WorldWideScience

Sample records for acid induces selective

  1. Selective charging of tRNA isoacceptors induced by amino-acid starvation

    Science.gov (United States)

    Dittmar, Kimberly A; Sørensen, Michael A; Elf, Johan; Ehrenberg, Måns; Pan, Tao

    2005-01-01

    Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in ‘selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins. PMID:15678157

  2. Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex

    Directory of Open Access Journals (Sweden)

    Wang Lily

    2005-07-01

    Full Text Available Abstract There is evidence that the kynurenine pathway (KP and particularly one of its end products, quinolinic acid (QUIN play a role in the pathogenesis of several major neuroinflammatory diseases, and more particularly AIDS dementia complex (ADC. We hypothesized that QUIN may be involved in astrocyte apoptosis because: 1 apoptotic astrocytes have been observed in the brains of ADC patients, 2 ADC patients have elevated cerebrospinal fluid QUIN concentrations, and 3 QUIN can induce astrocyte death. Primary cultures of human fetal astrocytes were treated with three pathophysiological concentrations of QUIN. Numeration of apoptotic cells was assessed using double immunocytochemistry for expression of active caspase 3 and for nucleus condensation. We found that treatment of human astrocytes with QUIN induced morphological (cell body shrinking and biochemical changes (nucleus condensation and over-expression of active caspase 3 of apoptosis. After 24 hours of treatment with QUIN 500 nM and 1200 nM respectively 10 and 14% of astrocytes were undergoing apoptosis. This would be expected to lead to a relative lack of trophic support factors with consequent neuronal dysfunction and possibly death. Astroglial apoptosis induced by QUIN provides another potential mechanism for the neurotoxicity of QUIN during ADC.

  3. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.

    Science.gov (United States)

    McFarlan, Jay T; Yoshida, Yuko; Jain, Swati S; Han, Xioa-Xia; Snook, Laelie A; Lally, James; Smith, Brennan K; Glatz, Jan F C; Luiken, Joost J F P; Sayer, Ryan A; Tupling, A Russell; Chabowski, Adrian; Holloway, Graham P; Bonen, Arend

    2012-07-06

    For ~40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (-21%) and oxidation (-25%), intramuscular lipids (less than or equal to -31%), and hepatic glycogen (-20%); but muscle glycogen, VO(2max), and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO(2max)) CD36-KO mice, fatty acid transport (-41%), oxidation (-37%), and exercise duration (-44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27-55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84-90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO.

  4. In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-induced Adaptation of Fatty Acid Oxidation*

    Science.gov (United States)

    McFarlan, Jay T.; Yoshida, Yuko; Jain, Swati S.; Han, Xioa-Xia; Snook, Laelie A.; Lally, James; Smith, Brennan K.; Glatz, Jan F. C.; Luiken, Joost J. F. P.; Sayer, Ryan A.; Tupling, A. Russell; Chabowski, Adrian; Holloway, Graham P.; Bonen, Arend

    2012-01-01

    For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO2max, and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO2max) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO. PMID:22584574

  5. Myeloid differentiation and retinoblastoma phosphorylation changes in HL-60 cells induced by retinoic acid receptor- and retinoid X receptor-selective retinoic acid analogs.

    Science.gov (United States)

    Brooks, S C; Kazmer, S; Levin, A A; Yen, A

    1996-01-01

    The ability of subtypes of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) singly and in combination to elicit myeloid differentiation, G1/0-specific growth arrest, and retinoblastoma (RB) tumor suppressor protein dephosphorylation was determined in the human myeloblastic leukemia cell line HL-60 using subtype-selective retinoic acid (RA) analogs. RA analogs that selectively bind only to RARs (Am580 and/or TTNPB) or to RXRs (Ro 25-6603, SR11237, and/or SR11234) did not elicit the above-mentioned three cellular responses. In contrast, simultaneous treatment with both an RAR-selective ligand (Am580 or TTNPB) and an RXR-selective ligand (Ro 25-6603, SR11237, or SR11234) induced all three cellular processes. An RAR alpha-selective ligand used with an RXR-selective ligand generated the same responses as did all-trans RA or 9-cis RA, which affect both families of receptors, suggesting an important role for RAR alpha among RAR subtypes in eliciting cellular response. Consistent with this finding, the RAR alpha antagonist, Ro 41-5253, reduced the level of the cellular responses elicited by treatment with an RAR alpha-selective ligand plus RXR-selective ligand. The coupling of the shift of RB to its hypophosphorylated form with G1/0 arrest and differentiation in response to ligands is consistent with a possible role of RB as a downstream target or effector of RAR alpha and RXR in combination.

  6. Selective charging of tRNA isoacceptors induced by amino-acid starvation

    DEFF Research Database (Denmark)

    Dittmar, K. A.; Sørensen, Michael Askvad; Elf, J.

    2005-01-01

    Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvat...

  7. Selective inhibitory effects of niflumic acid on 5-HT-induced contraction of the rat isolated stomach fundus.

    Science.gov (United States)

    Scarparo, H C; Santos, G C; Leal-Cardoso, J H; Criddle, D N

    2000-06-01

    The effects of niflumic acid (NFA), an inhibitor of calcium-activated chloride currents I(Cl(Ca)), were compared with the actions of the voltage-dependent calcium channel (VDCC) blocker nifedipine on 5-hydroxtryptamine (5-HT)- and acetylcholine (ACh)-induced contractions of the rat isolated fundus. NFA (1 - 30 microM) elicited a concentration-dependent inhibition of contractions induced by 5-HT (10 microM) with a reduction to 15. 5+/-6.0% of the control value at 30 microM. 1 microM nifedipine reduced 5-HT-induced contraction to 15.2+/-4.9% of the control, an effect not greater in the additional presence of 30 microM NFA. In contrast, the contractile response to ACh (10 microM) was not inhibited by NFA in concentrations /=10 microM. Our results show that NFA can exert selective inhibitory effects on the chloride-dependent 5-HT-induced contractions of the rat fundus. The data support the hypothesis that activation of Cl((Ca)) channels leading to calcium entry via VDCCs is a mechanism utilized by 5-HT, but not by ACh, to elicit contraction of the rat fundus.

  8. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans

    2004-01-01

    resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations...... that mimicked mGluR1 residues. Based on ligand docking to homology models, the non-conserved residues, Lys-74, Glu-287, Ser-313, and Lys-317, were chosen for the mutational studies and all of the mutations proved capable of partially or completely restoring the affinities of the ligands. In particular......, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R...

  9. Supramolecular chiral host-guest nanoarchitecture induced by the selective assembly of barbituric acid derivative enantiomers

    Science.gov (United States)

    Sun, Xiaonan; Silly, Fabien; Maurel, Francois; Dong, Changzhi

    2016-10-01

    Barbituric acid derivatives are prochiral molecules, i.e. they are chiral upon adsorption on surfaces. Scanning tunneling microscopy reveals that barbituric acid derivatives self-assemble into a chiral guest-host supramolecular architecture at the solid-liquid interface on graphite. The host nanoarchitecture has a sophisticated wavy shape pattern and paired guest molecules are nested insides the cavities of the host structure. Each unit cell of the host structure is composed of both enantiomers with a ratio of 1:1. Furthermore, the wavy patterns of the nanoarchitecture are formed from alternative appearance of left- and right-handed chiral building blocks, which makes the network heterochiral. The functional guest-host nanoarchitecture is the result of two-dimensional chiral amplification from single enantiomers to organizational heterochiral supramolecular self-assembly.

  10. Regional selectivity of a gamma-aminobutyric acid-induced (/sup 3/H)acetylcholine release sensitive to inhibitors of gamma-aminobutyric acid uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G.; Raiteri, M.

    1987-05-01

    The effects of gamma-aminobutyric acid (GABA) on the release of (/sup 3/H)acetylcholine ((/sup 3/H)ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with (/sup 3/H)choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized (/sup 3/H)ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of (/sup 3/H)ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of (/sup 3/H)ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of (/sup 3/H)ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of (/sup 3/H)ACh following penetration into cholinergic nerve terminals through a GABA transport system.

  11. Selective Two-Photon-Absorption-Induced Reactions of Anthracene-2-Carboxylic Acid on Tunable Plasmonic Substrate with Incoherent Light Source.

    Science.gov (United States)

    Pincella, Francesca; Isozaki, Katsuhiro; Taguchi, Tomoya; Song, Yeji; Miki, Kazushi

    2015-02-01

    In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials.

  12. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    Science.gov (United States)

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions. PMID:28084448

  13. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    Science.gov (United States)

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.

  14. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  15. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin.

    Science.gov (United States)

    Rasoolizadeh, Asieh; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique

    2016-04-01

    A causal link has been reported between positively selected amino acids in plant cystatins and the inhibitory range of these proteins against insect digestive cysteine (Cys) proteases. Here we assessed the impact of single substitutions to closely related amino acids on the contribution of positive selection to cystatin diversification. Cystatin sequence alignments, while confirming hypervariability, indicated a preference for related amino acids at positively selected sites. For example, the non-polar residues leucine (Leu), isoleucine (Ile) and valine (Val) were shown to predominate at positively selected site 2 in the N-terminal region, unlike selected sites 6 and 10, where polar residues are preferred. The model cystatin SlCYS8 and single variants with Leu, Ile or Val at position 2 were compared with regard to their ability to bind digestive proteases of the coleopteran pest Leptinotarsa decemlineata and to induce compensatory responses in this insect. A functional proteomics procedure to capture target Cys proteases in midgut extracts allowed confirmation of distinct binding profiles for the cystatin variants. A shotgun proteomics procedure to monitor whole Cys protease complements revealed protease family specific compensatory responses in the insect, dependent on the variant ingested. Our data confirm the contribution of closely related amino acids to the functional diversity of positively selected plant cystatins in a broader structure/function context imposing physicochemical constraints to primary structure alterations. They also underline the complexity of protease/inhibitor interactions in plant-insect systems, and the challenges still to be met in order to harness the full potential of ectopically expressed protease inhibitors in crop protection.

  16. Increased expression and secretion of recombinant hIFNγ through amino acid starvation-induced selective pressure on the adjacent HIS4 gene in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Razaghi Ali

    2015-12-01

    Full Text Available Transcriptional co-regulation of adjacent genes has been observed for prokaryotic and eukaryotic organisms, alike. High levels of gene adjacency were also found in a wide variety of yeast species with a high frequency of co-regulated gene sets. The aim of this research was to study how selective pressure on the Histidinol dehydrogenase gene (HIS4, using amino acid starvation, affects the level of expression and secretion of the adjacent human interferon gamma gene (hIFNγ in the recombinant Pichia pastoris GS115 strain, a histidine-deficient mutant. hIFNγ was cloned into the pPIC9 vector adjacent to the HIS4 gene, a gene essential for histidine biosynthesis, which was then transformed into P. pastoris. The transformed P. pastoris was cultured under continuous amino acid starvation in amino acid-free minimal medium for ten days, with five inoculations into unspent medium every second day. Under these conditions, only successfully transformed cells (hIFNγ -HIS4+ are able to synthesise histidine and therefore thrive. As shown by ELISA, amino acid starvation-induced selective pressure on HIS4 improved expression and secretion of the adjacent hIFNγ by 55% compared to unchallenged cells. RT-qPCR showed that there was also a positive correlation between duration of amino acid starvation and increased levels of the hIFNγ RNA transcripts. According to these results, it is suggested that these adjacent genes (hIFNγ and HIS4 in the transformed P. pastoris are transcriptionally co-regulated and their expression is synchronised. To the best of the knowledge of the authors; this is the first study demonstrating that amino acid starvationinduced selective pressure on HIS4 can alter the regulation pattern of adjacent genes in P. pastoris.

  17. Ligustrazine-Oleanolic Acid Glycine Derivative, G-TOA, Selectively Inhibited the Proliferation and Induced Apoptosis of Activated HSC-T6 Cells.

    Science.gov (United States)

    Bi, Siling; Chu, Fuhao; Wang, Mina; Li, Bi; Mao, Pei; Zhang, Huazheng; Wang, Penglong; Guo, Wenbo; Xu, Liang; Ren, Liwei; Lei, Haimin; Zhang, Yuzhong

    2016-11-23

    Hepatic fibrosis is a naturally occurring wound-healing reaction, with an imbalance of extracellular matrix (ECM) during tissue repair response, which can further deteriorate to hepatocellular carcinoma without timely treatment. Inhibiting activated hepatic stellate cell (HSC) proliferation and inducing apoptosis are the main methods for the treatment of liver fibrosis. In our previous study, we found that the TOA-glycine derivative (G-TOA) had exhibited more significant inhibitory activity against HepG2 cells and better hydrophilicity than TOA, ligustrazine (TMP), and oleanolic acid (OA). However, inhibiting activated HSC proliferation and inducing apoptosis by G-TOA had not been reported. In this paper, the selective cytotoxicity of G-TOA was evaluated on HSC-T6 cells and L02 cells, and apoptosis mechanisms were explored. It was found that G-TOA could selectively inhibit the proliferation of activated HSC-T6 cells, induce morphological changes, early apoptosis, and mitochondrial membrane potential depolarization, increase intracellular free calcium levels, downregulate the expression of NF-κB/p65 and COX-2 protein, and decrease the ratio of Bcl-2/Bax, thereby inducing HSC-T6 cell apoptosis. Thence, G-TOA might be a potential antifibrosis agent for the therapy of hepatic fibrosis, provided that it exerts anti-fibrosis effects on activated HSC-T6 cells.

  18. Epigenetic priming of AML blasts for all-trans retinoic acid-induced differentiation by the HDAC class-I selective inhibitor entinostat.

    Directory of Open Access Journals (Sweden)

    Nadja Blagitko-Dorfs

    Full Text Available All-trans retinoic acid (ATRA has only limited single agent activity in AML without the PML-RARα fusion (non-M3 AML. In search of a sensitizing strategy to overcome this relative ATRA resistance, we investigated the potency of the HDAC class-I selective inhibitor entinostat in AML cell lines Kasumi-1 and HL-60 and primary AML blasts. Entinostat alone induced robust differentiation of both cell lines, which was enhanced by the combination with ATRA. This "priming" effect on ATRA-induced differentiation was at least equivalent to that achieved with the DNA hypomethylating agent decitabine, and could overall be recapitulated in primary AML blasts treated ex vivo. Moreover, entinostat treatment established the activating chromatin marks acH3, acH3K9, acH4 and H3K4me3 at the promoter of the RARβ2 gene, an essential mediator of retinoic acid (RA signaling in different solid tumor models. Similarly, RARβ2 promoter hypermethylation (which in primary blasts from 90 AML/MDS patients was surprisingly infrequent could be partially reversed by decitabine in the two cell lines. Re-induction of the epigenetically silenced RARβ2 gene was achieved only when entinostat or decitabine were given prior to ATRA treatment. Thus in this model, reactivation of RARβ2 was not necessarily required for the differentiation effect, and pharmacological RARβ2 promoter demethylation may be a bystander phenomenon rather than an essential prerequisite for the cellular effects of decitabine when combined with ATRA. In conclusion, as a "priming" agent for non-M3 AML blasts to the differentiation-inducing effects of ATRA, entinostat is at least as active as decitabine, and both act in part independently from RARβ2. Further investigation of this treatment combination in non-M3 AML patients is therefore warranted, independently of RARβ2 gene silencing by DNA methylation.

  19. NETUPITANT, A POTENT AND HIGHLY SELECTIVE NK1 RECEPTOR ANTAGONIST, ALLEVIATES ACETIC ACID-INDUCED BLADDER OVERACTIVITY IN ANESTHETIZED GUINEA-PIGS

    Directory of Open Access Journals (Sweden)

    Stefano Palea

    2016-08-01

    Full Text Available Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe. Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060 were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA. Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of acetic acid (AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v. or L-733,060 (3-10 mg/kg, i.v. were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24 of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI but had no effect on the amplitude of micturition (AM. L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the

  20. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria.

    Science.gov (United States)

    Salimi, Ahmad; Roudkenar, Mehryar Habibi; Sadeghi, Leila; Mohseni, Alireza; Seydi, Enayatollah; Pirahmadi, Nahal; Pourahmad, Jalal

    2015-12-01

    To investigate the effects ofellagic acid (EA) on the cytotoxicity, B-lymphocytes isolated from CLL patients and healthy individuals. Flow cytometric assay was used to measure the percentage of apoptosis versus necrosis, intracellular active oxygen radicals (ROS), mitochondrial membrane potential (MMP) and the caspase-3 activity and then mitochondria were isolated from both groups B-lymphocytes and parameters of mitochondrial toxicity was investigated. Based on our results EA decreased the percentage of viable cells and induced apoptosis. EA increased ROS formation, mitochondria swelling, MMP decrease and cytochrome c release in mitochondria isolated from CLL BUT NOT healthy B-lymphocytes while pre-treatment with cyclosporine A and Butylated hydroxyl toluene (BHT) prevented these effects. Our results suggest that EA can act as an anti cancer candidate by directly and selectively targeting mitochondria could induce apoptosis through mitochondria pathway with increasing ROS production which finally ends in cytochrome c release, caspase 3 activation and apoptosis in cancerous B-lymphocytes isolated from CLL patients. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Chieh; Venkatesan, Parthiban; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2015-07-02

    Highlights: • A BODIPY-based fluorescent probe for sensing HOCl was developed. • The probe utilizes the HOCl-promoted cyclization in response to the amount of HOCl. • The probe might have application in the investigation of HOCl in biological systems. - Abstract: A BODIPY-based fluorescent probe, HBP, was developed for the detection of hypochlorous acid based on the specific hypochlorous acid-promoted oxidative intramolecular cyclization of heterocyclic hydrazone in response to the amount of HOCl. The reaction is accompanied by a 41-fold increase in the fluorescent quantum yield (from 0.004 to 0.164). The fluorescence intensity of the reaction between HOCl and HBP is linear in the HOCl concentration range of 1–8 μM with a detection limit of 2.4 nM (S/N = 3). Confocal fluorescence microscopy imaging using RAW264.7 cells showed that the new probe HBP could be used as an effective fluorescent probe for detecting HOCl in living cells.

