering capacity of host tissue. Acidifying the host tissue enhanced virulence of the oxalate-minus mutants, whereas supplementing with oxalate did not. These results suggest that it is low pH, not oxalic acid itself, that establishes the optimum conditions for growth, reproduction, pathogenicity and virulence expression of S. sclerotiorum. Exonerating oxalic acid as the primary pathogenicity determinant will stimulate research into identifying additional candidates as pathogenicity factors towards better understanding and managing Sclerotinia diseases. PMID:25720941

  19. Phenotypic analysis and molecular characterization of an allelic mutant of the D61 gene in rice

    Directory of Open Access Journals (Sweden)

    Yanan Gao

    2014-08-01

    Full Text Available Brassinosteroids (BRs are a class of plant-specific steroidal hormones that play important roles in multiple biological processes. In this paper, a classic rice mutant gsor300084, showing erect leaves and semi-dwarf stature, was characterized. Morphological analysis in darkness showed that the mesocotyl of the gsor300084 mutant did not elongate when grown in darkness. Coleoptile elongation and root growth were less affected by the exogenous application of brassinolide (BL, the most active form of BR, in gsor300084 than in the wild-type rice variety Matsumae. Lamina joint bending analysis also showed that gsor300084 was less sensitive to exogenous BL than Matsumae. These results suggested that the gsor300084 mutant is defective in BR sensitivity. Map-based cloning indicated that gsor300084 is a novel allelic mutant of the DWARF61 (D61 gene, which encodes the putative BR receptor OsBRI1. A single-base mutation appears in the LRR domain of OsBRI1, changing the 444th amino acid from tryptophan (W to arginine (R. Subcellular localization analysis suggested that both the wild-type and mutant OsBRI1 protein are localized at the cytoplasmic membrane. Structure modeling revealed that the W444R substitution may affect the perception of BRs by the LRR domain.

  20. Interaction of interleukin-2 (IL-2) mutant proteins with interleukin-2 receptors

    International Nuclear Information System (INIS)

    The authors have previously produced several human IL-2 mutant proteins by site specific mutagenesis. Deletion or substitution of alanine for cysteine at positions 58 and 105 results in the decrease of biological activities. Substitution of serine for cysteine at position 125 does not affect the activity, however, deletion of this cysteine or amino acids in its vicinity causes a dramatic loss of activity. In this study, the interaction of these mutant proteins with IL-2 receptors has been analyzed by evaluating the competition between these mutant proteins and recombinant DNA derived IL-2 (rIL-2) for the binding to murine CTLL-2, an IL-2 dependent cell line. Addition of unlabeled rIL-2 (1 x 10-11 to 10-7M) inhibited the binding of I125-labeled rIL-2 (1 x 10-10M, specific activity 39.6 uCi/mg) to CTLL-2 cells in a concentration dependent manner. Mutant proteins with substitution of alanine for cysteine at position 58 (Ala 58) or deletion of cysteine at position 125 (Des-Cys 125) required a 100-fold higher concentration than rIL-2 to reach 50% inhibition. These results indicate that the decrease of biological activity in mutant proteins is partly, if not primarily, due to the attenuation in their abilities to bind IL-2 receptors

  1. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  2. Survival and mutant production induced by mutagenic agents in Metarhizium anisopliae Sobrevivência e obtenção de mutantes induzidos por agentes mutagênicos em Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    V. Kava - Cordeiro

    1995-12-01

    Full Text Available A wild strain of Metarhizium anisopliae, an entomopathogenic fungus, was submitted to three mutagenic agents: gamma radiation, ultraviolet light and nitrous acid. Survival curves were obtained and mutants were selected using different mutagenic doses which gave 1 to 5% survival. Morphological and auxotrophic mutants were isolated. Morphological mutants were grouped in a class with yellow conidia and other with pale vinaceous conidia as opposed to the green wild type conidia. Auxotrophic mutants had requirements for vitamin and aminoacid biosynthesis. More than 58% of the total auxotrophk mutants required proline/aipnine. Gamma radiation showed to be the most efficient mutagenic agent giving 0.2% of auxotrophk mutants followed by ultraviolet light (0.12% and nitrous acid (0.06%.The conidial colour and auxotrophk mutants isolated until now from M. anisopliae were reviewed.Uma linhagem selvagem do fungo entomopatogênico Metarhizium anisopliae foi submetida à ação de três agentes mutagênicos: radiação gama, luz ultravioleta e ácido nitroso. Curvas de sobrevivência foram obtidas para cada mutagênicos utilizado e mutantes foram selecionados a partir de doses dos mutagênicos que proporcionassem de 1 a 5% de sobrevivência. Mutantes morfológicos para a coloração de conídios e mutantes auxotróficos foram isolados. Mutantes para coloração de conidios foram agrupados em duas classes, uma com conídios amarelos e outra com conídios vinho pálido. Os mutantes auxotróficos obtidos foram deficientes para aminoácidos e vitaminas e mais de 58% deles eram auxotróficos para prolina/argmina. Radiação gama foi o mutagênico mais eficiente com uma porcentagem de obtenção de mulantes auxotróficos de aproximadamente 0,2%, seguido pela luz ultravioleta (0.12% e pelo ácido nitroso (0.06%.Os mulantes morfológicos e auxotróficos obtidos até o momento em Metarhizium anisopliae foram revistos.

  3. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  4. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  5. Mutants of Micromonospora viridifaciens sialidase have highly variable activities on natural and non-natural substrates

    DEFF Research Database (Denmark)

    Jers, Carsten; Guo, Yao; Kepp, Kasper Planeta;

    2015-01-01

    This study aimed to improve the hydrolase activity of the well-characterised bacterial sialidase from Micromonospora viridifaciens. The enzyme and its mutated versions were produced in Bacillus subtilis and secreted to the growth medium. Twenty amino acid positions in or near the active site were...... by natural evolution, major changes in chemical properties are advantageous, and these changes tend to correlate with decreased stability, partly explaining commonly observed trade-offs between stability and proficiency....... subjected to site-saturation mutagenesis and evaluated on the artificial sialidase substrate 2-O-(p-nitrophenyl)-α-d-N-acetylneuraminic acid and on the natural substrate casein glycomacropeptide. A considerably higher fraction of the mutants exhibited increased activity on the artificial substrate compared...... with the natural one, with the most proficient mutant showing a 13-fold improvement in kcat/Km. In contrast, no mutants displayed more than a 2-fold increase in activity on the natural substrate. To gain further insight into this important discrepancy, we analysed the stability of mutants using the Po...

  6. Characterization of a non-pigment producing Monascus purpureus mutant strain.

    Science.gov (United States)

    Rasheva, Tanya V; Nedeva, Trayana S; Hallet, Jean-Noel; Kujumdzieva, Anna V

    2003-01-01

    A characterization of a non-pigment producing mutant Monascus purpureus M12 compared with its parental strain Monascus purpureus Went CBS 109.07 has been performed aiming to investigate the relation between pigment biosynthesis and other characteristics of these fungi. A comparison has been made of morphological features, some physiological properties and biochemical activities of both strains. The albino mutant exhibits an anamorph life cycle, high conidia forming capability, slower radial growth rate and temperature sensitivity. The assimilation capacity of both strains for mono-, disaccharides and some alcohols is in the same range (Yx/c 0.2 - 0.35), while the red strain has a higher fermentation capacity. In a selected albino mutant, the growth rate, metabolic activity and capacity for production of typical for Monascus fungi secondary metabolites were reduced considerably. Hydrolytic activity towards natural substrates expressed through glucoamylase and protease was approximately 10 fold lower in the non pigment producing strain (0.05 - 0.08 U/mg protein and 0.01 - 0.07 U/mg protein respectively) compared with the red one. Important qualitative differences between both strains was found in fatty acid composition and in the production of citrinin and monacolin. The mutant strain possessed C17, C20 and C22 fatty acids and did not produce citrinin. PMID:12777069

  7. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    International Nuclear Information System (INIS)

    Highlights: • We analyse kafirin protein polymorphisms induced by gamma irradiation in sorghum. • One mutant with suppressed kafirins in the endosperm accumulated them in the germ. • Kafirin polymorphisms were associated with high levels of free amino acids. • Nutritional value of sorghum can be improved significantly by induced mutations. - Abstract: Physical and biochemical analysis of protein polymorphisms in seed storage proteins of a mutant population of sorghum revealed a mutant with redirected accumulation of kafirin proteins in the germ. The change in storage proteins was accompanied by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa γ-, 24 kDa α-A1 and the 22 kDa α-A2 kafirins in the endosperm. The suppression of kafirins was counteracted by an upsurge in the synthesis and accumulation of albumins, globulins and other proteins. The data collectively suggest that sorghum has huge genetic potential for nutritional biofortification and that induced mutations can be used as an effective tool in achieving premium nutrition in staple cereals

  8. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Mehlo, Luke, E-mail: LMehlo@csir.co.za [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Mbambo, Zodwa [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Bado, Souleymane [Plant Breeding and Genetics Laboratory – Joint FAO/IAEA Agriculture and Biotechnology Laboratory, International Atomic Energy Agency Laboratories, A-2444 Seibersdorf (Austria); Lin, Johnson [Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Moagi, Sydwell M.; Buthelezi, Sindisiwe; Stoychev, Stoyan; Chikwamba, Rachel [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa)

    2013-09-15

    Highlights: • We analyse kafirin protein polymorphisms induced by gamma irradiation in sorghum. • One mutant with suppressed kafirins in the endosperm accumulated them in the germ. • Kafirin polymorphisms were associated with high levels of free amino acids. • Nutritional value of sorghum can be improved significantly by induced mutations. - Abstract: Physical and biochemical analysis of protein polymorphisms in seed storage proteins of a mutant population of sorghum revealed a mutant with redirected accumulation of kafirin proteins in the germ. The change in storage proteins was accompanied by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa γ-, 24 kDa α-A1 and the 22 kDa α-A2 kafirins in the endosperm. The suppression of kafirins was counteracted by an upsurge in the synthesis and accumulation of albumins, globulins and other proteins. The data collectively suggest that sorghum has huge genetic potential for nutritional biofortification and that induced mutations can be used as an effective tool in achieving premium nutrition in staple cereals.

  9. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii[OPEN

    Science.gov (United States)

    Gang, Spencer S.; Blum, Sean R.; Ivanova, Nina; Yue, Rebecca; Grossman, Arthur R.

    2016-01-01

    The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids. PMID:26764374

  10. PNRI mutant variety: sansevieria 'Sword of Ibe'

    International Nuclear Information System (INIS)

    Sansevieria 'Sword of Ibe,' registered by the Philippine Nuclear Research Institute as NSIC 2008 Or-66, is a chlorophyll mutant of Sansevieria trifasciata 'Moonshine' developed by treating its suckers or shoots arising from a rhizome with acute gamma radiation from a Cobalt-60 source. The new mutant is identical in growth habit and vigor to Sansevieria 'Moonshine,' also known as Moonglow. Results of this mutation breeding experiment showed that leaf color and flowering were altered by gamma irradiation without changing the other characteristics of the plant. Propagation is true-to-type by separation of sucker and top cutting. The plant is recommended for use as landscaping material and as pot plant for indoor and outdoor use. The leaves may be harvested as cut foliage for Japanese flower arrangements. (author)

  11. Genetic Analysis of Dictyostelium Slug Phototaxis Mutants

    OpenAIRE

    Darcy, P. K.; Wilczynska, Z.; Fisher, P R

    1994-01-01

    Mapping and complementation analysis with 17 phototaxis mutations has established 11 complementation groups phoA-phoK distributed over six linkage groups. Statistical calculations from the complementation data yielded 17 as the maximum likelihood estimate of the number of pho genes assuming all loci are equally mutable. Most of the phototaxis mutants were found to exhibit bimodal phototaxis and all were found to be impaired in positive thermotaxis supporting convergence of the photosensory an...

  12. Characterization of a Legionella micdadei mip mutant

    DEFF Research Database (Denmark)

    O'Connell, W A; Bangsborg, Jette Marie; Cianciotto, N P

    1995-01-01

    The pathogenesis of Legionella micdadei is dependent upon its ability to infect alveolar phagocytes. To better understand the basis of intracellular infection by this organism, we examined the importance of its Mip surface protein. In Legionella pneumophila, Mip promotes infection of both human m...... into the phagocyte. Similarly, the mutant was less able to parasitize Hartmannella amoebae. Taken together, these data argue that Mip specifically potentiates intracellular growth by L. micdadei....

  13. Selection of Bacillus subtilis mutants impaired in ammonia assimilation.

    OpenAIRE

    Dean, D R; Aronson, A I

    1980-01-01

    The selection of Bacillus subtilis mutants capable of using D-histidine to fulfill a requirement for L-histidine resulted in mutants with either no glutamate synthase activity or increased amounts of an altered glutamine synthetase.

  14. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R4M18) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L25 and L32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  15. Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels

    International Nuclear Information System (INIS)

    Highlights: ► Growth/fatty acid content difference of Nannochloropsis sp and its’ wild type. ► Alga cultured with 1% CO2 in two light conditions 140 and 300 μmol photons m−2 s−1. ► Growth in biomass/chlorophyll/lipid content is higher in higher light conditions. ► Mutant LARB-202-3 had better growth and lipid content compared to other two mutants. ► The LARB-202-3 mutant is a candidate for feed stock for biofuels production. -- Abstract: To select microalgae with a high biomass, chlorophyll a, lipid, and fatty acid content of two mutants (LARB-202-2 and LARB-202-3) and their parent wild type of the unicellular green alga Nannochloropsis sp were cultured with air containing 1% CO2 for a week in 1 L bubbled tubes with continuous illumination at 140 or 300 μmol photons m−2 s−1. Overall biomass productivity of all three strains were higher under high light (HL, 300 μmol photons m−2 s−1) with LARB-202-3 achieving the highest volumetric productivity (0.9 g L−1 d−1) and parent wild type the lowest (0.72 g L−1 d−1) when cultured for 6 days with medium nitrogen level. Biomass productivity of all three strains were substantially low in response to low light (LL, 140 μmol photons m−2 s−1) growth conditions. However, LARB-202-3 showed the highest biomass productivity (0.74 g L−1 d−1) under LL conditions too. LARB-202-3 possessed high photosynthetic productivity as measured by chlorophyll a (Chl a) content under HL conditions throughout the growth period. The content of Chl a declined gradually in all three tested strains over time. Volumetric productivity of biomass was closely associated with the cellular content of Chl a. Total lipid productivity of LARB-202-2 and LARB-202-3 grown in low nitrogen media for 12 days were 273 and 297 mg L−1 d−1, respectively, while that of wild type parent was 244 mg L−1 d−1. Major medium chain fatty acids (e.g. C14:0 and C16:0) make up nearly 63% of total fatty acids in all three strains. No

  16. Construction of LuxS gene deletion of Streptococcus mutans and evaluation of the acid tolerance of the mutant%变异链球菌LuxS基因缺陷株的建立及其耐酸能力的研究

    Institute of Scientific and Technical Information of China (English)

    韩福胜; 韩玉植; 刘宇霞

    2010-01-01

    Objective To construct Streptococcus mutans UA159 mutants with deletion of LuxS gene related to quorum-sensing pathway and evaluate the aciduricity of the mutants. Methods Using S. mutans UA159 as materials, the PCR fragments of the upstream and downstream regions of LuxS and erythromycin resistance(Eymr) gene of PJT10 were cloned into plasmid PUC19. The resulting constructs were integrated into the chromosome of S. mutans. LuxS gene deletion mutant was then constructed in S. mutans by means of allelic exchange and selected for resistance to erythromycin. The aciduric ability of the mutant under different pH was measured and S. mutans UA159 was used as control. Results The LuxS-deleted status of S. mutans mutants were confirmed by various PCR and DNA sequencing. The results showed that Eymr gene take the place of LuxS gene, while the mutant can not induce bioluminescenece. The LuxS mutant strain displayed a decreased growth ability with the decreasing pH values compared to those of the wild-type strain UA159. Conclusion A LuxS-negative mutants of S. mutans is constructed. The LuxS quorum sensing system is involved in the regulation of aciduricity of S. mutans UA159.%目的 建立LuxS基因缺失的变异链球菌突变菌株,并对突变株的耐酸能力进行研究.方法 以变异链球菌UA159为材料,运用基因重组方法将红霉素抗性基因(Eymr)与LuxS基因上下游区域的2个基因片段按一定顺序重组到质粒载体PUC19的多克隆位点中,获得了具有红霉素抗性的重组质粒,将载体质粒转化到含完整LuxS基因的变异链球菌UA159中,利用红霉素抗性筛选出LuxS基因缺失的突变株.检测变异链球菌LuxS基因突变菌株在不同pH环境下生长情况,并以正常菌株为对照.结果 PCR基因扩增结果显示,突变株LuxS基因已被Eymr基因完全替换,不能再编码合成AI-2(autoinducer 2)信号分子,扩增产物经DNA测序证实筛选得到了LuxS基因缺失的突变株,并

  17. Molecular characterization of phycobilisome regulatory mutants of Fremyella diplosiphon.

    OpenAIRE

    Bruns, B U; Briggs, W R; Grossman, A R

    1989-01-01

    Three classes of pigment mutants were generated in Fremyella diplosiphon in the course of electroporation experiments. The red mutant class had high levels of phycoerythrin in both red and green light and no inducible phycocyanin in red light. Thus, this mutant behaved as if it were always in green light, regardless of light conditions. Blue mutants exhibited normal phycoerythrin photoregulation, whereas the inducible phycocyanin was present at high levels in both red- and green-light-grown c...

  18. A Mutant of Mycobacterium smegmatis Defective in Dipeptide Transport

    OpenAIRE

    Bhatt, Achal; Green, Renee; Coles, Roswell; Condon, Michael; Connell, Nancy D.

    1998-01-01

    A mutant of Mycobacterium smegmatis unable to use the dipeptide carnosine (β-alanyl-l-histidine) as a sole carbon or nitrogen source was isolated. Carnosinase activity and the ability to grow on β-Ala and/or l-His were similar in the mutant and the wild type. However, the mutant showed significant impairment in the uptake of carnosine. This study is the first description of a peptide utilization mutant of a mycobacterium.

  19. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    OpenAIRE

    Verma, A.K.; Singh, R R

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  20. Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity

    Directory of Open Access Journals (Sweden)

    Verma A

    2010-01-01

    Full Text Available Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L. G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  1. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    Science.gov (United States)

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  2. Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowska, Marta; Szymańska, Aneta [University of Gdansk, Sobieskiego 18/19, 80-952 Gdansk (Poland); Borek, Dominika; Otwinowski, Zbyszek [University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816 (United States); Skowron, Piotr; Jankowska, Elżbieta, E-mail: elaj@chem.univ.gda.pl [University of Gdansk, Sobieskiego 18/19, 80-952 Gdansk (Poland)

    2013-04-01

    Val57 point mutants of human cystatin C, which were designed to assess the influence of changes in the properties of the L1 loop on the dimerization propensity, were structurally characterized. Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold was preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations.

  3. Radiation studies in Cajanus cajan: meiotic behaviour in some M/sub 2/ mutants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.S.N.; Akhaury, S.B. (Ranchi Univ. (India). Dept. of Botany)

    1982-01-01

    A qualitative study of the mutants produced in M/sub 2/ generation has been made. The mutants were classified as: (1) chlorophyll mutant, (2) morphological mutant, (3) pollen mutant, (4) semi-sterile and (5) sterile mutant. Cytological investigations of pollen mutants, sterile and semi-sterile mutants have revealed that these mutants generally arise at higher dose levels (20 Kr and 25 Kr).

  4. Selection of mutant Chinese hamster ovary cells altered glycoproteins by means of tritiated fucose suicide.

    OpenAIRE

    Hirschberg, C B; Baker, R.M.; Perez, M.; Spencer, L A; Watson, D

    1981-01-01

    Mutant Chinese hamster ovary cells altered in glycoproteins have been isolated by selecting for ability to survive exposure to [6-3H]fucose. Mutagenized wild-type cells were permitted to incorporate [3H]fucose to approximately 1 cpm of trichloroacetic acid-insoluble radioactivity per cell and then frozen for several days to accumulate radiation damage. The overall viability of the population was reduced by 5- to 50-fold. Four consecutive selection cycles were carried out. The surviving cells ...

  5. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    OpenAIRE

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC) and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitativ...

  6. Factors affecting phaeomelanin production by a melanin-producing (mel) mutant of Vibrio cholerae.

    OpenAIRE

    Ivins, B E; Holmes, R K

    1981-01-01

    In a previous study we isolated melanin-producing (mel) mutants of Vibrio cholerae and demonstrated that production of melanin during growth on solid media was stimulated by L-tyrosine and L-cysteine. In the studies reported here we analyzed factors that affected melanin production in liquid media and determined the abilities of radioactively labeled amino acids to serve as precursors for the formation of melanin by V. cholerae. Radioactivity from L-cysteine and from L-tyrosine was preferenti...

  7. Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent

    OpenAIRE

    1991-01-01

    A number of bacterial species secrete phosphatidylinositol-specific phospholipase C (PI-PLC). In this report, we show that the facultative intracellular bacterial pathogen, Listeria monocytogenes, contains a gene, plcA, predicting a polypeptide with 31% amino acid identity to a Bacillus thuringiensis PI-PLC. Accordingly, L. monocytogenes secretes PI-PLC activity, while a mutant with a transposon insertion in plcA lacks detectable PI-PLC activity. In addition, expression of plcA in B. subtilis...

  8. Transcriptome analysis of integument differentially expressed genes in the pigment mutant (quail during molting of silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Hongyi Nie

    Full Text Available In the silkworm Bombyx mori, pigment mutants with diverse body colors have been maintained throughout domestication for about 5000 years. The silkworm larval body color is formed through the mutual interaction of melanin, ommochromes, pteridines and uric acid. These pigments/compounds are synthesized by the cooperative action of various genes and enzymes. Previous reports showed that melanin, ommochrome and pteridine are increased in silkworm quail (q mutants. To understand the pigment increase and alterations in pigment synthesis in q mutant, transcriptome profiles of the silkworm integument were investigated at 16 h after head capsule slippage in the fourth molt in q mutants and wild-type (Dazao. Compared to the wild-type, 1161 genes were differentially expressed in the q mutant. Of these modulated genes, 62.4% (725 genes were upregulated and 37.6% (436 genes were downregulated in the q mutant. The molecular function of differently expressed genes was analyzed by Blast2GO. The results showed that upregulated genes were mainly involved in protein binding, small molecule binding, transferase activity, nucleic acid binding, specific DNA-binding transcription factor activity and chromatin binding, while exclusively down-expressed genes functioned in oxidoreductase activity, cofactor binding, tetrapyrrole binding, peroxidase activity and pigment binding. We focused on genes related to melanin, pteridine and ommochrome biosynthesis; transport of uric acid; and juvenile hormone metabolism because of their importance in integument coloration during molting. This study identified differently expressed genes implicated in silkworm integument formation and pigmentation using silkworm q mutant. The results estimated the number and types of genes that drive new integument formation.

  9. Comparison of the growth promoting activities and toxicities of various auxin analogs on cells derived from wild type and a nonrooting mutant of tobacco

    Energy Technology Data Exchange (ETDEWEB)

    Caboche, M.; Muller, J.F. (Institut National de la Recherche Agronomique, Versailles (France)); Chanut, F. (Centre National de la Recherche Scientifique, Gif-sur-Yvette (France)); Aranda, G.; Cirakoglu, S. (Laboratoire de Synthese organique de l' Ecole Polytechnique, Palaiseau (France))

    1987-01-01

    A naphthaleneacetic acid tolerant mutant isolated from a mutagenized culture of tobacco mesophyll protoplasts and impaired in root morphogenesis has been previously characterized by genetic analysis. To understand the biochemical basis for naphthaleneacetic acid resistance, cells derived from this mutant and from wild-type tobacco were compared for their ability to respond to various growth regulators. The growth promoting abilities and cytotoxicities of auxin analogs were different for mutant and wild-type cells. These different activities were not correlated with increased rate of conjugation or breakdown of the auxins by mutant cells. These observations, as well as previous studies on the interaction of the mutant with Agrobacterium, suggest that mutant resistance to auxins is not a result of a specific modification of the process by which auxins induce cell killing, but to a more general alteration of the cellular response to auxin. A screening of auxin-related molecules which induce cell death in wild-type cells but not mutant cells without promoting growth in either was performed. p-Bromophenyleacetic acid was found to display these characteristics.

  10. NUTRITIONAL AND BAKING QUALITY OF LOW PHYTIC ACID WHEAT

    Science.gov (United States)

    Phytic acid is the major storage form of phosphorus in wheat grain. Non-ruminant animals cannot utilize phytic acid phosphorus, and phytic acid reduces the nutritional availability of important minerals. We have identified a wheat mutant (Lpa1-1) with reduced phytic acid P and increased inorganic ...

  11. Clinical significance of hepatitis B surface antigen mutants

    Institute of Scientific and Technical Information of China (English)

    Nicola; Coppola; Lorenzo; Onorato; Carmine; Minichini; Giovanni; Di; Caprio; Mario; Starace; Caterina; Sagnelli; Evangelista; Sagnelli

    2015-01-01

    Hepatitis B virus(HBV) infection is a major public health problem in many countries, with nearly 300 million people worldwide carrying HBV chronic infection and over 1 million deaths per year due to cirrhosis and liver cancer. Several hepatitis B surface antigen(HBs Ag) mutations have been described, most frequently due to a single amino acid substitution and seldom to a nucleotide deletion. The majority of mutations are located in the S region, but they have also been found in the pre-S1 and pre-S2 regions. Single amino acid substitutions in the major hydrophilic region of HBs Ag, called the "a" determinant, have been associated with immune escape and the consequent failure of HBV vaccination and HBs Ag detection, whereas deletions in the pre-S1 or pre-S2 regions have been associated with the development of hepatocellular carcinoma. This review article will focus on the HBs Ag mutants and their biological and clinical implications.

  12. Development of Fatty Acid-Producing Corynebacterium glutamicum Strains

    OpenAIRE

    Takeno, Seiki; Takasaki, Manami; Urabayashi, Akinobu; Mimura, Akinori; Muramatsu, Tetsuhiro; Mitsuhashi, Satoshi; Ikeda, Masato

    2013-01-01

    To date, no information has been made available on the genetic traits that lead to increased carbon flow into the fatty acid biosynthetic pathway of Corynebacterium glutamicum. To develop basic technologies for engineering, we employed an approach that begins by isolating a fatty acid-secreting mutant without depending on mutagenic treatment. This was followed by genome analysis to characterize its genetic background. The selection of spontaneous mutants resistant to the palmitic acid ester s...

  13. Selective isolation of UV-sensitive Rhodopseudomonas sphaeroides mutants

    International Nuclear Information System (INIS)

    Application of penicillin selection method after UV irradiation (λ=254 nm) increases by an order efficiency of mutant selection sensible to ulraviolet radiation (uvs mutants), phototrophic bacterium Rhodopseudomonas sphaeroides induced with nitrosomethylurea (NMM). Over 30% of uvs mutants produced by means of this method possessed increased sensitivity not only to short-wave (sUV, λ=254 nm) but also to long-wave (lUV, λ>280 nm) UV radiations. No correlation in the degree of sensitivity of uvs mutants to sUV and lUV irradiations is discovered. Mutants, which are high-sensitive to lethal effect of lUV, are separated

  14. Differential reactivity of mouse monoclonal anti-HBs antibodies with recombinant mutant HBs antigens

    Institute of Scientific and Technical Information of China (English)

    Azam Roohi; Yaghoub Yazdani; Jalal Khoshnoodi; Seyed Mohammad Jazayeri; William F Carman; Mahmood Chamankhah; Manley Rashedan; Fazel Shokri

    2006-01-01

    AIM: To investigate the reactivity of a panel of 8 mouse anti-hepatitis B surface antigen (HBsAg) monoclonal antibodies (mAbs) using a collection of 9 recombinant HBsAg mutants with a variety of amino acid substitutions mostly located within the "a" region.METHODS: The entire HBs genes previously cloned into a mammalian expression vector were transiently transfected into COS7 cells. Two standard unmutated sequences of the ayw and adw subtypes served as controls. Secreted mutant proteins were collected and measured by three commercial diagnostic immunoassays to assess transfection efficiency. Reactivity of anti-HBs mAbs with mutated HBsAgs was determined by sandwich enzyme-linked immunosorbent assay (ELISA).RESULTS: Reactivity of anti-HBs mAbs with mutated HBsAgs revealed different patterns. While three mutants reacted strongly with all mAbs, two mutants reacted weakly with only two mAbs and the remaining proteins displayed variable degrees of reactivity towards different mAbs. Accordingly, four groups of mAbs with different but overlapping reactivity patterns could be envisaged. One group consisting of two mAbs (37C5-S7 and 35C6-S11) was found to recognize stable linear epitopes conserved in all mutants. Mutations outside the "a"determinant at positions 120 (P→S), 123(T→N) and 161(M→T) were found to affect reactivity of these mAbs.CONCLUSION: Our findings could have important implications for biophysical studies, vaccination strategies and immunotherapy of hepatitis B virus (HBV) mutants.

