WorldWideScience

Sample records for acid lime plants

  1. Effect of amino acid application on induced resistance against citrus canker disease in lime plants

    Directory of Open Access Journals (Sweden)

    Hasabi Vahideh

    2014-07-01

    Full Text Available Citrus bacterial canker, caused by Xanthomonas citri subsp. citri (Xcc, is a destructive disease. So far, the chemicals used to control this pathogen are either ineffective or harmful to the environment. To improve control of this disease, lime (Citrus aurantifolia were treated with L-arginine, L-methionine, L-ornithine, and distilled water. Plants were inoculated with Xcc, 48 hours post treatment. Lesion diameters of inoculated leaves were evaluated four weeks after inoculation with a bacterial suspension. Changes in β-1,3-glucanase transcript levels and activity of antioxidant enzymes, catalase, peroxidase, and phenylalanine ammonia-lyase were investigated at 48 hours post treatment and 24, 48, and 72 hours post inoculation. Based on the results of phenotypic, antioxidant enzyme activity and a molecular study of the stressed plants, it was found that those plants treated with the amino acid methionine significantly increased the plant induced resistance as well as decreased the severity of disease by reducing necrotic lesion size.

  2. Lime and compost promote plant re-colonization of metal-polluted, acidic soils.

    Science.gov (United States)

    Ulriksen, Christopher; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander

    2012-09-01

    The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.

  3. Liming of acid soils in Osijek-Baranja county

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2011-01-01

    Full Text Available The negative trend of soil degradation process increases with intensive agricultural production. Therefore, there is a need for soil conditioning like liming, humification, fertilization, etc. to improve soil quality. One of the major problems that occur on agricultural soils of Croatia is acidification. A downward trend of soil pH is mainly present in soils of poor structure with intensive agricultural production. In agricultural practice liming often needs to rely only on the pH value, without determining the hydrolytic acidity, CEC or soil texture. Due to the above mentioned facts, calculation of liming for Osijek-Baranja County was conducted with the help of ALRxp calculator, which takes CEC, soil pH in KCl, hydrolytic acidity, bulk density of soil, soil textural class and depth of the plow layer to 30 cm into account. Low soil pH values have a great influence on soil suitability for crops as well as on the deficit of calcium and magnesium. All of these lead to the degradation of soil structure, and can even lead to disturbances of plant nutrition in some production areas. On such soils, liming would be imperatively required, but with caution because an excessive intake of lime materials, especially without the necessary analysis, causes a decline in organic matter and reduces accessibility for plant uptake of microelements.

  4. Influence of Lime and Phosphorus Application Rates on Growth of Maize in an Acid Soil

    Directory of Open Access Journals (Sweden)

    Peter Asbon Opala

    2017-01-01

    Full Text Available The interactive effects of lime and phosphorus on maize growth in an acid soil were investigated in a greenhouse experiment. A completely randomized design with 12 treatments consisting of four lime levels, 0, 2, 10, and 20 t ha−1, in a factorial combination with three phosphorus rates, 0, 30, and 100 kg ha−1, was used. Maize was grown in pots for six weeks and its heights and dry matter yield were determined and soils were analyzed for available P and exchangeable acidity. Liming significantly reduced the exchangeable acidity in the soils. The effect of lime on available P was not significant but available P increased with increasing P rates. There was a significant effect of lime, P, and P by lime interactions on plant heights and dry matter. Without lime application, dry matter increased with increasing P rates but, with lime, dry mattes increased from 0 to 30 kg P ha−1 but declined from 30 to 100 kg P ha−1. The highest dry matter yield (13.8 g pot−1 was obtained with a combined 2 t ha−1 of lime with 30 kg P ha−1 suggesting that lime application at low rates combined with moderate amounts of P would be appropriate in this soil.

  5. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms.

    Science.gov (United States)

    Kennedy, Nabla; Brodie, Eoin; Connolly, John; Clipson, Nicholas

    2004-10-01

    A microcosm-based approach was used to study impacts of plant and chemical factors on the bacterial community structure of an upland acidic grassland soil. Seven perennial plant species typical of both natural, unimproved (Nardus stricta, Agrostis capillaris, Festuca ovina and F. rubra) and fertilized, improved (Holcus lanatus, Lolium perenne and Trifolium repens) grasslands were either left unamended or treated with lime, nitrogen, or lime plus nitrogen in a 75-day glasshouse experiment. Lime and nitrogen amendment were shown to have a greater effect on microbial activity, biomass and bacterial ribotype number than plant species. Liming increased soil pH, microbial activity and biomass, while decreasing ribotype number. Nitrogen addition decreased soil pH, microbial activity and ribotype number. Addition of lime plus nitrogen had intermediate effects, which appeared to be driven more by lime than nitrogen. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed that lime and nitrogen addition altered soil bacterial community structure, while plant species had little effect. These results were further confirmed by multivariate redundancy analysis, and suggest that soil lime and nitrogen status are more important controllers of bacterial community structure than plant rhizosphere effects.

  6. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    Directory of Open Access Journals (Sweden)

    Sarah E Pabian

    Full Text Available Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  7. Lime

    Science.gov (United States)

    Miller, M.

    2006-01-01

    In 2005, US lime production was 20 Mt with a value of $1.5 billion. Production was unchanged compared with 2004. Captive production was 1.4 Mt. US consumption was 20.2 Mt. Most of the US lime trade was with Canada and Mexico. Despite some disruptions due to hurricanes Katrina and Rita, normal sales activities remained healthy.

  8. Resistance to Citrus Canker in Key/Mexican Lime Induced by β-Aminobutyric Acid and Green Tea

    National Research Council Canada - National Science Library

    B. Beheshti; G. R. Sharifi-Sirchi; M. Mansouri; A. Hosseinipour; N. L. Schlaich

    2011-01-01

    .... To improve control of this disease, lime (Citrus aurantifolia) plants inoculated with Xcc were treated with β-Aminobutyric Acid (BABA), ascorbic acid (vitamin C), thiamin (vitamin B1), green tea (Camellia sinensis...

  9. Genetic Diversity and Population Differentiation of Guignardia mangiferae from “Tahiti” Acid Lime

    Directory of Open Access Journals (Sweden)

    Ester Wickert

    2012-01-01

    Full Text Available Among the citrus plants, “Tahiti” acid lime is known as a host of G. mangiferae fungi. This species is considered endophytic for citrus plants and is easily isolated from asymptomatic fruits and leaves. G. mangiferae is genetically related and sometimes confused with G. citricarpa which causes Citrus Black Spot (CBS. “Tahiti” acid lime is one of the few species that means to be resistant to this disease because it does not present symptoms. Despite the fact that it is commonly found in citric plants, little is known about the populations of G. mangiferae associated with these plants. Hence, the objective of this work was to gain insights about the genetic diversity of the G. mangiferae populations that colonize “Tahiti” acid limes by sequencing cistron ITS1-5.8S-ITS2. It was verified that “Tahiti” acid lime plants are hosts of G. mangiferae and also of G. citricarpa, without presenting symptoms of CBS. Populations of G. mangiferae present low-to-moderate genetic diversity and show little-to-moderate levels of population differentiation. As gene flow was detected among the studied populations and they share haplotypes, it is possible that all populations, from citrus plants and also from the other known hosts of this fungus, belong to one great panmictic population.

  10. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

    Energy Technology Data Exchange (ETDEWEB)

    Olego, M.A.; Visconti, F.; Quiroga, M.J.; Paz, J.M. De; Garzón-Jimeno, E.

    2016-11-01

    Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm), as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA). As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils. (Author)

  11. Nature of Soil Acidity in Relation to Properties and Lime Requirement of Some Inceptisols

    Institute of Scientific and Technical Information of China (English)

    A. K. DOLUI; S. BHATTACHARJEE

    2003-01-01

    Some Inceptisols representing the Singla catchment area in Karimgaunge district of Assam, India, were studied for lime requirement as influenced by the nature of soil acidity. The electrostatically bonded (EB)-H+ and EB-Al3+ acidities constituted 33 and 67 percent of exchangeable acidity while EB-H+, EB-Al3+,exchangeable and pH-dependent acidities comprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a major contribution towards the total potential acidity (67%~84%). Grand mean of lime requirement determined by the laboratory incubation method and estimated by the methods of New Woodruff, Woodruff and Peech as expressed in MgCaCO3 ha-1 was in the order: Woodruff (15.6) > New Woodruff (14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity and lime requirement methods with selected soil properties showed that pH in three media, namely water, 1 mol L-1 KCl and 0.01 mol L-1 CaCl2, had a significant negative correlation with different forms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positive correlations with EB-Al3+ acidity, exchangeable acidity, pH-dependent acidity and total potential acidity, and also lime requirement methods. Extractable Al showed positive correlations with different forms of acidity except EB-H+ and EB-Al3+ acidities. The lime requirement by different methods depended upon the extractable aluminium.Significant positive correlations existed between lime requirements and different forms of acidity of the soils except EB-H+ acidity and incubation method. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method did slightly better than the New Woodruff, incubation and Peech methods at estimating lime requirement and hence the Woodruff procedure may be recommended for routine soil testing because of its speed and simplicity.

  12. A new look at liming as an approach to accelerate recovery from acidic deposition effects.

    Science.gov (United States)

    Lawrence, Gregory B; Burns, Douglas A; Riva-Murray, Karen

    2016-08-15

    Acidic deposition caused by fossil fuel combustion has degraded aquatic and terrestrial ecosystems in North America for over four decades. The only management option other than emissions reductions for combating the effects of acidic deposition has been the application of lime to neutralize acidity after it has been deposited on the landscape. For this reason, liming has been a part of acid rain science from the beginning. However, continued declines in acidic deposition have led to partial recovery of surface water chemistry, and the start of soil recovery. Liming is therefore no longer needed to prevent further damage, so the question becomes whether liming would be useful for accelerating recovery of systems where improvement has lagged. As more is learned about recovering ecosystems, it has become clear that recovery rates vary with watershed characteristics and among ecosystem components. Lakes appear to show the strongest recovery, but recovery in streams is sluggish and recovery of soils appears to be in the early stages. The method in which lime is applied is therefore critical in achieving the goal of accelerated recovery. Application of lime to a watershed provides the advantage of increasing Ca availability and reducing or preventing mobilization of toxic Al, an outcome that is beneficial to both terrestrial and aquatic ecosystems. However, the goal should not be complete neutralization of soil acidity, which is naturally produced. Liming of naturally acidic areas such as wetlands should also be avoided to prevent damage to indigenous species that rely on an acidic environment. Published by Elsevier B.V.

  13. Final Rule to Reduce Toxic Air Emissions from Lime Manufacturing Plants Fact Sheet

    Science.gov (United States)

    This page contains an August 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Lime Manufacturing Plants. This document provides a summary of the information for this NESHAP.

  14. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    Science.gov (United States)

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  15. Reclamation of acid sulfate soils using lime-stabilized biosolids.

    Science.gov (United States)

    Orndorff, Zenah W; Daniels, W Lee; Fanning, Delvin S

    2008-01-01

    Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed.

  16. Development and morphological changes in leaves and branches of acid lime (Citrus aurantifolia affected by witches’ broom

    Directory of Open Access Journals (Sweden)

    Rashid Abdullah AL-YAHYAI

    2015-04-01

    Full Text Available Witches’ broom (WB, associated with the presence of ‘Candidatus Phytoplasma aurantifolia’, is one of the most serious diseases of acid lime. This study determined incidence, distribution, and development of the disease, and morphological changes in leaves and branches of affected host plants. Survey in different parts of Oman showed that WB occurs in most regions in the country, where 108 out of 158 (68% surveyed farms were found to have diseased trees. A survey of 6,926 acid lime trees showed that severity of WB was positively related (r = 0.948; P<0.01 to tree age. The mean percentage of symptomatic branches was 1% in 3-year-old trees compared to 63% in 12-year-old trees. To further characterize morphological changes in WB-affected limes, apical stems (40 cm long were collected from three infected trees during the autumn of 2009 and spring of 2010. Increases in the numbers of leaves (1,208%, numbers of branches (309% and total length of branches (712% were recorded for symptomatic branches relative to non-symptomatic branches. In the spring of 2009 these respective increases were 159%, 243% and 121%.Overall area of leaves in the symptomatic branches was 81% less than for non-symptomatic branches in the autumn of 2009 and 34% less in the spring of 2010. This study is the first to characterize morphological changes in leaves and branches of acid lime affected by WB.

  17. Developmental Transition from Enzymatic to Acid Hydrolysis of Sucrose in Acid Limes (Citrus aurantifolia) 1

    Science.gov (United States)

    Echeverria, Ed

    1990-01-01

    The sucrose breakdown mechanisms in juice sacs of acid lime (Citrus aurantifolia [Christm.] Swing.) were investigated throughout fruit development. All three enzymes of sucrose catabolism (sucrose synthase, acid, and alkaline invertase) are present during the initial stages. The activities of these enzymes declined rapidly and disappeared by stage 5 (80% development) but not before vacuolar pH had decreased to approximately 2.5. At this stage, sucrose breakdown occurs by acid hydrolysis. By attaining a vacuolar pH of 2.5 prior to enzyme disappearance, the cell maintains a continuous ability to break down sucrose throughout ontogeny. Thus, acid limes possess a unique and coordinated system for sucrose breakdown that involves both enzymatic and nonenzymatic pathways. PMID:16667241

  18. Developmental Transition from Enzymatic to Acid Hydrolysis of Sucrose in Acid Limes (Citrus aurantifolia).

    Science.gov (United States)

    Echeverria, E

    1990-01-01

    The sucrose breakdown mechanisms in juice sacs of acid lime (Citrus aurantifolia [Christm.] Swing.) were investigated throughout fruit development. All three enzymes of sucrose catabolism (sucrose synthase, acid, and alkaline invertase) are present during the initial stages. The activities of these enzymes declined rapidly and disappeared by stage 5 (80% development) but not before vacuolar pH had decreased to approximately 2.5. At this stage, sucrose breakdown occurs by acid hydrolysis. By attaining a vacuolar pH of 2.5 prior to enzyme disappearance, the cell maintains a continuous ability to break down sucrose throughout ontogeny. Thus, acid limes possess a unique and coordinated system for sucrose breakdown that involves both enzymatic and nonenzymatic pathways.

  19. Genetic variation assessment of acid lime accessions collected from south of Iran using SSR and ISSR molecular markers.

    Science.gov (United States)

    Sharafi, Ata Allah; Abkenar, Asad Asadi; Sharafi, Ali; Masaeli, Mohammad

    2016-01-01

    Iran has a long history of acid lime cultivation and propagation. In this study, genetic variation in 28 acid lime accessions from five regions of south of Iran, and their relatedness with other 19 citrus cultivars were analyzed using Simple Sequence Repeat (SSR) and Inter-Simple Sequence Repeat (ISSR) molecular markers. Nine primers for SSR and nine ISSR primers were used for allele scoring. In total, 49 SSR and 131 ISSR polymorphic alleles were detected. Cluster analysis of SSR and ISSR data showed that most of the acid lime accessions (19 genotypes) have hybrid origin and genetically distance with nucellar of Mexican lime (9 genotypes). As nucellar of Mexican lime are susceptible to phytoplasma, these acid lime genotypes can be used to evaluate their tolerance against biotic constricts like lime "witches' broom disease".

  20. Influence of different fertilization on the dissolved organic carbon, nitrogen and phosphorus accumulation in acid and limed soils

    Directory of Open Access Journals (Sweden)

    Ieva Jokubauskaite

    2015-04-01

    Full Text Available Soil quality has become an important issue in soil science. Dissolved organic carbon (DOC is believed to play an important role in soil processes and in the C, N and P balances, their supplies to plants in all types of soils. It is much more sensitive to soil management than is soil organic matter as a whole, and can be used as a key indicator of soil natural functions. This study aimed to assess the influence of different organic fertilizers on DOC and N, P accumulation. The study was carried out on a moraine loam soil at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry in 2012. Farmyard manure (FYM (60 t ha -1 and alternative organic fertilizers (wheat straw, rape residues, roots, stubble, perennial grasses were applied on two soil backgrounds - acid and limed. DOC was analysed using an ion chromatograph SKALAR. Application of organic amendments resulted in a significant increase of soil organic carbon (SOC content, which demonstrates a positive role of organic fertilizers in SOC conservation. The combination of different organic fertilizers and liming had a significant positive effect on DOC concentration in the soil. The highest DOC content (0.241 g kg-1 was established in the limed soil fertilized with farmyard manure. The most unfavourable status of DOC was determined in the unlimed, unfertilized soil. The limed and FYM-applied soil had the highest nitrogen (1.47 g kg-1 and phosphorus (0.84 g kg-1 content compared to the other treatments. Organic fertilizers gave a significant positive effect on SOC and DOC content increase in the topsoil. This immediate increase is generally attributed to the presence of soluble materials in the amendments. Application of organic fertilizers in acid and limed soil increased the nutrient stocks and ensured soil chemical indicators at the optimal level for plant growth and thus may provide a mechanism as well as prediction opportunities for soil fertility, conservation

  1. Effects of liming on soil properties and plant performance of temperate mountainous grasslands.

    Science.gov (United States)

    Mijangos, Iker; Albizu, Isabel; Epelde, Lur; Amezaga, Ibone; Mendarte, Sorkunde; Garbisu, Carlos

    2010-10-01

    The application of lime or liming materials to acid-soil grasslands might help mitigate soil acidity, a major constraint to forage productivity in many temperate mountainous grasslands. Nowadays, in these mountainous grasslands, it is essential to promote agricultural practices to increase forage yield and nutritive value while preserving biodiversity and agroecosystem functioning. Two different field experiments were conducted in the Gorbeia Natural Park, northern Spain: (i) one in a calcareous mountainous grassland (Arraba) and (ii) the other in a siliceous mountainous grassland (Kurtzegan) to study the effects of a single application of two liming products, i.e. 2429 kg lime (164.3% CaCO(3)) ha(-1) and 4734 kg calcareous sand (84.3% CaCO(3)) ha(-1), applied one month before the beginning of the sheep grazing season (May-October), on soil chemical (pH, organic C, total N, C/N ratio, %Al saturation, Olsen P, exchangeable K(+) and Ca(2+)) and biological parameters (dehydrogenase, beta-glucosidase, urease, acid phosphatase and arylsulphatase activity) as well as on botanical diversity (graminoids, forbs, shrubs) and forage yield and nutritive value (crude protein, modified acid detergent fibre, digestibility). Untreated control plots were also included in the experiment. Soil sampling was carried out at the end of the sheep grazing season (6 months after liming treatment), while botanical composition was determined one year after treatments application. Although no increase in soil pH was observed in Arraba, liming significantly increased dehydrogenase activity (an indicator of soil microbial activity) by 30.4 and 86.7% at Arraba and Kurtzegan site, respectively. Liming treatments significantly improved forage yield and nutritive value in Arraba but not in Kurtzegan. Furthermore, no differences in soil biological quality, evaluated using the "treated-soil quality index" as proposed in this work, were observed between treated and untreated soils, and between the two

  2. Nutrient leaching potential following application of papermill lime-sludge to an acidic clay soil

    Directory of Open Access Journals (Sweden)

    S. C. Vettorazzo

    2001-09-01

    Full Text Available This experiment was carried out under greenhouse conditions with soil pots during 210 days, to evaluate the effect of calcitic papermill lime-sludge application (at the rates 0, 773, 1.547, and 2.320 mg kg-1 or respective equivalents to control, 2, 4, and 6 t ha-1, on chemical composition of soil leachate and its effects on eucalypt growth and yield. Highest soil leachate pH, SO4, and Na concentrations occurred in the 4 and 6 t ha-1 treatments. Soil leachate nitrate concentrations decreased with increasing lime-sludge rate. Soil leachate phosphate remained low (below the detection limit in all treatments until 120 days, while the concentration increased in the lime-sludge treatments at 210 days (last sampling in about 600 mg L-1. Lime-sludge decreased leachate Mg concentration, but had no significant effect among rates. Soil leachate Ca, K, B, Cu, Fe, and Zn did not change significantly for any lime-sludge application rates. The maximum NO3, Ca, Mg, K, and Na concentrations in the soil leachate occurred at 60 days after lime-sludge application (leaching equivalent to 1 pore volume, but for pH and SO4, the maximum occurred at 210 days (leaching equivalent to 4 pore volumes. Lime-sludge application decreased the concentration of exchangeable Al in the soil. Plant diameter growth and dry matter yield were increased with increasing lime-sludge rate. Beneficial effects on mineral nutrition (P, K, Ca, B, and Zn of eucalypts were also obtained by the application of 4 and 6 t ha-1 of lime-sludge.

  3. Microbial Response to Soil Liming of Damaged Ecosystems Revealed by Pyrosequencing and Phospholipid Fatty Acid Analyses

    Science.gov (United States)

    Narendrula-Kotha, Ramya; Nkongolo, Kabwe K.

    2017-01-01

    Aims To assess the effects of dolomitic limestone applications on soil microbial communities’ dynamics and bacterial and fungal biomass, relative abundance, and diversity in metal reclaimed regions. Methods and Results The study was conducted in reclaimed mining sites and metal uncontaminated areas. The limestone applications were performed over 35 years ago. Total microbial biomass was determined by Phospholipid fatty acids. Bacterial and fungal relative abundance and diversity were assessed using 454 pyrosequencing. There was a significant increase of total microbial biomass in limed sites (342 ng/g) compared to unlimed areas (149 ng/g). Chao1 estimates followed the same trend. But the total number of OTUs (Operational Taxonomic Units) in limed (463 OTUs) and unlimed (473 OTUs) soil samples for bacteria were similar. For fungi, OTUs were 96 and 81 for limed and unlimed soil samples, respectively. Likewise, Simpson and Shannon diversity indices revealed no significant differences between limed and unlimed sites. Bacterial and fungal groups specific to either limed or unlimed sites were identified. Five major bacterial phyla including Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, and Proteobacteria were found. The latter was the most prevalent phylum in all the samples with a relative abundance of 50%. Bradyrhizobiaceae family with 12 genera including the nitrogen fixing Bradirhizobium genus was more abundant in limed sites compared to unlimed areas. For fungi, Ascomycota was the most predominant phylum in unlimed soils (46%) while Basidiomycota phylum represented 86% of all fungi in the limed areas. Conclusion Detailed analysis of the data revealed that although soil liming increases significantly the amount of microbial biomass, the level of species diversity remain statistically unchanged even though the microbial compositions of the damaged and restored sites are different. Significance and Impact of the study Soil liming still have a significant

  4. Divisions S-4 - soil fertility and plant nutrition: residual value of lime and leaching of calcium in a kaolinitic ultisol in the high rainfall tropics

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, D.K.; Juo, A.S.R.; Miller, M.H.

    1982-01-01

    A long-term experiment was conducted on a highly acidic (pH 4.6), coarse-textured Ultisol in the high rainfall region of southeastern Nigeria in order to evaluate the requirement for and residual value of lime (Ca(OH)/sub 2/) to a continuous crop rotation, and to determine the fate of applied Ca in the soil profile. The initial lime rates used were 0, 0.5, 1, 2, and 4 t of Ca(OH)/sub 2/ per hectare. Maize (Zea mays) was planted in the first season and cowpea (Vigna unguiculata) in the second season under a no-tillage, stubble conservation system. Relatively low rates of lime are adequate to sustain yields in a continuous maize-cowpea rotation system. Liming at a rate of 0.5 t/ha maintained maize yield near maximum for 2 years after application. Sustained maize yields for 5 years or more were possible with a lime rate of 2 t/ha. Cowpeas performed well and showed strong tolerance to soil acidity when planted as a late second-season crop after maize without additional fertilizer application. The critical level of exchangeable Al ranged from 25 to 55% depending upon rate of chemical fertilizer as well as cowpea variety used. Leaching losses of Ca from the surface soil during the first 3 years were <0.5 t/ha of Ca(OH)/sub 2/-equivalents in the 0- to 2-t/ha treatments. Exchangeable-Al saturation in all subsoil layers of all treatments 3 years after liming exceeded 40% and soil pH (H/sub 2/O) was <4.3 indicating that lime was leached as neutral Ca salts and had little effect in ameliorating subsoil acidity. 17 references, 5 figures, 5 tables.

  5. LIME REQUIREMENT DETERMINATION AND LIMING IMPACT ON SOIL NUTRIENT STATUS

    Directory of Open Access Journals (Sweden)

    Krunoslav Karalić

    2010-06-01

    Full Text Available The aim of conducted research was to determine the influence of liming, mineral and organic fertilization on soil chemical properties and nutrient availability in the soil, yield height and mineral composition of alfalfa. Results were used to create regression models for prediction of liming impact on soil chemical properties. Liming and fertilization experiment was sat up in 20 L volume plastic pots with two types of acid soils with different texture from two sites. Ten liming and fertilization treatments were applied in four repetitions. Lime treatments increased soil pH values and decreased hydrolytic acidity. Mineral and organic fertilization affected additional soil acidification. Application of lime intensified mineralization and humus decomposition, while organic fertilization raised humus content. The results showed significant increase of AL-P2O5 and K2O availability. The treatments increased soil Ca concentrations, but at the same time decreased exchangeable Mg concentrations. Soil pH increase resulted in lower Fe, Mn, Zn and Cu availability. Soil CEC was increased by applied treatments. Lime rates increased number and height of alfalfa plants, as well as yield of leaf, stalk increased concentrations of N, P, K and Ca in alfalfa leaf and stalk, but decreased leaf Mg and Fe, Mn, Zn and Cu concentrations. Regression computer models predicted with adequate accuracy P, Fe, Mn, Zn and Cu availability and final pH value as a result of liming and fertilization impact.

  6. Rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Stenzel Neusa Maria Colauto

    2004-01-01

    Full Text Available The 'Tahiti' lime (Citrus latifolia Tanaka is an important commercial citrus cultivar in Brazil. 'Rangpur' lime has being used as its main rootstock, but it is susceptible to root rot caused by Phytophthora, reducing tree longevity. An experiment was set up in a randomized block design, with three trees per plot of each rootstock and four replicates, and run for 12 years, aiming to compare the performance of 'IAC-5 Tahiti' lime, budded on 'Rangpur' lime (Citrus limonia Osb.; 'C-13' citrange (Citrus sinensis (L. Osb. × Poncirus trifoliata (L. Raf.; 'African' rough lemon (Citrus jambhiri Lush.; 'Volkamer' lemon (Citrus volkameriana Ten. & Pasq.; trifoliate orange (Poncirus trifoliata (L. Raf.; 'Sunki' mandarin (Citrus sunki Hort. ex Tan. and 'Cleopatra' mandarin (Citrus reshni Hort. ex Tan.. Eleven years after the establishment of the orchard, trees with the greatest canopy development were budded on 'C-13' citrange and 'African' rough lemon, and both differed significantly from trees budded on trifoliate orange, 'Sunki' and 'Cleopatra' mandarins, which presented the smallest canopy development. Trees budded on 'Rangpur' lime and 'C-13' citrange had the highest cumulative yields, and were different from trees budded on trifoliate orange, 'Cleopatra' and 'Sunki' mandarins. There was no rootstock effect on mean fruit weight and on the total soluble solid/acid ratio in the juice. The 'Rangpur' lime and the 'Cleopatra' mandarin rootstocks reduced longevity of plants.

  7. Effect of Lime, Humic Acid and Moisture Regime on the Availability of Zinc in Alfisol

    Directory of Open Access Journals (Sweden)

    Sushanta Kumar Naik

    2007-01-01

    Full Text Available Lime and humic acid application can play an important role in the availability of zinc in paddy soils. We conducted laboratory incubation experiments on a rice growing soil (Alfisol to determine the effect of lime, humic acid and different moisture regimes on the availability of Zn. Addition of half doses of liming material (powdered lime stone recorded highest values of DTPA-Zn followed by no lime and 100% of lime requirement throughout the incubation period. With the progress of incubation, DTPA-Zn increased slightly during the first week and then decreased thereafter. The highest DTPA-extractable Zn content of 2.85 mg/kg was found in the treatment Zn10 L1/2 at 7 days of incubation, showing 17.3 % increase in DTPA-Zn content over its corresponding treatment of Zn alone (Zn10L0. The DTPA-Zn concentration increased with the application of humic acid compared with no humic acid throughout 35 days of the incubation period and the peak value obtained was 3.12 mg/kg in the treatment Zn10 HA2 at 14 days after incubation, showing 50 % increase in Zn content over its corresponding treatment of Zn alone (Zn10HA0. The application of 0.2% humic acid compared with 0.1% resulted in greater increase in DTPA-Zn concentration in soil application. During the 35 days of incubation, highest values of DTPA-Zn were recorded in soil maintained at saturated compared to water logged conditions. However, under alternate wetting and drying condition the DTPA-Zn content gradually decreased up to 21 days and thereafter increased slowly.

  8. Control of geochemical mobility of arsenic by liming in materials subjected to acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, R.P. de; Figueiredo, B.R. [Geoscience Inst., UNICAMP, SP (Brazil); Mello, J.W.V. de; Santos, J.C.Z.; Zandonadi, L.U. [Soil Dept., Federal Univ. of Vicosa, MG (Brazil)

    2008-04-15

    Background. Acid mine drainage (AMD) results from the exposure of sulfide materials to atmospheric water and oxygen. In addition to AMD, oxidation of arsenopyrite and other As-bearing sulfides can release arsenic (As) into the environment. In view of the risk to living organisms due to contamination of ground and surface water sources with As, this work was carried out to evaluate the effectiveness of lime (CaCO{sub 3}) in controlling the dispersion of this metalloid in the environment. Methods. Partially oxidized samples of sulfide bearing materials from gold mines in Brazil were used to evaluate the arsenic mobilization by leaching tests. Columns containing ground samples, with and without liming treatments, were leached with distilled water every two weeks over a 156-day period. Results and discussion. The acid-base accounting (ABA) static tests classified the samples as potential acid forming materials. In the treatments without liming, As, Fe and S concentrations in the leachates were higher than after treatment with carbonate. Nevertheless, the effectiveness of liming and As mobilization were lower in the sample containing goethite. A high correlation between Fe and As concentrations in the leachates (r=0.749) suggests that iron (hydr)oxides retained arsenic in the solid phase. Oxidation rates of As bearing sulfides were increased at low pH (2.0-3.9), probably due to the enhanced activity of bacteria (Acidithiobacillus) and decreased rate of Fe precipitation, thus reinforcing generation of acid water, and consequently releasing As. Conclusions and perspectives. Our results corroborate the use of lime to control the dispersion of As in AMD-affected environments. However, the effectiveness of the liming treatment seems to be dependent on the presence of iron (hydr)oxides in the sample. These findings can be useful to remediate areas affected by acid mine drainage and arsenic mobilization in partially oxidized sulfide materials. (orig.)

  9. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.

    Science.gov (United States)

    Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization.

  10. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation

    NARCIS (Netherlands)

    Anderson, C.; Malambo, D.H.; Gonzalez Perez, M.E.; Nobela, H.N.; De Pooter, L.; Spit, J.; Hooijmans, C.M.; Van de Vossenberg, J.; Greya, W.; Thole, B.; Van Lier, J.B.; Brdjanovic, D.

    2015-01-01

    In this research, three faecal sludge sanitizing methods—lactic acid fermentation, urea treatment and lime treatment—were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lim

  11. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    Directory of Open Access Journals (Sweden)

    Deirdre C. Rooney

    2010-01-01

    Full Text Available Agricultural improvement of seminatural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming on ammonia-oxidising bacterial (AOB communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaris and L. perenne were planted in microcosms, and lime, nitrogen (NH4NO3, or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP of the amoA gene. AOB community structure was largely altered by NH4NO3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure.

  12. Resistance to Citrus Canker in Key/Mexican Lime Induced by β-Aminobutyric Acid and Green Tea

    Directory of Open Access Journals (Sweden)

    B. Beheshti

    2011-01-01

    Full Text Available Citrus bacterial canker, caused by Xanthomonas citri subsp. citri (Xcc, is a destructive disease. So far used chemicals to control this pathogen are either not effective or have harmful effects on the environment. To improve control of this disease, lime (Citrus aurantifolia plants inoculated with Xcc were treated with β-Aminobutyric Acid (BABA, ascorbic acid (vitamin C, thiamin (vitamin B1, green tea (Camellia sinensis, copper oxychloride and distilled water. Lesion diameters of inoculated leaves were evaluated twenty days after treatment. The results showed that BABA and green tea had inhibitory effects on disease development. None of the agents used for plant treatment had direct antimicrobial activity on Xcc, except copper oxychloride. This indicated that the inhibitory effects of BABA and green tea resulted from strengthening the defense capacities of the plant. To support this claim, partial coding sequences of Pathogenesis-Related (PR genes from lime were cloned and sequenced. Analysis of PR gene expression showed increased mRNA levels of β-1,3-glucanase and chitinase, during disease development. Reduction in lesion size and lack of antimicrobial activity indicate that BABA and green tea might be useful treatments against Xcc infection.

  13. Genetic Diversity Assessment of Acid Lime (Citrus Aurantifolia Swingle Landraces of Eastern Nepal Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    NN Munankarmi

    2014-09-01

    Full Text Available Acid lime (Citrus aurantifolia Swingle is an important commercial fruit crop, cultivated from terai to high hill landscapes of Nepal. However, production and productivity is very low due to various reasons including infestations by various diseases and pests, lack of diseases and pests resistant and high yielding varieties. In this context, determination of genetic variation at molecular level is fundamental to citrus breeders for the development of elite cultivars with desirable traits. In the present study, Random Amplified Polymorphic DNA (RAPD marker technique has been employed to assess genetic diversity in 60 acid lime landraces representing different agro-ecological zones of eastern Nepal. Nine selected arbitrary primers generated 79 RAPD fragments of which 75 were polymorphic (94.94%. Phenogram was constructed by NTSYSPC ver. 2.21i using UPGMA cluster analysis based on Jaccard’s similarity coefficient to deduce overall genetic diversity and relationships of the acidlime genotypes under study. Sixty acid lime landraces formed seven clusters and similarity value ranged from 38% to 98% with an average of 72%. Genetic variation at different agro-ecological zones was assessed using Popgene ver. 1.32 and found 47% to 69.6% polymorphism. Shannon’s index and Nei’s gene diversity showed highest level of acid lime diversity in Terai zone (PPB, 69.62%; H, 0.213; I, 0.325 followed by mid-hill zone (PPB, 67.09%; H, 0.208; I, 0.317. The results obtained will be useful to citrus breeders for elite cultivar development. The RAPD-PCR technique is found to be the rapid and effective tool for genetic diversity assessment in acid lime landraces of Nepal.

  14. Comparative study of putative 9-cis-epoxycarotenoid dioxygenase and abscisic acid accumulation in the responses of Sunki mandarin and Rangpur lime to water deficit.

    Science.gov (United States)

    Neves, D M; Filho, M A Coelho; Bellete, B S; Silva, M F G F; Souza, D T; Dos S Soares Filho, W; Costa, M G C; Gesteira, A S

    2013-09-01

    Abscisic acid is a plant hormone that participates in essential plant physiological processes, especially during adaptation to many environmental stresses, such as water deficit. The relationship between ABA accumulation and the expression of putative carotenoid cleavage dioxygenase (CCD) genes was investigated in the pot-cultivated leaves and roots of the 'Rangpur' lime and 'Sunki Maravilha' mandarin plants. Transpiration, stomatal resistance and leaf growth were evaluated when these genotypes were subjected to continuous water deficit. Under water deficit conditions, the 'Rangpur' lime extracts used greater amounts of water when compared to the 'Sunki Maravilha' plants, which reached the greatest stomatal resistance 5 days before 'Rangpur' lime. When subjected to water deficit, the roots and leaves of 'Sunki Maravilha' showed a progressive increase in ABA accumulation; however, in 'Rangpur' lime, alternations between high and low ABA concentrations were observed. These results suggest a retroactive feeding regulation by ABA. In 'Rangpur' lime the NCED2, NCED3 and CCD4a genes were expressed at the highest levels in the roots, and NCED5 was highly expressed in the leaves; in 'Sunki Maravilha', the NCED2 and NCED5 genes were most highly expressed in the roots, and NCED2 was most highly expressed in the leaves. However, for both genotypes, the transcription of these genes only correlated with ABA accumulation during the most severe water deficit conditions. The 'Rangpur' lime behaved as a vigorous rootstock; the leaf growth remained unaltered even when water was scarce. However, 'Sunki Maravilha' adaptation was based on the equilibrium of the response between the root and the aerial tissues due to water restriction. The use of the Sunki mandarin in combination with a scion with similar characteristics as its own, which responds to water deficit stress by accumulating ABA in the leaves, may display good drought tolerance under field conditions.

  15. A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils

    Energy Technology Data Exchange (ETDEWEB)

    Conesa, Hector M.; Gonzalez-Alcaraz, Maria N. [Universidad Politecnica de Cartagena (Spain). Dept. de Ciencia y Tecnologia Agraria; Wieser, Mirjam; Studer, Bjoern; Schulin, Rainer [ETH Zuerich (Switzerland). Inst. of Terrestrial Ecosystems

    2012-04-15

    Purpose: The effects of the addition of an acidic fertilizer solution and/or slaked lime (5.5 g Ca(OH){sub 2}kg{sup -1}) on a slightly acidic shooting range soil (pH 6.1, % organic carbon 5.4) with moderate metal (e.g., 620 mg kg{sup -1} Pb) and metalloid (17 mg kg{sup -1} Sb) concentrations on metal and Sb solubility and plant accumulation were investigated. Materials and methods: In a pot experiment, we grew Plantago lanceolata, Lolium perenne and Triticum aestivum. The pH, dissolved organic carbon (DOC), and metal and Sb concentrations in the leachate were monitored. Results and discussion: The addition of slaked lime increased the soil pH from 6.1 to 7.2 and the DOC from 100 to 300 mg l{sup -1}. In contrast to Sb, we found a correlation between DOC and soluble Cu concentrations. The addition of the acidic fertilizer significantly increased Mn- and Pb-NaNO{sub 3} extractable concentrations. Slaked lime decreased at first, Pb-, Mn- Ni- and Zn-NaNO{sub 3} extractable concentrations, but with time, these concentrations increased. Metal accumulation in shoots was in general low. The highest concentrations were obtained in shoots of L. perenne for Mn (135 mg kg{sup -1} DW). Spikes of T. aestivum accumulated more Cu, Mn, Ni and Zn than shoots. Grains of T. aestivum had higher Zn concentrations (up to 37 mg kg{sup -1}) than spikes and shoots (up to 22 and 19 mg kg{sup -1}, respectively). Antimony concentrations were always below 2 mg kg{sup -1} for the three species studied. Conclusions: Under these growing conditions, these three plant species showed to be suitable for the phytomanagement of moderately contaminated shooting range areas. (orig.)

  16. Extinction of Vibrio cholerae in acidic substrata: contaminated cabbage and lettuce treated with lime juice.

    Science.gov (United States)

    Mata, L; Vargas, C; Saborío, D; Vives, M

    1994-12-01

    Lime juice killed millions of Vibrio cholerae O1, El Tor, Inaba, present on cabbage and lettuce contaminated in the laboratory. The lethal effect was evident within 5 min of exposure to lime juice. No vibrios could be recovered at dilution 1:10 using alkaline peptone water (APW) and thiosulfate-citrate-bile salts-saccharose agar (TCBS). More than 99.9% of the initial inoculum was effectively destroyed. The number of vibrios killed by lime juice was 2 to 6 logarithms greater than the maximum infecting dose, and 4 to 8 logs greater than the minimum infecting dose for cholera El Tor. The time interval needed for killing was smaller than the usual waiting time for serving food in homes and restaurants. The addition of lime juice to non-acidic foods, beverages and water, is strongly recommended to prevent infection with cholera vibrios and other acid-sensitive microorganisms. This measure is particularly important for rural and slum populations in the tropics and subtropics.

  17. Reactive Crystallization of Calcium Sulfate Dihydrate from Acidic Wastewater and Lime

    Institute of Scientific and Technical Information of China (English)

    邓立聪; 张亦飞; 陈芳芳; 曹绍涛; 游韶玮; 刘艳; 张懿

    2013-01-01

    The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis-charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from platelet-like and nee-dle-like shape to rod-like shape when the temperature was increased from 25 to 70 °C. An increase in the agglom-eration of calcium sulfate was found with increasing lime concentration. Metal ions markedly retard the rate of crystallization of calcium sulfate dihydrate. The crystallization of gypsum was slowed with the existence of Mg2+in the solution, and the morphology of gypsum was transformed from platelet-like shape to rod-like shape when Mg2+concentration reached 0.08 mol·L-1. The amorphous ferric hydroxide was coated on the calcium sulfate after the co-precipitation process while Zn2+and Al3+ions in the solution enhanced the agglomeration of the calcium sulfate by absorbing on the surface of the crystals. Comprehensive acidic wastewater containing heavy metals was effi-ciently purified by the two stage lime neutralization technology, and highly agglomerated gypsum precipitates with needle-like shape were obtained. The precipitates could be purified by sulfuric acid washing, and the metal ions were effectively separated from the calcium sulfate by-products.

  18. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.

    Science.gov (United States)

    Bressani, Ricardo; Turcios, Juan Carlos; Colmenares de Ruiz, Ana Silvia; de Palomo, Patricia Palocios

    2004-03-10

    Tortillas are made by cooking maize in a lime solution during variable times and temperatures, steeping the grain for up to 12 h, washing and grinding it to a fine dough, and cooking portions as flat cakes for up to 6 min. The effects of the main processing steps on the chemical composition, nutritive value, and functional and physicochemical characteristics have been areas of research. The present work evaluates the effect of lime concentration (0, 1.2, 2.4, and 3.6%) and cooking times (45, 60, and 75 min) on phytic acid retention of whole maize, its endosperm, and germ, as well as on the content of calcium, iron, and zinc on the same samples. The effects of steeping time and temperature and steeping medium on the phytic acid of lime-cooked maize were also studied. Finally, phytic acid changes from raw maize to tortilla were also measured. The results indicated that lime concentration and cooking time reduce phytic acid content in whole grain (17.4%), in endosperm (45.8%), and in germ (17.0%). Statistical analyses suggested higher phytic acid loss with 1.2% lime and 75 min of cooking. Cooking with the lime solution is more effective in reducing phytic acid than cooking with water. Steeping maize in lime solution at 50 degrees C during 8 h reduced phytic acid an additional 8%. The total loss of phytic acid from maize to tortilla was 22%. Calcium content increased in whole maize, endosperm, and germ with lime concentration and cooking and steeping times. The increase was higher in the germ than in the endosperm. The level, however, can be controlled if steeping of the cooked grain is conducted in water. Iron and zinc contents were not affected by nixtamalization processing variables but were affected in steeping.

  19. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    Science.gov (United States)

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-10-29

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment.

  20. Response of `Nagpur' mandarin, `Mosambi' sweet orange and `Kagzi' acid lime to gamma radiation

    Science.gov (United States)

    Ladaniya, M. S.; Singh, Shyam; Wadhawan, A. K.

    2003-07-01

    The effects of irradiation dose and refrigerated storage conditions on 'Nagpur' mandarin ( Citrus reticulata Blanco), 'Mosambi' sweet orange ( Citrus sinensis Osbeck) and 'Kagzi' acid lime ( Citrus aurantifolia Swingle) were investigated. Mature fruits of these three species were treated with 0, 0.25, 0.5, 1 and 1.5 kGy radiation. 'Nagpur' mandarin and 'Mosambi' sweet oranges were stored at 6-7°C and 90-95% r.h. for 75 and 90 days, respectively, while 'Kagzi' acid limes were stored at 8±1°C and 90-95% r.h. for 90 days. Physico-chemical parameters, sensory attributes and respiration rate were measured besides losses and disorders. In 'Nagpur' mandarin, radiation dose upto 1.5 kGy did not cause any rind disorder. Radiation treatments did not reduce the extent of decay. Penicillium rot was delayed in fruit treated with 1.5 kGy, while it appeared early in 0 kGy. Irradiation doses were ineffective to control rots due to Botryodiplodia theobromae and Alternaria citri. Doses upto 1.5 kGy did not cause any significant effect on fruit firmness and juice content; however, total soluble solids increased, while titratable acidity and vitamin 'C' content decreased. Texture and flavour scores as recorded after a week, were not affected by irradiation except in 1.5 kGy. In 'Mosambi' sweet orange, radiation treatments caused peel disorder in the form of brown sunken areas after 90 days and reduced fruit firmness, acidity and vitamin C content. The TSS content was higher in treated fruit. Flavour and texture were not affected by the doses of irradiation used. In treated acid limes (mature yellow), weight loss and decay were higher than untreated fruit (0 kGy) although difference was non-significant. Juice, TSS, titratable acidity and vitamin C contents were significantly less in treated fruit than in 0 kGy. Texture and flavour scores were also less in treated fruit than in 0 kGy. The stem-end rind breakdown was higher in untreated fruit than treated ones although difference was

  1. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    Science.gov (United States)

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot(-1) to 53 mg P pot(-1) with liming of Fe-precipitated sludge and to 35 mg P pot(-1) with liming of the digestate, while it increased from 18.7 mg pot(-1) to 39 and 29 mg P pot(-1) for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  2. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6.

    Science.gov (United States)

    Gouider, Mbarka; Feki, Mongi; Sayadi, Sami

    2009-10-30

    Fluoride content and flow-rate of fertilizer plant wastewater from phosphoric acid and/or triple superphosphate (TSP) production lead to the discharge of several thousand tons of fluoride (F(-)) per year and even more for phosphate (PO4(3-)). Since sustainability is an important environmental concern, the removal methods should allow phosphorus and fluoride to be recycled as a sustainable products for use as raw materials either in agricultural or industrial applications. In the present work, separative recovery with lime of these two target species was investigated. A preliminary speciation study, carried out on the crude effluent, showed that two forms of fluoride: HF and H2SiF6 are present in a highly acidic medium (pH approximately 2). Evidence that fluoride is present under both free (HF) and combined (H2SiF6) forms, in the phosphate-containing effluent, was provided by comparing potentiometric titration curves of a crude wastewater sample and synthetic acid mixtures containing H3PO4, HF and H2SiF6. In a second step synthetic effluent containing mixtures of the following acids: HF, H2SiF6 and H3PO4, were treated with lime. The behaviour of these compounds under lime treatment was analysed. The data showed that fluoride has a beneficial effect on phosphate removal. Moreover, by acting on the precipitation pH, a "selective" recovery of fluoride and phosphate ions was possible either from phosphoric acid/hydrofluoric acid or phosphoric acid/hexafluorosilicic acid mixtures. Indeed, the first stage of the separative recovery, led to a fluoride removal efficiency of 97-98% from phosphoric acid/hydrofluoric acid mixture. It was of 93-95% from phosphoric acid/hexafluorosilicic acid mixture. During the second stage, the phosphate precipitation reached 99.8% from both acidic mixtures whereas it did not exceed 82% from a solution containing H3PO4 alone. The XRD and IR analyses showed that during lime treatment, a H2SiF6 hydrolysis occurred, instead of CaSiF6 solid

  3. Rice growth improvement and grains bio-fortification through lime and zinc application in zinc deficit tropical acid sulphate soils

    Directory of Open Access Journals (Sweden)

    Shahram Mahmoud Soltani

    2016-10-01

    Full Text Available A two years field study was conducted to explain the effect of Zn and lime application on morphological characteristics, rice yield and yield components, and more broadly, grains bio-fortification (Zn and protein content (CP, and amino acid profiles. The lime and Zn interaction increased grains and straw yield more than two times (6.64 ton ha−1 compared to the control (3.20 ton ha−1. The maximum increase in the Zn content of grain, white rice and bran was obtained about 30% in whole grain, 42% in bran and 56% in white rice. Furthermore, CP increased by about 8% in bran, 12.3% in whole grain, and 27% in white rice compared to control. Also, the Zn and lime application and their interaction were significantly increased the amino acids, especially essential parts.

  4. Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells.

    Science.gov (United States)

    Brune, A; Gonzalez, P; Goren, R; Zehavi, U; Echeverria, E

    1998-12-01

    Citrate transport into the vacuoles of acid lime juice cells was investigated using isolated tonoplast vesicles. ATP stimulated citrate uptake in the presence or in the absence of a Delta mu H+. Energization of the vesicles only by an artificial K+ gradient (establishing an inside-positive Delta psi) also resulted in citrate uptake as was the case of a Delta pH dominated Delta mu H+. Addition of inhibitors to endomembrane ATPases showed no direct correlation between the inhibition to the tonoplast bound H+/ATPase and citrate uptake. The data indicated that, although some citrate uptake can be accounted for by Delta psi and by a direct primary active transport mechanism involving ATP, under in vivo conditions of vacuolar pH of 2.0, citrate uptake is driven by Delta pH.

  5. Application of GA3 and girdling of branches on the production of extemporaneous fruits of 'Tahiti' acid lime

    Directory of Open Access Journals (Sweden)

    Cassiano Spaziani Pereira

    2014-12-01

    Full Text Available The objective of this study was to evaluate the effect of girdling of branches and the application of GA3, still in the main crop flowering on the formation of reproductive structures, the fruit set of the following extemporaneous flowering of 'Tahiti' acid lime. This work used a randomized block design with five replications in a 4x3 factorial design. The first factor was the foliar application of GA3, 88 days before extemporaneous flowering at five concentrations (0, 7, 14 and 21 mg.L-1. The second factor was the girdling times, 108 days before flowering onset (A108AF, 78 days before flowering (A78AF plus no-girdling control (NG. In extemporaneous flowering, the proportion of buds, flowers and fruits that abscised was 38.75, 31.25 and 18.64% respectively and 11.34% of all reproductive structures formed were collected. GA3 did not affect fruit set. Girdling increased fruit set by 229 and 256% at A108DAF and A78DAF respectively, in relation to NG plants. The GA3 reduced the formation of floral structures, which resulted in a quadratic increase in field production by reducing the competition for photoassimilates among fruits. The concentration of 21 mg.L-1 was the most productive, with 15.97 fruit.plant-1.

  6. Liming and plant aging influence on micronutrient uptake by Brachiaria decumbens forage

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: marmelin@ipen.br; Primavesi, Odo; Primavesi, Ana C. [EMBRAPA, Sao Carlos, SP (Brazil). Centro de Pecuaria do Sudeste (CPPSE)], E-mail: odo@cppse.embrapa.br

    2007-07-01

    Brachiaria decumbens is the main forage in pastures of several Brazilian regions. The effects of liming and plant age on micronutrient uptake by the forage of a degraded Brachiaria decumbens pasture under restoration process, were studied in Sao Carlos - SP, southeastern Brazil, under altitude tropical climate. Experimental design was a random block (100 m{sup 2}), with 6 replications and 3 treatments. Each block received the following treatment: 0 t/ha of limestone with NK; 2 t/ha of limestone applied on soil surface with NK and maintenance of 1 t/ha per annum; 8 t/ha of limestone applied once on soil surface with NK. Forage samples were collected 14 cm above soil surface, each 36 days in the rain season. Instrumental neutron activation analysis (INAA) followed by gamma-ray spectrometry was the analytical method used to determine the micronutrient content. In some cases, Co Fe, Mn and Zn were negatively affected by increasing limestone doses. The opposite effect was observed for Cl. Decreases of Cl, Co and Mo uptake in forage were enhanced with plant aging. (author)

  7. Synthetic Musk Fragrances in a Conventional Drinking Water Treatment Plant with Lime Softening.

    Science.gov (United States)

    Wombacher, William D; Hornbuckle, Keri C

    2009-11-01

    Synthetic musk fragrances are common personal care product additives and wastewater contaminants that are routinely detected in the environment. This study examines the presence eight synthetic musk fragrances (AHTN, HHCB, ATII, ADBI, AHMI, musk xylene, and musk ketone) in source water and the removal of these compounds as they flow through a Midwestern conventional drinking water plant with lime softening. The compounds were measured in water, waste sludge, and air throughout the plant. HHCB and AHTN were detected in 100% of the samples and at the highest concentrations. A mass balance on HHCB and AHTN was performed under warm and cold weather conditions. The total removal efficiency for HHCB and AHTN, which averaged between 67% to 89%, is dominated by adsorption to water softener sludge and its consequent removal by sludge wasting and media filtration. Volatilization, chlorine disinfection, and the disposal of backwash water play a minor role in the removal of both compounds. As a result of inefficient overall removal, HHCB and AHTN are a constant presence at low levels in finished drinking water.