  2. Fisheries-induced disruptive selection.

    Science.gov (United States)

    Landi, Pietro; Hui, Cang; Dieckmann, Ulf

    2015-01-21

    Commercial harvesting is recognized to induce adaptive responses of life-history traits in fish populations, in particular by shifting the age and size at maturation through directional selection. In addition to such evolution of a target stock, the corresponding fishery itself may adapt, in terms of fishing policy, technological progress, fleet dynamics, and adaptive harvest. The aim of this study is to assess how the interplay between natural and artificial selection, in the simplest setting in which a fishery and a target stock coevolve, can lead to disruptive selection, which in turn may cause trait diversification. To this end, we build an eco-evolutionary model for a size-structured population, in which both the stock׳s maturation schedule and the fishery׳s harvest rate are adaptive, while fishing may be subject to a selective policy based on fish size and/or maturity stage. Using numerical bifurcation analysis, we study how the potential for disruptive selection changes with fishing policy, fishing mortality, harvest specialization, life-history tradeoffs associated with early maturation, and other demographic and environmental parameters. We report the following findings. First, fisheries-induced disruptive selection is readily caused by commonly used fishing policies, and occurs even for policies that are not specific for fish size or maturity, provided that the harvest is sufficiently adaptive and large individuals are targeted intensively. Second, disruptive selection is more likely in stocks in which the selective pressure for early maturation is naturally strong, provided life-history tradeoffs are sufficiently consequential. Third, when a fish stock is overexploited, fisheries targeting only large individuals might slightly increase sustainable yield by causing trait diversification (even though the resultant yield always remains lower than the maximum sustainable yield that could be obtained under low fishing mortality, without causing disruptive

  3. Fatty acid content of selected seed oils.

    Science.gov (United States)

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  4. Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tomlinson Craig R

    2007-09-01

    Full Text Available Abstract Background The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1 is a ligand-dependent corepressor that is inducible with retinoic acid (RA. We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification of these genes would be of considerable interest. Results To begin to address this issue, microarray technology was employed to elucidate in a de novo fashion the global role of RIP140 in RA target gene regulation of embryonal carcinoma. Subclasses of genes were affected by RIP140 in distinct manners. Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140. Hence, RIP140 appears to discriminate between different classes of RA target genes. In general, RIP140-dependent gene expression was consistent with RIP140 functioning to limit RA signaling and tumor cell differentiation. Few if any genes were regulated in a manner to support a role for RIP140 in "active repression". We also demonstrated that RIP140 silencing sensitizes embryonal carcinoma cells to low doses of RA. Conclusion Together the data demonstrates that RIP140 has profound effects on RA-mediated gene expression in this cancer stem cell model. The RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation and the findings suggest that RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy. We discuss these data in the context

  5. In vitro selection of functional nucleic acids

    Science.gov (United States)

    Wilson, D. S.; Szostak, J. W.

    1999-01-01

    In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.

  6. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  7. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 2: Natural formation in cooked vegetables and selected food products.

    Science.gov (United States)

    Yuan, Yuan; Tarres, Adrienne; Bessaire, Thomas; Rademacher, Wilhelm; Stadler, Richard H; Delatour, Thierry

    2017-08-01

    Mepiquat (N,N-dimethylpiperidinium) is a plant growth regulator registered for use as its chloride salt in many countries on cereals and other crops. Recent model system studies have shown that natural chemicals present in crop plants, such as pipecolic acid and pipecolic acid betaine, may furnish mepiquat through different chemical pathways, when subjected to temperatures in the range of 200°C. In this study, we cooked raw vegetables that did not contain mepiquat to a palatable state using different traditional cooking methods, and detected mepiquat in 9 out of 11 oven-cooked vegetables, reaching up to 189μg/kg dry wt in oven-cooked broccoli. Commercial oven potato fries generated mepiquat during cooking, typically in the range of 20-60μg/kg. Only traces of mepiquat (vegetables, including potatoes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs.

    Science.gov (United States)

    Hay, Douglas W P; Giardina, Giuseppe A M; Griswold, Don E; Underwood, David C; Kotzer, Charles J; Bush, Brian; Potts, William; Sandhu, Punam; Lundberg, Dave; Foley, James J; Schmidt, Dulcie B; Martin, Lenox D; Kilian, David; Legos, Jeffrey J; Barone, Frank C; Luttmann, Mark A; Grugni, Mario; Raveglia, Luca F; Sarau, Henry M

    2002-01-01

    In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.

  9. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    Science.gov (United States)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  10. [Acute pancreatitis induced by valproic acid].

    Science.gov (United States)

    Jomli, R; Nacef, F; Douki, S

    2013-09-01

    We describe the case of an adult man aged 49, without personal antecedents, or family psychiatric history, treated for bipolar disorder since 1995 and stabilised in the last 8 years by valproic acid, who presented in January 2010 an acute drug-induced pancreatitis. Drug-induced pancreatitis has been described since 1955. It may be induced by more than 260 various molecules, as well as by valproic acid, which remains underreported in the literature because there is a problem of imputability. The prevalence of acute drug-induced pancreatitis is set between 1 and 2 %. However, it must remain as an exclusion diagnosis after conducting an exhaustive etiological investigation that will, notably, eliminate bilary and alcoholic causes. The most incriminated drugs are the inhibitors of the conversion enzyme, sulfa drugs, non-steroidal anti-inflammatory, diuretics and anticonvulsants, including valproic acid. In Tunisia, the prescription of valproic acid is increasing in bipolar disorder therapy because it is known for its weak toxicity and easy handling. The case of our patient, who suffers from an acute Balthazar stage C pancreatitis with severe evolution after the drug was stopped, the imputability of valproic acid was considered strong and the collegial decision between the surgery, pharmacovigilance and psychiatry services maintained the drug-induced origin and consequently stopped the valproic acid. This case supports the idea that acute pancreatitis may be induced by valproic acid, even after a prescription lasting for a long period of time, it has no predictable factors and is totally independent of the drug-related dose and of depakine blood levels. There are no predictive factors to the present day, but the evolution is generally good except in rare cases where it may be dangerous. This leads us to think of bipolar patients who are found within weak grounds, such as alcoholics, cancer and HIV positive patients. Copyright © 2013. Published by Elsevier Masson

  11. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  12. Enantiomer-specific selection of amino acids

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-01-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: 1. During long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; 2. These behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; 3. These behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids, and suggest a mechanistic link between substrate utilization and amino acid preferences. PMID:24072505

  13. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  14. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  15. Synthesis and transdermal properties of acetylsalicylic acid and selected esters

    OpenAIRE

    2006-01-01

    The primary aim of this study was to determine the transdermal penetration of acetylsalicylic acid and some of its derivatives, to establish a correlation, if any, with selected physicochemical properties and to determine if transdermal application of acetylsalicylic acid and its derivatives will give therapeutic drug concentrations with respect to transdermal flux. Ten derivatives of acetylsalicylic acid were prepared by esterification of acetylsalicyloyl chloride with ten different alcohols...

  16. Bile-acid-induced cell injury and protection

    Institute of Scientific and Technical Information of China (English)

    Maria J Perez; Oscar Briz

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-Nmethylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties.

  17. Glucose selective bis-boronic acid click-fluor.

    Science.gov (United States)

    Zhai, Wenlei; Male, Louise; Fossey, John S

    2017-02-14

    Four novel bis-boronic acid compounds were synthesised via copper catalysed azide-alkyne cycloaddition (CuAAC) reactions. Glucose selectivity was observed for a particular structural motif. Moreover, a new glucose selective fluorescent sensor was designed and synthesised as a result.

  18. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  19. Bile Acid-Induced Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2016-04-01

    Full Text Available Background/Aims: In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Methods: Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: The exposure of human erythrocytes to glycochenodesoxycholic (GCDC and taurochenodesoxycholic (TCDC acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.

  20. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...

  1. Quinolinic acid induces oxidative stress in rat brain synaptosomes.

    Science.gov (United States)

    Santamaría, A; Galván-Arzate, S; Lisý, V; Ali, S F; Duhart, H M; Osorio-Rico, L; Ríos, C; St'astný, F

    2001-03-26

    The oxidative action of quinolinic acid (QUIN), and the protective effects of glutathione (GSH), and 2-amino-5-phosphonovaleric acid (APV), were tested in rat brain synaptosomes, Reactive oxygen species (ROS) formation was quantified after the exposure of synaptosomes to increasing concentrations of QUIN (25-500 microM). The potency of QUIN to induce lipid peroxidation (LP) was tested as a regional index of thiobarbituric acid-reactive substances (TBARS) production, and the antioxidant actions of both GSH (50 microM) and APV (250 microM) on QUIN-induced LP were evaluated in synaptosomes prepared from different brain regions. QUIN induced concentration-dependent increases in ROS formation and TBARS in all regions analyzed, but increased production of fluorescent peroxidized lipids only in the striatum and the hippocampus, whereas both GSH and APV decreased this index. These results suggest that the excitotoxic action of QUIN involves regional selectivity in the oxidative status of brain synaptosomes, and may be prevented by substances exhibiting antagonism at the NMDA receptor.

  2. Selective conversion of biorefinery lignin into dicarboxylic acids.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Zhang, Xiao

    2014-02-01

    The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    Science.gov (United States)

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  4. Aromatic amino acids in high selectivity bismuth(III) recognition.

    Science.gov (United States)

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan phenylalanine amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  5. Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists

    Science.gov (United States)

    Schmidt, Johannes; Smith, Nicola J.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Hudson, Brian D.; Ward, Richard J.; Drewke, Christel; Milligan, Graeme; Kostenis, Evi; Ulven, Trond

    2011-01-01

    Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [35S]guanosine 5′-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp3-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp2- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors. PMID:21220428

  6. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Science.gov (United States)

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  7. Synthesis and transdermal properties of acetylsalicylic acid and selected esters.

    Science.gov (United States)

    Gerber, Minja; Breytenbach, Jaco C; Hadgraft, Jonathan; du Plessis, Jeanetta

    2006-03-01

    The primary aim of this study was to determine the transdermal penetration of acetylsalicylic acid and some of its derivatives, to establish a correlation, if any, with selected physicochemical properties and to determine if transdermal application of acetylsalicylic acid and its derivatives will give therapeutic drug concentrations with respect to transdermal flux. Ten derivatives of acetylsalicylic acid were prepared by esterification of acetylsalicyloyl chloride with ten different alcohols. The experimental aqueous solubility, logD and transdermal flux values were determined for acetylsalicylic acid and its derivatives at pH 4.5. In vitro penetration was measured through excised female human abdominal skin in diffusion cells. The experimental aqueous solubility of acetylsalicylic acid (6.56 mg/ml) was higher than that of the synthesised acetylsalicylate derivatives (ranging from 1.76 x 10(-3) to 3.32 mg/ml), and the logD of acetylsalicylic acid (-0.85) was lower than that of its derivatives (ranging from -0.25 to 1.95). There was thus an inverse correlation between the aqueous solubility data and the logD values. The experimental transdermal flux of acetylsalicylic acid (263.83 nmol/cm(2)h) was much higher than that of its derivatives (ranging from 0.12 to 136.02 nmol/cm(2)h).

  8. Did Evolution Select a Nonrandom "Alphabet" of Amino Acids?

    Science.gov (United States)

    Philip, Gayle K.; Freeland, Stephen J.

    2011-04-01

    The last universal common ancestor of contemporary biology (LUCA) used a precise set of 20 amino acids as a standard alphabet with which to build genetically encoded protein polymers. Considerable evidence indicates that some of these amino acids were present through nonbiological syntheses prior to the origin of life, while the rest evolved as inventions of early metabolism. However, the same evidence indicates that many alternatives were also available, which highlights the question: what factors led biological evolution on our planet to define its standard alphabet? One possibility is that natural selection favored a set of amino acids that exhibits clear, nonrandom properties - a set of especially useful building blocks. However, previous analysis that tested whether the standard alphabet comprises amino acids with unusually high variance in size, charge, and hydrophobicity (properties that govern what protein structures and functions can be constructed) failed to clearly distinguish evolution's choice from a sample of randomly chosen alternatives. Here, we demonstrate unambiguous support for a refined hypothesis: that an optimal set of amino acids would spread evenly across a broad range of values for each fundamental property. Specifically, we show that the standard set of 20 amino acids represents the possible spectra of size, charge, and hydrophobicity more broadly and more evenly than can be explained by chance alone.

  9. Release of selected amino acids from zinc carriers

    Directory of Open Access Journals (Sweden)

    Dyja Renata

    2016-06-01

    Full Text Available The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2 of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan that provides release of similar amounts of amino acid (4.1–4.6 μmol of histidine or 8.7–9.9 μmol of tryptophan after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9–11.2 μmol is limited by the tyrosine low solubility in water.

  10. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    Science.gov (United States)

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Adsorption selectivity of salicylic acid and 5-sulfosalicylic acid onto hypercrosslinked polymeric adsorbents

    Institute of Scientific and Technical Information of China (English)

    LIU Fuqiang; XIA Mingfang; FEI Zhenghao; CHEN Jinlong; LI Aimin

    2007-01-01

    Both bottle-point and column-feeding experiments involving different solutes and sorbents were carried out to investigate the adsorption selectivity and separation performance of salicylic acid and 5-sulfosalicylic acid.Their adsorption isotherms onto such hypercrosslinked polymeric adsorbents as NDA-100 and NDA-99 could be well described by the Freundlich equations whose characteristics describe extrathermic and favorable adsorption processes.The adsorption towards NDA-100 mainly depended on the π-π interaction,while that towards NDA-99 was extremely influenced by the static-electric interaction.Additionally,the adsorptive capacity of salicylic acid on NDA-99 decreased while it increased on NDA-100 with the presence of 5-sulfosalicylic acid in the adsorptive environment as the competitive component.Comparatively,the adsorption capacity of 5-sulfosalicylic acid decreased on both resins with salicylic acid as the competitive component.In fact,the difference in the interaction between adsorbent and adsorbate resulted in the straight antagonism on the effective adsorption sites on the adsorbent.In conclusion,the adsorption selectivity of salicylic acid onto NDA-100 was obviously larger than that onto NDA-99 with the existence of 5-sulfosalicylic acid in the adsorptive environment.A satisfactory separation and recovery of tested solutes in aqueous phase could be foreseeably achieved by the sequencing adsorption technique involving NDA-100 as well as NDA-99.

  12. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OSTα ) and OSTβ increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OSTα and OSTβ, by OCA reduced the intracellular concentrations of d8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  13. Mitotic apparatus: the selective extraction of protein with mild acid.

    Science.gov (United States)

    Bibring, T; Baxandall, J

    1968-07-26

    The treatment of isolated mitotic apparatus with mild (pH 3) hydrochloric acid results in the extraction of less than 10 percent of its protein, accompanied by the selective morphological disappearance of the microtubules. The same extraction can be shown to dissolve outer doublet microtubules from sperm flagella. A protein with points of similarity to the flagellar microtubule protein is the major component of the extract from mitotic apparatus.

  14. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    Science.gov (United States)

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation.

  15. Oleic acid-embedded nanoliposome as a selective tumoricidal agent.

    Science.gov (United States)

    Jung, Sujin; Lee, Sangah; Lee, Hyejin; Yoon, Jaejin; Lee, E K

    2016-10-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cell), a molecular complex of human α-lactalbumin and oleic acid, is known to have selective cytotoxic activity against certain types of tumors. This cytotoxicity is known to stem from water-insoluble oleic acid. In this study, we manufactured an alternative complex using liposome as an oleic acid delivery vesicle. We named this nanolipoplex LIMLET (LIposome Made LEthal to Tumor cell). The LIMLET vesicle contained approximately 90,200 oleic acid molecules inserted into its lipophilic phospholipid bilayer and had a nominal mean diameter of 127nm. Using a WST-1 assay, its cytotoxicity against two cancer cell lines, MDA-MB-231 (human breast cancer) and A549 (human lung cancer), were tested. The results were compared with that of a normal cell line, Vero (from monkey kidney). We found that (1) LIMLET showed distinctive cytotoxicity against A549 and MDA-MB-231 cells, whereas bare liposomes (containing no oleic acid) had no toxicity, even at high concentrations, and (2) LIMLET demonstrated selective, concentration-dependent toxicity against the cancer cells: the LD50 values of MDA-MB-231 and A549 cells were 1.3 and 2.2nM LIMLET, respectively, whereas the LD50 of Vero was 5.7nM. The strength of the tumoricidal effect appeared to stem from the number of oleic acid molecules present. Our result suggests that LIMLET, like HAMLET, is an interesting nanolipoplex that can potentially be developed into tumor treatments.

  16. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks.

  17. Influence of selected factors on induced syneresis

    Directory of Open Access Journals (Sweden)

    Jovanović Snežana T.

    2004-01-01

    Full Text Available Syneresis is the process of whey separation induced by gel contraction resulting in rearranging or restructuring of casein matrix formed during enzymatic coagulation. Numerous factors can influence the process of syneresis. The influences of pH, calcium concentration, temperature of coagulation of milk and applied heat treatment on the syneresis induced by different intensity of centrifugal force have been investigated. Coagulated samples were centrifuged at 1000, 2000 and 3000 rpm for 5 min, respectively. Reconstituted skim milk powder (control sample and reconstituted non-fat milk heat treated at 87ºC/10 min (experimental sample are coagulated at temperatures of 30ºC and 35ºC, at pH value of 5.8 and 6.2, and with the addition of 100, 200 and 400 mg/l of CaCl2, respectively. Centrifugation at 1000 rpm of both control and experimental samples didn’t recover any sera, regardless of the applied coagulation conditions. This indicates that the intensity of centrifugal force wasn’t strong enough to disrupt gel structure and cause syneresis. When the intensity of centrifugal force was increased up to 2000 rpm, the syneresis was induced, but the degree of syneresis depended on the applied factors of coagulation, primary on the applied heat treatments and temperature of coagulation. The amount of added CaCl2 didn’t have a significant influence on the induced syneresis at 2000 rpm. The induced syneresis was very significant for both control and experimental samples when the intensity of centrifugal force of 3000 rpm was applied. It was also noted that curd produced from heat treated milk in which milk protein coaggregates were formed, released less sera regardless of the applied coagulation factors.

  18. Selection and identification of DNA aptamers against okadaic acid for biosensing application.

    Science.gov (United States)

    Eissa, Shimaa; Ng, Andy; Siaj, Mohamed; Tavares, Ana C; Zourob, Mohammed

    2013-12-17

    This work describes the selection and identification of DNA aptamers that bind with high affinity and specificity to okadaic acid (OA), a lipophilic marine biotoxin that accumulates in shellfish. The aptamers selected using systematic evolution of ligands by exponential enrichment (SELEX) exhibited dissociation constants in the nanomolar range. The aptamer with the highest affinity was then used for the fabrication of a label-free electrochemical biosensor for okadaic acid detection. The aptamer was first immobilized on the gold electrode by a self-assembly approach through Au-S interaction. The binding of okadaic acid to the aptamer immobilized on the electrode surface induces an alteration of the aptamer conformation causing a significant decrease in the electron-transfer resistance monitored by electrochemical impedance spectroscopy. The aptasensor showed a linear range for the concentrations of OA between 100 pg/mL and 60 ng/mL with a detection limit of 70 pg/mL. The dissociation constant of okadaic acid with the aptamer immobilized on the electrode surface showed good agreement with that determined using fluorescence assay in solution. Moreover, the aptasensor did not show cross-reactivity toward toxins with structures similar to okadaic acid such as dinophysis toxin-1 and 2 (DTX-1, DTX-2). Further biosensing applications of the selected aptamers are expected to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  19. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    Science.gov (United States)

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  20. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae.