  15. Expression, purification and functional characterization of IkappaB kinase-2 (IKK-2) mutants.

    Science.gov (United States)

    Mathialagan, Sumathy; Poda, Gennadiy I; Kurumbail, Ravi G; Selness, Shaun R; Hall, Troii; Reitz, Beverly A; Weinberg, Robin A; Kishore, Nandini; Mbalaviele, Gabriel

    2010-08-01

    NF-kappaB signaling plays a pivotal role in a variety of pathological conditions. Because of its central role in the overall NF-kappaB regulation, IKK-2 is a viable target for drug discovery. In order to enable structure-based design of IKK-2 inhibitors, we carried out a rational generation of IKK-2 mutants based on induced-fit docking of a selective IKK-2 inhibitor, PHA-408, into the homology model of IKK-2. One mutant we have characterized is a catalytically inactive form of IKK-2, D145A IKK-2, wherein the catalytic aspartic acid, D145 was replaced with alanine. Unlike the WT enzyme, D145A IKK-2 is devoid of kinase activity despite its ability to bind ATP with high affinity and is not phosphorylated at the T loop. In addition, this mutant binds a diverse collection of inhibitors with comparable binding affinities to WT IKK-2. Another interesting mutant we have characterized is F26A IKK-2 (F26 is an aromatic residue located at the very tip of the Gly-rich loop). Pre-incubation of F26A IKK-2 with PHA-408 revealed the role of F26 in the time-dependent binding of this inhibitor. Thus, functional characterization of these mutants provides the first evidence showing the role of a Gly-rich loop residue of a kinase in binding kinetics. These two mutants along with others that we have identified could be used to validate homology models and probe the interactions of IKK-2 with a variety of inhibitors.

  16. RecBCD Enzyme "Chi Recognition" Mutants Recognize Chi Recombination Hotspots in the Right DNA Context.

    Science.gov (United States)

    Amundsen, Susan K; Sharp, Jake W; Smith, Gerald R

    2016-09-01

    RecBCD enzyme is a complex, three-subunit protein machine essential for the major pathway of DNA double-strand break repair and homologous recombination in Escherichia coli Upon encountering a Chi recombination-hotspot during DNA unwinding, RecBCD nicks DNA to produce a single-stranded DNA end onto which it loads RecA protein. Conformational changes that regulate RecBCD's helicase and nuclease activities are induced upon its interaction with Chi, defined historically as 5' GCTGGTGG 3'. Chi is thought to be recognized as single-stranded DNA passing through a tunnel in RecC. To define the Chi recognition-domain in RecC and thus the mechanism of the RecBCD-Chi interaction, we altered by random mutagenesis eight RecC amino acids lining the tunnel. We screened for loss of Chi activity with Chi at one site in bacteriophage λ. The 25 recC mutants analyzed thoroughly had undetectable or strongly reduced Chi-hotspot activity with previously reported Chi sites. Remarkably, most of these mutants had readily detectable, and some nearly wild-type, activity with Chi at newly generated Chi sites. Like wild-type RecBCD, these mutants had Chi activity that responded dramatically (up to fivefold, equivalent to Chi's hotspot activity) to nucleotide changes flanking 5' GCTGGTGG 3'. Thus, these and previously published RecC mutants thought to be Chi-recognition mutants are actually Chi context-dependence mutants. Our results fundamentally alter the view that Chi is a simple 8-bp sequence recognized by the RecC tunnel. We propose that Chi hotspots have dual nucleotide sequence interactions, with both the RecC tunnel and the RecB nuclease domain.

  17. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    Science.gov (United States)

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

  18. Mutagenesis and selection of high efficiency hydrogen producing mutants by ultraviolet radiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature. Biohydrogen production by dark-fermentation appears to have a great potential to be developed for practical application. However, one limiting factor affecting the development of hydrogen-production industrialization is that the hydrogen-producing capacity of bacteria is lower, so how to increase bacteria's hydrogen-producing ability will be an urgent issue. In this experiment, 2 mutants, namely UV3 and UV7,were obtained by ultra-violet radiation. They grew and produced hydrogen efficiently on iron-containing medium. The hydrogen evolution of UV3 and UV7 were 2 356. 68 ml/L and 2 219. 62 ml/L at a glucose concentration of 10 g/L, respectively. With wild parent strain Ethanoligenens sp. ZGX4, the hydrogen evohution was 1 806. 02 ml/L under the same conditions. Mutants' hydrogen-producing capacities were about 29. 71% and 22.22% higher than that of wild parent strain ZGX4. The maximum H2 production rate by mutants UV3 and UV7 were estimated to be 32. 57 mmol H2/g cell h and 31.19 mmol H2/g cell h, respectively, which were 38. 18% and 34. 78% higher than the control (23.57 mmol H2/g cell h). The abundant products of UV3 and UV7 were ethanol and acetic, which accounted for 95% -98% of total soluble microbial products. In each case, mutant strains UV3 and UV7 evolved hydrogen at a higher rate than the wild type, showing a possible potential for commercial hydrogen production. Another mutant named UV20' was also gained whose main end metabolites were butyric acid and acetic acid. This would provide researched material for a discussion of metabolic pathways of hydrogen-producing bacteria.

  19. Using of AFLP to evaluate gamma-irradiated amaranth mutants

    Directory of Open Access Journals (Sweden)

    Labajová Mária

    2013-01-01

    Full Text Available To determine which of several gamma-irradiated mutants of amaranth Ficha cultivar and K-433 hybrid are most genetically similar to their non-irradiated control genotypes, we performed amplified fragment length polymorphism (AFLP based analysis. A total of 40 selective primer combinations were used in reported analyses. First analyses of gamma-irradiated amaranth mutant lines were done used the AFLP. In the study, primers with the differentiation ability for all analysed mutant lines are reported. The very specific changes in the mutant lines´ non-coding regions based on AFLP length polymorphism were analysed. Mutant lines of the Ficha cultivar (C15, C26, C27, C82, C236 shared a genetic dissimilarity of 0,11 and their ISSR profiles are more similar to the Ficha than those of K-433 hybrid mutant lines. The K-433 mutant lines (D54, D279, D282 shared genetic dissimilarity of 0,534 but are more distinct to their control plant as a whole, as those of the Ficha mutant lines. Different AFLP fingerprints patters of the mutant lines when compared to the Ficha cultivar and K-433 hybrid AFLP profiles may be a consequence of the complex response of the intergenic space of mutant lines to the gamma-radiance. Although a genetic polymorphism was detected within accessions, the AFLP markers successfully identified all the accessions. The AFLP results are discussed by a combination of biochemical characteristics of mutant lines and their control genotypes.

  20. A photorespiratory mutant of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    A mutant strain of Chlamydomonas reinhardtii, designated 18-7F, has been isolated and characterized. 18-7F requires a high CO2 concentration for photoautrophic growth in spite of the apparent induction of a functional CO2 concentrating mechanism in air-adapted cells. In 2% O2 the photosynthetic characteristics of 18-7F and wild type are similar. In 21% O2, photosynthetic O2 evolution is severely inhibited in the mutant by preillumination in limiting CO2, although the apparent photosynthetic affinity for inorganic carbon is similar in preilluminated cells and in cells incubated in the dark prior to O2 evolution measurements. Net CO2 uptake is also inhibited when the cells are exposed to air (21% O2, 0.035% CO2, balance N2) for longer than a few minutes. [14C]Phosphoglycolate accumulates within 5 minutes of photosynthetic 14CO2 fixation in cells of 18-7F. Phosphoglycolate does not accumulate in wild type. Phosphoglycolate phosphatase activity in extracts from air-adapted cells of 18-7F is 10 to 20% of that in wild-type Chlamydomonas. The activity of phosphoglycolate phosphatase in heterozygous diploids is intermediate between that of homozygous mutant and wild-type diploids. It was concluded that the high-CO2 requiring phenotype in 18-7F results from a phosphoglycolate phosphatase deficiency. Genetic analyses indicate that this deficiency results from a single-gene, nuclear mutation. We have named the locus pgp-1

  1. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of lactobacillus reuteri strain 180

    NARCIS (Netherlands)

    Leeuwen, S.S. van; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P.

    2009-01-01

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith degradati

  2. Differences of Free Salicylic Acid Content and Root Morphology in Arabidopsis Wild-type and Mutant sex1 under Environmental Stresses%逆境下拟南芥野生型和突变体sex1游离态水杨酸含量及根形态差异

    Institute of Scientific and Technical Information of China (English)

    赵培臣; 贺殿

    2011-01-01

    Changes on free salicylic acid (SA) were researched in 10 different growth-stages of Arabidopsis thaliana wild type (WT). Differences of free SA and seedling root morphology in WT and mutant sexl upon treatments with Pst. DC3000 (Pseudomonas syringae pv. Tomato DC3000) , H2O2 , MV (methyl violo-gen) and SA were analyzed by HPLC and microscope methods. The results showed that the level of free SA in WT was the lowest in flower production (6. 30 and 6. 50) and silique ripening (8. 0) growth-stages. After 2 mmol · L-1 SA treatment,we found that free SA levels both in sexl and in WT were higher than that of other treatments. However,free SA content in sexl was higher than in WT and it was about 10 times compared with other treatments. Under MV and H2O2 stresses,there were no significant differences in themain root growth. Treated by low concentration of MV,it showed that sexl seedlings had longer root hairs than WT seedlings,whereas there were no differences in the root hair density between WT seedlings and sexl seedlings. While treated by low concentration of H2O2 , the differences of the root hair in WT and sexl seedlings were similar to control group. However, upon different concentrations of SA treatments, the differences of the main root growth between WT and sexl seedlings became more prominent, especially when seedlings grew on 10 jumol · L-1 SA media in Petri plates. Interestingly, the root hair of WT and sexl seedlings gradually missed from high concentration of SA treatment to low concentration of SA treatment, but it was more distinct in sexl seedlings. Therefore,these results suggested that maybe it had some relationships between plant flowering,seed harvesting and SA-dependent pathway. Exogenous SA could accelerate more free SA production in sexl which compared with other treatments by Pst. DC3000,H2O2 and MV. Root development of sexl seedlings was more sensitive on growth environment than that of WT seedlings. In addition,root morphology of sexl

  3. Bioethanol production using genetically modified and mutant wheat and barley straws

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Washington State Univ., Pullman, WA (US). Dept. of Biological Engineering; East China Univ. of Science and Technology, Shanghai (CN). State Key Laboratory of Bioreactor Engineering; Liu, Y. [Michigan State Univ., East Lansing, MI (US). Biosystems and Agricultural Engineering; Chen, S. [Washington State Univ., Pullman, WA (US). Dept. of Biological Systems Engineering; Zemetra, R.S. [Univ. of Idaho, Moscow, ID (US). Plant, Soil, and Entomological Sciences

    2011-01-15

    To improve the performance of wheat and barley straws as feedstocks for ethanol biorefining, the genetic modifications of down regulating Cinnamoyl-CoA reductase and low phytic acid mutation have been introduced into wheat and barley respectively. In this study, total 252 straw samples with different genetic background and location were collected from the field experiment based on a randomized complete block design. The fiber analysis (neutral detergent fiber, acid detergent fiber, and acid detergent lignin) indicated that there were no significant differences between modified and wild type straw lines in terms of straw compositions. However, the difference did exist among straw lines on fiber utilization. 16 straw samples were further selected to conduct diluted acid pretreatment, enzymatic hydrolysis and fermentation. The data indicated that the phytic acid mutant and transgenic straws have changed the fiber structure, which significantly influences their hydrolysibility. These results may lead to a possible solution of mutant or genetic modified plant species that is capable to increase the hydrolysibility of biomass without changing their compositions and sacrificing their agronomy performance. (author)

  4. Single cell protein production from yacon extract using a highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a and its nutritive analysis.

    Science.gov (United States)

    Zhao, Chun-Hai; Zhang, Tong; Chi, Zhen-Ming; Chi, Zhe; Li, Jing; Wang, Xiang-Hong

    2010-06-01

    The intracellular protein in the highly thermosensitive and permeable mutant can be easily released when they are incubated both in the low-osmolarity water and at the non-permissive temperature (usually 37 degrees C). After the mutant was grown in the yacon extract for 45 h, the crude protein content in the highly thermosensitive and permeable mutant Z114 was 59.1% and over 61% of the total protein could be released from the cells treated at 37 degrees C. The mutant cells grown in the yacon extract still contained high level of essential amino acids and other nutrients. This means that the yacon extract could be used as the medium for growth of the highly thermosensitive and permeable mutant which contained high content of crude protein. PMID:19727833

  5. Highly ordered crystals of channel-forming membrane proteins, of nucleoside-monophosphate kinases, of FAD-containing oxidoreductases and of sugar-processing enzymes and their mutants

    Science.gov (United States)

    Schulz, G. E.; Dreyer, M.; Klein, C.; Kreusch, A.; Mittl, P.; Mu¨ller, C. W.; Mu¨ller-Dieckmann, J.; Muller, Y. A.; Proba, K.; Schlauderer, G.; Spu¨rgin, P.; Stehle, T.; Weiss, M. S.

    1992-08-01

    Preparation and crystallization procedures as well as crystal properties are reported for 12 proteins plus numerous site-directed mutants. The proteins are: the integral membrane protein porin from Rhodobacter capsulatus which diffracts to at least 1.8A˚resolution, porin from Rhodopseudomonas blastica which diffracts to at least 2.0A˚resolution, adenylate kinase from yeast and mutants, adenylate kinase from Escherichia coli and mutants, bovine liver mitochondrial adenylate kinase, guanylate kinase from yeast, uridylate kinase from yeast, glutathione reductase from E. coli and mutants, NADH peroxidase from Streptococcus faecalis containing a sulfenic acid as redox-center, pyruvate oxidase from Lactobacillus plantarum containing FAD and TPP, cyclodextrin glycosyltransferase from Bacillus circulans and mutants, and a fuculose aldolase from E. coli.

  6. Induction of drought tolerant mutants of rice

    International Nuclear Information System (INIS)

    The ultimate goal of crop breeding is to develop varieties with a high yield potential and desirable agronomic characteristics. In Egypt, the most important qualities sought by breeders have been high yield potential, resistance to major diseases and insects, and improved grain and eating quality. However, breeding efforts should concentrate on varieties with the potential to minimize yield losses under unfavorable conditions such as drought, and to maximize yields when conditions are favorable. Rice (Oryza sativa L.) in Egypt is completely irrigated and a significant portion of the rice cultivated area is subject to water deficit resulting from an inadequate or insufficient irrigation supply. Drought tolerance is a complex trait in that it results from the interaction of histological and physiological characters of plant with environmental factors, both above-ground and under-ground. Accordingly, root characters are closely related to drought tolerance. Little attention has been paid in Egyptian breeding programs to root characters and their relation to shoot characters. Furthermore, induced mutations are considered as one of the most important methods to induce useful mutants, especially with improved root characters, to overcome the drought problem. The present investigation aimed to study the effect of different doses of gamma rays on several characters of three Egyptian rice varieties, i.e. 'Giza 171', 'Giza 175' and 'Giza 176' and to induce one or more mutants possessing drought tolerance

  7. Indy mutants: live long and prosper

    Directory of Open Access Journals (Sweden)

    Stewart eFrankel

    2012-02-01

    Full Text Available Indy encodes the fly homologue of a mammalian transporter of di and tricarboxylatecomponents of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegansIndy homologs leads to an increase in life span. Fly and worm tissues that play key roles inintermediary metabolism are also the places where Indy genes are expressed. One of themouse homologs of Indy (mIndy is mainly expressed in the liver. It has been hypothesizedthat decreased INDY activity creates a state similar to caloric restriction (CR. Thishypothesis is supported by the physiological similarities between Indy mutant flies on highcalorie food and control flies on CR, such as increased physical activity and decreases inweight, egg production, triglyceride levels, starvation resistance, and insulin signaling. Inaddition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed inCR animals. Recent findings with mIndy knockout mice support and extend the findingsfrom flies. mIndy-/- mice display an increase in hepatic mitochondrial biogenesis, lipidoxidation and decreased hepatic lipogenesis. When mIndy-/- mice are fed high calorie foodthey are protected from adiposity and insulin resistance. These findings point to INDY as apotential drug target for the treatment of metabolic syndrome, type 2 diabetes and obesity.

  8. Flower morphology of Dendrobium Sonia mutants

    International Nuclear Information System (INIS)

    Dendrobium Sonia is a commercial hybrid which is popular as cut flower and potted plant in Malaysia. Variability in flower is important for new variety to generate more demands and choices in selection. Mutation induction is a tool in creating variability for new flower color and shape. In vitro cultures of protocorm-like bodies (PLBs) were exposed to gamma ray at dose 35 Gy. Phenotypic characteristics of the flower were observed at fully bloomed flower with emphasis on shape and color. Approximately 2000 regenerated irradiated plants were observed and after subsequent flowering, 100 plants were finally selected for further evaluation. Most of the color and shape changes are expressed in different combinations of petal, sepal and lip of the flower. In this work, 11 stable mutants were found different at flower phenotype as compared to control. Amongst these, four mutant varieties with commercial potential has been named as Dendrobium 'SoniaKeenaOval', Dendrobium 'SoniaKeenaRadiant', Dendrobium 'SoniaKeenaHiengDing' and Dendrobium 'Sonia KeenaAhmadSobri'. In this paper, variations in flower morphology and flower color were discussed, giving emphasis on variations in flower petal shape. (author)

  9. nitrate non-utilizing (nit mutants

    Directory of Open Access Journals (Sweden)

    D. Aiuchi

    2008-01-01

    Full Text Available Mycotal and Vertalec are mass-produced fungal strains for insect control. Strain B-2, which was isolated in Japan, has high epiphytic ability on cucumber leaves. Protoplast fusion was performed using these strains of Verticillium lecanii to obtain new strains possessing useful characteristics as biological control agents (BCAs. We used nit mutants for visually selecting the protoplasts. Hybrid strains were subjected to molecular analysis using the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs and arbitrarily primed-PCR (AP-PCR in order to determine protoplast fusion and/or genetic recombination. We detected 126, 44, and 4 hybrid strains from the combinations of Vertalec × Mycotal, B-2 × Mycotal, and B-2 × Vertalec, respectively. Morphological characteristics of hybrid strains differed from those of their parental nit mutants. Protoplast fusion of hybrid strains was confifi rmed in genomic DNA, but not in mitochondrial DNA (mtDNA. A uniform biased tendency of the DNA banding pattern was observed depending on the combination of parental strains. The molecular analysis also revealed genetic recombination. These results showed a novel method for producing hybrid strains of the entomopathogenic fungus V. lecanii.

  10. Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina.

    Science.gov (United States)

    Druzhinina, Irina S; Schmoll, Monika; Seiboth, Bernhard; Kubicek, Christian P

    2006-03-01

    The ascomycete Hypocrea jecorina (Trichoderma reesei), an industrial producer of cellulases and hemicellulases, can efficiently degrade plant polysaccharides. However, the catabolic pathways for the resulting monomers and their relationship to enzyme induction are not well known. Here we used the Biolog Phenotype MicroArrays technique to evaluate the growth of H. jecorina on 95 carbon sources. For this purpose, we compared several wild-type isolates, mutants producing different amounts of cellulases, and strains transformed with a heterologous antibiotic resistance marker gene. The wild-type isolates and transformed strains had the highest variation in growth patterns on individual carbon sources. The cellulase mutants were relatively similar to their parental strains. Both in the mutant and in the transformed strains, the most significant changes occurred in utilization of xylitol, erythritol, D-sorbitol, D-ribose, D-galactose, L-arabinose, N-acetyl-D-glucosamine, maltotriose, and beta-methyl-glucoside. Increased production of cellulases was negatively correlated with the ability to grow on gamma-aminobutyrate, adonitol, and 2-ketogluconate; and positively correlated with that on d-sorbitol and saccharic acid. The reproducibility, relative simplicity, and high resolution (+/-10% of increase in mycelial density) of the phenotypic microarrays make them a useful tool for the characterization of mutant and transformed strains and for a global analysis of gene function.

  11. Increased hydrogen photoproduction by means of a sulfur-deprived chlamydomonas reinhardtii D1 protein mutant

    Energy Technology Data Exchange (ETDEWEB)

    Torzillo, Giuseppe; Scoma, Alberto; Faraloni, Cecilia; Ena, Alba [Istituto per lo Studio degli Ecosistemi (ISE), CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI) (Italy); Johanningmeier, Udo [Martin-Luther-Universitaet Halle-Wittenberg, Institut fuer Pflanzenphysiologie, Halle-Saale (Germany)

    2009-05-15

    The photoproduction of H{sub 2} was studied in a sulfur-deprived Chlamydomonas reinhardtii D1 mutant that carried a double amino acid substitution. The leucine residue L159 was replaced by isoleucine, and the asparagine N230 was replaced by tyrosine (L159I-N230Y). Phenotypic characterization of the mutant showed some interesting features compared to its wild type, namely: (1) a lower chlorophyll content; (2) a higher photosynthetic capacity and higher relative quantum yield of photosynthesis; (3) a higher respiration rate; (4) a very high conversion of violaxanthin to zeaxanthin during H{sub 2} production; (5) a prolonged period of H{sub 2} production. In standard conditions, the mutant produced more than 500 ml of H{sub 2}, that is, more than one order of magnitude greater than its wild type, and about 5-times greater than the CC124 strain that was used for comparison. The better performance of the mutant was mainly the result of a longer production period. Biogas produced contained up to 99.5% H{sub 2}. (author)

  12. A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling

    Institute of Scientific and Technical Information of China (English)

    Ziguo Zhang; Hans Thordal-Christensen; Andrea Lenk; Mats X. Andersson; Torben Gjetting; Carsten Pedersen; Mads E. Nielsen; Marl-Anne Newman; Bi-Huei Hou; Shauna C. Somerville

    2008-01-01

    The lesion-mimicArabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp 122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogenresponse transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildewinduced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPRl-dependent.These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.

  13. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    Science.gov (United States)

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. PMID:26471534

  14. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant

    Indian Academy of Sciences (India)

    Swadhin Swain; Nidhi Singh; Ashis Kumar Nandi

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens.

  15. Construction and characterization of a H19 epitope point mutant of MDV CVI988/Rispens strain.

    Science.gov (United States)

    Cui, Z; Qin, A; Lee, L F; Wu, P; Kung, H J

    1999-01-01

    A recombinant virus, CVI/rpp38, was developed from the Marek's disease virus (MDV) CVI988/Rispens vaccine strain. This recombinant was obtained by transfection of CVI988/Rispens-infected chick embryo fibroblasts (CEFs) with plasmid pHA25 DNA containing pp38 gene from GA strain of MDV. Monoclonal antibody (MAb) H19 which reacts with pp38 from GA but not with that from CVI988 was used to screen for recombinant viruses in transfected cell culture plates by immunofluorescent assay (IFA). A positive plaque was isolated, propagated, and purified from cell-free virus particles after sonication of infected CEFs. The mutant CVI/rpp38 was not only reactive with MAb H19 in IFA but also in immunoprecipitation. A 38 kDa protein was immunoprecipitated from the CVI/rpp38 mutant virus but not from parental CVI988 virus. DNA sequence of the mutant virus showed a substitution of G at position 320 by a resulting in a change of an amino acid residue from arginine to glutamine. Comparison of nucleotide sequence of pp38 from strains GA, Md5 and Md11/75c/R2 and CVI988 revealed change to glutamine in this position. The result of this study provides a direct evidence for the location of the identified H19 epitope in pp38. This mutant is potentially useful to further explore the biological function of pp38 and its H19 epitope.

  16. Brain beta-amyloid accumulation in transgenic mice expressing mutant superoxide dismutase 1.

    Science.gov (United States)

    Turner, Bradley J; Li, Qiao-Xin; Laughton, Katrina M; Masters, Colin L; Lopes, Elizabeth C; Atkin, Julie D; Cheema, Surindar S

    2004-12-01

    Oxidative stress is implicated in both the deposition and pathogenesis of beta-amyloid (Abeta) protein in Alzheimer's disease (AD). Accordingly, overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) in neuronal cells and transgenic AD mice reduces Abeta toxicity and accumulation. In contrast, mutations in SOD1 associated with amyotrophic lateral sclerosis (ALS) confer enhanced pro-oxidative enzyme activities. We therefore examined whether ALS-linked mutant SOD1 overexpression in motor neuronal cells or transgenic ALS mice modulates Abeta toxicity or its accumulation in the brain. Aggregated, but not freshly solubilised, substrate-bound Abeta peptides induced degenerative morphology and cytotoxicity in motor neuron-like NSC-34 cells. Transfection of NSC-34 cells with human wild-type SOD1 attenuated Abeta-induced toxicity, however this neuroprotective effect was also observed for ALS-linked mutant SOD1. Analysis of the cerebral cortex, brainstem, cerebellum and olfactory bulb from transgenic SOD1G93A mice using enzyme-linked immunosorbent assay of acid-guanidine extracts revealed age-dependent elevations in Abeta levels, although not significantly different from wild-type mouse brain. In addition, brain amyloid protein precursor (APP) levels remained unaltered as a consequence of mutant SOD1 expression. We therefore conclude that mutant SOD1 overexpression promotes neither Abeta toxicity nor brain accumulation in these ALS models.

  17. Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen.

    Science.gov (United States)

    Bali, A; Blanco, G; Hill, S; Kennedy, C

    1992-05-01

    A mutation in the gene upstream of nifA in Azotobacter vinelandii was introduced into the chromosome to replace the corresponding wild-type region. The resulting mutant, MV376, produced nitrogenase constitutively in the presence of 15 mM ammonium. When introduced into a nifH-lacZ fusion strain, the mutation permitted beta-galactosidase production in the presence of ammonium. The gene upstream of nifA is therefore designated nifL because of its similarity to the Klebsiella pneumoniae nifL gene in proximity to nifA, in mutant phenotype, and in amino acid sequence of the gene product. The A. vinelandii nifL mutant MV376 excreted significant quantities of ammonium (approximately 10 mM) during diazotrophic growth. In contrast, ammonium excretion during diazotrophy was much lower in a K. pneumoniae nifL deletion mutant (maximum, 0.15 mM) but significantly higher than in NifL+ K. pneumoniae. The expression of the A. vinelandii nifA gene, unlike that of K. pneumoniae, was not repressed by ammonium. PMID:1622243

  18. Computer construction and analysis of protein models of the mutant γD-crystallin gene

    Institute of Scientific and Technical Information of China (English)

    YAO Ke; SUN Zhao-hui; SHENTU Xing-chao; WANG Kai-jun; TAN Jian

    2005-01-01

    Background γD-crystallin plays an important role in human cataract formation. Being highly stable, γD-crystallin proteins are composed of two domains. In this study we constructed and analyzed protein models of the mutant γD-crystallin gene, which caused a special fasciculiform congenital cataract affecting a large Chinese family. Methods γD-crystallin protein structure was predicted by Swiss-Model software using bovine γD-crystallin as a template and Prospect software using human βb2-crystallin as a template. The models were observed with a Swiss-Pdb viewer.Results The mutant γD-crystallin structure predicted by the Swiss-Model software showed that proline23 was an exposed surface residue and P23T change made a decreased hydrogen bond distance between threonine23 and asparagine49. The mutant γD-crystallin structure predicted by the Prospect software showed that the P23T change exerted a significant effect on the protein's tertiary structure and yielded hydrogen bonds with aspartic acid21, asparagine24, asparagine49 and serine74.Conclusion The mutant γD-crystallin gene has a significant effect on the protein's tertiary structure, supporting that alteration of γ-crystallin plays an important role in human cataract formation.