  8. Lime application methods, water and bottom soil acidity in fresh water fish ponds

    Directory of Open Access Journals (Sweden)

    Queiroz Julio Ferraz de

    2004-01-01

    Full Text Available Although some methods for determining lime requirement of pond soils are available and commonly used, there is still no consensus on whether it is more effective to apply liming materials to the bottoms of empty ponds or to wait and apply them over the water surface after ponds are filled. There is also little information on how deep lime reacts in pond sediment over time, and whether the depth of reaction is different when liming materials are applied to the water or to the soil. Therefore, three techniques for treating fish ponds with agricultural limestone were evaluated in ponds with clayey soils at a commercial fish farm. Amounts of agricultural limestone equal to the lime requirement of bottom soils were applied to each of three ponds by: direct application over the pond water surface; spread uniformly over the bottom of the empty pond; spread uniformly over the bottom of the empty pond followed by tilling of the bottom. Effectiveness of agricultural limestone applications did not differ among treatment methods. Agricultural limestone also reacted quickly to increase total alkalinity and total hardness of pond water to acceptable concentrations within 2 weeks after application. The reaction of lime to increase soil pH was essentially complete after one to two months, and lime had no effect below a soil depth of 8 cm. Tilling of pond bottoms to incorporate liming materials is unnecessary, and tilling consumes time and is an expensive practice; filled ponds can be limed effectively.

  9. Nitrosomonas europaea-like bacteria detected as the dominant b-subclass Proteobacteria ammonia oxidisers in reference and limed acid forest soils

    NARCIS (Netherlands)

    Carnol, M.; Kowalchuk, G.A.; De Boer, W.

    2002-01-01

    Net nitrification in intact soil cores and the community of ammonia-oxidising bacteria were studied in acid Norway spruce (Picea abies (L.) Karst) and sessile oak (Quercus petraea (Matt. Lieb.)) soils (Haute Ardenne, east Belgium) 18 months after treatment with 5tha1 dolomite lime. Liming caused a s

  10. AGRO-ECOLOGICAL AND YIELD ENHANCING EFFECTS OF ACID SOIL LIMING

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2015-01-01

    Full Text Available Ecological and yield enhancing effects of soil liming have since long been recognized and appreciated by farmers, therefore, liming is considered to be an essential part of sustainable farming system. In the Polish agriculture, liming in the amount of about 100 kg/ha of CaO was applied as late as by the end of the sixties of the last century. In the year 1975, the average national CaO consumption was 120.8 kg/ha, although it varied from 23.2 kg/ha in Częstochowa region to 428 kg/ha in Opolskie Voievodeship. The largest average CaO consumption on a country scale (202 kg/ha was noted in the year 1989 while on a regional scale the consumption fluctuated from 43 kg/ha in Kraków Voievodeship to 424 kg/ha in Słupsk Voievodeship. A dramatic decline in the countrywide CaO consumption (by about 40 kg/ha occurred in the economical year 1995/1996, and the decreasing trend had been observed until the years 2004/2005. A subsequent drop in CaO consumption (by about 60% was noted in the years 2009/2010 – 2011/2012. According to the national agricultural census in 2010, the countrywide use of CaO attained up to 40.5 kg/ha on farmland in good agriculture, while only 10.4 kg/ha in Świętokrzyskie Voievodeship and 12.9 kg/ha in Małopolskie Voievodeship. In the years 1975–1998, the yields of four main grain crops as well as those of rapeseed and mustard spinach were distinctly synchronized with the consumption of lime fertilizers. No apparent relationship, however, was found between the yield size and the index of quality of agricultural production space (from 48.3 points in Nowosądeckie Voievodeship to 86.2 points in Zamojskie Voievodeship. However, in the years 1999–2012, the yields of four main grain crops as well as those of rapeseed and mustard spinach were to a lesser degree synchronized with the intensity of CaO use than the abovementioned yields from the years 1975–1998. A considerable trend towards decreasing CaO consumption starting from

  11. Co-occurrence of aflatoxin B(1) and cyclopiazonic acid in sour lime (Citrus aurantifolia Swingle) during post-harvest pathogenesis by Aspergillus flavus.

    Science.gov (United States)

    Bamba, Rozy; Sumbali, Geeta

    2005-04-01

    During hot and humid seasons, extensive rot of sour lime was observed to be caused by Aspergillus flavus. In view of this, investigations were undertaken to obtain data on the production of various toxins by A. flavus during post harvest pathogenesis of sour lime. Sixty percent of the pathogenic A. flavus isolates were detected to be aflatoxin B(1) producers in sour lime tissue. It was also noted that thirty three percent of aflatoxigenic A. flavus isolates had the potential to coproduce cyclopiazonic acid (CPA). Such aflatoxigenic isolates produced quantitatively more CPA (ranging from 250.0 to 2501.3 microg/kg) than aflatoxin B(1) (ranging from 141.3 to 811.7 microg/kg) in the affected sour lime. This study demonstrates for the first time that sour lime are a favourable substrate for aflatoxin B(1) and cyclopiazonic acid production by A. flavus isolates. This is of great concern to the health of consumers.

  12. Effect of Liming on Cadmium Forms and Its Toxicity in Red Soils

    Institute of Scientific and Technical Information of China (English)

    A.M.FARAH; XIEZHENGMIAO; 等

    1996-01-01

    The effect of liming 4 soils developed from Quaternary red clay and red sandstone on the cadmium forms and its toxicity were investigated.Liming the acid red soils could greatly reduce Cd toxicity to plants because the soluble Cd and organic Cd in the soils decreased significantly while Cd bound to minerals/oxides and residual Cd increased markedly with increasing lime rates(pH).

  13. LIMING AND FERTILIZING FOR MAHOGANI (Switenia macrophylla King. SEEDLING FORMATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Franco Tucci

    2007-09-01

    Full Text Available The production of seedlings is one of the most important phases of the cultivation of forest species. Seedlings ofappropriate quality are fundamental in the growth and development of the species. In the production of seedlings, the substratum isfundamental for the good development of the plants. However, the subsoil in general, is acid and it contains low levels of nutritious.The acidity of the soil and the deficiency of nutrients can be corrected through liming and mineral fertilization. The objective of thepresent work was to evaluate the effect of liming and of the fertilization of the soil for the production of mahogany seedlings. Theexperiment was carried out in the period of 120 days, in the Federal University of Amazonas, UFAM. The experimental design wasrandomized complete blocks with statistical analysis in split plot. The plots were composed with eight treatments and four repetitionsand the subplots were eight sampling times of the plants. The treatments were control (natural soil, liming, corrective phosphate,fertilizing with NPK, liming + corrective phosphate, corrective phosphate + fertilizing with NPK, liming + fertilizing with NPK andliming + corrective phosphate + fertilizing with NPK. It was concluded that the associated liming and corrective phosphate and withthe fertilizing with nitrogen, phosphorous and potassium promoted the smallest levels of exchangeable aluminum and the largestlevels of calcium, magnesium, phosphorous and potassium in the soil. These levels of nutrients in the soil caused larger levels ofnutrients in the plants, providing larger growth rate. The liming, corrective phosphate and fertilizing are a fundamental practices inthe formation of mahogany seedlings.

  14. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming

    Energy Technology Data Exchange (ETDEWEB)

    Vieira da Cunha, Karina Patricia [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil); Araujo do Nascimento, Clistenes Williams [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil)], E-mail: clistenes@depa.ufrpe.br; Magalhaes de Mendonca Pimentel, Rejane; Pereira Ferreira, Clebio [Federal Rural University of Pernambuco, Department of Agronomy, Recife, PE 52171900 (Brazil)

    2008-12-15

    The effects of different concentrations of soil cadmium (0, 1, 3, 5, 10, and 20 mg kg{sup -1}) on growth, structural changes and cadmium cellular localization in leaves of maize plants (Zea mays L.) were investigated in a pot experiment. The results showed that the structural changes observed in maize leaves were not only a response to the Cd-induced stress but also a cellular mechanism to reduce the free Cd{sup +2} in the cytoplasm. However, this mechanism seems to be efficient only up to a Cd concentration in leaves between 27 and 35 mg kg{sup -1} for soils without and with liming, respectively. The cellular response varied with both the Cd concentration in soil and liming. For limed soil, Cd was preferentially accumulated in the apoplast while for unlimed soils Cd was more evenly distributed into the cells. The ability of Cd accumulation depended on the leaf tissue considered. The apoplast collenchyma presented the highest Cd concentration followed by the endodermis, perycicle, xylem, and epidermis. On the other hand, symplast Cd accumulated mainly in the endodermis, bundle sheath cells, parenchyma, and phloem. Based on the structural changes and growth reduction, the critical toxic concentration of soil Cd to maize plants is between 5 and 10 mg kg{sup -1}.

  15. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    Science.gov (United States)

    Golos, Peter

    2016-04-01

    Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples

  16. Liming increases alfalfa yield and crude protein content in an acidic ...

    African Journals Online (AJOL)

    Korisnik

    applied acidic N fertiliser, especially in no-till systems (Li et al., 2001). ... Experimental design, treatment application and plant culture ... ZMS II”) seed was inoculated with Rhizobium meliloti just before sowing ..... Cary, North Carolina, USA.

  17. Drainage, liming and fertilization of organic soils. 1. Long-term effects on acid/base relations

    Energy Technology Data Exchange (ETDEWEB)

    Braekke, F.H. [Norges Landbrukshoegskole, Aas (Norway). Dept. of Forest Sciences

    1999-06-01

    Long-term changes of the acid/base relations of organic soils after drainage, fertilization and/or liming at three experimental sites - two ombrogenous and one soligenous - in south-central Norway are discussed. These sites were drained, fertilized and/or limed in 1953-1956 and sampled in 1991-1992. Drainage at the ombrogenous sites caused: insignificant shifts of pH, higher bulk densities to 40 cm depth, higher ash percentage, higher contents of N and P to 20 cm depth and reduced concentrations of total Ca, K, Mg, Na, Al and Fe in soil layers deeper than 20 cm. The soligenous site was not effectively drained; despite this, pH dropped about 0.5 unit in the surface and subsurface soil layers of the control plots, while small changes were measured for most other soil variables. The suggested reason for the pH drop is limited sulphide oxidation in the upper 20 cm drained layer. Base saturation at actual soil pH, when all treatments were included, was estimated with good precision by four regressors: pH, extractable Al, extractable Fe and extractable Ca (R{sup 2} = 0.90-0.95). Similar models explained 97-99% of the variation in base saturation at soil pH = 7.0. The lime effects at the properly drained oligotrophic sites were proportional to applied doses; for pH to 40 cm, base saturation to 60 cm, and Ca concentration to 60 cm depth. At the less well-drained soligenous site, effects were limited to the upper 30 cm layer. Both drainage and liming caused higher cation exchange capacities and proper drainage seems to be a prerequisite for the liming effect. Estimated recovery of calcium to 60 cm depth was 64-79% at the ombrogenous sites and 42-46% at the soligenous site 28 refs, 3 figs, 8 tabs

  18. Alleviation of Subsoil Acidity of Red Soil in Southeast China with Lime and Gypsum

    Institute of Scientific and Technical Information of China (English)

    SUNBO; R.MOREAU; 等

    1998-01-01

    Application of lime or gypsum is a common agricultrual practice to ameliorate soils with low pH which prohibits crop prduction,Its integrated effect on soil properties in a red soil derved from Quaternary red clay in Southeast China is discussed in this paper,Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH4,but lime addition had a contrary effect.Generally,application of lime and /or gypsum has little on soil electrical properties.Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth ,The effect of lime reached only to 5 cm below its application layer.With leaching,Ca transferred from top soil to subsoil and decreased exchangeable Al in subsiol.Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.

  19. Sequencing and computational analysis of complete genome sequences of Citrus yellow mosaic badna virus from acid lime and pummelo.

    Science.gov (United States)

    Borah, Basanta K; Johnson, A M Anthony; Sai Gopal, D V R; Dasgupta, Indranil

    2009-08-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus, is the causative agent of Citrus mosaic disease in India. Although the virus has been detected in several citrus species, only two full-length genomes, one each from Sweet orange and Rangpur lime, are available in publicly accessible databases. In order to obtain a better understanding of the genetic variability of the virus in other citrus mosaic-affected citrus species, we performed the cloning and sequence analysis of complete genomes of CMBV from two additional citrus species, Acid lime and Pummelo. We show that CMBV genomes from the two hosts share high homology with previously reported CMBV sequences and hence conclude that the new isolates represent variants of the virus present in these species. Based on in silico sequence analysis, we predict the possible function of the protein encoded by one of the five ORFs.

  20. Extinction of Vibrio choleare in acidic substrata: contaminated cabbage and lettuce treated with lime juice

    OpenAIRE

    Mata, Leonardo; Vargas, Cecilia; Saborío-Argüello, Daniel; Vives-Blanco, Marcela

    1994-01-01

    artículo -- Universidad de Costa Rica. Instituto de Investigaciones en Salud, 1994 Lime juice killed Malian of Vibrio cholerae 01, El Tor, Inaba, present on cabbage and lettuce contaminated in the laboratory. The lethal effect was evident within 5 min of exposure to lime juice. No vibrios could be recovered at dilution 1:10 using alkaline peptone water (APW) and thiosulfate-citrate-bile salts-saccharose agar (TCBS). More than 99.9 % of the initial inoculum was effectively destroyed. The nu...

  1. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    Science.gov (United States)

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended.

  2. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom.

    Science.gov (United States)

    Goulding, K W T

    2016-09-01

    Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N2O emissions, but this is more than offset by CO 2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.

  3. Field determintation of young acid lime plants transpiration by the stem heat balance method Determinação da transpiração de plantas jovens de lima ácida a campo pelo método de balanço de calor caulinar

    Directory of Open Access Journals (Sweden)

    Maurício Antonio Coelho Filho

    2005-06-01

    Full Text Available The stem heat balance method (HBM measures sap flow (SF in plants, and can be used to estimate daily transpiration flow. It is a powerful technique for water relations and irrigation field studies, but it has to be tested in species of particular interest. This paper discusses effectiveness of the HBM to estimate transpiration of young acid lime plants (Citrus latifolia Tan. cv. Tahiti, grafted on citrumelo cv. Swingle (Poncirus trifoliata Raf. x C. paradisi Macf., in the field using commercial gauges (model SAG10-ws, Dynamax Inc., Huston, in Piracicaba, State of Sao Paulo, Brazil. SF was correlated to transpiration determined by weighing lysimeters and by a steady-state null-balance porometer. The mean ratio between daily values of SF and lysimetric measurements was practically unitary, showing a mean difference of only 0.05%, being the comparisons of values in periods shorter than 24 hours impaired by effect of wind turbulence on lysimeters. The same occurred (mean difference of 0.38% when SF and canopy transpiration estimated from porometer measurements were compared in 20-min periods, but transpiration tended to exceed SF in periods of higher transpiration and data dispersion was high (r² = 0.48. An analysis of the sources errors of the techniques was done, including the comparison of the daily course of SF and net radiation. Despite of the dispersion of the comparative data between the HBM and the other two techniques, HBM had a good performance, permitting to recommend its use in studies of water relations in young citrus plants under field conditions.O método de balanço de calor caulinar (MBC é usado na estimativa de fluxo de seiva (SF de plantas herbáceas e lenhosas, sendo uma ferramenta útil na determinação de transpiração em estudos de relações hídricas e no manejo da irrigação. É recomendável testar o seu desempenho em espécies de interesse. Neste estudo ele foi testado em plantas jovens de lima ácida (Citrus

  4. Liming impacts on soils, crops and biodiversity in the UK: A review.

    Science.gov (United States)

    Holland, J E; Bennett, A E; Newton, A C; White, P J; McKenzie, B M; George, T S; Pakeman, R J; Bailey, J S; Fornara, D A; Hayes, R C

    2017-08-11

    Fertile soil is fundamental to our ability to achieve food security, but problems with soil degradation (such as acidification) are exacerbated by poor management. Consequently, there is a need to better understand management approaches that deliver multiple ecosystem services from agricultural land. There is global interest in sustainable soil management including the re-evaluation of existing management practices. Liming is a long established practice to ameliorate acidic soils and many liming-induced changes are well understood. For instance, short-term liming impacts are detected on soil biota and in soil biological processes (such as in N cycling where liming can increase N availability for plant uptake). The impacts of liming on soil carbon storage are variable and strongly relate to soil type, land use, climate and multiple management factors. Liming influences all elements in soils and as such there are numerous simultaneous changes to soil processes which in turn affect the plant nutrient uptake; two examples of positive impact for crops are increased P availability and decreased uptake of toxic heavy metals. Soil physical conditions are at least maintained or improved by liming, but the time taken to detect change varies significantly. Arable crops differ in their sensitivity to soil pH and for most crops there is a positive yield response. Liming also introduces implications for the development of different crop diseases and liming management is adjusted according to crop type within a given rotation. Repeated lime applications tend to improve grassland biomass production, although grassland response is variable and indirect as it relates to changes in nutrient availability. Other indicators of liming response in grassland are detected in mineral content and herbage quality which have implications for livestock-based production systems. Ecological studies have shown positive impacts of liming on biodiversity; such as increased earthworm abundance that

  5. Indução floral de limeiras ácidas 'Tahiti' submetidas a baixas temperaturas Flower induction of acid lime trees 'Tahiti' subjected to low temperature

    Directory of Open Access Journals (Sweden)

    Dierlei dos Santos

    2011-03-01

    Full Text Available Este trabalho foi realizado com o objetivo de quantificar a necessidade de acúmulo de horas de frio para a floração da limeira ácida 'Tahiti', sem a aplicação de deficiência hídrica, além de avaliar as trocas gasosas e fluorescência da clorofila a em condições de baixa temperatura e baixa luminosidade. O experimento foi conduzido em Viçosa-MG, Brasil, com plantas de limeira ácida 'Tahiti', enxertadas sobre limoeiro 'Cravo', cultivadas em vasos de 12 litros. O delineamento utilizado foi o inteiramente casualizado, com sete tratamentos e quatro repetições, com uma planta por parcela. A partir do dia 01/02/2008 até o dia 30/04/2008, quatro plantas foram retiradas da câmara de crescimento (CC (temperatura: 16/12°C (dia/noite; umidade relativa: 70%; fotoperíodo: 10 horas; densidade de fluxo de fótons fotossintéticos: 100µmol m-2 s-1 a cada 15 dias e levadas para a casa de vegetação (CV sem controle ambiental, totalizando sete datas de transferência. A exposição de plantas a baixas temperaturas, sob condições controladas não causou alterações significativas nas características de fluorescência da clorofila a, mas causou redução de 80% nas trocas gasosas. Entretanto, essa redução não prejudicou a floração das plantas. As plantas expostas a condições não indutoras apenas emitiram brotações vegetativas, enquanto aquelas submetidas a baixas temperaturas, quanto maior foi o tempo de exposição, maior foi o número de flores emitidas.The research was realized to quantify the need for accumulation hours under low temperatures to the acid lime 'Tahiti' flowering, without water application and beyond evaluating gas exchange and chlorophyll a fluorescence under low temperature and light. The experiment was conducted in Viçosa-MG, Brazil, with plants from acid lime 'Tahiti' grafted on Rangpur lime grown in pots of 12 liters. The design was completely randomized with seven treatments and four replicates with one

  6. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  7. Integrated removal of inorganic contaminants from acid mine drainage using BOF slag, lime, soda ash and reverse osmosis (RO): Implication for the production of drinking water

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-06-01

    Full Text Available , Finland IMWA 2017Mine Water and Circular Economy Wolkersdorfer C, Sartz L, Sillanpää M, Häkkinen A (Editors) Integrated removal of inorganic contaminants from Acid Mine Drainage using BOF Slag, Lime, Soda ash and Reverse Osmosis (RO): Implication... was reduced from 18000 to 4000 mg/L hence requiring another purification technology. Hardness was reduced using lime and soda ash. Reverse Osmosis (RO) was used to further clean the water to drinking standard. A single pass two element RO system...

  8. Process optimisation of lime milk leaching and control of cold lime softening at the power plant STEAG Fenne; Optimierung des Kalkansatzes und Regelung der Kalkmilchdosierung in der KZA des STEAG-Kraftwerks Fenne

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Christian [Steag Kraftwerk Fenne, Voelklingen (Germany). Anlagentechnik; Arenz, Helmut [Steag Kraftwerk Fenne, Voelklingen (Germany). Technischer Service; Wysk, Ralf [NALCO Deutschland GmbH, Frankfurt am Main (Germany). National Account Managing Kraftwerke

    2013-06-01

    An increase in turbidity in the cleaned water of the cold lime softener higher than the raw water input of the river Saar was observed at the Fenne site at some days in 2009. Also the post-installed sand filter could not restrain the fine particles. Under these circumstances the demineralisation water production had serious problems because of heavily fouled membranes in the reverse osmosis system. Only the immense personal actions of the operating staff could enable the reliability of the water preparation system on site. Together with Nalco the power plant service department implemented a plant audit on site. The purpose of the plant audit was to find the reason for the bottleneck in water preparation and to optimise and automate the water treatment system under the aspects of economical reliability and control efficiency. (orig.)

  9. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  10. Failure mode analysis for lime/limestone FGD systems. Volume 3. Plant profiles. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, S.M.; Rosenberg, H.S.; Nilsson, L.I.O.; Oxley, J.H.

    1984-08-01

    Plant profiles are given for the following plants: Tombigbee 2, 3; Apache 2, 3; Cholla 1, 2; Four Corners 1, 2, 3; Laramie River 1; Green 1, 2; Duck Creek 1; Craig 1, 2; Conesville 5, 6; Coal Creek 1, 2; Elrama 1, 2, 3, 4; and Phillips 1, 2, 3, 4, 5, 6. (DLC)

  11. Lime Pretreatment

    Science.gov (United States)

    Sierra, Rocio; Granda, Cesar Benigno; Holtzapple, Mark T.

    Lime pretreatment has proven to be a useful method for selectively reducing the lignin content of lignocellulosic biomass without significant loss in carbohydrates, thus realizing an important increase in biodigestibility. In lime pretreatment, the biomass is pretreated with calcium hydroxide and water under different conditions of temperature and pressure. It can be accomplished in one of three fashions: (1) short-term pretreatment that lasts up to 6 h, requires temperatures of 100-160°C, and can be applied with or without oxygen (pressure ~200 psig); (2) long-term pretreatment taking up to 8 weeks, requiring only 55-65°C, and capable of running with or without air (atmospheric pressure); and (3) simple pretreatment requiring 1 h in boiling water, without air or oxygen. Nonoxidative conditions are effective at low lignin contents (below ~18% lignin), whereas oxidative conditions are required for high lignin contents (above ~18% lignin).

  12. Influence of Liming and Mineral Fertilization on Plant Uptake of Radiostrontium from Danish Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1963-01-01

    the different soils decreased with increasing axnounts of exchangeable Ca. Adding CaCO/sub 3/ at 2.5 tons/ha showed little effect on Sr uptake. However, heavy amounts of CaCO/ sub 3/, at 5 and 10 tons/ha, reduced Sr/sup 89/ concentration of the plants by 15 to 30 per cent, depending on the type of soil. Ca......The uptake of radioactive strontium by rye grass and red clover was studied in pot experiments, using 20 typical Danish agricultural soils. Comparisons were made between the effects of adding Ca in the form of carbonate, sulfate, and chloride, and the respective Mg compounds on Sr uptake by plants...... grown on three different soils. The influence of nitrogen and potassium application on uptake of Sr/sup 90/ by oats was studied for two different soils. The results showed conclusively that in red clover the uptake of radioactive strontium was much greater than in rye grass. The uptake from...

  13. Potencial de extratos de resíduos vegetais na mobilização do calcário no solo por método biológico Plant residue extracts potential for lime mobility in the soil using a biological method

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Franchini

    2001-06-01

    Full Text Available O calcário aplicado na superfície do solo apresenta baixa eficiência na correção da acidez subsuperficial. A eficiência pode ser melhorada através de compostos orgânicos hidrossolúveis liberados pelos resíduos vegetais. Foi avaliado um método biológico para testar a capacidade de extratos vegetais na mobilização do calcário no solo. O método consiste das seguintes etapas: coleta e preparo do material vegetal; extração dos compostos orgânicos hidrossolúveis; preparo da coluna de solo; aplicação do calcário na superfície do solo; aplicação do extrato vegetal; irrigação com água destilada; teste biológico com a planta indicadora de trigo cv. Anahuac e avaliação do crescimento radicular. A calagem sem resíduo vegetal aumentou o pH e o teor de Ca e diminuiu o teor de Al apenas na camada 0 a 5 cm de profundidade. A calagem com resíduos de aveia preta e nabo forrageiro aumentou o pH e o teor de Ca e diminuiu o teor de Al na camada de 0 a 20 cm de profundidade. Por outro lado, a calagem com resíduos de trigo não afetou a mobilidade do calcário no solo. O crescimento das raízes acompanhou os efeitos na química do solo: calagem sem resíduo e calagem com resíduo de trigo apresentaram crescimento das raízes até 10 cm de profundidade enquanto a calagem com resíduos de aveia e nabo favoreceu o crescimento das raízes até 20 cm de profundidade. O teste biológico foi adequado para avaliar a eficiência de resíduos vegetais na mobilização do calcário no solo.Soil surface applied lime shows low efficiency in alleviating subsoil acidity. Lime efficiency is increased through water-soluble organic compounds released from plant residues. A biological test was evaluated to verify the capacity of plant extracts on lime mobility in the soil. The test presents the following steps: plant material preparation; extraction of water soluble organic compounds; soil column preparation; soil surface lime addition; plant extract

  14. Acidez do solo e calagem em pomares de frutíferas tropicais Soil acidity and liming in tropical fruit orchards

    Directory of Open Access Journals (Sweden)

    William Natale

    2012-12-01

    é a incorporação superficial do calcário na área. As recomendações talvez fossem outras, caso houvesse maior subsídio da pesquisa, tendo em vista os diversos problemas fitossanitários que podem ocorrer, direta ou indiretamente da prática da incorporação do corretivo, tais como redução do sistema radicular, ferimento das raízes e consequente risco de infecções, com disseminação de pragas e doenças no pomar. O objetivo desta revisão é apresentar os principais resultados de pesquisas sobre o assunto, mostrando os efeitos da calagem sobre a fertilidade do solo, a nutrição e a produtividade de frutíferas de grande importância econômica para o Brasil, bem como discutir a duração do efeito residual dos corretivos e a dose mais ecônomica a ser aplicada nos pomares de frutas em implantação e em produção.Agricultural productivity in the tropics is affected first by soil acidity and related factors (pH, base saturation, potential acidity, nutrient availability. Liming is a well-known but irregularly used beneficial practice to correct soil acidity in annual cropping systems. For perennial crops such as fruit orchards, lime incorporation is more difficult to implement as a result of length of the rotation and lack of scientific support. The lime neutralizes exchangeable aluminum, increases pH and supplies Ca and Mg to the growing roots. Because lime moves slowly in the soil, it must be incorporated deeply and uniformly before establishing the orchard to enhance soil exploration by the root system. Compared to fertilizers and pesticides liming can impact soil properties during several consecutive seasons and its effect depends on soil type, contact with the soil as lime is incorporated, fruit species and liming material. In general, the effect of larger lime particles is long-lasting. In orchards, lime is applied before establishment using lime materials of varying grain sizes. However, the relationship between grain size and long-time effect

  15. Dolomitic lime amendment affects pine bark substrate pH, nutrient availability, and plant growth: A review

    Science.gov (United States)

    Dolomitic lime (DL) is one of the most commonly used fertilizer amendments in nursery container substrates. It is used to adjust pH of pine bark substrates from their native pH, 4.1 to 5.1, up to about pH 6. Additions of DL have been shown to be beneficial, inconsequential, or detrimental dependin...

  16. Potential Use of Lime as Nitric Acid Source for Alternative Electrolyte Fuel-Cell Method

    Science.gov (United States)

    Christianto, V.; Smarandache, Florentin

    2011-04-01

    Despite growing popularity for the use of biofuel and other similar methods to generate renewable energy sources from natural plantation in recent years, there is also growing concern over its disadvantage, i.e. that the energy use of edible plants may cause unwanted effects, because the plantation price tends to increase following the oil price. Therefore an alternative solution to this problem is to find `natural plantation' which have no direct link to `food chain' (for basic foods, such as palm oil etc.).

  17. Evidence for carbon sequestration by agricultural liming

    Science.gov (United States)

    Hamilton, Stephen K.; Kurzman, Amanda L.; Arango, Clay; Jin, Lixin; Robertson, G. Philip

    2007-06-01

    Agricultural lime can be a source or a sink for CO2, depending on whether reaction occurs with strong acids or carbonic acid. Here we examine the impact of liming on global warming potential by comparing the sum of Ca2+ and Mg2+ to carbonate alkalinity in soil solutions beneath unmanaged vegetation versus limed row crops, and of streams and rivers in agricultural versus forested watersheds, mainly in southern Michigan. Soil solutions sampled by tension indicated that lime can act as either a source or a sink for CO2. However, infiltrating waters tended to indicate net CO2 uptake, as did tile drainage waters and streams draining agricultural watersheds. As nitrate concentrations increased in infiltrating waters, lime switched from a net CO2 sink to a source, implying nitrification as a major acidifying process. Dissolution of lime may sequester CO2 equal to roughly 25-50% of its C content, in contrast to the prevailing assumption that all of the carbon in lime becomes CO2. The ˜30 Tg/yr of agricultural lime applied in the United States could thus sequester up to 1.9 Tg C/yr, about 15% of the annual change in the U.S. CO2 emissions (12 Tg C/yr for 2002-2003). The implications of liming for atmospheric CO2 stabilization should be considered in strategies to mitigate global climate change.

  18. Response of 'Nagpur' mandarin, 'Mosambi' sweet orange and 'Kagzi' acid lime to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ladaniya, M.S. E-mail: mslngp@nagpur.dot.net.in; Singh, Shyam; Wadhawan, A.K

    2003-07-01

    The effects of irradiation dose and refrigerated storage conditions on 'Nagpur' mandarin (Citrus reticulata Blanco), 'Mosambi' sweet orange (Citrus sinensis Osbeck) and 'Kagzi' acid lime (Citrus aurantifolia Swingle) were investigated. Mature fruits of these three species were treated with 0, 0.25, 0.5, 1 and 1.5 kGy radiation. 'Nagpur' mandarin and 'Mosambi' sweet oranges were stored at 6-7 deg. C and 90-95% r.h. for 75 and 90 days, respectively, while 'Kagzi' acid limes were stored at 8{+-}1 deg. C and 90-95% r.h. for 90 days. Physico-chemical parameters, sensory attributes and respiration rate were measured besides losses and disorders. In 'Nagpur' mandarin, radiation dose upto 1.5 kGy did not cause any rind disorder. Radiation treatments did not reduce the extent of decay. Penicillium rot was delayed in fruit treated with 1.5 kGy, while it appeared early in 0 kGy. Irradiation doses were ineffective to control rots due to Botryodiplodia theobromae and Alternaria citri. Doses upto 1.5 kGy did not cause any significant effect on fruit firmness and juice content; however, total soluble solids increased, while titratable acidity and vitamin 'C' content decreased. Texture and flavour scores as recorded after a week, were not affected by irradiation except in 1.5 kGy. In 'Mosambi' sweet orange, radiation treatments caused peel disorder in the form of brown sunken areas after 90 days and reduced fruit firmness, acidity and vitamin C content. The TSS content was higher in treated fruit. Flavour and texture were not affected by the doses of irradiation used. In treated acid limes (mature yellow), weight loss and decay were higher than untreated fruit (0 kGy) although difference was non-significant. Juice, TSS, titratable acidity and vitamin C contents were significantly less in treated fruit than in 0 kGy. Texture and flavour scores were also less in treated fruit than in 0 kGy. The

  19. Comparison of lime and fly ash as amendments to acidic coal mine refusej growth responses and trace-element uptake of two grasses

    Energy Technology Data Exchange (ETDEWEB)

    Jasrow, J. D.; Zimmerman, C. A.; Dvorak, A. J.; Hinchman, R. R.

    1979-10-01

    Two commonly used revegetation species, Kentucky 31 tall fescue (Festuca arundinacea Schreb.) and Lincoln smooth brome (Bromus inermis Leyss.) were grown for 60 days in pots containing coarse coal mine refuse (referred to as gob, pH = 3.5) that was amended with lime or alkaline fly ash. Both species were also grown in pots containing a silt-loam surface soil as a control. Morphological growth parameters were measured over time; dry weights and shoot:root ratios were determined at harvest. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn in the plant shoots were determined by atomic absorption spectrophotometry. Plant growth of both species was not as good on either lime- or fly ash-amended gob as it was on surface soil. Although plant height and length of the longest lead were not significantly different (p > 0.10) at the end of the experiment for plants grown on the two amended-gob substrates, parameters giving an indication of plant vigor (i.e., number of leaves and stems, width of the longest lead, and biomass) were significantly greater (p < 0.01) for plants grown on lime-amended gob than for those grown on fly ash-amended gob. Significant (p < 0.05) differences in the tissue concentrations of Cd, Co, Fe, Hg, Mn, Pb, V, and Zn were found among the plants grown on the three substrates. Except for Hg and Pb, these elements were higher in plants grown on at least one of the amended-gob substrates than in plants grown on surface soil. Significant substrate differences were not observed for Al, As, Cr, Cu, Ni, and Se. The tissue concentrations of some elements - notably Al, Cu, Fe, Mn, V, and Zn - were high enough in plants from one or more of the substrates to either approach or exceed concentrations that have been reported to be associated with toxic effects in some plant species.

  20. Calagem em latossolo sob influência de coberturas vegetais: neutralização da acidez Liming in a latosol under influence of cover crops: acidity neutralization

    Directory of Open Access Journals (Sweden)

    Tullio Raphael Pereira de Pádua

    2006-10-01

    Full Text Available A movimentação dos produtos da dissolução do calcário e a correção da acidez podem ser influenciadas pelo manejo da calagem e pela quantidade e qualidade da matéria orgânica presente no solo. Avaliou-se a correção da acidez de acordo com a aplicação de calcário superficial ou incorporado nas profundidades de 0-10, 0-20 cm, em um Latossolo Vermelho distroférrico (LVdf sob diferentes coberturas vegetais anteriores (mata, eucalipto, pinus e pastagem. O estudo foi realizado de novembro de 2002 a janeiro de 2003 no Departamento de Ciência do Solo da UFLA, sendo avaliados, depois de 30 dias de reação do calcário, e antes do cultivo do algodão, os teores trocáveis de Ca2+ e Al3+, o pH e os níveis de saturação por bases (V em amostras de solo coletadas nas profundidades de 0-5, 5-10, 10-20 e 20-40 cm. A calagem superficial causou, na camada de 0-5 cm, uma elevação do pH e V para níveis acima dos considerados adequados para o cultivo do algodoeiro, caracterizando uma calagem excessiva. Foram verificados acréscimos, em relação à área sem calagem, do pH, Ca2+ e saturação por bases em camadas de solo além das camadas de incorporação do corretivo, principalmente nas amostras de solo com maior teor de matéria orgânica, mas esses efeitos não se estenderam à camada de subsolo (20-40 cm.Lime mobility and soil acidity correction can be influenced by liming management and the quantity and quality of soil organic matter. Acidity neutralization in function of the lime incoporation and surface liming was evaluated in a red Latosol (Oxisol under different antecedent vegetation covers (eucalyptus, forest, pasture and pine. The study was carried out from November 2002 to January 2003 at the Soil Science Department of the Lavras Federal University. After 30 days of incubation of soils with lime, the contents of Ca2+ e Al3+, pH and base saturation levels were quantified at the 0-5, 5-10, 10-20 and 20-40 cm sample depths. At the

  1. Evidence of Recombinant Citrus tristeza virus Isolate Occurring in Acid Lime cv. Pant Lemon Orchard in Uttarakhand Terai Region of Northern Himalaya in India.

    Science.gov (United States)

    Singh, Jaywant Kumar; Tarafdar, Avijit; Sharma, Susheel Kumar; Biswas, Kajal Kumar

    2013-06-01

    The present study for the first time describes biological and molecular characterization of Citrus tristeza virus (CTV) occurring in the Terai area of Uttarakhand State in Northern Himalaya region of India. Direct antigen coated-ELISA and reverse transcriptase-polymerase chain reaction (RT-PCR) detected the CTV infection in Acid lime cv. Pant lemon (Citrus aurantifolia) orchards of Pantnagar with an estimated disease incidence of 16.6-20.5 %. To know the biological and genetic properties, an isolate, CTV Pant 4 was characterized. Isolate Pant 4 could be graft transmitted to Kinnow, Nagpur and Darjeeling mandarins, Mosambi sweet orange, Kagzi lime, Sweet lime, Sour orange but not to Rough lemon. The sequence analyses of the 5'ORF1a (3038 nucleotides) of LPro domain and 3'end (2058 nt) covering ORF7-ORF10 regions of the CTV genome revealed that Pant 4 was closely related to the previously reported Indian CTV isolate, Kpg3 from Northeastern Himalaya region with 97 and 98 % sequence identity, respectively. Whereas, it differed from the previously reported CTV isolate B165 from Southern India with 79 and 92 % identity, respectively for 5'ORF1a and 3' end regions. Recombination and SplitsTree decomposition analyses indicated that CTV isolate Pant 4 was a recombinant isolate originating from Kpg3 as a major and B165 as a minor donor.

  2. Mobilidade de íons em solo ácido com aplicação de calcário, ácido orgânico e material vegetal em superfície Ion mobility in acid soils with surface application of lime, organic acid and crop residues

    Directory of Open Access Journals (Sweden)

    Milton Ferreira Moraes

    2007-08-01

    well as the equivalent amounts of organic acids and inorganic salts present in the plant materials. Lime application alone or associated with plant material reduced soil acidity in the 0-8 cm surface layer only. The low recovery of organic acids added to the soils (< 7.2 % indicates that the acids were rapidly metabolized or adsorbed to the soil colloidal fraction, which explains the small effect on cation mobilization. A substantial part of the ion mobilization in the soil and leached solution after application of crop residues was probably due to the plant-own inorganic ion content due to the high water solubility: 65 to 71 % for cations and 84 % for anions. The largest amount of aluminum displaced from the soil was caused by the application of inorganic salt solutions. The presence of plant residues had little effect on the mobilization of the reaction products of surface-applied lime in the soil profile.

  3. Effect of liquid liming on sorghum growth in an Ultisol.

    Directory of Open Access Journals (Sweden)

    Manuel E. Camacho

    2015-06-01

    Full Text Available   The aim of this study was to evaluate the effects of the application of liquid lime on sorghum growth in an Ultisol. This research was conducted between August and November, 2011 at the Agricultural Research Center, San José, Costa Rica. In an Ultisol planted with sorghum, in pots of 800 ml, the following treatments where applied: control without lime, calcium carbonate at doses of 10 and 20 l/ha, magnesium oxide at doses of 10 and 20 l/ha, calcium carbonate + magnesium oxide at doses of 5 + 5 and 10 + 10 l/ha, respectively. Six weeks after planting, sorghum was harvested, measuring leaf area, dry and fresh weight of the aerial and root biomass, nutrient absorption and the soil chemical characteristics. Treatments using calcium carbonate and calcium carbonate + magnesium oxide obtained the best values of leaf area and the higher weight of the aerial and root biomass of sorghum. Even though there were no significant differences between liquid lime treatments, there were regarding control without lime and weight biomass variables. Liquid calcium carbonate significantly increased Ca absorption, and the calcium carbonate + magnesium oxide treatment at doses of 10 l/h showed the highest Mg absorption. All amendment treatments caused an improvement of the soil fertility, the most notable being the application of 20 l/ha of magnesium oxide that dropped the exchangeable acidity from 9.02 to 0.36 cmol(+/l, acidity saturation dropped from 95 to 3.3%, and pH increased from 5 to 5.7. It was concluded that the liquid liming amendments had a positive effect over the crop and the soil fertility.

  4. Effects of Lime and Polyacrylamide (PAM) on Phosphorus and Kalium Adsorption, Desorption and Translocation in an Acid Soil%石灰和聚丙烯酰胺对植烟酸性土壤钾、磷吸附解析和迁移的影响

    Institute of Scientific and Technical Information of China (English)

    陈世军; 潘文杰; 孟玉山; 宗学凤; 王三根

    2012-01-01

    In phosphorus and kalium adsorption, desorption and leaching experiments conducted in the laboratory, a tobacco planting acid soil from Guizhou Province was amended with lime and PAM (polyacrylamide) at different ratios. The soil amended with lime and PAM increased the adsorption amount of phosphorus and kalium, and the highest adsorption was observed in the treatment of 0. 45% lime + 0. 1% PAM. The adsorption amount of phosphorus and kalium descended when still higher rate of PAM was a-dopted. The soil amended with appropriate amount lime and PAM showed reduced phosphorus adsorption strength and increased desorption rate. The soil amended with lime alone had reduced kalium adsorption strength and increased its desorption rate. The soil amended with lime+PAM had still greater kalium adsorption strength, but too high a PAM rate decreased kalium adsorption and the desorption rate increased at first and then decreased. In conclusion, amendment of tobacco planting soil with 0. 45% lime + 0.1% PAM can effectively alleviate phosphorus and kalium transport from the upper layer to the lower layer of the soil column.%通过吸附-解析试验和淋溶试验,研究了石灰和聚丙烯酰胺(PAM)对植烟酸性土壤钾、磷的吸附、解析和迁移的影响.结果表明:石灰和石灰+PAM处理能增加植烟酸性土壤对磷、钾的吸附量,其中以0.45%石灰+0.1% PAM处理的土壤吸附量最高,但当PAM用量增加时,吸附量下降;加入适量石灰和PAM后土壤对磷吸附强度降低,解析率升高;对钾而言,单纯加入石灰后吸附强度降低,解析率升高,而加入石灰+PAM后吸附强度又加大,但随PAM用量增高,吸附强度下降,解析率也出现先降低后升高的趋势.在植烟酸性土壤中施加0.45%石灰+0.1%PAM能有效缓解磷、钾向土层下迁移的趋势.

  5. Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil.

    Science.gov (United States)

    Gomes, Eliane A; Oliveira, Christiane A; Lana, Ubiraci G P; Noda, Roberto W; Marriel, Ivanildo E; de Souza, Francisco A

    2015-07-01

    Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.

  6. Lime pretreatment of lignocellulosic biomass

    Science.gov (United States)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of

  7. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  8. Correção da acidez do solo em função de modos de incorporação de calcário Correction of soil acidity in function of lime incorporation manners

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Weirich Neto

    2000-04-01

    dystrophic Dark Red Latosol, in native field. A randomized complete block design was used, with three replications, in a split-plot experiment. The treatments consisted of five incorporation methods: disk plowing plus two spring disk harrowing, off-set harrowing plus two spring disk harrowing, rotary tilling, chisel plowing plus two spring disk harrowing and lime distribution on the surface without incorporation (main plots, and four rates of dolomitic limestone: 0, 2.8, 6.6 and 10.3 t ha-1, in order to raise base saturation of soil to 30, 60 and 90% (subplots. The cultivated plant was maize. The results showed that the lime incorporation manner in the soil affects its efficiency in relation to the depth in the profile in which there is neutralization of the acidity. There was elevation in base saturation of the soil to the layer of 20cm, 15cm and 10cm, respectively, for the following incorporation manners: rotary tilling, disk plowing or off-set harrowing and chisel plowing or lime distribution on the surface without incorporation. The saturation values for wanted bases were not reached, three months after liming, independent in the incorporation manner of lime.

  9. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands

    Directory of Open Access Journals (Sweden)

    Gopu Venkadesaperumal

    2014-12-01

    Full Text Available Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans and EM9 (Exiguobacterium sp. of 24 studied isolates. Seeds (Chili and tomato inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  10. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    Science.gov (United States)

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  11. Salicylic acid-independent plant defence pathways

    OpenAIRE

    Pieterse, C.M.J.; Loon, L. C. Van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicy...

  12. Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud.

    Science.gov (United States)

    Shen, Jing; Fatehi, Pedram; Soleimani, Pendar; Ni, Yonghao

    2011-11-01

    Dissolved lignocelluloses from the pre-hydrolysis liquor (PHL) of kraft-based dissolving pulp production process were recovered by adsorption to lime mud produced in the causticizing plant of the kraft process. The adsorption of lignocelluloses was a fast process, and could be completed within one hour. The addition of polydiallyldimethylammonium chloride (PDADMAC) significantly increased the amounts of adsorbed lignin and hemicelluloses, which more than doubled at the PDADMAC dosage of 0.1% (based on the weight of PHL). The measured heating values of the adsorbed lignocelluloses indicate that adsorption of lignocelluloses to lime mud may result in the energy saving of the lime kiln. The process proposed in this study could also be adapted to decrease inhibitor concentrations (lignin and acetic acid) if the dissolved hemicelluloses in the PHL were used to produce value-added products, e.g., ethanol, xylitol, based on the fermentation process.

  13. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Zhou, Lixiang; Zhang, Shasha; Liu, Lanlan; Wang, Ming

    2015-12-15

    Bio-oxidation of ferrous ions prior to lime neutralization exhibits great potential for acid mine drainage (AMD) treatment, while slow ferrous ion bio-oxidation or total iron precipitation is a bottleneck in this process. In this study, neutralized solid waste (NSW) harvested in an AMD lime neutralization procedure was added as a crystal seed in AMD for iron oxyhydroxysulfate bio-synthesis. The effect of this waste on ferrous ion oxidation efficiency, total iron precipitation efficiency, and iron oxyhydroxysulfate minerals yield during ferrous ion bio-oxidation by Acidithiobacillus ferrooxidans was investigated. Ferrous ion oxidation efficiency was greatly improved by adding NSW. After 72 h incubation, total iron precipitation efficiency in treatment with 24 g/L of NSW was 1.74-1.03 times higher than in treatment with 0-12 g/L of NSW. Compared with the conventional treatment system without added NSW, the iron oxyhydroxysulfate minerals yield was increased by approximately 21.2-80.9% when 3-24 g/L of NSW were added. Aside from NSW, jarosite and schwertmannite were the main precipitates during ferrous ion bio-oxidation with NSW addition. NSW can thus serve as the crystal seed for iron oxyhydroxysulfate mineral bio-synthesis in AMD, and improve ferrous ion oxidation and total iron precipitation efficiency significantly.

  14. Local development of affordable lime in southern Africa: Project Summary Report

    OpenAIRE

    1998-01-01

    Lime is an important and versatile chemical used in a wide range of industrial and other applications. The term lime, which strictly refers to calcium oxide (CaO), is applied to a range of products arising from the grinding, calcination and hydration of limestone and dolomite. Many less developed countries do not have adequate lime production and this leads to problems associated with under-utilisation of lime. In particular, insufficient application of agricultural lime can lead to soil acid...

  15. Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    2014-11-01

    Full Text Available Soils with high acidity and low exchangeable bases may be responsible for low yields of Pinus taeda in a forest plantation at Jaguariaíva, Paraná State, Brazil. The aim of this study was to evaluate the effect of liming and fertilisation, applied over litter, on two selected areas with Pinus taeda plantations. Soil, litter and pine needles were evaluated for K, Ca and Mg concentrations and soil acidity parameters. Seven treatments were applied: (i complete (N, P, K, Zn, Cu, B, Mo, and lime; (ii without N, P, and K; (iii without Zn, Cu, B, and Mo; (iv without K; (v without Zn; (vi without lime; and (vii control (without nutrients and lime. Soil samples were collected at five soil depths (0-5, 5-10, 10-20, 20-40 and 40-60 cm simultaneously with litter samples. Needles were also collected from the first and second pine flushes. Liming induced soil pH, Ca2+, and Mg2+ increases, and the opposite was observed for Al3+ and Al saturation. Fertilisation increased soil exchangeable K+ concentrations and needle and litter K concentrations. The low Ca and Mg concentrations found in the plant needles might be attributable to their low mobility.

  16. OBTENÇÃO DE PLANTAS DE LIMÃO CRAVO (Citrus limonia Osbeck E TANGERINA CLEÓPATRA (Citrus reshni Hort. A PARTIR DO CULTIVO DE PROTOPLASTOS DE SUSPENSÃO CELULAR PLANT REGENERATION OF 'RANGPUR' LIME (Citrus limonia Osbeck AND 'CLEÓPATRA' MANDARIN (Citrus reshni Hort. THROUGH PROTOPLASTS OF CELL SUSPENSION

    Directory of Open Access Journals (Sweden)

    Rodrigo Rocha Latado

    1999-01-01

    Full Text Available Este trabalho descreve uma metodologia para a regeneração de plantas de tangerina 'Cleópatra' e limão 'Cravo', a partir do cultivo de protoplastos de suspensão celular. Para tal, calos nucelares foram induzidos em meio contendo BAP e cultivados em meio sem reguladores de crescimento. Protoplastos foram isolados de suspensões celulares e cultivados em gotas de agarose, com densidade de 2 X 105 protoplastos.ml-1. O meio MT, contendo ácido giberélico e água de coco, foi eficiente na germinação de embriões somáticos. Os métodos de aclimatação de plantas testados apresentaram baixa eficiência. Como resultado final, 17 plantas adaptadas de tangerina e 8 de limão foram obtidas.The present research describes the regeneration of 'Cleópatra' mandarin and 'Rangpur' lime plants from cell suspension protoplasts. Nucelar calli were induced on a medium containing BAP and maintained on growth regulator free medium. Protoplasts were isolated from embryogenic suspension and plated at a concentration of 2 X 105 protoplasts.ml-1, on agarose droplets. The MT medium with gibberellic acid and coconut water was efficient to stimulate somatic embryo conversion. Rooted plants acclimation had low efficiency. Seventeen mandarin plants and eight lime plants were obtained.

  17. Nutritional characteristics of two pigeon pea hybrids – Liming and phosphated fertilization

    Directory of Open Access Journals (Sweden)

    Marcia Atauri Cardelli de Lucena

    2012-12-01

    Full Text Available The use of legumes in animal production systems can be a sustainable alternative as a protein source in rotational grazing system and/or as a protein bank. Pigeon pea (Cajanus cajan (L. Millsp. figure as an example of success of this use on animal nutrition. The development of this species can be limited by the high acidity and low soil phosphorus content. There is a lack of scientific information on the effects of liming and phosphorus fertilization on some nutritional variables of two pigeon pea new hybrids. This study was conducted in pots containing 5 kg of soil in a greenhouse at the Instituto de Zootecnia, Nova Odessa, São Paulo State. There were studied two pigeon pea hybrids, H1 and H2, and the treatments involved agronomic practices: 1 No liming and without phosphorus (control, 2 Liming (L, 3 Phosphorus fertilization (P and 4 Liming plus phosphorus. Liming was proposed to increase soil base saturation to 50%, it was used dolomite lime PRNT = 90%, in an amount corresponding to 4.5 t/ha. Phosphorus fertilization (as superphosphate rate was 60 kg/ha of PO25. The experimental units were allocated according to a complete randomised block design, with five replications. We analyzed the levels of crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF, in pigeon pea shoot at 45 days of age. Statistical analyzes were performed using the software SISVAR, averages were compared using test for multiple comparisons Student Newman-Keuls - SNK test (P < 0.05. The H1 hybrid had the highest content of CP, by applying P, lime plus P and the control treatment compared to H2 hybrid. The association lime plus P resulted in higher content of CP mainly due to the increased availability of P for plants. Smaller values were observed for NDF in H2 with P application. Lower values of ADF were observed in H1 in both control treatment and P application. The ADF values were lower for the hybrid H2 only for the treatment lime plus P. The two

  18. Effect of some soil amendments on soil properties and plant growth in Southern Thailand acid upland soil

    Directory of Open Access Journals (Sweden)

    Onthong, C.