    Science.gov (United States)

    Wright, Jeremiah; Bellissimi, Eleonora; de Hulster, Erik; Wagner, Andreas; Pronk, Jack T; van Maris, Antonius J A

    2011-05-01

    Acetic acid tolerance of Saccharomyces cerevisiae is crucial for the production of bioethanol and other bulk chemicals from lignocellulosic plant-biomass hydrolysates, especially at a low pH. This study explores two evolutionary engineering strategies for the improvement of acetic acid tolerance of the xylose-fermenting S. cerevisiae RWB218, whose anaerobic growth on xylose at pH 4 is inhibited at acetic acid concentrations >1 g L(-1) : (1) sequential anaerobic, batch cultivation (pH 4) at increasing acetic acid concentrations and (2) prolonged anaerobic continuous cultivation without pH control, in which acidification by ammonium assimilation generates selective pressure for acetic acid tolerance. After c. 400 generations, the sequential-batch and continuous selection cultures grew on xylose at pH≤4 with 6 and 5 g L(-1) acetic acid, respectively. In the continuous cultures, the specific xylose-consumption rate had increased by 75% to 1.7 g xylose g(-1) biomass h(-1) . After storage of samples from both selection experiments at -80 °C and cultivation without acetic acid, they failed to grow on xylose at pH 4 in the presence of 5 g L(-1) acetic acid. Characterization in chemostat cultures with linear acetic acid gradients demonstrated an acetate-inducible acetic acid tolerance in samples from the continuous selection protocol.

  1. Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid.

    Science.gov (United States)

    Ren, Huifang; Girisuta, Buana; Zhou, Yonggui; Liu, Li

    2015-03-01

    Cellulose depolymerization to levulinic acid (LA) was catalyzed by acidic ionic liquids (ILs) selectively and recyclably under hydrothermal conditions. The effects of reaction temperature, time, water amount and cellulose intake were investigated. Dilution effect becomes more pronounced at lower cellulose intake, dramatically improving the yield of LA to 86.1%. A kinetic model has been developed based on experimental data, whereby a good fit was obtained and kinetic parameters were derived. The relationships between IL structure, polymeric structure and depolymerization efficiency were established, shedding light on the in-depth catalytic mechanism of IL, inclusive of acidity and hydrogen bonding ability. The LA product can be readily separated through extraction by methyl isobutyl ketone (MIBK) and IL can be reused over five cycles without loss of activity. This environmentally friendly methodology can be applied to selective production of LA from versatile biomass feedstocks, including cellulose and derivatives, glucose, fructose and HMF.

  2. Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter.

    Science.gov (United States)

    Dodd, Joanna R; Christie, David L

    2007-05-25

    The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.

  3. Chlorine dioxide reaction with selected amino acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Navalon, Sergio; Alvaro, Mercedes [Department of Chemistry, Universidad Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia (Spain); Garcia, Hermenegildo, E-mail: hgarcia@qim.upv.es [Department of Chemistry, Universidad Politecnica de Valencia, Camino de Vera S/N, 46022 Valencia (Spain)

    2009-05-30

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO{sub 2} with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO{sub 2} were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO{sub 2} creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO{sub 2} with ubiquitous amino acids present in natural waters.

  4. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    FENG ZeWang; ZHAO XinQi; BI Hua

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in dichloromethane at room temperature.

  5. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  6. Nucleic acid constructs containing orthogonal site selective recombinases (OSSRs)

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Joshua M.; Anderson, J. Christopher; Dueber, John E.

    2017-08-29

    The present invention provides for a recombinant nucleic acid comprising a nucleotide sequence comprising a plurality of constructs, wherein each construct independently comprises a nucleotide sequence of interest flanked by a pair of recombinase recognition sequences. Each pair of recombinase recognition sequences is recognized by a distinct recombinase. Optionally, each construct can, independently, further comprise one or more genes encoding a recombinase capable of recognizing the pair of recombinase recognition sequences of the construct. The recombinase can be an orthogonal (non-cross reacting), site-selective recombinase (OSSR).

  7. Kynurenic Acid Content in Selected Culinary Herbs and Spices

    OpenAIRE

    Michal P. Turski; Monika Turska; Tomasz Kocki; Turski, Waldemar A.; Piotr Paluszkiewicz

    2015-01-01

    Previous studies demonstrated that kynurenic acid (KYNA) is present in various types of food in varying concentrations. Therefore, the aim of the study was to check whether KYNA is present in culinary herbs and spices. Achieved results indicate that KYNA is present in all 19 selected culinary herbs and spices. The highest concentration of KYNA was found in basil and thyme, 14.08 and 8.87 μg/g, respectively, while the lowest content of KYNA was found in cumin and black pepper, 0.64 and 0.10 μg...

  8. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  9. Preparation of Glycyrrhetinic Acid Monoglucuronide by Selective Hydrolysis of Glycyrrhizic Acid via Biotransformation

    Institute of Scientific and Technical Information of China (English)

    LU Li; MA Bai-ping; ZHAO Yang; YU He-shui; HUANG Hong-zhi; KANG Li-ping; CAO Man; CUI Jiang-ming; YU Li-yan; SONG Xin-bo

    2012-01-01

    Objective To search for the microorganisms which have the high selectivity of hydrolyzing glycyrrhizic acid(GL)into 18β-glycyrrhetinic acid-3-O-β-D-glucuronide(GAMG)without glycyrrhetinic acid(GA)byproduct.Methods GL was biotransformed by Aspergillus sp.,the products were separated by chromatography on reverse phase C18 column and semi-preparative HPLC,and their structures were elucidated on the basis of HR-ESI-MS,1D NMR(1H-NMR,13C-NMR,and NOESY)and 2D NMR(1H-1H COSY,HSQC,and HMBC)spectral analyses.Results Aspergillus sp.could partially hydrolyze GL into GAMG(3),along with two minor byproducts,3-O-β-D-glucurono-pyranosyl-18β-liquiritic acid(1)and 3-O-β-D-glucuronopyranosyl-24-hydroxy-18β-glycyrrhetinic acid(2).Conclusion Aspergillus sp.has the high selectivity of hydrolyzing GL into GAMG without GA byproduct and the yield of GAMG is about 60%.The complete assignments of 1H-NMR and 13C-NMR data for compounds 1 and 2 are reported for the first time.

  10. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.

    Science.gov (United States)

    Dapsens, Pierre Y; Mondelli, Cecilia; Pérez-Ramírez, Javier

    2013-05-01

    Desilication of commercial MFI-type (ZSM-5) zeolites in solutions of alkali metal hydroxides is demonstrated to generate highly selective heterogeneous catalysts for the aqueous-phase isomerization of biobased dihydroxyacetone (DHA) to lactic acid (LA). The best hierarchical ZSM-5 sample attains a LA selectivity exceeding 90 %, which is comparable to that of the state-of-the-art catalyst (i.e., the Sn-beta zeolite); this optimized hierarchical catalyst is recyclable over three runs. The Lewis acid sites, which are created through desilication along with the introduction of mesoporosity, are shown to play a crucial role in the formation of the desired product; these cannot be achieved by using other post-synthetic methods, such as steaming or impregnation of aluminum species. Desilication of other metallosilicates, such as Ga-MFI, also leads to high LA selectivity. In the presence of a soluble aluminum source, such as aluminum nitrate, alkaline-assisted alumination can introduce these unique Lewis acid centers in all-silica MFI zeolites. These findings highlight the potential of zeolites in the field of biomass-to-chemical conversion, and expand the applicability of desilication for the generation of selective catalytic centers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extracellular and intracellular arachidonic acid-induced contractions in rat aorta

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Petrescu, G; Nelemans, SA

    1998-01-01

    Arachidonic acid induced contractions of de-endothelized rat aortic rings. A more potent effect was obtained after intracellular administration of arachidonic acid using liposomes. Contractions induced by extracellular arachidonic acid were inhibited similarly to phenylephrine-induced contractions b

  12. Citric acid production by selected mutants of Aspergillus niger from cane molasses.

    Science.gov (United States)

    Ikram-Ul, Haq; Ali, Sikander; Qadeer, M A; Iqbal, Javed

    2004-06-01

    The present investigation deals with citric acid production by some selected mutant strains of Aspergillus niger from cane molasses in 250 ml Erlenmeyer flasks. For this purpose, a conidial suspension of A. niger GCB-75, which produced 31.1 g/l citric acid from 15% (w/v) molasses sugar, was subjected to UV-induced mutagenesis. Among the 3 variants, GCM-45 was found to be a better producer of citric acid (50.0 +/- 2a) and it was further improved by chemical mutagenesis using N-methyl, N-nitro-N-nitroso-guanidine (MNNG). Out of 3,2-deoxy-D-glucose resistant variants, GCMC-7 was selected as the best mutant, which produced 96.1 +/- 1.5 g/l citric acid 168 h after fermentation of potassium ferrocyanide and H2SO4 pre-treated blackstrap molasses in Vogel's medium. On the basis of kinetic parameters such as volumetric substrate uptake rate (Qs), and specific substrate uptake rate (qs), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and produced more citric acid. The mutant GCMC-7 has greater commercial potential than the parental strain with regard to citrate synthase activity. The addition of 2.0 x 10(-5) M MgSO4 x 5H2O into the fermentation medium reduced the Fe2+ ion concentration by counter-acting its deleterious effect on mycelial growth. The magnesium ions also induced a loose-pelleted form of growth (0.6 mm, diameter), reduced the biomass concentration (12.5 g/l) and increased the volumetric productivity of citric acid monohydrate (113.6 +/- 5 g/l).

  13. Mycophenolic Acid-Induced Developmental Defects in Zebrafish Embryos.

    Science.gov (United States)

    Jiang, Ling-Ling; Liu, Mei-Hui; Li, Jian-Ying; He, Zhi-Heng; Li, Huan; Shen, Ning; Wei, Ping; He, Ming-Fang

    2016-11-01

    With the increasing use of mycophenolic acid (MPA) in solid organ transplantation, some clinical studies indicate that it is also a human teratogen. However, it is unknown by which mechanism MPA acts as a teratogen. Mycophenolic acid was a selective blocker of de novo purine synthesis, and its immunosuppressive effect is mediated by the inhibition of inosine monophosphate dehydrogenase, which could be a target for MPA-induced toxicity as well. The aim of our study was to examine the direct influence of MPA exposure on zebrafish (Danio rerio) embryos. Morphological defects including tail curvature and severe pericardial edema in zebrafish embryos caused by MPA (3.7-11.1 µmol/L) were found in a dose-dependent manner. The teratogenic index (25% lethal concentration value (LC25)/no observed adverse effect level ratio) was 16, which indicated MPA as a teratogen. Quantitative polymerase chain reaction analysis revealed that the expression level of impdh1b and impdh2 was significantly reduced by MPA treatment at 8 µmol/L (equals to LC25 level). All the toxic effects could be partially reversed by the addition of 33.3 µmol/L guanosine. Our results indicated that MPA impairs the development of zebrafish embryos via inhibition of impdh activity, which subsequently caused a guanosine nucleotide depletion in vivo.

  14. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    Science.gov (United States)

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  15. Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids.

    Science.gov (United States)

    Dusselier, Michiel; Sels, Bert F

    2014-01-01

    This review discusses topical chemical routes and their catalysis for the conversion of cellulose, hexoses, and smaller carbohydrates to lactic acid and other useful α-hydroxy acids. Lactic acid is a top chemical opportunity from carbohydrate biomass as it not only features tremendous potential as a chemical platform molecule; it is also a common building block for commercially employed green solvents and near-commodity bio-plastics. Its current scale fermentative synthesis is sufficient, but it could be considered a bottleneck for a million ton scale breakthrough. Alternative chemical routes are therefore investigated using multifunctional, often heterogeneous, catalysis. Rather than summarizing yields and conditions, this review attempts to guide the reader through the complex reaction networks encountered when synthetic lactates from carbohydrate biomass are targeted. Detailed inspection of the cascade of reactions emphasizes the need for a selective retro-aldol activity in the catalyst. Recently unveiled catalytic routes towards other promising α-hydroxy acids such as glycolic acid, and vinyl and furyl glycolic acids are highlighted as well.

  16. Lauric acid and myristic acid prevent testosterone induced prostatic hyperplasia in rats.

    Science.gov (United States)

    Veeresh Babu, S V; Veeresh, B; Patil, Anup A; Warke, Y B

    2010-01-25

    Numerous plants have proven to improve uncontrolled growth of the prostate gland and improve urinary tract symptoms associated with benign prostatic hyperplasia. Major components of those plants were lauric acid and myristic acid. Our study investigated whether lauric acid or myristic acid prevent testosterone induced prostatic hyperplasia in rats. Rats were divided into negative control and testosterone induced prostatic hyperplasia rats (positive control, low dose lauric acid treated, high dose lauric acid treated, low dose of myristic acid treated, high dose of myristic acid treated, finasteride treated). Testosterone and drug treatment were carried out for 14 days. Body weights were recorded before and after treatment. On 15th day, rats were sacrificed, prostates were weighed and histopathological studies were carried out. Lauric acid/myristic acid treatment showed significant inhibition of prostate enlargement and protection of histoarchitecture of prostate when compared with positive control group. In conclusion, the study showed that lauric acid/myristic acid reduced the increase of both prostate weight and prostate weight:body weight ratio, markers of testosterone induced prostatic hyperplasia in rats.

  17. Hyaluronic acid induces activation of the κ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  18. Systemic administration of kainic acid induces selective time dependent decrease in [{sup 125}I]insulin-like growth factor I, [{sup 125}I]insulin-like growth factor II and [{sup 125}I]insulin receptor binding sites in adult rat hippocampal formation

    Energy Technology Data Exchange (ETDEWEB)

    Quirion, R. [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Chabot, J.-G.; Dore, S. [Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal (Canada); Seto, D. [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Kar, S. [Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal (Canada)

    1997-08-11

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [{sup 125}I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [{sup 125}I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [{sup 125}I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [{sup 125}I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [{sup 125}I]insulin receptor binding was noted at all time points in the

  19. NAADP induces pH changes in the lumen of acidic Ca2+ stores

    OpenAIRE

    2006-01-01

    Abstract NAADP-induced Ca 2+} release has been proposed to occur selectively from acidic stores in several cell types including sea urchin eggs. Using fluorescence measurements, we have investigated whether NAADP-induced Ca 2+} release alters the luminal pH (pHL) within these acidic stores in egg homogenates and observed their prompt, concentration-dependent alkalinization by NAADP (but not {beta}-NAD +} or NADP). Like Ca 2+} release, the pH L} change was desensitized by low concen...

  20. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  1. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  2. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

  3. Kynurenic Acid Content in Selected Culinary Herbs and Spices

    Directory of Open Access Journals (Sweden)

    Michal P. Turski

    2015-01-01

    Full Text Available Previous studies demonstrated that kynurenic acid (KYNA is present in various types of food in varying concentrations. Therefore, the aim of the study was to check whether KYNA is present in culinary herbs and spices. Achieved results indicate that KYNA is present in all 19 selected culinary herbs and spices. The highest concentration of KYNA was found in basil and thyme, 14.08 and 8.87 μg/g, respectively, while the lowest content of KYNA was found in cumin and black pepper, 0.64 and 0.10 μg/g, respectively. This is the first report on the concentration of KYNA in culinary herbs and spices. The need for more detailed investigation of dietary supplementation with culinary herbs and spices containing KYNA is suggested.

  4. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  5. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-08-02

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  6. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine.

    Science.gov (United States)

    Raghavendra, Ponnala; Halami, Prakash M

    2009-07-31

    This study was undertaken to screen and select potent phytate degrading lactic acid bacteria and to evaluate their additional characteristic features. Forty lactic acid bacterial strains were isolated from different sources and screened for their ability to degrade myo-inositol hexaphosphate or IP(6) by cobalt chloride staining (plate assay) method, using calcium or sodium salt of phytic acid as substrate. All the forty isolates were able to degrade calcium phytate. However, only two Pediococcus pentosaceus strains (CFR R38 and CFR R35) were found to degrade sodium phytate. These strains showed phytase activity of 213 and 89 U at 50 degrees C, respectively and poor acid phosphatase activity. These strains were further evaluated for additional characteristic features. At pH 2, P. pentosaceus strains CFR R38 and CFR R35 showed 50.7 and 48.5 percentage survivability after 2 h of incubation respectively and they could also withstand 0.3% ox-bile. These cultures exhibited 54.6 and 44.8% of hydrophobicity to xylene, antibacterial activity against food borne pathogens and possessed beta-galactosidase activity. The resistance pattern to several antibiotics was also analyzed. The present study indicates that these strains, having phytate degrading ability and other characteristic features can be exploited as starter cultures in fermented foods to improve the mineral bioavailability.

  7. Selection of mutants of capsicum annuum induced by gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. I.; Lee, Y. B. [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Lee, E. K. [Chungnam National Univ., Taejeon (Korea, Republic of)

    1998-06-01

    For induction and selection of mutations of Capsicum annuum L., dry seeds of pure lines No.1 and No.2 were irradiated with gamma ray of 150Gy, 200Gy and 250Gy. Various mutants were selected such as showing early maturity, short plant height, long fruit and chlorophyll mutations. Mutation frequency of No.1 line was 3.4% in the dose of 150Gy, while the frequency of No.2 line was 2.7% in the dose of 250Gy. For selection of resistant mutant to amino acid analog, the optimum concentration of 5-methyltryptophan (5-MT) and S-(2-aminoethyl)-L-cysteine were 25 ppm and 30 ppm, respectively. Four resistant mutant lines to 5-MT were selected among 400 mutant lines.

  8. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia.