  19. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-09-01

    Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized β-galactosidase-like gene (Cre02.g119700), which decreased total β-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27060488

  20. Genetic Analysis of Arabidopsis Mutants Impaired in Plastid Lipid Import Reveals a Role of Membrane Lipids in Chloroplast Division

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.

    2011-03-01

    The biogenesis of photosynthetic membranes in plants relies largely on lipid import from the endoplasmic reticulum (ER) and this lipid transport process is mediated by TGD proteins in Arabidopsis. Such a dependency of chloroplast biogenesis on ER-to-plastid lipid transport was recently exemplified by analyzing double mutants between tgd1-1 or tgd4-3 and fad6 mutants. The fad6 mutants are defective in the desaturation of membrane lipids in chloroplasts and therefore dependent on import of polyunsaturated lipid precursors from the ER for constructing a competent thylakoid membrane system. In support of a critical role of TGD proteins in ER-to-plastid lipid trafficking, we showed that the introduction of the tgd mutations into fad6 mutant backgrounds led to drastic reductions in relative amounts of thylakoid lipids. Moreover, the tgd1-1 fad6 and tgd4-3 fad6 double mutants were deficient in polyunsaturated fatty acids in chloroplast membrane lipids, and severely compromised in the biogenesis of photosynthetic membrane systems. Here we report that these double mutants are severely impaired in chloroplast division. The possible role of membrane lipids in chloroplast division is discussed.

  1. Mutant radiation-resistance alleles from the Escherichia coli Gamr444 mutant: Cloning and preliminary characterization

    International Nuclear Information System (INIS)

    Mutant alleles Gamr, which are able to increase the resistance to radiation of Escherichia coli wild-type cells, were cloned from the hyperradioresistant mutant Gamr444 on plasmid mini-Mu-vector MudII4042. The influence of recombinant plasmids on the sensitivity of wild-type and mutant (recA and htpR) cells to γ-irradiation was studied. It was shown that the enhanced resistance of the Gamr444 strain to radiation was caused by mutations of two different classes, dominant and recessive. The cloned recessive mutation gamr12 increases resistance to radiation only after homogenotization, that is, radiation-induced transfer from the plasmid to the chromosome, and it imposes constitutive expression of the heat-shock promoter htpG. Dominant mutant gamr alleles are active in the trans-position. A mutation-insertion into a chromosomal gene impaired by one of the dominant mutations, gamr18, was constructed. The insertion causes drastic cell radiosensitization on the recBC sbcB background and probably disturbs the RecF pathway of recombination and repair. Dominant plasmids of the second type lead to the RecA-independent inhibition of DNA postirradiation degradation. The radioprotective action of recessive and dominant gamr mutations is additive

  2. Inferring PDZ domain multi-mutant binding preferences from single-mutant data.

    Directory of Open Access Journals (Sweden)

    Elena Zaslavsky

    Full Text Available Many important cellular protein interactions are mediated by peptide recognition domains. The ability to predict a domain's binding specificity directly from its primary sequence is essential to understanding the complexity of protein-protein interaction networks. One such recognition domain is the PDZ domain, functioning in scaffold proteins that facilitate formation of signaling networks. Predicting the PDZ domain's binding specificity was a part of the DREAM4 Peptide Recognition Domain challenge, the goal of which was to describe, as position weight matrices, the specificity profiles of five multi-mutant ERBB2IP-1 domains. We developed a method that derives multi-mutant binding preferences by generalizing the effects of single point mutations on the wild type domain's binding specificities. Our approach, trained on publicly available ERBB2IP-1 single-mutant phage display data, combined linear regression-based prediction for ligand positions whose specificity is determined by few PDZ positions, and single-mutant position weight matrix averaging for all other ligand columns. The success of our method as the winning entry of the DREAM4 competition, as well as its superior performance over a general PDZ-ligand binding model, demonstrates the advantages of training a model on a well-selected domain-specific data set.

  3. Yoghurt fermented by Lactobacillus delbrueckii subsp. bulgaricus H+ -ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage.

    Science.gov (United States)

    Ongol, Martin Patrick; Sawatari, Yuki; Ebina, Yoshiko; Sone, Teruo; Tanaka, Michiko; Tomita, Fusao; Yokota, Atsushi; Asano, Kozo

    2007-05-30

    Persistent acid production by Lactobacillus delbrueckii subsp. bulgaricus during refrigerated storage is a major cause of reduced viability of probiotic strains such as Bifidobacterium breve in yoghurt. It was established that H+ -ATPase-defective mutants of lactic acid bacteria have reduced growth and metabolism in low pH environments. Therefore, the aim of this study was to evaluate inhibition of post-acidification and maintenance of B. breve viability in yoghurt fermented by L. delbrueckii subsp. bulgaricus mutants with reduced membrane-bound H+ -ATPase activity during refrigerated storage. Spontaneous neomycin mutants of L. delbrueckii subsp. bulgaricus that had a significantly (P bulgaricus SBT0164 No. 55-1 (mutant) starter culture had markedly reduced post-acidification and maintained viability (> or = 10(8) CFU/ml) of both Bifidobacteruim breve JCM 1192(T) and Bifidobacteruim breve JCM 7017 during storage at 10 degrees C for 21 days. These results clearly showed that yoghurt fermented by mutants of L. delbrueckii subsp. bulgaricus with reduced membrane-bound H+ -ATPase activity has reduced post-acidification that prolongs viability of B. breve in yoghurt during refrigerated storage.

  4. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Melloni N. [University of Memphis; Dunning, Jonathan P [University of Memphis; Wiley, Ronald G [Vanderbilt University and Veterans Administration, Nashville, TN; Chesler, Elissa J [ORNL; Johnson, Dabney K [ORNL; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.

  5. Serrated leaf mutant in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Dry dormant seeds of mungbean (Vigna radiata (L) Wilczek) were treated with gamma rays (15, 30 and 60 kR). The serrated leaf mutation was noticed in M2 of cultivar Pak 32 treated with 60 kR. Cf 14 plants, 3 showed the altered leaf structure and the others were normal. The feature of this mutant was the deep serration of leaflet margins. The mutant had large thick leaflets with prominent venation. The mutant bred true in the M3 and successive generation. Details of the morphological characteristics of the mutant are presented. The mutant exhibited slower growth particularly during the early stages of development, flowered later and attained shorter height. There was an increase in the number of pods, in seed weight and in seed protein content, but number of seed per pod was considerably reduced. The seed coat colour showed a change from green to yellowish green. In the mutant's flowers the stamina were placed much below the stigma level and the stigma sometimes protruded the corolla. Outcrossing of 4% recorded in some of the mutant lines revealed a reduced cleistogamy. The low number of seeds per pod in the mutant could be due to reduced pollen fertility. The mutant behaved as monogenic recessive. The symbols SL/sl are proposed for this allelic pair. The mutant may have use as a green manure crop because of its large foliage and for the breeders as a genetic marker

  6. Construction, detection and microarray analysis on Shigella dysenteriae A1 IroN, ShuA single, double mutants

    Institute of Scientific and Technical Information of China (English)

    BIN; Wen; LIU; Moqing; PENG; Junping; SUN; Lilian; XU; Xingye; ZHANG; Jinghai; JIN; Qi

    2006-01-01

    In this study, we constructed single mutants MTS-1, MTS-2 of IroN and ShuA gene and double mutant MTS of them in Shigella dysenteriae A1 strain 51197 by insert and absence. The functional detection of every mutant was performed at the level of culture medium and cell experiment. The gene expression profiles of the mutants and the wild-type strains under iron- enriched and iron-limited conditions were analyzed by the SD51197 whole genomic microarray. The results showed that all the mutants grew obviously less well than the wild-type strains in L broth appending iron chelator DIP. The addition of iron to the cultures can stimulate the growth of mutants back to wild-type levels. In either the experiments on the ability of intracellular multiplication or the cell-to-cell spread in HeLa and U937 cell lines, mutants showed no obvious change in virulence compared with the parental strain SD51197. However when DIP was added to the cultured HeLa cells, the ability of intracellular multiplication of MTS-1, MTS-2, MTS has reduced about 23.4%, 25.2%, 43.6% respectively. The analysis of expression profiles under the iron-limited condition showed that the mutants were more sensitive for the changes of iron deficiency than the wild-type strains, many genes have been altered. Up-regulated genes mainly involved genes of transcription, coenzyme metabolism, amino acid transport and metabolism, and unknown functional genes, while down-regulated genes mainly involved genes of energy and carbohydrate metabolism and unknown function genes; the expression levels of known iron-transport associated genes generally showed up-regulated. The results demonstrated that iron-transport associated genes IroN, ShuA were likely to have some effects on the virulence and growth of S. dysenteriae.

  7. Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain?

    OpenAIRE

    Zheng, Ya-Jun; Bruice, Thomas C.

    1997-01-01

    Nitriles are good inhibitors for the cysteine protease papain. However, a single amino acid mutation (Gln-19 → Glu-19) in the active site makes the mutant enzyme a good catalyst for nitrile hydrolysis. A theoretical approach was used to examine the differential transition state stabilization in the papain mutant relative to the wild-type enzyme. Based on this study, we concluded that strong hydrogen bonding in the transition state is responsible for the observed rate enhancement of 4 × 105.

  8. Colony mutants of compatible nocardiae displaying variations in recombining capacity.

    Science.gov (United States)

    Brownell, G H; Walsh, R S

    1972-03-01

    Colonial morphology mutants of Nocardia erythropolis were isolated following ultraviolet (UV) irradiation. The alleles rou-1/smo-1 were located by recombinant analysis and found to be linked to previously mapped characters. On the basis of recombinant class type patterns obtained from various selective characters it was postulated that the rou-1 allele may span a region of unique nucleotides in the Mat-Ce genome. Recombination frequencies of rou-1 and smo-2 bearing mutants of the Mat-Ce mating type were found to differ by over 1000 fold. Attempts to demonstrate that low recombination frequencies produced by the Smo mutants were due to Rec(-) genes were unsuccessful. No increased sensitivity to either UV or X irradiation was observed by the Smo mutants. Acriflavine treatment of either Rou or Smo colony mutants failed to accelerate reversion or to alter the recombining potentials of the mutants.

  9. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  10. Mutant p53 in cell adhesion and motility.

    Science.gov (United States)

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  11. Mutants of Cercospora kikuchii Altered in Cercosporin Synthesis and Pathogenicity.

    Science.gov (United States)

    Upchurch, R G; Walker, D C; Rollins, J A; Ehrenshaft, M; Daub, M E

    1991-10-01

    We have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus.

  12. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Upchurch, R.G.; Walker, D.C.; Rollins, J.A.; Ehrenshaft, M.; Daub, M.E. (North Carolina State Univ., Raleigh (United States))

    1991-10-01

    The authors have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus.

  13. Screening of a lactobacillus plantarum mutant with high cla productivity induced by n+ implantation

    International Nuclear Information System (INIS)

    The initial lactic acid bacteria strain A6-1 was treated by N+ ions implantation of 50 keV with doses of 1 x 1013, 3 x 1013, 5 x 1013, 8 x 1013, 10 x 1013, 30 x 1013, 50 x 1013, 80 x 1013 , and 100 x 1013 ions/cm2. The survival curve showed a saddle model, and the high survival rate was 20% ∼ 35% from the treatments of 30 x 1013 ions/cm2 and 50 x 1013 ions/cm2 implantation. Considering the survival rate, positive mutation and range of mutation rate, N+ ions implantation of 30 x 1013 ions/cm2 was recommended for mutation breeding of lactic acid bacteria. Selected mutants with high ability of producing CLA after fermentation. Generic stable was observed until 8 generations of F mutant, and average yield of CLA was 162.5 μg/ml, which was 69.87% higher than the original stain. F mutant was named A6-1F. (authors)

  14. Google: a narrativa de uma marca mutante

    Directory of Open Access Journals (Sweden)

    Elizete de Azevedo Kreutz

    2010-01-01

    Full Text Available As marcas mutantes já fazem parte de nossa realidade, embora ainda não totalmente percebidas e/ou aceitas como tal. O presente artigo busca refletir sobre a relevância dessas novas estratégias de comunicação e branding, identificando suas principais características. Para isso, utilizamos o método de estudo de caso, o Google, ancorado nos métodos de pesquisa bibliográfica e de internet. A escolha foi intencional, posto que a organização é referência em sua categoria, mecanismo de busca, e reflete essa estratégia comunicacional contemporânea. Como resultado, as informações obtidas nos possibilitam compreender essa tendência de comportamento de marca que busca a interação com seus públicos.

  15. Some mutants in maize obtained by irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Irradiation was carried out at the Bucharest Institute of Atomic Physics and the National Laboratory Brookhaven, USA. A description is given of 22 genic mutants affecting leaf color, plant size, and branching capacity. Characteristics related to pollen fertility and the vegetative period were affected in all the mutants. Improvement of pollen fertility was attempted over four generations without success. The maize mutants obtained by irradiation may be considered as being without practical significance. (author). 7 figs., 1 tab. 11 ref

  16. Mutants of rabies viruses in skunks: immune response and pathogenicity.

    OpenAIRE

    Tolson, N D; Charlton, K M; Stewart, R B; Casey, G A; Webster, W A; Mackenzie, K.; Campbell, J. B.; Lawson, K. F.

    1990-01-01

    In studies to develop an oral rabies vaccine for wildlife, the immune response to and pathogenicity of two types of mutants of rabies viruses were examined. Forty-five small plaque mutants were selected from cultures of ERA rabies virus treated with 8-azaguanine or 5-fluorouracil and tested for pathogenicity in mice. Two of these mutants AZA 1 and AZA 2 (low pathogenicity in mice) were given to skunks by oral (bait), intestinal (endoscope) and intramuscular routes. Additionally, challenge vir...

  17. Induced mutants from dihaploid potatoes after pollen mother cell treatment.

    Science.gov (United States)

    Przewoźny, T; Schieder, O; Wenzel, G

    1980-05-01

    Microspore mother cells of dihaploid Solanum tuberosum plants were mutagenically treated during the stage of meiosis. Mutagenesis was performed either by irradiation with x- or γ-rays or by the application of nitrosomethylurethane or methylnitronitrosoguanidine. Then, by use of the anther culture technique, 913 functional plants and 442 untreated control plants were regenerated. From the exposed plants seven distinct mutants could be isolated, predominantly chlorophyll deficient lines, while from the controls no clear-cut mutants arose. One mutant turned out to be photomorphogenetic in addition to having a chlorophyll defect. In addition to the production of mutants the treatments significantly increased the frequency of multicellular structure formation from microspores.

  18. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].

    Science.gov (United States)

    Ladygin, V G

    2003-01-01

    Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthine; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production in the mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29-30% lower than in the control plants; in their hybrids, however, it is 1.5-2 higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that the mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus. PMID:12942751

  19. plenty, a novel hypernodulation mutant in Lotus japonicus.

    Science.gov (United States)

    Yoshida, Chie; Funayama-Noguchi, Sachiko; Kawaguchi, Masayoshi

    2010-09-01

    Nitrogen fixation in nodules that contain symbiotic rhizobial bacteria enables legumes to thrive in nitrogen-poor soils. However, this symbiosis is energy consuming. Therefore, legumes strictly control nodulation at both local and systemic levels. Mutants deficient in such controls exhibit a range of phenotypes from non-nodulation to hypernodulation. Here, we isolated a novel hypernodulation mutant from the M(2) progeny derived from Lotus japonicus MG-20 seeds mutagenized by irradiation with a carbon ion beam. We named the mutant 'plenty' because it formed more nodules than the wild-type MG-20. The nodulation zone in the plenty mutant was wider than that in the wild type, but not as enhanced as those in other previously reported hypernodulation mutants such as har1, klv or tml of L. japonicus. Unlike these hypernodulation mutants, the plenty mutant developed nodules of the same size as MG-20. Overall, the plenty mutant exhibited a unique phenotype of moderate hypernodulation. However, a biomass assay indicated that this unique pattern of hypernodulation was a hindrance to host plant growth. The plenty mutant displayed some tolerance to external nitrates and a normal triple response to ethylene. Grafting experiments demonstrated that the root of plenty was responsible for its hypernodulation phenotype. Genetic mapping indicated that the PLENTY gene was located on chromosome 2.

  20. Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants.

    Science.gov (United States)

    de Miguel, T; Sieiro, C; Poza, M; Villa, T G

    2001-03-01

    A collection of 43 mutant strains of the bacterium Gordonia jacobaea was obtained by means of ethyl methanesulfonate treatment, and the strains were selected for their different pigmentation with respect to the wild-type strain. None of the mutants showed auxotrophy. They all showed good genetic stability and a growth rate similar to that of the parental strain. Canthaxanthin and other carotenoids from these mutants were extracted with acetone and ethanol and separated by high-performance liquid chromatography (HPLC). These HPLC analyses, together with spectrophotometric detection at 480 nm, revealed variations in the pigment contents of the different mutant strains. PMID:11312835

  1. High yielding semidwarf Pokkali rice mutants tolerant to abiotic stresses of coastal saline ecosystem

    International Nuclear Information System (INIS)

    The most popular rice varieties in the pokkali tract of Kerala State, India are Pokkali, Cheruvirippu, VTL-3 and VTL- 4. These varieties are tall, lodging genotypes having tolerance to complex abiotic stresses (salinity, acidity and submergence). About 50% yield is lost due to lodging. In the present study, an effort was made to induce semi dwarfism coupled with high yield in these genotypes retaining the complex tolerance. Dry seeds of these varieties were subjected to both physical mutagen (gamma rays 200, 300, 400 and 500Gy) and chemical mutagen treatment (0.5%, 1% and 2% of Ethyl Methane Sulphonate at varying exposure periods of 8h, 16h and 24h). Reduced germination percentage was noticed in all the treatments. Only 25% plants of VTL-3 irradiated with 400 Gy dose of gamma rays produced fertile seeds and 28% in VTL-4. Even in the fertile plants the seed fertility varied greatly (0.5 to 82.4%). The induction of 100% sterility in more than 75% plants of 400 Gy irradiated treatments compared to the maximum of 7% sterility in the untreated control indicated the high mutagenic potency of gamma irradiation in pokkali rice. Fifty eight semi dwarf mutants with significant reduction in plant height could be selected from the M2 generation of 400 Gy irradiated doze of VTL-3. The height of the selected plants varied from 82 cm to 120cm chemical mutagen treatment was not effective in inducing semidwarfism. More than 70% of the selected mutants showed stability for reduced plant height. The segregation data suggested that most of the mutant lines had single recessive mutations with the exception of few lines. The yield of the stable mutants were evaluated in an Initial Evaluation Trial and observed that some of the mutants had the potential to produce about double the yield (10 tons/ha) of its parent VTL-3 (5 tons/ha). (author)

  2. Optimized production of Serratia marcescens B742 mutants for preparing chitin from shrimp shells powders.

    Science.gov (United States)

    Zhang, Hongcai; Fang, Jiyang; Deng, Yun; Zhao, Yanyun

    2014-08-01

    To improve the deproteinization (DP) efficacy of shrimp shell powders (SSP) for preparing chitin, Serratia marcescens B742 mutants were prepared using 2% diethyl sulfate (DES), UV-irradiation, and/or microwave heating treatments. Both single-stage and multi-stage mutations were investigated for optimizing S. marcescens B742 mutation conditions. Under the optimized mutation conditions (2% DES treatment for 30min plus successive 20min UV-irradiation), the protease and chitosanase activity produced by mutant S. marcescens B742 was 240.15 and 170.6mU/mL, respectively, as compared with 212.58±1.51 and 83.75±6.51mU/mL, respectively, by wild S. marcescens B742. DP efficacy of SSP by mutant S. marcescens B742 reached 91.4±4.6% after 3d of submerged fermentation instead of 83.4±4.7% from the wild S. marcescens B742 after 4d of submerged fermentation. Molecular mass of chitosanase and protease was 41.20 and 47.10kDa, respectively, and both enzymes were verified by mass spectrometry analysis. The chitosanase from both wild and mutant S. marcescens B742 was activated by sodium dodecyl sulfate (SDS), Tween 20, Tween 40, and Triton-100, and the protease and chitosanase were strongly inhibited by ethylenediaminetetraacetic acid (EDTA). These results suggested that S. marcescens B742 mutants can be used in the biological production of chitin through deproteinization of SSP.

  3. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Science.gov (United States)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  4. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria;

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B....... subtilis were supplied in a low or high dose in Experiments 1 and 2, respectively. The Trp-deficient diet (0.15 SID Trp:Lys) reduced (p < .05) both gain and feed intake of piglets compared to the positive control diet (0.17 SID Trp:Lys). Supplementation of the B. subtilis strain was not able to...... counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  5. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans

    Science.gov (United States)

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  6. Dissection of the Critical Binding Determinants of Cellular Retinoic Acid Binding Protein II by Mutagenesis and Fluorescence Binding Assay

    OpenAIRE

    Vasileiou, Chrysoula; Lee, Kin Sing Stephen; Crist, Rachael M.; Vaezeslami, Soheila; Goins, Sarah M.; Geiger, James H.; Borhan, Babak

    2009-01-01

    The binding of retinoic acid to mutants of Cellular Retinoic Acid Binding Protein II (CRABPII) was evaluated to better understand the importance of the direct protein/ligand interactions. The important role of Arg111 for the correct structure and function of the protein was verified and other residues that directly affect retinoic acid binding have been identified. Furthermore, retinoic acid binding to CRABPII mutants that lack all previously identified interacting amino acids was rescued by ...

  7. Reconstructing a Flavodoxin Oxidoreductase with Early Amino Acids

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2013-06-01

    Full Text Available Primitive proteins are proposed to have utilized organic cofactors more frequently than transition metals in redox reactions. Thus, an experimental validation on whether a protein constituted solely by early amino acids and an organic cofactor can perform electron transfer activity is an urgent challenge. In this paper, by substituting “late amino acids (C, F, M, T, W, and Y” with “early amino acids (A, L, and V” in a flavodoxin, we constructed a flavodoxin mutant and evaluated its characteristic properties. The major results showed that: (1 The flavodoxin mutant has structural characteristics similar to wild-type protein; (2 Although the semiquinone and hydroquinone flavodoxin mutants possess lower stability than the corresponding form of wild-type flavodoxin, the redox potential of double electron reduction Em,7 (fld reached −360 mV, indicating that the flavodoxin mutant constituted solely by early amino acids can exert effective electron transfer activity.

  8. Ascertainment of the effect of differential growth rates of mutants on observed mutant frequencies in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    As it is not known to what extent differential growth rates of induced mutants lead to over- and under-representation of mutants in treated populations and thereby affect the determination of mutant frequencies, the mutation induction in X-irradiated L5178Y mouse lymphoma cells was determined via two methods. The first method involves the standard protocol which may suffer from the effect of differential growth rates, while the second method is based upon the fluctuation test in which the differential growth rates can be actually measured. It appeared that the standard protocol led to a mutant frequency that was similar to the mutant frequency determined in the fluctuation test. Therefore, the standard protocol appears to lead to only a minor under-estimation if any. Substantial heterogeneity in growth rates of induced mutants was observed, but the mutants with a selective advantage appear largely to compensate for the mutants that are lost because of selective disadvantage. It was calculated that the chance for isolating the same mutant twice from a treated population had been increased 2.2-fold because of the observed differential growth rates. (orig./AJ)

  9. Suppression of Id2, a member of the inhibitor of differentiation family and a target of mutant p53, is required for mutant p53 gain of function

    OpenAIRE

    Yan, Wensheng; Liu, Gang; Scoumanne, Ariane; Chen, Xinbin

    2008-01-01

    Over-expression of mutant p53 is a common theme in human tumors, suggesting a tumor-promoting gain of function for mutant p53. To elucidate whether and how mutant p53 acquires its gain of function, mutant p53 is inducibly knocked down in SW480 colon cancer cell line, which contains mutant p53(R273H/P309S), and MIA-PaCa-2 pancreatic cancer cell line, which contains mutant p53(R248W). We found that knockdown of mutant p53 markedly inhibits cell proliferation. In addition, knockdown of mutant p5...

  10. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    Science.gov (United States)

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  11. Mutants dissecting development and behaviour in drosophila

    International Nuclear Information System (INIS)

    We have traced in this paper the progress in Drosophila genetics research from the 1960s, at the IARI, spearheaded by the visionary insight of M. S. Swaminathan. The work started with the study of indirect effect of radiation and the synergistic interaction of physical and chemical mutagens on chromosomal and genetic changes. This paved the way for the study of single gene mutants in dissecting developmental and behavioural processes. New genes discovered by us have been shown to encode conserved cell signalling molecules controlling developmental and behavioural pathways. With the complete sequencing of the Drosophila genome, in the year 2000, mounting evidence for the homology between Drosophila and human genes controlling genetic disorders became available. This has led to the fly becoming an indispensable tool for studying human diseases as well as a model to test for drugs and pharmaceuticals against human diseases and complex behavioural processes. For example wingless in Drosophila belongs to the conserved Wnt gene family and aberrant WNT signalling is linked to a range of human diseases, most notably cancer. Inhibition as well as activation of WNT signalling form the basis of an effective therapy for some cancers as well as several other clinical conditions. Recent experiments have shown that WNTs might also normally participate in self-renewal, proliferation or differentiation of stem cells and altering WNT signalling might be beneficial to the use of stem cells for therapeutic means. Likewise, the stambhA mutant of Drosophila which was discovered for its temperature-dependent paralytic behaviour is the fly homologue of Phospholipase Cβ. Phospholipase C mediated G protein signalling plays a central role in vital processes controlling epilepsy, vision, taste, and olfaction in animals. Proteins of the G-signalling pathway are of intense research interest since many human diseases involve defects in G-protein signalling pathways. In fact, approximately 50

  12. Research on Arachidonic Acid and Eicosapentaenoic Acid Anabolic Metabolism in Diasporangium sp.

    Institute of Scientific and Technical Information of China (English)

    DAI Chuan-chao; XU Yu-fen; XIA Shun-xiang; ZHAO Mo; YE Yu-cheng

    2010-01-01

    The fatty acids of a strain of Diasporangium sp.had been analyzed by using GC-MS.The fatty acids of twenty mutants were determined.Based on these results,the producing of eicosapentaenoic acid(EPA)supposed via 18∶2,18∶3,20∶3,20∶4 which all belong to ω-6 fatty acids.The ω-3 desaturation was undertaken at arachidonic acid(AA).In addition,mutant strains resulted in enhanced content of AA which could get two times more than initial strain,but no compact on EPA.

  13. Development of Database Software with Plant Mutant Resources

    International Nuclear Information System (INIS)

    In this research, mutants induced by nuclear radiation are developed information computerised system. The status and progress on the collection, identification and utilization of mutants in Korea are introduced. And it was produced home page, manual, test record, construction of system

  14. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany, France.

    Science.gov (United States)

    Le Gal, Solène; Robert-Gangneux, Florence; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Damiani, Céline; Totet, Anne; Gangneux, Jean-Pierre; Nevez, Gilles

    2013-05-01

    Archival Pneumocystis jirovecii specimens from 84 patients monitored at Rennes University Hospital (Rennes, France) were assayed at the dihydropteroate synthase (DHPS) locus. No patient was infected with mutants. The results provide additional data showing that P. jirovecii infections involving DHPS mutants do not represent a public health issue in Brittany, western France.