    2007-01-01

    Full Text Available One of the major factors limiting plant growth is acid soil. In general lime is used for soil amendment in acid soil. However, It has been reported that gypsum or phosphogypsum can be used for ameliorating soilacidity. Pot experiment was conducted to study the effects of lime, phosphogypsum and kieserite on soil properties and plant growth in Kho Hong soil series (coarse loamy, kaolinitic,isohyperthermic, TypicKandiudults which was considered as acid upland soil (pH 5.07. Sweet corn variety INSEE 2 was used as the test crop. The experiment was a completely randomized design with 4 replications and 19 treatments asfollow : unamended, application of hydrated lime and dolomite to raise soil pH at 5.5, application of hydrated lime and dolomite combined with phosphogypsum at the rate that can supply calcium 0.25, 0.50,0.75 and 1 time of both limes, application of hydrated lime and dolomite combined with kieserite at the rate 0.25, 0.50,0.75 and 1 times of sulfur requirement for corn (40 kg S ha-1. The result showed that shoot and root dry weights of corn were increased when lime materials, phosphogypsum and kieserite were applied and the drymatter weights were increased according to the increasing of phosphogypsum and kieserite. The maximum shoot dry weight (18.98 g pot-1 was obtained when 1 times of kieserite was supplied with dolomite and wassignificantly (P<0.01 higher than those of the unamended treatment, only hydrated lime and dolomite treatments, which had dry weights of 12.64, 15.18 and 15.67 g pot-1 respectively. Phosphorus and K uptakewere not significantly different in all treatments and the lowest uptake of N, Ca, Mg and S was obtained in the unamended treatment. The maximum uptake of N (512.10 mg pot-1 was found when 0.5 times ofphosphogypsum was applied together with dolomite. Calcium and Mg uptake was likely to increase according to the increasing rate of soil amendment application. Highest uptake of Ca (42.51 mg pot-1 was obtainedwhen

  19. Indicadores da acidez do solo para recomendação de calagem no sistema plantio direto Soil acidity indicators for liming in no-tillage systems

    Directory of Open Access Journals (Sweden)

    Margarete Nicolodi

    2008-02-01

    Full Text Available O tempo de cultivo do solo no sistema plantio direto (SPD altera a magnitude das relações entre os componentes da acidez do solo e o rendimento das culturas. Altos rendimentos podem ser obtidos nesse sistema mesmo em áreas com alta acidez. Assim, é provável que o critério de calagem utilizado no sistema convencional (SC de cultivo não seja adequado para o SPD. O objetivo deste trabalho foi avaliar os critérios para recomendação de calagem em seis lavouras no SPD representativas da região do Planalto do RS. Foram selecionadas lavouras com alta variabilidade dos indicadores de acidez do solo. Para cada lavoura, foram avaliados 20 locais. Em cada local, foram coletadas amostras de solo das camadas de 0-10 e 0-20 cm e foi avaliado o rendimento de grãos. Nas amostras de solo, foram determinados o pH em água e CaCl2, o índice SMP, os teores de Ca, Mg e Al trocáveis, de MO, de P e K disponíveis. Com base nas relações entre os indicadores de acidez do solo e o rendimento de grãos, concluiu-se que nenhum dos indicadores de acidez do solo, quando utilizados isoladamente, descreve de modo adequado o rendimento das plantas no solo cultivado no SPD consolidado. Nas duas camadas avaliadas, o rendimento relativo foi sempre maior que 65 % quando o pH em água e em CaCl2 foi maior que 5,5 e 5,1, respectivamente; a saturação por bases, maior que 65 %; o Al trocável, menor que 0,3 cmol c dm-3; e a saturação por Al, menor que 5 %. Para avaliação da acidez do solo em SPD com a finalidade de recomendar calagem, podem ser utilizadas tanto a camada de 0-10 como a de 0-20 cm de profundidade.No-tillage systems can change the ratio between soil acidity components and crop yields over the course of time. High crop yields are not seldom observed in highly acid soils. The liming criteria established for conventional tillage soils are likely to be unsuitable for no-tillage soils. The objective of this report was to define liming criteria, based on

  20. Liming influence on soil chemical properties, nutritional status and yield of alfalfa grown in acid soil Influência da calagem nas propriedades químicas do solo, estado nutricional e produção da alfafa em um solo ácido

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2010-08-01

    Full Text Available Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1 and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R² varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.A alfafa é uma importante forrageira com alto valor nutritivo, porém é altamente suscetível à acidez do solo. A calagem é uma das mais eficientes práticas para corrigir esse problema e melhorar a produtividade da alfafa. O objetivo deste trabalho foi avaliar a resposta à calagem da alfafa cultivada em Neossolo Quartzarênico em casa de vegetação. Os tratamentos consistiram de quatro doses de calcário (0; 3,8; 6,6 e 10,3 Mg ha-1 e duas épocas de corte. A produção de matéria seca foi significativamente aumentada com a adição de calcário, com o m

  1. Comparative studies on mycorrhiza and microfungi in the rhizosphere after acid sprinkle irrigation and liming at a spruce stand in `Hoeglwald`. Final report; Vergleichende Untersuchungen an Mykorrhizen und Mikropilzen der Rhizosphaere nach saurer Beregnung und Kalkung im Fichtenbestand `Hoeglwald`. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Qian, X.M.; El-Ashkar, A.; Kottke, I.; Oberwinkler, F.

    1995-07-01

    A comparative study was made of the fungal microflora populations of the mycorrhizoplane of a 75 to 80-year-old spruce stand and a 140-year-old beech stand in Hoeglwald. The soil of the experimental spruce stand had been subjected to acid sprinkle irrigation or liming from 1984 to 1990. An untreated spruce stand and a neighbouring beech stand served as controls. Eight isolated microfungal species exhibiting pathogenic or antagonistic action were compared with respect to their distribution in the five experimental areas. The species studied were trichoderma viride Pers. ex S.F. Gray. T hamatum (Bon.) Bain, T polysporum (Link ex Pers.) Rifai, cylindrocarpon destructans (Zinsm.) Scholten, sesquicillium candelabrum (Bonorden) Gams, mycelium radicis atrovirens Melin, tolypocladium geodes Grams, oidiodendron majus Barron. Both liming and acid sprinkle irigation disturbed the biological equilibrium of the soil microflora. This mainifested itself in a shift in interspecific dominance. For example, the area subjected to acid sprinkle irrigation showed proliferation of mycelium radicis atrovirens and oidiodendron majus, sterile mycelia and yeast plants, and a decline in the distribution of trichoderma species, whereas sesquicillium candelabrum and cylindrocarpon were found to porliferate in the lined area. A side from the altered soil conditions due to the treatment, the change in dominance relationships is attributed above all to direct interactions between fungal species. (orig.) [Deutsch] Die Populationen der pilzlichen Mikroflora der Mykorrhizoplane eines 75 bis 80-jaehrigen Fichtenbestandes und eines 140-jaehrigen Buchenbestandes im Hoeglwald wurden vergleichend untersucht. Die Fichtenversuchsflaechen waren von 1984 bis 1990 kuenstlich sauer beregnet oder gekalkt worden. Eine unbehandelte Fichtenflaeche und eine benachbarte Buchenflaeche dienten zur Kontrolle. Acht isolierte Mikropilzarten, die pathologische oder antagonistische Wirkungen aufweisen, wurden bezueglich

  2. Fertilizer and Lime: Why They Are Used.

    Science.gov (United States)

    McCaslin, Judith Strand

    This unit teaching guide is designed to help teachers explain the principles of fertilizer and lime use. The first of four major sections is a teaching outline keyed to transparency masters and student handouts. Thirteen major areas are covered in the teaching outline: (1) plant needs; (2) uses of fertilizer; (3) nutrients for plant growth; (4)…

  3. GEOSTATISTICAL MODEL EVALUATION OF LIMING ON OSIJEK-BARANYA COUNTY EXAMPLE

    Directory of Open Access Journals (Sweden)

    Vladimir Vukadinović

    2008-12-01

    Full Text Available Unfavorable pH of soil is the main reason for several different problems in debalance of mineral nutrition which can cause many problems in plant growth; such as leaves and fruit chlorosis and necrosis; etc. Therefore; liming as a measure for improving amount of acids soils must be conducted very carefully; with detail chemical soil analyses. This paper presents a segment of computer model for liming recommendation at the example of Osijek-Baranya County. Results of liming recommendation were obtained by geostatistical interpolation method – kriging. Totals of 9023 soil samples were analyzed in the period 2003–2007. The substitution acidity average was 5.49 (minimum 3.41 to maximum 8.20. Kriging shown that 241 379 ha (58.3% area of Osijek-Baranya County were acids soil. Therefore 90 593 ha have substitution acidity lower than 4.5 and 150 786 ha have pH KCl between 4.5 and 5.5. Except carbocalk; other "slowly-effect" materials can be recommended for liming; especially for vineyards and orchards.

  4. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia.

    Directory of Open Access Journals (Sweden)

    Mohsen Mardi

    Full Text Available Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia. However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes with an average length of 530 nt. Of these, 41,805 (53.4% were annotated against the NCBI non-redundant (nr protein database using a BLASTx search (e-value ≤ 1e-5. When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5. These differentially expressed genes (DEGs were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.

  5. In-Depth Transcriptome Sequencing of Mexican Lime Trees Infected with Candidatus Phytoplasma aurantifolia.

    Science.gov (United States)

    Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini

    2015-01-01

    Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.

  6. Balancing guava nutrition with liming and fertilization

    Directory of Open Access Journals (Sweden)

    Amanda Hernandes

    2012-12-01

    Full Text Available Guava response to liming and fertilization can be monitored by tissue testing. Tissue nutrient signature is often diagnosed against nutrient concentration standards. However, this approach has been criticized for not considering nutrient interactions and to generate numerical biases as a result of data redundancy, scale dependency and non-normal distribution. Techniques of compositional data analysis can control those biases by balancing groups of nutrients, such as those involved in liming and fertilization. The sequentially arranged and orthonormal isometric log ratios (ilr or balances avoid numerical bias inherent to compositional data. The objectives were to relate tissue nutrient balances with the production of "Paluma" guava orchards differentially limed and fertilized, and to adjust the current patterns of nutrient balance with the range of more productive guava trees. It was conducted one experiment of 7-yr of liming and three experiments of 3-yr with N, P and K trials in 'Paluma' orchards on an Oxisol. Plant N, P, K, Ca and Mg were monitored yearly. It was selected the [N, P, K | Ca, Mg], [N, P | K], [N | P] and [Ca | Mg] balances to set apart the effects of liming (Ca-Mg and fertilizers (N-K on macronutrient balances. Liming largely influenced nutrient balances of guava in the Oxisol while fertilization was less influential. The large range of guava yields and nutrient balances allowed defining balance ranges and comparing them with the critical ranges of nutrient concentration values currently used in Brazil and combined into ilr coordinates.

  7. Terrestrial Liming As a Restoration Technique for Acidified Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Sarah E. Pabian

    2012-01-01

    Full Text Available We studied the effects of liming on soils and forest songbirds as well as vegetation and calcium-rich invertebrate prey variables that were predicted to link birds to changes in soil conditions. We observed increases in soil pH, calcium, and magnesium, as well as in songbird abundances in response to lime application, with continuing increases through five years after liming. We observed an overall increase in snail abundance on limed sites, but an initial peak of a 23 fold increase three years after liming was reduced to an 11 fold increase five years after liming. We observed an increase in forb ground cover on limed sites, but liming had no effect on millipede abundance or other vegetation measures. Of the variables we measured, snail abundance was the most likely mechanism for the response in bird abundances. Because we observed continued benefits of liming up to five years post treatment, we concluded that liming is a very promising technique for restoring forest ecosystems impacted by acidic deposition.

  8. HEAVY METAL ANALYSIS IN RED OAK (QUERCUS RUBRA POPULATIONS FROM A MINING REGION IN NORTHERN ONTARIO (CANADA: EFFECT OF SOIL LIMING AND ANALYSIS OF GENETIC VARIATION

    Directory of Open Access Journals (Sweden)

    Anh Tran

    2014-01-01

    Full Text Available Understanding the dynamic of metals in soil and plants and population diversity in Northern Ontario is essential in determining progress toward ecosystem sustainability in reclaimed sites. The objectives of the present study were to assess the levels of metal content in soils and their accumulation in red oak plants from limed and unlimed sites. Genetic variation in red oak populations from the Northern Ontario region was also analyzed. The levels of soil acidity was lower in limed areas compared to un limed sites, an indication of the prolonged beneficial effect of liming 20 to 30 years ago on soil toxicity. The levels of total metals were very high for most elements, but the proportion of metals that were bio available and readily available to plants was very small. The enrichment factors were16.78, 4.98 and 2.94 for total arsenic, copper and nickel, respectively. The Translocation Factor (TF values for available metals from soil to branches were high. There was more metal accumulation in leaves compared to branches. The degrees of genetic variability in red oak populations from limed and unlimed areas were compared using ISSR markers. The levels of polymorphic loci were moderate to high ranging from 44 to 65%. There were no significant differences in polymorphisms between areas that were limed and unlimed. Overall the red oak populations in stressed areas in Northern Ontario are sustainable.

  9. Effects of liming and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian Oxisol

    NARCIS (Netherlands)

    Andrade, D.S.; Murphy, P.J.; Giller, K.E.

    2002-01-01

    Given the acid soil conditions in many regions of common bean production in the tropics and the deleterious effects of soil acidity on rhizobia, studies to assess survival of Phaseolus-nodulating rhizobial populations in acidic soils are important to ensure establishment of effective N2-fixing symbi

  10. Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete

    Science.gov (United States)

    Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.

    2016-06-01

    This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.

  11. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independen

  12. Evolution of plant colonization in acid and alkaline mine tailing ponds after amendments and microorganisms application

    Science.gov (United States)

    Acosta, Jose Alberto; Faz, Ángel; Kabas, Sebla; Zornoza, Raúl; Martínez-Martínez, Silvia

    2014-05-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on plant cover establishment, as a consequence of metal immobilization and the improvement of soil properties. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Identification of plant species and biodiversity was determined on each plot, after 2, 4, 6 and 8 months of amendment addition. The results showed that, in those plots without application of microorganism, 8 months after applications the number of species and individuals of each

  13. Resíduos de plantas de cobertura e mobilidade dos produtos da dissolução do calcário aplicado na superfície do solo Cover plant residues and mobility of dissolution products of surface applied lime

    Directory of Open Access Journals (Sweden)

    A. S. Amaral

    2004-02-01

    em profundidade. Seus efeitos restringiram-se na camada de 0-2,5 cm, tanto isoladamente como junto com o calcário.Cover plants have received extra attention due to their release of low molecular weight organic acids that form organic complexes with aluminum, calcium and magnesium. Besides neutralizing toxic aluminum, such compounds can increase the mobility in the soil profile of the dissolution products of lime applied on the soil surface. Objectives of this research were (a to identify the low molecular weight organic acids found in different cover plant species and in soil solution, (b to evaluate the effects of the residues, alone or together with surface lime application, in relation to acidity neutralization of subsoil layers in no-tillage systems, and (c to verify the relation between organic acids of low molecular weight, released during the decomposition of plant residues, with the effect on soil acidity properties in the soil profile due to surface lime application. The experiment was carried out in a greenhouse in undisturbed Inceptisol (Haplumbrept soil samples in columns, collected in a field experiment under no-tillage for five years. Nine treatments were applied: residue (10 Mg ha-1 of black oat (1, common vetch (2, oil seed radish (3, lime (13 Mg ha-1 (4, lime plus residue of black oat (5, of common vetch (6, of oil seed radish (7, and lime plus citric acid (0.91 Mg ha-1, (8 and no treatment (9, arranged in randomized blocks. The liquid chromatography method (HPLC allowed an identification of the main low molecular weight organic acids in the plant residues. Trans-aconitic acid was the most important in black oat, malic acid in common vetch, and citric and malic acids in oil seed radish. It was not possible to detect organic acids in the percolate or soil solution. Plant residues had no effect on acidity neutralization in the deeper soil since the effects, alone or with lime application on the soil surface, were restricted to the soil surface layer

  14. Differential distribution of amino acids in plants.

    Science.gov (United States)

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-03-15

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  15. Porta-enxertos para a lima-ácida-'Tahiti' na região de Bebedouro, SP Rootstocks for 'Tahiti' acid lime in Bebedouro region, SP, Brazil

    Directory of Open Access Journals (Sweden)

    JOSÉ ORLANDO DE FIGUEIREDO

    2002-04-01

    Full Text Available Foi instalado um experimento de seleção de porta-enxertos para a lima-ácida-'Tahiti' (Citrus latifolia Tanaka, em dezembro de 1988, na Estação Experimental de Citricultura de Bebedouro-SP, com o objetivo de conhecer seu comportamento e oferecer novas opções de plantio para as condições ecológicas semelhantes às daquela região. A variedade copa, originária do BAG-Citros do IAC, localizado no Centro de Citricultura Sylvio Moreira, Cordeirópolis-SP, é um clone nucelar de 'Tahiti', denominado IAC-5. Os porta-enxertos, que tiveram a mesma origem, foram: tangerinas-'Sunki' (Citrus sunki Hort. ex Tanaka; 'Cleópatra'(Citrus reshni Hort. ex Tan.; 'Batangas' e 'Oneco' (Citrus reticulata Blanco; trifoliata-EEL (Poncirus trifoliata Raf.; limão-'Cravo' (Citrus limonia Osbeck; limão-'Volkameriano Catania 2' (Citrus volkameriana Tan. & Pasq.; tangelo-'Orlando' (C. reticulata Blanco x Citrus paradisi Macf.; citrumelo-'Swingle' (P. trifoliata Raf. X C.paradisi Macf.; citrange-'Morton' (P. trifoliata Raf. X C. sinensis (L. Osbeck e laranja-'Caipira DAC' (C. sinensis (L. Osbeck. Com relação à produção, avaliada no período de 1991 a 1998, os porta-enxertos de melhor comportamento foram o tangelo-'Orlando', citrange-'Morton' e citrumelo-'Swingle'. As mais baixas produções ocorreram nos porta-enxertos de tangerina e de laranja-'Caipira DAC'. O limão-'Cravo' apresentou produção intermediária e proporcionou curta vida útil às plantas.In 1988 an experiment was established in Bebedouro, SP (Brazil, in order to evaluate eleven rootstocks for 'Tahiti' lime (Citrus latifolia Tanaka. Scion variety was the IAC 5 cultivar, from IAC germplasm bank at Cordeirópolis, SP; all rootstocks were also obtained at that institution. A randomized blocks design was used as statistical model, with eleven blocks and one plant per treatment. The eleven treatments were: 'Sunki' (Citrus sunki Hort. ex Tanaka, 'Cleópatra'(Citrus reshni Hort. ex Tan., 'Batangas

  16. Failure mode analysis for lime/limestone FGD system. Volume III. Plant profiles. Part 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, S.M.; Rosenberg, H.S.; Nilsson, L.I.O.; Oxley, J.H.

    1984-08-01

    This volume contains plant profiles for: Petersburg 3; Hawthorn 3, 4; La Cygne 1; Jeffry 1, 2; Lawrence 4, 5; Green River 1-3; Cane Run 4, 5; Mill Creek 1, 3; Paddy's Run 6; Clay Boswell 4; Milton R. Young 2; Pleasants 1, 2; and Colstrip 1, 2. (DLC)

  17. Effect of beringite on cadmium and zinc uptake by plants and earthworms: more than a liming effect?

    NARCIS (Netherlands)

    Oste, L.A.; Dolfing, J.; Ma, W.C.; Lexmond, T.M.

    2001-01-01

    Metal-contaminated soils are potentially harmful to plants, animals, and humans. Harmful effects are often related to the free-metal concentration in the soil solution. Immobilization is a potentially useful method to improve the quality of metal-contaminated soils by transforming free-metal ions in

  18. Pyroligneous acid-the smoky acidic liquid from plant biomass.

    Science.gov (United States)

    Mathew, Sindhu; Zakaria, Zainul Akmar

    2015-01-01

    Pyroligneous acid (PA) is a complex highly oxygenated aqueous liquid fraction obtained by the condensation of pyrolysis vapors, which result from the thermochemical breakdown or pyrolysis of plant biomass components such as cellulose, hemicellulose, and lignin. PA produced by the slow pyrolysis of plant biomass is a yellowish brown or dark brown liquid with acidic pH and usually comprises a complex mixture of guaiacols, catechols, syringols, phenols, vanillins, furans, pyrans, carboxaldehydes, hydroxyketones, sugars, alkyl aryl ethers, nitrogenated derivatives, alcohols, acetic acid, and other carboxylic acids. The phenolic components, namely guaiacol, alkyl guaiacols, syringol, and alkyl syringols, contribute to the smoky odor of PA. PA finds application in diverse areas, as antioxidant, antimicrobial, antiinflammatory, plant growth stimulator, coagulant for natural rubber, and termiticidal and pesticidal agent; is a source for valuable chemicals; and imparts a smoky flavor for food.

  19. Copper, nickel and zinc phytoavailability in an oxisol amended with sewage sludge and liming

    Directory of Open Access Journals (Sweden)

    Martins Adão Luiz Castanheiro

    2003-01-01

    Full Text Available Contents of heavy metal on agricultural soils have been raised by land applications of sewage sludge and may constitute a hazard to plants, animals and humans. A field experiment was carried out from 1983 to 1987, to evaluate the long-term effect of sewage sludge application, with and without liming, on heavy metal accumulation and availability in a Rhodic Hapludox soil grown with maize (HMD 7974 hybrid. Trials were set up in a completely randomized blocks design with four replications. Each block was split in two bands, one with and another without liming. The sludge was applied in each band at rates: 0, 20, 40, 60 and 80 Mg ha-1 (dry basis in a single application; and 40, 60 and 80 Mg ha-1 split in two, three and four equal yearly applications, respectively. The soil was sampled for chemical analysis each year after harvest. Soil samples were analysed for Cu, Ni and Zn in extracts obtained with DTPA and Mehlich-3 solutions, and in extracts obtained by digestion with nitric-perchloric acid (total metal contents, using an inductively coupled plasma (ICP spectrometer. In general, Zn, Cu and Ni concentrations in DTPA and Mehlich-3 extracts increased linearly with sludge application. Total Cu and Zn concentrations increased when sludge was applied, whereas total Ni concentrations were not affected. Both extractants were suitable to evaluate Cu and Zn availability to corn in the soil treated with sewage sludge. Liming reduced the DTPA extractability of Zn. DTPA-extractable Cu concentrations were not significantly affected by liming. Mehlich-3-extractable Cu and Zn concentrations increased with liming. Only DTPA extractant indicated reduction of Ni concentrations in the soil after liming.

  20. Emprego de calcário e de superfosfato simples na cultura do algodoeiro em solo argiloso ácido Use of lime and of ordinary superphosphate for cotton cultivated on acid clay soil

    Directory of Open Access Journals (Sweden)

    Nelson M. da Silva

    1980-01-01

    liming experiment with cotton are discussed. This experiment was conducted on Latosolic B Terra Roxa soil, acid, with a pH index of 5.0, originally under "cerradão" vegetation, with 66% of clay, 4.3% of organic mater, 0.9, 0.8 and 0.5 (meq/100 ml of Al3+, Ca2+and Mg2+, respectively. The experimental design was a split-plot, with four replications. Dolomitic limestone was applied in the first year, on main plots at the levels of 0, 1.5, 3.0 and 6.0 t/ha. P and K were annually applied on split-plots, as a factorial 3 x 2, at the levels of 0, 60 and 120 kg/ha of P2O5, and 40 and 80 kg/ha of K2O, respectively, with ordinary superphosphate and potassium chloride. Four months after lime application, the neutralization of the exchangeable aluminum found by soil analysis was observed, at the highest level, the pH value increased up to 5.5 and values of calcium plus magnesium reached 3.0 meq. The linear effect upon cotton yield, due to liming, was significant during all the period of this study, increasing from the first to the third year. The effect of phosphorus was smaller, but positive and significant. Cotton plants did not react to potassium fertilization and interactions were not observed. Lime increased the concentrations of P, Ca and Mg in leaf blades, and decreased those of K, Fe, Mn and Al in the year when it was applied. There were no symptoms of K or micronutrient deficiencies due to the use of lime at high level.

  1. Long term trends of fish after liming of Swedish streams and lakes

    Science.gov (United States)

    Holmgren, Kerstin; Degerman, Erik; Petersson, Erik; Bergquist, Björn

    2016-12-01

    Thousands of Swedish acidified lakes and streams have been regularly limed for about 30 years. Standard sampling of fish assemblages in lakes and streams was an important part of monitoring the trends after liming, i.e. sampling with multi-mesh gillnets in lakes (EN 14757) and electrofishing in streams (EN 14011). Monitoring data are nationally managed, in the National Register of Survey test-fishing and the Swedish Electrofishing Register. We evaluated long-term data from 1029 electrofishing sites in limed streams and gillnet sampling in 750 limed lakes, along with reference data from 195 stream sites and 101 lakes with no upstream liming in their catchments. The median year of first liming was 1986 for both streams and lakes. The proportion of limed stream sites with no fish clearly decreased with time, mean species richness and proportion of sites with brown trout (Salmo trutta) recruits increased. There were no consistent trends in fish occurrence or species richness at non-limed sites, but occurrence of brown trout recruits also increased in acid as well as neutral reference streams. Abundance of brown trout, perch (Perca fluviatilis) and roach (Rutilus rutilus) increased significantly more at limed sites than at non-limed reference sites sampled before and after 1986. The mean species richness did not change consistently in limed lakes, but decreased in low alkalinity reference lakes, and fish abundance decreased significantly in limed as well as in non-limed lakes.

  2. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  3. Effect of liming on yield and quality of peppermint and Sachalin mint in fine sand soil of Northern Finland

    Directory of Open Access Journals (Sweden)

    A. AFLATUNI

    2008-12-01

    Full Text Available Soil acidity commonly limits plant production in the fine sand soil of Northern Finland, which often has a low pH (5.5-6.5 and contains low levels of Ca and Mg. The effect of five liming (10% Mg and 19% Ca levels, 0, 4, 8, 12, and 16 tons ha -1 , on the herb and essential oil yield and menthol and menthone content of two mint species (peppermint, Mentha x piperita, a variety of Black Mitcham and Sachalin mint, Mentha arvensis var. sacchalinensis cultivated in fine sand soil in Northern Finland (6440’N and 2505’E was studied during 1998-2000. Liming clearly increased the pH levels and the Ca and Mg content of the soil. The dry matter content, essential oil quantity, and the menthol or menthone content in mints were not affected by liming. In comparison with no liming however, liming at a rate of 4 t ha -1 doubled the herb yield. The highest yield was achieved in Sachalin mint by liming at 4 or 8 t ha -1 in the second and third year (soil pH 6-6.5 (Ca 725-871 mg l -1 and Mg 122- 219 mg l -1 , and in peppermint by liming at 4, 8 or 16 t ha -1 (soil pH 6-6.6 (Ca 725-1272 mg l -1 and Mg 122-245 mg l -1 . Therefore, we conclude that a higher peppermint and Sachalin mint yield is achieved by increasing soil pH to values above 6.0 in the fine sand soil of Northern Finland.;

  4. Production of hydroxylated fatty acids in genetically modified plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  5. Efeitos da calagem do solo no crescimento inicial e absorção de macronutrientes por plantas de trapoeraba (Commelina benghalensis Effects of soil liming on the initial growth and nutrient uptake by Commelina benghalensis L. plants

    Directory of Open Access Journals (Sweden)

    Benedito Noedi Rodrigues

    1995-01-01

    Full Text Available A presente pesquisa foi conduzida visando estudar os efeitos da calagem do solo sobre o crescimento inicial e absorção de macronutrientes por plantas de trapoeraba (Commelina benghalensis L.. A fase experimental foi conduzida em casa de vegetação, em vasos de cinco litros e o substrato foi coletado na camada arável de um Latossolo Vermelho Escuro, distrófico, classe textural franco-argilo-arenosa e valor original de pH igual a 3,8. O experimento foi instalado no delineamento inteiramente casualizado com quatro repetições e os tratamentos constaram da incorporação de quantidades correspondentes às doses 0, I, 2, 3, 4 e 5 t/ha de calcário dolomítico calcinado. Foi efetuada uma incubação por 15 dias antes do plantio das mudas da trapoeraba. Os resultados foram avaliados 49 dias após o transplante. A planta daninha respondeu intensamente à calagem incrementando a área foliar e os acúmulos de matéria seca e de N, P, Ca, Mg e S. Os padrões de distribuição dos diferentes macronutrientes nas diversas estruturas morfológicas da planta foram alterados. O acúmulo de K cresceu até a dose de 2 t/ha de calcário e depois decresceu, possivelmente devido ao antagonismo com Mg, adicionado através do calcário.An essay was conducted aiming to study the effects of soil liming on the initial growth and nutrient uptake by Commelina benghalensis L. plants. The experiment was conducted under greenhouse conditions, using five liter pots filled with material collected in the arable layer of a Latossol soil which showed 3.8 of original pH value. The experimental design was completely randomized plots with four replications. The following doses of dolomitic lime were studied: 0, I, 2, 3, 4 and 5 t/ha. There was 15 days for incubation period before the C. benghalensis seedling transplantation. The plants were collected 49 days after the seedlings transplantation. The weed showed intense response to soil liming, increasing the leaf area, biomass

  6. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

    Science.gov (United States)

    Beukes, Natasha; Pletschke, Brett I

    2010-06-01

    Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes.

  7. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  8. Biotechnological applications for rosmarinic acid production in plant ...

    African Journals Online (AJOL)

    Biotechnological applications for rosmarinic acid production in plant. ... African Journal of Biotechnology. Journal Home · ABOUT · Advanced Search · Current ... plant families and in some fern and hornwort species. Rosmarinic acid has a ...

  9. Phytochemical fingerprints of lime honey collected in serbia.

    Science.gov (United States)

    Gašić, Uroš; Šikoparija, Branko; Tosti, Tomislav; Trifković, Jelena; Milojković-Opsenica, Dušanka; Natić, Maja; Tešić, Živoslav

    2014-01-01

    Composition of phenolic compounds and the sugar content were determined as the basis for characterization of lime honey from Serbia. Particular attention was given to differences in phytochemical profiles of ripe and unripe lime honey and lime tree nectar. Melissopalynological analysis confirmed domination of Tilia nectar in all analyzed samples. Phenolic acids, abscisic acid, flavonoids, and flavonoid glycosides were determined by means of ultra-HPLC coupled with a hybrid mass spectrometer (UHPLC-OrbiTrap). Sugar content was determined using high-performance anion-exchange chromatography with amperometric detection. Similar phenolic compounds characterized unripe and ripe honeys, while the lime tree nectar profile showed notable differences. Compared to lime tree nectar, a high amount of chrysin, pinocembrin, and galangin were detected in both ripe and unripe lime honey. Fructose and glucose were the major constituents of all investigated samples, and amounts were within the limits established by European Union legislation. Sucrose content in the nectar sample was up to two-fold higher when compared to all honey samples. Isomaltose and gentiobiose with turanose content were different in analyzed production stages of lime honey.

  10. Spatial variability of soil acidity attributes and the spatialization of liming requirement for corn Variabilidade espacial de atributos de acidez do solo e espacialização da necessidade de calagem para o milho

    Directory of Open Access Journals (Sweden)

    Sandro Manuel Carmelino Hurtado

    2009-10-01

    Full Text Available In Brazil, technicians, in most cases, ignore the aspects related to the spatial variability of the soil acidity attributes when liming requirement is calculated. The objective of this study was to validate the liming practice, evaluating the presence of spatial variability of the soil acidity attributes and the existence of areas with differentiated liming requirement, which were calculated by different methods. The experiment was carried out in an area cultivated with corn under conventional management and irrigation. The soil (0-0.2 m was sampled in a conventional way (composite soil sample and in a systematic scheme, by use of a grid sampling. In sequence to the soil fertility attributes analysis, it was calculated the liming requirement, according to the methods of SMP pH, aluminum neutralization and elevation of soil Ca and Mg levels, and increase of the soil base saturation. After the descriptive analysis of the data set was accomplished, the semivariograms were calculated and the maps were obtained through the kriging technique. Absence of spatial dependence, as well as the non necessity of limestone application, was observed for the Al neutralization calculation method. Spatial dependence was only verified for the soil acidity attributes and to the liming requirement calculated by the base saturation and SMP pH methods; for these two methods, the semivariogram ranges obtained varied from 35.7 to 200.5 m. The results have highlighted the existence of differentiated liming requirement zones when the variability of the soil acidity attributes was considered in the calculation of the dose and type of limestone to be used for corn soil acidity correction.No Brasil, a prática de calagem desconsidera, na maioria das vezes, os aspectos relacionados à variabilidade espacial dos atributos de acidez do solo. Objetivou-se, neste estudo, validar a prática da calagem, avaliando a presença de variabilidade espacial de atributos de acidez do solo e

  11. DNA markers provide insight about common lime in historicalplantings

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Thomsen, Pernille; Rasmussen, Christine Waage

    2014-01-01

    nurseries in the Netherlands and Germany. It also provides evidence that it is possible to obtain the same genetic material as originally planted when common lime trees are to be replaced in historical plantings. Furthermore, the utility of DNA markers in the management of plant material in parks......As part of the restoration process of an avenue of common lime (Tilia × europaea) from 1760 in the Royal Danish Gardens, all remaining trees were genotyped with DNA markers before they were felled. As such, information about the nature of the plant material (clonal versus non-clonal) and mode...

  12. Fact Sheet - Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants NESHAP

    Science.gov (United States)

    Fact sheet summarizing National Emission Standards for Hazardous Air Pollutants (NESHAP) for Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants (40 CFR 63 Subparts AA and BB).

  13. Manejo da calagem e os componentes da acidez de Latossolo Bruno em plantio direto Liming management and its effect on acidity components of an oxisol under no-tillage

    Directory of Open Access Journals (Sweden)

    M. N. Ciotta

    2004-04-01

    Full Text Available A viabilidade da aplicação de calcário sobre a superfície de solos em plantio direto e seu efeito na acidez em subsuperfície são pouco conhecidos. O presente estudo foi realizado em experimento de longa duração (21 anos, instalado, em 1978, em Guarapuava (PR, e teve por objetivo avaliar o efeito do método de reaplicação de calcário nos componentes da acidez das fases sólida e líquida de um Latossolo Bruno alumínico em plantio direto. Os tratamentos avaliados foram: sem calcário, calcário incorporado por uma lavração e duas gradagens e calcário aplicado sobre a superfície do solo, sem incorporação. Reaplicações de calcário foram realizadas em 1987 e 1995 nas doses de 4,5 e 3,0 Mg ha-1 de calcário, respectivamente. A amostragem de solo foi feita manualmente, em abril de 1999, em nove camadas até 0,4 m de profundidade. A reaplicação de calcário promoveu melhoria no ambiente químico do solo em plantio direto, evidenciada pela elevação do pH em água, dos teores de Ca e Mg trocáveis e em solução, da saturação por bases, bem como pela diminuição dos teores de Al trocável. A aplicação de calcário sobre a superfície do solo em plantio direto foi eficiente na elevação do pH na camada de 0-0,15 m e na elevação dos teores de Ca e Mg trocáveis e da saturação por bases, bem como na diminuição dos teores de Al trocável na camada de 0-0,20 m, não diferindo do tratamento com incorporação de calcário ao solo. A eficiência da calagem superficial na correção da acidez da camada arável do solo constitui importante indicativo da viabilidade desta prática em solos sob plantio direto de longa duração.The effect of surface liming on acidity components in the soil profile under long-term no-tillage system is largely unknown. This study was carried out in a long-term experiment (21 years initiated in 1978 on a Brown Latosol (Haplohumox located in Guarapuava County, Paraná State, South of Brazil. The aim

  14. Isolation and identification of oligomers from partial degradation of lime fruit cutin.

    Science.gov (United States)

    Tian, Shiying; Fang, Xiuhua; Wang, Weimin; Yu, Bingwu; Cheng, Xiaofang; Qiu, Feng; Mort, Andrew J; Stark, Ruth E

    2008-11-12

    Complementary degradative treatments with low-temperature hydrofluoric acid and methanolic potassium hydroxide have been used to investigate the protective biopolymer cutin from Citrus aurantifolia (lime) fruits, augmenting prior enzymatic and chemical strategies to yield a more comprehensive view of its molecular architecture. Analysis of the resulting soluble oligomeric fragments with one- and two-dimensional NMR and MS methods identified a new dimer and three trimeric esters of primary alcohols based on 10,16-dihydroxyhexadecanoic acid and 10-oxo-16-hydroxyhexadecanoic acid units. Whereas only 10-oxo-16-hydroxyhexadecanoic acid units were found in the oligomers from hydrofluoric acid treatments, the dimer and trimer products isolated to date using diverse degradative methods included six of the seven possible stoichiometric ratios of monomer units. A novel glucoside-linked hydroxyfatty acid tetramer was also identified provisionally, suggesting that the cutin biopolymer can be bound covalently to the plant cell wall. Although the current findings suggest that the predominant molecular architecture of this protective polymer in lime fruits involves esters of primary and secondary alcohols based on long-chain hydroxyfatty acids, the possibility of additional cross-linking to enhance structural integrity is underscored by these and related findings of nonstandard cutin molecular architectures.

  15. Respostas nutricionais de cafeeiros Catuaí e Icatu a doses de calcário em subsuperfície Nutritional response of Catuaí and Icatú coffee plants to soil subsurface liming

    Directory of Open Access Journals (Sweden)

    Luciana Aparecida Rodrigues

    2006-12-01

    -tolerant, respectively, were evaluated in limed and surface-fertilized soil, whereas 0.0; 0.49; 1.7; 2.9; 4.1; 6.6 and 9.3 t ha-1 of limestone were applied to the subsurface soil. Plants were cultivated for 6.5 months in soil accommodated in PVC columns, subdivided in three rings. In the two lower rings Al saturation varied from 0 to 93 %. Limestone application in the subsurface raised the Ca and Mg contents in the shoot and roots, and P concentration in the upper leaves of both varieties. Following subsurface limestone application, Ca utilization efficiency decreased for both varieties, by the shoot as well as by roots. The P utilization efficiency by the shoot decreased only in the Icatú variety. Subsurface limestone application reduced the Al content in the aerial part of Icatú and in Catuaí roots. The leaf concentration of P, Ca and Mg remained at adequate levels in both varieties, indicating that fertilization and acidity correction of the surface soil layers were efficient at maintaining the plant nutrient levels, independent of Al levels in the soil subsurface.

  16. Application of spatial methods to identify areas with lime requirement in eastern Croatia

    Science.gov (United States)

    Bogunović, Igor; Kisic, Ivica; Mesic, Milan; Zgorelec, Zeljka; Percin, Aleksandra; Pereira, Paulo

    2016-04-01

    With more than 50% of acid soils in all agricultural land in Croatia, soil acidity is recognized as a big problem. Low soil pH leads to a series of negative phenomena in plant production and therefore as a compulsory measure for reclamation of acid soils is liming, recommended on the base of soil analysis. The need for liming is often erroneously determined only on the basis of the soil pH, because the determination of cation exchange capacity, the hydrolytic acidity and base saturation is a major cost to producers. Therefore, in Croatia, as well as some other countries, the amount of liming material needed to ameliorate acid soils is calculated by considering their hydrolytic acidity. For this research, several interpolation methods were tested to identify the best spatial predictor of hidrolitic acidity. The purpose of this study was to: test several interpolation methods to identify the best spatial predictor of hidrolitic acidity; and to determine the possibility of using multivariate geostatistics in order to reduce the number of needed samples for determination the hydrolytic acidity, all with an aim that the accuracy of the spatial distribution of liming requirement is not significantly reduced. Soil pH (in KCl) and hydrolytic acidity (Y1) is determined in the 1004 samples (from 0-30 cm) randomized collected in agricultural fields near Orahovica in eastern Croatia. This study tested 14 univariate interpolation models (part of ArcGIS software package) in order to provide most accurate spatial map of hydrolytic acidity on a base of: all samples (Y1 100%), and the datasets with 15% (Y1 85%), 30% (Y1 70%) and 50% fewer samples (Y1 50%). Parallel to univariate interpolation methods, the precision of the spatial distribution of the Y1 was tested by the co-kriging method with exchangeable acidity (pH in KCl) as a covariate. The soils at studied area had an average pH (KCl) 4,81, while the average Y1 10,52 cmol+ kg-1. These data suggest that liming is necessary

  17. Durability of air lime mortar

    DEFF Research Database (Denmark)

    Nielsen, Anders

    2016-01-01

    This contribution deals with the physical and chemical reasons why pure air lime mortars used in masonry of burned bricks exposed to outdoor climate have shown to be durable from the Middle Ages to our days. This sounds strange in modern times where pure air lime mortars are regarded as weak...

  18. Phosphorus availability in oxidic soils treated with lime and silicate applications

    Directory of Open Access Journals (Sweden)

    Aline da Silva Sandim

    2014-08-01

    Full Text Available Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3 were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.

  19. [Tissue culture of medicinal plant and abscisic acid].

    Science.gov (United States)

    Fang, Hui-Yong; Zhu, Hong; Yao, Jian-Xun; Jia, Cai-Feng; Shan, Gao-Wei; Li, Min-Hui

    2013-01-01

    Abscisic acid (ABA) plays a key role in many physiological processes of plants, and it was also applied to fields of medicinal plant biotechnology. The article presents a review of some recent application of ABA in enhancing the production of secondary metabolites of medicinal plants, improving the in vitro conservation in medicinal plant tissue culture system.

  20. THE BIOSYNTHESIS OF HYDROXYBENZOIC ACIDS IN HIGHER PLANTS

    Science.gov (United States)

    methylating protocatechuic to vanillic acid or hydroxylating it to yield gallic acid . Demethoxylation of sinapic and dehydroxylation of caffeic acid occurred in...Radioactive para-hydroxybenzoic, vanillic and syringic acids were shown to be synthesized in a variety of plants from the corresponding...hydroxycinnamic acids labelled in the beta-position. Decarboxylation of the hydroxybenzoic acids indicated that nearly all the activity was contained in the

  1. Effects of liming on crayfish and fish in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, P.; Appleberg, M.; Degerman, E.

    1986-12-01

    The effects of lime treatment on crayfish (Astacus astacus and Pacifastacus leniusculus) populations in 17 lakes and fish populations in 47 lakes and 7 rivers within the trial period 1976-82 have been evaluated. An increase in the catch of crayfish per unit effort was observed in 7 lakes, although significantly in one lake only. The varying results in the other lakes indicate that factors other than pH may be of greater importance for the development of crayfish populations after liming. Recruitment of fish improved in waters where liming resulted in pH <5.5. In lakes with pH <5.5 before and pH >5.5 after treatment, there was a significant increase in the number of fish caught, from 12 to 34 per unit effort. Due to improved recruitment the individual average weight was smaller and hence the catch in weight per unit effort was about the same as before liming. After lime treatment in streams which resulted in a stable pH of >5.5, the abundance of juvenile salmonids increased to numbers found in non-acidified streams. In other streams acid spates reduced the positive influence of liming on the abundance of juvenile salmonids. 33 references.

  2. Determination of homogeneous zones for liming recommendations of black pepper using geostatistics

    Directory of Open Access Journals (Sweden)

    Ivoney Gontijo

    Full Text Available ABSTRACT Studies aimed at determining homogeneous zones and the spatial variability of soil characteristics may improve the efficiency of agricultural input applications. The purpose of this study was to determine homogeneous zones for liming applications and to characterize the spatial variability of characteristics related to soil acidity and productivity in an Oxisol cultivated with black pepper (Piper nigrum L.. This study was carried out in São Mateus, state of Espírito Santo, Brazil. The experimental site was 100 x 120 m. A grid with 126 sampling points was established. Three soil sub-samples were collected at each sampling point in the black pepper canopy areas, at a 0-0.20 m depth. Crop productivity was estimated by harvesting the three plants neighboring each sampling point. Descriptive statistics and geostatistical analyses were performed. Homogeneous management zones were defined based on map of liming needs. Mathematical models adjusted to semivariograms indicated that all of the studied variables exhibited spatial dependency. An analysis of the spatial variability together with the definition of homogeneous zones can be used to increase the efficiency of soil liming.

  3. Advanced treatment of swine wastewater using an agent synthesized from amorphous silica and hydrated lime.

    Science.gov (United States)

    Tanaka, Yasuo; Hasegawa, Teruaki; Sugimoto, Kiyomi; Miura, Keiichi; Aketo, Tsuyoshi; Minowa, Nobutaka; Toda, Masaya; Kinoshita, Katsumi; Yamashita, Takahiro; Ogino, Akifumi

    2014-01-01

    Advanced treatment using an agent synthesized from amorphous silica and hydrated lime (M-CSH-lime) was developed and applied to swine wastewater treatment. Biologically treated wastewater and M-CSH-lime (approximately 6 w/v% slurry) were fed continuously into a column-shaped reactor from its bottom. Accumulated M-CSH-lime gradually formed a bed layer. The influent permeated this layer and contacted the M-CSH-lime, and the treatment reaction progressed. Treated liquid overflowing from the top of the reactor was neutralized with CO₂gas bubbling. The colour removal rate approximately exceeded 50% with M-CSH-lime addition rates of > 0.15 w/v%. The removal rate of PO(3⁻)(4) exceeded 80% with the addition of>0.03 w/v% of M-CSH-lime. The removal rates of coliform bacteria and Escherichia coli exceeded 99.9% with > 0.1 w/v%. Accumulated M-CSH-lime in the reactor was periodically withdrawn from the upper part of the bed layer. The content of citric-acid-soluble P₂O₅ in the recovered matter was>15% when the weight ratio of influent PO(3⁻)(4) -P to added M-CSH-lime was > 0.15. This content was comparable with commercial phosphorus fertilizer. The inhibitory effect of recovered M-CSH-lime on germination and growth of leafy vegetable komatsuna (Brassica rapa var. perviridis) was evaluated by an experiment using the Neubauer's pot. The recovered M-CSH-lime had no negative effect on germination and growth. These results suggest that advanced water treatment with M-CSH-lime was effective for simultaneous removal of colour, [Formula: see text] and coliform bacteria at an addition rate of 0.03-0.15 w/v%, and that the recovered M-CSH-lime would be suitable as phosphorus fertilizer.

  4. Preparation and Metallurgical Analysis of High Activity Burnt Lime for Steelmaking

    Institute of Scientific and Technical Information of China (English)

    Hua-qiang HAO; Yu-zhu ZHANG; Su-ju HAO; Chao-fa ZHANG; Wu-feng JIANG; Peng-hui CUI

    2016-01-01

    Burnt lime is an important material in steelmaking and its activity degree is a key factor for liquid steel quality.The burnt lime was made by the calcination of limestone in a high pressure electric furnace.The burnt lime mineralogical phases and micro-morphologies were characterized by X-ray diffraction (XRD)and field emission scan-ning electron microscopy (FE-SEM).The burnt lime activity degree was determined by acid-base titration,the burnt lime pore distribution was measured by mercury intrusion porosimetry (MIP),and the thermal effect of a mixture of burnt lime and slag was measured by differential scanning calorimetry (DSC).The results showed that the CaO grain size and pore size of burnt lime made under high pressure were larger than those of burnt lime made under atmos-pheric pressure.The CaO grain size and pore size increased and the laminate phenomenon also occurred clearly under high pressure.The activity degree of burnt lime made under high pressure was greater than that made under atmos-pheric pressure.The maximum activity degree was 437 mL for burnt lime made under a pressure of 0.4 MPa.For the same ratio of CaO to SiO2 ,the melting temperature,hemisphere temperature and fluidity temperature of slag decreased with increasing burnt lime activity degree.The higher the activity degree the burnt lime had,the better the slag forming occurred.It was advantageous for 2CaO.SiO2 and 3CaO.SiO2 forming at lower temperatures if the burnt lime activity degree was increased.

  5. Evaluasi Perlakuan Pendahuluan Menggunakan Kalsium Hidroksida untuk Biokonversi Jerami Padi Menjadi L-Asam Laktat oleh Rhizopus oryzae AT3 (Evaluation of Lime Pretreatment for Bioconversion of Rice Straw to L-Lactic Acid by Rhizopus Oryzae AT3

    Directory of Open Access Journals (Sweden)

    Dhina Aprilia Nurani Widyahapsari

    2016-12-01

    Full Text Available L-lactic acid can be used as a precursor of polylactic acid (PLA. PLA is a biodegradable biomaterial commonly used for biodegradable plastics. Lactic acid can be produced from lignocelluloses materials such as rice straw. Rice straw is composed of cellulose and hemicellulose that can be hydrolyzed to fermentable sugar by cellulolytic and hemicellulolytic enzymes then converted to L-lactic acid by Rhizopus oryzae. As most cellulose and hemicellulose present in lignocellulose biomass are not readily accessible for these enzyme, pretreatment is required to alter the structure of lignocellulose substrates. This research aimed to investigate the effect of lime pretreatment on rice straw bioconversion to L-lactic acid by Rhizopus oryzae AT3. Rice straw was pretreated with lime (Ca(OH2 at 85 °C for 16 hours. Unpretreated and pretreated rice straw were hydrolyzed using crude enzyme that produced by Trichoderma reesei Pk1J2. Enzyme production was carried out by solid state fermentation using rice straw and rice brand as substrate. Enzymatic hydrolysis was carried out in flasks. Each flask was added with unpretreated or pretreated rice straw, buffer citrate solution and crude enzyme then hydrolyzed for 0-96 hours. Hydrolysate was fermented by Rhizopus oryzae AT3 for 0-6 days by using adsorbed carrier solid-state fermentation method with polyurethane foam as inert support material. Lime pretreatment at 85 °C for 16 hour led to significant solubilisation of lignin and hemicellulose. It involved lignocellulose structure modified that enhance enzymatic hydrolysis and resulted higher reducing sugars than unpretreated rice straw. The high reducing sugars was not related to high lactic acid yields. Fermentation of pretreated rice straw hydrolysate by Rhizopus oryzae AT3 did not only produce L-lactic acid but also other compound. On the other hand, fermentation of unpretreated rice straw hydrolysate only produced L-lactic acid.   ABSTRAK Polimerisasi asam

  6. Eriophyes species (Acari: Eriophyoidea) inhabiting lime trees (Tilia spp.: Tiliaceae)--supplementary description and morphological variability related to host plants and female forms.

    Science.gov (United States)

    Soika, Grazyna; Kozak, Marcin

    2013-01-01

    Three poorly known species of the subfamily Eriophyinae living on Tilia spp. (Tiliaceae) are illustrated and supplementary descriptions are provided. Two of them, Eriophyes exilis (Nalepa 1892) and Eriophyes nervalis (Nalepa 1918), were recorded both in vein angle galls on leaves of Tilia platyphyllos Scop. and in erinea on leaves of Tilia tomentosa Moench, Tilia americana L. 'Moltkei', Tilia americana var. heterophylla (Vent.) Loudon, Tilia cordata Mill., Tiliajaponica (Miq.) Simonk., Tilia petiolaris DC. and Tilia zamoyskiana Wr6bl. The third species, Eriophyes tiliae Nalepa 1890, was found in nail galls on leaves of T platyphyllos, T americana and T. cordata. All of these Eriophyes species showed noticeable morphological differences between protogyne and deutogyne females in terms of the number of dorsal annuli, location of setae d, length of setae e and 3a, distance between tubercles 3a and the length and pattern of the prodorsal shield. Based on a comparative morphological analysis of this original data with that published by A. Nalepa, new synonyms for the following species are proposed: Erophyes exilis (Nalepa) = Eriophyes leiosoma Nalepa syn. nov.; Eriophyes nervalis (Nalepa) = Eriophyes tiliaceus Nalepa syn. nov., Eriophyes tiliae Nalepa = Eriophyes rudis Nalepa syn. nov. = Eriophyes tomentosae Nalepa syn. nov. A key to all studied Eriophyes species living on lime trees is included.

  7. [Determination of scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C in plants of Erycibe].

    Science.gov (United States)

    Xu, Xiao-kun; Chen, Zhi-yong; Liao, Li-ping; Zhang, Zi-jia; Wang, Zheng-tao

    2015-03-01

    An accurate and reliable analytical method for-simultaneous determination of six active components (scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C) in plants of Erycibe was developed. Scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C in the samples were well separated in analytical HPLC by gradual elution with methanol-0.1% formic acid solution. The chromatographic condictions: Agilent Poroshell 120 EC-C18 column, flowing rate being 1 mL x min(-1), detecting wavelength at 345 nm. Good linearities of scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C were in the range of 0.026 8-2.68, 0.027 0-2.70, 0.008 1-0.81, 0.018 8-1.88, 0.017 6-1.76, 0.019 6-1.96 μg, respectively (r > 0.999 6). The average recoveries of the six components were 98.1%, 98.7%, 100.8%, 100.4%, 99.7%, 101.1%; the relative standard deviations were 2.67%, 2.86%, 2.62%, 1.98%, 2.76%, 2.19%. The method is simple, feasible and reproducible and can be used for the quality control of plants of Erycibe.