    Directory of Open Access Journals (Sweden)

    Rouh-Mei Hu

    Full Text Available BACKGROUND: Fusaric acid (5-butylpicolinic acid, a mycotoxin, is noxious to some microorganisms. Stenotrophomonas maltophilia displays an intrinsic resistance to fusaric acid. This study aims to elucidate the mechanism responsible for the intrinsic fusaric acid resistance in S. maltophilia. METHODOLOGY: A putative fusaric acid resistance-involved regulon fuaR-fuaABC was identified by the survey of the whole genome sequence of S. maltophilia K279a. The fuaABC operon was verified by reverse transcriptase-PCR. The contribution of the fuaABC operon to the antimicrobial resistance was evaluated by comparing the antimicrobials susceptibility between the wild-type strain and fuaABC knock-out mutant. The regulatory role of fuaR in the expression of the fuaABC operon was assessed by promoter transcription fusion assay. RESULTS: The fuaABC operon was inducibly expressed by fusaric acid and the inducibility was fuaR dependent. FuaR functioned as a repressor of the fuaABC operon in absence of a fusaric acid inducer and as an activator in its presence. Overexpression of the fuaABC operon contributed to the fusaric acid resistance. SIGNIFICANCE: A novel tripartite fusaric acid efflux pump, FuaABC, was identified in this study. Distinct from the formally classification, the FuaABC may constitute a new type of subfamily of the tripartite efflux pump.

  9. Alpha-linolenic acid protects against gentamicin induced toxicity

    Directory of Open Access Journals (Sweden)

    Priyadarshini M

    2012-11-01

    Full Text Available Medha Priyadarshini, Mohammad Aatif, Bilqees BanoDepartment of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, IndiaBackground: Recent studies indicate that reactive oxygen species are the major culprits behind the renal damage induced by gentamicin, an aminoglycoside antibiotic used to treat serious and life threatening Gram-negative infections. Experimental evidence suggests a protective role of alpha-linolenic acid supplementation against oxidative stress. The aim of the present study was to investigate the possible beneficial role of alpha-linolenic acid against gentamicin induced renal distress.Methods: Male Wistar rats were divided into three groups of eight rats each, with the first group serving as a control. The other groups were treated intraperitoneally with gentamicin 100 mg/kg body weight per day for 10 days ± alpha-linolenic acid and vitamin E (each given as 250 mg/kg body weight per day. Concentrations of creatinine, urea, cholesterol, inorganic phosphate in serum, malondialdehyde and total sulfhydryl levels, and glutathione-S-transferase, superoxide dismutase, and catalase activity in kidney tissues were determined.Results: Administration of gentamicin to rats induced marked renal failure, characterized by a profound increase in serum creatinine, urea, and cholesterol concentrations, accompanied by significant lowering of renal alkaline phosphatase and acid phosphatase activity, an increase in malondialdehyde, a decline in total sulfhydryl levels, and lowered superoxide dismutase, catalase, and glutathione-S-transferase activity. Cotreatment with alpha-linolenic acid produced amelioration in these biochemical indices of nephrotoxicity in serum as well as in tissue. Further histopathological and human studies are necessary to demonstrate the beneficial effects of alpha-linolenic acid in renal disease.Conclusion: Alpha-linolenic acid may represent a nontoxic and effective intervention strategy in

  10. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    Science.gov (United States)

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  11. Amoxicillin/clavulanic acid-induced pemphigus vulgaris: case report.

    Science.gov (United States)

    Baroni, Adone; Russo, Teresa; Faccenda, Franco; Piccolo, Vincenzo

    2012-01-01

    Drug-induced pemphigus is a well-established variety of pemphigus, presenting with clinical and histopathologic features identical to idiopathic form. Medical history plays a fundamental role in the diagnosis of drug-induced pemphigus. A large variety of drugs have been implicated in its pathogenesis and they may induce acantholysis via biochemical and/or immune mechanism. We present a case of a 69-year-old woman affected by amoxicillin/clavulanic acid-induced pemphigus and discuss its pathogenetic mechanism.

  12. Reversible phenotypic modulation induced by deprivation of exogenous essential fatty acids.

    Science.gov (United States)

    Laposata, M; Minda, M; Capriotti, A M; Hartman, E J; Furth, E E; Iozzo, R V

    1988-12-01

    Essential fatty acid deficiency, produced by deprivation of omega-6 and omega-3 fatty acids, is a condition characterized by renal disease, dermatitis, and infertility. Although many of the biochemical aspects of this disorder have been investigated, little is known about the ultrastructural changes induced by essential fatty acid deficiency. Using a unique fatty acid-deficient cell line (EFD-1), which demonstrates the in vivo fatty acid changes of essential fatty acid deficiency, and the prostaglandin E2-producing mouse fibrosarcoma line from which it was derived (HSDM1C1), we correlated ultrastructural and biochemical changes induced by prolonged deprivation of all exogenous lipids and subsequent repletion of selected essential fatty acids. We found that in cells deprived of all exogenous lipids, there was dilation of rough endoplasmic reticulum and an associated defect in protein secretion; these changes were specifically reversed by arachidonate. There was also an accumulation of secondary lysosomes containing degraded membranes in these cells with an associated increase in phospholipids relative to parent HSDM1C1 cells. Cytoplasmic lipid bodies present in parent cells disappeared, with an associated decrease in triacylglycerol. After just 2 days in lipid-free medium, all these changes were apparent, and prostaglandin E2 production was markedly impaired despite normal amounts of cellular arachidonate. Incubation of EFD-1 cells with arachidonate, the major prostaglandin precursor fatty acid, induced a reversion to the HSDM1C1 phenotype, whereas other fatty acids were totally ineffective. These results indicate changes in fatty acid metabolism in essential fatty acid deficiency are associated with marked alterations in ultrastructure and secretion of protein from cells.

  13. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations.

    Science.gov (United States)

    González-Ramos, Daniel; Gorter de Vries, Arthur R; Grijseels, Sietske S; van Berkum, Margo C; Swinnen, Steve; van den Broek, Marcel; Nevoigt, Elke; Daran, Jean-Marc G; Pronk, Jack T; van Maris, Antonius J A

    2016-01-01

    Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for

  14. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    OpenAIRE

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into ...

  15. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016.

  16. THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru

    Science.gov (United States)

    LaRue, Jerry L.; Katayama, Tetsuo; Lindenberg, Aaron; Fisher, Alan S.; Ã-ström, Henrik; Nilsson, Anders; Ogasawara, Hirohito

    2015-07-01

    We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface.

  17. the amino acid composition of selected south african feed ingredients

    African Journals Online (AJOL)

    ook, om die balans van die aminosure te kan bepaal, is elkeen aangetoon as'n persentasie .... lent to the free amino acid less the one molecule of .... AMINO ACID PERCENT (a) PERCENT FACTORS (c) PERCENT (d) PERCENT OF PROTEIN.

  18. Induced defences alter the strength and direction of natural selection on reproductive traits in common milkweed.

    Science.gov (United States)

    Thompson, K A; Cory, K A; Johnson, M T J

    2017-06-01

    Evolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defences can alter natural selection on reproductive traits, but it is unclear whether induced defences will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca L., we induced plant defences using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), whereas control plants only experienced a trend towards selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defences can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defences may promote the evolution of plant reproductive diversity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  19. Mitochondria-dependent apoptosis of con A-activated T lymphocytes induced by asiatic acid for preventing murine fulminant hepatitis.

    Science.gov (United States)

    Guo, Wenjie; Liu, Wen; Hong, Shaocheng; Liu, Hailiang; Qian, Cheng; Shen, Yan; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2012-01-01

    Selectively facilitating apoptosis of activated T cells is essential for the clearance of pathogenic injurious cells and subsequent efficient resolution of inflammation. However, few chemicals have been reported to trigger apoptosis of activated T cells for the treatment of hepatitis without affecting quiescent T cells. In the present study, we found that asiatic acid, a natural triterpenoid, selectively triggered apoptosis of concanavalin A (Con A)-activated T cells in a mitochondria-dependent manner indicated by the disruption of the mitochondrial transmembrane potential, release of cytochrome c from mitochondria to cytosol, caspases activation, and cleavage of PARP. In addition, asiatic acid also induced the cleavage of caspase 8 and Bid and augmented Fas expression in Con A-activated T cells. However, following activation of T cells from MRL(lpr/lpr) mice with mutation of Fas demonstrated a similar susceptibility to asiatic acid-induced apoptosis compared with normal T cells, suggesting that Fas-mediated death-receptor apoptotic pathway does not mainly contribute to asiatic acid-induced cell death. Furthermore, asiatic acid significantly alleviated Con A-induced T cell-dependent fulminant hepatitis in mice, as assessed by reduced serum transaminases, pro-inflammatory cytokines, and pathologic parameters. Consistent with the in vitro results, asiatic acid also induced apoptosis of activated CD4(+) T cells in vivo. Taken together, our results demonstrated that the ability of asiatic acid to induce apoptosis of activated T cells and its potential use in the treatment of T-cell-mediated inflammatory diseases.

  20. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, Dragan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia); Markovic, Dejan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia)], E-mail: markovic57@info-net.co.yu

    2008-01-15

    Antioxidant action of four selected carotenoids (two carotenes, {beta}-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  1. UV-induced changes in antioxidant capacities of selected carotenoids toward lecithin in aqueous solution

    Science.gov (United States)

    Cvetkovic, Dragan; Markovic, Dejan

    2008-01-01

    Antioxidant action of four selected carotenoids (two carotenes, β-carotene and lycopene, and two xanthophylls, lutein and neoxanthin) on UV-induced lecithin lipid peroxidation in aqueous solution has been studied by thiobarbituric acid (TBA) test. TBA test is based on absorbance measurements of complex formed between malondialdehyde, secondary product of lipid peroxidation and thiobarbituric acid, at 532 nm. The antioxidant capacities of investigated carotenoids appeared to be strongly affected by UV-action. High energy input of the involved UV-photons plays major governing role, though a certain impact of the carotenoid structures cannot be neglected. The results suggest a minor remained contribution of selected carotenoids to prevention of lecithin peroxidation in the studied system as a result of UV-irradiation.

  2. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    Science.gov (United States)

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  3. Selection of Lactic Acid Bacteria as Probiotic Candidate for Chicken

    Directory of Open Access Journals (Sweden)

    F. Hamida

    2015-08-01

    Full Text Available Lactic acid bacteria (LAB regarded as safe microorganisms; they can naturally live in gastrointestinal tract, so appropriately used as a probiotic for chicken. This study aimed to select six isolates of LAB (E1223, E3, E4, E5, E7, and E8 to obtain the isolates potentially as probiotic candidate for chicken. The six isolates were derived from spontaneous fermented corn obtained from Laboratory of Animal Biotechnology and Biomedical, PPSHB, Bogor Agricultural University, Indonesia. LAB isolates were tested their susceptibility to antibiotics (bambermycin, erythromycin, chloramphenicol, and tetracycline then were examined in vitro for their tolerance to gastrointestinal pH (2, 3, 4, and 7.2 and 0.5% bile salt condition, antimicrobial activity against Salmonella enteritidis and Enterococcus casseliflavus, and ability to adhere to chicken ileal cells. The results showed the isolates E5, E7, and E8 were sensitive to tetracycline and chloramphenicol, they could survive at pH 2, 3, 4, and 7.2, could survive at 0.5% bile salts, produced antimicrobial activity, and able to adhere to ileal cells (9.40±0.00 Log CFU/cm2 of E8 and were significantly (P<0.05 higher than those of control (5.30±0.14 Log CFU/cm2. In conclusion, this study showed that isolate E8 had better potential compared to isolates E5 and E7 in most in vitro assays as a probiotic candidate for chicken. E5, E7, and E8 were closely related with Pediococcus pentosaceus based on 16S rRNA gene.

  4. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    Science.gov (United States)

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  5. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  6. Protective effects of ursodeoxycholic acid on chenodeoxycholic acid-induced liver injury in hamsters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effects of ursodeoxycholic acid (UDCA) on chenodeoxycholic acid (CDCA)-induced liver injury in hamsters, and to elucidate a correlation between liver injury and bile acid profiles in the liver.METHODS: Liver injury was induced in hamsters by administration of 0.5% (w/w) CDCA in their feed for 7 d.UDCA (50 mg/kg and 150 mg/kg) was administered for the last 3 d of the experiment.RESULTS: At the end of the experiment, serum alanine aminotransferase (ALT) increased more than 10 times and the presence of liver injury was confirmed histologically. Marked increase in bile acids was observed in the liver. The amount of total bile acids increased approximately three-fold and was accompanied by the increase in hydrophobic bile acids, CDCA and lithocholic acid (LCA). UDCA (50 mg/kg and 150 mg/kg) improved liver histology, with a significant decrease (679.3 ±77.5 U/L vs 333.6 ± 50.4 U/L and 254.3 ± 35.5 U/L, respectively, P < 0.01) in serum ALT level. UDCA decreased the concentrations of the hydrophobic bile acids, and as a result, a decrease in the total bile acid level in the liver was achieved.CONCLUSION: The results show that UDCA improves oral CDCA-induced liver damage in hamsters. The protective effects of UDCA appear to result from a decrease in the concentration of hydrophobic bile acids, CDCA and LCA, which accumulate and show the cytotoxicity in the liver.

  7. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors; Funcionalizacao superficial seletiva de poliestireno induzida por radiacao sincrotron ou ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Felipe; Kuhn, Sidiney; Weibel, Daniel E., E-mail: felipekessler@gmail.co [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil) Inst. de Quimica. Dept. de Fisico-Quimica

    2009-07-01

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O{sub 2} was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O{sub 2} or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O{sub 2} at specific transitions such us C 1s {yields}{sigma}{sup *}{sub C-C} excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  8. Selective sensing of saccharides using simple boronic acids and their aggregates.

    Science.gov (United States)

    Wu, Xin; Li, Zhao; Chen, Xuan-Xuan; Fossey, John S; James, Tony D; Jiang, Yun-Bao

    2013-10-21

    The reversible boronic acid-diol interaction empowers boronic acid receptors' saccharide binding capacities, rendering them a class of lectin mimetic, termed "boronlectins". Boronic acids follow lectin functions not just in being able to bind saccharides, but in multivalent saccharide binding that enhances both affinity and selectivity. For almost a decade, efforts have been made to achieve and improve selectivity for given saccharide targets, most notably glucose, by using properly positioned boronic acids, offering multivalent interactions. Incorporation of several boronic acid groups into a covalent framework or non-covalent assembly of boronic acid are two general methods used to create such smart sensors, of which the latter resembles lectin oligomerisation that affords multivalent saccharide-binding architectures. In this review, we discuss supramolecular selective sensing of saccharides by using simple boronic acids in their aggregate forms, after a brief survey of the general aspects of boronic acid-based saccharide sensing.

  9. Increased isoprostane levels in oleic acid-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  10. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  11. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    Science.gov (United States)

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-04-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a `right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas `left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a `mother' subunit nanoparticle spawns a slightly tilted, consequential `daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  12. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  13. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  14. Cloud condensation nucleus behaviour of selected dicarboxylic acids

    DEFF Research Database (Denmark)

    Poulsen, Mia Frosch Mogensbæk; Nielsen, Ole Faurskov; Bilde, Merete

    Due to relatively high water solubilities and low volatilities under ambient conditions, dicarboxylic acids have a high potential for forming aerosols, i.e. act as cloud condensation nuclei (CCN). Futhermore, dicarboxylic acids have been detected in atmospheric aerosols on many different sites (e......., and Riekkola, M.L , Determination of organic acids in aerosol particles from a coniferous forest by liquid chromatography-mass spectrometry, Journal of Separation Science, 28, 337-346, 2005....

  15. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    Science.gov (United States)

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The trans fatty acids content of selected foods in Malaysia.

    Science.gov (United States)

    Akmar, Z D; Norhaizan, M E; Azimah, R; Azrina, A; Chan, Y M

    2013-04-01

    There is a lack of information on the trans fatty acid (TFA) content in Malaysian foods. The objective of this study is to determine the TFA content of bakery products, snacks, dairy products, fast foods, cooking oils and semisolid fats, and breakfast cereals and Malaysian fast foods. This study also estimated the quantity of each isomer in the foods assayed. The trans fatty acid content of each food sample was assessed in duplicate by separating the fatty acid methyl esters (FAME) in a gas chromatography system equipped with HP-88 column (USA: split ratio 10: 1) for cis/trans separation. Five major TFA isomers, palmitoelaidic acid (16: 1t9), petroselaidic acid (18:1t6), elaidic acid (18:1t9), vaccenic acid (18: 1t11) and linoelaidic acid (18:2t9, 12), were measured using gas chromatography (GC) and the data were expressed in unit values of g/100 g lipid or g/100 g food. The total TFA contents in the studied foods were foods. This value falls within the standard and international recommendation level for TFA. The measured range of specific TFA isomers were as follows: palmitoelaidic acid (foods have low TFA contents (< 1 g/100 g lipid).

  17. Near-infrared laser-induced generation of three rare conformers of glycolic acid.

    Science.gov (United States)

    Halasa, Anna; Lapinski, Leszek; Reva, Igor; Rostkowska, Hanna; Fausto, Rui; Nowak, Maciej J

    2014-07-31

    Structural transformations were induced in conformers of glycolic acid by selective excitation with monochromatic tunable near-infrared laser light. For the compound isolated in Ar matrixes, near-IR excitation led to generation of two higher-energy conformers (GAC; AAT) differing from the most stable SSC form by 180° rotation around the C-C bond. A detailed investigation of this transformation revealed that one conformer (GAC) is produced directly from the near-IR-excited most stable conformer. The other higher-energy conformer (AAT) was effectively generated only upon excitation of the primary photoproduct (GAC) with another near-IR photon. Once these higher-energy conformers of glycolic acid were generated in an Ar matrix, they could be subsequently transformed into one another upon selective near-IR excitations. Interestingly, no repopulation of the initial most stable SSC conformer occurred upon near-IR excitation of the higher-energy forms of the compound isolated in solid Ar. A dramatically different picture of near-IR-induced conformational transformations was observed for glycolic acid isolated in N2 matrixes. In this case, upon near-IR excitation, the most stable SSC form converted solely into a new conformer (SST), where the acid OH group is rotated by 180°. This conformational transformation was found to be photoreversible. Moreover, SST conformer, photoproduced in the N2 matrix, spontaneously converted to the most stable SSC form of glycolic acid, when the matrix was kept at cryogenic temperature and in the dark.

  18. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers

    Science.gov (United States)

    Negoda, Alexander; Kim, Kwang-Jin; Crandall, Edward D.; Worden, Robert M.