  15. Iron-molybdenum cofactor synthesis in Azotobacter vinelandii Nif- mutants.

    OpenAIRE

    Imperial, J; Shah, V K; Ugalde, R A; Ludden, P W; Brill, W J

    1987-01-01

    Nif- mutants of Azotobacter vinelandii defective in dinitrogenase activity synthesized iron-molybdenum cofactor (FeMo-co) and accumulated it in two protein-bound forms: inactive dinitrogenase and a possible intermediate involved in the FeMo-co biosynthetic pathway. FeMo-co from both these proteins could activate apo-dinitrogenase from FeMo-co-deficient mutants.

  16. Characterization of peroxisome-deficient mutants of Hansenula polymorpha

    NARCIS (Netherlands)

    Tan, Xuqiu; Titorenko, Vladimir I.; Klei, Ida J. van der; Sulter, Grietje J.; Haima, Peter; Waterham, Hans R.; Evers, Melchior; Harder, Willem; Veenhuis, Marten; Cregg, James M.

    1995-01-01

    In the methylotrophic yeast Hansenula polymorpha, approximately 25% of all methanol-utilization-defective (Mut(-)) mutants are affected in genes required for peroxisome biogenesis (PER genes). Previously, we reported that one group of pel mutants, termed Pim(-), are characterized by the presence of

  17. Pharmacological correctors of mutant CFTR mistrafficking

    Directory of Open Access Journals (Sweden)

    Nicoletta ePedemonte

    2012-10-01

    Full Text Available The lack of phenylalanine 508 (∆F508 mutation in the CFTR Cl- channel represents the most frequent cause of cystic fibrosis (CF, a genetic disease affecting multiple organs such lung, pancreas, and liver. ∆F508 causes instability and misfolding of CFTR protein leading to early degradation in the endoplasmic reticulum and accelerated removal from the plasma membrane. Pharmacological correctors of mutant CFTR protein have been identified by high-throughput screening of large chemical libraries, by in silico docking of virtual compounds on CFTR structure models, or by using compounds that affect the whole proteome (e.g. histone deacetylase inhibitors or a single CFTR-interacting protein. The presence of multiple defects caused at the CFTR protein level by ∆F508 mutation and the redundancy of quality control mechanisms detecting ∆F508-CFTR as a defective protein impose a ceiling to the maximal effect that a single compound (corrector may obtain. Therefore, treatment of patients with the most frequent CF mutation may require the optimized combination of two drugs having additive or synergic effects.

  18. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  19. Three mimic mutants for reclining foliage in common bean

    International Nuclear Information System (INIS)

    Two new mutants for the reclining foliage (RF) character were induced by treating seed of dry bean (Phaseolus vulgaris L.) breeding lines B-351 and 182-1 with 20 krad of .gamma.-radiation. These two mutants were shown to be monogenic and recessive. Allelism tests between the common RF gene rf and the two new mimic mutants for RF indicated that each of the three mutants has an independent locus. The symbols rf2 and rf3 were given to the new mutants. F2 data from the allelism tests showed that the rf2 stock carries a recessive epistatic gene in that does not affect rf2 but suppresses expression of rf and rf3. The rf locus was shown to be independent of the Sur locus for RF in linkage group VII

  20. Characteristics of mutant lines of sweet potato flour

    International Nuclear Information System (INIS)

    Research on mutation induction of sweet potato Sari variety has been conducted. Flour mutant lines were obtained from selection of M1V5 tubers irradiated by gamma rays at the dose of 10 Gy. Flour was made by peeling of tubers, then dried, blended and sieved. The quality test of flour have been done by measuring degree of whiteness, proximate, amylose contents, water content, soluble water, swelling power, and flour characteristics. The result of this work showed that flour of C6.26.13 mutant line had higher protein content than the parent plant with concentration of 3.62 % and its amylose content was also higher than the other mutant lines. The soluble water value of mutant lines were significant different compared to the parent plant from 1.82 to 2.25 % and swelling power from 4.28 to 5.55 %. The flour granule of the mutant line was different compared to the parent plant. (author)

  1. New ABA-hypersensitive Arabidopsis mutants are affected in loci mediating responses to water deficit and Dickeya dadantii infection.

    Directory of Open Access Journals (Sweden)

    Anne Plessis

    Full Text Available On water deficit, abscisic acid (ABA induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1 cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has, have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway.

  2. Mutant screen distinguishes between residues necessary for light-signal perception and signal transfer by phytochrome B.

    Directory of Open Access Journals (Sweden)

    Yoshito Oka

    Full Text Available The phytochromes (phyA to phyE are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651-amino acid domain of phyB (N651, which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS-like subdomain (PLD, the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF subdomain, and the phytochrome (PHY subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, beta-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity, and signaling mutants (those normal in light perception but defective in intracellular signal transfer. Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.

  3. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B).

    Science.gov (United States)

    Wright, David J; Tate, Christopher G

    2015-10-01

    The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4-5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. PMID:26143388

  4. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice

    Directory of Open Access Journals (Sweden)

    Shoji Hirotaka

    2012-02-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the

  5. Phenotypic Characterization of a Female Sterile Mutant in Rice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A female sterile mutant, derived from a spontaneous mutation, wasfirst discovered in rice (Oryza sativa L. ssp.indica) restorer line 202R. With normal flowering, the mutant exhibits an extremely Iow seed-setting rate. When the mutant is crossed as a pollen donor, the seeds set normally; whereas when it is used as a pollen receiver,no seeds are obtained even with mixed pollen grains of different varieties sprinkled over the stigmas. The floret of the mutant, consisting of six stamens and one pistil, looks the same as that of the wild type in the malefemale organs, except that less than 10% of the mutant florets have three stigmas on the ovary. Although the mutant has a low seed-setting rate, Its pollen fertility is approximately 87.1%, which is equal to that of the wild type. In addition, more than 90% of the mature embryo sacs of the mutant have complete inner structures. At every stage after pollination, the sperm, embryo, and endosperm are not found in the mutant embryo sac,whereas the disintegration of the egg cell that does not accomplish fertilization is visible. Through observations with a fluorescence microscope, we have found that the pollen grains germinate normally, whereas the pollen tube abnormally elongates in the style-transmitting tissue. The mutant pollen tubes display various defects in the style, such as slower elongation, conversed elongation, distorted elongation, swollen tips, or branched tips. As a result, the growth of the pollen tubes ceases in the style, and, therefore, the pollen tubes cannot reach the embryo sac and the process of double fertilization is blocked. Based on these observations,we conclude that this mutant, designated as fs-202R, is a novel type of female sterile mutation in rice, which causes the arrest of the elongation of the pollen tube.

  6. X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that show altered radiation sensitivity.

    Science.gov (United States)

    Game, John C; Williamson, Marsha S; Baccari, Clelia

    2005-01-01

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X rays, we are screening these mutants to identify additional genes that cause increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype cosegregates with the deletion allele and are obtaining multipoint survival-vs.-dose assays in at least one homozygous diploid and two haploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1, and VID21/EAF1 and discuss their potential roles in repair. Eight of these genes cause a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, results in at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultraviolet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino acids are also X-ray sensitive, which confirms that methylation of the lysine-79 residue is required for effective repair of radiation damage. PMID:15371366

  7. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  8. Isolation and characterization of Caulobacter mutants impaired in adaptation to stationary phase

    Directory of Open Access Journals (Sweden)

    Italiani Valéria C. S.

    2003-01-01

    Full Text Available The entry into stationary phase causes a change in the pattern of gene expression of bacteria, when the cells must express a whole set of genes involved mainly with resistance to starvation and to environmental stresses. As an attempt to identify genes important for the survival of Caulobacter crescentus in stationary phase, we have screened a library of 5,000 clones generated by random transposon mutagenesis for mutants that showed reduced viability after prolonged growth. Four clones were selected, which displayed either lower viability or a longer time of recovery from stationary phase. The genes disrupted were identified, and the gene products were found to be mainly involved with amino acid metabolism (glutamate N-acetyltransferase, 4-hydroxyphenylpyruvate dioxygenase and L-aspartate oxidase or with recombination (exonuclease RecJ. Each mutant was tested for resistance to stresses, such as oxidative, saline, acidic, heat and UV exposure, showing different responses. Although the mutations obtained were not in genes involved specifically in stationary phase, our results suggest that amino acids metabolism may play an important role in keeping viability during this growth phase.

  9. THE MUTANT STRAINS OF MICROORGANISMS ‒ PRODUCERS OF LYSINE AND THREONINE

    Directory of Open Access Journals (Sweden)

    G. S. Andriiash

    2014-06-01

    Full Text Available Strains-producers of essential amino acids of aspartate family such as Corynebacterium glutamicum, Brevibacterium flavum, Brevibacterium sp. 90, Brevibacterium sp. 90H, Brevibacterium sp. E531 from «Collections strains and lines of plants for food and agricultural biotechnology» of «Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine» for biosynthetic activity for lysine and threonine were investigated. Active strains-producers of amino acids were obtained after UV irradiation, biological characteristics of these organisms were studied and their biosynthetic efficiency was estimated. New mutant strains of threonine and lysine were selected using analysis of regulatory and analogorezistent auxotrophy. Sensitivity of output and mutant strain-producers to penicillins, macrolides, cephalosporins, tetracyclines, and other groups of antibiotics was investigated. Biosynthetic activity of obtained threonine producers – Brevibacterium flavum IMВ B-7446 and lysine – Brevibacterium sp. IMВ B-7447 on the production of target amino acids was determined. Strains are deposited in the «National Depository microorganisms» of the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine.

  10. Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes.

    Science.gov (United States)

    Zhou, Weilin; Irwin, Diana C; Escovar-Kousen, Jose; Wilson, David B

    2004-08-01

    Thermobifida fusca Cel9A-90, an unusual family 9 enzyme, is a processive endoglucanase containing a catalytic domain closely linked to a family 3c cellulose binding domain (Cel9A-68) followed by a fibronectin III-like domain and a family 2 cellulose binding domain. To study its catalytic mechanism, 12 mutant genes with changes in five conserved residues of Cel9A-68 were constructed, cloned, and expressed in Escherichia coli. The purified mutant enzymes were assayed for their activities on (carboxymethyl)cellulose, phosphoric acid-swollen cellulose, bacterial microcrystalline cellulose, and 2,4-dinitrophenyl beta-D-cellobioside. They were also tested for ligand binding, enzyme processivity, and thermostability. The results clearly show that E424 functions as the catalytic acid, D55 and D58 are both required for catalytic base activity, and Y206 plays an important role in binding, catalysis, and processivity, while Y318 plays an important role in binding of crystalline cellulose substrates and is required for processivity. Several amino acids located in a loop at the end of the catalytic cleft (T245-L251) were deleted from Cel9A-68, and this enzyme showed slightly improved filter paper activity and binding to BMCC but otherwise behaved like the wild-type enzyme. The FnIII-like domain was deleted from Cel9A-90, reducing BMCC activity to 43% of the wild type. PMID:15274620

  11. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning. PMID:19716848

  12. Radio-sensitivity analysis and selection of useful mutants of rape (Brassica napus L.) by gamma irradiation

    International Nuclear Information System (INIS)

    Rape (Brassica napus L.) plants are one of the major oilseed crops. The main components of rapeseed are oil (35 to 47%) and protein (15 to 32%). For the biodiesel production, the development of a new variety of rape plant with high biomass and/or oleic acid contents is required. In order to determine the optimum dose of gamma-ray irradiation, the rape seeds of cvs. Hanra (Hr), Youngsan (Ys), Tammi (Tm), and Tamra (Tr) were irradiated with a 100 ∼ 4,000 Gy dose range of gamma-rays. Considering the growth factors, the optimum doses were determined to be within the range of 600 ∼ 1,000 Gy for the selection of useful mutant lines. Six-hundred and eighty eight (688) M2 mutant lines were obtained from 600 ∼ 1,000 Gy gamma-ray-irradiated M1 plants through selfing. The growth characteristics, leaf shape, early flowering, and flower color were all investigated. The selected mutant numbers of early flowering, leaf shape, and flower color were 34, 52, and 3 from the four cultivars, respectively. These mutant lines will be used for the development of a new variety of rape plant with high biomass and oleic acid contents

  13. Radio-sensitivity analysis and selection of useful mutants of rape (Brassica napus L.) by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Eun Jeong; Kim, Wook Jin; Kim, Jin Baek; Kim, Dong Sub; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-09-15

    Rape (Brassica napus L.) plants are one of the major oilseed crops. The main components of rapeseed are oil (35 to 47%) and protein (15 to 32%). For the biodiesel production, the development of a new variety of rape plant with high biomass and/or oleic acid contents is required. In order to determine the optimum dose of gamma-ray irradiation, the rape seeds of cvs. Hanra (Hr), Youngsan (Ys), Tammi (Tm), and Tamra (Tr) were irradiated with a 100 {approx} 4,000 Gy dose range of gamma-rays. Considering the growth factors, the optimum doses were determined to be within the range of 600 {approx} 1,000 Gy for the selection of useful mutant lines. Six-hundred and eighty eight (688) M{sub 2} mutant lines were obtained from 600 {approx} 1,000 Gy gamma-ray-irradiated M{sub 1} plants through selfing. The growth characteristics, leaf shape, early flowering, and flower color were all investigated. The selected mutant numbers of early flowering, leaf shape, and flower color were 34, 52, and 3 from the four cultivars, respectively. These mutant lines will be used for the development of a new variety of rape plant with high biomass and oleic acid contents.

  14. Bioactive compounds of fourth generation gamma-irradiated Typhoniumflagelliforme Lodd. mutants based on gas chromatography-mass spectrometry

    Science.gov (United States)

    Sianipar, N. F.; Purnamaningsih, R.; Rosaria

    2016-08-01

    Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

  15. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning.

  16. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells

    OpenAIRE

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-01-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells.Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53.Jasmonic acid and methyl jasmonate (0.25–3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radio...

  17. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B;

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depression...... affinities, as well as ion dependencies, were drastic. Effects were synergistic compared to the corresponding single mutants. In conclusion, we suggest that mutating threonine-178 to an alanine and phenylalanine-263 to a cysteine mainly alter the overall uptake kinetics of SERT by affecting...

  18. New antifungal and cytotoxic steroidal saponins from the bulbs of an elephant garlic mutant.

    Science.gov (United States)

    Sata, N; Matsunaga, S; Fusetani, N; Nishikawa, H; Takamura, S; Saito, T

    1998-10-01

    Saponins in bulbs of a mutant of elephant garlic were investigated, and three new steroidal saponins named yayoisaponins A-C were obtained together with the known dioscin and aginoside. Their structures, including the relative stereochemistry, were elucidated by spectral data interpretation, while the absolute stereochemistry of the sugar moieties was assigned on the basis of a chiral gas chromatographic analysis of the acid hydrolysates. Yayoisaponins A-C and aginoside exhibited not only in vitro cytotoxicity against P388 cells at 2.1 micrograms/ml, but also antifungal activity against Mortierella ramanniana at 10 micrograms/disk. PMID:9836426

  19. Cellulase production by two mutant strain of Trichoderma longibrachiatum Qm9414 and Rut C30

    International Nuclear Information System (INIS)

    Native or pretreated biomass from Onopordum nervosum boiss, has been examined as candidate feedstock for cellulase production by two mutant strain of trichoderma longibrachiatum QM9414 and Rut C30. Batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka floc). Batch cultivation of T. longibrachiatum Rut C30 on 55% (W/V) acid pretreated O. nervosum biomass yielded enzyme productivities and activities comparable to those obtained on Solka floc. However, the overall enzyme production performance was lower than on Solka floc at comparable cellulose concentrations. This fact may be due to the accumulation of pretreated by products and lignin in the fermentor.(author)

  20. Synthesis, purification, and characterization of an Arg152 → Glu site-directed mutant of recombinant human blood clotting factor VII

    International Nuclear Information System (INIS)

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg152-Ile153. Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg152 → Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at Mr∼40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX

  1. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  2. A New gcrR-Deficient Streptococcus mutans Mutant for Replacement Therapy of Dental Caries

    Directory of Open Access Journals (Sweden)

    Wenting Pan

    2013-01-01

    Full Text Available Background. gcrR gene acts as a negative regulator related to sucrose-dependent adherence in S. mutans. It is constructive to test the potential capacity of mutans with gcrR gene deficient in bacteria replacement therapy. Methods. In this study, we constructed the mutant by homologous recombination. The morphological characteristics of biofilms were analyzed by confocal laser scanning microscopy. S. mutans UA159 and the mutant MS-gcrR-def were inoculated, respectively, or together for competitive testing in vitro and in rat model. Results. Adhesion assay showed that the adhesion ability of the mutant increased relative to the wild type, especially in the early stage. MS-gcrR-def out-competed S. mutans UA159 in vitro biofilm, and correspondingly coinfection displayed significantly fewer caries in vivo. The former possessed both a lower level of acid production and a stronger colonization potential than S. mutans UA159. Conclusion. These findings demonstrate that MS-gcrR-def appears to be a good candidate for replacement therapy.

  3. MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice.

    Science.gov (United States)

    Ni, Ting; Wei, Gang; Shen, Ting; Han, Miao; Lian, Yaru; Fu, Haihui; Luo, Yan; Yang, Yanqin; Liu, Jie; Wakabayashi, Yoshi; Li, Zheng; Finkel, Toren; Xu, Hong; Zhu, Jun

    2015-07-27

    Mutations in mitochondrial DNA (mtDNA) can lead to a wide range of human diseases. We have developed a deep sequencing strategy, mitoRCA-seq, to detect low-frequency mtDNA point mutations starting with as little as 1 ng of total DNA. It employs rolling circle amplification, which enriches the full-length circular mtDNA by either custom mtDNA-specific primers or a commercial kit, and minimizes the contamination of nuclear encoded mitochondrial DNA (Numts). By analyzing the mutation profiles of wild-type and Polg (mitochondrial DNA polymerase γ) mutant mice, we found that mice with the proofreading deficient mtDNA polymerase have a significantly higher mutation load by expanding the number of mutation sites and to a lesser extent by elevating the mutation frequency at existing sites even before the premature aging phenotypes appear. Strikingly, cytocine (C) to thymine (T) transitions are found to be overrepresented in the mtDNA of Polg mutated mice. The C → T transition, compared to other types of mutations, tends to increase the hydrophobicity of the underlying amino acids, and may contribute to the impaired protein function of the Polg mutant mice. Taken together, our findings may provide clues to further investigate the molecular mechanism underlying premature aging phenotype in Polg mutant mice.

  4. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Cheng-gang CAI; Bing-gan LOU; Xiao-dong ZHENG

    2008-01-01

    A new feather-degrading bacterium was isolated from a local feather waste site and identified as Bacillus subtilis based on morphological, physiochemical, and phylogenetic characteristics. Screening for mutants with elevated keratinolytic activity using N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis resulted in a mutant strain KD-N2 producing keratinolytic activity about 2.5 times that of the wild-type strain. The mutant strain produced inducible keratinase in different substrates of feathers, hair, wool and silk under submerged cultivation. Scanning electron microscopy studies showed the degradation of feathers, hair and silk by the keratinase. The optimal conditions for keratinase production include initial pH of 7.5, inoculum size of 2% (v/v), age of inoculum of 16 h, and cultivation at 23 ℃. The maximum keratinolytic activity of KD-N2 was achieved after 30 h. Essential amino acids like threonine, valine, methionine as well as ammonia were produced when feathers were used as substrates. Strain KD-N2,therefore, shows great promise of finding potential applications in keratin hydrolysis and keratinase production.

  5. Analysis of Escherichia coli nicotinate mononucleotide adenylyltransferase mutants in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Rydén-Aulin Monica

    2005-09-01

    Full Text Available Abstract Background Adenylation of nicotinate mononucleotide to nicotinate adenine dinucleotide is the penultimate step in NAD+ synthesis. In Escherichia coli, the enzyme nicotinate mononucleotide adenylyltransferase is encoded by the nadD gene. We have earlier made an initial characterization in vivo of two mutant enzymes, NadD72 and NadD74. Strains with either mutation have decreased intracellular levels of NAD+, especially for one of the alleles, nadD72. Results In this study these two mutant proteins have been further characterized together with ten new mutant variants. Of the, in total, twelve mutations four are in a conserved motif in the C-terminus and eight are in the active site. We have tested the activity of the enzymes in vitro and their effect on the growth phenotype in vivo. There is a very good correlation between the two data sets. Conclusion The mutations in the C-terminus did not reveal any function for the conserved motif. On the other hand, our data has lead us to assign amino acid residues His-19, Arg-46 and Asp-109 to the active site. We have also shown that the nadD gene is essential for growth in E. coli.

  6. Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants.

    Science.gov (United States)

    Lu, Yan; Savage, Linda J; Larson, Matthew D; Wilkerson, Curtis G; Last, Robert L

    2011-04-01

    Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase. PMID:21224340

  7. Chloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants.

    Science.gov (United States)

    Lu, Yan; Savage, Linda J; Larson, Matthew D; Wilkerson, Curtis G; Last, Robert L

    2011-04-01

    Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase.

  8. Towards practical Baeyer-Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability.

    Science.gov (United States)

    Opperman, Diederik J; Reetz, Manfred T

    2010-12-10

    Baeyer-Villiger monooxygenases (BVMOs) catalyze the conversion of ketones and cyclic ketones into esters and lactones, respectively. Cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871 is known to show an impressive substrate scope as well as exquisite chemo-, regio-, and enantioselectivity in many cases. Large-scale synthetic applications of CHMO are hampered, however, by the instability of the enzyme. Oxidation of cysteine and methionine residues contributes to this instability. Designed mutations of all the methionine and cysteine residues in the CHMO wild type (WT) showed that the amino acids labile towards oxidation are mostly either surface-exposed or located within the active site, whereas the two methionine residues identified for thermostabilization are buried within the folded protein. Combinatorial mutations gave rise to two stabilized mutants with either oxidative or thermal stability, without compromising the activity or stereoselectivity of the enzyme. The most oxidatively stabilized mutant retained nearly 40 % of its activity after incubation with H(2)O(2) (0.2 M), whereas the wild-type enzyme's activity was completely abolished at concentrations as low as 5 mM H(2)O(2). We propose that oxidation-stable mutants might well be a "prerequisite" for thermostabilization, because laboratory-evolved thermostability in CHMO might be masked by a high degree of oxidation instability.

  9. Methods of producing protoporphyrin IX and bacterial mutants therefor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  10. Potential of sweet potato mutant lines for bio ethanol production

    International Nuclear Information System (INIS)

    Shoots of sweet potato Sari variety were irradiated at the doses of 0, 10, 20, 30 and 40 Gy. Irradiated shoots were planted and selected to obtain better mutant lines than that of the parent plant. Ten mutant lines were from the fourth generation which better morphology and productivity than that of the parent plant. The best productivity was found at mutant line number 40-2 which was 717.50 g/plant compared to parent plant with 622.50 g/plant. The highest glucose and starch content obtained were at the dose of 20 Gy which were 8.85 and 28.56 % respectively. The mutant line of Sari sweet potato has a potential to produce bio ethanol. The bio-ethanol production from those of mutant lines at a range of 15.02 to 19.46 % compared to 13.67 % in the parent plant. The mutant line number 20 was the best line to produce bio-ethanol. The aim of this experiment was to find mutant lines having potential to produce bio-ethanol. (author)

  11. Effect of different immunosuppressive drugs on calcineurin and its mutants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis.Their phosphatase activity and the corresponding solution conformation were examined.Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immunosuppressive drugs with CN.The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN.Furthermore,circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein.Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN,and had no effects on the phosphatase activity of mutants in Loop7 region,which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN.Examination of the activities of these mutants resulted in the presence of immunosuppressive component from traditional Chinese drugs.The component of Chinese drug,ZIP1,could directly inhibit both CN and CN mutants without drug binding protein.These results suggest that the Loop7 region is an important structural area involved in the inhibition by CyP-CsA.It is valuable to further study the inhibition by ZIP1.

  12. Epigenetic Suppression of T-DNA Insertion Mutants in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yangbin Gao; Yunde Zhao

    2013-01-01

    T-DNA insertion mutants have been widely used to define gene functions in Arabidopsis and in other plants.Here,we report an unexpected phenomenon of epigenetic suppression of T-DNA insertion mutants in Arabidopsis.When the two T-DNA insertion mutants,yucl-1 and ag-TD,were crossed together,the defects in all of the ag-TD plants in the F2 population were partially suppressed regardless of the presence of yucl-1.Conversion of ag-TD to the suppressed ag-TD (named as ag-TD*) did not follow the laws of Mendelian genetics.The ag-TD* could be stably transmitted for many generations without reverting to ag-TD,and ag-TD* had the capacity to convert ag-TD to ag-TD*.We show that epigenetic suppression of T-DNA mutants is not a rare event,but certain structural features in the T-DNA mutants are needed in order for the suppression to take place.The suppressed T-DNA mutants we observed were all intronic T-DNA mutants and the T-DNA fragments in both the trigger T-DNA as well as in the suppressed T-DNA shared stretches of identical sequences.We demonstrate that the suppression of intronic T-DNA mutants is mediated by trans-interactions between two ToDNA insertions.This work shows that caution is needed when intronic T-DNA mutants are used.

  13. Proton Sensing of CLC-0 Mutant E166D

    Science.gov (United States)

    Traverso, Sonia; Zifarelli, Giovanni; Aiello, Rita; Pusch, Michael

    2006-01-01

    CLC Cl− channels are homodimers in which each subunit has a proper pore and a (fast) gate. An additional slow gate acts on both pores. A conserved glutamate (E166 in CLC-0) is a major determinant of gating in CLC-0 and is crucially involved in Cl−/H+ antiport of CLC-ec1, a CLC of known structure. We constructed tandem dimers with one wild-type (WT) and one mutant subunit (E166A or E166D) to show that these mutations of E166 specifically alter the fast gate of the pore to which they belong without effect on the fast gate of the neighboring pore. In addition both mutations activate the common slow gate. E166A pores have a large, voltage-independent open probability of the fast gate (popen), whereas popen of E166D pores is dramatically reduced. Similar to WT, popen of E166D was increased by lowering pHint. At negative voltages, E166D presents a persistent inward current that is blocked by p-chlorophenoxy-acetic acid (CPA) and increased at low pHext. The pHext dependence of the persistent current is analogous to a similar steady inward current in WT CLC-0. Surprisingly, however, the underlying unitary conductance of the persistent current in E166D is about an order of magnitude smaller than that of the transient deactivating inward Cl− current. Collectively, our data support the possibility that the mutated CLC-0 channel E166D can assume two distinct open states. Voltage-independent protonation of D166 from the outside favors a low conductance state, whereas protonation from the inside favors the high conductance state. PMID:16380443

  14. Characterization of xylitol-utilizing mutants of Erwinia uredovora.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Of the four pentitols ribitol, xylitol, D-arabitol, and L-arabitol, Erwinia uredovora was able to utilize only D-arabitol as a carbon and energy source. Although attempts to isolate ribitol- or L-arabitol-utilizing mutants were unsuccessful, mutants able to grow on xylitol were isolated at a frequency of 9 X 10(-8). Xylitol-positive mutants constitutively synthesized both a novel NAD-dependent xylitol-4-dehydrogenase, which oxidized xylitol to L-xylulose, and an L-xylulokinase. The xylitol de...

  15. Biochemical characterization of a fructokinase mutant of Rhizobium meliloti.

    OpenAIRE

    Gardiol, A; Arias, A.; Cerveñansky, C; Gaggero, C; Martínez-Drets, G

    1980-01-01

    A double mutant strain (UR3) of Rhizobium meliloti L5-30 was isolated from a phosphoglucose isomerase mutant (UR1) on the basis of its resistance to fructose inhibition when grown on fructose-rich medium. UR3 lacked both phosphoglucose isomerase and fructokinase activity. A mutant strain (UR4) lacking only the fructokinase activity was derived from UR3; it grew on the same carbon sources as the parent strain, but not on fructose, mannitol, or sorbitol. A spontaneous revertant (UR5) of normal ...

  16. Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas.