  8. Influência do extrato pirolenhoso na calda de pulverização sobre o teor foliar de nutrientes em limoeiro 'Cravo' Effect of pyroligneous acid in the spraymg solutions on foliar nutrients content of 'Rangpur' lime

    Directory of Open Access Journals (Sweden)

    Marcelo Zanetti

    2004-12-01

    Full Text Available Com o objetivo de avaliar o efeito da presença do extrato pirolenhoso (EP na calda de pulverização sobre o teor foliar de nutrientes de limoeiro 'Cravo' (Citrus limonia Osbeck, foi desenvolvido um experimento com seis tratamentos e quatro repetições, em blocos ao acaso, em ambiente protegido. Os tratamentos constituíram da pulverização das soluções: T0 = água; T1 = solução de micronutrientes sem EP; T2 = solução de micronutrientes + EP (1cm³ dm-3; T3 = solução de micronutrientes + EP (2 cm³ dm-3; T4 = solução de micronutrientes + EP (5cm³ dm-3; T5 = solução de micronutrientes + EP (10 cm³ dm-3. A solução de micronutrientes foi preparada com sulfatos de Cu, Fe, Mn, Zn (250 mg dm-3 do elemento e ácido bórico (42,5 mg dm-3 de B. As plantas foram cultivadas em tubetes cônicos de 0,280 dm³, com substrato sem a adição de micronutrientes na formulação. As soluções foram pulverizadas uma única vez, aos 140 dias após o plantio (DAP, momento em que as plantas apresentavam aproximadamente 20 cm de altura. Ao final do experimento (160 DAP, quantificaram-se a massa seca e os teores de macro e micronutrientes da parte aérea e sistema radicular. A presença do extrato pirolenhoso na solução de micronutrientes não interferiu na concentração foliar de B, Fe e Zn em mudas de limoeiro 'Cravo'. Entretanto, na concentração de 10 cm³ dm-3, aumentou a concentração foliar de Cu e Mn. Observou-se também que as plantas pulverizadas com soluções contendo EP (1 a 10 cm³ dm-3 + micronutrientes apresentaram menor teor de Fe e maior teor de Ca no sistema radicular.This research studied the effect of pyroligneous acid (PA presence in the micronutrient solution sprayed on leaves on the foliar nutrient content of 'Rangpur lime' (Citrus limonia Osbeck0 seedlings, under screen house. An experiment in a randomized complete block design with six treatments and four replicates was set up. Treatments consisted of leaf spraying with

  9. Phenolic Acids in Plant-Soil-Microbe System: A Review

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phenolic acids are very common compounds in pedosphere. The objective of this review was to summarize the current knowledge of the behaviors of phenolic acids in plant-soil-microbe system. When phenolic acids originated from leaching, decomposition and exudation of living and dead plant tissues enter soils, they can react physicochemically with soil particle surfaces and/or incorporate into humic matter. Phenolic acids desorbed from soil particle surfaces and remained in solution phase can be utilized by microbe as carbon sources and absorbed by plants. The degradation products of phenolic acids by microbe include some organic and/or inorganic compounds such as new phenolic acids. In addition, phenolic acids in soils can stimulate population and activity of microbe. Phenolic acids can inhibit plants growth by affecting ion leakage, phytohormone activity, membrane permeability, hydraulic conductivity, net nutrient uptake, and enzyme activity. Behaviors of phenolic acids in soils are influenced by other organic compounds (phenolic acids, methionine, glucose, etc.) and/or inorganic ions. The role of phenolic acids as allelopathic agents should not be neglected only based on their low specific concentrations in natural soils, because numbers and interactions of phenolic acids will increase their allelopathic activities.

  10. Potential for Recycling Nutrients from Biosolids Amended with Clay and Lime in Coarse-Textured Water Repellence, Acidic Soils of Western Australia

    Directory of Open Access Journals (Sweden)

    Sanjutha Shanmugam

    2015-01-01

    Full Text Available Application of biosolids in soils is an efficient method of recycling nutrients from biosolids and it is considered even safer when it is modified after mixing and diluting with other suitable soil organic amendments. A variety of soil organic amendments, such as green manures and composts, are used for modifying and co-composting with biosolids. However, these may not be considered as appropriate biosolids disposal and remedial measures for soils with unique problems such as low soil pH, water repellence nature, and poor water and nutrient retention capacities due to soil textural issues. Historically, soil amendments such as lime, clay, and recently biochar are being applied for such problematic soils at Western Australia and these researches focused mostly on improvement in soil physical and chemical properties. However, studies with potential for applying modified biosolids with these amendments are not complete yet. This review focused on identifying such gaps in these studies from over 170 peer-reviewed key research and review articles published over decades to latest in these areas.

  11. Forest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest.

    Science.gov (United States)

    Melvin, April M; Lichstein, Jeremy W; Goodale, Christine L

    2013-12-01

    In acid-impacted forests, decreased soil pH and calcium (Ca) availability have the potential to influence biotic and abiotic controls on carbon (C) and nitrogen (N) cycling. We investigated the effects of liming on above- and belowground C and N pools and fluxes 19 years after lime addition to the Woods Lake Watershed, Adirondack Park, New York, USA. Soil pH and exchangeable Ca remained elevated in the forest floor and upper mineral soil of limed areas. Forest floor C and N stocks were significantly larger in limed plots (68 vs. 31 Mg C/ha, and 3.0 vs. 1.5 Mg N/ha), resulting from a larger mass of Oa material. Liming reduced soil basal respiration rates by 17% and 43% in the Oe and Oa horizons, respectively. Net N mineralization was significantly lower in the limed soils for both forest floor horizons. Additional measurements of forest floor depth outside of our study plots, but within the treatment and control subcatchments also showed a deeper forest floor in limed areas; however, the mean depth of limed forest floor was 5 cm shallower than that observed in our study plots. Using a differential equation model of forest floor C dynamics, we found that liming effects on C fluxes measured within our study plots could explain the small observed increase in the Oe C stock but were not large enough to explain the increase in the Oa. Our catchment-wide assessment of forest floor depth, however, indicates that our plot analysis may be an overestimate of ecosystem-scale C and N stocks. Our results suggest that the mechanisms identified in our study, primarily liming-induced reduction in decomposition rates, may account for much of the observed increase in forest floor C. These findings emphasize the importance of understanding of the effects of liming in hardwood forests, and the long-term impacts of acid deposition on forest C and N uptake and retention.

  12. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  13. Freeze concentration of lime juice

    Directory of Open Access Journals (Sweden)

    Ampawan Tansakul

    2008-11-01

    Full Text Available The main objective of this research was to study the effects of processing conditions, i.e. cooling medium temperature (-6, -12 and -18C and scraper blade rotational speed (50, 100 and 150 rpm on the freeze concentration of lime juice. The initial soluble solid content of lime juice was 7.6 Brix. Results showed that soluble solid content of lime juice increased as cooling medium temperature decreased while scraper blade rotational speed increased. It was also found that the processing condition with -18˚C cooling medium temperature and 150 rpm rotational speed of the scraper blade was the best among all studied conditions, although the loss of the soluble solids with ice crystals during ice separation was relatively high at 35%.

  14. Characterization of limes (Citrus aurantifolia) grown in Bhutan and Indonesia using high-throughput sequencing.

    Science.gov (United States)

    Penjor, Tshering; Mimura, Takashi; Matsumoto, Ryoji; Yamamoto, Masashi; Nagano, Yukio

    2014-04-30

    Lime [Citrus aurantifolia (Cristm.) Swingle] is a Citrus species that is a popular ingredient in many cuisines. Some citrus plants are known to originate in the area ranging from northeastern India to southwestern China. In the current study, we characterized and compared limes grown in Bhutan (n = 5 accessions) and Indonesia (n = 3 accessions). The limes were separated into two groups based on their morphology. Restriction site-associated DNA sequencing (RAD-seq) separated the eight accessions into two clusters. One cluster contained four accessions from Bhutan, whereas the other cluster contained one accession from Bhutan and the three accessions from Indonesia. This genetic classification supported the morphological classification of limes. The analysis suggests that the properties associated with asexual reproduction, and somatic homologous recombination, have contributed to the genetic diversification of limes.

  15. Mineral resource of the month: lime

    Science.gov (United States)

    ,

    2009-01-01

    The article presents facts about lime, which is said to be a caustic chemical manufactured from limestone or other calcium carbonates in a kiln at temperatures ranging from 935 to 1,350 degrees Celsius. It states that lime is widely used in industries such as steelmaking, paper production and chemical manufacturing. It also mentions that global lime production amounts up to 280 million metric tons annually. However, it notes that international trade in lime is limited.

  16. Influences of wetland plants on weathered acidic mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Eva Stoltz; Maria Greger [Stockholm University, Stockholm (Sweden). Department of Botany

    2006-11-15

    Establishment of Carex rostrata, Eriophorum angustifolium and Phragmites australis on weathered, acidic mine tailings (pH {approximately} 3) and their effect on pH in tailings were investigated in a field experiment. The amendments, sewage sludge and an ashes-sewage sludge mixture, were used as plant nutrition and their influence on the metal and As concentrations of plant shoots was analysed. An additional experiment was performed in greenhouse with E. angustifolium and sewage sludge as amendments in both weathered and unweathered tailings. After one year, plants grew better in amendments containing ashes in the field, also in those plants the metal and As shoot concentrations were generally lower than in other treatments. After two years, the only surviving plants were found in sewage sludge mixed with ashes. No effect on pH by plants was found in weathered acidic mine tailings in either field- or greenhouse experiment.

  17. Phosphatidic acid: a multifunctional stress-signalling lipid in plants.

    NARCIS (Netherlands)

    C. Testerink; T. Munnik

    2005-01-01

    Phosphatidic acid (PA) has only recently been identified as an important signaling molecule in both plants and animals. Nonetheless, it already promises to rival the importance of the classic second messengers Ca(2+) and cAMP. In plants, its formation is triggered in response to various biotic and a

  18. Effects of lime and calcium on root development and nodulation of clovers

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, D.; Ritchey, D.; Belesky, D. [USDA ARS, Booneville, AR (USA). SPA Dale Bumpers Small Farms Research Centre

    2002-07-01

    Acidic soils can reduce the nodulation of forage legumes. Studies with a Gilpin series silt loam (fine loamy, mixed mesic Typic Hapludult) from New, WV, USA were conducted to determine the effects of lime on root development, and to assess effects of soil Ca and pH on nodulation. Liming increased soil pH from 4.8 to 5.3, nodulation, and root growth of white clover (Trifolium repens L., cultivar Huia) 28 d after planting. Seedlings from unlimed soil formed fewer indeterminate and determinate roots. Next, soils were amended with either CaCO{sub 3} or a mixture of CaCO{sub 3} and CaSO{sub 4} to achieve a soil pH of 4.7 to 6.1 and soil Ca of 170 to 680 mg kg{sup -1} soil. There was a strong quadratic relationship between number of nodules per white clover seedling 28 d after planting and soil pH. Another experiment was conducted to determine if these trends were expressed under field conditions. In 1993, field plots were amended with lime or a coal combustion by-product that supplied Ca as CaSO{sub 4} and seeded in 1994 to cool-season grasses. In spring of 1998, plots were drilled with either red (Trifolium pratense, L.) or white clover. The nodules per primary root were determined in May (1998,1999) and August (1998). Number of nodules per primary root was more closely associated with soil pH than soil Ca.

  19. Utilization of slaked lime for the regulation of pH value in the process of copper

    Directory of Open Access Journals (Sweden)

    Petković Aleksandar V.

    2009-01-01

    Full Text Available The investigations of used lime at plant from company Messer-Tehnogas, Belgrade, were in the aim to improvement technologically results from flotation concentration of copper minerals in flotation plant Veliki Krivelj. This paper shows usage of slaked lime, which is waste in the process of technical gas production, for regulation of pH value in the process of copper minerals flotation concentration. It is important to point out that slaked lime is a waste material that is not dangerous. Preparation and dosage includes preparation procedures, which enable introduction into flotation process with the aim of achieving better results. Lime from Limekiln Zagrađe is brought into four storage places in flotation. Volume of each storage place is 80 m3. Lime in pieces from storage place is added by airbladders on transportation line and by system of transportation lines lime gets to the ball mill. At the mill entrance water is added and then follows lime grinding. Milk glass of lime thus prepared goes to the pump basket from where is transported by pipeline to conditioner, and then by manual and (or automatic valves it is dosed to the flotation concentration of copper minerals process. Prospect of advancement and rationalization of the used lime in flotation plant Bor, Veliki Krivelj and Majdanpek as well as a way to link different branches of industry was demonstrated. Total cost of lime supplying, transporting, preparation and distribution related slaked lime is lower for 2.955 din/kg. Particularly, using lime from Messer in content of 2.1 g/l value of pH 11.82 is possible to obtain.

  20. Altura de planta e componentes do rendimento do feijoeiro em função de população de plantas, adubação e calagem Common bean plant height and primary yield components affected by plant population, fertilization and liming

    Directory of Open Access Journals (Sweden)

    Antonio Barbara de Souza

    2003-12-01

    Full Text Available Com o objetivo de investigar os efeitos de populações de plantas e níveis de adubação e calagem sobre a altura e os componentes do rendimento de grãos do feijoeiro (Phaseolus vulgaris L. em um solo Podizólico Vermelho Amarelo distrófico, de baixa fertilidade natural, foram conduzidos três experimentos de campo em Lavras - MG. Nos dois primeiros, utilizaram-se a cv. Pérola e delineamento experimental em blocos casualizados, com quatro repetições, no arranjo fatorial 4x4, envolvendo quatro populações: 120, 180, 240 e 300 mil plantas.ha-1 e quatro níveis de adubação e calagem: 0, 1/3, 2/3 e 3/3 das doses de fertilizantes e calcário recomendadas para o nível 2 de tecnologia pela Comissão de Fertilidade do Solo do Estado de Minas Gerais. No terceiro ensaio, o arranjo fatorial foi 2x4x4, envolvendo duas cultivares, Pérola e Carioca, quatro populações, 100, 200, 300 e 400 mil plantas.ha-1; e quatro níveis de adubação e calagem 0, 1/2, 2/2 e 3/2 das doses. O incremento da população de plantas reduziu a altura e o número de vagens por planta e o incremento dos níveis de adubação e calagem elevou a altura, o número de vagens por planta, o número de grãos por vagem e a massa média do grão.With a view to defining the plant density and level of fertilization and liming for the bean crop ( Phaseolus vulgaris L. in a natural low fertility soil (distrophic Red Yellow Podzolic, three field experiments were carried out in Lavras - MG. In the two first experiments the cultivar Pérola was utilized and the randomized block experimental design, with four replications and 4x4 factorial arrangement, involving four populations (120, 180, 240 and 300 thousand plants.ha-1 and four levels of fertilization and liming (0, 1/3, 2/3 and 3/3 of the recommended doses of fertilizers and limistone for the level 2 of technology by the Comissão de Fertilidade do Solo do Estado de Minas Gerais was adopted. In the third trial, the factorial

  1. Molecular evolution of plant AAP and LHT amino acid transporters

    Directory of Open Access Journals (Sweden)

    Mechthild eTegeder

    2012-02-01

    Full Text Available Nitrogen is an essential mineral nutrient and it is often transported within living organisms in its reduced form, as amino acids. Transport of amino acids across cellular membranes requires proteins, and here we report the phylogenetic analysis across taxa of two amino acid transporter families, the Amino Acid Permeases (AAPs and the Lysine-Histidine-like Transporters (LHTs. We found that the two transporter families form two distinct groups in plants supporting the concept that both are essential. AAP transporters seem to be restricted to land plants. They were found in Selaginella moellindorffii and Physcomitrella patens but not in Chlorophyte, Charophyte or Rhodophyte algae. AAPs were strongly represented in vascular plants, consistent with their major function in phloem (vascular tissue loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13 and phylogenetic analysis indicates that it is basal to land plant LHTs. This is consistent with the hypothesis that characean algae are ancestral to land plants. LHTs were also found in both Selaginella moellindorffii and Physcomitrella patens as well as in monocots and eudicots. To date, AAPs and LHTs have mainly been characterized in Arabidopsis (eudicots and these studies provide clues to the functions of the newly identified homologs.

  2. Effect of liming on yield and quality of peppermint and Sachalin mint in fine sand soil of Northern Finland

    OpenAIRE

    Aflatuni, Abbas; Uusitalo, Jouko; Ek, Sari; Hohtola, Anja

    2003-01-01

    Soil acidity commonly limits plant production in the fine sand soil of Northern Finland, which often has a low pH (5.5-6.5) and contains low levels of Ca and Mg. The effect of five liming (10% Mg and 19% Ca) levels, 0, 4, 8, 12, and 16 tons ha -1 , on the herb and essential oil yield and menthol and menthone content of two mint species (peppermint, Mentha x piperita, a variety of Black Mitcham and Sachalin mint, Mentha arvensis var. sacchalinensis) cultivated in fine sand soil in Northern Fin...

  3. Effect of different liming levels on the biomass production and essential oil extraction yield of Cunila galioides Benth

    OpenAIRE

    2012-01-01

    Poejo is an aromatic and medicinal plant native to highland areas of south Brazil, in acid soils with high Al3+ concentration. The main objective of the present work was to evaluate the effect of liming on the extraction yield of essential oil of three chemotypes of poejo (Cunila galioides Benth). For this purpose, the experiments were performed in a greenhouse, using 8-litre pots. The treatments were four dosages of limestone (0, 3.15, 12.5, and 25 g.L-1) and a completely random experimental...

  4. ACID/HEAVY METAL TOLERANT PLANTS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30. The objective of Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior growth characteristics and sustainability on...

  5. Evaluation of three rootstocks root system for acid lime ‘tahiti’ at Piauí state/ Sistema radicular de três porta-enxertos para lima ácida ‘tahiti’ no estado do Piauí

    Directory of Open Access Journals (Sweden)

    Adeodato Ari Cavalcante Salviano

    2007-10-01

    Full Text Available The objective of this work was to evaluate the development of the root system of three rootstocks for ‘Tahiti’acid lime [Citrus latifolia (Yu.Tanaka Tanaka]: Rangpur lime (C. limonia Osbeck; Swingle citrumelo [Poncirus trifoliata (L. Raf. x C. paradisi Macf.]; Flying Dragon trifoliate (P. trifoliata (L. Raf.var. (FD – in the soil and environment conditions of the county of José de Freitas, Piauí, located on 04º 52' latitude S and 42º 42' longitude W and 110 m of altitude, in Aw climate. It was used the trench method. A wooden frame divided into 0.1 x 0.2 m parts was fixed in the soil profile and a digital photograph was taken from each part. These photographs were analyzed by software SIARCS 3.0 for sizing of the root system and the data gotten, submitted to the analysis of variance with Tukey test at the level of 5% of probability. The experimental design was entirely randomized, with three treatments (rootstocks and four replications (trenches. The root systems of the rootstocks had 90% of concentration until the depth of 0,4 m, and it was observed that 60% of the roots were concentrated in the first 0,2 m. The root system of the Rangpur lime demonstrated to be superior, in lenght (cm.200 cm-² to the Flying Dragon trifoliate and Swingle citrumelo root systems.O objetivo deste trabalho foi avaliar o desenvolvimento radicular de três porta-enxertos para lima ácida ‘Tahiti’ [Citrus latifolia (Yu.Tanaka Tanaka]: limão Cravo (C. limonia Osbeck; citrumelo Swingle [Poncirus trifoliata (L. Raf. x C. paradisi Macf.]; trifoliata Flying Dragon (P. trifoliata (L. Raf.var. (FD, no município de José de Freitas, Piauí, localizado a 04º 52’ latitude S e 42º 42’ longitude W, e altitude de 110m, onde predomina clima Aw. Foram abertas trincheiras com quatro repetições, para colocação de quadro-gabarito de madeira, com divisórias de 0,1 m na profundidade por 0,2 m na largura, perfazendo cinco camadas na profundidade e seis posi

  6. Population genetic analysis reveals a low level of genetic diversity of 'Candidatus Phytoplasma aurantifolia' causing witches' broom disease in lime.

    Science.gov (United States)

    Al-Abadi, Shaikha Y; Al-Sadi, Abdullah M; Dickinson, Matthew; Al-Hammadi, Mohammed S; Al-Shariqi, Rashid; Al-Yahyai, Rashid A; Kazerooni, Elham A; Bertaccini, Assunta

    2016-01-01

    Witches' broom disease of lime (WBDL) is a serious phytoplasma disease of acid lime in Oman, the UAE and Iran. Despite efforts to study it, no systemic study attempted to characterize the relationship among the associated phytoplasma, 'Candidatus Phytoplasma aurantifolia', from the three countries. This study utilized sequences of the 16S rRNA, imp and secA genes to characterize 57 strains collected from Oman (38), the UAE (9) and Iran (10). Phylogenetic analysis based on the 16S rRNA gene showed that the 57 strains shared 98.5-100 % nucleotide similarity to each other and to strains of 'Ca. P. aurantifolia' available in GenBank. The level of genetic diversity was low based on the 16S rRNA (0-0.011), imp (0-0.002) and secA genes (0-0.015). The presence of low level of diversity among phytoplasma strains from Oman, the UAE and Iran can be explained by the movement of infected lime seedlings from one country to another through trading and exchange of infected plants. The study discusses implication of the findings on WBDL spread and management.

  7. Effect of different liming levels on the biomass production and essential oil extraction yield of Cunila galioides Benth.

    Science.gov (United States)

    Mossi, A J; Pauletti, G F; Rota, L; Echeverrigaray, S; Barros, I B I; Oliveira, J V; Paroul, N; Cansian, R L

    2012-11-01

    Poejo is an aromatic and medicinal plant native to highland areas of south Brazil, in acid soils with high Al3+ concentration. The main objective of the present work was to evaluate the effect of liming on the extraction yield of essential oil of three chemotypes of poejo (Cunila galioides Benth). For this purpose, the experiments were performed in a greenhouse, using 8-litre pots. The treatments were four dosages of limestone (0, 3.15, 12.5, and 25 g.L(-1)) and a completely random experimental design was used, with four replications and three chemotypes, set up in a 3 × 4 factorial arrangement. The parameters evaluated were dry weight of aerial parts, essential oil content and chemical composition of essential oil. Results showed that liming affects the biomass production, essential oil yield and chemical composition, with cross interaction verified between chemotype and limestone dosage. For the higher dosage lower biomass production, lower yield of essential oil as well as the lowest content of citral (citral chemotype) and limonene (menthene chemotype) was observed. In the ocimene chemotype, no liming influence was observed on the essential oil yield and on the content of major compounds. The dosage of 3.15 g.L(-1) can be considered the best limestone dosage for the production of poejo for the experimental conditions evaluated.

  8. ROSMARINIC ACID AND ITS PLANT SOURCES IN THE CRIMEA

    Directory of Open Access Journals (Sweden)

    A. E. Paliy

    2015-01-01

    Full Text Available The article presents data on the content of phenolics and rosmarinic acid in 32 species of aromatic and medicinal plants from Lamiaceae, Asteraceae and Apiaceae families, native to the South Coast of the Crimea. The concentration of phenolic compounds in the studied species was 490.3 – 18511.0 mg/100g of plant raw materials. Rosmarinic acid was found in 15 species from Lamiaceae and Asteraceae families. Rosmarinic acid was not noticed in the studied plants from Apiaceae family. The concentration of rosmarinic acid in the studied plants amounted to 40.6 – 2535.5 mg/100g of plant raw materials. On the basis of the obtained results such species as Origanum vulgare L., Majorana hortensis Moench., Mentha longifolia L., Thymus vulgaris L. (thymol type can be considered as a promising source of rosmarinic acid.

  9. Influences of wetland plants on weathered acidic mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, Eva [Department of Botany, Stockholm University, Lilla Frescativaegen 5, S-106 91 Stockholm (Sweden)]. E-mail: eva.stoltz@botan.su.se; Greger, Maria [Department of Botany, Stockholm University, Lilla Frescativaegen 5, S-106 91 Stockholm (Sweden)]. E-mail: maria.greger@botan.su.se

    2006-11-15

    Establishment of Carex rostrata, Eriophorum angustifolium and Phragmites australis on weathered, acidic mine tailings (pH {approx}3) and their effect on pH in tailings were investigated in a field experiment. The amendments, sewage sludge and an ashes-sewage sludge mixture, were used as plant nutrition and their influence on the metal and As concentrations of plant shoots was analysed. An additional experiment was performed in greenhouse with E. angustifolium and sewage sludge as amendments in both weathered and unweathered tailings. After one year, plants grew better in amendments containing ashes in the field, also in those plants the metal and As shoot concentrations were generally lower than in other treatments. After two years, the only surviving plants were found in sewage sludge mixed with ashes. No effect on pH by plants was found in weathered acidic mine tailings in either field- or greenhouse experiment. - Wetland plant establishment on acidic mine tailings may contribute to a reduced metal release and a stabilisation of pH.

  10. Amino acids in the rhizosphere: from plants to microbes.

    Science.gov (United States)

    Moe, Luke A

    2013-09-01

    Often referred to as the "building blocks of proteins", the 20 canonical proteinogenic amino acids are ubiquitous in biological systems as the functional units in proteins. Sometimes overlooked are their varying additional roles that include serving as metabolic intermediaries, playing structural roles in bioactive natural products, acting as cosubstrates in enzymatic transformations, and as key regulators of cellular physiology. Amino acids can also serve as biological sources of both carbon and nitrogen and are found in the rhizosphere as a result of lysis or cellular efflux from plants and microbes and proteolysis of existing peptides. While both plants and microbes apparently prefer to take up nitrogen in its inorganic form, their ability to take up and use amino acids may confer a selective advantage in certain environments where organic nitrogen is abundant. Further, certain amino acids (e.g., glutamate and proline) and their betaines (e.g., glycine betaine) serve as compatible solutes necessary for osmoregulation in plants and microbes and can undergo rapid cellular flux. This ability is of particular importance in an ecological niche such as the rhizosphere, which is prone to significant variations in solute concentrations. Amino acids are also shown to alter key phenotypes related to plant root growth and microbial colonization, symbiotic interactions, and pathogenesis in the rhizosphere. This review will focus on the sources, transport mechanisms, and potential roles of the 20 canonical proteinogenic amino acids in the rhizosphere.

  11. Application of organic compounds to lime and limestone products; Yuki kagobutsu wo riyoshita sekkaikei zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H. [Okutama Kogyo Co. Ltd., Tokyo (Japan)

    1998-11-01

    Outlined herein are lime-based composites with organic compounds by classifying them into three groups of limestone-, unslacked lime- and slacked lime-based. Calcium carbonate, being hydrophilic on the surface, is sparingly wettable with hydrophobic polymers. It is therefore surface-modified with organic compounds to secure filler surfaces compatible and strongly interactive with polymers. These organic compounds include fatty acids and their salts, rosin, amines, esters, surfactants, wax, monomers and polymers. Composites of resins with calcium carbonate are limited to plastics for common use. PTFE resin containing cement or lime as the soil stabilizer has shown good results to prevent dust for the soil improvement method which uses soil of the site. Also described herein are compositing researches to increase strength of carbonated and hardened slacked lime by impregnating it with MMA, and development of slacked lime having an approximately 3 times larger specific surface area than slacked lime of special grade to remove dry, acidic emissions exhausted from garbage incinerators. 15 refs., 7 figs., 3 tabs.

  12. Lime kiln dust as a potential raw material in portland cement manufacturing

    Science.gov (United States)

    Miller, M. Michael; Callaghan, Robert M.

    2004-01-01

    In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.

  13. Liming and phosphorus fertilization in soils under cerrado. 1. Dry matter accumulation and phosphorus uptake by sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Souza, L.F.S. (Empresa Brasileira de Pesquisa Agropecuaria, Bahia. Centro Nacional de Pesquisa de Mandioca e Fruticultura); Fernandes, M.S.; Velloso, A.C.X. (Universidade Federal Rural do Rio de Janeiro (Brazil). Dept. de Solos); Castro, A.F. de (Empresa Brasileira de Pesquisa Agropecuaria, Rio de Janeiro. Servico Nacional de Levantamento e Conservacao de Solos)

    1983-07-01

    The effects of liming and phosphorus fertilizer (300 Kg P/sub 2/O/sub 5//ha) application on dry matter accumulation and P-uptake by sorghum plants were studied under greenhouse conditions. Plants were grown in four Oxisols originally under cerrado vegetation. There was a positive correlation between P-fertilization and liming on dry matter accumulation and P-uptake by plants. The results showed that the main effect of liming in these soils was on the elimination of phytotoxicity, mainly due to exchangeable aluminum.

  14. Peanut response to lime and molybdenum application in low pH soils Resposta do amendoim à calagem e ao molibdênio em solo ácido

    Directory of Open Access Journals (Sweden)

    J. A. Quaggio

    2004-08-01

    Full Text Available Liming acid soils is considered to assure the availability of Mo in crops. Additionally, in peanuts (Arachis hypogaea L. the positive response to liming is associated to a better supply of Ca+2, Mo for the nitrogenase-complex activity, and other non-nitrogen fixing activities of the crop. This study was thus undertaken to assess the effect of lime, Mo, and the lime-Mo interaction on peanut crop, on an acid Ultisol at the Mococa Experimental Station, Instituto Agronômico, São Paulo State, Brazil, from 1987 to 1990. A randomized complete block design with four replications, in a 4 x 4 factorial arrangement, was used in the study. The factors included four lime rates (0, 2, 4, and 6 t ha-1 broadcast and incorporated into the soil, and Mo (0, 100, 200, and 300 g ha-1 as (NH42MoO4 applied as seed dressing. Lime was applied once at the beginning of the study while Mo was applied at every planting. Peanut seed cv 'tatu' was used. Significant increase in peanut kernel yield with liming was only evident in the absence of Mo, whereas the peanut response to Mo was observed in two out of the three harvests. A higher yield response (28 % increase was found when Mo was applied without liming. Soil molybdenum availability, as indicated by plant leaf analysis, increased significantly when lime was applied. Molybdenum fertilization led to higher leaf N content, which in turn increased peanut yield in treatments with smaller lime doses.A calagem em solos ácidos tem sido considerada prática suficiente para garantir a disponibilidade de molibdênio para as culturas. Adicionalmente, seu efeito positivo na cultura do amendoim tem sido associado ao melhor fornecimento de cálcio, maior disponibilidade de molibdênio para o complexo nitrogenase, e outros processos na planta não relacionados com a fixação biológica de N. Esse trabalho foi realizado, com vistas em estudar os efeitos de doses de calcário e de molibdênio e suas interações na cultura do amendoim

  15. Use of alkaline flyash-based products to amend acid soils: Plant growth response and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Spark, K.M.; Swift, R.S. [University of Queensland, Gatton, Qld. (Australia)

    2008-07-01

    Vast quantities of flyash are generated annually by the burning of coal in the power industry, with most of this material being stockpiled with little prospect of being utilised at present. Two alkaline flyash-based products (FAP) for use as soil amendments (FAP1 and FAP2) have been assessed using glasshouse pot trials to determine the suitability of using these products to treat acid soils. The products both contain about 80% flyash which originated from coal-fired electricity generation. The acid soils used in the study were 2 Podsols and a Ferrosol, all originating from south-east Queensland and ranging in pH (1 : 5 suspension in water) from 4 to 5.5. The flyash products when applied to the soil significantly enhanced growth of maize plants (Zea mays L.), with optimal application rates in the range 1.25-5% w/w. The FAP/soil mixtures and plants were analysed using a range of methods including extraction with DTPA, and plant biomass (aboveground dry matter). The results indicate that in addition to the liming effect, the flyash in the alkaline flyash products may enhance plant growth as a result of increasing the uptake of micro-nutrients such as copper, zinc, and manganese. The study suggests that flyash has the potential to be used as a base material in the production of soil amendment materials that can change soil pH and act as a fertiliser for certain soil micro-nutrients such as Cu, Mn, and Zn.

  16. Salicylic Acid and its Function in Plant Immunity

    Institute of Scientific and Technical Information of China (English)

    Chuanfu An; Zhonglin Mou

    2011-01-01

    The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network.Characterization of a number of genes functioning in SA biosynthesis,conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid,cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.

  17. New Development of Acid Regeneration in Steel Pickling Plants

    Institute of Scientific and Technical Information of China (English)

    W F Kladnig

    2008-01-01

    For acid pickling heat treated mild steel and steel products,up to the middle of the last century,sulfuric acid was primarily in use,which has been replaced stepwise by hydrochloric acid since the sixties.During this time,the pickling of high alloyed steel with hydrofluoric acid or mixtures for hydrofluoric acid together with nitric acid has also been applied on industrial scale.The technologies used by several plant contractors hereby show considerable differences in their engineering.The study provides a survey of the progress in the state of art of regeneration technology as well as the use of different pickling media in the form of a review on existing technologies as well as improvements done within the recent years in the area.

  18. Mammalian-like Purple Acid Phosphatases in Plants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Purple acid phosphatases (PAPs) comprise of a family of binuclear metal-containing hydrolases, some members of which have been isolated and characterized from animal, plant and fungal sources[1]. PAPs not only catalyze the hydrolyses of a wide range of phosphate esters and anhydrides under acidic reaction conditions,but also catalyze the generation of hydroxyl radicals in a Fenton-like reaction, by virtue of the presence of a redox-active binuclear metal center.

  19. Efeitos da calagem na fertilidade do solo e na nutrição e produtividade da goiabeira Effects of liming on soil fertility, plant nutrition and guava yield

    Directory of Open Access Journals (Sweden)

    William Natale

    2007-12-01

    Full Text Available A acidez do solo é um dos mais importantes fatores que limitam a produção em regiões tropicais. Assim, o objetivo deste trabalho foi avaliar os efeitos da calagem na fertilidade do solo e na nutrição e produtividade da goiabeira (Psidium guajava L.. O experimento foi realizado na Estação Experimental de Citricultura de Bebedouro, São Paulo, em um Latossolo Vermelho distrófico (V = 26 % na camada de 0-20 cm, no período de agosto/1999 a julho/2006. As doses de calcário empregadas foram: 0; 1,85; 3,71; 5,56 e 7,41 t ha-1. Durante 78 meses após aplicação do corretivo foram realizadas análises químicas de solo. Foi feita avaliação do estado nutricional e da produtividade durante cinco safras agrícolas. A calagem promoveu alteração nos atributos químicos do solo ligados à acidez, elevando o pH, Ca, Mg, soma de bases (SB e saturação por bases (V e diminuindo H + Al, até 60 cm. Os teores foliares de Ca e Mg aumentaram com as doses de calcário. As maiores produções acumuladas de frutos estiveram associadas a um valor de V de 50 % na linha e 65 % na entrelinha das goiabeiras.Soil acidity is one of the most important constraints to agricultural production in the tropics. For this reason, the objective of this research was to evaluate the effects of soil liming on the performance of guava (Psidium guajava L. trees. The experiment took place at the Citrus Experimental Station in Bebedouro, state of São Paulo, Brazil. The soil was a Typic Haplustox (V = 26 % in the 0 to 20 cm layer between August 1999 and July 2006. The following doses of limestone were employed: 0, 1.85, 3.71, 5.56, and 7.41 t ha-1. During the 78 months after starting the experiment, soil chemical attributes were periodically examined. Over a period of five years, the guava tree leaves were analyzed for micro-and macronutrients and the fruit yield was determined. Liming improved the evaluated soil chemical attributes: pH, calcium (Ca, magnesium (Mg, BS, V, and

  20. Abscisic acid controlled sex before transpiration in vascular plants.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  1. Role of ascorbic acid against pathogenesis in plants

    Directory of Open Access Journals (Sweden)

    Taqi Ahmed Khan

    2011-09-01

    Full Text Available Plants vary considerably in their physiological response to various kinds of environmental stress. To prevent damage caused by pathogenic attack and to acclimate to change in their environment, plants have evolved direct and indirect mechanism for sensing and responding to pathogenic stimuli. Ascorbic acid (AA is found in all eukaryotes including animals and plants and lack completely in prokaryotes except cyanobactaria, have been reported to have a small amount. AA has now gained significant place in plant science, mainly due to its properties (antioxidant and cellular reductant etc., and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms against environmental stresses. As it is evident from the present review, recent progress on AA potentiality in tolerance of plants to pathogenic attack has been impressive to a greater extent. AA produced in plants as indirect response against pathogenic attack at different sites in plants and its intertwined network cause changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with pathogenic resistance. Indeed, AA plays an important role in resistance to pathogenesis.

  2. Potassium supply to cotton roots as affected by potassium fertilization and liming

    Directory of Open Access Journals (Sweden)

    Rosolem Ciro Antonio

    2003-01-01

    Full Text Available Cotton (Gossypium hirsutum is known to have a high requirement for K and to be very sensitive to low soil pH. Most of K reaches plant roots by diffusion in the soil. As K interacts with Ca and Mg, liming can interfere in K movement in the soil, affecting eventually the plant nutrition. The objective of this work was to study the effect of dolomitic lime and 0, 15, 30, 45 and 60 g kg-1 of K on the supply of K to cotton roots. Cotton plants were grown up to 40 days in 5 L pots containing a Dark Red Latosol (Typic Haplusthox with 68% and 16% of sand and clay, respectively. There was an increase in dry matter yields and in K accumulation due to K fertilization. Root interception of soil K was also increased by K application, but was not affected by lime. Mass flow and diffusion increased linearly with K levels up to 60 mg kg-1, in pots with lime. In pots without lime the amount of K reaching the roots by diffusion increased up to 45 mg kg-1, but decreased at the highest K level. Accordingly, there was more K reaching the roots through mass flow at the highest K level. This happened because there were more fine roots in pots without lime, at the highest K level. As the roots grew closer, there was a stronger root competition leading to a decrease in the amount of K diffused to cotton roots.

  3. Omega-3 fatty acids and antioxidants in edible wild plants.

    Science.gov (United States)

    Simopoulos, Artemis P

    2004-01-01

    Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.

  4. Basic Oxygen Furnace Slag as a Liming Agent for Paddy and Upland Field Soils

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Il [Pohang Research Institute of Industrial Science and Technology, Pohang(Korea)

    1998-03-31

    Basic oxygen furnace (BOF) slag, a by-product of the iron and steelmaking industry produced in large quantities in Korea, poses a substantial disposal challenge. The BOF slag used in this study was 1/3 CaCO{sub 3} in total neutralizing power and application of 7-8 Mgha{sup -1} was needed to bring soil pH to 6.5 from pH 5.0-5.5 in silty clay or clay loam soil contained about 10% organic matter. A field assay was conducted to study whether BOF slag could be used as a dolomitic liming agent for agricultural soils. Four slag rates (0, 4, 8, 12 Mgha{sup -1})were investigated for their effect on soil properties, mineral concentrations in leaf tissues of rice and soybean, and yield of the crops. Slag application at 8 Mgha{sup -1} rate in paddy field increased pH, Ca, Mg, P, Si and Fe content in soil and rice yield by 4.3-14.2% depending on the soil type. In upland field the 8 Mgha{sup -1} rate increased pH, Ca and Fe content in soil and soybean yield by 36.6%. Thus, BOF slag appears to be a useful liming material for correcting soil acidity on both paddy and upland field soils and for increasing Ca, Mg, P, Si, and Fe concentration in plants. (author). 27 refs., 7 tabs.

  5. Effects of lime and concrete waste on Vadose Zone carbon cycling

    OpenAIRE

    Thaysen, Eike Marie; Jessen, Søren; Postma, D; Jakobsen, R.; Jacques, D; Ambus, Per; E. Laloy; Jakobsen, Iver

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination of experimental and modeling tools to determine ongoing biogeochemical processes. Our results demonstrate that lime and CCW amendments to acid soil contribute to the climate forcing by largely increasing the ...

  6. Trienoic fatty acids and plant tolerance of temperature

    Directory of Open Access Journals (Sweden)

    Routaboul Jean-Marc

    2002-01-01

    Full Text Available The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3 or a combination of 18:3 and hexadecatrienoic (16:3 acids typically account for approximately two-thirds of all thylakoid membrane fatty acids and over 90% of the fatty acids of monogalactosyl diacylglycerol, the major thylakoid lipid [1, 2]. The occurrence of trienoic fatty acids as a major component of the thylakoid membrane is especially remarkable since these fatty acids form highly reactive targets for active oxygen species and free radicals, which are often the by-products of oxygenic photosynthesis. Photosynthesis is one of the most temperature-sensitive functions of plant [3, 4]. There remains a widespread belief that these trienoic fatty acids might have some crucial role in plants to be of such universal occurrence, especially in photosynthesis tolerance of temperature [5].

  7. The properties of doped sand-lime products

    Directory of Open Access Journals (Sweden)

    Dachowski Ryszard

    2016-01-01

    Full Text Available Sand-lime products are natural materials consisting of lime, sand and water with the least content of radioactive elements in comparison to other masonry elements. They are characterized by very high compressive strength, high acoustic insulation, good thermal properties, provide a friendly atmosphere and prevent the spread of mold and bacterial flora. In addition they are fully recyclable. White bricks through the porous structure and the occurrence of capillaries have the ability to rising water. The height of capillary action is dependent on the contact angle and the size of existing pores in the material. This property affects the frost resistance and other characteristics of durability of wall materials operated under conditions of intense exposure to moisture. The aim of the study is to determine the impact modifier on the properties of autoclaved sand-lime products. For testing used autoclaved sand-lime brick dimensions 40x40x160 [mm]. The weight of the products consists of 5% lime, 90% sand and 5% lithium water glass (MP=2,6 and MP=7,0. The produced samples were subjected to autoclaving at temperatures of 203◦C and pressure of 1.6 MPa in collaboration with the Silicate Production Plant in Ludynia. Three finished sets of samples (standard, modified with lithium silicate 2.6 and 7.0 have been immersed in water to the desired height during certain time. The results show the diversity of the internal structure of the tested products. In particular pore distribution, size and volume.

  8. A Model for Dissolution of Lime in Steelmaking Slags

    Science.gov (United States)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-08-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate

  9. Influence of Lime and Phosphate on Nodulation of Soil-Grown Trifolium subterraneum L. by Indigenous Rhizobium trifolii.

    Science.gov (United States)

    Almendras, A S; Bottomley, P J

    1987-09-01

    Previous research had identified four serogroups of Rhizobium trifolii indigenous to the acidic Abiqua soil (fine, mixed, mesic Cumulic Ultic Haploxeroll). Nodulation of subterranean clover (Trifolium subterraneum L.) by two of the serogroups, 6 and 36, was differentially influenced by an application of CaCO(3) which raised the pH of the soil from 5.0 to 6.5. These studies were designed to characterize this phenomenon more comprehensively. Liming the soil with either CaCO(3), Ca(OH)(2), MgO, or K(2)CO(3) significantly (P = 0.05) increased the percent nodule occupancy by serogroup 36, whereas the percent nodule occupancy by serogroup 6 was decreased, but the decrease was significant (P = 0.05) only after application of either CaCO(3) or Ca(OH)(2). Application of KH(2)PO(4) (25 mg of P kg of soil), which did not change soil pH, also significantly (P = 0.05) increased the percent nodule occupancy by serogroup 36. Application of KH(2)PO(4) in combination with Ca(OH)(2) produced the same increase in nodule occupancy by serogroup 36 as did individual application of the two materials. Soil populations of serogroup 36 consistently, and in the majority of cases significantly (P = 0.05), outnumbered those of serogroup 6 before planting and after harvest regardless of soil treatment or the outcome of nodulation. Soil chemical and plant analyses provided no evidence that liming was simulating phosphate addition by increasing the availability and subsequent uptake of soil P(i) by the subclover plants. Liming did, however, result in a significant transformation (30 to 50 mg of P kg of soil) of P(i) from the residual soil P(i) fraction into an NaOH-extractable organic P fraction during the preplant equilibration period.

  10. Influence of Lime and Phosphate on Nodulation of Soil-Grown Trifolium subterraneum L. by Indigenous Rhizobium trifolii†

    Science.gov (United States)

    Almendras, Angela S.; Bottomley, Peter J.

    1987-01-01

    Previous research had identified four serogroups of Rhizobium trifolii indigenous to the acidic Abiqua soil (fine, mixed, mesic Cumulic Ultic Haploxeroll). Nodulation of subterranean clover (Trifolium subterraneum L.) by two of the serogroups, 6 and 36, was differentially influenced by an application of CaCO3 which raised the pH of the soil from 5.0 to 6.5. These studies were designed to characterize this phenomenon more comprehensively. Liming the soil with either CaCO3, Ca(OH)2, MgO, or K2CO3 significantly (P = 0.05) increased the percent nodule occupancy by serogroup 36, whereas the percent nodule occupancy by serogroup 6 was decreased, but the decrease was significant (P = 0.05) only after application of either CaCO3 or Ca(OH)2. Application of KH2PO4 (25 mg of P kg of soil−1), which did not change soil pH, also significantly (P = 0.05) increased the percent nodule occupancy by serogroup 36. Application of KH2PO4 in combination with Ca(OH)2 produced the same increase in nodule occupancy by serogroup 36 as did individual application of the two materials. Soil populations of serogroup 36 consistently, and in the majority of cases significantly (P = 0.05), outnumbered those of serogroup 6 before planting and after harvest regardless of soil treatment or the outcome of nodulation. Soil chemical and plant analyses provided no evidence that liming was simulating phosphate addition by increasing the availability and subsequent uptake of soil Pi by the subclover plants. Liming did, however, result in a significant transformation (30 to 50 mg of P kg of soil−1) of Pi from the residual soil Pi fraction into an NaOH-extractable organic P fraction during the preplant equilibration period. PMID:16347431

  11. 感染柑橘速衰病毒的墨西哥酸橙病株中病程相关蛋白的检测%Detection of a pathogenesis-related protein associated with Citrus tristeza virus infection in Mexican lime plants

    Institute of Scientific and Technical Information of China (English)

    林尤剑; Phyll.,R

    2000-01-01

    应用改进的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法从感染柑橘速衰病毒(CTV)强株系和弱株系的墨西哥酸橙病株中检测到一种相对分子质量约为13000的特异蛋白,而在健株中未能检测到,该蛋白电泳谱带没有差异.应用Western印迹技术进一步分析表明,这种蛋白不与CTV特异的多克隆抗体1052和3DF1单克隆抗体反应.这暗示着该蛋白是墨西哥酸橙在CTV侵染胁迫条件下编码产生的一种病程相关蛋白.研究结果也表明,应用SDS-PAGE方法检测这一特异蛋白,可作为诊断墨西哥酸橙植株感染CTV的一种有效的分子生物学辅助检测方法.%A specific protein with a relative molecular mass of approximately 13 000 was detected in the total protein extracts from Mexican lime plants infected with severe or mild isolates of Citrus tristeza virus (CTV) by a modified sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) procedure.However,this specific protein was not detected in healthy plants.There were no differences among these specific proteins from Mexican lime seedlings infected with mild or severe isolates of CTV.Further analysis of the specific protein with Western blot techniques and CTV specific antibodies showed that the specific protein did not react with CTV coat protein specific polyclonal or monoclonal antibodies,1052 and 3DF1.It is suggested that the specific protein is a pathogenesis-related (PR) protein encoded by the Mexican lime plants infected with CTV.The results also indicated that the detection of this PR protein with the SDS-PAGE procedure is a useful biochemical method for detection of CTV in Mexican lime plants when the specific antibodies of CTV are not available.

  12. Isolation of lactic acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Bohn, Jelena; Yüksel-Dadak, Aytül; Dröge, Stefan; König, Helmut

    2017-02-20

    Direct molecular approaches provide hints that lactic acid bacteria play an important role in the degradation process of organic material to methanogenetic substrates in biogas plants. However, their diversity in biogas fermenter samples has not been analyzed in detail yet. For that reason, five different biogas fermenters, which were fed mainly with maize silage and manure from cattle or pigs, were examined for the occurrence of lactic acid-forming bacteria. A total of 197 lactic acid-forming bacterial strains were isolated, which we assigned to 21 species, belonging to the genera Bacillus, Clostridium, Lactobacillus, Pediococcus, Streptococcus and Pseudoramibacter-related. A qualitative multiplex system and a real-time quantitative PCR could be developed for most isolates, realized by the selection of specific primers. Their role in biogas plants was discussed on the basis of the quantitative results and on physiological data of the isolates.

  13. Steam slaking of lime - kinetics and technology. New energy effective lime slaking technology in kraft pulping; Aangslaeckning av kalk - kinetik och teknik. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2008-06-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional lime burning and slaking methods are that heat recovery is bad and heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant, and to recover heat at higher temperatures. The forecasted method means that lime is slaked with water vapour, for example combined with an indirect heated lime mud drier and a lime kiln. This project is a follow-up to pilot tests performed in a specific machine equipment at year 2006. The target group is pulp and paper industry using the kraft process. The owner of this new project is Carnot AB and the project is performed inside the Vaermeforsk Program for Pulp and Paper Industry 2006-2008. Partners and advisers in project group have been KTH Energy Processes, CTH Energy and Environment, LTH Chemical Technology, SMA Mineral AB, and reference group from STORA Enso Skoghall, Sodra Cell, M-Real Husum and SCA Packaging Piteaa. The task in this stage has included market investigations and laboratory tests. Contacts have been made with suppliers, preliminary dimensioning of process equipment and budget offers are received. Economic calculations have been made out of the offers. The laboratory tests are done as an examination paper at KTH Energiprocesser on the reactivity of burned lime from kraft lime kiln when it is slaked with water vapour instead of green liquor. The vapour intended to be used is at atmospheric pressure or even down to 0,2 atm. Complementary addition to these laboratory

  14. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants.

    Science.gov (United States)

    Petrie, James R; Singh, Surinder P

    2011-01-01

    Algae are becoming an increasingly important component of land plant metabolic engineering projects. Land plants and algae have similar enough genetics to allow relatively straightforward gene transfer and they also share enough metabolic similarities that algal enzymes often function in a plant cell environment. Understanding metabolic systems in algae can provide insights into homologous systems in land plants. As examples, algal models are currently being used by several groups to better understand starch and lipid metabolism and catabolism, fields which have relevance in land plants. Importantly, land plants and algae also have enough metabolic divergence that algal genes can often provide new metabolic traits to plants. Furthermore, many algal genomes have now been sequenced, with many more in progress, and this easy access to genome-wide information has revealed that algal genomes are often relatively simple when compared with plants. One example of the importance of algal, and in particular microalgal, resources to land plant research is the metabolic engineering of long-chain polyunsaturated fatty acids into oilseed crops which typically uses microalgal genes to extend existing natural plant biosynthetic pathways. This review describes both recent progress and remaining challenges in this field.

  15. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol.

    Science.gov (United States)

    Jennings, Edward W; Schell, Daniel J

    2011-01-01

    Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields.

  16. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Jorda, M.P. [Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo, 28006 Madrid (Spain); Garrido, F., E-mail: fernando.garrido@ccma.csic.es [Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo, 28006 Madrid (Spain); Garcia-Gonzalez, M.T. [Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo, 28006 Madrid (Spain)

    2010-03-15

    This study evaluates the potential use of four industrial by-products (phosphogypsum (PG), red gypsum (RG), sugar foam (SF), and ashes from biomass combustion (ACB)), applied at two rates in single and combined amendments to reduce the mobility and availability of Pb, Zn and Ni in a metal-spiked acid soil. Leaching experiments were done to estimate leachability indexes and assess their effectiveness. Most of the treatments significantly reduced the metal leachability although only a few were effective for all metals. Based on principal component and cluster analysis, sugar foam (SF) and a mixture of RG and ACB (RG+ACB), both applied at high rate, were selected as first choices to reduce mobility and availability of the three metals. Metal sorption mechanisms involved in the reduction of their leachability were identified using scanning electron microscopy. In the SF-treated samples, the metals were found associated to amorphous Al-hydroxy polymers deposited on phyllosilicates and organic matter particles. In the (RG+ACB)-treated samples, Pb, Zn, and traces of Ni were found associated to Fe/Ti oxide phases with a significant concentration of S, suggesting the formation of metal-sulfate ternary complexes.