    2014-01-01

    A diverse range of molecular interactions can occur between engineered nanomaterials (ENM) and biomembranes, some of which could lead to toxic outcomes following human exposure to ENM. In this study, we adapted electrophysiology methods to investigate the ability of 20 nm polystyrene nanoparticles (PNP) to induce pores in model bilayer lipid membranes (BLM) that mimic biomembranes. PNP charge was varied using PNP decorated with either positive (amidine) groups or negative (carboxyl) groups, and BLM charge was varied using dioleoyl phospholipids having cationic (ethylphosphocholine), zwitterionic (phosphocholine), or anionic (phosphatidic acid) headgroups. Both positive and negative PNP induced BLM pores for all lipid compositions studied, as evidenced by current spikes and integral conductance. Stable PNP-induced pores exhibited ion selectivity, with the highest selectivity for K+ (PK/PCl ~ 8.3) observed when both the PNP and lipids were negatively charged, and the highest selectivity for Cl− (PK/PCl ~ 0.2) observed when both the PNP and lipids were positively charged. This trend is consistent with the finding that selectivity for an ion in channel proteins is imparted by oppositely charged functional groups within the channel’s filter region. The PK/PCl value was unaffected by the voltage-ramp method, the pore conductance, or the side of the BLM to which the PNP were applied. These results demonstrate for the first time that PNP can induce ion-selective pores in BLM, and that the degree of ion selectivity is influenced synergistically by the charges of both the lipid headgroups and functional groups on the PNP. PMID:23747366

  19. Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase

    Science.gov (United States)

    Doan, Thuc N.; Fujihara, Akimasa

    2017-07-01

    In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two uc(d)-glucose units, such as uc(d)-maltose or uc(d)-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+(uc(l)-Trp)(uc(d)-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+(uc(d)-Trp)(uc(d)-maltose). For uc(d)-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links uc(d)-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.

  20. Hydrophobicity and Retention Coefficient of Selected Bile Acid Oxo Derivatives

    NARCIS (Netherlands)

    Posa, Mihalj; Pilipovic, Ana; Lalic, Mladena; Popovic, Jovan

    2010-01-01

    Retention coefficients (k) of cholic acid and its keto derivatives are determined by means of Reversed Phase High Pressure Liquid Chromatography at different temperatures (303K, 309K, and 313K). At each studied temperature, retention factor decreases if the hydroxyl group in the cholic acid molecule

  1. Hydrophobicity and Retention Coefficient of Selected Bile Acid Oxo Derivatives

    NARCIS (Netherlands)

    Posa, Mihalj; Pilipovic, Ana; Lalic, Mladena; Popovic, Jovan

    2010-01-01

    Retention coefficients (k) of cholic acid and its keto derivatives are determined by means of Reversed Phase High Pressure Liquid Chromatography at different temperatures (303K, 309K, and 313K). At each studied temperature, retention factor decreases if the hydroxyl group in the cholic acid molecule

  2. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    Science.gov (United States)

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  3. Acidity of selected industrial wood species in Serbia

    Directory of Open Access Journals (Sweden)

    Popović Mlađan

    2016-01-01

    Full Text Available The acidity of wood has an important role in many areas of wood applications. Hence, this paper presents a study on the acidity of beech, fir and poplar, as the representatives of the most industrially utilized wood species in Serbia. The contents of both the soluble and insoluble acids were determined through the extraction methods with cold distilled water and sodium acetate solution, respectively, followed by the titration with sodium hydroxide solution. The acidity strongly differs among the three wood species used in this research. The amount of insoluble acids was the highest in fir, almost twice as much than in poplar, and about 68 % higher than in fir wood species. Such differences also showed a strong correlation with the gel times of UF adhesive mixes with hot water extracts. [Projekat Ministarstva nauke Republike Srbije, br. TP 31041: Establishment of Wood Plantations Intended for Afforestation of Serbia

  4. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  5. Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta.

    Science.gov (United States)

    Criddle, D N; de Moura, R S; Greenwood, I A; Large, W A

    1996-06-01

    1. The effects of niflumic acid, an inhibitor of calcium-activated chloride channels, were compared with the actions of the calcium channel antagonist nifedipine on noradrenaline-evoked contractions in isolated preparations of the rat aorta. 2. The cumulative concentration-effect curve to noradrenaline (NA) was depressed by both nifedipine and niflumic acid in a reversible and concentration-dependent manner. The degree of inhibition of the maximal contractile response to NA (1 microM) produced by 10 microM niflumic acid (38%) was similar to the effect of 1 microM nifedipine (39%). 3. Contractions to brief applications (30 s) of 1 microM NA were inhibited by 55% and 62% respectively by 10 microM niflumic acid and 1 microM nifedipine. 4. In the presence of 0.1 microM nifedipine, niflumic acid (10 microM) produced no further inhibition of the NA-evoked contractions. Thus, the actions of niflumic acid and nifedipine were not additive. 5. In Ca-free conditions the transient contraction induced by 1 microM NA was not inhibited by niflumic acid (10 microM) and therefore this agent does not reduce the amount of calcium released from the intracellular store or reduce the sensitivity of the contractile apparatus to calcium. 6. Niflumic acid 10 microM did not inhibit the contractions produced by KCl (up to 120 mM) which were totally blocked by nifedipine. Contractions induced by 25 mM KCl were completely inhibited by 1 microM levcromakalim but were unaffected by niflumic acid. 7. It was concluded that niflumic acid produces selective inhibition of a component of NA-evoked contraction which is probably mediated by voltage-gated calcium channels. These data are consistent with a model in which NA stimulates a calcium-activated chloride conductance which leads to the opening of voltage-gated calcium channels to produce contraction.

  6. Induced Polarization Surveying for Acid Rock Screening in Highway Design

    Science.gov (United States)

    Butler, K. E.; Al, T.; Bishop, T.

    2004-05-01

    Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary

  7. N-Terminal peptidic boronic acids selectively inhibit human ClpXP.

    Science.gov (United States)

    Knott, Kenneth; Fishovitz, Jennifer; Thorpe, Steven B; Lee, Irene; Santos, Webster L

    2010-08-07

    The synthesis and development of N-terminal peptidic boronic acids as protease inhibitors is reported. N-Terminal peptidic boronic acids interrogate the S' sites of the target protein for selectivity and provide a new strategy that complements the currently known peptidic alpha-amino boronic acids (C-terminal boronic acids). After screening a series of N-terminal peptidic boronic acids, the first selective inhibitor of human ClpXP, an ATP-dependent serine protease present in the mitochondrial matrix, was discovered. This should facilitate the understanding of the physiological function of this protease.

  8. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    Science.gov (United States)

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  10. DIETARY ADENINE ALLEVIATES FATTY LIVER INDUCED BY OROTIC ACID

    Directory of Open Access Journals (Sweden)

    Yohanes Buang

    2010-12-01

    Full Text Available The effects of dietary adenine in fatty liver induced by orotic acid (OA were studied. Rats were paired-fed 1% OA-supplemented diets with/or without 0.25% adenine or a diet without OA for 10 days. Serum lipid profiles were measured using enzyme assay kits. Lipids of liver tissues were extracted and liver lipid contents were determined. A peach of liver was prepared to determine the activities of fatty acid synthase (FAS and fatty acid β-oxidation. The results showed that liver TG content of OA-fed rats increased markedly in comparison to basal group.  However, the addition of adenine to the diet reversed promotion of liver TG content to basal level. It was also found that FAS activities decreased. Furthermore, these diets reversed the inhibition of fatty acid β-oxidation to basal level and induced the serum lipid levels secretion. Therefore, the alleviation of fatty liver in OA-treated rats given dietary adenine is associated with the inhibition of FAS activities accompanied with the promotion of mitochondrial fatty acid β-oxidation and the promotion of serum lipid secretion from the hepatic tissue into the bloodstream.

  11. Ancillary effects of selected acid deposition control policies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  12. Deoxycholic acid transformations catalyzed by selected filamentous fungi.

    Science.gov (United States)

    Kollerov, V V; Lobastova, T G; Monti, D; Deshcherevskaya, N O; Ferrandi, E E; Fronza, G; Riva, S; Donova, M V

    2016-03-01

    More than 100 filamentous fungi strains, mostly ascomycetes and zygomycetes from different phyla, were screened for the ability to convert deoxycholic acid (DCA) to valuable bile acid derivatives. Along with 11 molds which fully degraded DCA, several strains were revealed capable of producing cholic acid, ursocholic acid, 12-keto-lithocholic acid (12-keto-LCA), 3-keto-DCA, 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA as major products from DCA. The last metabolite was found to be a new compound. The ability to catalyze the introduction of a hydroxyl group at the 7(α/β)-positions of the DCA molecule was shown for 32 strains with the highest 7β-hydroxylase activity level for Fusarium merismoides VKM F-2310. Curvularia lunata VKM F-644 exhibited 12α-hydroxysteroid dehydrogenase activity and formed 12-keto-LCA from DCA. Acremonium rutilum VKM F-2853 and Neurospora crassa VKM F-875 produced 15β-hydroxy-DCA and 15β-hydroxy-12-oxo-LCA, respectively, as major products from DCA, as confirmed by MS and NMR analyses. For most of the positive strains, the described DCA-transforming activity was unreported to date. The presented results expand the knowledge on bile acid metabolism by filamentous fungi, and might be suitable for preparative-scale exploitation aimed at the production of marketed bile acids. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Xin; Wang, Chunyan; Zhang, Longjiang; Li, Yanjun; Wang, Shouju; Wang, Jiandong; Yuan, Caiyun; Niu, Jia; Wang, Chengsheng; Lu, Guangming

    2015-02-01

    Multidrug resistance (MDR) is a major cause for incurable breast cancer. Salvianolic acid A (SAA), the hydrophilic polyphenolic derivative of Salvia miltiorrhiza Bunge (Danshen/Red Sage), was examined for cytotoxicities to MDR MCF-7 human breast cancer cells and their parental counterparts. We have shown that SAA inhibited proliferation, caused cell cycle arrest at the S phase, and induced apoptosis dose dependently to the two kinds of cancer cells. However, the resistant cells were significantly susceptible to the inhibition of SAA compared with the parental cells. SAA increased the level of reactive oxygen species (ROS) by 6.2-fold in the resistant cells, whereas the level of SAA-induced ROS changed only by 1.6-fold in their parental counterparts. Thus, the data showed that the selective cytotoxicity resulted from the hypersensitivity of the resistant cells to the strongly elevated ROS by SAA. In addition, SAA-triggered apoptosis was associated with increased caspase-3 activity, disrupted mitochondrial membrane potential, downregulated Bcl-2 expression, and upregulated Bax expression in the resistant cells. Moreover, SAA downregulated the level of P-glycoprotein, which was overexpressed in the resistant cells. This indicated that SAA modulated MDR. Furthermore, SAA showed higher antitumor activity than did doxorubicin in xenografts established from the resistant cells. The present work raised a possibility that SAA might be considered a potential choice to overcome MDR for the selective susceptibility of the resistant breast cancer cells to SAA treatment.

  14. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    Science.gov (United States)

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  15. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  16. Modeling of Clostridium t yrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Jianjun Du; Amy McGraw; Jamie A. Hestekin

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum . A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function...

  17. Highly Selective Artificial K(+) Channels: An Example of Selectivity-Induced Transmembrane Potential.

    Science.gov (United States)

    Gilles, Arnaud; Barboiu, Mihail

    2016-01-13

    Natural KcsA K(+) channels conduct at high rates with an extraordinary selectivity for K(+) cations, excluding the Na(+) or other cations. Biomimetic artificial channels have been designed in order to mimick the ionic activity of KcSA channels, but simple artificial systems presenting high K(+)/Na(+) selectivity are rare. Here we report an artificial ion channel of H-bonded hexyl-benzoureido-15-crown-5-ether, where K(+) cations are highly preferred to Na(+) cations. The K(+)-channel conductance is interpreted as arising in the formation of oligomeric highly cooperative channels, resulting in the cation-induced membrane polarization and enhanced transport rates without or under pH-active gradient. These channels are selectively responsive to the presence of K(+) cations, even in the presence of a large excess of Na(+). From the conceptual point of view, these channels express a synergistic adaptive behavior: the addition of the K(+) cation drives the selection and the construction of constitutional polarized ion channels toward the selective conduction of the K(+) cation that promotes their generation in the first place.

  18. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  19. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone.

    Science.gov (United States)

    Orlando, Benjamin J; Malkowski, Michael G

    2016-07-15

    Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid (AA) and endocannabinoid substrates, placing the enzyme at a unique junction between the eicosanoid and endocannabinoid signaling pathways. COX-2 is a sequence homodimer, but the enzyme displays half-of-site reactivity, such that only one monomer of the dimer is active at a given time. Certain rapid reversible, competitive nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit COX-2 in a substrate-selective manner, with the binding of inhibitor to a single monomer sufficient to inhibit the oxygenation of endocannabinoids but not arachidonic acid. The underlying mechanism responsible for substrate-selective inhibition has remained elusive. We utilized structural and biophysical methods to evaluate flufenamic acid, meclofenamic acid, mefenamic acid, and tolfenamic acid for their ability to act as substrate-selective inhibitors. Crystal structures of each drug in complex with human COX-2 revealed that the inhibitor binds within the cyclooxygenase channel in an inverted orientation, with the carboxylate group interacting with Tyr-385 and Ser-530 at the top of the channel. Tryptophan fluorescence quenching, continuous-wave electron spin resonance, and UV-visible spectroscopy demonstrate that flufenamic acid, mefenamic acid, and tolfenamic acid are substrate-selective inhibitors that bind rapidly to COX-2, quench tyrosyl radicals, and reduce higher oxidation states of the heme moiety. Substrate-selective inhibition was attenuated by the addition of the lipid peroxide 15-hydroperoxyeicosatertaenoic acid. Collectively, these studies implicate peroxide tone as an important mechanistic component of substrate-selective inhibition by flufenamic acid, mefenamic acid, and tolfenamic acid.

  20. Synergistic teratogenic effects induced by retinoids in mice by coadministration of a RARalpha- or RARgamma-selective agonist with a RXR-selective agonist.

    Science.gov (United States)

    Elmazar, M M; Rühl, R; Nau, H

    2001-01-01

    To study the interaction of retinoid-induced limb defects and cleft palate on day 11 of gestation, a RXR-selective agonist (AGN191701, an arylpropenyl-thiophene-carboxylic acid derivative, 20 mg/kg orally) was coadministered with a RARalpha-agonist (Am580, an arylcarboxamidobenzoic acid derivative, 5 mg/kg orally) to NMRI mice. AGN191701 was neither fetotoxic nor teratogenic at the dose used but potentiated Am580-induced limb defects and cleft palate and prevented Am580-induced fetal weight retardation. These results suggest that Am580-induced limb defects and probably cleft palate on day 11 of gestation may be mediated via RARalpha-RXR heterodimerization, particularly in the absence of toxicokinetic interactions. AGN191701 was also coadministered with a RARgamma-agonist (CD437, an adamantyl-hydroxyphenyl naphthoic acid derivative, 15 mg/kg orally) on days 8 and 11 of gestation to investigate which CD437-induced defects are mediated via RARgamma-RXR heterodimerization. On day 8 of gestation, AGN191701 potentiated CD437-induced embryolethality, exencephaly, spina bifida aperta, cleft palate, and tail defects, as well as visceral and skeletal defects, but not micrognathia. On day 11 of gestation, the incidence of CD437-induced cleft palate and limb defects was also potentiated when coadministered with the RXR agonist. These results suggest that synergistic teratogenic effects can be induced by coadministration of two receptor-selective retinoids, indicating the importance of RARalpha-RXR and RARgamma-RXR heterodimers in producing structural defects during organogenesis.

  1. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  2. Modeling of the selective pertraction of carboxylic acids obtained by citric fermentation

    Directory of Open Access Journals (Sweden)

    Cascaval Dan

    2004-01-01

    Full Text Available Facilitated pertraction was applied for the selective separation of citric, maleic and succinic acids from a mixture obtained by citric fermentation. The pertraction equipment included a U-shaped cell containing 1,2-dichloro-ethane as the liquid membrane and Amberlite LA-2 as the carrier. The experimental data indicated that maleic and succinic acids can be initially selectively separated from citric acid, followed by the selectively separation of maleic acid from succinic acid. Using statistical analysis and a second order factorial experiment, two mathematical correlations describing the influence of the main process variables on pertraction selectivity were established. For both extraction systems, the considered variables controlled the extraction process to an extent of 92.9-99.9%, the carrier concentration inside the liquid membrane exhibiting the most important influence.

  3. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  4. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Science.gov (United States)

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  5. DNA damage and mutations induced by arachidonic acid peroxidation.

    Science.gov (United States)

    Lim, Punnajit; Sadre-Bazzaz, Kianoush; Shurter, Jesse; Sarasin, Alain; Termini, John

    2003-12-30

    Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.

  6. Neuroprotective effects of MK-801 on L-2-chloropropionic acid-induced neurotoxicity.

    Science.gov (United States)

    Williams, R E; Lock, E A; Bachelard, H S

    2001-02-01

    L-2-Chloropropionic acid is selectively toxic to the cerebellum in rats; the granule cell necrosis observed within 48 h can be prevented by prior administration of MK-801. Short-term treatment (2 h) with L-2-chloropropionic acid has also been shown to activate the mitochondrial pyruvate dehydrogenase complex in fasted adult rats. This study aimed to investigate the effect of prior exposure to MK-801 on the biochemical and neurotoxicological effects of L-2-chloropropionic acid. Extracts were prepared from the forebrain and cerebellum of animals that had been treated with L-2-chloropropionic acid, with and without prior treatment with MK-801, and were analysed using magnetic resonance spectroscopy and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]-glucose using GC/MS. L-2-Chloropropionic acid caused increased glucose metabolism in both brain regions 6 h after administration, confirming activation of the pyruvate dehydrogenase complex, which was not prevented by MK-801. After 48 h an increase in lactate and a decrease in N-acetylaspartate was observed only in the cerebellum, whereas phosphocreatine and ATP decreased in both tissues. MK-801 prevented the changes in lactate and N:-acetylaspartate, but not those on the energy state. These studies suggest that L-2-chloropropionic acid-induced neurotoxicity is only partly mediated by the NMDA subtype of glutamate receptor.

  7. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    Science.gov (United States)

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  8. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  9. Selective separation of indium by iminodiacetic acid chelating resin

    Directory of Open Access Journals (Sweden)

    M. C. B. Fortes

    2007-06-01

    Full Text Available Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite®IRC748 (Rohm and Haas Co.-USA. High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite®IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5mol/dm³ sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite®IRC748.

  10. short communication facile, mild and selective silica sulfuric acid ...

    African Journals Online (AJOL)

    Preferred Customer

    as a mild, efficient and reusable solid acid catalyst was used to afford the ... and overcome typical problems that occur during oxidation and accept wide rang of ... synthetic and natural organic and inorganic compounds in aqueous solution and it .... (CCl4), dichloromethane (CH2Cl2), chloroform (CHCl3), diethyl ether and.