    Science.gov (United States)

    Baroli, Irene; Gutman, Benjamin L; Ledford, Heidi K; Shin, Jai W; Chin, Brian L; Havaux, Michel; Niyogi, Krishna K

    2004-02-20

    When there is an imbalance between the light energy absorbed by a photosynthetic organism and that which can be utilized in photosynthesis, photo-oxidative stress can damage pigments, proteins, lipids, and nucleic acids. In this work we compared the wild type and a xanthophyll-deficient mutant of Chlamydomonas reinhardtii in their response to high amounts of light. Wild-type Chlamydomonas cells were able to acclimate to high amounts of light following transfer from low light conditions. In contrast, the npq1 lor1 double mutant, which lacks protective xanthophylls (zeaxanthin and lutein) in the chloroplast, progressively lost viability and photosynthetic capacity along with destruction of thylakoid membrane protein-pigment complexes and accumulation of reactive oxygen species and membrane lipid peroxides. Loss of viability was partially rescued by lowered oxygen tension, suggesting that the high sensitivity of the mutant to light stress is caused by the production of reactive oxygen species in the chloroplast. Cell death was not prevented by the addition of an organic carbon source to the growth medium, demonstrating that the photo-oxidative damage can target other essential chloroplast processes besides photosynthesis. From the differential sensitivity of the mutant to exogenously added pro-oxidants, we infer that the reactive oxygen species produced during light stress in npq1 lor1 may be singlet oxygen and/or superoxide but not hydrogen peroxide. The bleaching phenotype of npq1 lor1 was not due to enhanced photodamage to photosystem II but rather to a less localized phenomenon of accumulation of photo-oxidation products in chloroplast membranes. PMID:14665619

  17. An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment.

    Science.gov (United States)

    Rubio, Silvia; Larson, Tony R; Gonzalez-Guzman, Miguel; Alejandro, Santiago; Graham, Ian A; Serrano, Ramón; Rodriguez, Pedro L

    2006-03-01

    Once the plant coenzyme A (CoA) biosynthetic pathway has been elucidated by comparative genomics, it is feasible to analyze the physiological relevance of CoA biosynthesis in plant life. To this end, we have identified and characterized Arabidopsis (Arabidopsis thaliana) T-DNA knockout mutants of two CoA biosynthetic genes, HAL3A and HAL3B. The HAL3A gene encodes a 4'-phosphopantothenoyl-cysteine decarboxilase that generates 4'-phosphopantetheine. A second gene, HAL3B, whose gene product is 86% identical to that of HAL3A, is present in the Arabidopsis genome. HAL3A appears to have a predominant role over HAL3B according to their respective mRNA expression levels. The hal3a-1, hal3a-2, and hal3b mutants were viable and showed a similar growth rate as that in wild-type plants; in contrast, a hal3a-1 hal3b double mutant was embryo lethal. Unexpectedly, seedlings that were null for HAL3A and heterozygous for HAL3B (aaBb genotype) displayed a sucrose (Suc)-dependent phenotype for seedling establishment, which is in common with mutants defective in beta-oxidation. This phenotype was genetically complemented in aaBB siblings of the progeny and chemically complemented by pantethine. In contrast, seedling establishment of Aabb plants was not Suc dependent, proving a predominant role of HAL3A over HAL3B at this stage. Total fatty acid and acyl-CoA measurements of 5-d-old aaBb seedlings in medium lacking Suc revealed stalled storage lipid catabolism and impaired CoA biosynthesis; in particular, acetyl-CoA levels were reduced by approximately 80%. Taken together, these results provide in vivo evidence for the function of HAL3A and HAL3B, and they point out the critical role of CoA biosynthesis during early postgerminative growth. PMID:16415216

  18. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarenko, Nina S.; Li, Liang; Marino, Antony R.; Tereshko, Valentina; Ostafin, Agnes; Popova, Julia A.; Bylina, Edward J.; Ismagilov, Rustem F.; Norris, Jr., James R.; (UC); (Utah)

    2010-07-22

    Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 {micro}m, belonged to space group P4{sub 3}2{sub 1}2, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 {angstrom} resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C{sub 380}, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.

  19. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone.

    Science.gov (United States)

    Culig, Z; Stober, J; Gast, A; Peterziel, H; Hobisch, A; Radmayr, C; Hittmair, A; Bartsch, G; Cato, A C; Klocker, H

    1996-01-01

    The androgen receptor (AR) plays a central regulatory role in prostatic carcinoma and is a target of androgen ablation therapy. Recent detection of mutant receptors in tumor specimens suggest a contribution of AR alterations to progression towards androgen independence. In a specimen derived from metastatic prostate cancer we have reported a point mutation in the AR gene that leads to a single amino acid exchange in the ligand binding domain of the receptor. Another amino acid exchange resulting from a point mutation was also identified 15 amino acids away from our mutation. This mutation was detected in the AR gene isolated from an organ-confined prostatic tumor. Here we report the functional characterization of the two mutant receptors in the presence of adrenal androgens and testosterone metabolites. These studies were performed by cotransfecting androgen-responsive reporter genes and either the wild-type or mutant AR expression vectors into receptor negative DU-145 and CV-1 cells. The indicator genes used consisted of the promoter of the androgen-inducible prostate-specific antigen gene or the C' Delta9 enhancer fragment from the promoter of the mouse sex-limited protein driving the expression of the bacterial chloramphenicol acetyl transferase gene. Cotransfection-transactivation assays revealed that the adrenal androgen androstenedione and two products of testosterone metabolism, androsterone and androstandiol, induced reporter gene activity more efficiently in the presence of the mutant receptors than in the presence of the wild-type receptor. No difference between wild-type and mutant receptors was observed in the presence of the metabolite androstandione. The interaction of receptor-hormone complexes with target DNA was studied in vitro by electrophoretic mobility shift assays (EMSA). Dihydrotestosterone and the synthetic androgen mibolerone induced a faster migrating complex with all receptors, whereas the androgen metabolite androstandione induced this

  20. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice

    OpenAIRE

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-01-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA a...

  1. Analysis of an avtA::Mu d1(Ap lac) mutant: metabolic role of transaminase C.

    OpenAIRE

    Whalen, W A; Berg, C M

    1982-01-01

    Escherichia coli can synthesize alpha-ketoisovalerate, the precursor of valine, leucine, and pantothenate, by three routes: anabolically via dihydroxyacid dehydrase and catabolically via both the branched-chain amino acid transaminase (transaminase B) and the alanine-valine transaminase (transaminase C). An E. coli K-12 mutant devoid of transaminase C (avtA) was isolated by mutagenizing an isoleucine-requiring strain devoid of transaminase B (ilvE::Tn5) with Mu d1(Ap lac) and selecting for va...

  2. Identification of Residues Responsible for the Defective Virulence Gene Regulator Mga Produced by a Natural Mutant of Streptococcus pyogenes

    OpenAIRE

    Vahling, Cheryl M.; McIver, Kevin S.

    2005-01-01

    Mga is a transcriptional regulator in the pathogen Streptococcus pyogenes that positively activates several important virulence genes involved in colonization and immune evasion in the human host. A naturally occurring mutant of Mga that is defective in its ability to activate transcription has been identified in the serotype M50 strain B514-Sm. Sequence alignment of the defective M50 Mga with the fully functional Mga from serotypes M4 and M49 revealed only three amino acid changes that might...

  3. Development of a reduced linolenate soy [Glycine max] mutant by re-irradiation and its genetic analysis

    International Nuclear Information System (INIS)

    A high content of linolenic acid leads to reduction of keeping quality and frying stability of cooking oil. The present study was conducted to obtain a further reduction of linolenic acid in soybean [Glycine max (L.) Merr.] oil by re-irradiation of M-5 and determine its genetic system. M-5 is a mutant with 4.5% linolenic acid content, derived from the cultivar Bay (8.0% linolenic acid). A seed lot from line M-5 was treated with X-ray irradiation and M2 plants were obtained from randomly selected seeds of M1 plants. The M-2 plants were screened for reduced linolenic acid. One plant was found with 3.0% linolenic acid content and was named MS382. The M3 and M1 generations of this line proved that the character was fixed and significantly lower than the M-5 control. For inheritance studies, MS382 was reciprocally crossed with M-5 (fan) and LOLL [fanfanx-a, a recombinant of M-5 (fan) x M24 (fanx-a)]. The F2 segregation ratio and the segregation of F3 seeds from F2 plants of MS382 x M-5 indicated that reduced linolenic acid in MS382 was conbindly controlled by fan (M-5) and an additional gene. To determine if this additional gene was similar with the fanx-a gene in LOLL, F2 seeds and F3 seeds from each F2 plant of MS382 x LOLL were evaluated. No transgressive segregation for linolenic acid was found in this cross, indicating the genes for reduced linolenic acid content in MS382 and LOLL were identical. However, the mutant MS382 was developed by re-irradiation which indicates the practicability of this technique to develop new gene for further reduction of linolenic acid in soybean oil

  4. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    , stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib....... Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 μM respectively, compared to 60 μM and 45 μM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate...

  5. Status and Perspectives on the Researches of Rice Glutelin Mutants

    Institute of Scientific and Technical Information of China (English)

    ZHENG Tian-qing; SHEN Wen-biao; ZHU Su-song; ZHAI Hu-qu; WAN Jian-min

    2003-01-01

    Rice (Oryza sativa L. ) is one of the model plants for genomics research. As the raising offunctional rice breeding for special usage, glutelin mutants play a more and more important role in the func-tional rice breeding as well as eukaryotic gene expression and regulation research materials. For example, therice cultivar special for the patients suffering from kidney disease and diabetes could be developed from the riceglutelin mutants. In this paper, current researches on characterization, mutation mechanism and breeding us-age of various rice glutelin mutants, especially the low glutelin content cultivars, were all discussed with per-spectives on the trends of the glutelin mutant researches in the era of post-genomics.

  6. Improved production of rhamno lipids by a pseudomonas aeruginosa mutant

    International Nuclear Information System (INIS)

    A pseudomonas aeruginosa mutant derived by random mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, producing high level of the rhamno lipid bio surfactants was selected on Sigmund Wagner plates. The mutant designated P. aeruginosa Persian Type Culture Collection 1637 produces rhamno lipids at concentration 10 times more than present strain. Nuclear Magnetic Resonance analysis and surface tension measurement showed that the bio surfactants produced by the mutant were identical to those produced by the wild type strain. The bio surfactants exhibited a low surface tension of 28.0 mn m-1 and a low critical micelle concentration of 9 mg l-1. Similar to the wild type strain, the mutant produced bio surfactants at the stationary phase

  7. Induced mutant lines derived from irradiated mungbean varieties

    International Nuclear Information System (INIS)

    The mungbean cultivars Manyar and Walet were irradiated with several doses of gamma rays and Nuri with fast neutrons. Selection for desired characters, such as synchronized maturity and more pods per plant than the control, were carried out in the M2 generation. In the M5 generation, about 164 mungbean mutant lines were selected. In 1988, a preliminary yield trial was carried out on 46 selected M5 homogenous lines and, in 1989, an advanced yield trial on selected M6 lines. From these observations, it was shown that some promising mutant lines had been recovered, i.e. four high yielding mutant lines derived from the gamma irradiation of Walet, three lines which showed synchronized maturity as well as larger pods and a greater number of seeds derived from the gamma irradiation of Manyar, and a high seed protein content in mutant lines derived from the fast neutron irradiation of Nuri. (author). 2 refs, 2 tabs

  8. Characterization of Glutamine-Requiring Mutants of Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, Dick B.; Joosten, Han M.L.J.; Herst, Patricia M.; Drift, Chris van der

    1982-01-01

    Revertants were isolated from a glutamine-requiring mutant of Pseudomonas aeruginosa PAO. One strain showed thermosensitive glutamine requirement and formed thermolabile glutamine synthetase, suggesting the presence of a mutation in the structural gene for glutamine synthetase. The mutation conferri

  9. Metabolic Disruption in Drosophila Bang-Sensitive Seizure Mutants

    Science.gov (United States)

    Fergestad, Tim; Bostwick, Bret; Ganetzky, Barry

    2006-01-01

    We examined a number of Drosophila mutants with increased susceptibility to seizures following mechanical or electrical stimulation to better understand the underlying factors that predispose neurons to aberrant activity. Several mutations in this class have been molecularly identified and suggest metabolic disruption as a possible source for increased seizure susceptibility. We mapped the bang-sensitive seizure mutation knockdown (kdn) to cytological position 5F3 and identified citrate synthase as the affected gene. These results further support a role for mitochondrial metabolism in controlling neuronal activity and seizure susceptibility. Biochemical analysis in bang-sensitive mutants revealed reductions in ATP levels consistent with disruption of mitochondrial energy production in these mutants. Electrophysiological analysis of mutants affecting mitochondrial proteins revealed an increased likelihood for a specific pattern of seizure activity. Our data implicate cellular metabolism in regulating seizure susceptibility and suggest that differential sensitivity of neuronal subtypes to metabolic changes underlies distinct types of seizure activity. PMID:16648587

  10. C1Q Assay Results in Complement-Dependent Cytotoxicity Crossmatch Negative Renal Transplant Candidates with Donor-Specific Antibodies: High Specificity but Low Sensitivity When Predicting Flow Crossmatch

    Science.gov (United States)

    Castelán, Natalia; de Santiago, Adrián; Arvizu, Adriana; Gonzalez-Tableros, Norma; López, Mayra; Salcedo, Isaac; Vilatobá, Mario; Granados, Julio

    2016-01-01

    The aim of the present study was to describe the association of positive flow cross match (FXM) and C1q-SAB. Methods. In this observational, cross-sectional, and comparative study, patients included had negative AHG-CDC-XM and donor specific antibodies (DSA) and were tested with FXM. All pretransplant sera were tested with C1q-SAB assay. Results. A total of 50 donor/recipient evaluations were conducted; half of them had at least one C1q+ Ab (n = 26, 52%). Ten patients (20.0%) had DSA C1q+ Ab. Twenty-five (50%) FXMs were positive. Factors associated with a positive FXM were the presence of C1q+ Ab (DSA C1q+ Ab: OR 27, 2.80–259.56, P = 0.004, and no DSA C1q+ Ab: OR 5, 1.27–19.68, P = 0.021) and the DSA LABScreen-SAB MFI (OR 1.26, 95% CI 1.06–1.49, P = 0.007). The cutoff point of immunodominant LABScreen SAB DSA-MFI with the greatest sensitivity and specificity to predict FXM was 2,300 (sensitivity: 72% and specificity: 75%). For FXM prediction, DSA C1q+ Ab was the most specific (95.8%, 85–100) and the combination of DSA-MFI > 2,300 and C1q+ Ab was the most sensitive (92.0%, 79.3–100). Conclusions. C1q+ Ab and LABScreen SAB DSA-MFI were significantly associated with FXM. DSA C1q+ Ab was highly specific but with low sensitivity. PMID:27688904

  11. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.;

    2002-01-01

    The fab1 mutant of Arabidopsis is partially deficient in activity of ß-ketoacyl-[acyl carrier protein] synthase II (KAS II). This defect results in increased levels of 16 : 0 fatty acid and is associated with damage and death of the mutants at low temperature. Transformation of fab1 plants with a c......DNA from Brassica napus encoding a KAS II enzyme resulted in complementation of both mutant phenotypes. The dual complementation by expression of the single gene proves that low-temperature damage is a consequence of altered membrane unsaturation. The fab1 mutation is a single nucleotide change...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  12. Optimizing Gateway™ technology (Invitrogen) to construct Rhizobium leguminosarum deletion mutants

    OpenAIRE

    Lanza Lucio, Monica; Alborno, Marcelo; Rey Navarro, Luis; Imperial Ródenas, Juan

    2010-01-01

    The study of the role of different genes in Rhizobium leguminosarum requires the generation of mutants by homologous recombination. In this communication we describe a novel approach to obtain deletion mutants of genes in Rhizobium using Gateway TM Cloning technology (Invitrogen) and a new vector (pK18-attR), both conjugative and Rhizobium specific, that carries the recombination tails of Gateway system. This tool is a new alternative to the classic approach based on cloning using rest...

  13. Targeting oncogenic mutant p53 for cancer therapy

    OpenAIRE

    Tomoo eIwakuma; Alejandro eParrales

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function (GOF) activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p...

  14. Targeting Oncogenic Mutant p53 for Cancer Therapy

    OpenAIRE

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in ...

  15. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    OpenAIRE

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we rev...

  16. Structural analysis reveals the substrate-binding mechanism for the expanded substrate specificity of mutant meso-diaminopimelate dehydrogenase.

    Science.gov (United States)

    Liu, Weidong; Guo, Rey-Ting; Chen, Xi; Li, Zhe; Gao, Xiuzhen; Huang, Chun-Hsiang; Wu, Qiaqing; Feng, Jinhui; Zhu, Dunming

    2015-04-13

    A meso-diaminopimelate dehydrogenase (DAPDH) from Clostridium tetani E88 (CtDAPDH) was found to have low activity toward the D-amino acids other than its native substrate. Site-directed mutagenesis similar to that carried out on the residues mutated by Vedha-Peters et al. resulted in a mutant enzyme with highly improved catalytic ability for the synthesis of D-amino acids. The crystal structures of the CtDAPDH mutant in apo form and in complex with meso-diaminopimelate (meso-DAP), D-leucine (D-leu), and 4-methyl-2-oxopentanoic acid (MOPA) were solved. meso-DAP was found in an area outside the catalytic cavity; this suggested a possible two-step substrate-binding mechanism for meso-DAP. D-leu and MOPA each bound both to Leu154 and to Gly155 in the open form of CtDAPDH, and structural analysis revealed the molecular basis for the expanded substrate specificity of the mutant meso-diaminopimelate dehydrogenases. PMID:25754803

  17. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takaaki Daimon

    Full Text Available Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs. JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  18. Isolation of New Gravitropic Mutants under Hypergravity Conditions

    Science.gov (United States)

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T.

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 (eal1) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  19. Identification of a phosphinothricin-resistant mutant of rice glutamine synthetase using DNA shuffling.

    Science.gov (United States)

    Tian, Yong-Sheng; Xu, Jing; Zhao, Wei; Xing, Xiao-Juan; Fu, Xiao-Yan; Peng, Ri-He; Yao, Quan-Hong

    2015-10-23

    To date, only bar/pat gene derived from Streptomyces has been used to generate the commercial PPT-resistant crops currently available in the market. The limited source of bar/pat gene is probably what has caused the decrease in PPT-tolerance, which has become the main concern of those involved in field management programs. Although glutamine synthetase (GS) is the target enzyme of PPT, little study has been reported about engineering PPT-resistant plants with GS gene. Then, the plant-optimized GS gene from Oryza sativa (OsGS1S) was chemically synthesized in the present study by PTDS to identify a GS gene for developing PPT-tolerant plants. However, OsGS1S cannot be directly used for developing PPT-tolerant plants because of its poor PPT-resistance. Thus, we performed DNA shuffling on OsGS1S, and one highly PPT-resistant mutant with mutations in four amino acids (A63E, V193A, T293A and R295K) was isolated after three rounds of DNA shuffling and screening. Among the four amino acids substitutions, only R295K was identified as essential in altering PPT resistance. The R295K mutation has also never been previously reported as an important residue for PPT resistance. Furthermore, the mutant gene has been transformed into Saccharomyces cerevisiae and Arabidopsis to confirm its potential in developing PPT-resistant crops.

  20. Co-expression and characterization of enterocin CRL35 and its mutant in Escherichia coli Rosetta

    Directory of Open Access Journals (Sweden)

    Masías Emilse

    2014-01-01

    Full Text Available Even though many sequences and structures of bacteriocins from lactic acid bacteria have been fully characterized so far, little information is currently available about bacteriocins heterologously produced by Escherichia coli. For this purpose, the structural gene of enterocin CRL35, munA, was PCR-amplified using specific primers and cloned downstream of PelB sequence in the pET22b (+ expression vector. E. coli Rosetta (DE3 pLysS was chosen as the host for production and enterocin was purified by an easy two-step protocol. The bacteriocin was correctly expressed with the expected intramolecular disulfide bond. Nevertheless, it was found that a variant of the enterocin, differing by 12 Da from the native polypeptide, was co-expressed by E. coli Rosetta in comparable amount. Indeed, the mutant bacteriocin contained two amino acid substitutions that were characterized by matrix assisted laser desorption ionization-time of flight (MALDI-TOF and HPLCelectrospray (ESI-Q-TOF tandem mass spectrometry (MS/ MS sequencing. This is the first report regarding the production of mutants of pediocin-like bacteriocins in the E. coli expression system.

  1. [Escape mutants of hepatitis B virus].

    Science.gov (United States)

    Jaramillo, Carlos Mario; Navas, María-Cristina

    2015-04-01

    The hepatitis B virus (HBV) infection is a public health problem worldwide. Considering HBV morbidity and mortality and the economic consequences .of this infection, policies and strategies to control it have been implemented, especially in regions where HBV infection is endemic, with high rates of vertical and horizontal infection. One of these strategies is the development of the recombinant vaccine. A 92% of the countries in the world have implemented the vaccine with a global coverage of 69%. The escape variants of HBV correspond to isolates with mutations in the sequence coding for the "a" determinant; these mutations result in changes in the amino acid sequence of the surface antigen (HBsAg) that prevent neutralization of viral particles by antibodies generated in response to vaccination or infection. The escape variants can infect vaccinated individuals and have been identified in the population of countries with different epidemiological patterns. PMID:26065452

  2. Qualidade de frutos de tomate da cv. Santa Clara, mutante de fruto amarelo e seus híbridos F1 Quality of tomato red fruit, cv. Santa Clara, its yellow mutant and respective F1 hybrid

    Directory of Open Access Journals (Sweden)

    Elizanilda R. do Rêgo

    1999-07-01

    Full Text Available A caracterização de alguns atributos físicos e químicos de frutos de tomate da cv. Santa Clara, um mutante de fruto amarelo, e o híbrido F1 obtido do cruzamento entre eles, foi feita com base nos teores de b-caroteno, licopeno, vitamina C, pH, matéria fresca, matéria seca, diâmetro do fruto, diâmetro do pericarpo, acidez e sólidos solúveis totais dos tecidos loculares e do pericarpo. Os frutos maduros amarelos apresentaram teores reduzidos de b-caroteno, licopeno e vitamina C, enquanto o híbrido apresentou teores semelhantes ao genótipo normal. Tanto o fruto mutante quanto o F1 apresentaram teor de pH menor que o do fruto normal. Não houve diferença significativa quanto a matéria fresca e seca totais, diâmetro do fruto e do pericarpo e acidez. Os teores de sólidos solúveis totais do pericarpo foram inferiores nos frutos do mutante amarelo e F1, em relação ao genótipo normal, enquanto os teores de sólidos solúveis totais da massa locular não diferiram, estatisticamente, entre os genótipos.The determination of some physical and chemical attributes of red fruits from tomato cv. Santa Clara, a yellow mutant and the F1 hybrid, were based on b-carotene, lycopene, vitamin C, pH, fresh and dry weight matter, pericarp and fruit diameter, titrateable acidity and total soluble solids. Ripe fruits of the yellow mutant showed reduced levels of b-carotene, lycopene and vitamin C, while fruits of the F1 hybrid showed levels of carotenoid pigments and vitamin C similar to the red fruit. Both mutant and F1 ripe fruits showed lower pH levels than the red parentals. Total fresh fruit and dry weight matter, pericarp and fruit diameter, and acidity were similar in the three genotypes studied. The total soluble-solids content of the pericarp was lower in the mutant and F1 fruits, whereas their concentration in the locule tissues was similar in all genotypes.

  3. Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): Drawing connections to grain dormancy, preharvest sprouting, and drought tolerance

    Science.gov (United States)

    This paper describes the isolation of Wheat ABA-responsive mutants (Warm) in Chinese spring background of allohexaploid Triticum aestivum. The plant hormone abscisic acid (ABA) is required for the induction of seed dormancy, the induction of stomatal closure and drought tolerance, and is associated...

  4. Isolation and characterization of selenate resistant mutants of Acremonium chrysogenum

    Directory of Open Access Journals (Sweden)

    Airton Vialta

    1999-01-01

    Full Text Available Mutants unable to convert exogenous sulfate to sulfite were isolated using the toxic analogue selenate. Three of twenty-eight isolated mutants were chromate sensitive. They showed a possible lesion in the gene that codes the ATP sulfurylase. The others were chromate resistant, and probably had a lesion in one or both of the genes that code the sulfate permease. Methionine increased the resistance levels to selenate. In addition, the frequency of spontaneous mutants obtained in a medium containing methionine was higher (between 2.4 x 10-6 and 18.0 x 10-6 than that obtained using a medium without any intentional source of sulfur (between 0.7 x 10-6 and 5.0 x 10-6. The original strain, as well as the mutants, were able to grow in a sulfur-free liquid medium even after 4 consecutive inoculation procedures. These results indicated the existence of sulfur traces in the medium and/or an efficient intracellular storage system. There was no significant difference between cephalosporin C production in mutants and the original strain.Mutantes incapazes de converter o sulfato extracelular em sulfito foram isolados utilizando o análogo tóxico selenato. De 28 mutantes isolados, apenas 3 foram sensíveis ao cromato, provavelmente apresentando lesão no gene que codifica a ATP sulfurilase. Os demais foram resistentes ao cromato e devem conter lesão no gene sB ou também no gene sC. A metionina elevou os níveis de resistência ao selenato e a freqüência de mutantes espontâneos obtida em meio contendo este aminoácido foi maior (entre 2,42 x 10-6 e 18,04 x 10-6 do que a obtida no meio sem a adição de qualquer fonte intencional de enxofre (entre 0,71 x 10-6 e 5,0 x 10-6. A linhagem original e os mutantes foram capazes de crescer, mesmo depois de quatro etapas de inóculo, fato que pode ser explicado pela existência de traços do referido elemento no meio e/ou a presença de um sistema eficiente de estocagem intracelular. A produção de cefalosporina C

  5. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  6. Use of mutants to study host/pathogen relations

    International Nuclear Information System (INIS)

    Forty-six mutants with changed reactions in powdery mildew resistance were selected after EMS treatment of seeds from three cultivars of spring barley. Recently, further experiments for the induction of new mutants were successfully run with EMS again and with sodium azide (NaN3); but no mutants were obtained in the same experiment after application of sublethal doses of N-methyl-N'-nitro-N-nitrosoguanidine. The original cultivars were characterized by a medium grade of resistance in the field. Mutations were expected to be of major and monogenic effect and consequently to be primarily race-specific in nature. A detailed analysis of resistance was started, both in the field and under spore-proof conditions of environment-controlled growth cabinets. In the field, the progress of disease was recorded during three summer periods on an individual plant basis. Specific mutants were clearly identified by their changed reactions to the natural epidemics, i.e. by (a) lower or (b) higher susceptibility; by (c) adult plant, or (d) by young plant resistance. Degrees of chlorosis or necrosis were estimated on the infected leaves and the influence of the attack on yield components was studied. By controlled infections with eight different isolates of mildew, race-specificity of resistance reactions was determined for all the 46 mutants. The results were unexpected in that they did not show clear-cut vertical relations between mutants and single pathogen races. In some instances, the general level of resistance appeared to be shifted from the original medium level to higher or lower degrees; in other cases, increase of severity of attack was recorded with some pathotypes and decrease with others on the same mutant host

  7. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  8. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  9. Mutant dihydrofolate reductase-thymidylate synthase genes in pyrimethamine-resistant Plasmodium falciparum with polymorphic chromosome duplications.