  17. Agrobacterium-mediated transformation of Mexican lime (Citrus aurantifolia Swingle) using optimized systems for epicotyls and cotelydons

    Science.gov (United States)

    Epicotyl and internodal stem segments provide the predominantly used explants for regeneration of transgenic citrus plants following co-cultivation with Agrobacterium. Previous reports using epicotyls segments from Mexican lime have shown low affinity for Agrobacterium tumefaciens infection which re...

  18. Soil nutrient availability and its impact on fruit quality of Tahiti acid lime Disponibilidade de nutrientes no solo e impactos na qualidade de frutos da lima-ácida Tahiti

    Directory of Open Access Journals (Sweden)

    Dirceu Mattos Junior

    2010-03-01

    Full Text Available The Tahiti acid lime in Brazil is mostly grown in the São Paulo State. The value of this crop production ranks among the ten most important fruits in the country. The Brazilian exports of Tahiti limes have increased in the last years with a corresponding increased demand for superior quality of fresh fruits, which is affected by mineral nutrients. Therefore, this study evaluated nutrient soil availability and its influence on nutritional status of trees based on the determination of leaf and fruit nutrient concentrations, fruit characteristics, and post harvest quality. Eleven commercial groves with trees older than 4-yr and differently managed were studied. Plots with six trees in each grove were sampled for soil (0-20 cm depth layer, leaf and fruit analyses with three replicates. Correlation coefficients were pair wised established for all variables. The results showed that N leaf concentration was well correlated with green color of fruit peel as measured by a color index (r = -0.71**, and which was optimum with Leaf-N around 22 g kg-1. Leaf-Ca was inversely correlated with fruit water loss after 14-day interval from harvest (r = -0.54* demonstrating that Ca plays an important role in Tahiti fruit shelf-life. Data also suggested that increased fruit K concentration correlated with increased fruit water losses during storage (r >0.58*.No Brasil, a lima-ácida Tahiti é produzida principalmente em São Paulo. O valor dessa produção situa-se entre as dez variedades de frutas mais importantes no País. As exportações brasileiras de Tahiti in natura aumentaram significativamente nos últimos anos e têm demandado frutas de qualidade superior. Essas características são afetadas pelos nutrientes minerais. Assim, o trabalho avaliou os efeitos da disponibilidade de nutrientes no solo, sua influência no estado nutricional das plantas e no teor desses nos frutos, e correlações sobre a qualidade de Tahiti, como maneira de criar subsídios para

  19. Conservação refrigerada de lima ácida 'Tahiti': uso de 1-metilciclopropeno, ácido giberélico e cera Cold storage of 'Tahiti' lime: use of 1-methylcyclopropene, gibberellic acid and wax

    Directory of Open Access Journals (Sweden)

    Maria Luiza Lye Jomori

    2003-12-01

    Full Text Available A conservação refrigerada da lima ácida 'Tahiti' sob baixa temperatura permite o aumento no período de comercialização dos frutos, entretanto, a perda da coloração verde da casca é o principal entrave que impede este prolongamento. O objetivo do presente trabalho foi verificar o efeito da aplicação do 1-metilciclopropeno (1-MCP, associado ao uso de cera e ácido giberélico (GA, sobre a conservação refrigerada de lima ácida 'Tahiti'. Foram aplicados os tratamentos: T1:Controle; T2: 1-MCP (1 mg. L-1 durante 12 horas a 20ºC; T3: Cera (0,1 mL por fruto; T4: Ácido giberélico - GA (10 mg. L-1; T5: 1-MCP + Cera; T6: 1-MCP + GA; T7: Cera + GA; T8: 1-MCP + Cera + GA; T9: T2 + re-aplicação de 1-MCP após 30 dias de armazenamento. Os frutos foram armazenados durante 30 e 60 dias a 10C e 90% UR. A cera foi suficiente para retardar a perda de coloração verde da casca até 30 dias de conservação a 10ºC. O 1-MCP também mantém a coloração verde até 30 dias de conservação refrigerada, enquanto que a sua reaplicação após este período não apresenta efeito para a manutenção da coloração verde da casca. No presente trabalho não foi pronunciado o efeito do ácido giberélico. Após 60 dias de armazenamento os frutos não se apresentavam comercializáveis.The storage of 'Tahiti' lime under low temperatures allows the marketing period to be extended, however the loss of the green skin colour prevent such improvement to be achieved. The purpose of this research was to verify the efficiency of 1-methylcyclopropene (1-MCP associated with the use of gibberellic acid (GA and wax during the cold storage of 'Tahiti' lime. The treatments used were: T1: fruit without treatment (control; T2: 1-MCP (1,0 ì L. L-1 during 12 h at 20ºC; T3: wax (0,1 mL per fruit; T4: GA (10 mg. L-1; T5: 1-MCP + wax; T6: 1-MCP + GA; T7: wax + GA; T8: 1-MCP + wax + GA; T9: T2 + new application of 1-MCP after 30 days of storage. Fruit were stored during 30 and

  20. Comparative evaluation of aerial lime mortars for architectural conservation

    OpenAIRE

    Faria, Paulina; Henriques, Fernando M.A.; Rato, Vasco

    2008-01-01

    Journal of Cultural Heritage 9 (2008) 338-346 International bibliography on conservation usually refers that mortars made with lime putty with long extinction periods behave better than others made with the current dry hydrated limes. In order to evaluate this assess, an experimental study of lime mortars was carried out, using dry hydrated lime and two lime putties. It becomes clear that the use of lime putties with long extinction periods in mortars allow better performances, pa...

  1. 腐殖酸与盐分浓度对石灰加固土有明黏土的影响以及微观结构研究%Influence of humic acid and salt concentration on lime-stabilized ariake clays and microstructure research

    Institute of Scientific and Technical Information of China (English)

    Chirdchanin MODMOLTIN; 陆江; Katsutada ONITSUKA

    2004-01-01

    首先从力学性质方面考察了有机质之一的腐殖酸和盐分浓度对于石灰加固土的影响.分析的结果显示对于腐殖酸含量较高的黏土由于凝硬反应被阻碍使得加固土的强度与屈服应力较小,并且由于盐分浓度较高时腐殖酸活性降低,因此随着盐分浓度的增加腐殖酸对于石灰加固土的影响减小.然后通过分析加固土的微观结构,我们讨论了石灰加固土的力学性质与微观结构之间的关联性.%This study first investigates the effects of humic acid, and salt concentration on lime-stabilized Ariake clays with emphasis on their mechanical properties. The results show that the strength and the yield stress of lime-stabilized clay with high humic acid are low due to the obstruction of the pozzolanic reaction,and the effect of humic acid on strength of stabilized clays decreases with increasing salt concentration because the humic acid becomes inactive at higher salt concentration. Then through analyzing the microstructure feature of the stabilized clays, some relationship between microstructure and mechanical properties of lime-stabilized clays are established.

  2. Use of clean coal technology by-products as agricultural liming techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stehouwer, R.C.; Sutton, P.; Dick, W.A. [Ohio Agricultural Research and Development Center, Wooster, OH (United States). Dept. of Agronomy

    1995-03-01

    Dry flue gas desulfurization (FGD) by-products are mixtures of coal fly-ash, anhydrite (CaCO{sub 4}), and unspent lime- or limestone-based sorbent. Dry FGD by-products frequently have neutralizing values greater than 50% CaCO{sub 3} equivalency and thus have potential for neutralizing acidic soils. Owing to the presence of soluble salts and various trace elements, however, soil application of dry FGD by-products may have adverse effects on plant growth and soil quality. The use of a dry FGD by-product as a limestone substitute was investigated in a field study on three acidic agricultural soils (pH 4.6, 4.8, and 5.8) in eastern Ohio. The by-product (60% CaCO{sub 3} equivalency) was applied in September, 1992, at rates of 0, 0.5, 1.0, and 2.0 times the lime requirement of the soils, and alfalfa (Medicago sativa L.) and corn (Zea mays L.) were planted. Soils were sampled immediately after FGD application and three more times every six months thereafter. Samples were analyzed for pH and water soluble concentrations of 28 elements. Soil pH was increased by all FGD rates in the zone of incorporation (0--10 cm), with the highest rates giving a pH slightly above 7. Within one year pH increases could be detected at depths up to 30 cm. Calcium, Mg, and S increased, and Al, Mn, and Fe decreased with increasing dry FGD application rates. No trace element concentrations were changed by dry FGD application except B which was increased in the zone of incorporation. Dry FGD increased alfalfa yield on all three soils, and had no effect on corn yield. No detrimental effects on soil quality were observed.

  3. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    Science.gov (United States)

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL.

  4. OPTIMIZATION OF LIME PRETREATMENT FOR ENZYMATIC SACCHARIFICATION OF WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Miroslav Ondrejovič

    2014-02-01

    Full Text Available The aim of this work was optimization of lime pretreatment parameters such as temperature, time and reaction ratio to maximization of reducing saccharide yields occurred by enzyme hydrolysis of pretreated plant material (wheat straw. Pretreatment conditions were optimized using response surface methodology. The optimal conditions were chosen to promote reducing saccharide yields following enzymatic digestion and they were temperature 91.5 °C, time 2.4 hours and reaction ratio 19.7 mL to 1 g of treated wheat straw. The experimental values agreed with predicted within a 95 % confidence interval. The computed model of wheat straw pretreatment by lime can be used for the effective utilization of secondary products obtained in agriculture sector.

  5. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    Science.gov (United States)

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review.

  6. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different degre

  7. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  8. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  9. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  10. Respostas de tangerineiras 'Montenegrina' à calagem e adubação orgânica e mineral 'Montenegrina' tangerine responses to liming and to organic and mineral fertilizers

    Directory of Open Access Journals (Sweden)

    Nestor Valtir Panzenhagen

    1999-04-01

    Full Text Available Esta pesquisa objetivou estudar a influência da calagem e de adubações minerais e orgânicas na produção de tangerineiras (Citrus deliciosa Tenore cv. Montenegrina, enxertadas em Poncirus trifoliata Raf. O plantio foi realizado em julho de 1988, num solo Podzólico Vermelho-Escuro, de textura franco-argilosa. O delineamento experimental constou de blocos ao acaso, com nove tratamentos e quatro repetições, usando três plantas úteis por parcela. Os tratamentos utilizados foram: testemunha (sem adubação e sem calagem; solo corrigido a pH 6,5 antes do plantio; adubações com esterco de aviário + calagem anualmente; adubações com esterco bovino + calagem anualmente; adubações com N e K + calagem anualmente; adubações com N e K + calagem anualmente + correção com P antes do plantio; adubações com N, P na dose simples e K + calagem anualmente; adubações com N, P na dose dupla e K + calagem anualmente; adubações anuais com N, P na dose simples e K, sem calagem. A adubação corretiva com P, na instalação do pomar, foi suficiente para assegurar uma produção de frutos similar à obtida pelas adubações de reposição anual deste nutriente, até oito anos após o plantio. A elevação dos teores foliares de N foi positivamente relacionada com o aumento da produção de frutos e com a diminuição do peso médio dos mesmos. O uso de sulfato de amônio acidifica o solo e requer maior quantidade de calagem de manutenção.The objectives of the present study were to investigate the influence of liming and mineral and organic fertilization on yields of cv. 'Montenegrina' tangerines (Citrus deliciosa Tenore grafted onto Poncirus trifoliata Raf. The grove was planted in July of 1988 on a Dark-Red Podzolic (Rhodic Paleudult soil. The experiment was set up in randomized blocks design composed of nine treatments and four replicates, with three plants per plot. The treatments were: control (without liming and fertilizers; soil acidity

  11. LANDSCAPE ARCHAEOLOGY ALONG LIMES TRANSALUTANUS

    Directory of Open Access Journals (Sweden)

    Eugen S. Teodor

    2014-09-01

    Full Text Available The project addresses the historical monuments comprised in the longest Roman ‘linear defence’ structure present on the Romanian territory.Despite it being the longest, this historic structure is the least protected and the least known in its technical details. Was indeed Limes Transalutanus an incomplete limes (lacking civilian settlements, for example, an odd construction (a vallum without fossa, an early-alarm line rather than a proper defensive line? Taking on these historical and archaeological challenges, the team attempts to develop an investigation technology applicable to large scale archaeological landscapes - a full evaluation chain, involving aerial survey, surface survey, geophysical investigation, multispectral images analysis, statistic evaluation and archaeological diggings. This technological chain will be systematically applied on the whole length of the objective, that is, on a 155 km distance. The attempt to find answers to issues related to the earth works’ functionality, layout, structure, chronology and relation with adjacent sites will be grounded on exploring the relations of the monument with the surrounding environment, by focussing on finding methods to reconstruct the features of the ancient landscapes, like systematic drilling, palynological tests and toponymical studies.

  12. Evaluation of Lime for Use in Mortar

    Directory of Open Access Journals (Sweden)

    Naktode P.L.

    2014-02-01

    Full Text Available Lime has been used in India as material of construction from very ancient days. The manner in which lime structures about 2000 years old have withstood the ravages of time bear irrefutable evidence to the durability of lime mortars. Lime mortars were the mortars of very recent years – used until the twentieth century. Although they are almost forgotten today, they still remain a viable and important construction method [1]. There is something about this material that remains just as valuable today as it was 150 years ago [2]. The lime belt of Vidarbha area is not of industrial grade. To use for construction purpose it needs some improvement and alteration in the ingredients. This calls the development of an alternative approach to make it suitable for construction in large extent. Keywords:

  13. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction

    DEFF Research Database (Denmark)

    Kaya, Merve; Sousa, Antonio G.; Crepeau, Marie-Jeanne

    2014-01-01

    on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions...... on the chemical and macromolecular characteristics of pectin samples. Methods Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction...... to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. Conclusions Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related...

  14. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  15. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P. [Univ. of Wisconsin, Madison, WI (United States)

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  16. INFLUENCE OF LIMING AND WASTE ORGANIC MATERIALS ON THE ACTIVITY OF PHOSPHATASE IN SOIL CONTAMINATED WITH NICKEL

    Directory of Open Access Journals (Sweden)

    Beata Kuziemska

    2014-10-01

    Full Text Available A study was carried out on soil following a two-year pot experiment that was conducted in 2009–2010, in three repetitions in Siedlce. The experiment included the following factors: 1 – amount of Ni in soil (0, 75, 150 and 225 mg·kg-1 soil by applying an aqueous NiSO4·7H2O solution; 2 – liming (0 and Ca according to 1 Hh as CaCO3; 3 – organic waste products (rye straw at a dose of 4 t·ha-1 and brown coal at a dose of 40 t·ha-1. In each experimental year, orchard grass was the test plant and four swaths were harvested. The activities of acidic and alkaline phosphatase, pH and the content of carbon in organic compounds were determined in the soil samples collected after each grass swath and in each experimental year. It was found that Ni at 75 mg·kg-1 soil activated the enzymes under study, whereas higher doses caused their statistically-confirmed inactivation. The lowest activity of the investigated enzymes was detected in soil supplemented with 225 Ni·kg-1 soil. Liming caused an increase in the activity of alkaline phosphatase and a reduction in the activity of acidic phosphatase. Straw and brown coal induced a substantial increase in the activity of both enzymes in the tested soil samples. Both liming and straw and carbon eliminated the negative effect of higher nickel doses on the activity of the enzymes under study.

  17. Aplicación de ácido giberélico en precosecha y cera en poscosecha a frutos de limón mexicano Preharvest application of gibberellic acid and wax at postharvest in fruit of mexican lime

    Directory of Open Access Journals (Sweden)

    Rosario Álvarez-Armenta

    Full Text Available Este trabajo se efectuó en una huerta comercial ubicada en Tecomán, Colima, México durante 2006, para determinar el efecto precosecha de la aplicación de ácido giberélico (AG3 en frutos de limón mexicano. Se realizaron 3, 2, 1 y 0 aplicaciones de 10 mg L-1 de ácido giberélico a frutos en desarrollo a los 64, 78 y 92 días después de la antesis. Además, un día después de la cosecha, se aplicó una cubierta con cera de carnauba a la mitad de los frutos de cada tratamiento. El efecto del regulador de crecimiento y de la cera de carnauba en los frutos de limón se evaluó al final de un período de almacenamiento en refrigeración a 9 °C, durante 35 días y de la exposición durante siete días a 20 ºC, para simular condiciones de comercialización. Los parámetros considerados para determinar la acción de los reguladores de crecimiento exógenos fueron: índice de color; sólidos solubles totales (ºBx, acidez titulable, ácido ascórbico y pérdida de peso. Los resultados obtenidos revelaron que el tratamiento de tres aplicaciones de 10 mg L-1 de AG3 + cera, mantuvo las características de calidad de los frutos de limón al final de ambos períodos de almacenamiento. Así, la combinación del regulador y la cera retrasaron la senescencia, principalmente durante los primeros 35 días de almacenamiento bajo condiciones de refrigeración. Después de ese período, en todos los tratamientos se observó una reducción en el contenido de vitamina C y acentuados cambios en la coloración del fruto.This work was conducted during 2006 in a commercial orchard located in Tecomán, Colima, Mexico, in order to determine the effect of preharvest application of gibberellic acid (GA3 to mexican lime fruits. Sprays with 10 mg L-1 gibberellic acid, were made 3, 2, 1 and 0 times to developing fruits at 64, 78 and 92 days after anthesis. In addition, a day after harvest, a carnauba wax cover was applied to half of the fruits from each treatment. The

  18. Boronic acids as tools to study (plant) developmental processes?

    Science.gov (United States)

    Matthes, Michaela; Torres-Ruiz, Ramón A

    2017-05-04

    Boron (B) is an essential micronutrient for organisms. In plants, B is known to stabilize the cell wall by crosslinking Rhamnogalacturonan II through ester bonds formed with cis-diols of sugar moieties. However, B is believed to be required for additional functions such as stability and function of (plasma membrane) proteins involved in signal transduction pathways. We have recently shown that boronic acids, competitors of B, efficiently induce perfect phenocopies of monopteros mutants. This effect is enigmatic because like B, boronic acids should find numerous cellular targets and thus disturb many biologic processes ending in a spectrum of unspecific embryo phenotypes. Based on chemical characteristics of boronic acids and their derivatives we discuss reasons that could explain this unusual specificity. The peculiarities of this class of compounds could provide new tools for studying developmental processes.

  19. Effect of Reactivity of Quick Lime on the Properties of Hydrated Lime Sorbent for SO2 Removal

    Institute of Scientific and Technical Information of China (English)

    H.G.Shin; H.Kim; Y.N.Kim; H.S.Lee

    2009-01-01

    The hydration of quick lime and the sulfation of hydrated lime were carried out for verification of relationship between the reactivity of quick lime and the properties of hydrated lime as a sorbent.The effect of reactivity of quick lime was investigated with the change of calcination temperature and time.Results obtained showed that the temperature rise during the hydration of quick limes varied from 31 to 69℃ with the variation of calcination temperature and time.The specific surface area and the sulfation ability of hydrated lime prepared by hydration of quick lime showed a proportional relationship with the reactivity of quick lime.The hydrated lime which was prepared by hydration of quick lime calcined at 1100℃ had the highest reactivity and showed 41.53 m2/g of the specific surface area, 0.16 cm3/g of the pore volume and 87% of the removal efficiency for SO2 removal.

  20. Soil lime level (pH) and VA-Mycorrhiza effects on growth responses of sweetgum seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.A.; Young, J.L.; Linderman, R.G.

    1983-01-01

    Sequential greenhouse experiments limed a strongly acid surface and subsurface horizons of phosphorus-deficient Jory clay loam with increments of calcium carbonate to attain a range in soil pH from 5.0 to 8.1. In the absence of vesicular-arbuscular mycorrhizae (VAM), neither the organic matter-rich surface nor the organic matter-poor subsurface horizon supported growth of sweetgum seedlings at any pH despite regular nutrient supplements. The effects of pH, VAM, and soil horizon on nutrient accumulation and plant nutrient concentrations were variable. Nitrogen and phosphorus concentrations were generally higher in the VAM than in control seedlings, which suggests that host plant should be matched with VAM species adapted to particular soil and climate conditions to obtain maximum benefit from a mycorrhizal association. 18 references, 2 figures, 3 tables.

  1. Advanced mineral calciner for regeneration of lime. Final report, March 1995--May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Namazian, M.; Nickeson, R.; Lovas, B.; Miller, G.; Kelly, J.

    1997-12-31

    There are approximately 800 pulp, paper and paperboard mills in the United States. Pulp and paper is the ninth largest industry in US, uses 2.8 quads of energy per year and ranks third among all domestic US industries in the cost of energy consumed. A significant fraction of the energy consumed in pulp and paper plants is needed to recover chemicals that are used in breaking down the wood chips into pulp. In particular, 0.1 quads of energy per year are used to regenerate lime. Furthermore, pulp and paper plant operations generate 9,870 tons of NOx per year. Additionally over two million tons of spent lime are sent to landfills each year. In addition, growth in paper demand and changes in plant processes (e.g., bleaching), as a result of environmental pressures, will continue to drive the need for more lime regeneration capacity. Unless the increased capacity can be delivered productively and inexpensively, the growth in pulp and paper may occur in overseas markets. Furthermore, if new environmental constraints cannot be met at low cost, existing US pulp and paper production capacity may also move off-shore. The advanced mineral calciner (AMC) technology was developed to address this lime regeneration need. Prior to describing the technology, and the program of work that was used to test the concept, conventional lime regeneration systems and their limitations are described.

  2. The shrinkage in lime mortars

    Directory of Open Access Journals (Sweden)

    Sánchez, J. A.

    1997-03-01

    Full Text Available Nowadays, the methodology existing to measure the shrinkage in air, developed for paste and cement mortars, has serious problems to be applied to lime mortars, due to its different mechanism of hardening several modifications in Norms UNE 80-113-86 y 80-112-89 make possible the determination of the shrinkage in these traditional mortars.

    La metodología existente en la actualidad para la medida de la retracción de secado, desarrollada para las pastas y los morteros de cemento, presenta serios problemas a la hora de su aplicación a los morteros de cal debido a su distinto mecanismo de endurecimiento. Algunas modificaciones de las normas UNE 80-113-86 y 80-112-89 hacen posible la determinación de la retracción en estos morteros tradicionales.

  3. Liming effect in the degradation of 14C-glyphosate in soils

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, Sayonara A.C.M.; Lavorenti, Arquimedes [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mails: samoreno@esalq.usp.br; alavoren@esalq.usp.br; Tornisielo, Valdemar L. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: vltornis@cena.usp.br

    2007-07-01

    Liming is soil fertility management practice essential in tropical soils, in general extremely acidic. This practice, by influencing physical, chemical and biological features of soils may influence the behavior of organic molecules in soils. The glyphosate is one the most widely used pesticides in Brazil in several cultures to pest management control. Studies on its fate in soil are still incipient, mainly under the effect of liming practice The objective of the present study was to verify the effect of liming practice in the degradation of glyphosate in Red Latosol (LE) and Quartzarenic Neosol (RQ) soils and also in the microbial activity of the same soils. The experiment was conducted in a completely randomized design in a 2 x 2 factorial scheme, corresponding to two soils and two management conditions (with liming and without liming), with four replicates. The Radiometric technique was utilized to evaluate the evolution the {sup 14}CO{sub 2} at intervals of 7 days, during 70 days. The study of microbial activity was conducted parallel to the degradation experiment, using the methodology of radiolabelled glucose ({sup 14}C-glucose), which was measured at intervals of fourteen days, during 70 days. The results showed that in the studied soils, the liming increased the {sup 14}C-glyphosate mineralization and the microbial activity. (author)

  4. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Jorrín, J.; González-Fernández, P.

    2016-11-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil. (Author)

  5. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida

    Directory of Open Access Journals (Sweden)

    Juan Jorrín

    2016-03-01

    Full Text Available The seminatural prairie of the Raña of Cañamero (Spain is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass on the alpha(α-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs and herbaceous biomass (t/ha, and enhanced desirable α-diversity values (richness, abundance and community equity. We conclude that the plant-conservative model: i do not affect statistically the species richness of the prairie; ii the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil.

  6. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    Science.gov (United States)

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes.

    Science.gov (United States)

    Sjöstedt, Carin; Wällstedt, Teresia; Gustafsson, Jon Petter; Borg, Hans

    2009-09-01

    The possible existence of the potentially toxic oxyanions of Al (Al(OH)(4)(-)), As (HAsO(4)(2-)), and Mo (MoO(4)(2-)) was examined in excessively limed lakes. In-situ dialysis (MWCO 1 kDa) was performed in the surface and bottom waters of two excessively limed lakes (pH 7.1-7.7) and one acidic lake (pH approximately 5.4). The dialysable metal concentrations were compared to the equilibrium distribution of species as calculated with the geochemical code Visual MINTEQ incorporating the CD-MUSIC and Stockholm Humic models for complexation onto colloidal ferrihydrite and dissolved organic matter. Arsenic and molybdenum in the excessively limed lakes were to a large extent present in the dialysable fraction (>79% and >92% respectively). They were calculated to exist as free or adsorbed oxyanions. Most of the Al was observed to reside in the colloidal fraction (51-82%). In agreement with this, model predictions indicated aluminium to be present mostly as colloids or bound to dissolved organic matter. Only a small fraction was modelled as Al(OH)(4)(-) ions. In most cases, modelled values were in agreement with the dialysis results. The free concentrations of the three oxyanions were mostly low compared to toxic levels.

  8. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestedt, Carin, E-mail: carinsj@kth.se [Department of Land and Water Resources Engineering, KTH (Royal Institute of Technology), Teknikringen 76, SE-100 44 Stockholm (Sweden); Waellstedt, Teresia [Department of Aquatic Sciences and Assessment, SLU (Swedish University of Agricultural Sciences), P.O. Box 7050, SE-750 07 Uppsala (Sweden); Gustafsson, Jon Petter [Department of Land and Water Resources Engineering, KTH (Royal Institute of Technology), Teknikringen 76, SE-100 44 Stockholm (Sweden); Borg, Hans [Department of Applied Environmental Science, SU (Stockholm University), SE-106 91 Stockholm (Sweden)

    2009-09-01

    The possible existence of the potentially toxic oxyanions of Al (Al(OH){sub 4}{sup -}), As (HAsO{sub 4}{sup 2-}), and Mo (MoO{sub 4}{sup 2-}) was examined in excessively limed lakes. In-situ dialysis (MWCO 1 kDa) was performed in the surface and bottom waters of two excessively limed lakes (pH 7.1-7.7) and one acidic lake (pH {approx} 5.4). The dialysable metal concentrations were compared to the equilibrium distribution of species as calculated with the geochemical code Visual MINTEQ incorporating the CD-MUSIC and Stockholm Humic models for complexation onto colloidal ferrihydrite and dissolved organic matter. Arsenic and molybdenum in the excessively limed lakes were to a large extent present in the dialysable fraction (> 79% and > 92% respectively). They were calculated to exist as free or adsorbed oxyanions. Most of the Al was observed to reside in the colloidal fraction (51-82%). In agreement with this, model predictions indicated aluminium to be present mostly as colloids or bound to dissolved organic matter. Only a small fraction was modelled as Al(OH){sub 4}{sup -} ions. In most cases, modelled values were in agreement with the dialysis results. The free concentrations of the three oxyanions were mostly low compared to toxic levels.

  9. Initial horticultural performance of nine ‘Persian’ lime selections grafted onto Swingle citrumelo

    Directory of Open Access Journals (Sweden)

    Magno Guimarães Santos

    2016-04-01

    Full Text Available ABSTRACT ‘Persian’ lime (PL [Citrus latifolia (Yu. Tanaka Tanaka] is an important species both for domestic fresh fruit consumption in Brazil as well as the export market, since the country is one of the largest producers in the world despite the fact that, in commercial plantations, it is still not uncommon to find trees with low productivity and high plant vigor of unknown origin. Selections of Persian lime ‘CNPMF–2000’, ‘CNPMF–2001’, ‘CNPMF–01’, ‘CNPMF–02’, ‘IAC–5’, ‘IAC–5.1’, ‘Bearss’, ‘Persian–58’, and ‘5059’, were therefore grafted onto Swingle citrumelo [C. paradisi Macfad. cv. Duncan × Poncirus trifoliata (L. Raf.] rootstocks and evaluated in Cruz das Almas, Bahia, Brazil in a field experiment conducted in a completely randomized block design with five replications and two trees per plot. The biometric attributes (canopy height, diameter and volume, yield parameters (yield during the off-season harvest period, yield per plant, production efficiency, and fruit quality traits, were evaluated. The ‘CNPMF–2001’, ‘CNPMF–01’, ‘CNPMF–02’, ‘IAC–5’, and ‘Bearss’ selections had 5-11 % shorter trees than the other cultivars. ‘CNPMF–01’, ‘CNPMF–02’, ‘Persian–58’, and ‘5059’ presented higher yield efficiency values, between 3.1-3.4 kg m−3, and higher yield levels during the off-season harvest periods. The ‘Bearss’, ‘Persian–58’, ‘CNPMF–2000’, ‘IAC–5.1’ and ‘5059’ selections had more acid fruits and the latter three, smaller fruits. Based on their horticultural performance up to eight years of age, ‘CNPMF–01’, ‘CNPMF–02’, ‘Persian–58’ and ‘5059’ selections were the most promising varieties of Persian lime.

  10. Volume Change Measurement Of Collapsible Soil Stabilized With Lime And Waste Lime

    Directory of Open Access Journals (Sweden)

    Khawla A. Al-Juari

    2013-05-01

    Full Text Available This paper presents a series of laboratory tests to evaluate the effects of lime and waste lime on the volume change and strength characteristics of moderately collapsible soil selected from Al-Rashidia in Mosul city. The tests are performed at different percentages of lime and waste lime of 0, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 and 8.0% by dry weight of soil. One dimensional compression tests are conducted to clarify the influences of relative compaction, compaction water content, vertical stress level and curing time on the volume change and strength characteristics.The results of this study indicated a decrease in the plasticity, swelling potential and swelling pressure of treated soil. The soil became non-plastic at (3&6% of lime and waste lime respectively. Swelling pressure and swelling potential reached to zero at 2% lime and  2&7 days of curing time.Unconfined compressive strength (UCS reached to maximum value at optimum stabilizers content. The UCS of lime treated soil is more than that treated by waste lime at different curing time. The collapse index and potential of treated soil are found less than that of natural soil and decrease with increasing stabilizer content until drop to zero at 2% lime. Collapsing increased continuously with applied stresses, but with curing time reached a maximum value at 2 day. On the other hand, collapsing of treated soil with lime is less than that  of waste lime treated soil at different curing time and stresses.

  11. Development of a three-dimensional CFD model for rotary lime kilns

    Energy Technology Data Exchange (ETDEWEB)

    Lixin Tao; Blom, Roger (FS Dynamics Sweden AB, Goeteborg (Sweden)); Nordgren, Daniel (Innventia, Stockholm (Sweden))

    2010-11-15

    In the calcium loop of the recovery cycle in a Kraft process of pulp and paper production, rotary lime kilns are used to convert the lime mud, mainly CaCO3, back to quick lime, CaO, for re-use in the causticizing process. The lime kilns are one of the major energy consumption devices for paper and pulp industry. Because of the rising oil price and new emission limits, the pulp mills have been forced to look for alternative fuels for their lime kilns. One interesting alternative to oil, often easily available at pulp mills, is biofuels such as sawdust and bark. However the practical kiln operation often encounters some difficulties because of the uncertainties around the biofuel impact on the lime kiln performance. A deeper understanding of the flame characteristics is required when shifting from oil to biofuels. Fortunately recent advances in modern Computational Fluid Dynamics, CFD, have provided the possibility to study and predict the detailed flame characteristics regarding the lime kiln performance. In this project a three-dimensional CFD model for rotary lime kilns has been developed. To simulate a rotary lime kiln the developed CFD model integrates the three essential sub-models, i.e. the freeboard hot flow model, the lime bed model and the rotating refractory wall model and it is developed based on the modern CFD package: FLUENT which is commercially available on the market. The numerical simulations using the developed CFD model have been performed for three selected kiln operations fired with three different fuel mixtures. The predicted results from the CFD modelling are presented and discussed in order to compare the impacts on the kiln performance due to the different firing conditions. During the development, the lime kiln at the Soedra Cell Moensteraas mill has been used as reference kiln. To validate the CFD model, in-plant measurements were carried out in the Moensteraas lime kiln during an experiment campaign. The results obtained from the

  12. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  13. Surface application of lime ameliorates subsoil acidity and improves root growth and yield of wheat in an acid soil under no-till system Calagem superficial em solo ácido no sistema plantio direto melhora a acidez do subsolo e beneficia o crescimento radicular e a produção de trigo

    Directory of Open Access Journals (Sweden)

    Eduardo Fávero Caires

    2006-10-01

    Full Text Available Crop root growth and grain yield can be affected by chemical modifications in the soil profile due to surface lime application. A field trial was carried out on a loamy dystrophic Typic Hapludox at Ponta Grossa, State of Paraná, Brazil, to evaluate root growth and grain yield of wheat (Triticum aestivum L. cv. CD 104, moderately susceptible to Al, about 10 years after surface liming (0, 2, 4, and 6 Mg ha-1 and three years after surface re-liming (0 and 3 Mg ha-1, in a long-term no-till cultivation system. Soil acidity limited wheat root growth and yield severely, probably as a result of extended water deficits during the vegetative stage. Surface liming caused increases up to 66% in the root growth (0-60 cm and up to 140% in the grain yield. Root density and grain yield were correlated positively with soil pH and exchangeable Ca2+, and negatively with exchangeable Al3+ and Al3+ saturation, in the surface and subsurface layers.A calagem na superfície do solo em plantio direto ocasiona modificações químicas no perfil que podem influenciar o crescimento do sistema radicular e a produção de grãos das culturas. O crescimento de raízes e a produção de trigo (Triticum aestivum L. cv. CD 104, moderadamente sensível ao Al, foram estudados cerca de 10 anos após a aplicação superficial de calcário (0, 2, 4 e 6 Mg ha-1 e três anos da reaplicação de calcário na superfície (0 e 3 Mg ha-1, em um Latossolo Vermelho distrófico textura média, manejado durante longo período no sistema plantio direto, em Ponta Grossa (PR. A acidez do solo limitou drasticamente o crescimento radicular e a produção de trigo, provavelmente por causa de prolongada falta de água ocorrida durante a fase de desenvolvimento vegetativo da cultura. A calagem na superfície ocasionou aumento de até 66% no crescimento radicular (0-60 cm e de até 140% na produção de trigo. A densidade de raízes e a produção de trigo correlacionaram-se positivamente com o pH e o

  14. Local development of affordable lime in southern Africa

    OpenAIRE

    1997-01-01

    Lime is an important and versatile chemical used in a wide range of applications. The term lime, which is strictly calcium oxide (CaO), is applied to a range of products arising from the processing of limestone and dolomite. Many less developed countries do not have adequate lime production and this leads to problems associated with under-utilisation of lime. In particular, insufficient application of agricultural lime (aglime) can lead to soil acidification, with associated aluminium / manga...

  15. Modelo de producción de biomasa en suelos ácidos de raña corregidos con productos calizos Biomass production model for lime amended acid raña-soils

    Directory of Open Access Journals (Sweden)

    E. Villa

    2010-01-01

    Full Text Available Se han realizado unos ensayos de campo de dos años de duración encaminados a la corrección de la acidez de un Typic Palexe­rult, de las formaciones de raña de la mese­ta norte de la provincia de León (España. El cultivo ensayado fue una variedad local de centeno, empleándose como materiales calizos en la enmienda del suelo el yeso, do­lomita, caliza y espumas de azucarería, con dosis de 6000 kg ha-1 de CaCO3 equivalente. Además de la analítica general, se determi­naron las formas de Al solubles y fácilmente intercambiables (Al-CaCl2, además del Al extraído con KCl y con BaCl2. Los modelos de regresión lineal múltiple de la producción total de biomasa demuestran que durante el primer año son el Al-CaCl2, pH y CICE los parámetros más explicativos de la varianza (R² = 0,82. Por el contrario, durante el segundo año de cultivo son el Al-KCl y el porcentaje de saturación de bases las varia­bles más correlacionadas con la producción (R² = 0,80.Field trials were carried out over a pe­riod of two years, aimed at correcting the acidity of a Typic Palexerult in raña for­mations in the northern mesa of León province (Spain. Gypsum, dolomite, limestone and sugar foam waste were em­ployed as liming materials to correct soil acidity, incorporating 6000 kg of CaCO3 equivalent per ha-1, and crop trials were carried out using a local variety of rye. In addition to carrying out a general analy­sis, soluble and easily exchanged forms of A1 were identified (Al-CaCl2, as was A1 extracted using KC1 and BaCl2. Multiple linear regression models for total biomass production show that in the first year, variance (R² = 0.82 was largely ex­plained by the parameters Al-CaCl2, pH and CECE. However, in the second year of crop trials, production was most closely correlated with the variables Al-KCl and base saturation percentage (R² = 0.80.

  16. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants

    Science.gov (United States)

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-01-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  17. 以石灰乳为中和剂的柠檬酸钙合成反应过程与机理研究%Research on Citric Acid Calcium Synthetic Reaction Process and Its Mechanism with Lime Milk as Neutralizer

    Institute of Scientific and Technical Information of China (English)

    颜鑫; 刘小忠; 李玉茶; 傅国新

    2012-01-01

    以石灰乳为中和剂合成柠檬酸钙工艺简单,成本低廉,便于大规模生产.将柠檬酸溶液加入石灰乳中的方案是一个快速、简单的反 应过程,其pH值操作曲线简单,终点突跃明显,易于操作控制,其产品为微弱酸性的缓冲体系,可生产高溶解性的柠檬酸钙.将石灰乳加入柠檬酸溶液的方案是一个慢速、复杂的反应过程,其pH值操作曲线有3个平台、3个突跃,突跃虽多但不很明显,反应时间长,生产中难以操作控制,其产品不再是缓冲体系,可能呈强碱性,易造成产品质量不合格.%The synthesis process of citric acid calcium is simple, low cost, and in favor of mass production process with citric acid and lime milk as raw material. The scheme is a rapid, simple reaction process using citric acid solution to join the lime milk, and its pH value operation curve is simple, the sudden jump is clear and easy to control, and its products will be weak acid buffer system which can produce the high solubility of citric acid calcium. Instead, the another scheme is a slow, complex reaction process using lime milk to join citric acid solution, and its pH value operation curve has three platforms, three sudden jumps, but the jumps being not obvious, and the reaction time is long, the production is hard to operate, and its products will no longer be buffer system, may show a strong alkali, easy to cause product quality problem.

  18. Lime and fertilizer recommendation system for coconut trees

    Directory of Open Access Journals (Sweden)

    Gustavo Nogueira Guedes Pereira Rosa

    2011-02-01

    Full Text Available Fertilizer recommendation to most agricultural crops is based on response curves. Such curves are constructed from field experimental data, obtained for a particular condition and may not be reliable to be applied to other regions. The aim of this study was to develop a Lime and Fertilizer Recommendation System for Coconut Crop based on the nutritional balance. The System considers the expected productivity and plant nutrient use efficiency to estimate nutrient demand, and effective rooting layer, soil nutrient availability, as well as any other nutrient input to estimate the nutrient supply. Comparing the nutrient demand with the nutrient supply the System defines the nutrient balance. If the balance for a given nutrient is negative, lime and, or, fertilization is recommended. On the other hand, if the balance is positive, no lime or fertilizer is needed. For coconut trees, the fertilization regime is divided in three stages: fertilization at the planting spot, band fertilization and fertilization at the production phase. The data set for the development of the System for coconut trees was obtained from the literature. The recommendations generated by the System were compared to those derived from recommendation tables used for coconut crop in Brazil. The main differences between the two procedures were for the P rate applied in the planting hole, which was higher in the proposed System because the tables do not pay heed to the pit volume, whereas the N and K rates were lower. The crop demand for K is very high, and the rates recommended by the System are superior to the table recommendations for the formation and initial production stage. The fertilizer recommendations by the System are higher for the phase of coconut tree growth as compared to the production phase, because greater amount of biomass is produced in the first phase.

  19. Lime-Crusted Rammed Earth: Materials Study

    OpenAIRE

    Mileto, Camilla; Vegas López-Manzanares, Fernando; Alejandre, Francisco Javier; Martín, Juan Jesús; Garcia Soriano, Lidia

    2013-01-01

    This study analyses the durability of rammed-earth wall construction techniques. The analysis focuses on three medieval masonry types from the Castle of Villavieja (Castellón, Spain) using two variations of lime-reinforced rammed earth in its walls: lime-crusted rammed earth and brick-reinforced rammed earth. Materials analysis reveals the good properties of the materials used in the outer wall facing despite its age. It also clearly shows how deterioration depends more on the construction t...

  20. Recycled sand in lime-based mortars.

    Science.gov (United States)

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure.

  1. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate.

    Science.gov (United States)

    Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Nandula, Vijay K

    2008-03-26

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.

  2. Distribution, synthesis, and absorption of kynurenic acid in plants.

    Science.gov (United States)

    Turski, Michal P; Turska, Monika; Zgrajka, Wojciech; Bartnik, Magdalena; Kocki, Tomasz; Turski, Waldemar A

    2011-05-01

    Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Plants, endosymbionts and parasites: Abscisic acid and calcium signaling.

    Science.gov (United States)

    Nagamune, Kisaburo; Xiong, Liming; Chini, Eduardo; Sibley, L David

    2008-01-01

    It was recently discovered that the protozoan parasite, Toxoplasma gondii produces and uses the plant hormone, abscisic acid (ABA), for communication. Following intracellular replication, ABA production influences the timing of parasite egress from the host cell. This density-dependent signal may serve to coordinate exit from the host cell in a synchronous manner by triggering calcium-dependent activation of motility. In the absence of ABA production, parasites undergo differentiation to the semidormant, tissue cyst. The pathway for ABA production in T. gondii may be derived from a relict endosymbiont, acquired by ingestion of a red algal cell. Although the parasite has lost the capacity for photosynthesis, the plant-like nature of this signaling pathway may be exploited to develop new drugs. In support of this idea, an inhibitor of ABA biosynthesis protected mice against lethal infection with T. gondii. Here, we compare the role of ABA in parasites to its activities in plants, where it is know to control development and stress responses.

  4. L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development

    OpenAIRE

    2013-01-01

    L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps re...

  5. Simultaneous removal of colour, phosphorus and disinfection from treated wastewater using an agent synthesized from amorphous silica and hydrated lime.

    Science.gov (United States)

    Yamashita, Takahiro; Aketo, Tsuyoshi; Minowa, Nobutaka; Sugimoto, Kiyomi; Yokoyama, Hiroshi; Ogino, Akifumi; Tanaka, Yasuo

    2013-01-01

    An agent synthesized from amorphous silica and hydrated lime (CSH-lime) was investigated for its ability to simultaneously remove the colour, phosphorus and disinfection from the effluents from wastewater treatment plants on swine farms. CSH-lime removed the colour and phosphate from the effluents, with the colour-removal effects especially high at pH 12, and phosphorous removal was more effective in strongly alkaline conditions (pH > 10). Colour decreased from 432 +/-111 (mean +/- SD) to 107 +/- 41 colour units and PO4(3-)P was reduced from 45 +/- 39 mg/L to undetectable levels at the CSH-lime dose of 2.0% w/v. Moreover, CSH-lime reduced the total organic carbon from 99.0 to 37.9 mg/L at the dose of 2.0% w/v and was effective at inactivating total heterotrophic and coliform bacteria. However, CSH-lime did not remove nitrogen compounds such as nitrite, nitrate and ammonium. Colour was also removed from dye solutions by CSH-lime, at the same dose.

  6. Terrestrial liming benefits birds in an acidified forest in the northeast.

    Science.gov (United States)

    Pabian, Sarah E; Brittingham, Margaret C

    2007-12-01

    Studies in Europe have reported negative effects of acid deposition on forest birds, and research in North America has identified links between forest bird abundance and rates of acid deposition. We examined the bird community in an acidified forest in central Pennsylvania (USA) and evaluated the effects of terrestrial lime application on birds. We used a before-after control-impact (BACI) study design, with one year of observation before (2003) and three years after lime application (2004, 2005, and 2006). Between the 2003 and 2004 field seasons, 4500 kg/ha of dolomitic lime were applied to two of four 100-ha watersheds. Each year, we monitored bird abundance and Ovenbird (Seiurus aurocapilla) eggshell thickness and territory size. Soil and snail abundance data were also collected. The bird community and territory size results indicated that the study area may be providing low-quality habitat for forest birds, perhaps as a result of acid deposition. We found lower forest bird abundances than have been found in less acidified areas of Pennsylvania, and larger Ovenbird territory sizes than have been found in other studies. We found a significant positive relationship between soil calcium and bird abundance, indicating that soil calcium may affect bird abundance. Liming increased soil calcium and pH and led to increased snail and bird abundances. After liming, bird abundance was positively related to snail abundance. No significant changes occurred in Ovenbird territory size or eggshell thickness. Our results suggest that acid deposition could be responsible for reduced bird abundance, and that liming is a potential mitigation technique.

  7. Effects of long-term N fertilizer application and liming on nitrification and ammonia oxidizers in acidic soils%长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响

    Institute of Scientific and Technical Information of China (English)

    张苗苗; 王伯仁; 李冬初; 贺纪正; 张丽梅

    2015-01-01

    High levels of N fertilization and acid deposition could cause soil acidification directly and indirectly. The nitrogen cycle, especially nitrification, makes a great contribution to the acidification of agricultural soils across China, which further leads to the mobilization of potentially toxic metals such as aluminum ( Al ) and manganese ( Mn ) and decerases crop yields. Chemicals ( e. g., CaO) are amended as soil conditioners to relieve soil acidification. Ammonia oxidation, the rate-limiting step in the nitrification process, is driven by ammonia-oxidizing bacteria ( AOB) and ammonia-oxidizing archaea ( AOA) . Increasing evidence demonstrates that pH is one of the most important factors determining the niche separation of AOA and AOB, and AOA play the more important role in nitrification of acidic soils. However, abundant AOB have been detected in acidic soils but little is known about their ecological function. In this study, the effects of long-term N fertilization practices and liming on nitrification and ammonia oxidizers in acidic soils were investigated using quantitative PCR and DGGE methods combined with soil physiochemical analysis. Compared with a previous study conducted 6 years ago at the same site, N fertilizer application without liming further decreased soil pH (3.35—3.47) and potential nitrification rate (PNR) (0.02—0.14 μg NO-2-N g-1 soil h-1), while 2 years liming alleviated soil acidification (pH 4.10—4.46) and increased PNR (0.22—0.34μg NO-2-N g-1 soil h-1) significantly. There was a significantly positive correlation between soil pH and PNR, indicating the increase in soil pH via liming had positive effects on nitrification in acidic soils. AOA amoA gene copy numbers ( 7. 40 × 107—4. 08 × 108 copies/g ) were significantly higher than their counterpart AOB (1.67 × 106—2.57 × 107 copies/g) in soils that received different chemical N fertilizers. Ratios of AOA and AOB amoA gene abundance ranged between 10. 9 and 44. 3

  8. Nitrification and nitrifying bacterial communities in coniferous forest soils. Effects of liming and clear-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Baeckman, Jenny

    2003-05-01

    This thesis deals with the effects of liming and clear-cutting on nitrification in hemi-boreal and northern temperate coniferous forest soils. The approach has been to study both the potential nitrification and the community structure of the ammonia-oxidising bacteria, which carry out the first step of autotrophic nitrification. The potential nitrification was measured over short time incubations at optimal conditions for acid-sensitive, autotrophic nitrification. This method yields the potential nitrification of the actual nitrifying community. I studied the autotrophic ammonia-oxidising community at gene level (16S rRNA gene) using molecular methods, such as polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), single-strand conformation polymorphism (SSCP), and DNA sequencing. The results illustrate that both liming and clear-cutting may increase the potential nitrification by stimulating the growth of ammonia-oxidisers. Both these forest practises seem to favour the growth of Nitrosospira cluster 4-affiliated ammonia-oxidisers, although Nitrosospira cluster 2-affiliated bacteria also was present. The stimulated growth of the ammonia-oxidisers is caused by increased ammonia availability and more favourable pH (i.e. higher and more stable pH over time). The results also show that clear-cutting causes more intense growth of the ammonia-oxidisers and thereby larger potential nitrification than liming does. When forests that have previously been limed are clear-cut, nitrification responses more rapidly and the rates are larger compared to non-limed forests, since the ammonia-oxidising communities in limed soils seem better adapted to the conditions after the cutting. Liming does, however, not always increase nitrification. Although it may increase nitrogen mineralisation, it seems like the nitrogen status of the soil prior to liming is the most important factor, since liming caused the greatest response in potential nitrification in areas

  9. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    Science.gov (United States)

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry

  10. ASHES AS AN AGENT FOR CEMENT-LIME BASED SOLIDIFICATION/STABILIZATION OF THE HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Barbora Lyčkova

    2008-12-01

    Full Text Available One of the common treatment methods for the hazardous waste is the cement and cement-lime based solidification/stabilization (S/S. This article deals with the possibility of currently used recipe modification using fluidized bed heating plant ashes as an agent.

  11. Efficacy of Designer Biochars with or without Lime Application for Remediating Heavy Metals in Mine Spoil Soils

    Science.gov (United States)

    Sigua, Gilbert C.; Novak, Jeffrey; Johnson, Mark; Ippolito, James; Spokas, Kurt; Ducey, Thomas; Trippe, Kristin

    2017-04-01

    A multitude of research investigations have confirmed that biochars can increase soil carbon sequestration, improve critical plant nutrient concentrations, and improve the fertility, chemical, and physical properties of degraded agricultural soils. Recently, biochars ability to sequester metals has caught the attention of the mine reclamation sector. It is proposed that biochar is a suitable amendment to remediate heavy metals in mine spoils, as well as improve chemical conditions for enhanced plant growth. Better plant growth will improve phytostabilization, increase containment of metal-laden sediment, while also reducing potential metal uptake by plants. As such, utilization of a biochar with appropriate chemical and physical characteristics is crucial for effective binding of heavy metals while also improving plant growth conditions in mine spoils. Using two different mine spoils, we conducted laboratory and greenhouse experiments to determine the ability of designer biochar with or without lime application to favorably improve soil pH, reduce heavy metal bioavailability, and improve grass (e.g., wild blue rye) plant nutrient uptake. Preliminary results showed that our designer biochars did increase pH of acid mine spoils significantly (pplant nutrients (e.g., phosphorus, potassium and calcium), and significantly (pnickel, zinc, manganese, copper and cadmium) in the soils.

  12. Is acetylcarnitine a substrate for fatty acid synthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Roughan, G. (Horticulture Research Inst., Auckland (New Zealand)); Post-Beittenmiller, D.; Ohlrogge, J. (Michigan State Univ., East Lansing (United States)); Browse, J. (Washington State Univ., Pullman (United States))

    1993-04-01

    Long-chain fatty acid synthesis from [1-[sup 14]C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-[sup 14]C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-[sup 14]C]Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-[sup 14]C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-[sup 14]C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-[sup 14]C]acetylcarnitine and 47 to 57% of the [1-[sup 14]C]acetate taken up was incorporated into lipids. Most (78--82%) of the [1-[sup 14]C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants. 29 refs., 5 tabs.

  13. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    Science.gov (United States)

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  14. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Danon, B.; Manurung, R.; Janssen, L. P. B. M.; Heeres, H. J.

    2008-01-01

    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T = 150-175 degrees C, C-H2SO4 - 0.1-1 M, water hyacinth intake = 1-5 wt%). At high acid concentrations (> 0.