  11. Promethazine protects against 3-nitropropionic acid-induced neurotoxicity.

    Science.gov (United States)

    Cleren, Carine; Calingasan, Noel Y; Starkov, Anatoly; Jacquard, Carine; Chen, Junya; Brouillet, Emmanuel; Beal, M Flint

    2010-01-01

    Promethazine (PMZ), an FDA-approved antihistaminergic drug, was identified as a potentially neuroprotective compound in a NINDS screening program. It was shown to protect against ischemia in mice, to delay disease onset in a mouse model of amyotrophic lateral sclerosis and to inhibit Ca(2+)-induced mitochondrial permeability transition in rat liver mitochondria. We investigated whether PMZ could protect against the neurotoxic effects induced by 3-nitropropionic acid (3-NP), an inhibitor of the succinate dehydrogenase, used to model Huntington's disease (HD) in rats. Lewis rats receiving chronic subcutaneous infusion of 3-NP were treated with PMZ. The findings indicate that chronic PMZ treatment significantly reduced 3-NP-induced striatal lesion volume, loss of GABAergic neurons and number of apoptotic cells in the striatum. PMZ showed a strong neuroprotective effect against 3-NP toxicity in vivo. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    Science.gov (United States)

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  13. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants.

    Science.gov (United States)

    Kovácik, Jozef; Klejdus, Borivoj; Hedbavny, Josef; Backor, Martin

    2009-07-01

    Influence of 100 mM NaCl and 50 microM salicylic acid (SA) and their combination on the metabolism of chamomile (Matricaria chamomilla) during 7 days was studied. NaCl reduced growth and selected physiological parameters and SA in combined treatment (NaCl + SA) reversed majority of these symptoms. Application of SA reduced NaCl-induced increase of Na+ in the rosettes, but not in the roots. Accumulation of total amino acids was stimulated in NaCl-treated roots, especially due to exceptional increase of proline (4.4-fold). Among phenolic acids, accumulation of protocatechuic acid was the most enhanced in NaCl-exposed leaf rosettes (ca. 3-fold) while chlorogenic and caffeic acids in the roots (2.4- and 2.8-fold, respectively). Total soluble phenols increased after NaCl and SA treatments, but root lignin content was not affected. Activity of phenylalanine ammonia-lyase and shikimate dehydrogenase increased in response to NaCl, but cinnamyl alcohol dehydrogenase was not affected and polyphenol oxidase decreased. Stress parameters were elevated by NaCl treatment (superoxide radical and malondialdehyde content, activities of catalase, ascorbate- and guaiacol-peroxidase) and substantially prevented by SA, while accumulation of hydrogen peroxide decreased. Overall, SA showed strong beneficial properties against NaCl-induced negative symptoms. Protective effect of SA was the most visible at the level of guaiacol-peroxidase and through amelioration of stress parameters and mineral nutrient contents.

  14. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  15. Acid Exposure Induces Multiplication of Salmonella enterica Serovar Typhi

    Science.gov (United States)

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K.; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali

    2014-01-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens. PMID:25320227

  16. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Wees, A.C.M. van; Hoffland, E.; Pelt, J.A. van; Loon, L.C. van

    1996-01-01

    Systemic acquired resistance is a pathogen-inducible defense mechanism in plants. The resistant state is dependent on endogenous accumulation of salicylic acid (SA) and is characterized by the activation of genes encoding pathogenesis-related (PR) proteins. Recently, selected nonpathogenic, root-col

  17. An amino acid substitution-selection model adjusts residue fitness to improve phylogenetic estimation.

    Science.gov (United States)

    Wang, Huai-Chun; Susko, Edward; Roger, Andrew J

    2014-04-01

    Standard protein phylogenetic models use fixed rate matrices of amino acid interchange derived from analyses of large databases. Differences between the stationary amino acid frequencies of these rate matrices from those of a data set of interest are typically adjusted for by matrix multiplication that converts the empirical rate matrix to an exchangeability matrix which is then postmultiplied by the amino acid frequencies in the alignment. The result is a time-reversible rate matrix with stationary amino acid frequencies equal to the data set frequencies. On the basis of population genetics principles, we develop an amino acid substitution-selection model that parameterizes the fitness of an amino acid as the logarithm of the ratio of the frequency of the amino acid to the frequency of the same amino acid under no selection. The model gives rise to a different sequence of matrix multiplications to convert an empirical rate matrix to one that has stationary amino acid frequencies equal to the data set frequencies. We incorporated the substitution-selection model with an improved amino acid class frequency mixture (cF) model to partially take into account site-specific amino acid frequencies in the phylogenetic models. We show that 1) the selection models fit data significantly better than corresponding models without selection for most of the 21 test data sets; 2) both cF and cF selection models favored the phylogenetic trees that were inferred under current sophisticated models and methods for three difficult phylogenetic problems (the positions of microsporidia and breviates in eukaryote phylogeny and the position of the root of the angiosperm tree); and 3) for data simulated under site-specific residue frequencies, the cF selection models estimated trees closer to the generating trees than a standard Г model or cF without selection. We also explored several ways of estimating amino acid frequencies under neutral evolution that are required for these selection

  18. Valproic acid induces antimicrobial compound production in Doratomyces microspores.

    Directory of Open Access Journals (Sweden)

    Christoph eZutz

    2016-04-01

    Full Text Available One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called cryptic, often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these cryptic metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D. microsporus treated with valproic acid (VPA displayed antimicrobial activity against Staphylococcus (S. aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine (cPM, p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline (cFP, indole-3-carboxylic acid, phenylacetic acid (PAA and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of cryptic antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against

  19. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    Science.gov (United States)

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  20. Chiral morphology of calcite through selective binding of amino acids

    Science.gov (United States)

    Orme, Christine

    2002-03-01

    Many living organisms contain biominerals and composites with finely tuned properties, reflecting a remarkable level of control over the nucleation, growth and shape of the constituent crystals. Peptides and proteins play an important role in achieving this control. Using in situ AFM we find that site-specific binding of amino acid residues to surface steps changes the step-edge free energies, giving rise to direction-specific binding energies unique to individual amino acid enantiomers and leading to chiral modifications that propagate from atomic length scales to macroscopic length scales. Molecular modeling studies support an energetic basis for the differences in binding. Our results emphasize that the mechanism under-lying crystal modification through organic molecules is best understood by considering both stereochemical recognition as well as the effects of binding on the interfacial energies of the growing crystal.

  1. DC diaphragm discharge in water solutions of selected organic acids

    Science.gov (United States)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  2. Fabrication of chemical templates via selective laser-induced desorption of hexadecanethiol self-assembled monolayers

    Science.gov (United States)

    Schröter, Anja; Mathieu, Mareike; Franzka, Steffen; Feydt, Jürgen; Irsen, Stephan; Hartmann, Nils

    2013-08-01

    A nonlinear photothermal laser patterning technique for rapid fabrication of chemical templates is demonstrated. Hexadecanethiol monolayers on Au-coated Si substrates are processed at λ = 532 nm, a 1/e2 spot diameter of d=2.8 μm and ambient conditions. Local laser irradiation at high laser powers and short irradiation times in the micro-/millisecond range induces desorption of thiol molecules. The laser-depleted areas are backfilled with mercaptohexadecanoic acid in order to build up chemical templates. Atomic force microscopy, scanning electron microscopy and scanning Auger electron spectroscopy are used for characterization of these templates. In agreement with a selective laser process, the results indicate the formation of flat chemical patterns with well-defined boundaries. Complementary condensation experiments demonstrate the functionality of the patterns as hydrophilic/hydrophobic templates. In particular, upon decreasing the temperature below the dew point, selective formation of water droplets on the backfilled areas is observed.

  3. Comparative effects of niflumic acid and nifedipine on 5-hydroxytryptamine- and acetylcholine-induced contraction of the rat trachea.

    Science.gov (United States)

    Teixeira, M C; Coelho, R R; Leal-Cardoso, J H; Criddle, D N

    2000-04-07

    The effects of niflumic acid, an inhibitor of Ca(2+)-activated Cl(-) (Cl((Ca))) channels, were compared with those of the voltage-dependent Ca(2+) channel (VDCC) blocker nifedipine on 5-hydroxytryptamine (5-HT)- and acetylcholine-induced contractions of the rat isolated trachea. Niflumic acid (3-100 microM) induced a concentration-dependent inhibition of 5-HT (10 microM)-induced contractions, with a reduction to 37.0+/-9.5% of the control at the highest concentration. One micromolar nifedipine, which completely blocked 60 mM KCl-induced contractions, reduced the response to 5-HT similarly to 39.2+/-11.5% of the control. The inhibition of the 5-HT response was not significantly different from that produced by the combined presence of nifedipine (1 microM) and niflumic acid (100 microM), suggesting that their effects were not additive. In contrast, neither niflumic acid (3-100 microM) nor nifedipine (1 microM) inhibited acetylcholine-induced contractions. The contraction to 5-HT (10 microM) in Cl(-)-free solution was decreased by more than approximately 85% of the control, whilst that of acetylcholine was reduced only by approximately 36%. Our data show that niflumic acid exerts selective inhibitory effects on 5-HT-induced contraction, and suggest that activation of Cl((Ca)) channels may be a mechanism whereby 5-HT (but not acetylcholine) induces Ca(2+) entry via VDCCs to elicit contraction.

  4. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Taarning, Esben

    2013-01-01

    Solid acid catalysts were studied at temperatures near 523K for the production of benzene, toluene, and p-xylene by the reaction of ethylene with furan, 2-methylfuran, and 2,5-dimethylfuran, respectively, through the combination of cycloaddition and dehydrative aromatization reactions. Catalysts ...... that the high reactivity of WOx-ZrO2 is mainly associated with the presence of subnanometer WOx clusters mixed with zirconium, which reach a maximum surface concentration at intermediate tungsten coverage....

  5. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats.

    Science.gov (United States)

    Rizk, Hanan A; Masoud, Marwa A; Maher, Omar W

    2017-08-16

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use cause neurobiological side effects. The aim of the present study was to investigate the prophylactic effect exerted by daily administration of ellagic acid (EA) and rosmarinic acid (RA) on DOX-induced neurotoxicity in rats. Our data showed that DOX-induced significant elevation of brain malondialdehyde, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), caspase-3, and cholinesterase associated with significant reduction in reduced glutathione, monoamines namely serotonin, dopamine, as well as norepinephrine. Concomitant administration of EA (10 mg/kg/day, p.o. for 14 days) and/or RA (75 mg/kg/day, p.o. for 14 days) with DOX significantly mitigated the neural changes induced by DOX. Meanwhile, treatment ameliorated pro-inflammatory cytokines as TNF-α, iNOS, and attenuated oxidative stress biomarkers as well as brain monoamines. In conclusion, EA and RA can effectively protect against DOX-induced neurotoxicity, and the mechanisms underlying the neuroprotective effect are potentially associated with its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2017 Wiley Periodicals, Inc.

  6. Polyfunctional Lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives.

    Science.gov (United States)

    Swamy P, Chinna Ayya; Thilagar, Pakkirisamy

    2015-06-08

    Synthesis and crystal structures of three porphyrin-based polyfunctional Lewis acids 1-3 are reported. Intermolecular HgCl⋅⋅⋅HgCl (linear and μ-type) interactions in the solid state of the peripherally ArHgCl-decorated compound 3 lead to a fascinating 3D supramolecular architecture. Compound 3 shows a selective fluorescence quenching response to picric acid and discriminates other nitroaromatic-based explosives. For the first time, an electron-deficient polyfunctional Lewis acid is shown to be useful for the selective detection and discrimination of nitroaromatic explosives. The Stern-Volmer quenching constant and detection limits of compound 3 for picric acid are the best among the reported small-molecular receptors for nitroaromatic explosives. The electronic structure, Lewis acidity, and selective sensing characteristics of 3 are well corroborated by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Feature selection from short amino acid sequences in phosphorylation prediction problem

    Science.gov (United States)

    Wecławski, Jakub; Jankowski, Stanisław; Szymański, Zbigniew

    The paper describes solution of feature selection from amino acid sequences in phosphorylation prediction problem. We show that even for short sequences the variable selection leads to better classification performance. Moreover, the final simplicity of models allows for better data understanding and can be used by an expert for further analysis. The feature selection process is divided into two parts: i) the classification tree is used for finding the most relevant positions in amino acid sequences, ii) then the contrast pattern kernel is applied for pattern selection. This work summarizes the research made on classification of short amino acid sequences. The results of the research allowed us to propose a general scheme of amino acid sequence analysis.

  8. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... were studied and compared with the catalytic activity for the selective catalytic reduction (SCR) of NO with ammonia. The SCR activities and acidity values of heteropoly acid promoted catalysts were found to be much higher than unpromoted catalysts. The influence of potassium poisons on the SCR...

  9. Determination of selected fatty acids in dried sweat spot using gas chromatography with flame ionization detection.

    Science.gov (United States)

    Kanďár, Roman; Drábková, Petra; Andrlová, Lenka; Kostelník, Adam; Čegan, Alexander

    2016-11-01

    A method is described for the determination of fatty acids in dried sweat spot and plasma samples using gas chromatography with flame ionization detection. Plasma and dried sweat spot samples were obtained from a group of blood donors. The sweat was collected from each volunteer during exercise. Sweat was spotted onto collection paper containing butylated hydroxytoluene. Fatty acids were derivatized with acetyl chloride in methanol to form methyl esters of fatty acids. The fatty acids in dried sweat spot samples treated with butylated hydroxytoluene and stored at -20°C were stable for 3 months. Our results indicate that sweat contains, among fatty acids with short chain, also fatty acids with long chain and unsaturated fatty acids. Linear relationships between percentage content of selected fatty acids in dried sweat spot and plasma were observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  11. Excitatory amino acid changes in the brains of rhesus monkeys following selective cerebral deep hypothermia and blood flow occlusion

    Institute of Scientific and Technical Information of China (English)

    Jun Pu; Xiaoqun Niu; Jizong Zhao

    2013-01-01

    Selective cerebral deep hypothermia and blood flow occlusion can enhance brain tolerance to ischemia and hypoxia and reduce cardiopulmonary complications in monkeys. Excitotoxicity induced by the release of a large amount of excitatory amino acids after cerebral ischemia is the major mechanism underlying ischemic brain injury and nerve cell death. In the present study, we used selective cerebral deep hypothermia and blood flow occlusion to block the bilateral common carotid arteries and/or bilateral vertebral arteries in rhesus monkey, followed by reperfusion using Ringer's solution at 4°C. Microdialysis and transmission electron microscope results showed that selective cerebral deep hypothermia and blood flow occlusion inhibited the release of glutamic acid into the extracellular fluid in the brain frontal lobe and relieved pathological injury in terms of the ultrastructure of brain tissues after severe cerebral ischemia. These findings indicate that cerebral deep hypothermia and blood flow occlusion can inhibit cytotoxic effects and attenuate ischemic/ hypoxic brain injury through decreasing the release of excitatory amino acids, such as glutamic acid.

  12. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    Directory of Open Access Journals (Sweden)

    Tushar Ranjan Moharana

    Full Text Available Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1, which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL, as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  13. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    Science.gov (United States)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  14. Regulation of Water Deficit-Induced Abscisic Acid Accumulation by Apoplastic Ascorbic Acid in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    Jian-Fang HU; Gui-Fen LI; Zhi-Hui GAO; Lin CHEN; Hui-Bo REN; Wen-Suo JIA

    2005-01-01

    Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 μmol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 μmol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e.approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that

  15. Degranulation of rat cerebellum induces selective variations in gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Eliyahu, D.; Soreq, H.

    1982-02-01

    Selective variations in the composition of poly(A)-containing mRNA were found to be induced in the rat cerebellum by X-irradiation. mRNA populations prepared from normal and X-irradiated rat cerebella at different stages of their development displayed equal efficiencies when translated in vitro in reticulocyte lysates. Specific differences were revealed, however, when the labeled translation products of both mRNA preparations were subjected to two-dimensional gel electrophoresis followed by fluorography of the dried gels. Of more than 100 polypeptide products, several showed marked intensity differences, indicating changes in the abundance of their directing mRNA species. These differences appear both in developing and in mature cerebellar mRNA, and the extent of modification in mRNA is much higher than the consequent changes in the composition of proteins in the irradiated cerebellum. The degranulation-induced modifications in levels of specific cerebellar mRNA species can be used to identify proteins whose biosynthesis depends on the presence of interneurons.

  16. Hydrodynamic flows can induce selective advantages among species

    Science.gov (United States)

    Tesser, Francesca; Benzi, Roberto; Clercx, Herman J. H.; Nelson, David R.; Perlekar, Prasad; Toschi, Federico

    2013-11-01

    Evolutionary forces such as genetic drift, selection, mutation and spatial diffusion act to change the genetic composition of populations. Such problems can be modeled as a system of binary reactions between competing individuals, involving births and deaths, and progressing at specific rates. An inhomogeneous or time-dependent spatial structure has the effect of modulating the interaction between individuals. To explore this problem further, we consider the dynamics and evolution of genetically diverse populations in a fluid environment where a flow field transports individuals in combination with birth and death processes, thus driving genetic inhomogeneities. An individual-based model in continuous space with spatial diffusion implements stochastic demographic rules for a fluctuating population size and introduces the advection of simple realistic flow fields. The system is analyzed in terms of fixation probabilities and fixation times as well as the behavior of spatial correlations. Provided organismic reproduction times are faster than the characteristic time scales of the flow, fluid ecosystems can by themselves induce spatially non-homogeneous selective advantages.

  17. A carbon dot-based "off-on" fluorescent probe for highly selective and sensitive detection of phytic acid.

    Science.gov (United States)

    Gao, Zhao; Wang, Libing; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2015-08-15

    We herein report a facile, one-step pyrolysis synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and lysine as the surface passivation reagent. The as-prepared CDs show narrow size distribution, excellent blue fluorescence and good photo-stability and water dispersivity. The fluorescence of the CDs was found to be effectively quenched by ferric (Fe(III)) ions with high selectivity via a photo-induced electron transfer (PET) process. Upon addition of phytic acid (PA) to the CDs/Fe(III) complex dispersion, the fluorescence of the CDs was significantly recovered, arising from the release of Fe(III) ions from the CDs/Fe(III) complex because PA has a higher affinity for Fe(III) ions compared to CDs. Furthermore, we developed an "off-on" fluorescence assay method for the detection of phytic acid using CDs/Fe(III) as a fluorescent probe. This probe enables the selective detection of PA with a linear range of 0.68-18.69 μM and a limit of detection (signal-to-noise ratio is 3) of 0.36 μM. The assay method demonstrates high selectivity, repeatability, stability and recovery ratio in the detection of the standard and real PA samples. We believe that the facile operation, low-cost, high sensitivity and selectivity render this CD-based "off-on" fluorescent probe an ideal sensing platform for the detection of PA.