    Science.gov (United States)

    Tanaka, M; Gu, H M; Bzik, D J; Li, W B; Inselburg, J

    1990-08-01

    We have identified dihydrofolate reductase (DHFR) gene point mutations and chromosomal changes in pyrimethamine-resistant mutants selected in vitro of Plasmodium falciparum strain FCR3. A pyrimethamine-resistant derivative of the pyrimethamine-sensitive strain FCR3, FCR3-D8, that had been grown in the absence of pyrimethamine for an extended time, was grown in two concentrations of pyrimethamine, and surviving drug-resistant parasites were subcloned. One selected mutant, FCR3-D81, that grew at 1 X 10(-6) M pyrimethamine, contained a single point mutation in the DHFR domain which caused an amino acid change (Phe to Ser) at amino acid 223, whereas another mutant, FCR3-D85, that grew at 5 X 10(-6) M pyrimethamine had that same mutation and an additional point mutation that changed amino acid 54 (Asp to Asn). The selection of FCR3-D85, whose nucleotide sequence was identical to that previously reported for FCR3-D8, confirmed that the original FCR3-D8 parasite population had changed during extended growth in vitro in the absence of drug pressure. FCR3-D81 and FCR3-D85 cells contained different pairs of polymorphic chromosomes that hybridized to a DHFR-TS probe as well as to three other chromosome 4 specific DNAs, indicating that at least part of chromosome 4 had been duplicated and that these parasites were aneuploid with 15 rather than 14 chromosomes. The mutant DHFR-TS genes were diploid. We consider the roles of the polymorphic chromosome duplications and DHFR point mutation(s) as causes of pyrimethamine resistance. PMID:2233901

  10. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Biddle Kelly D

    2008-10-01

    Full Text Available Abstract Background The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. Results A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis mutants, both of which are also involved in abscisic acid (ABA biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. Conclusion Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in

  11. Differential disease resistance response in the barley necrotic mutant nec1

    Directory of Open Access Journals (Sweden)

    Kunga Laura

    2011-04-01

    Full Text Available Abstract Background Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR, retarded growth, a constitutively active salicylic acid (SA-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. Results nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh, the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. Conclusions Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance

  12. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki

    2011-01-10

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  13. Adapting protein solubility by glycosylation. N-glycosylation mutants of Coprinus cinereus peroxidase in salt and organic solutions.

    Science.gov (United States)

    Tams, J W; Vind, J; Welinder, K G

    1999-07-13

    Protein solubility is a fundamental parameter in biology and biotechnology. In the present study we have constructed and analyzed five mutants of Coprinus cinereus peroxidase (CIP) with 0, 1, 2, 4 and 6 N-glycosylation sites. All mutants contain Man(x)(GlcNAc)(2) glycans. The peroxidase activity was the same for wild-type CIP and all the glycosylation mutants when measured with the large substrate 2,2'-azino-bis(-3-ethylbenzthiazoline-6-sulfonic acid). The solubility of the five CIP mutants showed a linear dependence on the number of carbohydrate residues attached to the protein in buffered solution of both ammonium sulfate (AMS) and acetone, increasing in AMS and decreasing in acetone. Moreover, the change in free energy of solvation appears to be a constant, though with opposite signs in these solvents, giving DeltaDeltaG degrees (sol)=-0.32+/-0.05 kJ/mol per carbohydrate residue in 2.0 M AMS, a value previously obtained comparing ordinary and deglycosylated horseradish peroxidase, and 0. 37+/-0.10 kJ/mol in 60 v/v% acetone.

  14. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity.

    Science.gov (United States)

    Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C

    2015-11-01

    Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.

  15. Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    GAO ZhenYu; LIU XiaoHui; GUO LongBiao; LIU Jian; DONG GuoJun; HU Jiang; HAN Bin; QIAN Qian

    2009-01-01

    Rice plant architecture is an important agronomic trait that affects the grain yield. To understand the molecular mechanism that controls plant architecture, a tillering dwarf mutant with darker-green leaves derived from an indica cultivar IR64 treated with EMS is characterized. The mutant, designated as tddl(f),is nonallelic to the known tillering dwarf mutants. It is controlled by one recessive nuclear gene,TDDL(T), and grouped into the dn-type dwarfism according to Takeda's definition. The dwarfism of the mutant is independent of gibberellic acid based on the analyses of two GA-mediated processes. The independence of brassinosteroid (BR) and naphthal-3-acetic acid (NAA) of the tddl(f) mutant, together with the decreased size of parenchyma cells in the vascular bundle, indicates that the TDDL(T) gene might participate in another hormone pathway. TDDL(T) is fine mapped within an 85.51 kb region on the long arm of rice chromosome 4, where 20 ORFs are predicted by RiceGAAS (http://ricegaas.dna.affrc.go.jp/rgadb/). Further cloning of TDDL(T) will benefit both marker assisted selection (MAS) of plant architecture and dissection of the molecular mechanism underlying tillering dwarf in rice.

  16. root uv-b sensitive Mutants Are Suppressed by Specific Mutations in ASPARTATE AMINOTRANSFERASE2 and by Exogenous Vitamin B6

    Institute of Scientific and Technical Information of China (English)

    Colin D. Leasure; Hong-Yun Tong; Xue-Wen Hou; Amy Shelton; Mike Minton; Raymond Esquerra; Sanja Roje; Hanjo Hellmann; Zheng-Hui He

    2011-01-01

    Vitamin B6 (vitB6)serves as an essential cofactor for more than 140 enzymes. Pyridoxal 5'-phosphate (PLP),active cofactor form of vitB6, can be photolytically destroyed by trace amounts of ultraviolet-B (UV-B). How sun-exposed organisms cope with PLP photosensitivity and modulate vitB6 homeostasis is currently unknown. We previously reported on two Arabidopsis mutants, rusl and rus2, that are hypersensitive to trace amounts of UV-B light. We performed mu-tagenesis screens for second-site suppressors of the rus mutant phenotype and identified mutations in the ASPARTATE AMINOTRANSFERASE2 (ASP2)gene. ASP2 encodes for cytosolic aspartate aminotransferase (AAT), a PLP-dependent en-zyme that plays a key role in carbon and nitrogen metabolism. Genetic analyses have shown that specific amino acid substitutions in ASP2 override the phenotypes of rusl and rus2 single mutants as well as rusl rus2 double mutant. These substitutions, all shown to reside at specific positions in the PLP-binding pocket, resulted in no PLP binding. Additional asp2 mutants that abolish AAT enzymatic activity, but which alter amino acids outside of the PLP-binding pocket, fail to suppress the rus phenotype. Furthermore, exogenously adding vitB6 in growth media can rescue both rusl and rus2. Our data suggest that AAT plays a role in vitB6 homeostasis in Arabidopsis.

  17. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    Science.gov (United States)

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  18. Normal aging modulates the neurotoxicity of mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Elsa Diguet

    Full Text Available Aging likely plays a role in neurodegenerative disorders. In Huntington's disease (HD, a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt, the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or "normal" aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a beta-Galactosidase (beta-Gal reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week and old (15 month rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that "normal" aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.

  19. Effect of different immunosuppressive drugs on calcineurin and its mutants

    Institute of Scientific and Technical Information of China (English)

    阎力君; 于翠娟; 张丽芳; 魏群

    2000-01-01

    Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis. Their phosphatase activity and the corresponding solution conformation were examined. Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immuno-suppressive drugs with CN. The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN. Furthermore, circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein. Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN, and had no effects on the phosphatase activity of mutants in Loop7 region, which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN. Examination of the activities of these

  20. Mutant number distribution in an exponentially growing population

    Science.gov (United States)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  1. Mutant alpha-synuclein and autophagy in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Kangyong Liu; Chunfeng Liu; Chuancheng Ren; Yaping Yang; Liwei Shen; Xuezhong Li; Fen Wang; Zhenghong Qin

    2011-01-01

    Several studies have demonstrated that overexpression of mutant α-synuclein in PC12 cells is related to occurrence of autophagy.The present study established mutant a-synuclein (A30P)-transfected PC12 cells and treated them with the autophagy inducer rapamycin and autophagy inhibitor wortmannin, respectively.Results demonstrated that mutant o-synuclein resulted in cell death via autophagy and involved α-synuclein accumulation, membrane lipid oxidation, and loss of plasma membrane integrity.Mutant α-synuclein (A30P) also mediated toxicity of1-methyl-4-phenylpyridinium ion.Moreover, rapamycin inhibited a-synuclein aggregation, while wortmannin promoted o-synuclein aggregation and cell death.To further determine the role of autophagy due to mutant a-synuclein, the present study measured expression of microtubule-associated protein light chain 3.Results revealed that wortmannin and 1-methyl-4-phenylpyridinium ion inhibited expression of microtubule-associated protein light chain 3,while rapamycin promoted its expression.These findings suggested that abnormal aggregation of a-synuclein induced autophagic programmed cell death in PC12 cells.

  2. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Monica M. [University of Tennessee Health Science Center, Memphis; Wang, Xiaofei [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Miller, Darla R [ORNL; Rinchik, Eugene M [ORNL; Williams, Robert [University of Tennessee Health Science Center, Memphis; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases and disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.

  3. Promising mutant variety of rice evolved through gamma irradiation

    International Nuclear Information System (INIS)

    Rice occupies a major share in crop production in the Chotanagpur plateau of Bihar State. Uplands are roughly 40% in area where traditional low yielding rice, known as ''gora'' is cultivated as directly sown crop. Despite introduction of high yielding rice varieties, gora group of rices continue to prevail. It is therefore desired to increase the productivity level of the gora rice by mutation breeding. One such mutant known as ''gora mutant'' was obtained through gamma irradiation (10 kR) of variety Brown gora. The maturity of both parent and mutant remaining constant (ie. 100 days), there is some improvement in other characteristics like plant height, tillering capacity and kernel character. The parent being tall, shy in tillering and red bold kernel, the mutant has dwarfish characteristics, profuse tillering habit and white kernel with fine grains. The yielding capacity of mutant derivative is 30-40% higher than the parent Brown gora. This variety is in pre-release stage, and the farmers have taken great liking for it. (author)

  4. Selection of Streptococcus pneumoniae Mutants Having Reduced Susceptibility to Moxifloxacin and Levofloxacin

    OpenAIRE

    Li, Xinying; Zhao, Xilin; Drlica, Karl

    2002-01-01

    With Streptococcus pneumoniae, moxifloxacin was 4- and 10-fold more effective than levofloxacin at restricting selection of resistant mutants and at killing resistant mutants, respectively. The selection frequency for first-step topoisomerase mutants was 1,000 times lower for moxifloxacin than for levofloxacin; this difference was lost when second-step mutants were selected.

  5. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4

    DEFF Research Database (Denmark)

    Brodersen, Klaus Peter; Petersen, Morten; Nielsen, Henrik Bjørn;

    2006-01-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective...

  6. Selection of hyperadherent mutants in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Yousef-Coronado, Fatima; Soriano, María Isabel; Yang, Liang;

    2011-01-01

    A number of genetic determinants required for bacterial colonization of solid surfaces and biofilm formation have been identified in different micro-organisms. There are fewer accounts of mutations that favour the transition to a sessile mode of life. Here we report the isolation of random...... transposon Pseudomonas putida KT2440 mutants showing increased biofilm formation, and the detailed characterization of one of them. This mutant exhibits a complex phenotype, including altered colony morphology, increased production of extracellular polymeric substances and enhanced swarming motility, along...... with the formation of denser and more complex biofilms than the parental strain. Sequence analysis revealed that the pleiotropic phenotype exhibited by the mutant resulted from the accumulation of two mutations: a transposon insertion, which disrupted a predicted outer membrane lipoprotein, and a point mutation...

  7. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays (60Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M3, which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent variety

  8. Human mutant huntingtin disrupts vocal learning in transgenic songbirds.

    Science.gov (United States)

    Liu, Wan-Chun; Kohn, Jessica; Szwed, Sarah K; Pariser, Eben; Sepe, Sharon; Haripal, Bhagwattie; Oshimori, Naoki; Marsala, Martin; Miyanohara, Atsushi; Lee, Ramee

    2015-11-01

    Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.

  9. Transcriptional profiling of apoptosis-deficient Drosophila mutants

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-12-01

    Full Text Available Apoptosis is a fundamental way to remove damaged or unwanted cells during both developmental and post-developmental stages. Apoptosis deficiency leads to various diseases including cancer. To know the physiological changes in apoptosis-deficient mutants, we conducted non-biased transcriptomic analysis of Drosophila darkcd4 mutants. As recently reported, combined with metabolome and genetic analysis, we identified systemic immune response, energy wasting, as well as alteration in S-adenosyl-methionine metabolism in response to necrotic cells [1]. Here, we describe in detail how we obtained validated microarray dataset deposited in Gene Expression Omnibus (GSE47853. Our data provide a resource for searching transcriptional alterations in Drosophila apoptosis-deficient mutants.

  10. Candida albicans mutant construction and characterization of selected virulence determinants.

    Science.gov (United States)

    Motaung, T E; Albertyn, J; Pohl, C H; Köhler, Gerwald

    2015-08-01

    Candida albicans is a diploid, polymorphic yeast, associated with humans, where it mostly causes no harm. However, under certain conditions it can cause infections ranging from superficial to life threatening. This ability to become pathogenic is often linked to the immune status of the host as well as the expression of certain virulence factors by the yeast. Due to the importance of C. albicans as a pathogen, determination of the molecular mechanisms that allow this yeast to cause disease is important. These studies rely on the ability of researchers to create deletion mutants of specific genes in order to study their function. This article provides a critical review of the important techniques used to create deletion mutants in C. albicans and highlights how these deletion mutants can be used to determine the role of genes in the expression of virulence factors in vitro.

  11. Human mutant huntingtin disrupts vocal learning in transgenic songbirds.

    Science.gov (United States)

    Liu, Wan-Chun; Kohn, Jessica; Szwed, Sarah K; Pariser, Eben; Sepe, Sharon; Haripal, Bhagwattie; Oshimori, Naoki; Marsala, Martin; Miyanohara, Atsushi; Lee, Ramee

    2015-11-01

    Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders. PMID:26436900

  12. Identification of altered metabolic pathways of γ-irradiated rice mutant via network-based transcriptome analysis.

    Science.gov (United States)

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Park, Hyeon Mi; Jang, Cheol Seong

    2015-12-01

    In order to develop rice mutants for crop improvement, we applied γ-irradiation mutagenesis and selected a rice seed color mutant (MT) in the M14 targeting-induced local lesions in genome lines. This mutant exhibited differences in germination rate, plant height, and root length in seedlings compared to the wild-type plants. We found 1645 different expressed probes of MT by microarray hybridization. To identify the modified metabolic pathways, we conducted integrated genomic analysis such as weighted correlation network analysis with a module detection method of differentially expressed genes (DEGs) in MT on the basis of large-scale microarray transcriptional profiling. These modules are largely divided into three subnetworks and mainly exhibit overrepresented gene ontology functions such as oxidation-related function, ion-binding, and kinase activity (phosphorylation), and the expressional coherences of module genes mainly exhibited in vegetative and maturation stages. Through a metabolic pathway analysis, we detected the significant DEGs involved in the major carbohydrate metabolism (starch degradation), protein degradation (aspartate protease), and signaling in sugars and nutrients. Furthermore, the accumulation of amino acids (asparagine and glutamic acid), sucrose, and starch in MT were affected by gamma rays. Our results provide an effective approach for identification of metabolic pathways associated with useful agronomic traits in mutation breeding. PMID:26361777

  13. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors.

    Science.gov (United States)

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L; Gapin, Laurent; Marrack, Philippa; Kappler, John W

    2016-09-20

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC.

  14. Identification of altered metabolic pathways of γ-irradiated rice mutant via network-based transcriptome analysis.

    Science.gov (United States)

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Park, Hyeon Mi; Jang, Cheol Seong

    2015-12-01

    In order to develop rice mutants for crop improvement, we applied γ-irradiation mutagenesis and selected a rice seed color mutant (MT) in the M14 targeting-induced local lesions in genome lines. This mutant exhibited differences in germination rate, plant height, and root length in seedlings compared to the wild-type plants. We found 1645 different expressed probes of MT by microarray hybridization. To identify the modified metabolic pathways, we conducted integrated genomic analysis such as weighted correlation network analysis with a module detection method of differentially expressed genes (DEGs) in MT on the basis of large-scale microarray transcriptional profiling. These modules are largely divided into three subnetworks and mainly exhibit overrepresented gene ontology functions such as oxidation-related function, ion-binding, and kinase activity (phosphorylation), and the expressional coherences of module genes mainly exhibited in vegetative and maturation stages. Through a metabolic pathway analysis, we detected the significant DEGs involved in the major carbohydrate metabolism (starch degradation), protein degradation (aspartate protease), and signaling in sugars and nutrients. Furthermore, the accumulation of amino acids (asparagine and glutamic acid), sucrose, and starch in MT were affected by gamma rays. Our results provide an effective approach for identification of metabolic pathways associated with useful agronomic traits in mutation breeding.

  15. Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition.

    Science.gov (United States)

    Meng, Xiangfeng; Pijning, Tjaard; Tietema, Martin; Dobruchowska, Justyna M; Yin, Huifang; Gerwig, Gerrit J; Kralj, Slavko; Dijkhuizen, Lubbert

    2017-02-15

    Exopolysaccharides produced by lactic acid bacteria are extensively used for food applications. Glucansucrase enzymes of lactic acid bacteria use sucrose to catalyze the synthesis of α-glucans with different linkage compositions, size and physico-chemical properties. Crystallographic studies of GTF180-ΔN show that at the acceptor binding sites +1 and +2, residue W1065 provides stacking interactions to the glucosyl moiety. However, the detailed functional roles of W1065 have not been elucidated. We performed random mutagenesis targeting residue W1065 of GTF180-ΔN, resulting in the generation of 10 mutant enzymes that were characterized regarding activity and product specificity. Characterization of mutant enzymes showed that residue W1065 is critical for the activity of GTF180-ΔN. Using sucrose, and sucrose (donor) plus maltose (acceptor) as substrates, the mutant enzymes synthesized polysaccharides and oligosaccharides with changed linkage composition. The stacking interaction of an aromatic residue at position 1065 is essential for polysaccharide synthesis. PMID:27664611

  16. Relationship of low phytate trait with seed germination and carbohydrates content in soybean mutant Gm-lpa-TW-1

    International Nuclear Information System (INIS)

    The relationship between the low phytate mutation with seed germination and carbohydrate content homozygous F5 lines with/without lpa gene derived from mutant and different wild type parents were analyzed. The results showed that LPA (low phytic acid)/HPA (high phytic acid) lines developed in autumn had higher seed germination rate than that developed in spring. LPA lines had lower seed germination rate than HPA lines when they all developed in spring. However, in all crosses LPA lines with higher seed germination rate than mutant parent Gm-lpa-TW-1 was observed. No significant difference was detected between LPA and HPA lines when they developed in autumn. Homozygous LPA lines derived from vegetable soybean had lower seed germination than those from non-vegetable varieties. There was no significant difference in total carbohydrate content between LPA and HPA homozygous lines, but the sugar content of LPA homozygous lines was significant higher than HPA lines. On the contrary, oligosaccharides content with LPA lines were significant lower than those with HPA homozygous lines in all planting environment. It is concluded that seeds field germination rate were affected by low phytate mutation gene and planting environment, and lower seed germination rate phenotype of LPA lines could be improved by genetic method. Mutant Gm-lpa-TW-1 of LPA phenotype was genetic linkage with high sugar and low oligosaccharides phenotype, so it should be benefit to breed new soybean varieties with better quality. (authors)

  17. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization.

    Science.gov (United States)

    Bellemann, P; Geider, K

    1992-05-01

    Transposon Tn5, on a mobilizable ColE1 plasmid, on a Ti plasmid derepressed for bacterial transfer, and on the bacteriophage fd genome, was used to construct pathogenicity mutants of the fire blight pathogen Erwinia amylovora. Eleven nonpathogenic mutants were isolated from 1600 independent mutants screened. These mutants were divided into three types: auxotrophs, exopolysaccharide (EPS)-deficient mutants and a mutant of the dsp phenotype. According to their insertion sites the Tn5 mutants were mapped into several classes. Some of the mutants could be complemented with cosmid clones from a genomic library of the parent strain for EPS production on minimal agar. EPS-deficient mutants and the dsp mutant could complement each other to produce virulence symptoms on pear slices.

  18. New Infestin-4 Mutants with Increased Selectivity against Factor XIIa.

    Science.gov (United States)

    Kolyadko, Vladimir N; Lushchekina, Sofya V; Vuimo, Tatiana A; Surov, Stepan S; Ovsepyan, Ruzanna A; Korneeva, Vera A; Vorobiev, Ivan I; Orlova, Nadezhda A; Minakhin, Leonid; Kuznedelov, Konstantin; Severinov, Konstantin V; Ataullakhanov, Fazoil I; Panteleev, Mikhail A

    2015-01-01

    Factor XIIa (fXIIa) is a serine protease that triggers the coagulation contact pathway and plays a role in thrombosis. Because it interferes with coagulation testing, the need to inhibit fXIIa exists in many cases. Infestin-4 (Inf4) is a Kazal-type inhibitor of fXIIa. Its specificity for fXIIa can be enhanced by point mutations in the protease-binding loop. We attempted to adapt Inf4 for the selective repression of the contact pathway under various in vitro conditions, e.g., during blood collection and in 'global' assays of tissue factor (TF)-dependent coagulation. First, we designed a set of new Inf4 mutants that, in contrast to wt-Inf4, had stabilized canonical conformations during molecular dynamics simulation. Off-target activities against factor Xa (fXa), plasmin, and other coagulation proteases were either reduced or eliminated in these recombinant mutants, as demonstrated by chromogenic assays. Interactions with fXIIa and fXa were also analyzed using protein-protein docking. Next, Mutant B, one of the most potent mutants (its Ki for fXIIa is 0.7 nM) was tested in plasma. At concentrations 5-20 μM, this mutant delayed the contact-activated generation of thrombin, as well as clotting in thromboelastography and thrombodynamics assays. In these assays, Mutant B did not affect coagulation initiated by TF, thus demonstrating sufficient selectivity and its potential practical significance as a reagent for coagulation diagnostics. PMID:26670620

  19. New Infestin-4 Mutants with Increased Selectivity against Factor XIIa.

    Directory of Open Access Journals (Sweden)

    Vladimir N Kolyadko

    Full Text Available Factor XIIa (fXIIa is a serine protease that triggers the coagulation contact pathway and plays a role in thrombosis. Because it interferes with coagulation testing, the need to inhibit fXIIa exists in many cases. Infestin-4 (Inf4 is a Kazal-type inhibitor of fXIIa. Its specificity for fXIIa can be enhanced by point mutations in the protease-binding loop. We attempted to adapt Inf4 for the selective repression of the contact pathway under various in vitro conditions, e.g., during blood collection and in 'global' assays of tissue factor (TF-dependent coagulation. First, we designed a set of new Inf4 mutants that, in contrast to wt-Inf4, had stabilized canonical conformations during molecular dynamics simulation. Off-target activities against factor Xa (fXa, plasmin, and other coagulation proteases were either reduced or eliminated in these recombinant mutants, as demonstrated by chromogenic assays. Interactions with fXIIa and fXa were also analyzed using protein-protein docking. Next, Mutant B, one of the most potent mutants (its Ki for fXIIa is 0.7 nM was tested in plasma. At concentrations 5-20 μM, this mutant delayed the contact-activated generation of thrombin, as well as clotting in thromboelastography and thrombodynamics assays. In these assays, Mutant B did not affect coagulation initiated by TF, thus demonstrating sufficient selectivity and its potential practical significance as a reagent for coagulation diagnostics.

  20. Metabolite profiling reveals abiotic stress tolerance in Tn5 mutant of Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    Full Text Available Pseudomonas is an efficient plant growth-promoting rhizobacteria (PGPR; however, intolerance to drought and high temperature limit its application in agriculture as a bioinoculant. Transposon 5 (Tn5 mutagenesis was used to generate a stress tolerant mutant from a PGPR Pseudomonas putida NBRI1108 isolated from chickpea rhizosphere. A mutant NBRI1108T, selected after screening of nearly 10,000 transconjugants, exhibited significant tolerance towards high temperature and drought. Southern hybridization analysis of EcoRI and XhoI restricted genomic DNA of NBRI1108T confirmed that it had a single Tn5 insertion. The metabolic changes in the polar and non-polar extracts of NBRI1108 and NBRI1108T were examined using 1H, 31P nuclear magnetic resonance (NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS. Thirty six chemically diverse metabolites consisting of amino acids, fatty acids and phospholipids were identified and quantified. Insertion of Tn5 influenced amino acid and phospholipid metabolism and resulted in significantly higher concentration of aspartic acid, glutamic acid, glycinebetaine, glycerophosphatidylcholine (GPC and putrescine in NBRI1108T as compared to that in NBRI1108. The concentration of glutamic acid, glycinebetaine and GPC increased by 34%, 95% and 100%, respectively in the NBRI1108T as compared to that in NBRI1108. High concentration of glycerophosphatidylethanolamine (GPE and undetected GPC in NBRI1108 indicates that biosynthesis of GPE may have taken place via the methylation pathway of phospholipid biosynthesis. However, high GPC and low GPE concentration in NBRI1108T suggest that methylation pathway and phosphatidylcholine synthase (PCS pathway of phospholipid biosynthesis are being followed in the NBRI1108T. Application of multivariate principal component analysis (PCA on the quantified metabolites revealed clear variations in NBRI1108 and NBRI1108T in polar and non-polar metabolites. Identification of abiotic

  1. Distinct Retinoid Metabolic Functions for Alcohol Dehydrogenase Genes Adh1 and Adh4 in Protection against Vitamin A Toxicity or Deficiency Revealed in Double Null Mutant Mice*

    OpenAIRE

    Molotkov, Andrei; Deltour, Louise; Foglio, Mario H.; Cuenca, Arnold E.; Duester, Gregg

    2002-01-01

    The ability of class I alcohol dehydrogenase (ADH1) and class IV alcohol dehydrogenase (ADH4) to metabolize retinol to retinoic acid is supported by genetic studies in mice carrying Adh1 or Adh4 gene disruptions. To differentiate the physiological roles of ADH1 and ADH4 in retinoid metabolism we report here the generation of an Adh1/4 double null mutant mouse and its comparison to single null mutants. We demonstrate that loss of both ADH1 and ADH4 does not have additive effects, either for pr...

  2. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  3. Analysis of p53 mutants for transcriptional activity.

    OpenAIRE

    Raycroft, L.; Schmidt, J. R.; Yoas, K; Hao, M M; Lozano, G.

    1991-01-01

    The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 protein...

  4. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    which apoptosis can be studied using the novel, temperature sensitive mutant, cdc77. The cdc77 cells are defective in a G1 process, and die show the characteristc signs of apoptosis: condensation of the chromatin, degradation of the inner nuclear membrane, dilation of the space between the nuclear...... membranes, condensation of the cytoplasm and degradation of DNA to 50kb fragmensts. It should be noted that in yeast, in contrast to higher eukaryotes, the nuclear membrane remain intact and the chromosomes remain uncondensed and invisible during mitosis. The cdc77 mutant exhibit a defect in initiation of...

  5. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  6. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group 2 mutants.

    NARCIS (Netherlands)

    M. van Duin (Mark); J.H. Janssen; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); L.H. Thompson; D. Bootsma (Dirk); A. Westerveld (Andries)

    1988-01-01

    textabstractThe human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In ord

  7. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells.

    Science.gov (United States)

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-11-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25-3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death.