  15. Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition

    Energy Technology Data Exchange (ETDEWEB)

    Ruttens, A.; Adriaensen, K. [Hasselt University, Centre for Environmental Sciences, Agoralaan, building D, B-3590 Diepenbeek (Belgium); Meers, E. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure 653, 9000 Ghent (Belgium); De Vocht, A.; Geebelen, W.; Carleer, R. [Hasselt University, Centre for Environmental Sciences, Agoralaan, building D, B-3590 Diepenbeek (Belgium); Mench, M. [UMR BIOGECO INRA 1202, Ecologie des Communautes, Universite Bordeaux 1, Bat. B8, RdC Est, 2, Avenue des Facultes, F-33405 Talence (France); Vangronsveld, J., E-mail: jaco.vangronsveld@uhasselt.b [Hasselt University, Centre for Environmental Sciences, Agoralaan, building D, B-3590 Diepenbeek (Belgium)

    2010-05-15

    A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability. - In a soil column leaching experiment, simulating 26 years of rainfall, application of cyclonic ashes resulted in a more durable metal immobilization compared to lime.

  16. 石灰对酸化黄壤整治烟田土壤酸度的影响及其应用效果%Influence of lime dosage on soil acidity of acidified yellow soil in renovated flue-cured tobacco field and application effects

    Institute of Scientific and Technical Information of China (English)

    朱经伟; 李志宏; 刘青丽; 梁永江; 黄纯扬; 霍沁建; 彭友; 夏昊; 张云贵

    2016-01-01

    phase was a stable stage presenting stable pH value, in which lime dosage and soil pH was significantly positively correlated and fitted to non-linear relationship. The field experiment showed that the trend of pH value varied with the amount of liming, which was basically consistent with results of incubation experiment. Combined with effects of soil pH value and flue-cured tobacco, ap-plying 1. 50 t/hm2 lime into ridges before transplanting period about 60 days was suitable for correcting acidity of yellow soil at the condition of pH value was about 5. 0.

  17. 石灰对酸化黄壤整治烟田土壤酸度的影响及其应用效果%Influence of lime dosage on soil acidity of acidified yellow soil in renovated flue-cured tobacco field and application effects

    Institute of Scientific and Technical Information of China (English)

    朱经伟; 李志宏; 刘青丽; 梁永江; 黄纯扬; 霍沁建; 彭友; 夏昊; 张云贵

    2016-01-01

    A series of laboratory and field experiments were conducted to study the effects of lime dosage on dynamic response of pH value, agronomic traits and economic traits of flue-cured tobacco in acidified yellow soil in renovated flue-cured tobacco field. The results showed that: the pH changes of acidified yellow soil were roughly divided into three phases according to the response characteristics of soil pH value to lime dosage in different periods during incubation course. The first phase was a rap-id changing stage, showing a sharp increase in soil pH value with relatively short duration. The second phase was a slowly changing stage which the direction of change, rate of change in soil pH value and duration period were affected by lime dosage. When the lime dosage was less than 3. 00 t/hm2 , the duration was about 60 days. When the lime dosage was more than 4. 50 t/hm2 , rate of pH change increased with increasing liming dosage and the duration was risen from 15 days to 30 days. The last phase was a stable stage presenting stable pH value, in which lime dosage and soil pH was significantly positively correlated and fitted to non-linear relationship. The field experiment showed that the trend of pH value varied with the amount of liming, which was basically consistent with results of incubation experiment. Combined with effects of soil pH value and flue-cured tobacco, ap-plying 1. 50 t/hm2 lime into ridges before transplanting period about 60 days was suitable for correcting acidity of yellow soil at the condition of pH value was about 5. 0.%采用室内培养试验和田间试验相结合的方法,研究土壤酸度对石灰施用量的动态响应规律,以及石灰施用量对烤烟农艺性状及经济性状的影响。结果表明:酸化黄壤在室内培养环境下对石灰的响应可分为3个阶段,即快速变化阶段,土壤pH值急剧升高,持续时间较短;缓慢变化阶段,土壤pH值的变化速度以及持续时间受石灰施用量

  18. The Effect of Lime Addition on the Setting Time and Strength of Ambient Cured Fly Ash Based Geopolymer Binder

    Directory of Open Access Journals (Sweden)

    Adam Andi Arham

    2016-01-01

    Full Text Available One of the limitations of geopolymer as the alternative binders in concrete is the necessity of heat curing. This study aimed to produce fly ash geopolymer binder subjected to ambient curing by adding a small proportion of lime and varying the activator dosage. The Class F fly ash from Mpanau coal-fired power plant was mixed with alkaline solution consists of sodium silicate and sodium hydroxide with Na2O dosage of 5%, 7%, and 9%. To achieve ambient cured paste, 8%, 9%, and 10% slaked lime was added as the substitute for the fly ash. The setting time test was conducted for each mix and the compressive strength was performed at age of 7, 14 and 28 days. The test result shows that the setting time of the fly ash based geopolymer paste can be controlled by adding a small proportion of slaked lime. The addition of lime increased strength but decreased the setting time.

  19. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  20. Ecological benefits and risks arising from liming sugar maple dominated forests in northeastern North America

    Science.gov (United States)

    Jean-David Moore; Rock Ouimet; Robert P. Long; Paul. A. Bukaveckas

    2015-01-01

    Liming, the application of carbonate materials (e.g., CaCO3, CaMg(CO3)2) to soils and surface waters, has been used extensively in Europe, and to a lesser extent in Canada and the United States, to mitigate the effects of acid deposition on forest and aquatic ecosystems. This literature review was...

  1. Water Utility Lime Sludge Reuse – An Environmental Sorbent for Power Utilities

    Science.gov (United States)

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up ...

  2. Extraction of fleshing oil from waste limed fleshings and biodiesel production.

    Science.gov (United States)

    Sandhya, K V; Abinandan, S; Vedaraman, N; Velappan, K C

    2016-02-01

    The aim of the study was focused on extraction of fleshing oil from limed fleshings with different neutralization process by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) followed by solvent extraction. The production of fatty acid methyl esters (FAMEs) from limed fleshing oil by two stage process has also been investigated. The central composite design (CCD) was used to study the effect of process variables viz., amount of flesh, particle size and time of fleshing oil extraction. The maximum yield of fleshing oil from limed fleshings post neutralization by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) was 26.32g and 12.43g obtained at 200g of flesh, with a particle size of 3.90mm in the time period of 2h. Gas chromatography analysis reveals that the biodiesel (FAME) obtained from limed fleshings is rich in oleic and palmitic acids with weight percentages 46.6 and 32.2 respectively. The resulting biodiesel was characterized for its physio-chemical properties of diesel as per international standards (EN14214).

  3. Effects of Ranitidine on Insulin and Lime - Induced Gastric Secretion in Albinowistar Rats

    OpenAIRE

    E.O. Nwaichi; Gwotmut, M. D; Ossai, J

    2013-01-01

    Purpose:To study the possible effect (s) of a relative H2-receptor blocker, ranitidine on lime and insulin-induced gastric secretion in male and female albino rats. Methods: The rats were divided into 3 groups of lime juice, insulin and control in triplicates after 24hr starvation to empty the stomachand were canulated (oesophageal, tracheal and gastric) using Gosh and Schild method. Using N saline, the acid content of the effluentwas recorded. The 1st group of rats was perf...

  4. Influência da calagem e da adubação fosfatada no acúmulo de nutrientes e crescimento da erva-de-São-João Influenceof liming and phosphate fertilization on nutrients accumulation and plant growth of St. John's Wort

    Directory of Open Access Journals (Sweden)

    Cassandro VT do Amarante

    2007-12-01

    Full Text Available A erva-de-São-João (Hypericum perforatum L., planta medicinal amplamente utilizada no tratamento humano anti-depressivo, tem sido pouco estudada agronomicamente. Avaliou-se os efeitos da calagem e da adubação fosfatada no acúmulo de nutrientes e no crescimento inicial de plantas dessa espécie. O experimento foi conduzido em Lages, SC, de julho a dezembro de 2003, em casa de vegetação. Foi utilizado o delineamento experimental inteiramente casualizado (fatorial 4x3, correspondente a quatro valores de pH (4,1; 5,5; 6,0 e 6,5 e três doses de fósforo (0; 50 e 100 mg kg-1 de solo, com quatro repetições. Foram cultivadas duas plantas por vaso, num Cambissolo Húmico Álico. Avaliaram-se os teores de N, P, K, Ca, Mg, Mn, Zn, Cu e Fe no solo e na parte aérea e o rendimento de massa seca da parte aérea e das raízes. A calagem, combinada com a adubação fosfatada, favoreceu o acúmulo de Ca, Mg, K, N e P na parte aérea e o crescimento da erva-de-São-João.St. John's Wort (Hypericum perforatum L. is a medicinal plant widely used for human anti-depressive treatment, despite of being little studied as a cultivated crop. This work was conducted to evaluate nutrients accumulation and initial growth of this plant species, in response to phosphate fertilization and liming. The experiment was carried out in Lages, Brazil, from July to December of 2003, in a greenhouse. The experiment followed a completely randomized factorial design (4x3, corresponding to four pH values (4.1; 5.5; 6.0, and 6.5 and three rates of P (0; 50, and 100 mg kg-1 of soil, with four replicates. Two plants were cultivated per pot, in an Inceptisol. The contents of N, P, K, Ca, Mg, Mn, Zn, Cu, and Fe in the soil and in the plants were obtained, as well as shoot and root dry matter. The combination of the liming and phosphate fertilization promoted the accumulation of Ca, Mg, K, N, and P in the aerial part and also plant growth of Hypericum perforatum L.

  5. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响%Effect of Long-term Fertilization and Lime Application on Soil Acidity of Reddish Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    鲁艳红; 廖育林; 聂军; 周兴; 谢坚; 杨曾平; 吴浩杰

    2016-01-01

    利用34年的长期定位施肥试验,研究不施肥(CK)、施氮磷钾肥(NPK)和氮磷钾化肥配施石灰(NPK+CaO)对红壤性水稻土不同形态酸、土壤盐基离子及水稻植株阳离子吸收量的影响,探讨土壤交换性H+和Al3+占交换性酸的比例、土壤盐基离子、植株带出阳离子数量与土壤酸度的关系.结果表明,长期NPK处理早、晚稻土壤pH 较CK处理分别降低0.2和0.3个单位,交换性酸提高2.3倍和4.2倍,水解性酸提高35.4%和40.0%;NPK+CaO处理早、晚稻土壤pH较NPK处理分别提高0.5和0.7个单位,较CK处理分别提高0.3和0.4个单位,交换性酸、水解性酸均显著低于NPK和CK处理(p CK> NPK. Exchangeable Al3+ was dominant to exchangeable acidity in acidic soil,and the ratio of exchangeable Al3+ to exchangeable acidity increased with increasing soil acidification. The effects of fertilization,regardless of fertilization mode,on soil CEC,exchangeable Ca2+,Mg2+,exchangeable base ions and base saturation were all very significant. Soil exchangeable base ions were dominated with exchangeable Ca2+,accounting for 81.8%~89.3%. Long-term liming significantly increased the content of soil exchangeable Ca2+. Treatment NPK+CaO was 40.1% and 62.9% higher in soil exchangeable Ca2+ than Treatments CK and NPK,respectively. Exchangeable Ca2+,exchangeable base ions and base saturation were positively related to soil pH,but negatively to exchangeable acidity and hydrolytic acid,and exchangeable Mg2+ was negatively to exchangeable acidity and hydrolytic acid,while exchangeable Na+ was negatively to hydrolytic acidity only. Treatments NPK+CaO and NPK did not vary much,but were both significantly higher than CK(p NPK> CK,in terms of potassium and magnesium uptake and total cation uptake by the crop,the followed an order of NPK> NPK+CaO> CK,and in terms of sodium uptake they followed an order of CK> NPK> NPK+CaO. The removal of Ca,Mg,K and Na and the cations in total with the crops harvested did

  6. A paleolimnological assessment of acidification and liming effects on diatom assemblages in a Swedish lake

    Energy Technology Data Exchange (ETDEWEB)

    Renberg, I. (Umea Univ. (Sweden)); Hultberg, H. (Swedish Environmental Research Inst., Goteborg (Sweden))

    1992-01-01

    In Sweden, ca 6000 lakes have been limed to mitigate acidification. Lysevatten in southwestern Sweden was limed in 1974 and 1986 and has better historical pH and fish records than most other, similar forest lakes. Historical data were compared with diatom analyses of a sediment core to assess to what extent diatom-inferred pH reflects the known pH history. The diatom-inferred pH history agrees well with the development known from documentary sources, although the sediment record is slightly smoothed. Both the historical and sediment records show that the acidification, with acid episodes that caused severe damage to lake biota, began during the 1940s and became acute in the 1960s, with pH values of 4.5-4.9. Prior to acidification, the lake water pH was between 6 and 7, and the lake had a planktonic Cyclotella flora. The liming increased pH to 7.5 and resulted in the expansion of Achnanthes minutissima, Cymbella microcephala, and Synedra acus. The reacidification is reflected by a decrease in abundance of these species. Neither the liming in 1974 or the liming in 1986 restored the preacidification diatom flora; there was no recovery of Cyclotella. 20 refs., 3 figs., 2 tabs.

  7. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  8. Effects of Lime and Concrete Waste on Vadose Zone Carbon Cycling

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, Søren; Postma, D.

    2014-01-01

    In this work we investigate how lime and crushed concrete waste (CCW) affect carbon cycling in the vadose zone and explore whether these amendments could be employed to mitigate climate change by increasing the transport of CO2 from the atmosphere to the groundwater. We use a combination...... of experimental and modeling tools to determine ongoing biogeochemical processes. Our results demonstrate that lime and CCW amendments to acid soil contribute to the climate forcing by largely increasing the soil CO2 efflux to the atmosphere. In a series of mesocosm experiments, with barley (Hordeum vulgare L...... and lime treatments increased the dissolved inorganic carbon (DIC) percolation flux by about 150 and 100%, respectively,compared to the controls. However, concurrent increases in the CO2 efflux to the atmosphere (ER) were more than one order of magnitude higher than increases in the DIC percolation flux...

  9. Hydrogen Chloride Reaction with Lime and Limestone

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Jensen, Peter I.; Dam-Johansen, Kim

    1992-01-01

    The capacity of solid slaked lime and limestone for binding HCl from a gas phase has been investigated in the temperature range 60-1000 °C. The binding capacity is largest in the range 500-600 °C. However, for slaked lime in the presence of water, a large binding capacity is observed also below 150...... °C. This is ascribed to the formation of a partially liquid product phase. At temperatures exceeding 500 °C the binding capacity is limited by chemical equilibrium between gas and solid. For the range of properties studied the binding capacity is independent of particle size and only depends slightly...

  10. Monitoring compared with paleolimnology: implications for the definition of reference condition in limed lakes in Sweden.

    Science.gov (United States)

    Norberg, Matilda; Bigler, Christian; Renberg, Ingemar

    2008-11-01

    Surface water acidification was identified as a major environmental problem in the 1960s. Consequently, a liming program was launched in Sweden in the 1970s. The primary purpose of liming is to restore conditions that existed prior to acidification. To reach this goal, as well as achieve 'good status' (i.e. low levels of distortion resulting from human activity) in European freshwaters until 2016 under the European Union Water Framework Directive, lake data are required to define reference conditions. Here, we compare data from chemical/biological monitoring of 12 limed lakes with results of paleolimnological investigations, to address questions of reference conditions, acidification, and restoration by liming. Using diatom-based lake-water pH inferences, we found clear evidence of acidification in only five of the 12 lakes, which had all originally been classified as acidified according to monitoring data. After liming, measured and diatom-inferred pH agree well in seven lakes. The sediment record of three of the five remaining lakes gave ambiguous results, presumably due to sediment mixing or low sediment accumulation rates. It is difficult to determine whether liming restored the lakes to a good status, especially as some of the lakes were not acidified during the twentieth century. In addition to acid deposition, other factors, such as natural lake and catchment ontogeny or human impact through agricultural activity, influence lake acidity. This study shows that monitoring series are usually too short to define reference conditions for lakes, and that paleolimnological studies are useful to set appropriate goals for restoration and for evaluation of counter measures.

  11. Nutrição fosfatada e rendimento do feijoeiro sob influência da calagem e adubação orgânica Phosphated nutrition and yield of the bean plant under the influence of liming and organic fertilization

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2006-08-01

    availability for the plants absorption. Soil management practices, such as the increase in the level of organic matter and liming are quite effective in the reduction of the phenomenon of adsorption of P in the soil and increase of its availability for plant absorption. Aiming to evaluate the effect of doses of bovine manure and lime on the phosphate nutrition and production of the bean plant, four experiments were conducted in the greenhouse of the Soil Science Department of the Federal University of Lavras. The experimental design was completely randomized, in a 5x4 factorial scheme with four replications, in pots containing 3 dm³ of soil samples from an Orthic Quartzarenic Neosol (RQo, a Dystrophic Red-Yellow Latosol, medium texture (LVAd-1, a Dystrophic Red-Yellow Latosol, clayey texture (LVAD-2, and a Dystrophic Red Latosol, very clayey texture (LVd, in which three bean plants were cultivated. The treatments were constituted by the application of five doses of bovine manure (0; 2.5; 5.0; 7.5, and 10 % of the volume of the soil and four liming levels (0; 0.5; 1, and 2 times the recommended dose to reach V=60%. It were evaluated the production of dry matter of aerial part and grains and the P accumulation in dry matter of total aerial parts of beans plants. The liming and organic fertilization promoted increases in the absorption and accumulation of P, and production of grains of the bean plant, which presented the best responses with the dose of 10 % of bovine manure combined with the level 1 of liming.

  12. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...... to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along...... the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed...

  13. CHEMICAL ANALYSIS OF DENSE-GAS EXTRACTS FROM LIME FLOWERS

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2015-04-01

    Full Text Available The purpose of this work was to make qualitative and quantitative analysis of phenolic biologically active substances (BAS in the extracts produced from lime flowers with condensed gases, using method of high-performance liquid chromatography (HPLC. Materials and methods: materials for this study were the extracts obtained by consequent processing of the herbal drug and marcs thereof with various condensed gases: difluorochloromethane (Freon R22, difluoromethane (Freon R32, azeotropic mixture of difluoromethane with pentafluoroethane (Freon 410A and freon-ammonium mixture. Extracts obtained with the latter were subjected to further fractionation by liquidliquid separation into hexane, chloroform, ethyl acetate and aqueous-alcohol phases. Besides, the supercritical СО2 extract, obtained from the herbal drug under rather strong conditions (at temperature 60°С and pressure 400 bar, was studied in our previous research. Presence of phenolic BAS and their quantity in the researched samples were determined by method of HPLC with UVspectrometric detection. Results and discussion: It has been found that Freon R22 extracted trace amounts of rutin from lime flowers – its content was only 0.08% of the total extract weight. On the other hand, Freons R32 and R410А showed good selectivity to moderately polar BAS of lime flowers (derivatives of flavonoids and hydroxycinnamic acids: in particular, the extract obtained with freon R32 contained about 1.3% of the total phenolic substances, and it was the only one of the investigated condensed gases used by us which took the basic flavonoid of lime flowers tiliroside – its content was 0.42% of extract weight. Also Freons R32 and R410А were able to withdraw another compound dominating among phenolic substances in the yielded extracts. Its quantity was rather noticeable – up to 0.87% of extract weight. This substance was not identified by existing database, but its UV-spectrum was similar to those of

  14. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    Energy Technology Data Exchange (ETDEWEB)

    García-Marco, Sonia, E-mail: sonia.garcia@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Abalos, Diego, E-mail: diego.abalosrodriguez@wur.nl [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Espejo, Rafael, E-mail: rafael.espejo@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Vallejo, Antonio, E-mail: antonio.vallejo@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Mariscal-Sancho, Ignacio, E-mail: i.mariscal@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2016-10-01

    No tillage (NT) has been associated to increased N{sub 2}O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N{sub 2}O and CH{sub 4} emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N{sub 2}O emissions by 68% compared to NT and generally led to higher CH{sub 4} emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N{sub 2}O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH{sub 4} oxidation was enhanced after liming application due to decreased Al{sup 3+} toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N{sub 2}O and CH{sub 4} emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH{sub 4} emissions and, under CT, abate N{sub 2}O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N{sub 2}O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N{sub 2}O and CH{sub 4} emissions under CT; no effect was observed under NT

  15. Amino Acid Export in Plants: A Missing Link in Nitrogen Cycling

    Institute of Scientific and Technical Information of China (English)

    Sakiko Okumoto; Guillaume Pilot

    2011-01-01

    T The export of nutrients from source organs to parts of the body where they are required (e.g. sink organs) is a fundamental biological process. Export of amino acids, one of the most abundant nitrogen species in plant long-distance transport tissues (i.e. xylem and phloem), is an essential process for the proper distribution of nitrogen in the plant. Physiological studies have detected the presence of multiple amino acid export systems in plant cell membranes. Yet, surprisingly little is known about the molecular identity of amino acid exporters, partially due to the technical difficulties hampering the identification of exporter proteins. In this short review, we will summarize our current knowledge about amino acid export systems in plants. Several studies have described plant amino acid transporters capable of bi-directional, facilitative transport, reminiscent of activities identified by earlier physiological studies. Moreover, recent expansion in the number of available amino acid transporter sequences have revealed evolutionary relationships between amino acid exporters from other organisms with a number of uncharacterized plant proteins, some of which might also function as amino acid exporters. In addition, genes that may regulate export of amino acids have been discovered. Studies of these putative transporter and regulator proteins may help in understanding the elusive molecular mechanisms of amino acid export in plants.

  16. Remote assessment of instantaneous changes in water chemistry after liming in a Nova Scotia catchment

    Science.gov (United States)

    Angelidis, Christine

    2013-04-01

    Remote assessment of instantaneous changes in water chemistry after liming in a Nova Scotia catchment ANGELIDIS, C.1, STERLING, S.1, BREEN, A.2, BIAGI, K.1., and CLAIR, T.A.1 1Dalhousie University, christine.angelidis@dal.ca, 2Bluenose Coastal Action Foundation, andrew@coastalaction.org Southwestern Nova Scotia has some of the most acidic freshwaters in North America due to its location downwind of the major emission sources in eastern Canada and the US and due to a resistant geology which offers little acid buffering capacity (Clair et al. 2007). Because of the poor buffering and regionally high runoff values, hydrological events such as snowmelt and rain storms are frequent and can cause sudden changes in water chemistry which can have devastating effects on freshwater biota due to increases in acidity and metals (Dennis and Clair in press). Clair et al. (2001) have estimated the potential frequency of acidic episodes in this region based on a number of hydrological factors, though the technology available at the time to monitor short-term changes was not dependable. Recent advances in equipment have made the assessment of the frequency and severity of acidic episodes easier and more accurate, allowing better interpretation and prediction of hydrogeochemical changes with variations in weather and deposition patterns. Here we take advantage of these recent advances to monitor water chemistry in an experimental catchment, and explore the response to catchment liming. Catchment liming is one way of mitigating the effects of acid deposition in sensitive areas. We limed a 50 ha catchment at a rate of 5 t/ha in the Gold River watershed of southwest Nova Scotia to examine the interactions between application of lime with the geological and climatological conditions of this region and acid episode frequency. In order to assess changes of episode frequency caused by liming, we established two mobile environmental monitoring platforms in the catchment: a control site

  17. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry; Seib, P.A. [Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  18. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry); Seib, P.A. (Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  19. Application of lime (CaCO3) to promote forest recovery from severe acidification increases potential for earthworm invasion

    Science.gov (United States)

    Homan, Caitlin; Beirer, Colin M; McCay, Timothy S; Lawrence, Gregory B.

    2016-01-01

    The application of lime (calcium carbonate) may be a cost-effective strategy to promote forest ecosystem recovery from acid impairment, under contemporary low levels of acidic deposition. However, liming acidified soils may create more suitable habitat for invasive earthworms that cause significant damage to forest floor communities and may disrupt ecosystem processes. We investigated the potential effects of liming in acidified soils where earthworms are rare in conjunction with a whole-ecosystem liming experiment in the chronically acidified forests of the western Adirondacks (USA). Using a microcosm experiment that replicated the whole-ecosystem treatment, we evaluated effects of soil liming on Lumbricus terrestris survivorship and biomass growth. We found that a moderate lime application (raising pH from 3.1 to 3.7) dramatically increased survival and biomass of L. terrestris, likely via increases in soil pH and associated reductions in inorganic aluminum, a known toxin. Very few L. terrestris individuals survived in unlimed soils, whereas earthworms in limed soils survived, grew, and rapidly consumed leaf litter. We supplemented this experiment with field surveys of extant earthworm communities along a gradient of soil pH in Adirondack hardwood forests, ranging from severely acidified (pH 5). In the field, no earthworms were observed where soil pH 4.4 and human dispersal vectors, including proximity to roads and public fishing access, were most prevalent. Overall our results suggest that moderate lime additions can be sufficient to increase earthworm invasion risk where dispersal vectors are present.

  20. 27 CFR 9.27 - Lime Kiln Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln...

  1. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled...

  2. Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Dick, W.A.; Nelson, S.

    2001-07-01

    Flue gas desulfurization (FGD) by-products are often alkaline and contain many plant nutrients. Land application of FGD by-products is encouraged but little information is available related to plant responses and environmental impacts concerning such use. Agricultural lime (ag-lime) and several new types of FGD by-products which contain either vermiculite or perlite were applied at 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) rate to an acidic soil (Wooster silt loam). The highest FGD by-products application rate was equivalent to 75.2 Mg ha{sup -1}. Growth of alfalfa (Medicago sativa L.) was significantly increased compared to the untreated control in the second year after treatment with yields for the 1 x LR rate of FGD approximately 7-8 times greater compared to the untreated control and 30% greater than for the commercial ag-lime. Concentrations of Mo in alfalfa were significantly increased by FGD by-products application, compared to the untreated control, while compared to the ag-lime treatment, concentrations of B increased and Ba decreased. No soil contamination problems were observed, even at the 2xLR rate, indicating these materials can be safely applied to agricultural soils.

  3. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  4. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil.

    Science.gov (United States)

    Da Mota, Fabio Faria; Gomes, Eliane Aparecida; Marriel, Ivanildo Evodio; Paiva, Edilson; Seldin, Lucy

    2008-05-01

    Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

  5. Accumulation of Pb, Cd and Zn from contaminated soil to various plants and evaluation of soil remediation with indicator plant (Plantago lanceolata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Zupan, M.; Lobnik, F.; Kadunc, V. [Ljubljana Univ. (Slovenia). Agronomy Dept., Center for Soil and Environmental Science; Hudnik, V. [National Institute of Chemistry Hajdrihova 19, Ljubljana (Slovenia)

    1997-12-31

    The accumulation of cadmium, lead, and zinc by different major cultivated plants from soils contaminated with heavy metals, is presented. The vegetables, crops, and the indicator plant narrow leaf plantain (Plantago lanceolata L.) were used in a field experiment including 3 areas with different levels of pollution. The highest concentrations of heavy metals were observed in edible green parts of vegetables (endive, spinach, lettuce) and roots (carrot, red beet, radish). The heavy metal content in leguminous plants (pods and seeds) was very low compared to high soil concentrations. Wheat and maize showed lower concentrations in grains and kernels than in green parts. Lime and vermiculite were used for reduction of Cd availability to plants in polluted soil. The Cd concentration decreased in the narrow leaf plantain in the presence of both lime and vermiculite in acid soil. In the higher-pH soil the Cd availability to spinach was greatly reduced in the presence of vermiculite

  6. Microstructure evolution of lime putty upon aging

    Science.gov (United States)

    Mascolo, Giuseppe; Mascolo, Maria Cristina; Vitale, Alessandro; Marino, Ottavio

    2010-08-01

    The microstructure evolution of lime putty upon aging was investigated by slaking quicklime (CaO) with an excess of water for 3, 12, 24, 36, 48 and 66 months. The as-obtained lime putties were characterized in the water retention and in the particle size distribution using the static laser scattering (SLS). The same lime putties, dehydrated by lyophilization, were also investigated in the pore size distribution by mercury intrusion porosimetry, in the surface area by the BET method and, finally, in particle morphology by scanning electron microscopy (SEM). The effect of the extended exposure of quicklime to water confirms a shape change from prismatic crystals of portlandite, Ca(OH) 2, into platelike ones. Simultaneously a growth of larger hexagonal crystals at the expense of the smallest ones (Ostwald ripening) favours a secondary precipitation of submicrometer platelike crystals of portlandite. The shape change and the broader particles size distribution of portlandite crystals upon aging seem to contribute to a better plasticity of lime putty.

  7. A new lime material for container substrates

    Science.gov (United States)

    The primary component in greenhouse potting substrates is sphagnum peatmoss. Substrate solution pH of non-amended peatmoss ranges from 4.0 to 4.5. Ideal pH for most greenhouse floriculture crops ranges from 5.8 to 6.2. Dolomitic lime is most often used to elevate substrate pH in peatmoss-based me...

  8. Oxidative lime pretreatment of Alamo switchgrass.

    Science.gov (United States)

    Falls, Matthew; Holtzapple, Mark T

    2011-09-01

    Previous studies have shown that oxidative lime pretreatment is an effective delignification method that improves the enzymatic digestibility of many biomass feedstocks. The purpose of this work is to determine the recommended oxidative lime pretreatment conditions (reaction temperature, time, pressure, and lime loading) for Alamo switchgrass (Panicum virgatum). Enzymatic hydrolysis of glucan and xylan was used to determine the performance of the 52 studied pretreatment conditions. The recommended condition (110°C, 6.89 bar O(2), 240 min, 0.248 g Ca(OH)(2)/g biomass) achieved glucan and xylan overall yields (grams of sugar hydrolyzed/100 g sugar in raw biomass, 15 filter paper units (FPU)/g raw glucan) of 85.9 and 52.2, respectively. In addition, some glucan oligomers (2.6 g glucan recovered/100 g glucan in raw biomass) and significant levels of xylan oligomers (26.0 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor. Combining a decrystallization technique (ball milling) with oxidative lime pretreatment further improved the overall glucan yield to 90.0 (7 FPU/g raw glucan).

  9. AVALIAÇÃO DA CALAGEM SOBRE OS PARÂMETROS QUANTITATIVOS, QUALITATIVOS E NUTRICIONAIS DA FORRAGEIRA TANZÂNIA-1 EVALUATION OF THE LIMING ON THE QUANTITATIVE, QUALITATIVE AND NUTRITIONAL PARAMETERS OF THE TANZÂNIA-1 GRASS

    Directory of Open Access Journals (Sweden)

    Renato Sérgio Mota dos Santos

    2007-09-01

    Full Text Available

    Os solos dos cerrados são ácidos e pobres quimicamente, e a calagem pode aumentar a disponibilidade da maior parte dos nutrientes do solo, principalmente daqueles fornecidos pelos fertilizantes através da adubação, ao reduzir a acidez superficial da camada arável. Nesta pesquisa foram testados dois níveis de calagem (3 e 6 t ha-1 de calcário dolomítico e uma testemunha em latossolo vermelho-escuro. A produção de forrageira não teve aumento pela aplicação da calagem, entretanto os maiores teores de K, Ca, Fe e Mn foram observados nos tecidos das plantas desenvolvidas nas áreas corrigidas. Fibra em detergente neutro e Zn apresentaram tendência de queda, enquanto o Cu e o P tenderam a aumentar com o incremento da calagem. A altura da planta, o número de perfilhos e as produções de matéria seca e verde diminuíram significativamente com o aumento da calagem. Sob o aspecto bromatológico, a qualidade da forragem foi melhorada com a correção do solo; os maiores teores de proteína bruta foram observados nas plantas desenvolvidas nas áreas onde foram aplicadas 3 t ha-1.

    PALAVRAS-CHAVE: Calagem; solos; cerrado; Tanzânia.

    The soils of cerrado are acid and chemically poor, and the liming can increase the availability of most of the soil nutrients and mainly those supplied by the fertilizers through the soil fertilization, when reducing the surface soil acidity of the labor layer. In this experiment, three

  10. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  11. Adsorptive Separation and Recovery of Organic Compounds from Purified Terephthalic Acid Plant Effluent

    OpenAIRE

    Khachane, P.K.; Heesink, A. Bert M.; Versteeg, G. F.; Pangarkar, V.G.

    2003-01-01

    Several organic impurities formed in the p-xylene oxidation process for manufacture of terephthalic acid are carried into the aqueous effluent from the crystallization section of PTA plant of crystallizers for purified terephthalic acid (PTA). These compounds impose a burden on the effluent treatment plant. Due to the presence of these impurities the recycle of aqueous effluent from crystallization section of PTA plant to the PTA crystallizer is not possible. The aim of this study is to check...

  12. External radiation assessment in a wet phosphoric acid production plant

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, J.P.; Perez-Moreno, J.P. [Dept. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21012 Huelva (Spain); Mas, J.L. [Dept. Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, 41012 Sevilla (Spain)], E-mail: ppmasb@us.es; Martin, J.E.; San Miguel, E.G. [Dept. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21012 Huelva (Spain); Garcia-Tenorio, R. [Dept. Fisica Aplicada II, Escuela Tecnica Superior de Arquitectura, Universidad de Sevilla, 41012 Sevilla (Spain)

    2009-10-15

    The factories dedicated to the production of phosphoric acid by the so-called wet acid method are usually considered typical NORM industries, because the phosphate rock used as raw material usually contains high concentrations of {sup 238}U-series radionuclides. The magnitude and behaviour of the radionuclides involved in the production process revealed the need to determine its dosimetric impact on workers. This work aims to partially compensate this lack of knowledge through the determination of external effective dose rates at different zones in the process at a typical plant located in the southwest of Spain. To this end, two dosimetric sampling campaigns have been carried out at this phosphoric acid production plant. The first sampling was carried out when phosphate rocks originating in Morocco were processed, and the second one when phosphate rock processed came from the Kola Peninsula (Russia Federation). This differentiation was necessary because the activity concentrations are almost one order of magnitude higher in Moroccan phosphate rock than in Kola phosphate rock. The results obtained have reflected external dose rate enhancements as high as 1.4 {mu}Sv h{sup -1} (i.e., up to thirty times the external exposition due to radionuclides in unperturbed soils) at several points in the facility, particularly where the digested rock (pulp) is filtered. However, the most problematic points are characterised by a small occupation factor. That means that the increment in the annual effective external gamma dose received by the most-exposed worker is clearly below 1 mSv (European Commission limit for the general population) under normal production. Nevertheless, special care in the design and schedule of cleaning and maintaining work in the areas with high doses should be taken in order to avoid any possibility of exceeding the previously mentioned general population limit. In addition, the results of the dosimetric campaign showed no clear correlation between {sup

  13. Anti-biotic Effect of Slightly Acidic Electrolyzed Water on Plant Bacterial / Fungal Pathogen

    OpenAIRE

    津野, 和宣; 中村, 悌一

    2012-01-01

    The anti-biotic effect of slightly acidic electrolyzed water on plant pathogen was determined. The spores of 4 kinds of fungal pathogen and 17 kinds of plant pathogenic bacteria were applied at different concentration.###Slightly acidic electrolyzed water showed strong growth inhibition in germination of fungi spores tested. In addition, by the treatment with slightly acidic electrolyzed water for 30 sec., all kinds of bacteria tested were inhibited to grow on the medium.###The anti-biotic ef...

  14. Uric acid in plants and microorganisms: Biological applications and genetics - A review.

    Science.gov (United States)

    Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M

    2017-09-01

    Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  15. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    Science.gov (United States)

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. INFLUENCES OF LIMING ON YIELDS OF ALFALFA HAY

    Directory of Open Access Journals (Sweden)

    Svetislav Popović

    2009-06-01

    Full Text Available Alfalfa is the most important forage legume on cultivated fields in Croatia (about 45000 ha of growing area – status 2003. The field experiment with application of four dolomite (Agrovapno MgO: 56% CaO and 40% MgO rates (0, 10, 20, 30 and 40 tha-1 were conducted in autumn of 2004. The experiment was conducted by randomized block design in four replicates. Alfalfa (cultivar Osječanka 88 of the Agricultural Institute Osijek, Croatia was sown on March 25, 2005. Four cuttings / year were made. Fresh mass of alfalfa (cutting area 0.25 m2 was oven-dried at 65 oC. Year was the most influencing factor of alfalfa hay yields (13.03, 28.63, 29.43 and 32.77 tha-1, for 2005, 2006, 2007 and 2008, respectively. Liming resulted in low increases of yields up to 5% only. We presume that possible high tolerance of Osječanka 88 cultivar to soil acidity could be the main reason of low effects of liming on alfalfa yields.

  17. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure

    Directory of Open Access Journals (Sweden)

    Yagi Renato

    2003-01-01

    Full Text Available This work evaluates effects of cattle manure vermicompost in association with liming on soil fertility indexes. The experiment was carried out in greenhouse conditions, in pots containing samples of a Typic Hapludox, medium-textured soil. Five levels of vermicompost (equivalent to 0, 28, 42, 56, and 70 t ha-1, dry weight and five liming levels (to raise base saturation to 20, 30, 40, 50, and 60% were combined in a factorial scheme and samples were incubated for 180 days. Samples of the same soil received the equivalent to 70 t ha-1 of the cattle manure used to produce the vermicompost, and the same lime rates. Cattle manure was better than vermicompost to supply K and Mg. Small differences in P supply were observed between the manures. The vermicompost increased the levels of Ca, pH, organic matter (OM and CEC more than the manure. C-humic acids decreased and C-humin increased with vermicompost application. With liming, C-humic acids decreased, but the total content of OM was not affected.

  18. LIME mediates immunological synapse formation through activation of VAV.

    Science.gov (United States)

    Son, Myoungsun; Park, Inyoung; Lee, Ok-Hee; Rhee, Inmoo; Park, Changwon; Yun, Yungdae

    2012-04-01

    Lck Interacting Membrane protein (LIME) was previously characterized as a transmembrane adaptor protein mediating TCR-dependent T cell activation. Here, we show that LIME associates with Vav in response to TCR stimulation and is required for Vav guanine nucleotide exchange factor (GEF) activity for Rac1. Consistent with this finding, actin polymerization at the immunological synapse (IS) was markedly enhanced by overexpression of LIME, but was reduced by expression of a LIME shRNA. Moreover, TCR-mediated cell adhesion to ICAM-1, laminin, or fibronectin was downregulated by expression of LIME shRNA. In addition, in the IS, LIME but not LAT was found to localize at the peripheral-supramolecular activation cluster (p-SMAC) where the integrins were previously shown to be localized. Together, these results establish LIME as a transmembrane adaptor protein linking TCR stimulation to IS formation and integrin activation through activation of Vav.

  19. Role Of Ascorbic Acid In Imparting Tolerance To Plants Against Oxidizing Pollutants

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2015-08-01

    Full Text Available Ascorbic acid is an antioxidant in plants which play important role in activation of many physiological and defense mechanisms. The level of ascorbic acid in plants is determinant of its tolerance against the adverse effect of oxidizing pollutants. The present study tries to relate the variation in ascorbic acid content with the tolerance and sensitivity of two selected plant species viz. Azadirachtaindica and Pongamiapinnata by calculating their Air Pollution Tolerance Index APTI during winter season from November to March in the urban city Delhi of North India. Moreover ascorbic acid is also an important part of chloroplast it protects different components of photosynthetic system from oxidative stress. Thus to understand the role of ascorbic acid in imparting tolerance to plants against oxidizing pollutants the changes in chlorophyll content of the selected plant species with variation in ambient ozone concentration was analysed. It was found that as per APTI values Azadirachta sp. came under tolerant range with highest ascorbic acid content whereas Pongamia sp. was under intermediate range with less ascorbic acid content. It was statistically established that ozone has no significant relation with chlorophyll content of Azadirachta sp. which has the highest ascorbic acid content. Whereas ambient ozone concentrations showed significant negative relation with the chlorophyll content of Pongamia sp. p 0.05. Thus it was observed that the plants with high ascorbic acid content are tolerant and have greater ability to remediate pollutants.

  20. Pit lake lime dosing: Assessment of the performance of the treatment based on a high-spatial resolution AUV survey

    Science.gov (United States)

    Delgado, Jordi; García-Morrondo, David; Cereijo-Arango, José Luis; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja; Juncosa-Rivera, Ricardo

    2016-04-01

    The acidity of mine waters is typically corrected with passive (where possible) and/or active (i.e. chemical additions) systems. In the case of active treatments, lime dosing is a widespread technique due to the relatively ease of implementation and reduced operational costs. While neutralization of acidic waters is routinely performed in circulating water treatment facilities this is not so simple in open waters (e.g. pit lakes) because an efficient treatment requires the adequate distribution of the alkaline reagents throughout the volume of interest. To cope with this problem, a number of technical approaches have been proposed including active stirring (bubbling, etc.), surface spread diffusion, etc. In the early times of flooding of the Meirama mine, managers considered the necessity of lime dosing to correct the initially acidic mine waters. However, lake evolution proved that liming was not necessary and it was desirable to allow a reasonably unmanned evolution of the reclaimed system. In order to ensure that the lime dosing system is in good operative conditions in case of necessity, according to a prescribed time schedule to time mine managers put it in operation. That give us the opportunity to perform a large-scale "tracer" experiment useful to test the efficiency of wet lime dosing in a large water body. Dry lime, which is kept in a storage silo, is directly dosed over the channel of a small stream discharging in the lake. Therefore, stream water becomes saturated with lime and a pH of approximately 12.3. Stream water flows in cascade to the lake so that a certain potential and kinetic energy transfer is delivered to the lake. That promotes currents that enhance the re-distribution of the alkalinity load. In order to check for the distribution of alkaline water in the top body of the lake, an autonomous underwater vehicle (Yellow Spring Instruments Inc. EcoMapper AUV) was used. This device allows for the high- frequency simultaneous measurement of a

  1. Gamma amino butyric acid accumulation in medicinal plants without stress

    Directory of Open Access Journals (Sweden)

    P Anju

    2014-01-01

    Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague.

  2. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    Energy Technology Data Exchange (ETDEWEB)

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  3. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  4. [Advances in studies of absorption and utilization of amino acids by plants: A review].

    Science.gov (United States)

    Cao, Xiao-chuang; Wu, Liang-huan; Ma, Qing-xu; Jin, Qian-yu

    2015-03-01

    Plant can directly take up the intact amino acids, thus bypass the microbial mineralization of organic nitrogen. As an excellent carbon and nitrogen source, there exists competition for amino acid absorption between plant roots.and soil microorganisms. And the total flux of amino acids in soil may be enormous due to the extensive sources and short half-life. Studies on amino acid nitrogen nutritional contribution for plant by the technique of nitrogen isotopic tracer, has become a research topic in recent years ,which will help us better understand the principle of soil fertility. This paper summarized the recent researches on amino acid morphological characteristics in soil and its metabolic mechanism and nitrogen nutritional contribution for plant in different ecosystems, and discussed the present status and development trend of the amino acid circulation mechanism in the plant-soil-microorganism ecosystem and its bioavailability for plant. Finally, the topics of environmental regulating mechanism of amino acid bioavailability, amino acid carbon-nitrogen metabolism, and how to improve the field organic nitrogen management were all the core issues to be resolved.

  5. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  6. Wpływ wapnowania i dodatku materiałów organicznych na zawartość niklu w kupkówce pospolitej oraz we frakcjach w glebie zanieczyszczonej tym pierwiastkiem / Effect of liming and addition of organic materials to the nickel content in biomass of cocksfoot and his fractions in soil contaminated with this element

    Directory of Open Access Journals (Sweden)

    Kuziemska Beata

    2015-03-01

    Full Text Available The aim of these studies was to determine the effect of soil contamination with nickel (0, 75, 150 and 225 mg Ni kg-1 soil on the content of nickel in biomass of cocksfoot and fractions of this metal in the soil under different liming (0 Ca and Ca by 1 hydrolytic acidity and fertilization with organic materials (without the use of organic materials, straw rye and brown coal from Turow Coal Mine. Four swaths of cocksfoot gathered in the third year of a pot experiment were analyzed and fractions of nickel in the soil after the last swath of test plants were determined. Total nickel content in the plant and in the soil was determined by ICP-AES after earlier mineralization. Fractions of nickel in the soil were determined by sequential fractionation according to BCR procedure. The introduction of nickel into the soil, regardless of amount, significantly increased concentration of this metal in the biomass of cocksfoot and soil in all fractions, in particular the soluble and easily exchangeable fraction (F1. Liming the soil and the application of organic materials decreased nickel content in the biomass of cocksfoot and its soluble fraction in soil, easy available for plants, causing the same time to increase its share in the residual fraction (liming and oxidisable fraction (the application of organic materials.

  7. Produtividade do cafeeiro e atributos de fertilidade de latossolo sob influência de adensamento da lavoura e manejo da calagem Coffee yield and fertility attributes of a latosol under influence of population density and liming management

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Silva

    2004-10-01

    20 cm soil layer, and surface liming. As an additional treatment, liming (0 to 20 cm plus phosphogypsum were applied in an area with 10.000 pl ha-1. Soil samples were collected at soil depths of 0 to10, 10 to 20 and 20 to 40 cm, in four sampling times. The samples were analyzed for: pH, Ca and Mg exchangeable, P (Mehlich-1 solution, sulfate, nitrate e ammonium, and the saturation for bases. The liming management practices reduced the acidity until the soil depth of 0 to 10 cm. Transport of lime applied at soil surface was verified only at the forth sampling. The soil fertility attributes analyzed were not influenced by coffee population density. In average, the coffee yield in the higher plant density was 14 and 33 bags ha-1 higher than in the lower plant density, respectively in the first and second harvest seasons.

  8. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    Science.gov (United States)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  9. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defence pathways.

    Directory of Open Access Journals (Sweden)

    Luis A.J. Mur

    2013-06-01

    Full Text Available Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA or jasmonic acid (JA/ethylene (ET pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses to be tailored to particular biotic stresses. Nitric oxide (NO has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA—dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1 will promote the NPR1 oligomerisation within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S –nitrosylation and inhibition of s-adenosylmethionine transferases which provides methyl groups for ethylene production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  10. Biotechnological applications for rosmarinic acid production in plant

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... biotechnological researches for production of rosmarinic acid were done in the past i.e. from shoot culture .... cycle (Eknamkul and Ellis, 1989). ..... α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food. Chem.

  11. Optimisation of a wet FGD pilot plant using fine limestone and organic acids

    DEFF Research Database (Denmark)

    Frandsen, Jan; Kiil, Søren; Johnsson, Jan Erik

    2001-01-01

    The effects of adding an organic acid or using a limestone with a fine particle size distribution (PSD) have been examined in a wet flue gas desulphurisation (FGD) pilot plant. Optimisation of the plant with respect to the degree of desulphurisation and the residual limestone content of the gypsum......, but the residual limestone content in the gypsum increased to somewhere between 19 and 30 wt%, making this pH range unsuitable for use in a full-scale plant. The investigations have shown that both the addition of organic acids and the use of a limestone with a fine PSD can be used to optimise wet FGD plants. (C...

  12. Initial growth of Schizolobium parahybae in Brazilian Cerrado soil under liming and mineral fertilization

    Directory of Open Access Journals (Sweden)

    Ademilson Coneglian

    Full Text Available ABSTRACT High prices and the scarcity of hardwoods require the use of alternative wood sources, such as the Guapuruvu (Schizolobium parahybae, an arboreal species native to the Atlantic Forest, which has fast growth and high market potential. However, there is no information on its cultivation in the Brazilian Cerrado. Thus, this study aimed to analyze the contribution of mineral fertilization and liming in a Cerrado soil on the initial growth of Schizolobium parahybae. The experiment was set in a randomized block design, with 4 treatments (Cerrado soil; soil + liming; soil + fertilizer; and soil + fertilizer + liming and 15 replicates. The following variables were analyzed: plant height, stem diameter, number of leaves, total, shoot, leaf, root and stem dry matter, and root/shoot ratio. The obtained data were subjected to the analysis of variance, Tukey test and regression analysis. During the initial growth, Schizolobium parahybae can be cultivated in a Brazilian Cerrado soil only under mineral fertilization, with no need for soil liming.

  13. Efeito da calagem e sulfato de amônio no algodão: II - Concentração de cátions e ânions na solução do solo e absorção de nutrientes pelas plantas Effect of liming and ammonium sulfate in cotton: II - Concentration of cations and anions in the soil solution and plant nutrient uptake

    Directory of Open Access Journals (Sweden)

    José Salvador Simoneti Foloni

    2006-06-01

    soil mobilization. Nitrogen fertilization adds anions that can increase the solubility of basic cations of the soil due to formation of ionic pairs. The objective of this study was to characterize the dynamics of anions (SO4(2- and NO3- and cations (NH4+, Ca2+, Mg2+ and K+ in the soil solution, and the nutrient uptake by cotton plants subjected to different lime application forms and ammonium sulfate fertilization, with straw on the soil surface. Cotton plants (Gossypium hirsutum were grown for 60 days in PVC columns filled with a distroferric Red Latosol (sand loam Rhodic Oxisol. The soil had lime incorporated into the 0-20 cm layer, liming on the soil surface, or received no lime. Nitrogen was used at rates of 0, 50, 100 and 150 kg ha-1 as ammonium sulfate. The pots consisted of PVC columns of 20 cm diameter and 50 cm height, totaling 15.71 dm³. Porous capsules were installed at a depth of 15-20 cm to extract soil solution. The SO4(2- of the soil solution was increased by the nitrogen fertilization, independently of the lime application form. Nitrification was favored in the short-term with the application of ammonium sulfate only in the condition of incorporated lime. After 50 days of plant growth, however, nitrate in the soil solution increased, even in the soil that had not been limed. The Ca, Mg and K concentrations in the soil solution were increased as a response to the nitrogen top dressing. The anion SO4(2- presented greater affinity than NO3- in the formation of ionic pairs with the basic cations in the soil solution. The application of ammonium sulfate was most effective in promoting Ca and Mg uptake by the cotton plants when lime was incorporated.

  14. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, A.; Boilard, S. [Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Building D, Room D215, Halifax, Nova Scotia, B3J 1Z1 (Canada); Walsh, M.E., E-mail: mwalsh2@dal.ca [Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Building D, Room D215, Halifax, Nova Scotia, B3J 1Z1 (Canada); Lake, C.B. [Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Building D, Room D215, Halifax, Nova Scotia, B3J 1Z1 (Canada)

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  15. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment.

    Science.gov (United States)

    Mackie, A; Boilard, S; Walsh, M E; Lake, C B

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  16. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  17. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions.

    Science.gov (United States)

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-10-01

    No tillage (NT) has been associated to increased N2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N2O and CH4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N2O emissions by 68% compared to NT and generally led to higher CH4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH4 oxidation was enhanced after liming application due to decreased Al(3+) toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N2O and CH4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH4 emissions and, under CT, abate N2O emissions.

  18. [Comparative study on selenium and amino acids content in leaves of planted and wild Scutellaria baicalensis].

    Science.gov (United States)

    Sheng, Ji-Ping; Chen, Hai-Rong; Shen, Lin

    2009-01-01

    Scutellaria baicalensis is one of the most important Chinese herbs. It is widely used in Asian medicine to improve impaired brain function and to treat headaches, and used to treat prostate cancer. It is also known to be anti-inflammatory and antifungal, and also seems to have antiviral properties, including possible effectiveness against HIV. Scutellaria baicalensis tea and other products are in development. In the present study, the content of selenium (Se) in leaves of planted and wild Scutellaria baicalensis was determined by fluorescence photometer. The contents of 18 kinds of amino acids in the leaves of planted and wild Scutellaria baicalensis were determined with amino acids instruments. The results showed that the two kinds of leaves were rich in Se content, and the content of Se in planted Scutellaria baicalensis (0.051 microg x g(-1)) was not significantly different from that in wild one (0.051 microg x g(-1), alpha = 0.05). The amino acids, of which the total content was up to 14.62% and 10.25% separately, were rich in both planted and wild Scutellaria baicalensis. Among the 18 kinds of amino acids, aspartic acid, glutamic acid and leucine were comparatively high in leaves of planted and wild Scutellaria baicalensis. There are 8 kinds of amino acids essential to human body, which were higher in leaves of planted Scutellaria baicalensis than those of wild one. This study, for the first time, determined Se and amino acids content in Scutellaria baicalensis and concluded that the leaves of planted type have Se and amino acids content not lower or higher than that of wild type, and the planted type could be a good substitute of wild type in the development of Scutellaria baicalensis products. This study also provided useful data for explaining the multifunction of Scutellaria baicalensis and theological basis for developing its medical and edible value.