  18. Selective Targeting to Glioma with Nucleic Acid Aptamers.

    Directory of Open Access Journals (Sweden)

    Shraddha Aptekar

    Full Text Available Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.

  19. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative

  20. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  1. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  2. Radiation induced crystallinity damage in poly(L-lactic acid)

    CERN Document Server

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  3. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  4. Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase.

    Science.gov (United States)

    But, Andrada; Le Nôtre, Jérôme; Scott, Elinor L; Wever, Ron; Sanders, Johan P M

    2012-07-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative decarboxylation can be applied to mixtures of amino acids obtained from plant waste streams, leading to easily separable nitriles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis.

    Science.gov (United States)

    Xu, Jiajie; Guzman, Juan J L; Andersen, Stephen J; Rabaey, Korneel; Angenent, Largus T

    2015-04-21

    We had extracted n-caproate from bioreactor broth. Here, we introduced in-line membrane electrolysis that utilized a pH gradient between two chambers to transfer the product into undissociated n-caproic acid without chemical addition. Due to the low maximum solubility of this acid, selective phase separation occurred, allowing simple product separation into an oily liquid containing ∼90% n-caproic and n-caprylic acid.

  6. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  7. Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model.

    Science.gov (United States)

    Daniel, Catherine; Poiret, Sabine; Goudercourt, Denise; Dennin, Veronique; Leyer, Gregory; Pot, Bruno

    2006-09-01

    Studies showed that specific probiotics might provide therapeutic benefits in inflammatory bowel disease. However, a rigorous screening of new probiotics is needed to study possible adverse interactions with the host, particularly when intended for administration to individuals with certain health risks. In this context, the objective of this study was to investigate the role of three lactobacilli (LAB) on intestinal inflammation and bacterial translocation using variations of the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced acute colitis. We first compared the in vitro ability of LAB to survive gastrointestinal tract (GIT) conditions and their ability to persist in the GIT of mice following daily oral administration. As a control, we included a nonprobiotic Lactobacillus paracasei strain, previously isolated from an endocarditis patient. Feeding high doses of LAB strains to healthy and to TNBS-treated mice did not induce any detrimental effect or abnormal translocation of the bacteria. Oral administration of Lactobacillus salivarius Ls-33 had a significant preventive effect on colitis in mice, while Lactobacillus plantarum Lp-115 and Lactobacillus acidophilus NCFM did not. None of the three selected LAB strains translocated to extraintestinal organs of TNBS-treated mice. In contrast, L. paracasei exacerbated colitis under severe inflammatory conditions and translocated to extraintestinal organs. This study showed that evaluations of the safety and functionality of new probiotics are recommended. We conclude that not all lactobacilli have similar effects on intestinal inflammation and that selected probiotics such as L. salivarius Ls-33 may be considered in the prevention or treatment of intestinal inflammation.

  8. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea

    2001-01-01

    to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments...

  9. Cystoid Macular Edema Induced by Low Doses of Nicotinic Acid

    Directory of Open Access Journals (Sweden)

    Daniela Domanico

    2013-01-01

    Full Text Available Cystoid macular edema (CME is a condition that involves the macula, causing painless vision loss. In this paper, we report a case of niacin-induced bilateral cystoid macular edema (CME in a middle-age woman taking low dose of niacin (18 mg of nicotinic acid. Optical coherence tomography (OCT showed retinal thickening and cystoid spaces in both eyes, whereas fluorescein angiography (FA; HRA 2, Heidelberg Engineering revealed the absence of fluorescein leakage also in later phases. Four weeks after discontinuation of therapy there were a complete disappearance of macular edema at funduscopic examination and an improvement of visual acuity in both eyes. Furthermore OCT showed a normal retinal profile in both eyes. In our opinion considering the wide availability of niacin, medical monitoring and periodical examination should be considered during niacin administration. To our knowledge, this is the first report in the literature that described the very low-dose niacin-induced bilateral niacin maculopathy.

  10. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    Science.gov (United States)

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success.

  11. Effect of ZSM-5 Acidity on Aromatic Product Selectivity during Upgrading of Pine Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; Magrini, Kimberly A.; Rogers, Allyson K.; Yung, Matthew M.

    2016-07-01

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO2-to-Al2O3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form a slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.

  12. Chiral Sensing of Various Amino Acids Using Induced Circularly Polarized Luminescence from Europium(III) Complexes of Phenanthroline Dicarboxylic Acid Derivatives.

    Science.gov (United States)

    Uchida, Taka-Aki; Nozaki, Koichi; Iwamura, Munetaka

    2016-09-06

    Circularly polarized luminescence (CPL) was observed from [Eu(dppda)2 ](-) (dppda=4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid) and [Eu(pzpda)2 ](-) (pzpda=pyrazino[2,3-f][1,10]phenanthroline-7,10-dicarboxylic acid) in aqueous solutions containing various amino acids. The selectivity of these complexes towards amino acids enabled them to be used as chiral sensors and their behavior was compared with that of [Eu(pda)2 ](-) (pda=1,10-phenanthroline-2,9-dicarboxylic acid). As these Eu(III) complexes have achiral D2d structures under ordinary conditions, there were no CPL signals in the emission assigned to f-f transitions. However, when the solutions contained particular amino acids they exhibited detectable CPL signals with glum values of about 0.1 (glum =CPL/2 TL; TL=total luminescence). On examining 13 amino acids with these three Eu(III) complexes, it was found that whether an amino acid induced a detectable CPL depended on the Eu(III) complex ligands. For example, when ornithine was used as a chiral agent, only [Eu(dppda)2 ](-) exhibited intense CPL in aqueous solutions of 10(-2)  mol dm(-3) . Steep amino acid concentration dependence suggested that CPL in [Eu(dppda)2 ](-) and [Eu(pzpda)2 ](-) was induced by the association of four or more amino acid molecules, whereas CPL in [Eu(pda)2 ](-) was induced by association of two arginine molecules.

  13. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    Science.gov (United States)

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage.

  14. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2005-02-01

    Full Text Available We previously described that betulinic acid (BetA, a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D. Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.

  15. The Effect of Opsteoporotic Model Rats Induced by Retinoic Acid

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Yao Jianfeng; Jin Weizhang; Cai Qiankun; Guo Xiong

    2005-01-01

    Objective: To study the effect of retinoic acid on inducing osteoporosis in female rat. Methods: 48SD female rats were divided randomly into experiment group and control group. Retinoic acid was administered orally to experiment group with 80mg.kg-1d-1 for 15 days. Then the rats were sacrificed on the 0th, 30th, 60th days after last administration. The serum concentration of Ca, P, BGP, E2, AKP and TRAP were detected. Components of collagen and proteoglycan in the bones and BMD were also assayed .The femoral morphometric change and epiphyseal plate cartilage histological changes were observed. Results: After a 15-day period treatment with retinoic acid, charateristics of experiment group were compared with control, it is shown that the concentration of serum E2 and BGP declined, the activity of AKP and TRAP increased while BMP decreased, the bone mass of both spongy bone and cortical bone reduced, the number of spongy bone osteoclasts and their activity increased, number of epiphyseal plate chondrocyte reduced, cartilage hypertrophic zone displayed dyscalcification, and no difference of other markers was found in the two groups. On the 30th day after the last administration, the experiment group appeared a declined number of cancellous bone osteoclast and level of serum AKP yet they were still higher than control. Number of epiphyseal chondrocyte, serum BGP and tibial BMD, though higher than before, were still lower than control. Other markers were no difference. On the 60th day after treatment, although the femoral cancellous bone mass was still less and cancellous osteoblast was more than control, the cortical bone mass, cancellous osteoclast number and level of serum Ca and P were all remained no different between two groups.Conclusion: Retinoic acid possessed a better short-term effect than long-term effect. Cancellous bone loss lasted much longer than cortical bone and more obviously; the bone matrix in this osteoporosis model was able to repair itself

  16. Acid aspiration-induced airways hyperresponsiveness in mice.

    Science.gov (United States)

    Allen, Gilman B; Leclair, Timothy R; von Reyn, Jessica; Larrabee, Yuna C; Cloutier, Mary E; Irvin, Charles G; Bates, Jason H T

    2009-12-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways.

  17. Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection

    DEFF Research Database (Denmark)

    Yang, Ziheng; Wong, Wendy Shuk Wan; Nielsen, Rasmus

    2005-01-01

    Codon-based substitution models have been widely used to identify amino acid sites under positive selection in comparative analysis of protein-coding DNA sequences. The nonsynonymous-synonymous substitution rate ratio (dN/dS, denoted ) is used as a measure of selective pressure at the protein level...

  18. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    Science.gov (United States)

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  19. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality

    Science.gov (United States)

    Hazen, R. M.; Filley, T. R.; Goodfriend, G. A.

    2001-01-01

    The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO(3)), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.

  20. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Science.gov (United States)

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  1. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  2. Maternal effects and maternal selection arising from variation in allocation of free amino acid to eggs

    Science.gov (United States)

    Newcombe, Devi; Hunt, John; Mitchell, Christopher; Moore, Allen J

    2015-01-01

    Maternal provisioning can have profound effects on offspring phenotypes, or maternal effects, especially early in life. One ubiquitous form of provisioning is in the makeup of egg. However, only a few studies examine the role of specific egg constituents in maternal effects, especially as they relate to maternal selection (a standardized selection gradient reflecting the covariance between maternal traits and offspring fitness). Here, we report on the evolutionary consequences of differences in maternal acquisition and allocation of amino acids to eggs. We manipulated acquisition by varying maternal diet (milkweed or sunflower) in the large milkweed bug, Oncopeltus fasciatus. Variation in allocation was detected by examining two source populations with different evolutionary histories and life-history response to sunflower as food. We measured amino acids composition in eggs in this 2 × 2 design and found significant effects of source population and maternal diet on egg and nymph mass and of source population, maternal diet, and their interaction on amino acid composition of eggs. We measured significant linear and quadratic maternal selection on offspring mass associated with variation in amino acid allocation. Visualizing the performance surface along the major axes of nonlinear selection and plotting the mean amino acid profile of eggs from each treatment onto the surface revealed a saddle-shaped fitness surface. While maternal selection appears to have influenced how females allocate amino acids, this maternal effect did not evolve equally in the two populations. Furthermore, none of the population means coincided with peak performance. Thus, we found that the composition of free amino acids in eggs was due to variation in both acquisition and allocation, which had significant fitness effects and created selection. However, although there can be an evolutionary response to novel food resources, females may be constrained from reaching phenotypic optima with

  3. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Piet Habbel; Karsten H Weylandt; Katja Lichopoj; Johannes Nowak; Martin Purschke; Jing-Dong Wang; Cheng-Wei He; Daniel C Baumgart; Jing X Kang

    2009-01-01

    AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth.METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in cells incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2ELISA.RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dosedependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly,DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation.DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dosedependent manner.CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.

  4. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Science.gov (United States)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  5. Topiramate increases the risk of valproic acid-induced encephalopathy.

    Science.gov (United States)

    Noh, Young; Kim, Dong Wook; Chu, Kon; Lee, Soon-Tae; Jung, Keun-Hwa; Moon, Hye-Jin; Lee, Sang Kun

    2013-01-01

    Metabolic encephalopathy is a rare but serious complication of valproic acid (VPA) therapy that usually presents with impaired consciousness or increased seizure frequency. Although it has been suggested that topiramate (TPM) increases the risk of VPA-induced encephalopathy, the additional risk in patients receiving TPM therapy has not been evaluated. We reviewed all adult patients who took VPA between January 2005 and February 2009 at the Seoul National University Hospital and identified patients with VPA-induced encephalopathy based on clinical and electroencephalography (EEG) data. Information on sex, age, serum ammonia level, serum VPA level, liver function test, and EEG was collected from patient registry and medical data. We enrolled 8,372 patients who received VPA therapy and 1,236 patients who received VPA/TPM combination therapy. We identified 11 patients with VPA-induced encephalopathy (0.13%), 7 of whom received a combination therapy of VPA and TPM. The odds ratio of VPA-induced encephalopathy with TPM over that without TPM was 10.16. There were no significant differences in sex distribution, number of antiepileptic agents, ammonia level, VPA serum level, underlying diseases, dosage of VPA, duration of VPA treatment, treatment of encephalopathy, and outcomes between the two groups. Our study showed that the prevalence of VPA-induced encephalopathy is approximately 0.1% among patients treated with VPA and that the risk of this condition, although still low, can increase by approximately 10 times in the presence of TPM therapy. Based on these results, we suggest that TPM should be carefully used in patients receiving VPA treatment.

  6. Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain.

    Science.gov (United States)

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2008-02-01

    Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.

  7. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  8. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chang

    2010-12-01

    Conclusion: Caffeic acid induces apoptosis by inhibiting Bcl-2 activity, leading to release of cytochrome c and subsequent activation of caspase-3, indicating that caffeic acid induces apoptosis via the mitochondrial apoptotic pathway. This also suggests that caffeic acid has a strong anti-tumor effect and may be a promising chemopreventive or chemotherapeutic agent.

  9. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.

    Science.gov (United States)

    Mills, Charlotte E; Tzounis, Xenofon; Oruna-Concha, Maria-Jose; Mottram, Don S; Gibson, Glenn R; Spencer, Jeremy P E

    2015-04-28

    Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (Pcoffees) induced a significant increase in the growth of Bifidobacterium spp. relative to the control vessel at 10 h after exposure (Pcoffee) induced a significant increase in the growth of Bifidobacterium spp. (P<0·05). CGA alone also induced a significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group (P<0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.

  10. Substrate selectivity of various lipases in the esterification of cis- and trans-9-octadecenoic acid.

    Science.gov (United States)

    Borgdorf, R; Warwel, S

    1999-04-01

    The substrate selectivity of numerous commercially available lipases from microorganisms, plants and animal tissue towards 9-octadecenoic acids with respect to the cis/trans configuration of the C=C double bond was examined by the esterification of cis- and trans-9-octadecanoic acid (oleic and elaidic acid respectively) with n-butanol in n-hexane. A great number of lipases studied, e.g. those from Pseudomonas sp., porcine pancreas or Carica papaya, were unable to discriminate between the isomeric 9-octadecenoic acids. However, lipases from Candida cylindracea and Mucor miehei catalysed the esterification of oleic acid 3-4 times faster than the corresponding reaction of elaidic acid and therefore have a high preference for the cis isomer. Of all biocatalysts examined, only recombinant lipases from Candida antarctica favoured elaidic acid as substrate. While the preference of Candida antarctica lipase B for the trans isomer was quite low, Candida antarctica lipase A had an extraordinary substrate selectivity and its immobilized enzyme preparation [Chirazyme L-5 (3) from Boehringer] esterified elaidic acid about 15 times faster than oleic acid.

  11. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity.

    Science.gov (United States)

    Wang, Lei; Kofler, Marina; Brosch, Gerald; Melesina, Jelena; Sippl, Wolfgang; Martinez, Elisabeth D; Easmon, Johnny

    2015-01-01

    We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1-1.0 μM) over HDAC1 (IC50 = 0.9-6 μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity.

  12. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity

    Science.gov (United States)

    Wang, Lei; Kofler, Marina; Brosch, Gerald; Melesina, Jelena; Sippl, Wolfgang; Martinez, Elisabeth D.; Easmon, Johnny

    2015-01-01

    We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1–1.0μM) over HDAC1 (IC50 = 0.9–6μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity. PMID:26698121

  13. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-ylpiperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d were active HDAC inhibitors, the meta substituted analogues (8a-d were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1-1.0 μM over HDAC1 (IC50 = 0.9-6 μM and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity.

  14. Salicylic Acid Attenuates Gentamicin-Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Pavle Randjelovic

    2012-01-01

    Full Text Available Gentamicin (GM is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  15. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  16. A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection.

    Directory of Open Access Journals (Sweden)

    Andrew R Dalby

    Full Text Available BACKGROUND: Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. RESULTS: The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A-T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. CONCLUSIONS: The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A-T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism.

  17. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    Science.gov (United States)

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  18. Efficacy of Ascorbic Acid on Reducing the Development of Contrast-Induced Nephropathy

    Directory of Open Access Journals (Sweden)

    Hojat Naghavi

    2016-11-01

    Full Text Available Introduction To assess the benefits of prophylactic ascorbic acid to reduce development of contrast-induced nephropathy (CIN in patients undergoing percutaneous coronary interventions (PCIs. Methods PubMed was searched with the search strategy of (vitamin C OR ascorbic acid AND (kidney OR renal AND (PCI OR percutaneous coronary Intervention OR cardiac OR heart. There was no date and language restriction for the selection of the articles. All the randomized controlled trials (RCTs which investigated the efficacy of AA on reducing the incidence of CIN were included. Totally 267 articles were found at the initial search; however, only 10 RCTs were eligible to be included. Odds ratio is presented for each of the articles as the effect size. Conclusions Controversial findings were reported on the efficacy of AA on reducing the CIN development; due to various limitations of these articles, there is still great debate among the cardiology and radiology communities, which increases the need for further researches.

  19. Esterification of Glycerol by Oleic Acid and Selective Hydrogenation of Oieic Acid Methylester Over Acid and Ru-Sn-B Supported Mesoporous AIMCM-41

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The AIMCM-41 molecular sieves with two different pore sizes arc hydrothermally synthesized in the presence of surfactants with two different chain lengths. H-AIMCM-41 and Ru-Sn-B/H-AIMCM-41 which are prepared by the conventional ion-exchange and incipient wetness techniques of the AIMCM-41 show tair catalytic activity for esterification of glycerol by oleic acid and selective hydrogenation of oleic acid methylester, respectively.

  20. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    Science.gov (United States)

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  1. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    Science.gov (United States)

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  2. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-03-14

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. In this study, we aimed to determine whether uric acid could reduce endpoints associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. This article is protected by copyright. All rights reserved.