  8. Lanthionine ketimine ethyl ester partially rescues neurodevelopmental defects in unc-33 (DPYSL2/CRMP2) mutants.

    Science.gov (United States)

    Hubbard, Caleb; Benda, Erica; Hardin, Tyler; Baxter, Taylor; St John, Elizabeth; O'Brien, Sean; Hensley, Kenneth; Holgado, Andrea M

    2013-09-01

    Lanthionine ketimine (LK) is a natural sulfur amino acid metabolite with potent neurotrophic activity. Proteomics indicate that LK interacts with collapsin response mediator protein-2 (CRMP2/DPYSL2/UNC-33), a brain-enriched protein that was shown to regulate cytoskeletal remodeling, neuronal morphology, and synaptic function. To elucidate further the molecular interplay and biological action of LK and UNC-33, we began examining the nervous system of Caenorhabditis elegans nematodes in which both LK concentrations and UNC-33 protein were manipulated. To this end, a cell-permeable LK-ester (LKE) was administered to developing C. elegans engineered to express yellow fluorescent protein (YFP) in cholinergic neurons (strain RM3128) or green fluorescent protein (GFP) in GABAergic neurons (strain CZ1200), and neural morphology was assessed. Fluorescent imaging analyses show that LKE exposure to wild-type animals induced neural commissure outgrowth, crossing over, and bundling in both neurites from GABAergic and cholinergic motor neurons. Additionally, when unc-33(e204) hypomorph mutant nematodes (D389N substitution mutants) were exposed to LKE, both the neuroanatomical defects of incomplete dorsoventral neural commissures and the ventral nerve cord gaps were partially rescued. In contrast, LKE did not rescue ventral nerve cord gaps found in unc-33(mn407) null mutant. Together these data suggest possible functions for LK as a regulator of neuritic elongation, corroborate roles for UNC-33/CRMP2 in the mechanism of LKE activity, and suggest the potential of LKE as a therapeutic molecule for neurological diseases involving CRMP2 dysfunction. PMID:23825043

  9. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  10. Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-10-01

    Full Text Available Abstract Background The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level. Results A comprehensive library of L. monocytogenes strain EGD knockout mutants was constructed upon insertion-duplication mutagenesis, and 1491 mutants were tested for their phenotypes in rich medium and in a Caco-2 cell culture assay. Following sequencing of the plasmid insertion site, 141 different genes required for invasion of and replication in Caco-2 cells were identified. Ten in-frame deletion mutants were constructed that confirmed the data. The genes with known functions are mainly involved in cellular processes including transport, in the intermediary metabolism of sugars, nucleotides and lipids, and in information pathways such as regulatory functions. No function could be ascribed to 18 genes, and a counterpart of eight genes is missing in the apathogenic species L. innocua. Mice infection studies revealed the in vivo requirement of IspE (Lmo0190 involved in mevalonate synthesis, and of the novel ABC transporter Lmo0135-0137 associated with cysteine transport. Based on the data of this genome-scale screening, an extreme pathway and elementary mode analysis was applied that demonstrates the critical role of glycerol and purine metabolism, of fucose utilization, and of the synthesis of glutathione, aspartate semialdehyde, serine and branched chain amino acids during intracellular replication of L. monocytogenes. Conclusion The combination of a genetic screening and a modelling approach revealed that a series of transporters help L. monocytogenes to overcome a putative lack of nutrients within cells, and that a high metabolic flexibility contributes to the intracellular replication of

  11. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    International Nuclear Information System (INIS)

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283→ T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5' 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus

  12. Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae.

    Science.gov (United States)

    Koti, Sravanthi; Govumoni, Sai Prashanthi; Gentela, Jahnavi; Venkateswar Rao, L

    2016-01-01

    The main aim of the present study was to mutate yeast strains, Pichia stipitis NCIM 3498 and Candida shehatae NCIM 3501 and assess the mutant's ability to utilize, ferment wheat straw hemicellulose with enhanced ethanol yield. The organisms were subjected to random mutagenesis using physical (ultraviolet radiation) and chemical (ethidium bromide) mutagens. The mutant and wild strains were used to ferment the hemicellulosic hydrolysates of wheat straw obtained by 2 % dilute sulphuric acid and enzymatic hydrolysis by crude xylanase separately. Among all the mutant strains, PSUV9 and CSEB7 showed enhanced ethanol production (12.15 ± 0.57, 9.55 ± 0.47 g/L and yield 0.450 ± 0.009, 0.440 ± 0.001 g/g) as compared to the wild strains (8.28 ± 0.54, 7.92 ± 0.89 g/L and yield 0.380 ± 0.006 and 0.370 ± 0.002 g/g) in both the hydrolysates. The mutant strains were also checked for their consistency in ethanol production and found stable for 19 cycles in hemicellulosic hydrolysates of wheat straw. A novel element in the present study was introduction of chemical mutagenesis in wild type as well as UV induced mutants. This combination of treatments i.e., UV followed by chemical mutagenesis was practically successful. PMID:27652118

  13. Protein overexport in a Saccharomyces cerevisiae mutant is not due to facilitated release of cell-surface proteins.

    Science.gov (United States)

    Alexieva, K I; Venkov, P V

    2000-01-01

    Saccharomyces cerevisiae strain MW11 is a temperature-sensitive mutant which exports twenty times more proteins at 37 degrees C than parental or wild-type strains do. To understand the mechanism underlying the protein overexport in the mutant the possibility of an altered cell-wall structure leading to facilitated release of cell-surface proteins was studied. Data on calcofluor white and zymolyase sensitivities, resistance to killer 1 toxin and determination of exported acid phosphatase and invertase did not provide evidence for alterations in the cell-wall structure that could explain the protein overexport phenotype. The results were obtained in experiments when transcription of mutated gene was discontinued which permits the full expression of the protein overexport phenotype.

  14. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants.

    Science.gov (United States)

    Korniłłowicz-Kowalska, Teresa; Rybczyńska, Kamila

    2014-06-01

    Cultures of the anamorphic fungus Bjerkandera adusta CCBAS 930 decolorizing, in stationary cultures, 0.01 % solutions of carminic acid and Poly R-478, were characterised by a strong increase in the activity of the horseradish peroxidase (HRP-like) and manganese-dependent peroxidase (MnP) at a low activity of lignin peroxidase. Genotypically modified mutants of B. adusta CCBAS 930: 930-5 and 930-14, with total or partial loss of decolorization capabilities relative to anthraquinonic dyes, showed inhibition of the activity of HRP-like peroxidase and MnP. Whereas, compared to the parental strain, in the mutant cultures there was an increase in the activity of lignin peroxidase and laccase. The paper presents a discussion of the role of the studied enzymatic activities in the process of decolorization of anthraquinonic dyes by the strain B. adusta CCBAS 930. PMID:24415463

  15. Comparison of the activities of wild type and mutant enhancing factor/mouse secretory phospholipase A2 proteins

    Indian Academy of Sciences (India)

    Bhakti M Kirtane; Rita Mulherkar

    2002-09-01

    Enhancing factor (EF) protein, an isoform of secretory phospholipase A2 (PLA2), was purified as a modulator of epidermal growth factor from the small intestine of the Balb/c mouse. It was for the first time that a growth modulatory property of sPLA2 was demonstrated. Deletion mutation analysis of EF cDNA carried out in our laboratory showed that enhancing activity and phospholipase activity are two separate activities that reside in the same molecule. In order to study the specific amino acids involved in each of these activities, two site-directed mutants of EF were made and expressed in vitro. Comparison of enhancing activity as well as phospholipase A2 activity of these mutant proteins with that of wild type protein helped in identification of some of the residues important for both the activities.

  16. Folic Acid

    Science.gov (United States)

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  17. Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies

    Directory of Open Access Journals (Sweden)

    den Hollander Anneke I

    2010-11-01

    Full Text Available Abstract Background The size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the outm233 mutant, and to determine whether mutations in the out gene cause microphthalmia in humans. Results In this study, we show that the severe reduction of eye size in the outm233 mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in outm233 retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in outm233 mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed. Conclusions This study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish outm233 mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2% of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype.

  18. Expression and purification of the Bordella Pertussis toxin S1 subunit mutant in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Xiao L. Zhang; Quan M. Zou

    2007-01-01

    Bordella pertussis is the causative agent of whooping cough.Traditional vaccines against this disease are inherently reactogenic, thus research is currentlly focussed on the production of less reactive,acellular vaccines.Expression of candidate antigens for these vaccines in Escherichia coli would be preferable. Pertussis toxin S1 subunit plays a critical role in the bacterium-host interplay.The mutant(rS1) containing two key amino acids substitution(Arg9-Lys/Glu129-Gly)is nontoxin and immunogenic and while retaining the protective epitopes. In this study, the immunoprotective S1 fragment of pertussis toxin fusion was verified by restriction endonuclease analysis and Western immunoblotting. Escherichia coli carrying the recombinant plasmid(pQE-rS1)produced a 26 kDa protein that was recognized by antibodies specific to the S1. Expressed rS1 in E. coli was purified from the inclusion bodies. The N-terminal 6 histidines could easily be captured by Ni-NTA affinity chromatography. Then, the rS1 of interest was purified to 92% homogeneity. Antisera generated against the purified S1 mutant protein recognized the native toxin indicating that some, if not all, of the native epitope were conserved. Thus, this vaccine preparation is potentially applicable for the production of novel vaccines against B. pertussis infection.

  19. The breeding of Arthrospira platensis mutants with good quality and high yield induced by space flight

    International Nuclear Information System (INIS)

    Arthrospira platensis mutant PNK-2 had been bred from A. platensis mutants which had been induced by space flight. PNK-2, with good quality and high yield, suits for outdoor large scale production. Comparing with the initial ST-6: the helix number of PNK-2 was 12∼18; the average length of algae body, thread pitch, helix width, diameter of trichome and the rate of large-scale production were 764.31μm, 52.98μm, 18.75μm, 6.02μm and 10g·(m2·d)-1 respectively; the increasing rate was 166.52%, 5.88%, 8.19%, 12.31% and 22.89% respectively. The content of protein, chlorophyll, β-Carotene and phycocyanin in PNK-2 were 69.57%, 1.01%, 0.16% and 14.70% respectively; the raising rate were 8.31%, 8.60%, 6.67% and 6.68% respectively. the γ-linolenic acid content of PNK-2 was 0.63%, reducing 3.08%. The results showed that PNK-2 was a new A.platensis strain with good quality and high yield. (author)

  20. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    Science.gov (United States)

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.

  1. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  2. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  3. Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness.

    Science.gov (United States)

    Kawamura, Shiho; Colozo, Alejandro T; Ge, Lin; Müller, Daniel J; Park, Paul S-H

    2012-06-22

    Several point mutations in rhodopsin cause retinal diseases including congenital stationary night blindness and retinitis pigmentosa. The mechanism by which a single amino acid residue substitution leads to dysfunction is poorly understood at the molecular level. A G90D point mutation in rhodopsin causes constitutive activity and leads to congenital stationary night blindness. It is unclear which perturbations the mutation introduces and how they can cause the receptor to be constitutively active. To reveal insight into these mechanisms, we characterized the perturbations introduced into dark state G90D rhodopsin from a transgenic mouse model expressing exclusively the mutant rhodopsin in rod photoreceptor cells. UV-visible absorbance spectroscopy revealed hydroxylamine accessibility to the chromophore-binding pocket of dark state G90D rhodopsin, which is not detected in dark state wild-type rhodopsin but is detected in light-activated wild-type rhodopsin. Single-molecule force spectroscopy suggested that the structural changes introduced by the mutation are small. Dynamic single-molecule force spectroscopy revealed that, compared with dark state wild-type rhodopsin, the G90D mutation decreased energetic stability and increased mechanical rigidity of most structural regions in the dark state mutant receptor. The observed structural, energetic, and mechanical changes in dark state G90D rhodopsin provide insights into the nature of perturbations caused by a pathological point mutation. Moreover, these changed properties observed for dark state G90D rhodopsin are consistent with properties expected for an active state. PMID:22549882

  4. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.).

    Science.gov (United States)

    Kumari, Sarita; Vaishnav, Anukool; Jain, Shekhar; Varma, Ajit; Choudhary, Devendra Kumar

    2016-01-01

    The present study focused on the overproducing mutant of a plant growth promoting rhizobacterium (PGPR) Pseudomonas simiae strain AU (MTCC-12057) for significant drought tolerance in mung bean plants. Five mutants namely AU-M1, AU-M2, AU-M3, AU-M4 and AU-M5 were made after treatment of wild type strain with N-methyl-N-nitro-N-nitrosoguanidine. Mutant strain AU-M4 was recorded for enhanced ACC deaminase (ACC-D) activity, indole acetic acid (IAA) production and inorganic phosphate (Pi) solubilization compared to wild strain and other four mutant strains under drought condition. AU-M4 showed higher phosphate solubilization index (8.17) together with higher ACC-D activity (98 nmol/mg/h) and IAA concentration (69.35 µg/ml) compared with the wild type P. simiae strain AU ACC-D activity (79 nmol/mg/h) and IAA concentration (38.98 µg/ml) respectively. In this report, we investigated the effect of both wild and mutant type bacterial strain on mung bean plants under drought stress. Results showed that mutant AU-M4 and wild type strain AU inoculated plants exhibited superior tolerance against drought stress, as shown by their enhanced plant biomass (fresh weight), higher water content, higher proline accumulation and lower osmotic stress injury. Mutant AU-M4 and wild strain AU inoculated plants reduced the ethylene level by 59 and 45% respectively, compared to the control under stress condition. Furthermore, bacterial inoculated plants showed enhanced induced systemic drought tolerance by reducing stomata size and net photosynthesis resulting higher water content in mung bean plants that may help in survival of plants during drought condition. To mitigate the effects of drought stress, use of PGPR will be needed to ensure sufficient production of food from crop plants. Taking current leads available, concerted future research is needed in this area, particularly on field evaluation with application of potential microorganisms.

  5. Isolation and characterization of Escherichia coli mutants lacking inducible cyanase.

    Science.gov (United States)

    Guilloton, M; Karst, F

    1987-03-01

    To determine the physiological role of cyanate aminohydrolase (cyanase, EC 3.5.5.3) in bacteria, mutants of Escherichia coli K12 devoid of this inducible activity were isolated and their properties investigated. Five independent mutations were localized next to lac; three of them lay between lacY and codA. Thus cyanase activity could depend on the integrity of one gene or set of clustered genes; we propose for this locus the symbol cnt. Growth of the mutant stains was more sensitive to cyanate than growth of wild-type strains. This difference was noticeable in synthetic medium in the presence of low concentrations of cyanate (less than or equal to 1 mM). Higher concentrations inhibited growth of both wild-type and mutant strains. Urea in aqueous solutions dissociates slowly into ammonium cyanate. Accordingly wild-type strains were able to grow on a synthetic medium containing 0.5 M-urea whereas mutants lacking cyanase were not. We conclude that cyanase could play a role in destroying exogenous cyanate originating from the dissociation of carbamoyl compounds such as urea; alternatively cyanate might constitute a convenient nitrogen source for bacteria able to synthesize cyanase in an inducible way.

  6. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.

    Science.gov (United States)

    Tännler, Simon; Zamboni, Nicola; Kiraly, Csilla; Aymerich, Stéphane; Sauer, Uwe

    2008-09-01

    To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture. PMID:18582593

  7. Susceptibility genes for schizophrenia: mutant models, endophenotypes and psychobiology.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Desbonnet, Lieve; Moran, Paula M; Waddington, John L

    2012-01-01

    Schizophrenia is characterised by a multifactorial aetiology that involves genetic liability interacting with epigenetic and environmental factors to increase risk for developing the disorder. A consensus view is that the genetic component involves several common risk alleles of small effect and/or rare but penetrant copy number variations. Furthermore, there is increasing evidence for broader, overlapping genetic-phenotypic relationships in psychosis; for example, the same susceptibility genes also confer risk for bipolar disorder. Phenotypic characterisation of genetic models of candidate risk genes and/or putative pathophysiological processes implicated in schizophrenia, as well as examination of epidemiologically relevant gene × environment interactions in these models, can illuminate molecular and pathobiological mechanisms involved in schizophrenia. The present chapter outlines both the evidence from phenotypic studies in mutant mouse models related to schizophrenia and recently described mutant models addressing such gene × environment interactions. Emphasis is placed on evaluating the extent to which mutant phenotypes recapitulate the totality of the disease phenotype or model selective endophenotypes. We also discuss new developments and trends in relation to the functional genomics of psychosis which might help to inform on the construct validity of mutant models of schizophrenia and highlight methodological challenges in phenotypic evaluation that relate to such models.

  8. Vine type mutant induced in Vigna mungo L

    International Nuclear Information System (INIS)

    Full text: Dry seeds of the black gram variety T9 were irradiated with 10-30 kR gamma rays followed by treatment with 0.25% EMS. Several vine type mutants were obtained, showing 2.5 times increase in final plant height. Pollen fertility was normal, maturity period unaffected. Segregation ratio suggests monogenic recessive inheritance of the vine type. (author)

  9. Varietal improvement in jute through induction and use of mutants

    International Nuclear Information System (INIS)

    A very limited number of varieties of jute is available in the cultivated species of Corchorus capsularis and C. olitorius in Bangladesh. Use of gamma rays on seeds of the variety D-154 of the species capsularis resulted in a wide spectrum of variability, but there was only a narrow range of variability in the olitorius species. Treatment of the seeds of these species with chemical mutagens has not provided wide scope for selection. Crossing among mutants and mutants with varieties has added more variability in capsularis. A mutant, Atompat-38, of C. capsularis developed by using gamma rays on seeds of the variety D-154 has been released directly as a commercial variety (1988). It has a 12-15% higher fibre yield than the widely cultivated parent variety. It has a distinct genetic marker (hairy stipules modified into leaflets), and other additional advantages. A very promising line, C-443, developed through crossing Atompat-38 with CVL-1 of C. capsularis, is expected to be released very soon. This line has the combined features of the green petiole of CVL-1 and the modified leafy stipules of Atompat-38. It outyielded both the parents by 10-15% and has a good fibre quality, with less hard fibre at the bottom end of the stem. Other promising mutants are also undergoing advanced trials. Recently, more emphasis has been placed on broadening the genetic variability of the olitorius species through developing effective methods of treating seeds with chemical mutagens. 11 refs, 2 tabs

  10. Siim Nestor soovitab : Mutant Disco. Azymuth. Klubis Hollywood / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2003-01-01

    Mutant Disco klubis Prive 4. juulil. Brasiilia jazz-trio Azmuth klubis BonBon 5. juulil. Pidustuste sarja Hip Hop Cafe sünnipäeva tähistamisest klubis Hollywood 4. juulil, üritusest Ibiza Night 5. juulil

  11. Rest mutant zebrafish swim erratically and display atypical spatial preferences.

    Science.gov (United States)

    Moravec, Cara E; Li, Edward; Maaswinkel, Hans; Kritzer, Mary F; Weng, Wei; Sirotkin, Howard I

    2015-05-01

    The Rest/Nrsf transcriptional repressor modulates expression of a large set of neural specific genes. Many of these target genes have well characterized roles in nervous system processes including development, plasticity and synaptogenesis. However, the impact of Rest-mediated transcriptional regulation on behavior has been understudied due in part to the embryonic lethality of the mouse knockout. To investigate the requirement for Rest in behavior, we employed the zebrafish rest mutant to explore a range of behaviors in adults and larva. Adult rest mutants of both sexes showed abnormal behaviors in a novel environment including increased vertical swimming, erratic swimming patterns and a proclivity for the tank walls. Adult males also had diminished reproductive success. At 6 days post fertilization (dpf), rest mutant larva were hypoactive, but displayed normal evoked responses to light and sound stimuli. Overall, these results provide evidence that rest dysfunction produces atypical swimming patterns and preferences in adults, and reduced locomotor activity in larvae. This study provides the first behavioral analysis of rest mutants and reveals specific behaviors that are modulated by Rest.

  12. Rest Mutant zebrafish swim erratically and display atypical spatial preferences

    Science.gov (United States)

    Moravec, Cara E.; Li, Edward; Maaswinkel, Hans; Kritzer, Mary F.; Weng, Wei; Sirotkin, Howard I.

    2015-01-01

    The Rest/Nrsf transcriptional repressor modulates expression of a large set of neural specific genes. Many of these target genes have well characterized roles in nervous system processes including development, plasticity and synaptogenesis. However, the impact of Rest-mediated transcriptional regulation on behavior has been understudied due in part to the embryonic lethality of the mouse knockout. To investigate the requirement for Rest in behavior, we employed the zebrafish rest mutant to explore a range of behaviors in adults and larva. Adult rest mutants of both sexes showed abnormal behaviors in a novel environment including increased vertical swimming, erratic swimming patterns and a proclivity for the tank walls. Adult males also had diminished reproductive success. At 6 days post fertilization (dpf), rest mutant larva were hypoactive, but displayed normal evoked responses to light and sound stimuli. Overall, these results provide evidence that rest dysfunction produces atypical swimming patterns and preferences in adults, and reduced locomotor activity in larvae. This study provides the first behavioral analysis of rest mutants and reveals specific behaviors that are modulated by Rest. PMID:25712696

  13. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Dai

    Full Text Available KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors.

  14. Reduced virulence of Candida albicans mutants affected in multidrug resistance.

    OpenAIRE

    Becker, J. M.; Henry, L K; Jiang, W; Koltin, Y.

    1995-01-01

    Disruption of a multidrug resistance gene (CaMDR1) in Candida albicans resulted in mutant strains that colonized mouse kidneys to very high levels but were markedly reduced in their virulence. No obvious differences in several properties related to colonization and dissemination were noted among MDR+ or mdr- strains. These results suggest that specific fungal efflux pumps play a role in fungal pathogenicity.

  15. Early ripening mutants induced by colchicine in rice

    Institute of Scientific and Technical Information of China (English)

    CAIGuohai; YANWanchao; CAOXin

    1993-01-01

    In 1981-1983, the frequency and range of the mutants induced by colchicine were investigated in M2 and M3 of two indica-rice cultivars.Seedlings of M2 and M3 were treated with 0.05% colchicine solution at 4-5 leaf stage.

  16. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia.

  17. Officially released mutant varieties - the FAO/IAEA Database

    International Nuclear Information System (INIS)

    In the approximately 70 year-old history of induced mutations, there are many examples on the development of new and valuable alteration in plant characters significantly contributing to increased yield potential of specific crops. However, knowledge on the success of induced mutations in crop improvement among geneticists and breeders is usually limited to species of their interest. The present paper contains a comprehensive list of officially released mutant varieties, based on information from plant breeders. The number of mutant varieties officially released and recorded in the FAO/IAEA Mutant Varieties Database before the end of 2000 is 2,252. Almost half of these varieties have been released during the last 15 years. Considering a significant delay in the dissemination of information on newly released varieties and difficulties in the collection of such data, there has been a renaissance in the use of mutation techniques in crop improvement. At the demand of geneticists, plant breeders, and more recently molecular geneticists, for information on released mutant varieties of specific crops, the MVD was transferred to the web site of the FAO/IAEA Joint Division. The MVD will be available on our web pages early in 2001. (author)

  18. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.

    Science.gov (United States)

    Yang, Lei; Lübeck, Mette; Lübeck, Peter S

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

  19. Amino acids

    Science.gov (United States)

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  20. Identification of novel rice low phytic acid mutations via TILLING by sequencing

    Science.gov (United States)

    Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP6) accounts for 75-85% of the total phosphorus in seeds. Low phytic acid (lpa) mutants exhibit decreases in seed InsP6 with corresponding increases in inorganic P which, unlike phytic acid P, is readily utilized by humans and monogastric ...

  1. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  2. Characterization of yeast mutants lacking alkaline ceramidases YPC1 and YDC1

    DEFF Research Database (Denmark)

    Voynova, Natalia S; Mallela, Shamroop K; Vazquez, Hector M;

    2014-01-01

    Humans and yeast possess alkaline ceramidases located in the early secretory pathway. Single deletions of the highly homologous yeast alkaline ceramidases YPC1 and YDC1 have very little genetic interactions or phenotypes. Here, we performed chemical-genetic screens to find deletions/conditions that...... would alter the growth of ypc1∆ydc1∆ double mutants. These screens were essentially negative, demonstrating that ceramidase activity is not required for cell growth even under genetic stresses. A previously reported protein targeting defect of ypc1∆ could not be reproduced and reported abnormalities in...... reduces chronological life span. A novel finding is that, when working backwards as a ceramide synthase in vivo, Ypc1p prefers C24 and C26 fatty acids as substrates, whereas it prefers C16:0, when solubilized in detergent and working in vitro. Therefore, its physiological activity may not only concern the...

  3. Evaluation of the Synthetic Potential of an AHBA Knockout Mutant of the Rifamycin Producer Amycolatopsis mediterranei.

    Science.gov (United States)

    Bułyszko, Ilona; Dräger, Gerald; Klenge, Anja; Kirschning, Andreas

    2015-12-21

    Supplementing an AHBA(-) mutant strain of Amycolatopsis mediterranei, the rifamycin producer, with a series of benzoic acid derivatives yielded new tetraketides containing different phenyl groups. These mutasynthetic studies revealed unique reductive properties of A. mediterranei towards nitro- and azidoarenes, leading to the corresponding anilines. In selected cases, the yields of mutaproducts (fermentation products isolated after feeding bacteria with chemically prepared analogs of natural building blocks) obtained are in a range (up to 118 mg L(-1)) that renders them useful as chiral building blocks for further synthetic endeavors. The configuration of the stereogenic centers at C6 and C7 was determined to be 6R,7S for one representative tetraketide. Importantly, processing beyond the tetraketide stage is not always blocked when the formation of the bicyclic naphthalene precursor cannot occur. This was proven by formation of a bromo undecaketide, an observation that has implications regarding the evolutionary development of rifamycin biosynthesis. PMID:26559164

  4. Cellulase production by two mutant strain of Trichoderma longibranchiatum QM 9414 and Rut C30

    International Nuclear Information System (INIS)

    Native or pretreated biomass from Onopordum nervosum Boiss, has been examined as candidate feedstock for cellulase production by two mutant strain of Trichoderma Ionqibrachiatum QM9414 and Rut C30. Batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka floc). Batch cultivation of T. Ionqibrachiatum Rut C30 on 5% (w/v) acid pretreated O. nervosum biomass yielded enzyme productivities and activities comparable to those obtained on Solka floc. However, the overall enzyme production performance was lower than on Solka floc at comparable cellulose concentrations. This fact may be due to the accumulation of pretreated by products and lignin in the ferment. (Author) 40 refs

  5. Genetics and complementation of Haemophilus influenzae mutants deficient in adenosine 5'-triphosphate-dependent nuclease

    Energy Technology Data Exchange (ETDEWEB)

    Kooistra, J.; Small, G.D.; Setlow, J.K.; Shapanka, R.

    1976-04-01

    Eight different mutations in Haemophilus influenzae leading to deficiency in adenosine 5'-triphosphate (ATP)-dependent nuclease have been investigated in strains in which the mutations of the originally mutagenized strains have been transferred into the wild type. Sensitivity to mitomycin C and deoxycholate and complementation between extracts and deoxyribonucleic acid (DNA)-dependent ATPase activity have been measured. Genetic crosses have provided information on the relative position of the mutations on the genome. There are three complementation groups, corresponding to three genetic groups. The strains most sensitive to mitomycin and deoxycholate, derived from mutants originally selected on the basis of sensitivity to mitomycin C or methyl methanesulfonate, are in one group. Apparently all these sensitive strains lack DNA-dependent ATPase activity, as does a strain intermediate in sensitivity to deoxycholate, which is the sole representative of another group. There are four strains that are relatively resistant to deoxycholate and mitomycin C, and all of these contain the ATPase activity.

  6. The diageotropica mutant of tomato lacks high specific activity auxin sites

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, G.R.; Lomax, T.L. (Oregon State Univ., Corvallis (USA)); Rayle, D.L. (San Diego State Univ., CA (USA))

    1989-04-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue {sup 3}H-5N{sub 3}-IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant.

  7. Direct demonstration of Ca2+ binding defects in sarco-endoplasmic reticulum Ca2+ ATPase mutants overexpressed in COS-1 cells transfected with adenovirus vectors.