  19. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    Science.gov (United States)

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes.

  20. An Update on Abscisic Acid Signaling in Plants and More...

    Institute of Scientific and Technical Information of China (English)

    Aleksandra Wasilewska; Florina Vlad; Caroline Sirichandra; Yulia Redko; Fabien Jammes; Christiane Valon; Nicolas Frei dit Frey; Jeffrey Leung

    2008-01-01

    The mode of abscisic acid (ABA) action,and its relations to drought adaptive responses in particular,has been a captivating area of plant hormone research for much over a decade.The hormone triggers stomatal closure to limit water loss through transpiration,as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress.The signaling network orchestrating these various responses is,however,highly complex.This review summarizes several significant advances made within the last few years.The biosynthetic pathway of the hormone is now almost completely elucidated,with the latest identification of the ABA4 gene encoding a neoxanthin synthase,which seems essential for de novo ABA biosynthesis during water stress.This leads to the interesting question on how ABA is then delivered to perception sites.In this respect,regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response,and at the cellular level,by the identification of a β-galactosidase that releases biologically active ABA from inactive ABA-glucose ester.Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA)and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication,both of which have been shown to bind ABA in vitro.On the other hand,the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty.Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses.Sucrose Non-Fermenting Related Kinases (SnRK),Calcium-Dependent Protein Kinases (CDPK),Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model.Identifying their direct in vivo targets of

  1. The Effect of Simulated Acid Rain on the Leaching Behavior of Havy Metals from Brick Made in MSWI Lime - ash%模拟酸雨对污泥焚烧灰渣砖中重金属浸出影响

    Institute of Scientific and Technical Information of China (English)

    刘世宇; 童飞; 陈兴凡

    2012-01-01

    Bricks made in ted acid rain. Effect of soaking municipal sludge waste incineration (MSWI) lime - ash were soaked in kinks of simulatime of brick and pH of simulated acid rain on the leaching behavior of heavy metals from the bricks was investigated. Results showed that under the same dip in times, the total leaching concentration of 4 kinds of heavy metals was Cr, Mn, Cu and Fe, with the simulated acid rain pH accretion and drop. At the pH 4.4 of simulated acid rain, the order to leaching concentration of 4 kinds of heavy metals was Cr 〉 Mn 〉 Cu 〉 Fe, after 8 h dip in times. The total leaching concentration of Cd, Ni and Cu was lower than 0. 1 ppb, at the kinks of simulated acid rain.%用不同pH的模拟酸雨浸泡掺杂污泥焚烧灰渣自制的混凝土路面砖,探讨了相同浸泡时间时,模拟酸雨pH对自制路面砖中重金属浸出的影响。结果表明,在相同浸泡时间时,铬、锰、铜、铁的浸出浓度都随着模拟酸雨pH的增大而下降。在pH为4.4的模拟酸雨中,浸泡时间大于8小时后,铬、锰、铜、铁浸出浓度的大小关系是铬〉锰〉铜〉铁。而镉、镍、铅的浸出浓度在各种模拟酸雨中都小于0.1 ppb。

  2. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.

    Science.gov (United States)

    Salihoglu, Guray; Pinarli, Vedat

    2008-05-30

    The purpose of this study was to determine an appropriate treatment for steel foundry electric arc furnace dust (EAFD) prior to permanent disposal. Lime and Portland cement (PC)-based stabilization was applied to treat the EAFD that contains lead and zinc above the landfilling limits, and is listed by USEPA as hazardous waste designation K061 and by EU as 10 02 07. Three types of paste samples were prepared with EAFD content varying between 0 and 90%. The first type contained the EAFD and Portland cement, the second contained the EAFD, Portland cement, and lime, and the third contained the EAFD and lime. All the samples were subjected to toxicity characteristics leaching procedure (TCLP) after an air-curing period of 28 days. pH changes were monitored and acid neutralization capacity of the samples were examined. Treatment effectiveness was evaluated in terms of reducing the heavy metal leachability to the levels below the USEPA landfilling criteria. An optimum composition for the EAFD stabilization was formulated as 30% EAFD +35% lime +35% Portland cement to achieve the landfilling criteria. The pH interval, where the solubility of the heavy metals in the EAFD was minimized, was found to be between 8.2 and 9.4.

  3. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment.

    Science.gov (United States)

    Bade, Rabindra; Oh, Sanghwa; Sik Shin, Won

    2012-06-01

    In this study, changes in bioavailable concentrations of Pb, Zn, Cu and As in former smelter site soils (J1 and J2) were investigated before and after lime amendment. The immobilization efficiencies of metal(loid)s were evaluated by Toxicity Characteristic Leaching Procedure (TCLP). Their bioavailable concentrations in the soils were evaluated by the acid-extractable and -reducible fractions in Standard Measurement and Testing Program (i.e., SM&T(I+II)), in vitro physiologically based extraction test (PBET) and diffusive gradients in thin-films (DGT). The results showed that the bioavailable concentrations remarkably decreased after lime amendment in both J1 and J2 soils. DGT uptake and resupply (R) of Zn, Cu and As from soil to soil solution increased but that of Pb decreased. This pattern was consistent with SM&T(I+II)- and PBET-extractable concentrations after lime amendment. This indicates that lime amendment is highly effective for the immobilization of Zn, Cu and As, but not for Pb. Our results implicate that DGT can be used to estimate bioavailability of metal(loid)s in soils and further extended to estimate risk reduction after soil remediation.

  4. Effect of lime juice on Vibrio parahaemolyticus and Salmonella enterica inactivation during the preparation of the raw fish dish ceviche.

    Science.gov (United States)

    Mathurand, Prateek; Schaffner, Donald W

    2013-06-01

    Ceviche is a raw fish dish common in Peru and other Latin American counties. The most characteristic feature of ceviche is the use of lime juice for marinating or "cooking" the raw fish. Confirmed cases of cholera in Peru, New Jersey, and Florida have been associated with ceviche. Although the effect of organic acids on pathogenic bacteria has been well characterized, few data exist on the effect of these acids in seafood systems. The objective of the study was to evaluate the effects of lime juice marination on pathogens likely to be present in ceviche. Tilapia (Oreochromis niloticus) fillet pieces were inoculated with Vibrio parahaemolyticus and Salmonella enterica (>7 log CFU/g) and incubated at 25 and 4°C for 30 or 120 min in the presence of fresh lime juice at concentrations typical for the preparation of ceviche. Similar levels of cells were also inoculated into fresh lime juice without tilapia. Surviving cells were enumerated on selective (xylose lysine Tergitol 4 and thiosulfate-bile-citrate-sucrose) and nonselective (tryptic soy agar) media. V. parahaemolyticus levels were reduced to below detection limits (∼5-log reduction) under all conditions studied. Salmonella strains on tilapia were much more resistant to inactivation and were only slightly reduced (∼1- to 2-log reduction). Salmonella and V. parahaemolyticus inoculated directly into lime juice without tilapia were all reduced to below detection limits (∼5-log reduction). A typical ceviche recipe reduces V. parahaemolyticus risk significantly but is less effective for control of S. enterica.

  5. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  6. Influence of decenylsuccinic Acid on water permeability of plant cells.

    Science.gov (United States)

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified.

  7. Dano de frio em limas-ácidas Tahiti, colhidas em diferentes épocas e submetidas a tratamentos térmicos e bioquímicos Cold damage in Tahiti acid limes harvested in different periods and submitted to termichal and biochemical treatments

    Directory of Open Access Journals (Sweden)

    Leandro Camargo Neves

    2008-06-01

    establish an effective and satisfactory method to control chilling injuries on Tahiti lime. Thus, the fruits that were harvested in Boa Vista, RR, 140 and 150 days after flowering, showed average values of 7.9 and 8.2ºBrix and 6.3 and 6.0mL of citric acid/100mL of flesh and 2.8 and 3.0 pH, respectively in two harvests. After the harvest the fruits were taken to the laboratory of Plant Production/UFRR, selected, cleaned and submitted to the following treatments: T1 - control; T2, T3 and T4 - maintained at 35ºC for 6, 12 and 24 hours, respectively; T5 - intermittent warming at 20ºC for 8 hours, after 5 and 10 days at 1ºC; T6 - intermittent warming at 20ºC for 8 hours, after 10 and 20 days at 1ºC; T7 - ethephon at 1,500 mg.L-1; and T8 - ethephon at 3,000 mg.L-1.The treatments T9 to T16, only differed from T1 to T8, only on the harvest date (10 days after the first one. The experiment was evaluated every 15 days, during 75 days at 1 ± 0.5 ºC and 92 ± 5 % of RU, regarding the chilling injury, visual aspect, lack of fresh mass, soluble solids (SS, titratable acidity (TA, SS/TA (ratio - RT, total chlorophyll and ascorbic acid. The delay of the harvest did not provide any significative effect. All treatments, except the control and intermittent warming in 10 and 20 days, were efficient to control the chilling injury. However, the chemical and thermal conditioning speeded up the metabolism of fruits, mainly concerning the lack of fresh mass and visual aspect characteristics. The higher chlorophyll and ascorbic acid content, as well the best visual aspect, no rottenness incidence and the lower lack of fresh mass were detected on fruits submitted to the intermittent warming at 5 and 10 days. The SS, AT and RT were considered compatible to the quality standard and did not vary statistically among the treatments which had shown resistance to the chilling injury.

  8. The Effects of Food Processing on the Archaeological Visibility of Maize: An Experimental Study of Carbonization of Lime-treated Maize Kernels

    OpenAIRE

    2013-01-01

    This paper explores the effects of maize processing on the carbonization and preservation of maize kernels in the archaeological record. The shift to processing maize with lime (known as hominy production in the Eastern Woodlands and nixtamalization in Mesoamerica) in ancient times had the effect of making maize more nutritious through increasing the availability of calcium, niacin, dietary fiber, and essential amino acids.  Less understood is how this process of cooking maize in a lime solut...

  9. Inactivation of Adenovirus Type 5, Rotavirus WA and Male Specific Coliphage (MS2 in Biosolids by Lime Stabilization

    Directory of Open Access Journals (Sweden)

    Aaron B. Margolin

    2007-03-01

    Full Text Available The use of lime to reduce or eliminate pathogen content is a cost-effective treatment currently employed in many Class B biosolids production plants in the United States. A bench scale model of lime stabilization was designed to evaluate the survival of adenovirus type 5, rotavirus Wa, and the male specific bacteriophage, MS2, in various matrices. Each virus was initially evaluated independently in a reverse osmosis treated water matrix limed with an aqueous solution of calcium hydroxide for 24-hr at 22 ± 5°C. In all R/O water trials, adenovirus type 5, rotavirus Wa and MS2 were below detectable levels (<100.5 TCID50/mL and <1 PFU/mL respectively following 0.1-hr of liming. Adenovirus type 5, rotavirus Wa, and MS2, were inoculated into composted, raw and previously limed matrices, representative of sludge and biosolids, to achieve a final concentration of approximately 104 PFU or TCID50/mL. Each matrix was limed for 24-hr at 22 ± 5°C and 4 ± 2°C. In all trials virus was below detectable levels following a 24-hr incubation. The time required for viral inactivation varied depending on the temperature and sample matrix. This research demonstrates reduction of adenovirus type 5, rotavirus Wa, and male-specific bacteriophage, in water, sludge and biosolids matrices following addition of an 8% calcium hydroxide slurry to achieve a pH of 12 for 2-hr reduced to 11.5 for 22-hr by addition of 0.1 N HCl. In these trials, MS2 was a conservative indicator of the efficacy of lime stabilization of adenovirus Type 5 and rotavirus Wa and therefore is proposed as a useful indicator organism.

  10. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    OpenAIRE

    Kumar Sujeet MR; Dutta Rakesh Kumar; Mohanty Bijayananda

    2014-01-01

    Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swe...

  11. Phytoplasma-Responsive microRNAs Modulate Hormonal, Nutritional, and Stress Signalling Pathways in Mexican Lime Trees.

    Science.gov (United States)

    Ehya, Farveh; Monavarfeshani, Aboozar; Mohseni Fard, Ehsan; Karimi Farsad, Laleh; Khayam Nekouei, Mojtaba; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-01-01

    Witches' broom disease of Mexican lime (Citrus aurantifolia L.), which is associated to the phytoplasma 'Candidatus Phytoplasma aurantifolia', is a devastating disease that results in significant economic losses. Plants adapt to biotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are a recently identified family of molecules that regulate plant responses to environmental stresses through post-transcriptional gene silencing. Using a high-throughput approach to sequence small RNAs, we compared the expression profiles of miRNAs in healthy Mexican lime trees and in plants infected with 'Ca. P. aurantifolia'. Our results demonstrated the involvement of different miRNAs in the response of Mexican lime trees to infection by 'Ca. P. aurantifolia'. We identified miRNA families that are expressed differentially upon infection with phytoplasmas. Most of the miRNAs had variants with small sequence variations (isomiRs), which are expressed differentially in response to pathogen infection. It is likely that the miRNAs that are expressed differentially in healthy and phytoplasma-infected Mexican lime trees are involved in coordinating the regulation of hormonal, nutritional, and stress signalling pathways, and the complex interactions between them. Future research to elucidate the roles of these miRNAs should improve our understanding of the level of diversity of specific plant responses to phytoplasmas.

  12. Phytoplasma-Responsive microRNAs Modulate Hormonal, Nutritional, and Stress Signalling Pathways in Mexican Lime Trees.

    Directory of Open Access Journals (Sweden)

    Farveh Ehya

    Full Text Available Witches' broom disease of Mexican lime (Citrus aurantifolia L., which is associated to the phytoplasma 'Candidatus Phytoplasma aurantifolia', is a devastating disease that results in significant economic losses. Plants adapt to biotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs are a recently identified family of molecules that regulate plant responses to environmental stresses through post-transcriptional gene silencing.Using a high-throughput approach to sequence small RNAs, we compared the expression profiles of miRNAs in healthy Mexican lime trees and in plants infected with 'Ca. P. aurantifolia'.Our results demonstrated the involvement of different miRNAs in the response of Mexican lime trees to infection by 'Ca. P. aurantifolia'. We identified miRNA families that are expressed differentially upon infection with phytoplasmas. Most of the miRNAs had variants with small sequence variations (isomiRs, which are expressed differentially in response to pathogen infection.It is likely that the miRNAs that are expressed differentially in healthy and phytoplasma-infected Mexican lime trees are involved in coordinating the regulation of hormonal, nutritional, and stress signalling pathways, and the complex interactions between them. Future research to elucidate the roles of these miRNAs should improve our understanding of the level of diversity of specific plant responses to phytoplasmas.

  13. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    NARCIS (Netherlands)

    Luna, Estrella; van Hulten, Marieke; Zhang, Yuhua; Berkowitz, Oliver; López, Ana; Pétriacq, Pierre; Sellwood, Matthew A; Chen, Beining; Burrell, Mike; van de Meene, Allison; Pieterse, Corné M J; Flors, Victor; Ton, Jurriaan

    2014-01-01

    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activ

  14. Foliar Responses that may Determine Plant Injury by Simulated Acid Rain

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L. S.

    1979-01-01

    The aim of the research presented here is to try to use visual, scanning electron micrographs, and histological preparations as tools to predict the relative sensitivity of various plant species to simulated acid rain. It is hoped that these results might enable a prediction of the relative sensitivities of major plant groups of economic and aesthetic interest to air pollutants.

  15. Phosphoric acid fuel cell power plant system performance model and computer program

    Science.gov (United States)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  16. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  17. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  18. Use of Sewage Sludge After Liming as Fertilizer for Maize Growth

    Institute of Scientific and Technical Information of China (English)

    M.K.JAMALI; T.G.KAZI; M.B.ARAIN; H.I.AFRIDI; A.R.MEMON; N.JALBANI; A.SHAH

    2008-01-01

    The use of sewage sludge on agricultural land provides an alternative for its disposal.Therefore,the aim of the present study was to evaluate the feasibility of using industrial sewage sludge produced in Pakistan,as an agricultural fertilizer.The agricultural soil amended with 250 g kg-1 sewage sludge with or without lime treatment was used for the growth of the common local grain crop,maize (Zea maize).The mobility of the trace and toxic metals in the sludge samples was assessed by applying a modified BCR sequential extraction procedure.The single extraction procedure was comprised of the application of a mild extractant (CaC12) and water,for the estimation of the proportion of easily soluble metal fractions.To check the precision of the analytical results,the concentrations of trace and toxic metals in every step of the sequential extraction procedure were summed up and compared with total metal concentrations.The plant-available metal contents,as indicated by the deionized water and 0.01 tool L-1 CaCl2 solution extraction fractions and the exchangeable fraction of the sequential extraction,decreased significantly (P < 0.05) with lime application because of the reduced metal availability at a higher pH,except in the cases of Cd and Cu,whose mobility was slightly increased.Sludge amendment enhanced the dry weight yield of maize and the increase was more obvious for the soil with lime treatment.Liming the sewage sludge reduced the trace and toxic metal contents in the grain tissues,except Cu and Cd,which were below the permissible limits of these metals.The present experiment demonstrates that liming was an important factor in facilitating the growth of maize in sludge-amended soil.

  19. Removal of phosphate from greenhouse wastewater using hydrated lime.

    Science.gov (United States)

    Dunets, C Siobhan; Zheng, Youbin

    2014-01-01

    Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.

  20. Identification of genes differentially expressed during interaction of Mexican lime tree infected with "Candidatus Phytoplasma aurantifolia".

    Science.gov (United States)

    Zamharir, Maryam Ghayeb; Mardi, Mohsen; Alavi, Seyed Mohammad; Hasanzadeh, Nader; Nekouei, Mojtaba Khayyam; Zamanizadeh, Hamid Reza; Alizadeh, Ali; Salekdeh, Ghasem Hoseini

    2011-01-01

    "Candidatus Phytoplasma aurantifolia", is the causative agent of witches' broom disease in Mexican lime trees (Citrus aurantifolia L.), and is responsible for major losses of Mexican lime trees in Southern Iran and Oman. The pathogen is strictly biotrophic, and thus is completely dependent on living host cells for its survival. The molecular basis of compatibility and disease development in this system is poorly understood. Therefore, we have applied a cDNA- amplified fragment length polymorphism (AFLP) approach to analyze gene expression in Mexican lime trees infected by "Ca. Phytoplasma aurantifolia". We carried out cDNA-AFLP analysis on grafted infected Mexican lime trees of the susceptible cultivar at the representative symptoms stage. Selective amplifications with 43 primer combinations allowed the visualisation of 55 transcript-derived fragments that were expressed differentially between infected and non-infected leaves. We sequenced 51 fragments, 36 of which were identified as lime tree transcripts after homology searching. Of the 36 genes, 70.5% were down-regulated during infection and could be classified into various functional groups. We showed that Mexican lime tree genes that were homologous to known resistance genes tended to be repressed in response to infection. These included the genes for modifier of snc1 and autophagy protein 5. Furthermore, down-regulation of genes involved in metabolism, transcription, transport and cytoskeleton was observed, which included the genes for formin, importin β 3, transducin, L-asparaginase, glycerophosphoryl diester phosphodiesterase, and RNA polymerase β. In contrast, genes that encoded a proline-rich protein, ubiquitin-protein ligase, phosphatidyl glycerol specific phospholipase C-like, and serine/threonine-protein kinase were up-regulated during the infection. The present study identifies a number of candidate genes that might be involved in the interaction of Mexican lime trees with "Candidatus Phytoplasma

  1. Identification of genes differentially expressed during interaction of Mexican lime tree infected with "Candidatus Phytoplasma aurantifolia"

    Directory of Open Access Journals (Sweden)

    Nekouei Mojtaba

    2011-01-01

    interaction of Mexican lime trees with "Candidatus Phytoplasma aurantifolia". These results should help to elucidate the molecular basis of the infection process and to identify genes that could be targeted to increase plant resistance and inhibit the growth and reproduction of the pathogen.

  2. Adsorptive Separation and Recovery of Organic Compounds from Purified Terephthalic Acid Plant Effluent

    NARCIS (Netherlands)

    Khachane, P.K.; Heesink, A. Bert M.; Versteeg, G.F.; Pangarkar, V.G.

    2003-01-01

    Several organic impurities formed in the p-xylene oxidation process for manufacture of terephthalic acid are carried into the aqueous effluent from the crystallization section of PTA plant of crystallizers for purified terephthalic acid (PTA). These compounds impose a burden on the effluent treatmen

  3. Adsorptive Separation and Recovery of Organic Compounds from Purified Terephthalic Acid Plant Effluent

    NARCIS (Netherlands)

    Khachane, P.K.; Heesink, A. Bert M.; Versteeg, G.F.; Pangarkar, V.G.

    2003-01-01

    Several organic impurities formed in the p-xylene oxidation process for manufacture of terephthalic acid are carried into the aqueous effluent from the crystallization section of PTA plant of crystallizers for purified terephthalic acid (PTA). These compounds impose a burden on the effluent treatmen

  4. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-09-12

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The dynamics of embolism refilling in abscisic acid (ABA)-deficient tomato plants.

    Science.gov (United States)

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K; Lovisolo, Claudio; Zwieniecki, Maciej A

    2012-12-24

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant's refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant's capacity for refilling.

  6. Low—Molecular—Weight Aliphatic Acids in Soils Inculbated with Plant Residues Under Different Moisture Conditions

    Institute of Scientific and Technical Information of China (English)

    SHENALIN; LIXUEYUAN; 等

    1997-01-01

    Iucubation experiments were conducted to investigate the dynamics of low-molecular-weight aliphatic acids i two andosols with and without plant materials.Results showed that amount of low-molecular-weight aliphatic acids in soils alone varied considerably with water regime under which the soil was incubated,duration of incubation and soil organic matter content,ranging from 257-860μmol kg-1 soil,of which 19%-33% was in free state.Incorporation of plant matrials increased greatly both the amount and unmber of members of low-molecular-weight aliphatic acids,and also the proportion of low-molecular-weght aliphatic acids occurred in free state ,Generally,among these ,aliphatic acids detected,acetic,propionic,glyoxalic and formic acids were predominant.

  7. Effects of Biochar and Lime on Soil Physicochemical Properties and Tobacco Seedling Growth in Red Soil

    Directory of Open Access Journals (Sweden)

    ZHU Pan

    2015-12-01

    Full Text Available Red soil, mainly found in the southern China, is developed in a warm, moist climate. The main property of the soils is strong acidity, aluminum toxicity, and low available nutrients. In this study, different effects of biochar and lime on soil physicochemical properties and tobacco growth were determined in red soil, so as to provide a scientific foundation for soil improvement tobacco field. A pot experiment was designed and conducted at four biochar levels(0, 0.5%, 1%, 2% and normal lime level (0.3% to study effects of two different soil amendments on red soil pH, exchangeable aluminum(Exc-Al and exchangeable manganese(Exc-Mn, available nutrients and organic carbon (SOC. Meanwhile, agronomic traits, biomass and leaves elements of tobacco were also tested. Results showed that the agronomic characters and biomass of tobacco seedling had changed effectively after biochar or lime was added. Under 0.5%, 1% biochar treatment, the content of nitrogen(N, phosphorus(P, potassium(K, calcium(Ca and magnesium(Mg in tobacco leaves substantially raised. However, when 2% biochar was applied, leaves N content declined by 9.3%. Compared with the control, leaves N, P and Ca content increased observably in the lime treatment. However, its K and Mg content decreased by 9.0% and 13.3% respectively. Alkaline nitrogen(SAN, available phosphorus (SAP, available potassium (SAK, and exchangeable calcium (Exc-Ca and exchangeable magnesium (Exc-Mg were improved obviously in soil applied with biochar. Only the content of Exc-Ca was significantly increased in lime treatment. In addition, it was beneficial to improve soil pH and reduce soil Exc-Al when biochar or lime had been used. Thus, both biochar and lime are propitious to increase soil pH value, lessen soil Exc-Al content, and improve the growth of tobacco seedling. Furthermore, biochar application also can raise the content of available nutrient and SOC in red soil.

  8. Effects of Multiple Soil Conditioners on a Mine Site Acid Sulfate Soil for Vetiver Growth

    Institute of Scientific and Technical Information of China (English)

    LIN Chu-Xia; LONG Xin-Xian; XU Song-Jun; CHU Cheng-Xing; MAI Shao-Zhi; JIANG Dian

    2004-01-01

    A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.

  9. Selection and breeding for acid-soil tolerance in crops: Upland rice and tropical forages as case studies

    Energy Technology Data Exchange (ETDEWEB)

    Vera, R. (Centro Internacional de Agricultura Tropical, Cali (Colombia)); Zeigler, R.S.; Sarkarung, S. (International Rice Research Institute, Manila (Philippines)); Rao, I.M.

    Soil acidity and associated infertility and mineral toxicities are major constraints to agricultural production in extensive areas of the humid tropics and subtropics. The natural process of soil acidification is often intensified by agricultural practices, particularly nitrogen fertilization, and acid precipitation. This paper briefly discusses the factors contributing to acid-soil infertility, effects on plant growth, and acid-soil treatments in temperate climates particularly liming. However, these treatments are not easily adaptable to tropical regions. However, the development of cultivars adapted to the acid soil complex is a promising alternative. The paper goes on to present several topics related to cultivar development: acid soils of tropical America; identification of germplasm adapted to acid soils; plant adaptation mechanisms for acid soils; improvement of acid-soil adaptation in crops; case study of upland rice by the Centro Internacional de Agricultura Tropical; tropical foages for livestock; and contribution of adapted plants to sustainable production systems. 50 refs., 3 figs., 7 tabs.

  10. Comparative studies of cutins from lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) after TFA hydrolysis.

    Science.gov (United States)

    Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz

    2017-09-09

    Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS (13)C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  12. Indole-3-acetic acid metabolism in normal and dwarf micropropagated banana plants (Musa spp. AAA)

    OpenAIRE

    Zaffari,Gilmar Roberto; Peres,Lázaro Eustáquio Pereira; Tcacenco,Fernando Adami; Kerbauy,Gilberto Barbante

    2002-01-01

    Nanism is one of the most frequent type of mutant in micropropagated banana plants from the Cavendish subgroup. The present study aimed at studying some of the hormone factors involved in this type of mutation. Rhizomes from normal and dwarf plants from the cultivar Grand Naine were incubated for 5 d in the presence of [³H]-L-tryptophan, [³H]-indole-3-acetic acid and gibberellin, to quantify the endogenous levels of indole-3-acetic acid-ester, indole-3-acetic acid-amide, free indole-3-acetic ...

  13. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  14. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress.

    Science.gov (United States)

    Waqas, Muhammad; Khan, Abdul Latif; Kamran, Muhammad; Hamayun, Muhammad; Kang, Sang-Mo; Kim, Yoon-Ha; Lee, In-Jung

    2012-09-07

    We isolated and examined two endophytic fungi for their potential to secrete phytohormones viz. gibberellins (GAs) and indoleacetic acid (IAA) and mitigate abiotic stresses like salinity and drought. The endophytic fungi Phoma glomerata LWL2 and Penicillium sp. LWL3 significantly promoted the shoot and allied growth attributes of GAs-deficient dwarf mutant Waito-C and Dongjin-beyo rice. Analysis of the pure cultures of these endophytic fungi showed biologically active GAs (GA1, GA3, GA4 and GA7) in various quantities. The cultures of P. glomerata and Penicillium sp. also contained IAA. The culture application and endophytic-association with host-cucumber plants significantly increased the plant biomass and related growth parameters under sodium chloride and polyethylene glycol induced salinity and drought stress as compared to control plants. The endophytic symbiosis resulted in significantly higher assimilation of essential nutrients like potassium, calcium and magnesium as compared to control plants during salinity stress. Endophytic-association reduced the sodium toxicity and promoted the host-benefit ratio in cucumber plants as compared to non-inoculated control plants. The symbiotic-association mitigated stress by compromising the activities of reduced glutathione, catalase, peroxidase and polyphenol oxidase. Under stress conditions, the endophyte-infection significantly modulated stress through down-regulated abscisic acid, altered jasmonic acid, and elevated salicylic acid contents as compared to control. In conclusion, the two endophytes significantly reprogrammed the growth of host plants during stress conditions.

  15. Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress

    Directory of Open Access Journals (Sweden)

    In-Jung Lee

    2012-09-01

    Full Text Available We isolated and examined two endophytic fungi for their potential to secrete phytohormones viz. gibberellins (GAs and indoleacetic acid (IAA and mitigate abiotic stresses like salinity and drought. The endophytic fungi Phoma glomerata LWL2 and Penicillium sp. LWL3 significantly promoted the shoot and allied growth attributes of GAs-deficient dwarf mutant Waito-C and Dongjin-beyo rice. Analysis of the pure cultures of these endophytic fungi showed biologically active GAs (GA1, GA3, GA4 and GA7 in various quantities. The cultures of P. glomerata and Penicillium sp. also contained IAA. The culture application and endophytic-association with host-cucumber plants significantly increased the plant biomass and related growth parameters under sodium chloride and polyethylene glycol induced salinity and drought stress as compared to control plants. The endophytic symbiosis resulted in significantly higher assimilation of essential nutrients like potassium, calcium and magnesium as compared to control plants during salinity stress. Endophytic-association reduced the sodium toxicity and promoted the host-benefit ratio in cucumber plants as compared to non-inoculated control plants. The symbiotic-association mitigated stress by compromising the activities of reduced glutathione, catalase, peroxidase and polyphenol oxidase. Under stress conditions, the endophyte-infection significantly modulated stress through down-regulated abscisic acid, altered jasmonic acid, and elevated salicylic acid contents as compared to control. In conclusion, the two endophytes significantly reprogrammed the growth of host plants during stress conditions.

  16. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    Science.gov (United States)

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects.

  17. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  18. LIMES Large Infrastructure in Mathematics - Enhanced Services

    CERN Document Server

    Fachinformationszentrum Energie, Physik, Mathematik. Karlsruhe

    The Large Infrastructure in Mathematics - Enhanced Services (LIMES) Project is a RTD project within the Fifth (EC) Framework Programme - Horizontal Programme "Improving human research potential and the socio-economic knowledge base", Access to Resear The objective of this project is to upgrade the existing database Zentralblatt-MATH into a European based world class database for mathematics (pure and applied) by a process of technical improvement and wide Europeanisation, improving the present distribuited system. The goal is to make Zentralblatt MATH a world reference database, offering full coverage of the mathematics literature worldwide ncluding bibliographic data, peer reviews and/or abstracts, indexing, classification and search,

  19. An Aerobic Digestion of Lime Sludge.

    Science.gov (United States)

    1982-07-01

    AD-AL1B 502 AllMy MEDICAL BIOENGINEERING RESEARCH AND DEVELOPMENT -- ETC F/6 13/2 ANAEROBIC DIGESTION OF LIME SLUDGE.U) JUL 82 EA KBYLINSKI, B A BELL...Applied for Digesters 1 and 3, Run 1 9262- 9313 .................................... 55 32. Volatile Solids Destroyed vs. Volatile Solids Applied for...CONCENTRATIONS Feed Effluent NH-N NH -N Reactor Run Julian Date mgfL mg/L 1 1 9261- 9313 100 203 1 1 9314-0008 58 243 2 1 9261-0008 72 147 3 1 9261

  20. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    Science.gov (United States)

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  1. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  2. Plant residues: short term effect on sulphate, borate, zinc and copper adsorption by an acid oxisol

    Directory of Open Access Journals (Sweden)

    Dias Ana Cristi Basile

    2003-01-01

    Full Text Available Laboratory experiments were carried out to examine the effects of plant residues on Cu, Zn, B and S adsorption by an acidic oxisol. The plant residues were: black oats (Avena strigosa, oil seed radish(Raphanus sativus, velvet beans (Stizolobium cinereum, and pigeon pea (Cajanus cajan collected at flowering stage. Plant residues increased Cu and Zn adsorptions and decreased B and S adsorptions. The results indicated that for short term effect plant residues decreased the availabilities of Cu and Zn through metal organic complex reactions and increased availabilities of S and B through competition with organic anions by the adsorption sites on soil.

  3. Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth.

    Science.gov (United States)

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-06-01

    In the present study composting of water hyacinth was done with cattle manure and saw dust (6:3:1) ratio and effects of addition of lime (1%, 2% and 3%) on heavy metal bioavailability and leachability was evaluated during 30 days of composting period. The changes in temperature, pH, electrical conductivity (EC), organic matter and extractable heavy metal contents were measured. Results showed that the total concentration of heavy metals was increased during the composting process. Due to addition of lime initial pH of the compost was raised effectively, caused a decrease in water soluble, diethylene triamine pentracetic acid (DTPA) and toxicity characteristics leaching procedure (TCLP) extractable metal contents in the final compost. Water soluble metals (Ni, Pb and Cd) and DTPA extractable metals (Pb and Cd) were not detected during water soluble fraction. Addition of lime significantly reduced the bioavailability and leachability of heavy metals during water hyacinth composting process.

  4. Bioactive compounds from Mexican lime ( Citrus aurantifolia ) juice induce apoptosis in human pancreatic cells.

    Science.gov (United States)

    Patil, Jaiprakash R; Chidambara Murthy, K N; Jayaprakasha, G K; Chetti, Mahadev B; Patil, Bhimanagouda S

    2009-11-25

    Lime (Citrus aurantifolia Swingle) is one of the major citrus fruits and widely consumed, but there is limited evidence about its health-promoting properties. Hence, an investigation was conducted to understand the chemopreventive effects of lime juice on pancreatic cancer cells and the possible mechanism for induction of apoptosis using Panc-28 cells. Freeze-dried lime juice was extracted with different solvents, such as chloroform, acetone, MeOH, and MeOH/water (8:2). The chloroform extract showed the highest (85.4 and 90%) radical-scavenging activity by 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) methods at 624 microg/mL, whereas the MeOH/water extract showed the lowest (<20%) activity. The active components were identified by high-performance liquid chromatography (HPLC) using a C-18 column as rutin, neohesperidin, hesperidin, and hesperitin. Furthermore, the limonoids identified are limonexic acid, isolimonexic acid, and limonin. All of the extracts of lime juice inhibited Panc-28 cancer cell growth. The MeOH extract exhibited the maximum activity, with an IC50 value of 81.20 microg/mL after 72 h. The inhibition of Panc-28 cells was in the range of 73-89%, at 100 microg/mL at 96 h. The involvement of apoptosis in induction of cytotoxicity was confirmed by expression of Bax, Bcl-2, casapase-3, and p53. The results of the present study clearly indicate that antioxidant activity is proportionate to the content of flavonoids and proliferation inhibition ability is proportionate to the content of both flavonoids and limonoids.

  5. 77 FR 45715 - Application of Key Lime Air Corporation for Commuter Authority

    Science.gov (United States)

    2012-08-01

    ...] Application of Key Lime Air Corporation for Commuter Authority AGENCY: Department of Transportation. ACTION... Lime Air Corporation fit, willing, and able, and awarding it a Commuter Air Carrier...

  6. Effects of nematicides, lime, and herbicide on peach tree short life in georgia.

    Science.gov (United States)

    Wehunt, E J; Horton, B D; Prince, V E

    1980-07-01

    Peach tree mortality was 75% five years after planting on a site associated with peach tree short life and receiving no nematicide treatment, no lime, and with cultivation for weed control. Mortality was reduced to 29% by preplanting plus postplanting applications of DBCP (1,2-dibromo-3-chloropropane) and with herbicidal weed control. Preplanting applications of nematicides alone did not effectively reduce tree mortality or increase yield. Lime applications increased yield but did not affect tree growth or survival. Survival was higher with weed control by a herbicide than with control by disk cultivation. Populations of Macroposthonia xenoplax were correlated positively with tree mortality and negatively with yield. The other nematode consistently present at the site, Tylenchorhynchus claytoni, was not associated with either tree mortality or yield.

  7. Antibacterial activity of garlic and lime on isolates of extracted ...

    African Journals Online (AJOL)

    USER

    2010-05-24

    May 24, 2010 ... essential ingredient in the preparation of most herbal concortions. It is used ... The antimicrobial activity of the volatile oils of tangerine fruit peel ... (Zingber officinale Roscoe) and lime on Staphylococcus aureus, Bacillus sp. ..... (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). Afr. J. Biotechnol.

  8. Efficacy and phytotoicity of lime sulphur in organic apple production

    NARCIS (Netherlands)

    Holb, I.J.; Jong, de P.F.; Heijne, B.

    2003-01-01

    Curative and preventive efficacy and phytotoxicity of lime sulphur spray schedules, based on a warning system, were evaluated in the Netherlands during two growing seasons under field conditions. In most cases, lime sulphur treatments applied either curatively or preventively resulted in significant

  9. Effects of lime juice on malaria parasite clearance.

    Science.gov (United States)

    Adegoke, S A; Oyelami, O A; Olatunya, O S; Adeyemi, L A

    2011-10-01

    One hundred and twenty children with acute uncomplicated malaria who were managed at the children's outpatient department of the Wesley Guild Hospital, Ilesa (a unit of Obafemi Awolowo University Teaching Hospitals' Complex, Ile-Ife, Osun state, Nigeria) were recruited into the study to determine the effects of lime juice on malaria parasite clearance. These children were randomized into treatment with World Health Organization recommended antimalarials (artemisinin combination therapy, ACT) either alone or with lime juice. Nine of them were lost to follow-up, four were in the group that were managed with ACT and lime, and five in the group that were managed on ACT alone. The average (SD) time to achieve >75% reduction in parasite load was significantly lower in patients on ACT and lime; 30.5 ± 2.4 h against 38.6 ± 3.3 h for those on ACT alone (p lime juice achieved complete parasite clearance by 72 h of therapy (p = 0.007), ten (18.2%) patients without lime had early treatment failure (p = 0.003). There were no side effects with the use of lime juice. It may therefore be inferred, from this preliminary work, that lime juice when used with the appropriate antimalarial may enhance malaria parasite clearance especially in those with uncomplicated malaria.

  10. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  11. 76 FR 82295 - Central Power & Lime LLC; Notice of Filing

    Science.gov (United States)

    2011-12-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Central Power & Lime LLC; Notice of Filing December 23, 2011. Take notice that on December 22, 2011, Central Power & Lime LLC, pursuant to sections 18 CFR 292.205(c) and...

  12. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    Science.gov (United States)

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  13. Some studies on the reaction between fly ash and lime

    Indian Academy of Sciences (India)

    A Basumajumdar; A K Das; N Bandyopadhyay; S Maitra

    2005-04-01

    The reaction between fly ash (FA) and lime is extensively exploited for the manufacture of building bricks, blocks and aggregates. To get a better idea of this reaction, FA from different sources were mixed in different ratios with lime and compacted. The compacts were treated both by ordinary water and hydrothermal curing to promote lime bearing hydrate bond formation e.g. CaO–SiO2–H2O (C–S–H), CaO–Al2O3–H2O (C–A–H) etc. The decrease in free lime content in these compacts was measured as a function of curing time and curing process. This drop in this content was correlated to the chemical composition of the fly ashes. The mathematical relationships between free lime remaining in the compacts after its maximum decrease in concentration and lime binding modulus (a ratio between the amount of added lime and the total amount of lime binding constituents present in FA) for both types of curing were developed. Further, the rate of decrease in free CaO content under both types of curing conditions was compared from kinetic study. From this study the orders of the reactions and rate constants were found out.

  14. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Directory of Open Access Journals (Sweden)

    Kumar Sujeet

    2014-12-01

    Full Text Available Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  15. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    Science.gov (United States)

    Kumar, Sujeet; Dutta, Rakesh Kumar; Mohanty, Bijayananda

    2014-12-01

    Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  16. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    Science.gov (United States)

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids.

  17. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  18. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  19. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Waleed Amjad Khan

    2017-01-01

    Full Text Available Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3 and docosahexaenoic acid (DHA; C22:6 n-3 are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  20. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  1. Root distribution of rootstocks for 'Tahiti' lime

    Directory of Open Access Journals (Sweden)

    Neves Carmen Silvia Vieira Janeiro

    2004-01-01

    Full Text Available Field studies on citrus roots are important for genetic selection of cultivars and for management practices such as localized irrigation and fertilization. To characterize root systems of six rootstocks, taking into consideration chemical and physical characteristics of a clayey Typic Hapludox of the Northern State of Paraná, this study was performed having as scion the 'IAC-5 Tahiti' lime [Citrus latifolia (Yu. Tanaka]. The rootstocks 'Rangpur' lime (C. limonia Osbeck, 'Africa Rough' lemon (C. jambhiri Lush., 'Sunki' mandarin [C. sunki (Hayata hort. ex Tan.], Poncirus trifoliata (L. Raf., 'C13' citrange [C. sinensis (L. Osb. x P. trifoliata (L. Raf] and 'Catânia 2' Volkamer lemon (C. volkameriana Ten. & Pasq. were used applying the trench profile method and the SIARCS® 3.0 software to determine root distribution. 'C-13' citrange had the largest root system. 'Volkamer' lemon and 'Africa Rough' lemon presented the smallest amount of roots. The effective depth for 80 % of roots was 31-53 cm in rows and 67-68 cm in inter-rows. The effective distance of 80 % of roots measured from the tree trunk exceeded the tree canopy for P. trifoliata, 'Sunki' mandarin, and 'Volkamer' and 'Africa Rough' lemons.

  2. Oxidative lime pretreatment of Dacotah switchgrass.

    Science.gov (United States)

    Falls, Matthew; Sierra-Ramirez, Rocio; Holtzapple, Mark T

    2011-09-01

    Oxidative lime pretreatment increases the enzymatic digestibility of lignocellulosic biomass primarily by removing lignin. In this study, recommended pretreatment conditions (reaction temperature, oxygen pressure, lime loading, and time) were determined for Dacotah switchgrass. Glucan and xylan overall hydrolysis yields (72 h, 15 FPU/g raw glucan) were measured for 105 different reaction conditions involving three different reactor configurations (very short term, short term, and long term). The short-term reactor was the most productive. At the recommended pretreatment condition (120 °C, 6.89 bar O(2), 240 min), it achieved an overall glucan hydrolysis yield of 85.2 g glucan hydrolyzed/100 g raw glucan and an overall xylan yield of 50.1 g xylan hydrolyzed/100 g raw xylan. At this condition, glucan oligomers (1.80 g glucan recovered/100 g glucan in raw biomass) and xylan oligomers (25.20 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor, which compensate for low pretreatment yields.

  3. Molecular interactions between ethylene and gibberellic acid pathways in plants

    OpenAIRE

    Rzewuski, Guillaume

    2004-01-01

    Flooding avoidance in deepwater rice is characterised by rapid growth of the youngest internode which allows the plant to keep part of its foliage above the surface of raising flood waters. The primary signal triggering internodal elongation is the phytohormone ethylene which accumulates as a result of increased ethylene biosynthesis and entrapment. Through unknown signalling components, ethylene increases the level of bioactive gibberellins (GA) and responsiveness of the tissue to GA. GA is ...

  4. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.

  5. Common bean cultivars response to lime surface application under no tillage systemResposta de cultivares de feijoeiro comum à calagem superficial em semeadura direta

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2012-08-01

    Full Text Available Soil acidity in no tillage system, if not in high situations, can be neutralized by lime surface application, improving mineral nutrition and crop yield. Aiming to evaluate the agronomic performance of common bean cultivars, to surface lime application, in no tillage system, an experiment was conducted in Oxisol, Botucatu Municipal District, São Paulo State, Brazil. The experimental design was a complete randomized block in split plot with four replications, where the plots were formed by common bean cultivars (Carioca, IAC Carioca Eté, Pérola, IAPAR 81 e Campeão 2 and subplots consisted of surface application of dolomitic limestone (zero, 1.8 t ha-1, 3.6 t ha-1 and 5.4 t ha-1. The surface lime application on the soil occurred in October 2002 and subsequently the sequence millet (spring – beans (summer – oat (autumn-winter were planted under rainfed conditions. Bean cultivars sowing were done on December 17, 2003. It can be concluded that there is influence of cultivars and limestone surface application under no tillage, where IAPAR 81 showed better grain yield with the increase of lime rates, obtaining values of 2,025 kg ha-1 without the lime application to 2,655 kg ha-1 with 5.4 t ha-1 lime rate, obtaining 31% yield increase. A acidez do solo no sistema de semeadura direta, caso não se encontre em situações elevadas, pode ser resolvida com aplicação superficial de calcário, melhorando a nutrição mineral e a produtividade das culturas. Com o objetivo de avaliar o desempenho agronômico de cultivares de feijoeiro, em razão da aplicação superficial de calcário, em semeadura direta, foi realizado um experimento num Latossolo Vermelho distrófico, em Botucatu (SP. O delineamento experimental foi o de blocos casualizados, em esquema de parcelas subdivididas com quatro repetições, onde as parcelas foram formadas por cultivares de feijão comum (Carioca, IAC Carioca Eté, Pérola, IAPAR 81 e Campeão 2 e as subparcelas constitu

  6. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  7. Phytoplasma-Responsive microRNAs Modulate Hormonal, Nutritional, and Stress Signalling Pathways in Mexican Lime Trees

    OpenAIRE

    Farveh Ehya; Aboozar Monavarfeshani; Ehsan Mohseni Fard; Laleh Karimi Farsad; Mojtaba Khayam Nekouei; Mohsen Mardi; Ghasem Hosseini Salekdeh

    2013-01-01

    Background Witches’ broom disease of Mexican lime (Citrus aurantifolia L.), which is associated to the phytoplasma ‘Candidatus Phytoplasma aurantifolia’, is a devastating disease that results in significant economic losses. Plants adapt to biotic stresses by regulating gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are a recently identified family of molecules that regulate plant responses to environmental stresses through post-transcriptional gene ...

  8. The role of amino acids in improvement in salt tolerance of crop plants

    Directory of Open Access Journals (Sweden)

    Abd El-Samad H. M.

    2010-09-01

    Full Text Available The present work has been performed to study the growth and metabolic activities of maize and broad bean plants which are shown to have a degree of sensitivity to salinity and to determine the role of amino acids proline or phenylalanine in increasing the salt tolerance of theses plants. Dry mass, water content, leaf area and photosynthetic pigment of maize and broad bean plants decreased with increasing salinity. These changes were accompanied with a drop in the contents of soluble sugars, soluble proteins and amino acids. This was accompanied by a marked increase in the proline content. When maize and broad bean plants sprayed with proline or phenylalanine the opposite effect was occurred, saccharides as well as proteins progressively increased at all sanitization levels and proline concentration significantly declined. Salinity significantly increased the sodium content in both shoots and roots of maize and broad bean plants, while a decline in the accumulation of K+, Ca++, Mg++ and P was observed. Amino acids treatments markedlyaltered the selectivity of Na+, K+, Ca++ and P in both maize and broad bean plants. Spraying with any of either proline orphenylalanine restricted Na+ uptake and enhanced the uptake of K+, K+/Na+ ratio, Ca++ and P selectivity in maize and broad bean plants.

  9. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture.

    Science.gov (United States)

    Hernandez, Ludwi Rodríguez; Mendiola, Martha A Rodríguez; Castro, Carlos Arias; Gutiérrez-Miceli, Federico A

    2015-01-01

    The influence of Naphtaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP) on callus formation, its morphology and fatty acids profile were examined from Jatropha curcas L. Embryo from seeds of J. curcas L. were sown in Murashige and skoog (MS) medium with NAA and BAP. All treatments induced callus formation, however callus morphology was different in most of the treatments. Higher callus biomass was presented with 1.0 NAA + 0.5 BAP mg/L. Plant growth regulators modifies the fatty acids profile in callus of J. curcas L. BAP was induced linoleic and linolenic acids.

  10. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid.

    Science.gov (United States)

    Shang, Jing; Xi, De-Hui; Xu, Fei; Wang, Shao-Dong; Cao, Sen; Xu, Mo-Yun; Zhao, Ping-Ping; Wang, Jian-Hui; Jia, Shu-Dan; Zhang, Zhong-Wei; Yuan, Shu; Lin, Hong-Hui

    2011-02-01

    Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.

  11. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    Science.gov (United States)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  12. Trienoic fatty acids and plant tolerance of temperature

    OpenAIRE

    Routaboul Jean-Marc; Browse John

    2002-01-01

    The biophysical reactions of light harvesting and electron transport during photosynthesis take place in a uniquely constructed bilayer, the thylakoid. In all photosynthetic eukaryotes, the complement of atypical glycerolipid molecules that form the foundation of this membrane are characterised by sugar head-groups and a very high level of unsaturation in the fatty acids that occupy the central portion of the thylakoid bilayer. alpha-linolenic (18:3) or a combination of 18:3 and hexadecatrien...

  13. Easy synthesis of graphene sheets from alfalfa plants by treatment of nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiao, E-mail: qujiao@bhu.edu.cn [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China); Luo, Chunqiu, E-mail: fplj_lcq@163.com [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013 (China); Zhang, Qian; Cong, Qiao [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013 (China); Yuan, Xing [School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China)

    2013-04-01

    Highlights: ► An easy method for synthesis of graphene sheets using alfalfa plants was introduced. ► An novelty formation mechanism of graphene sheets using alfalfa plants was proposed. ► This method exploits a new carbon source and provides a novel idea to synthesize graphene sheets. -- Abstract: This letter focuses on synthesis of graphene sheets from alfalfa plants by treatment of nitric acid. The transmission electron microscopy image (TEM) demonstrates that the graphene sheets are agglomerated and overlapped, the energy dispersive spectrum (EDS) indicates that the products are pure, and the Raman spectrum shows the graphene sheets are well graphitized. In addition, the formation mechanism of the graphene sheets from alfalfa plants by treatment nitric acid is discussed. These findings inspire the search for a new strategy for synthesis of graphene sheets from renewable natural products, and the lower cost of this new process and carbon source may facilitate industrial production.

  14. Lime Juice and Vinegar Injections as a Cheap and Natural Alternative to Control COTS Outbreaks.

    Science.gov (United States)

    Moutardier, Grégoire; Gereva, Sompert; Mills, Suzanne C; Adjeroud, Mehdi; Beldade, Ricardo; Ham, Jayven; Kaku, Rocky; Dumas, Pascal

    2015-01-01

    Outbreaks of the corallivorous crown-of-thorns seastar Acanthaster planci (COTS) represent one of the greatest disturbances to coral reef ecosystems in the Indo-Pacific, affecting not only coral reefs but also the coastal communities which rely on their resources. While injection approaches are increasingly used in an attempt to control COTS densities, most of them display severe drawbacks including logistical challenges, high residual environmental impacts or low cost-effectiveness. We tested a new alternative control method based upon acidic injections of cheap, 100% natural products. We investigated the lethal doses, intra- and inter-specific disease transmission and immune responses of COTS when injected with fresh lime juice (extracted from local Citrus arantifolia) and white spirit vinegar. High COTS mortality was achieved with small volumes: 10-20 ml per seastar induced death in 89%/97% of injected specimens after an average 34.3 h/29.8 h for lime juice and vinegar respectively. Highest efficiency was reached for both solutions with double shots of (2 × 10 ml) in two different areas on the body: 100% mortality occurred within 12-24 h, which is similar or faster compared with other current injection methods. Multiple immune measures suggested that death was very likely caused by pH stress from the acidic solutions rather than a bacterial infection. Contagion to either conspecifics or a variety of other reef species was not observed, even at COTS densities 15 times higher than the highest naturally reported. 10 to 20 l lime juice/vinegar could kill up to a thousand COTS at a cost of less than 0.05 USD per specimen; no permits or special handling procedures are required. We conclude that injections of lime juice and vinegar offer great advantages when compared to current best practises and constitute a cheap and natural option for all reefs affected by COTS.

  15. Good and bad protons: genetic aspects of acidity stress responses in plants.

    Science.gov (United States)

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.

  16. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Nuss, Richard F.; Loewus, Frank A.

    1978-01-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342

  17. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants.

    Science.gov (United States)

    Nuss, R F; Loewus, F A

    1978-04-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined.When l-[1-(14)C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the (14)C is released over a 24-hour period as (14)CO(2) and only a small portion is recovered as [(14)C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the (14)C as [(14)C]oxalic acid and release very little (14)CO(2). Support for an intermediate role of oxalate in the release of (14)CO(2) from l-[1-(14)C]ascorbic acid is seen in the rapid release of (14)CO(2) by R. crispus and H. glomeratus seedlings labeled with [(14)C]oxalic acid.The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of (14)C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-(14)C]- or l-[UL-(14)C]ascorbic acid. Theoretically, l-[1-(14)C]ascorbic acid will produce labeled oxalic acid containing three times as much (14)C as l-[UL-(14)C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 +/- 0.5 is obtained in duplicate experiments with six different species.

  18. Influence of nonylphenol on the fatty acids and hydrocarbon composition of aquatic plants

    Directory of Open Access Journals (Sweden)

    І. О. Osinna

    2009-11-01

    Full Text Available Composition of surface lipids of aquatic plants Acorus calamus L., Typha latifolia L. and Carex acuta L. was investigated under the influence of nonylphenol strong solution. Experimental plants showed some significant changes in the surface lipids composition in comparison with a control. Change in the fatty acids composition, decrease of hydrocarbons content and biosynthetical disorder in the elongation processes of some certain components were revealed.

  19. Reductive spectrophotometry of divalent tin sensitization on soda lime glass

    Science.gov (United States)

    Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith

    2016-07-01

    Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.

  20. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  1. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    Science.gov (United States)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  2. Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera.

    Science.gov (United States)

    Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K

    2012-02-01

    The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.

  3. Shotgun proteomic analysis of the Mexican lime tree infected with "CandidatusPhytoplasma aurantifolia".

    Science.gov (United States)

    Monavarfeshani, Aboozar; Mirzaei, Mehdi; Sarhadi, Elham; Amirkhani, Ardeshir; Khayam Nekouei, Mojtaba; Haynes, Paul A; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-02-01

    Infection of Mexican lime trees (Citrus aurantifolia L.) with the specialized bacterium "CandidatusPhytoplasma aurantifolia" causes witches' broom disease. Witches' broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by "Ca. Phytoplasma aurantifolia". Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host's sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response.

  4. Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Institute of Scientific and Technical Information of China (English)

    Miao; Bian; Meixue; Zhou; Dongfa; Sun; Chengdao; Li

    2013-01-01

    Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research.

  5. Methods for extraction and determination of phenolic acids in medicinal plants: a review.

    Science.gov (United States)

    Arceusz, Agnieszka; Wesolowski, Marek; Konieczynski, Pawel

    2013-12-01

    Phenolic acids constitute a group of potentially immunostimulating compounds. They occur in all medicinal plants and are widely used in phytotherapy and foods of plant origin. In recent years, phenolic acids have attracted much interest owing to their biological functions. This paper reviews the extraction and determination methods of phenolic acids in medicinal plants over the last 10 years. Although Soxhlet extraction and ultrasonic assisted extraction (UAE) are commonly used for the extraction of phenolic acids from plant materials, alternative techniques such as supercritical fluid extraction (SFE), and accelerated solvent extraction (ASE) can also be used. After extraction, phenolic acids are determined usually by liquid chromatography (LC) owing to the recent developments in this technique, especially when it is coupled with mass spectrometry (MS). Also detection systems are discussed, including UV-Vis, diode array, electrochemical and fluorimetric. Other popular techniques for the analysis of this group of secondary metabolites are gas chromatography coupled with mass spectrometry (GC-MS) and capillary electrophoresis (CE).

  6. The influence of liming on soil chemical properties and on the alleviation of manganese and copper toxicity in Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations.

    Science.gov (United States)

    Chatzistathis, T; Alifragis, D; Papaioannou, A

    2015-03-01

    Juglans regia, Robinia pseudoacacia, Eucalyptus sp. and Populus sp. plantations, suffering from Mn and Cu toxicity, were limed in order to reduce Cu and Mn solubility in soil. The purposes of the present work were: i) to study the changes in soil chemical properties after the addition of CaCO3, ii) to investigate the influence of liming on the reduction of Mn and Cu toxicity. After the addition of CaCO3 (three applications, during three successive years), pH and CaCO3 content were significantly increased, while organic C and N were significantly reduced. Exchangeable Ca concentrations have been slightly, or significantly, increased, while those of Mg have been decreased; in addition, ratios Ca/Mg and C/N have been significantly increased after liming. Impressive reductions of DTPA extractable Cu and Mn concentrations (more than 10 times in most cases) were recorded. It was also found that trees without Mn and Cu toxicity symptoms (healthy tress) before liming did not have, in many cases, significantly greater leaf Mn, Cu and Fe concentrations, than trees after soil liming (all the trees were healthy). This probably happened because excess Mn and Cu quantities had been accumulated into their root system. Finally, leaf Mn, Cu and Zn concentrations of trees suffering from toxicity were significantly decreased after soil liming, while leaf Fe concentrations, in all the plant species studied, were increased.

  7. Impact of anthropogenic induced nitrogen input and liming on phosphorous leaching in forest soils

    Science.gov (United States)

    Holzmann, Stefan; Puhlmann, Heike; Wilpert, Klaus

    2016-04-01

    Introduction: Phosphorous (P) is essential for sustainable forest growth, yet the impact of anthropogenic impacts on P leaching losses from forest soils are hardly known. Methods: We conducted an irrigation experiment with 128 mesocosms of 7.4 cm diameter containing 20 cm mineral soil plus the organic layer from three forest sites representing a gradient of resin extractable P of the A-horizon. On each site we selected a Fagus sylvatica and a Picea abies managed subsite. Half of the cylinders where planted with seedlings of the respective species to access the plant impact. We simulated ambient rain (AR), anthropogenic nitrogen input (NI) of 100 kg/ha/a and forest liming (FL) with a dolomite input of 0.3 Mg/ha/a. Soil solution was extracted from the organic layer and at 20 cm depth. We collected the soil solution over a period of 13.5 months and analyzed it separated by 5 periods. The soil solution was analyzed for total phosphorous (TP) by measuring the molybdane reactive phosphorous after acid digestion. To analyze the multivariate dataset we applied random forest modelling and used partial (co-)dependency plots to interpret the results. Results: The TP content of the soil solution from the organic horizon was approximately ten times higher than the soil solution content of the mineral soil. The NI treatment did increase the TP content on all sites. The increase was more pronounced in the organic layer than in the mineral layer. The FL treatment lead to a slight increase of TP in the organic layer while we could observe a slight decrease in the mineral horizon. Both the organic layer and the mineral horizon showed a seasonal cycle with the exception of one Picea abies subsite which displayed a constant increase in TP in the organic layer. The seasonal cycle of the organic horizon had a minimum during the period of April to July, while the minimum at the mineral horizon was during November to January. Conclusion: TP in the soil solution is highest in the organic

  8. Influence of curing conditions on lime and lime-metakaolin mortars

    OpenAIRE

    Faria, Paulina; Martins, A

    2011-01-01

    Comunicação apresentada ao XII DBMC - International Conference on Durability of Building Materials and Components, Porto, April 12th-15th, 2011 Air-lime mortars with or without pozzolanic components were largely used in historic buildings. Due to natural or accidental degradation it is often necessary the application of repair mortars, durable and compatible with the masonries of historic buildings. Within this context and associating the improvement of mortars characteristics to the ne...

  9. Evaluation of mineral elements and ascorbic acid contents in fruits of some wild plants.

    Science.gov (United States)

    Eromosele, I C; Eromosele, C O; Kuzhkuzha, D M

    1991-04-01

    The fruits of some wild plants were examined for their contents of mineral elements and ascorbic acid. High levels of ascorbic acid were found in fruits of Sclerocarya birrea (403.3 mg/100 g) and Adansonia digitata (337 mg/100 g). In nine of the fruits examined, the mineral contents (Ca, P) were comparable with average values found in common fruits. The iron contents were however 2-5 times higher than the values for common fruits.

  10. Effect of lime concentration on gelatinized maize starch dispersions properties.

    Science.gov (United States)

    Lobato-Calleros, C; Hernandez-Jaimes, C; Chavez-Esquivel, G; Meraz, M; Sosa, E; Lara, V H; Alvarez-Ramirez, J; Vernon-Carter, E J

    2015-04-01

    Maize starch was lime-cooked at 92 °C with 0.0-0.40% w/w Ca(OH)2. Optical micrographs showed that lime disrupted the integrity of insoluble remnants (ghosts) and increased the degree of syneresis of the gelatinized starch dispersions (GSD). The particle size distribution was monomodal, shifting to smaller sizes and narrower distributions with increasing lime concentration. X-ray patterns and FTIR spectra showed that crystallinity decreased to a minimum at lime concentration of 0.20% w/w. Lime-treated GSD exhibited thixotropic and viscoelastic behaviour. In the linear viscoelastic region the storage modulus was higher than the loss modulus, but a crossover between these moduli occurred in the non-linear viscoelastic region. The viscoelastic properties decreased with increased lime concentration. The electrochemical properties suggested that the amylopectin-rich remnants and the released amylose contained in the continuous matrix was firstly attacked by calcium ions at low lime levels (<0.20% w/w), disrupting the starch gel microstructure.

  11. Stabilization of Expansive Soil by Lime and Fly Ash

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-ru; CAO Xing

    2002-01-01

    An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil. Lime and fly ash were added to the expansive soil at 4% -6% and 40% - 50% by dry weight of soil, respectively. Testing specimens were determined and examined in chemical composition, grain size distribution, consistency limits, compaction, CBR ,free swell and swell capacity. The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil. Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash, which decreases plasticity index. As the amount of lime and fly ash is increased, there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure, and a corresponding increase in the percentage of coarse particles, optimum moisture content and CBR value. Based on the results, it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.

  12. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.H. (Climate Stress Laboratory, USDA, ARS, Beltsville, MD (United States))

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.

  13. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    OpenAIRE

    Eugenio eLlorens; Gemma eCamañes; Leonor eLapeña; Pilar eGarcía-Agustín

    2016-01-01

    Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria altern...

  14. Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gradowski, T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources; Thomas, S.C. [Toronto Univ., ON (Canada). Faculty of Forestry

    2008-02-15

    This study examined the physiological and morphological responses of Acer Saccharum canopy trees and 2-year old saplings to non-nitrogenous mineral nutrients. The study was conducted to test 4 hypotheses, notably, (1) that liming increased the availability of phosphate by decreasing soil acidity; (2) that Acer Saccharum showed increased physiological and growth performance in response to liming and phosphorus (P) and potassium (K); (3) that the physiological and growth effects of liming and P and K additions are more pronounced in sapling than in mature canopy trees; and (4) that canopy physiological and shoot extension responses precede radial growth responses in mature trees. Fifty-two mature Acer saccharum trees and 138 saplings were treated with 2 fertilizers and potassium chloride alone or in combination with dolomitic lime. Treatments were applied in a 2-level factorial randomized design to mature trees and to saplings. Mineral soil samples were then collected from depths of between 0 and 30 cm. Concentrations of carbon (C) and nitrogen (N) in mineral soil were determined using combustion analysis. Morphological chemical analyses were also conducted. Growth was examined at 5-year and 2-year intervals in order to examine nutrient addition effects on diameter increment. Data were used in a graphical vector nutrient analysis as well as in an analysis of variance (ANOVA). Results of the study showed that nutrients were adsorbed in the mineral soil and taken up by the trees within 1 year of fertilizer application. Liming had no effect on soil P availability. Both the saplings and the trees showed significant responses to both P and K fertilization and liming, including increased foliar nutrient concentration, leaf size and shoot extension growth. It was concluded that the vector analysis of shoot extension growth was consistent with sufficiency of N, but showed marked limitation of P and co-limitation by calcium (Ca) in saplings. 111 refs., 2 tabs., 5 figs.

  15. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    Science.gov (United States)

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  16. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    Directory of Open Access Journals (Sweden)

    Lin-Tong Yang

    2013-01-01

    Full Text Available Approximately 30% of the world’s total land area and over 50% of the world’s potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a anion channels or transporters, (b internal concentrations of OA anions in plant tissues, (d temperature, (e root plasma membrane (PM H+-ATPase, (f magnesium (Mg, and (e phosphorus (P. Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.

  17. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    Science.gov (United States)

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.

  18. Response of citrus and other selected plant species to simulated HCL - acid rain

    Science.gov (United States)

    Knott, W. M.; Heagle, A. S.

    1980-01-01

    Mature valencia orange trees were sprayed with hydrochloric acid solutions (pH 7.8, 2.0, 1.0, and 0.5) in the field at the full bloom stage and at one month after fruit set. Potted valencia orange and dwarf citrus trees, four species of plants native to Merritt Island, and four agronomic species were exposed to various pH levels of simulated acid rain under controlled conditions. The acid rain was generated from dilutions of hydrochloric acid solutions or by passing water through an exhaust generated by burning solid rocket fuel. The plants were injured severely at pH levels below 1.0, but showed only slight injury at pH levels of 2.0 and above. Threshold injury levels were between 2.0 and 3.0 pH. The sensitivity of the different plant species to acid solutions was similar. Foliar injury symptoms were representative of acid rain including necrosis of young tissue, isolated necrotic spots or patches, and leaf abscission. Mature valencia orange trees sprayed with concentrations of 1.0 pH and 0.5 pH in the field had reduced fruit yields for two harvests after the treatment. All experimental trees were back to full productivity by the third harvest after treatment.

  19. Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling.

    Science.gov (United States)

    Yoshimoto, Kohki

    2010-01-01

    It has long been recognized that autophagy in plants is important for nutrient recycling and plays a critical role in the ability of plants to adapt to environmental extremes such as nutrient deprivation. Recent reverse genetic studies, however, hint at other roles for autophagy, showing that autophagy defects in higher plants result in early senescence and excessive immunity-related programmed cell death (PCD), irrespective of nutrient conditions. Until now, the mechanisms by which cells die in the absence of autophagy were unclear. In our study, using biochemical, pharmacological and genetic approaches, we reveal that excessive salicylic acid (SA) signaling is a major factor in autophagy-defective plant-dependent cell death and that the SA signal can induce autophagy. These findings suggest a novel physiological function for plant autophagy that operates via a negative feedback loop to modulate proper SA signaling.

  20. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis.

    Directory of Open Access Journals (Sweden)

    Pengjun Zhang

    Full Text Available The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA, salicylic acid (SA, and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.

  1. Fatty acid hydroperoxides pathways in plants. A review.

    Directory of Open Access Journals (Sweden)

    Fauconnier, M. L.

    1997-02-01

    Full Text Available The present paper focusses on the fatty acid hydroperoxides pathways, mainly hydroperoxide lyase and hydroperoxide dehydrase. For each enzyme, the definition, occurrence and subcellular localization is presented. Particular attention is given to reaction mecanisms and to substrate specificity. Physiological roles of reaction products are also discussed.

    El presente artículo se centra en las rutas de los hidroperóxidos de ácidos grasos, principalmente la hidroperóxido liasa y la hidroperóxido dehidrasa. Se presenta para cada enzima, la definición, distribución y localización subcelular. Se da atención particular a los mecanismos de reacción y a la especificidad de sustrato. También se discuten los papeles fisiológicos de los productos de reacción.

  2. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in Lima bean plants

    NARCIS (Netherlands)

    Dicke, M.; Gols, R.; Ludeking, D.; Posthumus, M.A.

    1999-01-01

    Lima bean plants respond to feeding damage of two-spotted spider mites (Tetranychus urticae) with the emission of a complex blend of volatiles that are products of several different biosynthetic pathways. These volatiles attract the carnivorous mite Phytoseiulus persimilis, a specialist predator of

  3. Lime and calcium-magnesium silicate in the ionic speciation of an Oxisol

    Directory of Open Access Journals (Sweden)

    João Arthur Antonangelo

    Full Text Available ABSTRACT Plant residues and certain fertilizers accelerate soil acidification and increase the levels of aluminum-Al+3 in soils under no-tillage (NT. Silicates act as acidity amendments and as a source of silicon as in H4SiO4. An increase in the pH of soil solution causes the deprotonation of H4SiO4 and generates the anionic form (H3SiO4−. The aim of this study was to evaluate the ionic speciation of Si, Al, Ca, Mg and K in aqueous extracts by means of a software calculation. Since 2006, a field experiment has been under way on an Oxisol under NT subjected to lime and calcium-magnesium silicate applications under four crop systems. The amendments were applied in Oct 2006 and in Oct 2011, aiming to raise base saturation to 70 %. Soil samples were collected in Oct 2013, at depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Both Ca and Mg formed complexes with dissolved organic carbon (DOC whereas the same was not observed for potassium. These three basic cations were mostly in their free forms regardless of treatment, while Al was mostly complexed with DOC even at the lowest depths (40-60 cm. The highest value of free Al form was 15 %. Si was almost 100 % as H4SiO4, and its activity was similar to its concentration in solution for all crop systems and at all depths, regardless of amendment applied. The percentages of H3SiO4− and Al-H3SiO42+ were irrelevant, providing more phytoavailable H4SiO4 in soil solution.

  4. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  5. Lime stabilization of fine-grained sediments in western Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas; Skels, Peteris

    2011-01-01

    due to the cold climate, and it is therefore of great interest to study possible methods to improve the stability and strength properties. This project includes laboratory studies of lime stabilization on fine-grained marine sediments from Kangerlussuaq, western Greenland. The results have included...... tests to determine the optimum lime content and the strength development in relation to both reaction time and curing temperature. Hopefully the results from this project will lead to a future use of lime stabilization and make it possible to use/reuse materials of poor quality at construction sites...

  6. Application of deoxyribonucleic acid barcoding in Lauraceae plants

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2012-01-01

    Full Text Available Background: This study aims to determine the candidate markers that can be used as DNA barcode in the Lauraceae family. Material and Methods: Polymerase chain reaction amplification, sequencing efficiency, differential intra- and interspecific divergences, DNA barcoding gap, and identification efficiency were used to evaluate the four different DNA sequences of psbA-trnH, matK, rbcL, and ITS2. We tested the discrimination ability of psbA-trnH in 68 plant samples belonging to 42 species from 11 distinct genera and found that the rate of successful identification with the psbA-trnH was 82.4% at the species level. However, the correct identification of matK and rbcL were only 30.9% and 25.0%, respectively, using BLAST1. The PCR amplification efficiency of the ITS2 region was poor; thus, ITS2 was not included in subsequent experiments. To verify the capacity of the identification of psbA-trnH in more samples, 175 samples belonging to 117 species from the experimental data and from the GenBank database of the Lauraceae family were tested. Results: Using the BLAST1 method, the identification efficiency were 84.0% and 92.3% at the species and genus level, respectively. Conclusion: Therefore, psbA-trnH is confirmed as a useful marker for differentiating closely related species within Lauraceae.

  7. Safety assessment of animal- and plant-derived amino acids as used in cosmetics.

    Science.gov (United States)

    Burnett, Christina; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of animal- and plant-derived amino acid mixtures, which function as skin and hair conditioning agents. The safety of α-amino acids as direct food additives has been well established, based on extensive research through acute and chronic dietary exposures and the Panel previously has reviewed the safety of individual α-amino acids in cosmetics. The Panel focused its review on dermal irritation and sensitization data relevant to the use of these ingredients in topical cosmetics. The Panel concluded that these 21 ingredients are safe in the present practices of use and concentration as used in cosmetics.

  8. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    Energy Technology Data Exchange (ETDEWEB)

    McManus, R.W. [SOUND Environmental Services, Inc., Dallas, TX (United States); Grajczak, P. [ARCO, Los Angeles, CA (United States); Wilcoxson, J.C. [ARCO, Plano, TX (United States); Webster, S.D. [Environmental Protection Agency, Dallas, TX (United States)

    1997-12-31

    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR{trademark}), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment.

  9. Fish mortality during sea salt episodes--catchment liming as a countermeasure.

    Science.gov (United States)

    Teien, Hans-Christian; Salbu, Brit; Heier, Lene S; Kroglund, Frode; Rosseland, Bjørn Olav

    2005-10-01

    Aluminium (Al) toxicity is usually associated with acid rain and acidified freshwater systems. The present work demonstrates that acute fish mortality (50%) also occurs in moderate acidified salmon rivers during sea salt episodes. Furthermore, catchment liming was proved to be an efficient measure to counteract the fish toxicity. The impact of sea salt episodes on river water qualities and on Atlantic Salmon (Salmo salar L.) was studied in two rivers situated at the west coast of Norway. During February-May 2002, fish were kept in tanks and continually exposed to the changing water qualities. Changes in Al-species were followed using in situ fractionation techniques. During storm events and high sea salt deposition, the sea salt concentration increased (190 to 580 microM Cl), pH decreased (pH 5.3 to 4.6) and the concentration of low molecular mass (LMM) cationic Al-species (Al(i)) increased (0.7 to 3.0 microM) in the river. Subsequently, Al accumulated in fish gills (6 to 19 micromol g(-1) dw) causing ionoregulatory and respiratory failures as well as mortality. In water the concentration of LMM Al(i) stayed enhanced during four weeks, while the physiological stress responses in surviving fish remained high for a longer time (>eight weeks). To counteract Al toxicity, one of the tributary catchments had been limed four years earlier. Due to catchment liming (1000 kg ha(-1)) the water concentration of LMM Al(i)(fish mortality occurred.

  10. Amendment of Acid Soils with Crop Residues and Biochars

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-Hua; XU Ren-Kou; WANG Ning; LI Jiu-Yu

    2011-01-01

    The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential,and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.

  11. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    Science.gov (United States)

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  12. Diurnal variation in degradation of phytic acid by plant phytase in the pig stomach

    NARCIS (Netherlands)

    Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Beynen, A.C.

    1998-01-01

    The effects of plant phytase on the gastric degradation of phytic acid and digestibilities of DM and P, and their diurnal variation were evaluated in pigs from 90 to 115 kg BW fitted with simple duodenal T-cannulas. Three diets were fed to three pigs in four collection periods according to a cross-o

  13. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    Science.gov (United States)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-08-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  14. Manual of phosphoric acid fuel cell power plant cost model and computer program

    Science.gov (United States)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis.

  15. 77 FR 48433 - New Source Performance Standards Review for Nitric Acid Plants

    Science.gov (United States)

    2012-08-14

    ... standards for nitric acid plants, contact Mr. Nathan Topham, Sector Policies and Program Division, Office of... Industry 325311 Nitrogenous Fertilizer Manufacturing. Federal government Not affected. State/local/tribal... seeking to make such a demonstration to us should submit a Petition for Reconsideration to the Office of...

  16. Study of biochemical traits of Mexican lime (Citrus aurantifolia L. var. Mexican lime to low temperature after treatment by glycine betaine

    Directory of Open Access Journals (Sweden)

    Mahmood Ghasemnezhad

    2014-03-01

    Full Text Available Glycine betaine (GB is an important compatible solute that acts as a substitute for water molecules release protein and membrane protection and also acts as active oxygen scavengers. In some plants, accumulation of this compound causes resistance to various stresses such as low temperature. In this experiment, the effect of exogenous application of GB and low temperature stress was investigated on Mexican lime in factorial experiment based on complete randomized design with three replications. Glycine betaine was applied at five levels (0, 2.5, 5, 7.5 and 100 mM and also plants were subjected to five temperature treatments (2, 0, -2, -4 and -6°C. Results showed that spraying by 7.5 and 10 mM GB as compared to other concentrations apart from the temperature at 2°C significantly increased the activity of peroxidase (POD during the stress. Also, 10 mM of GB increased the total protein during the low temperatures in leaf tissues significantly. However, different concentrations of GB had not any clear effact on other characteristics such as lipid peroxidation (MDA, ion leakage (EC, total antioxidant capacity (DPPH‌sc% and superoxide dismutase (SOD. It seemed that GB had protected the proteins such as peroxidase. In this study SOD content did not change during treatments that may depended on the low duration of stress. In addition, GB without antioxidant role in Mexican lime, could not protect the membrane from proxidation.

  17. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration...... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...... malate at dawn, compared with at dusk, and also by changes in the titratable acidity (lmol H+ equivalents) of leaves. Leaves high in malate showed not only higher underwater net photosynthesis at low external CO2 concentrations but also lower apparent photorespiration. Suppression by CAM of apparent...

  18. Extracts of Edible Plants Inhibit Pancreatic Lipase, Cholesterol Esterase and Cholesterol Micellization, and Bind Bile Acids

    Directory of Open Access Journals (Sweden)

    Julnaryn Intrawangso

    2012-01-01

    Full Text Available The application of edible plants with more effective ability to inhibit fat digestion and absorption has recently been explored for possible treatment of hyperlipidaemia. The aim of the present study is to investigate the effect of nine edible plants on the inhibition of pancreatic lipase and pancreatic cholesterol esterase activities, as well as the inhibition of cholesterol micelle formation, and bile acid binding. Our findings have shown strong pancreatic lipase inhibitory activity and the inhibition of cholesterol micellization by mulberry leaf extract. Safflower extract was the most potent inhibitor of pancreatic cholesterol esterase. In addition, cat’s whiskers and safflower extracts had a potent bile acid binding activity. It is suggested that a daily intake of these edible plants may delay postprandial hypertriacylglycerolaemia and hypercholesterolaemia, and therefore may be applied for the prevention and treatment of hyperlipidaemia.

  19. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.

    Science.gov (United States)

    Hackmann, Christian; Korneli, Christin; Kutyniok, Magdalene; Köster, Tino; Wiedenlübbert, Matthias; Müller, Caroline; Staiger, Dorothee

    2014-03-01

    Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1 AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1 AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity.

  20. Circulating fluidized bed combustion product addition to acid soil: alfalfa (Medicago sativa L.) composition and environmental quality.

    Science.gov (United States)

    Chen, Liming; Dick, Warren A; Kost, David

    2006-06-28

    To reduce S emissions, petroleum coke with a high concentration of S was combusted with limestone in a circulating fluidized bed (CFB) boiler. The combustion process creates a bed product that has potential for agricultural uses. This CFB product is often alkaline and enriched in S and other essential plant nutrients, but also contains high concentrations of Ni and V. Agricultural land application of CFB product is encouraged, but little information is available related to plant responses and environmental impacts. CFB product and agricultural lime (ag-lime) were applied at rates of 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) to an acidic soil (Wooster silt loam). The 2.0x LR application rate of CFB product was equivalent to 67.2 Mg ha(-1). Alfalfa yield was increased 4.6 times by CFB product and 3.8 times by ag-lime compared to untreated control. Application of CFB product increased the concentration of V in soil and alfalfa tissue, but not in soil water, and increased the concentration of Ni in soil and soil water, but not in alfalfa tissue. However, these concentrations did not reach levels that might cause environmental problems.

  1. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    Xiaobin Shi

    2016-06-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV. The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.

  2. Evidence that the role of plant defensins in radish defense responses is independent of salicylic acid.

    Science.gov (United States)

    Terras, F R; Penninckx, I A; Goderis, I J; Broekaert, W F

    1998-09-01

    Radish leaves contain two homologous 5-kDa plant defensins which accumulate systemically upon infection by fungal pathogens (F.R.G. Terras et al., 1995, Plant Cell 7: 573-588). Here we report on the molecular cloning of the cDNAs encoding the two pathogen-inducible plant defensin isoforms from radish (Raphanus sativus L.) leaves. Tissue-print and whole-leaf electroblot immunostaining showed that the plant defensin peptides not only accumulate at high levels at or immediately around the infection sites in leaves inoculated with Alternaria brassicicola, but also accumulate in healthy tissue further away from the infection sites and in non-infected leaves from injected plants. Gel blot analysis of RNA confirmed that expression of plant defensin genes is systemically triggered upon fungal infection whereas radish PR-1 gene expression is only activated locally. In contrast to the radish PR-1 gene(s), expression of the radish plant defensin genes was not induced by external application of salicylic acid. Activation of the plant defensin genes, but not that of PR-1 genes, occurred upon treatment with methyl jasmonate, ethylene and paraquat.

  3. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Beddow, H. [Geoscience Building, School of Human and Environmental Sciences, Whiteknights, PO Box 227, University of Reading, Reading, Berkshire RG6 6AB (United Kingdom)]. E-mail: h.l.beddow@reading.ac.uk; Black, S. [Geoscience Building, School of Human and Environmental Sciences, Whiteknights, PO Box 227, University of Reading, Reading, Berkshire RG6 6AB (United Kingdom); Read, D. [Enterpris Ltd., Whiteknights, University of Reading, Reading, Berkshire RG6 6AB (United Kingdom); Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE (United Kingdom)

    2006-07-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by {sup 238}U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations ({<=}8.8 Bq/g) of {sup 238}U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels ({<=}11 Bq/g) of {sup 226}Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  4. Uptake of sulfuric acid mist by plant canopies. [Exposure chamber studies with maize and soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Wedding, J.B.

    1979-01-01

    Wind tunnel studies and exposure chamber experiments were conducted in the Aerosol Science Laboratory at Colorado State University. Full scale, live plant canopies of 4 to 6 week old corn and soybeans were established in a large wind tunnel. Monodisperse aerosols (1 to 15 ..mu..m aerodynamic diameter) were injected into the tunnel and deposition velocities were determined for wind speeds of 183, 305, and 610 cm/sec. A minimum deposition velocity was seen to occur at 5 ..mu..m. Initially, 4 to 6 week old soybean plants were exposed to hydrated sulfuric acid mist droplets. Unquantified topically applied sulfuric acid mist was applied at a 1% or 10% volumetric concentration of acid to water. The 10% solution produced severe necrotic lesions and large chlorotic regions on the acropetal leaves. A heavy application of the 1% solution produced similar effects but with a reduced number of necrotic lesions. A light application had no visual effects on the plants even after 24 h.In addition, 4 to 6 week old corn and soybeans were placed in a glass exposure chamber. Droplets of pure 18M sulfuric acid mist (1.7 ..mu..m) were injected into the chamber at a rate commensurate with the deposition velocity results. Loading of 107 particles/cm2 were realized during exposure periods up to 10 h per day extending to 14 days total fumigation periods. No visible toxicity symptoms of damage resulted to the plants from these tests conducted at background humidity levels of approximately 40%. Scanning electron microscope observations of the 140 h treated plants showed no apparent damage due to the sulfuric acid mist treatment.

  5. Uptake of sulfuric acid mist by plant canopies. [Exposure chamber studies with maize and soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Wedding, J.B.

    1979-01-01

    Wind tunnel studies and exposure chamber experiments were conducted in the Aerosol Science Laboratory at Colorado State University. Full scale, live plant canopies of 4 to 6 week old corn and soybeans were established in a large wind tunnel. Monodisperse aerosols (1 to 15 ..mu..m aerodynamic diameter) were injected into the tunnel and deposition velocities were determined for wind speeds of 183, 305, and 610 cm/sec. A minimum deposition velocity was seen to occur at 5 ..mu..m. Initially, 4 to 6 week old soybean plants were exposed to hydrated sulfuric acid mist droplets. Unquantified topically applied sulfuric acid mist was applied at a 1% or 10% volumetric concentration of acid to water. The 10% solution produced severe necrotic lesions and large chlorotic regions on the acropetal leaves. A heavy application of the 1% solution produced similar effects but with a reduced number of necrotic lesions. A light application had no visual effects on the plants even after 24 h.In addition, 4 to 6 week old corn and soybeans were placed in a glass exposure chamber. Droplets of pure 18M sulfuric acid mist (1.7 ..mu..m) were injected into the chamber at a rate commensurate with the deposition velocity results. Loading of 107 particles/cm2 were realized during exposure periods up to 10 h per day extending to 14 days total fumigation periods. No visible toxicity symptoms of damage resulted to the plants from these tests conducted at background humidity levels of approximately 40%. Scanning electron microscope observations of the 140 h treated plants showed no apparent damage due to the sulfuric acid mist treatment.

  6. Incorporation of turmeric-lime mixture during the preparation of ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... new type of turmeric-lime treated tomato puree product. ... Retention of natural pigment is one of the symbols of livelihood. Thermal treatment is one of the most important methods of preservation of vegetables (Lund, 1975).

  7. Effects of liming; Effekter av kalkning. IKEU aarsrapport 1994

    Energy Technology Data Exchange (ETDEWEB)

    Appelberg, M. [Institute for Freshwater Research, Drottningholm (Sweden)

    1995-11-01

    Since 1989 an extensive investigation have been made of 14 limed lakes in Sweden. On a regular basis monitoring is made of the water chemistry, nutrients and metals in fish, plankton and bottom fauna. This report covers the result from 1994 as well as a compilation of the trend during 1989-1994. The aim of the monitoring programme is (1) to analyze the long-term chemical and biological effects of liming of acidified waters, (2) to evaluate if the Swedish liming program restores the ecosystems with regard to species composition and biological richness, (3) to judge if the liming efforts leads to unwanted effects in lakes and water courses, and (4) to be able to forecast the capacity of the acidified lakes to return to pre-acidification conditions and to compare this to costs and risks for unwanted effects. 16 refs, 70 figs, 2 tabs

  8. Plant growth and phosphorus uptake in mycorrhizal rangpur lime seedlings under different levels of phosphorus Crescimento e absorção de fósforo por plântulas de limão 'Cravo' micorrizadas sob diferentes níveis de fósforo

    Directory of Open Access Journals (Sweden)

    Marco Antonio Nogueira

    2006-01-01

    Full Text Available The objective of this work was to evaluate the response of rangpur lime (Citrus limonia to arbuscular mycorrhiza (Glomus intraradices, under P levels ranging from low to excessive. Plants were grown in three levels of soluble P (25, 200 and 1,000 mg kg-1, either inoculated with Glomus intraradices or left noninoculated, evaluated at 30, 60, 90, 120 and 150 days after transplanting (DAT. Total dry weight, shoot P concentration and specific P uptake by roots increased in mycorrhizal plants with the doses of 25 and 200 mg kg-1 P at 90 DAT. With 1,000 mg kg-1 P, mycorrhizal plants had a transient growth depression at 90 and 120 DAT, and nonmycorrhizal effects on P uptake at any harvesting period. Root colonization and total external mycelium correlated positively with shoot P concentration and total dry weight at the two lowest P levels. Although the highest P level decreased root colonization, it did not affect total external mycelium to the same extent. As a result, a P availability imbalance affected negatively the mycorrhizal symbiosis and, consequently, the plant growth.O objetivo deste trabalho foi avaliar a resposta do limão 'Cravo' (Citrus limonia à micorriza arbuscular (Glomus intraradices, com variações de níveis de P de baixo a excessivo. As plantas foram cultivadas em três níveis de P solúvel (25, 200 e 1.000 mg kg-1, com inoculação de Glomus intraradices ou sem inoculação, e avaliadas aos 30, 60, 90, 120 e 150 dias depois do transplantio (DAT. A biomassa seca total, a concentração de P na parte aérea, e a absorção específica de P pelas raízes aumentaram nas plantas micorrizadas nas doses de 25 e 200 mg kg-1 de P aos 90 DAT. Na dose de 1.000 mg kg-1 de P, houve depressão transiente de crescimento nas plantas micorrizadas, aos 90 e 120 DAT, e não houve efeito micorrízico sobre a absorção de P em qualquer época de colheita. A colonização radicular e o micélio externo total correlacionaram-se positivamente com a

  9. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery.

    Science.gov (United States)

    Cioccio, Stephen; Gopalapillai, Yamini; Dan, Tereza; Hale, Beverley

    2017-04-01

    Remediation of soils elevated in trace metals so that the soils may provide ecosystems services is typically achieved through pH adjustment or addition of sorbents. The present study aimed to generate higher-tier in situ toxicity data for elevated nickel (Ni) in soils with and without lime addition and to explore the effect of liming on soil chemistry and bioavailability of Ni to plants. A multiyear study of agronomic yield of field-grown oat and soybean occurred in 3 adjacent fields that had received air emissions from a Ni refinery for 66 yr. The soil Ni concentration in the plots ranged between 1300 mg/kg and 4900 mg/kg, and each field was amended with either 50 Mg/ha, 10 Mg/ha, or 0 Mg/ha (or tonnes/ha) of crushed dolomitic limestone. As expected, liming raised the pH of the soils and subsequently reduced the plant availability of Ni. Toxicity thresholds (effective concentrations causing 50% reduction in growth) for limed soils supported the hypothesis that liming reduces toxicity. Relationships were found between relative yield and soil cation exchange capacity and between relative yield and soil pH, corroborating findings of the European Union Risk Assessments and the Metals in Asia studies, respectively. Higher tier ecotoxicity data such as these are a valuable contribution to risk assessment for Ni in soils. Environ Toxicol Chem 2017;36:1110-1119. © 2016 SETAC. © 2016 SETAC.

  10. Damage Development in Confined Borosilicate and Soda-Lime Glasses

    Science.gov (United States)

    2011-07-11

    Elmira, NY). BF is a borosilicate glass manufactured by Schott Glass using a float process. SP float glass is a crystal clear, soda-lime glass . This...2005. 22 21. ASTM £494, "Technique for Measuring Ultrasonic Velocity in Materials", July 2001. 22. Schott Glass , Borofloat 33 Thermal Properties...21945 Damage Development in Conf"med Borosilicate and Soda-Lime Glasses Kathryn A. Dannemann1, Charles E. Anderson. Jr. 1, Sidney Chocron1, James

  11. Property Changes in Lime Treated Expansive Clays under Continuous Leaching

    Science.gov (United States)

    1990-09-01

    decreasing soil-lime reactivity in areas of better drainage . In poorly drained soils, the removal of soil "constituents" are slowed and leaching effects are...minimized, thereby maintaining the calcium/magnesium ratio and higher soil pH (Thompson 1966; Joffe 1949). Also, soils with poor drainage will have a...these soil-lime mixtures may not exhibit as much autogenous healing, particularly after prolonged leaching, as they are generally believed to have

  12. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  13. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen.

    Science.gov (United States)

    O'Donnell, P J; Jones, J B; Antoine, F R; Ciardi, J; Klee, H J

    2001-02-01

    The molecular events associated with susceptible plant responses to disease-causing organisms are not well understood. We have previously shown that ethylene-insensitive tomato plants infected with Xanthomonas campestris pv. vesicatoria have greatly reduced disease symptoms relative to wild-type cultivars. Here we show that salicylic acid (SA) is also an important component of the susceptible disease response. SA accumulates in infected wild-type tissues and is correlated with necrosis but does not accumulate in ethylene-insensitive plants. Exogenous feeding of SA to ethylene-deficient plants restores necrosis, indicating that reduced disease symptoms are associated with failure to accumulate SA. These results indicate a mechanism for co-ordination of phytohormone signals that together constitute a susceptible response to pathogens.

  14. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases.

    Science.gov (United States)

    Dixon, David P; Edwards, Robert

    2009-08-07

    Proteomic studies with Arabidopsis thaliana have revealed that the plant-specific Tau (U) class glutathione transferases (GSTs) are selectively retained by S-hexylglutathione affinity supports. Overexpression of members of the Arabidopsis GST superfamily in Escherichia coli showed that 25 of the complement of 28 GSTUs caused the aberrant accumulation of acylated glutathione thioesters in vivo, a perturbation that was not observed with other GST classes. Each GSTU caused a specific group of fatty acyl derivatives to accumulate, which varied in chain length (C(6) to C(18)), additional oxygen content (0 or 1), and desaturation (0 or 1). Thioesters bound tightly to recombinant GSTs (K(d) approximately 1 microm), explaining their accumulation. Transient expression of GSTUs in Nicotiana benthamiana followed by recovery by Strep-tag affinity chromatography allowed the respective plant ligands to be extracted and characterized. Again, each GST showed a distinct profile of recovered metabolites, notably glutathionylated oxophytodienoic acid and related oxygenated fatty acids. Similarly, the expression of the major Tau protein GSTU19 in the endogenous host Arabidopsis led to the selective binding of the glutathionylated oxophytodienoic acid-glutathione conjugate, with the enzyme able to catalyze the conjugation reaction. Additional ligands identified in planta included other fatty acid derivatives including divinyl ethers and glutathionylated chlorogenic acid. The strong and specific retention of various oxygenated fatty acids by each GSTU and the conservation in binding observed in the different hosts suggest that these proteins have selective roles in binding and conjugating these unstable metabolites in vivo.

  15. Biodegradation of naphtalenesulphonic acid-containing sewages in a two-stage treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R. (Paderborn Univ. (Gesamthochschule) (Germany). Technische Chemie und Chemische Verfahrenstechnik); Hempel, D.C. (Paderborn Univ. (Gesamthochschule) (Germany). Technische Chemie und Chemische Verfahrenstechnik)

    1994-05-01

    The production of naphthol the coupling compound in the syntheses of azo-dyes occurs a naphthalenesulphonic acid-containing wastewater. The aerobic biodegradation of a complex mixture of naphthalenemono- and -disulphonic acids with high amounts of inorganic salts was examined in a two-stage plant with specially adapted and immobilized microorganisms fixed on broken sand particles. The plant consists of two airlift-loop reactors. An interposed settling tank separates the two different bacterial communities in the stages. In the first stage the sequential metabolization of naphthalene-2- and -1-sulphonic acid was achieved by strain Pseudomonas testosteroni A[sub 3] at residence times down to 1.5 h. The total degradation of remaining naphthalene-1-sulphonic acid and the degradation of recalcitrant naphthalenedisulphonic acids was obtained by a defined mixed culture in the second unit. Because of the more recalcitrant character of the remaining components in the second stage examinations with Na[sub 2]SO[sub 4]-loaded and salt-free wastewater were carried out at mean residence times between 50 and 6.3 h. With salt-loaded sewage an overall degradation of approximately 71% was achieved. The main component in the effluent was non-biodegradable naphthalene-1.5-disulphonic acid. Investigations with salt-free wastewater have shown an increasing overall degradation up to 84%. Thus, in the presence of inorganic salts a considerable inhibition of the biological degradation of the recalcitrant substances in the second unit was found. (orig.)

  16. Alteration of plant mitochondrial proton conductance by free fatty acids. Uncoupling protein involvement.

    Science.gov (United States)

    Hourton-Cabassa, Cecile; Mesneau, Agnes; Miroux, Bruno; Roussaux, Jean; Ricquier, Daniel; Zachowski, Alain; Moreau, Francois

    2002-11-01

    We characterized the uncoupling activity of the plant uncoupling protein from Solanum tuberosum (StUCP) using mitochondria from intact potato tubers or from yeast (Saccharomyces cerevisiae) expressing the StUCP gene. Compared with mitochondria from transfected yeast, StUCP is present at very low levels in intact potato mitochondrial membranes (at least thirty times lower) as shown by immunodetection with anti-UCP1 antibodies. Under conditions that ruled out undesirable effects of nucleotides and free fatty acids on uncoupling activity measurement in plant mitochondria, the linoleic acid-induced depolarization in potato mitochondria was insensitive to the nucleotides ATP, GTP, or GDP. In addition, sensitivity to linoleic acid was similar in potato and in control yeast mitochondria, suggesting that uncoupling occurring in potato mitochondria was because of a UCP-independent proton diffusion process. By contrast, yeast mitochondria expressing StUCP exhibited a higher sensitivity to free fatty acids than those from the control yeast and especially a marked proton conductance in the presence of low amounts of linoleic acid. However, this fatty acid-induced uncoupling was also insensitive to nucleotides. Altogether, these results suggest that uncoupling of oxidative phosphorylation and heat production cannot be the dominant feature of StUCP expressed in native potato tissues. However, it could play a role in preventing reactive oxygen species production as proposed for mammalian UCP2 and UCP3.

  17. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Science.gov (United States)

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  18. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  19. Analysis of benzoic and cinnamic acid derivatives of some medicinal plants in Serbia

    Directory of Open Access Journals (Sweden)

    Đurđević L.

    2013-01-01

    Full Text Available Natural phenolics, which are ubiquitously distributed in plants, have been reported as functional factors in phytotherapy. We have examined phenolic compounds in the leaves and inflorescences of five significant medicinal plants of different plant families: Salvia officinalis (Lamiaceae; Achillea clypeolata (Asteraceae; Nymphaea alba (Nymphaeaceae; Rumex acetosella (Polygonaceae and Allium ursinum (Alliaceae. The examined species were rich in total phenolics (up to 30.88 mg/g dry weight. According to their total phenolics contents, the plants can be arranged in the following order: A. clypeolata>N. alba>S. officinalis>R. acetosella>A. ursinum. Free phenolics prevailed in all species in comparison to the bound forms (63.72-82.68% of total phenolics. The highest content of total free phenolics was measured in the tissues of A. clypeolata and N. alba, and the lowest in A. ursinum. Five phenolic acids were isolated and measured. p-Coumaric and ferulic acids as derivatives of cinnamic acid prevailed in the leaves of R. acetosella and A. ursinum (up to 4.81%. [Projekat Ministarstva nauke Republike Srbije, br. 173018

  20. Human ortholog of a plant salicylic acid receptor found in SK-N-SH cell line.

    Science.gov (United States)

    Skubatz, Hanna; Howald, William N

    2013-12-01

    Our previous studies have described the purification and characterization of a novel plant NAD(P)-reductase like protein (RL) from the thermogenic appendix of the Sauromatum guttatum inflorescence. RL is mainly located in cytoplasm of thermogenic plants and it can act like a bistable switch. It adopts a compact conformation during heat-production and a more expanded conformation when heat is not generated. Addition of salicylic acid, a natural thermogenic inducer, at picomolar concentration to a solution of purified RL induced a discontinuous volume phase transition in which the volume of RL in the oligomeric form expanded and shrunk repeatedly every 4-5 min. In the present study using ESI-MS analysis we have demonstrated the existence of RL in the human SK-N-SH cell line and in mouse brain tissue. The molecular mass of human RL is in the same range as of its plant counterpart, 34,140 ± 34 Da. The charge state distribution of the human RL is identical to its plant counterpart from the Sauromatum appendix during heat-production. Human RL was present in the compact state when it was purified from the SK-N-SH cell line When these cells were treated with salicylic acid (10 μM) a shift to a much more compact conformation was observed. It seems that the potential of RL to respond to salicylic acid was conserved. These results may reveal the existence of a thermoregulation system that is evolutionarily conserved and is operating by conformational changes. This discovery may also represent an opportunity for a better understanding of some of the diverse functions of salicylic acid and aspirin in plants and humans.

  1. Statistical optimization of process parameters influencing the biotransformation of plant tannin into gallic acid under solid-liquid fermentation

    OpenAIRE

    Bibhu Prasad Panda; Rupa Mazumder; Rintu Banerjee

    2009-01-01

    Purpose : To optimize and produce gallic acid by biotransformation of plant tannin under solid-liquid fermentation. Materials and Methods : Optimization of different process parameters like temperature, relative humidity, pH of the liquid medium, fermentation period, volume of inoculum weight of substrate influencing gallic acid production from plant tannin were carried out by EVOP factorial method. Results : Maximum gallic acid yield of 93.29% was produced at 28ΊC, 70% relative humidity, pH ...

  2. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa).

    Science.gov (United States)

    Park, Nathan D; Michael Rutherford, P; Thring, Ronald W; Helle, Steve S

    2012-01-01

    Fly ash (FA) and bottom ash (BA) from a softwood pellet boiler were characterized and evaluated as soil amendments. In a greenhouse study, two plant species (rye grass, Lolium perenne L. and oats, Avena sativa) were grown in three different treatments (1% FA, 1% BA, non-amended control) of a silty loam soil. Total concentrations of plant nutrients Ca, K, Mg, P and Zn in both ashes were elevated compared to conventional wood ash. Concentrations of Cd, Cr, Pb, Se and Zn were found to be elevated in the FA relative to BA and the non-amended soil. At 28 d, oat above-ground biomass was found to be significantly greater in soil amended with FA. Potassium and Mo plant tissue concentrations were significantly increased by addition of either ash, and FA significantly increased Zn tissue concentrations. Cadmium and Hg tissue concentrations were elevated in some cases. As soil amendments, either pellet ash is an effective liming agent and nutrient source, but high concentrations of Cd and Zn in FA may preclude its use as an agricultural soil amendment in some jurisdictions. Lower ash application rates than those used in this study (i.e. <1%) may still provide sufficient nutrients and effective neutralization of soil acidity.

  3. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2006-09-15

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption.

  4. 40 CFR 52.21 - Prevention of significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... plants, petroleum refineries, lime plants, phosphate rock processing plants, coke oven batteries, sulfur recovery plants, carbon black plants (furnace process), primary lead smelters, fuel conversion plants... acid plants; (j) Petroleum refineries; (k) Lime plants; (l) Phosphate rock processing plants; (m)...

  5. Slow-release and organic fertilizers on early growth of Rangpur lime

    Directory of Open Access Journals (Sweden)

    Daniel Lucas Magalhães Machado

    2011-06-01

    Full Text Available Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1. The first factor consisted of four Humato­Macota® rates (0, 1, 2, and 3% applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area and the potential quantum yield of photosystem II (Fv/Fm were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.

  6. Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-03-29

    Glutamine phenylpyruvate transaminase (GPT) proteins, nucleic acid molecules encoding GPT proteins, and uses thereof are disclosed. Provided herein are various GPT proteins and GPT gene coding sequences isolated from a number of plant species. As disclosed herein, GPT proteins share remarkable structural similarity within plant species, and are active in catalyzing the synthesis of 2-hydroxy-5-oxoproline (2-oxoglutaramate), a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.

  7. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism

    Directory of Open Access Journals (Sweden)

    Capilla Mata-Pérez

    2017-04-01

    Full Text Available Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs. They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO, which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their

  8. Enhanced rosmarinic acid production in cultured plants of two species of Mentha.

    Science.gov (United States)

    Roy, Debleena; Mukhopadhyay, Sandip

    2012-11-01

    In the present investigation an attempt has been made to enhance rosmarinic acid level in plants, grown in vitro, of 2 species of Mentha in presence of 2 precursors in the nutrient media during culture. For in vitro culture establishment and shoot bud multiplication, MS basal media were used supplemented with different concentrations and combinations of different growth regulator like NAA (alpha-napthaleneacetic acid), BAP (6-benzylaminopurine). The medium containing NAA (0.25 mg/L) and BAP (2.5 mg/L) gave the highest potentiality of shoot formation (average 58.0 numbers of shoots) per explant for Mentha piperita L. and the medium containing BAP (2.0 mg/L) gave the highest potentiality of shoot (average 19.2 numbers of shoots) formation per explant for Mentha arvensis L. The complete plants were regenerated in above mentioned media after 8 weeks of subculture. For in vitro enhancement of rosmarinic acid production, the 2 precursors tyrosine (Tyr) and phenylalanine (Phe) were added in the nutrient media at different levels (0.5 mg/L to 15.0 mg/L). Tyrosine was found to be very effective for augmenting rosmarinic acid content in Mentha piperita L. It nearly increased the production up to 1.77 times. In case of Mentha arvensis L., phenylalanine significantly affected the production of rosmarinic acid and the production was nearly 2.03 times more than the control. No significant increase in biomass was observed after addition of these precursors indicating that the added amino acids acting as precursors for rosmarinic acid synthesis were readily utilized in producing rosmarinic acid without promoting growth. Total protein profile also revealed the presence of a specific band in polyacrylamide gel electrophoresis.

  9. Expression of a cyanobacterial {del}{sup 6}-desaturase gene results in {gamma}-linolenic acid production in transgenic plants

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.S.; Thomas, T.L. [Texas A & M Univ., College Station, TX (United States)

    1996-05-01

    Gamma-linolenic acid (GLA), a nutritionally important fatty acid in human and animal diets, is not produced in oil seed crops. Many oil seed plants, however, produce significant quantities of linoleic acid, a fatty acid that could be converted to GLA by the enzyme {del}{sup 6}-desaturase if it were present. As a first step to producing GLA in oil seed crops, we have cloned a cyanobacterial {del}{sup 6}-desaturase gene. Expression of this gene in transgenic tobacco resulted in GLA accumulation. Octadecatetraenoic acid, a highly unsaturated, industrially important fatty acid, was also found in transgenic tobacco plants expressing the cyanobacterial {del}{sup 6}-desaturase. This is the first example of engineering the production of `novel` polyunsaturated fatty acids in transgenic plants. 28 refs., 4 figs., 1 tab.

  10. A set of amino acids found to occur more frequently in human and fly than in plant and yeast proteomes consists of non-essential amino acids

    OpenAIRE

    2007-01-01

    We investigated the hypothesis that essential amino acids are being replaced in proteins by non-essential amino acids.We compared the amino acid composition in human, worm and fly proteomes, organisms that cannot synthesize all amino acids, with the amino acids of the proteomes of plant, bakers yeast and budding yeast, which are capable of synthesizing them. The analysis covered 460,737 proteins (212,197,907 amino acids). The data suggest a bias towards the usage of non-essential ami...