    Science.gov (United States)

    Strock, C; Cavagna, M; Peiffer, W E; Sumbilla, C; Lewis, D; Inesi, G

    1998-06-12

    Single mutations of specific amino acids within the membrane-bound region of the sarco-endoplasmic reticulum Ca2+ (SERCA)-1 ATPase interfere with Ca2+ inhibition of ATPase phosphorylation by Pi (1), suggesting that these residues may be involved in complexation of two Ca2+ that are known to bind to the enzyme. However, direct measurements of Ca2+ binding in the absence of ATP have been limited by the low quantities of available mutant protein. We have improved the transfection efficiency by means of recombinant adenovirus vectors, yielding sufficient expression of wild type and mutant SERCA-1 ATPase for measurements of Ca2+ binding to the microsomal fraction of the transfected cells. We find that in the presence of 20 microM Ca2+ and in the absence of ATP, the Glu771 --> Gln, Thr799 --> Ala, Asp800 --> Asn, and Glu908 --> Ala mutants exhibit negligible binding, indicating that the oxygen functions of Glu771, Thr799, Asp800, and Glu908 are involved in interactions whose single disruption causes major changes in the highly cooperative "duplex" binding. Total loss of Ca2+ binding is accompanied by loss of Ca2+ inhibition of the Pi reaction. We also find that, at pH 7.0, the Glu309 --> Gln and the Asn796 --> Ala mutants bind approximately half as much Ca2+ as the wild type ATPase and do not interfere with Ca2+ inhibition of the Pi reaction. At pH 6.2, the Glu309 --> Gln mutant does not bind any Ca2+, and its phosphorylation by Pi is not inhibited by Ca2+. On the contrary, the Asn796 --> Ala mutant retains the behavior displayed at pH 7.0. This suggests that in the Glu309 --> Gln mutant, ionization of acidic functions in other amino acids (e.g. Glu771 and Asp800) occurs as the pH is shifted, thereby rendering Ca2+ binding possible. In the Asn796 --> Ala mutant, on the other hand, the Glu309 carboxylic function allows binding of inhibitory Ca2+ even at pH 6.2. In all cases mutational interference with the inhibition of the Pi reaction by Ca2+ can be overcome by raising

  8. Interaction of HIV-1 fusion peptide and its mutant with lipid membrane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    HIVWT and HIVV2E represent the 23 amino acids fusion peptide of HIV-1 gp41 N terminus and its position 2 mutant (Val→Glu). We have studied the structure-function relationship of HIVWT and HIVV2E when they interact with acidic and neutral lipid membranes. The results show that HIVWT and HIVV2E have the same conformational characteristics and tendencies of conformational transition but definitely different functions: HIVWT destabilizes membrane and induces fusion by adopting predominant a-helix conformation when interacting with acidic POPG membrane, its phenylalanine residues can penetrate into the hydrophobic core of POPG bilayer; HIVV2E also adopts predominant a-helix when interacting with POPG membrane, but it cannot destabilize POPG membrane and induce fusion, the phenylalanine residues of it are located near the surface of POPG bilayer. HIVWT and HIVV2E both adopt predominant a-sheet conformation to interact with neutral POPC membrane, and cannot destabilize POPC membrane and induce fusion, the position of phenylalanine residues of both HIVWT and HIVV2E are close to the surface of POPC bilayer. These results demonstrate that the N terminal hydrophobicity of fusion peptide and the secondary structure when interacting with lipid membrane play important roles for fusion peptide exerting its function.

  9. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen;

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 ...

  10. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis.

    Science.gov (United States)

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J; Saito, Kazuki

    2014-05-14

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/.

  11. NMR structures of fusion peptide from influenza hemagglutinin H3 subtype and its mutants.

    Science.gov (United States)

    Du, Tianpeng; Jiang, Ling; Liu, Maili

    2014-04-01

    The influenza fusion peptide located at the N-terminus of the hemagglutinin HA2 subunit initiates the fusing process of the viral membrane with the host cell endosomal membrane. It had been reported that the structure of a 20-residue H3 subtype fusion peptide (H3-HAfp20) was significantly different with that of a H1 subtype 23-residue one (H1-HAfp23). The sequential difference between the 12th and 15th residues of H1 and H3 subtypes could not fully explain the conformational variation. The first and last three amino acids of H3-HAfp23 involved in formation of hydrogen bonds may play an important role in fusion process. To confirm this hypothesis, we investigate the structures of H3-HAfp23 peptide and its mutants, G1S and G1V, in dodecylphosphatidyl choline micelles by using heteronuclear NMR technology. The results demonstrate that, similar to H1-HAfp23 but significantly different with H3-HAfp20, H3-HAfp23 also has tight helical hairpin structure with the N- and C-terminuses linked together because of the hydrogen bonds between Gly1 and the last three amino acids, Trp21―Tyr22―Gly23. Although the ‘hemifusion’ G1S and lethal G1V mutants have hairpin-like helical structures, the distances between the N- and C-terminuses are increased as shortage of the hydrogen bonds and the larger kink angle between the antiparallel helices. The paramagnetic ion titration experiments show that the terminuses are inserted into the dodecylphosphatidyl choline micelles used as solving media. These may imply that the tight helical hairpin structure, especially the closed conformation at terminus, plays an important role in fusion activity.

  12. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  13. A new mutant transcript generated in Znf230 exon 2 knockout mice reveals a potential exon structure in the targeting vector sequence

    Institute of Scientific and Technical Information of China (English)

    Yunqiang Liu; Dachang Tao; Sunkai Ma; Ying Kuang; Dan Su; Hao Zhang; Yuan Yang

    2013-01-01

    Testis gene Znf230 may play a role in mammalian spermatogenesis according to previous reports.Deleting 5' important exons to block the formation of protein was a routine way in gene-knockout experiments.To investigate the physiological function of Znf230 gene,the mutant mice with disrupted exon 2 of Znf230 were generated in this study.Results showed that,mutant Znf230 mice were fertile and showed normal body,genitourinary organs,testes weights,and spermatid number but the litter size of the offspring reduced with unclear reasons.Hematoxylin and eosin staining showed that the testicular tissue of mutant mice was intact.Reverse transcriptase polymerase chain reaction analysis showed that two novel mutant transcripts appeared in the mutant mice:the short one including exon-1 and exon-3 to-6,the long one unexpectedly containing a partial sequence from the pPNT vector acting as a new exon 2.Bioinformatic analysis of the long transcript revealed that it might code a 24-kDa N-terminal mutant protein with the same 182 amino acids as that of the wild-type Znf230 in the C-terminus,indicating that the potential functional region of C3HC4-type RING finger was intact in mutant protein.Western blot and immunohistochemistry analyses also implied that this N-terminal mutation of Znf230 might not disrupt the possible role that wild-type Znf230 played in spermatogenesis.In summary,a potential exon structure in the targeting vector sequence involved in the expression of targeting Znf230 gene and disturbed the strategy of this gene-targeting experiment.

  14. Unraveling of the E-helices and Disruption of 4-Fold Pores Are Associated with Iron Mishandling in a Mutant Ferritin Causing Neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Baraibar, Martin A.; Muhoberac, Barry B.; Garringer, Holly J.; Hurley, Thomas D.; Vidal, Ruben (Indiana-Med); (IUPUI)

    2010-03-12

    Mutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length. The structure was determined and refined to 2.85 {angstrom} resolution and was very similar to the wild type between residues Ile-5 and Arg-154. However, instead of the E-helices normally present in wild type ferritin, the C-terminal sequences of all 24 mutant subunits showed substantial amounts of disorder, leading to multiple C-terminal polypeptide conformations and a large disruption of the normally tiny 4-fold axis pores. Functional studies underscored the importance of the mutant C-terminal sequence in iron-induced precipitation and revealed iron mishandling by soluble mutant FTL homopolymers in that only wild type incorporated iron when in direct competition in solution with mutant ferritin. Even without competition, the amount of iron incorporation over the first few minutes differed severalfold. Our data suggest that disruption at the 4-fold pores may lead to direct iron mishandling through attenuated iron incorporation by the soluble form of mutant ferritin and that the disordered C-terminal polypeptides may play a major role in iron-induced precipitation and formation of ferritin inclusion bodies in hereditary ferritinopathy.

  15. Relationship between in vitro enhanced nitrogenase activity of an Azospirillum brasilense Sp7 mutant and its growth-promoting activities in situ.

    Science.gov (United States)

    de Campos, Samanta Bolzan; Roesch, Luiz Fernando Wurdig; Zanettini, Maria Helena Bodanese; Passaglia, Luciane Maria Pereira

    2006-07-01

    In this work, we further analyzed an Azospirillum brasilense Sp7 mutant (Sp7::Tn5-33) showing a pleiotrophic phenotype due to a Tn5 insertion into an open reading frame of 840 bp (orf280). The deduced amino acid sequence of this region has high similarity to a family of universal stress proteins. Because the most interesting property exhibited by the Sp7::Tn5-33 mutant was an enhanced in vitro nitrogen fixation activity, we addressed the question of whether it could benefit the host plant. We found that the increased nitrogenase activity at the free-living state of the mutant bacterium was correlated with an increased production of the nitrogenase reductase protein (NifH), in amounts approximately 1.5 times higher than the wild type. The mutant strain exhibited the same level of auxin production and the same colonization pattern of wheat roots as the wild type. We also observed that Sp7::Tn5-33 increased the total plant dry weight, although the N content did not differ significantly between wheat plants inoculated with mutant or wild-type strains.

  16. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    Science.gov (United States)

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  17. A carotenoid-deficient mutant in Pantoea sp. YR343, a bacteria isolated from the rhizosphere of Populus deltoides, is defective in root colonization

    Directory of Open Access Journals (Sweden)

    Amber N Bible

    2016-04-01

    Full Text Available The complex interactions between plants and their microbiome can have a profound effect on the health and productivity of the plant host. A better understanding of the microbial mechanisms that promote plant health and stress tolerance will enable strategies for improving the productivity of economically-important plants. Pantoea sp. YR343 is a motile, rod-shaped bacterium isolated from the roots of Populus deltoides that possesses the ability to solubilize phosphate and produce the phytohormone indole-3-acetic acid. Pantoea sp. YR343 readily colonizes plant roots and does not appear to be pathogenic when applied to the leaves or roots of selected plant hosts. To better understand the molecular mechanisms involved in plant association and rhizosphere survival by Pantoea sp. YR343, we constructed a mutant in which the crtB gene encoding phytoene synthase was deleted. Phytoene synthase is responsible for converting geranylgeranyl pyrophosphate to phytoene, an important precursor to the production of carotenoids. As predicted, the ΔcrtB mutant is defective in carotenoid production, and shows increased sensitivity to oxidative stress. Moreover, we find that the ΔcrtB mutant is impaired in biofilm formation and production of indole-3-acetic acid. Finally we demonstrate that the ΔcrtB mutant shows reduced colonization of plant roots. Taken together, these data suggest that carotenoids are important for plant association and/or rhizosphere survival in Pantoea sp. YR343.

  18. Kinetic evidence for surface residues influencing the active site of Coprinus cinereus peroxidase: analysis of the pH dependence of G154E, P90H and P90H-G154E substrate entrance mutants.

    Science.gov (United States)

    Di Cerbo, P; Welinder, K G; Schiødt, C B

    2001-01-12

    Three mutants of Coprinus cinereus peroxidase (CIP) were made to mimic the substrate entrance histidine 82-glutamic acid 146 pair of the substrate channel in lignin peroxidase (LIP). Compound I formation of LIP has a low pH optimum around pH 3, while optimal formation of CIP compound I is obtained at pH 6-11. The mutants were glycine 154-->glutamic acid (G154E), proline 90-->histidine (P90H) and the double mutant P90H-G154E. All three showed kinetics of compound I formation similar to that of wt CIP between pH 3 and 9. However, the stability of compound I was strongly affected by these mutations. In wt CIP compound I is stable for approximately 30 min, while compound I of the mutants were stable for 5 s or less. The P90H and P90H-G154E mutants showed pK(a) values for the alkaline transition at least one pH unit lower than for wt CIP and the G154E mutant. We suggest that the changed electrostatic field results in destabilisation of the oxidised heme in compound I and II and that the P90H residue increases the electrostatic potential in the distal cavity thereby decreasing the pK(a) for the alkaline transition.

  19. Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng; ZHAO Guo-hong; JIA Yin-hua; DU Xiong-ming

    2008-01-01

    @@ CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild type cotton Gossypium arboreum L.(DPL971) and its natural fuzzless mutant (DPL972).The gene consisted of an open reading frame of 1,416 nucleotides encoding a protein of 471 amino acid residues with a calculated molecular weight of 50.6 kDa.

  20. Biochemical characterization of mutants in the active site residues of the β-galactosidase enzyme of Bacillus circulans ATCC 31382

    OpenAIRE

    Bultema, Jelle B; Bas J.H. Kuipers; Lubbert Dijkhuizen

    2014-01-01

    The Bacillus circulans ATCC 31382 β-galactosidase (BgaD) is a retaining-type glycosidase of glycoside hydrolase family 2 (GH2). Its commercial enzyme preparation, Biolacta N5, is used for commercial-scale production of galacto-oligosaccharides (GOS). The BgaD active site and catalytic amino acid residues have not been studied. Using bioinformatic routines we identified two putative catalytic glutamates and two highly conserved active site histidines. The site-directed mutants E447N, E532Q, an...

  1. A relaxed (rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin.

    Science.gov (United States)

    Ochi, K

    1990-12-01

    A relaxed (rel) mutant was found among 70 thiopeptin-resistant isolates of Streptomyces coelicolor A3(2) which arose spontaneously. The ability of the rel mutant to accumulate ppGpp during Casamino acid deprivation was reduced 10-fold compared to the wild-type. Analysis of the ribosomal proteins by two-dimensional PAGE revealed that the mutant lacked a ribosomal protein, tentatively designated ST-L11. It was therefore classified as a relC mutant. The mutant was defective in producing A-factor and the pigmented antibiotic prodigiosin, in both liquid and agar cultures, but produced agarase normally. Production of actinorhodin, another pigmented antibiotic, was also abnormal; it appeared suddenly in agar cultures after 10 d incubation. Although aerial mycelium still formed, its appearance was markedly delayed. Whereas liquid cultures of the parent strain accumulated ppGpp, agar cultures accumulated only trace amounts. Instead, a substance characterized only as an unidentified HPLC peak accumulated intracellularly in the late growth phase, just before aerial mycelium formation and antibiotic production. This substance did not accumulate in mutant cells. It was found in S. lividans 66 and S. parvulus, but not in seven other Streptomyces species tested. The significance of these observations, and the relationship of the mutant to earlier rel isolates of Streptomyces is discussed.

  2. Dynamic void distribution in myoglobin and five mutants.

    Science.gov (United States)

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C

    2014-01-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins. PMID:24500195

  3. Ultradian rhythm unmasked in the Pdf clock mutant of Drosophila

    Indian Academy of Sciences (India)

    Yuuichi Seki; Teiichi Tanimura

    2014-09-01

    A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf01) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.

  4. Molecular Variability in Barley Structural Mutants Produced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Single Sequence Repeat (SSR) and Amplified Fragment Length Polymorphism (AFLP) markers were used to survey gamma ray induced genetic variation in a set of 13 originally produced structural barley (H. vulgare L.) mutants from cv. Freya; including 8 single translocation lines, 3 double translocation lines and 2 multiple reconstructed karyotypes. Both marker systems contributed to the evaluation of the radiation induced DNA alterations and revealed in general 0.49% polymorphisms in the studied genotypes. AFLPs were observed with 3 out of 10 PstI/MseI primer combinations. Transmissible microsatellite instability at loci with perfect (AT)n repeats located in the introns of the rubisco activase and waxy was documented in three mutant lines. The results emphasize that in addition to point mutations, small indels (2bp) form the major group of the gamma induced DNA alterations. (author)

  5. Performance of induced mutant derived oat varieties in Australia

    International Nuclear Information System (INIS)

    Full text: The semi-dwarf varieties Echidna and Dolphin were released in 1984 and reached a growing area of 15% (ca. 23.700 ha) and 3% (ca. 4700 ha) respectively. Both varieties derive from a cross West x OT 207, the latter of which is a fast neutron induced semi-dwarf mutant of OT 184 carrying the gene DW6. For Echidna, crops up to 7 t/ha have been recorded. Both Echidna and Dolphin are very resistant to lodging and grain shedding. As a result, farmers have changed their harvest priorities from barley-oats-wheat to barley-wheat-oats. Further breeding aims at improving the grain quality of semi-dwarf germplasm derived from OT 207 and testing naked grain genotypes carrying the mutant gene. (author)

  6. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects

    NARCIS (Netherlands)

    Swain, S.; Roy, S.; Shah, J.; Wees, S.C.M. van; Pieterse, C.M.J.; Nandi, A.K.

    2011-01-01

    Arabidopsis genotypes with a hyperactive salicylic acidmediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article,

  7. Degradation of Stop Codon Read-through Mutant Proteins via the Ubiquitin-Proteasome System Causes Hereditary Disorders.

    Science.gov (United States)

    Shibata, Norihito; Ohoka, Nobumichi; Sugaki, Yusuke; Onodera, Chiaki; Inoue, Mizuho; Sakuraba, Yoshiyuki; Takakura, Daisuke; Hashii, Noritaka; Kawasaki, Nana; Gondo, Yoichi; Naito, Mikihiko

    2015-11-20

    During translation, stop codon read-through occasionally happens when the stop codon is misread, skipped, or mutated, resulting in the production of aberrant proteins with C-terminal extension. These extended proteins are potentially deleterious, but their regulation is poorly understood. Here we show in vitro and in vivo evidence that mouse cFLIP-L with a 46-amino acid extension encoded by a read-through mutant gene is rapidly degraded by the ubiquitin-proteasome system, causing hepatocyte apoptosis during embryogenesis. The extended peptide interacts with an E3 ubiquitin ligase, TRIM21, to induce ubiquitylation of the mutant protein. In humans, 20 read-through mutations are related to hereditary disorders, and extended peptides found in human PNPO and HSD3B2 similarly destabilize these proteins, involving TRIM21 for PNPO degradation. Our findings indicate that degradation of aberrant proteins with C-terminal extension encoded by read-through mutant genes is a mechanism for loss of function resulting in hereditary disorders. PMID:26442586

  8. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A dwarf mutant of rice(Oryza.sativa L.)by mutagenesis of ethylene methylsulfonate(EMS)treatment from Nipponbare was identified.The mutant exhibited phenotypes of dwarfism and withered leaf tip(dwll).Based on the internode length of dwl1,this mutant be longs to the dm type of dwarfing.Analysis of elongation of the second sheath and α-amylase activity in endosperm showed that the phenotype caused by dwll was insensitive to gibberellin acid treatment.Using a large F2 population derived from a cross between the dwll and an indica rice variety,TN1,the DWLl gene was mapped to the terminal region of the long arm of chromosome 3.Fine-mapping de-limited it into a 46 kb physical distance between two STS markers,HL921 and HL944,where 6 open reading frames were predicted.Cloning of DWL1 will contribute to dissecting molecular mechanism that regulates plant height in rice,which will be beneficial to molecular assisted selection of this important trait.

  9. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.

    Directory of Open Access Journals (Sweden)

    Madalina Rujoi

    Full Text Available BACKGROUND: Niemann-Pick type C (NPC disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles. METHODOLOGY/PRINCIPAL FINDINGS: The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds. CONCLUSIONS/SIGNIFICANCE: Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165.

  10. Breeding of high yield strain producing acid-stable α-amylase by N+ ion beam irradiation

    International Nuclear Information System (INIS)

    Bacillus subtilis BF7658, which produces medium-temperature α-amylase,was implanted with N+ ion beam to breed mutants. Under the optimal fluence of 1 x 1016 cm-2, a mutant TCCC 11525 producing the acid-stable and medium-temperature α-amylase was obtained. The activity of the mutagenised enzyme is 207 U/mL. (authors)

  11. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.

    Directory of Open Access Journals (Sweden)

    Mohammad Haeri

    Full Text Available Mutations in rhodopsin cause retinitis pigmentosa in humans and retinal degeneration in a multitude of other animals. We utilized high-resolution live imaging of the large rod photoreceptors from transgenic frogs (Xenopus to compare the properties of fluorescently tagged rhodopsin, Rho-EGFP, and Rho(P23H-EGFP. The mutant was abnormally distributed both in the inner and outer segments (OS, accumulating in the OS to a concentration of ∼0.1% compared to endogenous opsin. Rho(P23H-EGFP formed dense fluorescent foci, with concentrations of mutant protein up to ten times higher than other regions. Wild-type transgenic Rho-EGFP did not concentrate in OS foci when co-expressed in the same rod with Rho(P23H-EGFP. Outer segment regions containing fluorescent foci were refractory to fluorescence recovery after photobleaching, while foci in the inner segment exhibited recovery kinetics similar to OS regions without foci and Rho-EGFP. The Rho(P23H-EGFP foci were often in older, more distal OS disks. Electron micrographs of OS revealed abnormal disk membranes, with the regular disk bilayers broken into vesiculotubular structures. Furthermore, we observed similar OS disturbances in transgenic mice expressing Rho(P23H, suggesting such structures are a general consequence of mutant expression. Together these results show that mutant opsin disrupts OS disks, destabilizing the outer segment possibly via the formation of aggregates. This may render rods susceptible to mechanical injury or compromise OS function, contributing to photoreceptor loss.

  12. Induction and Characterization of Mitochondrial DNA Mutants in Chlamydomonas Reinhardtii

    OpenAIRE

    Matagne, René-Fernand; Michel-Wolwertz, M.R.; Munaut, Carine; Duyckaerts, Claire; Sluse, Francis

    1989-01-01

    In addition to lethal minute colony mutations which correspond to loss of mitochondrial DNA, acriflavin induces in Chlamydomonas reinhardtii a low percentage of cells that grow in the light but do not divide under heterotrophic conditions. Two such obligate photoautotrophic mutants were shown to lack the cyanide-sensitive cytochrome pathway of the respiration and to have a reduced cytochrome c oxidase activity. In crosses to wild type, the mutations are transmitted almost exclusively from the...

  13. Multidrug Resistance of a Porin Deletion Mutant of Mycobacterium smegmatis

    OpenAIRE

    Stephan, Joachim; Mailaender, Claudia; Etienne, Gilles; Daffé, Mamadou; Niederweis, Michael

    2004-01-01

    Mycobacteria contain an outer membrane of unusually low permeability which contributes to their intrinsic resistance to many agents. It is assumed that small and hydrophilic antibiotics cross the outer membrane via porins, whereas hydrophobic antibiotics may diffuse through the membrane directly. A mutant of Mycobacterium smegmatis lacking the major porin MspA was used to examine the role of the porin pathway in antibiotic sensitivity. Deletion of the mspA gene caused high-level resistance of...

  14. Failure to transmit disease from gray tremor mutant mice.

    OpenAIRE

    Carlson, G A; Banks, S; Lund,D.; Reichert, C. (rapporteur); Groth, D; Torchia, M; DeArmond, S J; Prusiner, S B

    1997-01-01

    Mice homozygous for mutant alleles at the gray tremor (gt) locus develop a marked non-intention tremor beginning at 8 days of age. Most homozygous mice die by 3 months. Homozygotes exhibit intense vacuolation of the central nervous system gray matter and vacuolation and hypomyelination of some white matter tracts. Based on neuropathological similarities with scrapie, other investigators inoculated wild-type mice with gray tremor brain homogenates to test the hypothesis of transmissibility. Pu...

  15. A rat homolog of the mouse deafness mutant jerker (je).

    Science.gov (United States)

    Truett, G E; Walker, J A; Brock, J W

    1996-05-01

    An autosomal recessive deafness mutant was discovered in our colony of Zucker (ZUC) rats. These mutants behave like shaker-waltzer deafness mutants, and their inner ear pathology classifies them among neuroepithelial degeneration type of deafness mutants. To determine whether this rat deafness mutation (-) defines a unique locus or one that has been previously described, we mapped its chromosomal location. F2 progeny of (Pbrc:ZUC x BN/Crl) A/a B/b H/h +/- F1 rats were scored for coat color and behavioral phenotypes. Segregation analysis indicated that the deafness locus might be loosely linked with B on rat Chromosome (Chr) 5 (RNO5). Therefore, 40 -/- rats were scored for BN and ZUC alleles at four additional loci, D5Mit11, D5Mit13, Oprd1, and Gnb1, known to map to RNO5 or its homolog, mouse Chr 4 (MMU4). Linkage analysis established the gene order (cM distance) as D5Mit11-(19.3)-B-(17.9)-D5Mit13-(19. 2)-Oprd1-(21.5) - (1.2) Gnb1, placing the deafness locus on distal RNO5. The position of the deafness locus on RNO5 is similar to that ofjerker (je) on MMU4; the phenotypes and patterns of inheritance of the deafness mutation and je are also similar. It seems likely that the mutation affects the rat homolog of je. The rat deafness locus should, therefore, be named jerker and assigned the gene symbol Je. PMID:8661723

  16. Induction and use of artificial mutants in sweet potato

    Energy Technology Data Exchange (ETDEWEB)

    Marumine, Shokichi

    1984-03-01

    X-ray, ethylene imine, TSP and WCo were used as mutagen for sweet potato mutation breeding and visible variations were observed for all mutagen. In the case of WCo irradiation, mutation rate of skin color is 0.5-1.3% based on cutting. Direction and variation of dry matter and tuber yield of mutants which were induced by TSP and/or WCo irradiation showed more deteriorative variation than progressive variation but some induced mutant lines show same or superior characters than original line. In the case of TSP irradiation to tuber, obstruction is not so much up to dese of 10,000 ci per tuber but treatment of 330 ci per cutting approximate to LD50. By tuber treatment with WCo gamma rays, suppression of sprouting occurred in dose of 30kR. Tendency to increase a variation was not observed at higher doses. 50-200 ci per cutting or 300-500 ci per tuber in TSP treatment and 15 kR in WCo gamma-irradiation for tuber seemed to be optimum dosages. Hybrid seed of mutant selected for dry matter content was compared with that of original line and it was concluded that the variation of selected line was genetic. Mutant induced by TSP and WCo treatment was used as a parental material and progeny of the cross was selected for practical characters. As a result, a line of higher starch yield with high resistance to pest and disease was selected and this line was used as parental material of further breeding. (author).

  17. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation

    OpenAIRE

    1994-01-01

    Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline- inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles...

  18. Selection Of Drought Resistant Mutants In Rice Using DNA Markers

    International Nuclear Information System (INIS)

    In recent years, the marker - assisted selection (MAS) strategy have been used for selection of traits that are difficult and costly performed measurement and score. Selection for a well-developed root system could improve the drought resistance of rice as the plant would avoid water stress by absorbing water from the soil. There were several reports on map construction and identification of the markers tightly linked to morphological and physiological traits related to drought resistance in rice, in particular, root traits in upland and lowland rice (Champoux et al., 1995; Ray et al., 1996; Price et al., 1997, 2000; Yadav et al., 1997). In this report, we present the results on selection of drought resistance mutants in rice using the DNA markers tightly linked to root traits favorable for drought resistance. The mutant rice lines were obtained from irradiated seeds and calluses by gamma ray. The selection was performed at M2 mutants using the DNA markers linked to maximum root length (MRL), root weight to shoot weight ratio (RW/SR), and weight of deep root to shoot weight ratio (DRW/SR). The obtained results showed that there were many lines possessed drought resistant markers. In addition, there is a number of lines have altered genome. Several lines having drought markers proved to be more resistant to drought in green-house test. These lines could be useful for further test and development of drought resistant varieties. (author)

  19. Testing sorghum mutant lines against drought in indonesia

    International Nuclear Information System (INIS)

    Research on mutation breeding in sorghum has been conducted at Center for Research and Development of Isotope and Radiation Technology, National Nuclear Energy Agency (BATAN). Sorghum seeds of four varieties were irradiated with Gamma rays emitted from Cobalt-60 source which is installed in Gamma Chamber 4000A facility. Earlier research has been accomplished for increasing plant genetic variability by mutation techniques. Sorghum seeds with water content of 13 % were irradiated with different dose levels of Gamma rays. Plant selection for desirable agronomic characters was started in the second generation (M2) and was continued in the M3. A number of sorghum mutant lines were registered and they were tested against drought in the M4. The test was carried out in a drought prone area of Gunung Kidul, Yogyakarta Province during dry season of 2000. Results indicated that some mutant lines of sorghum could grow and adapt well in the local condition. A number of promising mutant lines will be developed further in the region for supporting food and feed sufficiency for the local farmers especially during the dry season

  20. Potent inhibition of HIV-1 replication by a Tat mutant.

    Science.gov (United States)

    Meredith, Luke W; Sivakumaran, Haran; Major, Lee; Suhrbier, Andreas; Harrich, David

    2009-11-10

    Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.