  3. Triethylenetetramine Synergizes with Pharmacologic Ascorbic Acid in Hydrogen Peroxide Mediated Selective Toxicity to Breast Cancer Cell

    Science.gov (United States)

    Wang, Lianlian; Luo, Xiaofang; Li, Cong; Huang, Yubing; Xu, Ping; Lloyd-Davies, Laetitia H.; Delplancke, Thibaut; Peng, Chuan; Qi, Hongbo; Baker, Philip

    2017-01-01

    Breast cancer is characterized by overexpression of superoxide dismutase (SOD) and downregulation of catalase and more resistance to hydrogen peroxide (H2O2) than normal cells. Thus, relatively high H2O2 promotes breast cancer cell growth and proliferation. However, excessive intracellular H2O2 leads to death of breast cancer cells. In cancer cells, high level ascorbic acid (Asc) is able to be autoxidized and thus provides an electron to oxygen to generate H2O2. In the present study, we demonstrated that triethylenetetramine (TETA) enhances Asc autoxidation and thus elevates H2O2 production in MCF-7 cells. Furthermore, Asc/TETA combination significantly impaired cancer cell viability, while having much milder effects on normal cells, indicating Asc/TETA could be a promising therapy for breast cancer. Moreover, SOD1 and N-acetyl-L-cysteine failed to improve MCF-7 cells viability in the presence of Asc/TETA, while catalase significantly inhibited the cytotoxicity of Asc/TETA to breast cancer cells, strongly suggesting that the selective cytotoxicity of Asc/TETA to cancer cells is H2O2-dependent. In addition, Asc/TETA induces RAS/ERK downregulation in breast cancer cells. Animal studies confirmed that Asc/TETA effectively suppressed tumor growth in vivo. In conclusion, TETA synergizes pharmacologic Asc autoxidation and H2O2 overproduction in breast cancer cells, which suppresses RAS/ERK pathway and results in apoptosis.

  4. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    Science.gov (United States)

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  5. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    Science.gov (United States)

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  6. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    Science.gov (United States)

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins.

  7. Selective agonists of retinoic acid receptors: comparative toxicokinetics and embryonic exposure.

    Science.gov (United States)

    Arafa, H M; Elmazar, M M; Hamada, F M; Reichert, U; Shroot, B; Nau, H

    2000-01-01

    Three biologically active synthetic retinoids were investigated that bind selectively to retinoic acid receptors RARs (alpha, beta and gamma). The retinoids were previously demonstrated to have different teratogenic effects in the mouse in terms of potency and regioselectivity. The teratogenic potency rank order (alpha >beta >gamma) was found to be more or less compatible with the receptor binding affinities and transactivation potencies of the retinoid ligands to their respective receptors. The RARalpha agonist (Am580; CD336) induced a wide spectrum of malformations; CD2019 (RARbeta agonist) and especially CD437 (RARgamma agonist) produced more restricted defects. In the current study we tried to address whether the differences in teratogenic effects are solely related to binding affinity and transactivation differences or also due to differences in embryonic exposure. Therefore, transplacental kinetics of the ligands were assessed following administration of a single oral dose of 15 mg/kg of either retinoid given to NMRI mice on day 11 of gestation. Am580 was rapidly transferred to the embryo resulting in the highest embryonic exposure [embryo to maternal plasma area under the time vs concentration curve (AUC)(0-24 h )ratio (E/M) was 1.7], in accordance with its highest teratogenic potency. The low placental transfer of CD2019 (E/M of 0.3) was compatible with its lower teratogenic potential. Of major interest was the finding that the CD437, though being least teratogenic, exhibited considerable embryonic exposure (E/M of 0.6). These findings suggest that both the embryonic exposure and receptor binding transactivation selectivity are crucial determinants of the teratogenicity of these retinoid ligands.

  8. Lewis Acid Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 2-Naphthols.

    Science.gov (United States)

    Kaicharla, Trinadh; Roy, Tony; Thangaraj, Manikandan; Gonnade, Rajesh G; Biju, Akkattu T

    2016-08-16

    Lewis acid-catalyzed reactions of 2-substituted cyclopropane 1,1-dicarboxylates with 2-naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene-fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel-Crafts-type addition of 2-naphthols to cyclopropanes takes place, thus affording functionalized 2-naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  10. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  11. Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles.

    Science.gov (United States)

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In this paper, the novel hydrophilic magnetic molecularly imprinted nanoparticles were developed for selective separation and determination of chlorogenic acid in aqueous fruit juices. The polymers were prepared by using amino-functionalized magnetic nanoparticles as carriers, branched polyethyleneimine as functional monomer, and chlorogenic acid as template molecule. Branched polyethyleneimine with abundant active amino groups could react with template sufficiently, and its unique dendritic structure may amplify the number of the imprinted cavities. Meanwhile, it would improve the hydrophilicity of imprinted materials for attaining high extraction efficiency. The resulted polymers exhibit fast kinetics, high adsorption capacity, and favorable selectivity. In addition, the obtained nanoparticles were used as solid-phase extraction sorbents for selective isolation and determination of chlorogenic acid in peach, apple, and grape juices (0.92, 4.21, and 0.75 μg mL(-1), respectively).

  12. Boswellic acid acetate induces differentiation and apoptosis in leukemia cell lines.

    Science.gov (United States)

    Jing, Y; Nakajo, S; Xia, L; Nakaya, K; Fang, Q; Waxman, S; Han, R

    1999-01-01

    Boswellic acid acetate (BC-4), a compound isolated from the herb Boswellia carterii Birdw., can induce differentiation and apoptosis of leukemia cells. Based on cell morphology and NBT reduction, BC-4 induced monocytic differentiation of myeloid leukemia HL-60, U937 and ML-1 cells at a dose under 12.5 microg/ml (24.2 microM). BC-4 was a potent inducer, with 90% of the cells showing morphologic changes and 80-90% of the cells showing NBT reduction. Specific and non-specific esterase were also increased by BC-4. Based on benzidine staining assay, BC-4 failed to induce erythroid leukemia DS-19 and K562 cells differentiation. In contrast to its selective differentiation effect, BC-4 strongly inhibited growth of all cell lines tested. The growth inhibition effect was dose- and time-dependent. In HL-60 cells, 20 microg/ml (38.8 microM) of BC-4 decreased viable cell number by 60% at 24 h, whereas at 3 days there was virtually no viable cells. Morphologic and DNA fragmentation analysis proved that BC-4 induced cell apoptosis. The dual apoptotic and differentiation effects of BC-4 suggest that it may be a powerful agent in the treatment of leukemia.

  13. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    OpenAIRE

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Park...

  14. A selective voltammetric detection for dopamine using poly(gallic acid) film modified electrode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10~(-5) cm~2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively...

  15. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity.

    Science.gov (United States)

    Alvheim, Anita R; Malde, Marian K; Osei-Hyiaman, Douglas; Lin, Yu Hong; Pawlosky, Robert J; Madsen, Lise; Kristiansen, Karsten; Frøyland, Livar; Hibbeln, Joseph R

    2012-10-01

    Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.

  16. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  17. Analysis of Salicylic Acid Induced Proteins in Rice

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An analysis using SDS-PAGE of acidic and basic protein fractions extracted from rice seedling treated with salicylic acid (SA) yielded several new proteins, some of which are similar in relative molecular mass to PR-1a,c, PR-2, 2e and PR-3d, 3e of tobacco.Direct assays for peroxidases and β-1,3-glucanases demonstrated that the activities of the two enzymes in the rice seedlings increased rapidly with time after SA treatment, reaching a maximum 6 days after treatment.Disease resistance tests showed that SA treated rice seedlings stunted the development of blight lesions and displayed higher resistance to rice blight pathogen (Xanthomonas oryzea pv.oryzea).The data suggest that the treatment with SA, even for plants with high endogenous SA levels such as rice, may induce the appearance of new proteins and the formation of disease resistance.The results contribute to the analysis of the SA role in rice systemic acquired resistance.

  18. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    Science.gov (United States)

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  19. Effect of Ascorbic Acid on Lipid Peroxidation Induced by Ceftazidime

    Directory of Open Access Journals (Sweden)

    Devbhuti P*,1

    2011-01-01

    Full Text Available Lipid peroxidation is the oxidative deterioration of polyunsaturated lipids which is a free radical related process and responsible for thedevelopment of many diseases and disorders like diabetes mellitus, hypertension, cancer etc. End products of lipid peroxidation aremalondialdehyde (MDA, 4-hydroxy-2-nonenal (4-HNE, etc. which are the ultimate mediator of toxicity. Antioxidants have the capability toinhibit lipid peroxidation. Keeping in mind this fact, the present in vitro study was carried out to evaluate lipid peroxidation induction potential of ceftazidime, a cephalosporin antibiotic and its suppression with ascorbic acid considering some laboratory markers of lipid peroxidation like MDA, 4-HNE and reduced glutathione (GSH. Goat liver was used as the lipid source. After treatment of the liver homogenate with drug and/or antioxidant the levels of 4-HNE, MDA and GSH were estimated in different samples at different hours of incubation. The results showed that the drug ceftazidime could significantly induce lipid peroxidation and the antioxidant ascorbic acid has the capability to inhibit ceftazidime-inducedlipid peroxidation.

  20. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keshab R. Parajuli

    2015-05-01

    Full Text Available Aminomethylphosphonic acid (AMPA and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145 through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  1. High dose of ascorbic acid induces cell death in mesothelioma cells.

    Science.gov (United States)

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  2. Effect of selective inhibition of cyclooxygenase-2 on lipopolysaccharide-induced hyperalgesia.

    Science.gov (United States)

    Satyanarayana, Padi S V; Jain, Naveen K; Singh, Sukhjeet; Kulkarni, Shrinivas K

    2004-01-01

    Lipopolysaccharide (LPS) is known to increase the expression and release of various pro-inflammatory mediators, including cyclooxygenase-2 (COX-2) and produce hyperalgesia. It is also well known that prostaglandins (PGs), synthesised both in the periphery and centrally by COX isoforms, play a key role in sensitisation of nociceptors and nociceptive processing. To investigate the role of COX-2 in LPS-induced hyperalgesia, parecoxib, a selective COX-2-inhibiting pro-drug, was injected intravenously 30 min before assessing hyperalgesia induced by intraperitoneal or subcutaneous administration of LPS (50 microg/mouse or 25 microg/paw of rat, respectively). Acetic acid-induced writhing and tail immersion assay in mice and paw withdrawal response to thermal and mechanical stimuli in rats were used to assess the effect of inhibition of COX-2 on LPSinduced hyperalgesia. Animals showed significant hyperalgesic behavior 8 h after LPS injection. Parecoxib (up to 20 mg/kg, i.v.) had no effect in the two acute nociceptive assays but showed marked antinociceptive activity in writhing and tail immersion assay in LPS-pretreated mice. Similarly, parecoxib reversed the hyperalgesia in the LPS-injected paw but not in the contralateral paw of rats. Pre-treatment with dexamethasone, an inhibitor of COX-2 expression before LPS injection significantly affected the development of hyperalgesia in both mice and rats. These findings suggest that inducible COX-2 derived PGs are involved in central nociceptive processing, which resulted in hyperalgesic behavior following LPS administration and inhibition of COX-2 or its expression attenuated LPS-induced hyperalgesia.

  3. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases.

    Science.gov (United States)

    Dixon, David P; Edwards, Robert

    2009-08-07

    Proteomic studies with Arabidopsis thaliana have revealed that the plant-specific Tau (U) class glutathione transferases (GSTs) are selectively retained by S-hexylglutathione affinity supports. Overexpression of members of the Arabidopsis GST superfamily in Escherichia coli showed that 25 of the complement of 28 GSTUs caused the aberrant accumulation of acylated glutathione thioesters in vivo, a perturbation that was not observed with other GST classes. Each GSTU caused a specific group of fatty acyl derivatives to accumulate, which varied in chain length (C(6) to C(18)), additional oxygen content (0 or 1), and desaturation (0 or 1). Thioesters bound tightly to recombinant GSTs (K(d) approximately 1 microm), explaining their accumulation. Transient expression of GSTUs in Nicotiana benthamiana followed by recovery by Strep-tag affinity chromatography allowed the respective plant ligands to be extracted and characterized. Again, each GST showed a distinct profile of recovered metabolites, notably glutathionylated oxophytodienoic acid and related oxygenated fatty acids. Similarly, the expression of the major Tau protein GSTU19 in the endogenous host Arabidopsis led to the selective binding of the glutathionylated oxophytodienoic acid-glutathione conjugate, with the enzyme able to catalyze the conjugation reaction. Additional ligands identified in planta included other fatty acid derivatives including divinyl ethers and glutathionylated chlorogenic acid. The strong and specific retention of various oxygenated fatty acids by each GSTU and the conservation in binding observed in the different hosts suggest that these proteins have selective roles in binding and conjugating these unstable metabolites in vivo.

  4. Synthesis and preliminary evaluation of the antimicrobial activity of selected 3-benzofurancarboxylic acid derivatives.

    Science.gov (United States)

    Kossakowski, Jerzy; Krawiecka, Mariola; Kuran, Bozena; Stefańska, Joanna; Wolska, Irena

    2010-07-06

    Halogen derivatives of selected 3-benzofurancarboxylic acids were prepared using 6-acetyl-5-hydroxy-2-methyl-3-benzofuranocarboxylic acid as starting material. (1)H-NMR spectra were obtained for all of the synthesized structures, and for compound VI, an X-ray crystal structure was also obtained. All derivatives were tested for antimicrobial activity against a selection of Gram-positive cocci, Gram-negative rods and yeasts. Three compounds, III, IV, and VI, showed antimicrobial activity against Gram-positive bacteria (MIC 50 to 200 microg/mL). Compounds VI and III exhibited antifungal activity against the Candida strains C. albicans and C. parapsilosis (MIC-100 microg/mL).

  5. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Directory of Open Access Journals (Sweden)

    Magd A. Kotb

    2012-07-01

    Full Text Available Ursodeoxycholic acid (UDCA is a steroid bile acid approved for primary biliary cirrhosis (PBC. UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively. “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day and toxic dose (28 mg/kg/day, and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  6. Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells.

    Science.gov (United States)

    Hughes-Fulford, Millie; Tjandrawinata, Raymond R; Li, Chai-Fei; Sayyah, Sina

    2005-09-01

    For the past 60 years, dietary intake of essential fatty acids has increased. Moreover, the omega-6 fatty acids have recently been found to play an important role in regulation of gene expression. Proliferation of human prostate cells was significantly increased 48 h after arachidonic acid (AA) addition. We have analyzed initial uptake using nile red fluorescence and we found that the albumin conjugated AA is endocytosed into the cells followed by the induction of RNA within minutes, protein and PGE2 synthesis within hours. Here we describe that AA induces expression of cytosolic phospholipase A2 (cPLA2) in a dose-dependent manner and that this upregulation is dependent upon downstream synthesis of PGE2. The upregulation of cox-2 and cPLA2 was inhibited by flurbiprofen, a cyclooxygenase (COX) inhibitor, making this a second feed-forward enzyme in the eicosanoid pathway. Cox-2 specific inhibitors are known to inhibit colon and prostate cancer growth in humans; however, recent findings show that some of these have cardiovascular complications. Since cPLA2 is upstream in the eicosanoid pathway, it may be a good alternative for a pharmaceutical target for the treatment of cancer.

  7. Temperature Induced Aggregation and Clouding in Humic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Leah Shaffer

    2015-01-01

    Full Text Available Humic acids in aqueous solution demonstrate inverse temperature-solubility relationships when solution conditions are manipulated to reduce coulombic repulsion among the humic polyanions. These effects were followed by dynamic light scattering (DLS measurements of the resulting aggregates, as well as the addition of a polarity sensitive fluorescent probe (pyrene. The humic solutions could be primed for temperature induced clouding by carefully lowering the pH to a point where hydration effects became dominant. The exact value of the cloud point (CP was a function of both pH and humate concentration. The CPs mostly lay in the range 50–90°C, but DLS showed that temperature induced aggregation proceeded from approximately 30°C onward. Similar effects could be achieved by adding multivalent cations at concentrations below those which cause spontaneous precipitation. The declouding of clouded humate solutions could be affected by lowering the temperature combined with mechanical agitation to disentangle the humic polymers.

  8. Carbon nanotubes induced gelation of unmodified hyaluronic acid.

    Science.gov (United States)

    Zamora-Ledezma, Camilo; Buisson, Lionel; Moulton, Simon E; Wallace, Gordon; Zakri, Cécile; Blanc, Christophe; Anglaret, Eric; Poulin, Philippe

    2013-08-13

    This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.

  9. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. PRINCIPAL FINDINGS: Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. CONCLUSION: Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  10. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    Science.gov (United States)

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  11. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  12. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  13. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  14. THE EFFECT OF CUCUMBER ( ) EXTRACT ON ACID INDUCED ...

    African Journals Online (AJOL)

    LIVINGSTON

    ... of corneal acid burn. Cucumber extract, corneal acid burn, guinea pigs, alpha hydroxyl acids, beta hydroxyl ..... cholesterol arteriosclerosis in rabbits. Circulation.12:696 ... production in human skin fibroblast cultures in vitro. Dermatol. Surg.

  15. Theoretical principles of in vitro selection using combinatorial nucleic acid libraries.

    Science.gov (United States)

    Vant-Hull, B; Gold, L; Zichi, D A

    2000-02-01

    A new paradigm for drug discovery and biological research has developed from technologies that integrate combinatorial chemistry with rounds of selection and amplification, a technique called in vitro selection or systematic evolution of ligands by exponential enrichment (SELEX). This overview unit discusses nucleic acid libraries that can be used, affinity probability distributions, an equilibrium model for SELEX, and optimal conditions including concentrations and signal-to-noise ratios.

  16. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    Science.gov (United States)

    Silva, Alexandra; Sampaio-Marques, Belém; Fernandes, Angela; Carreto, Laura; Rodrigues, Fernando; Holcik, Martin; Santos, Manuel A S; Ludovico, Paula

    2013-01-01

    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  17. Involvement of Yeast HSP90 Isoforms in Response to Stress and Cell Death Induced by Acetic Acid

    Science.gov (United States)

    Silva, Alexandra; Sampaio-Marques, Belém; Fernandes, Ângela; Carreto, Laura; Rodrigues, Fernando; Holcik, Martin; Santos, Manuel A. S.; Ludovico, Paula

    2013-01-01

    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress. PMID:23967187

  18. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats.

    Science.gov (United States)

    Punithavathi, Vilapakkam Ranganathan; Prince, Ponnian Stanely Mainzen; Kumar, Ramesh; Selvakumari, Jemmi

    2011-01-10

    The present study aims to evaluate the antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic male Wistar rats. To induce diabetes mellitus, rats were injected with streptozotocin intraperitoneally at a single dose of 40mg/kg. Streptozotocin induced diabetic rats showed significant (Pacid reactive substances and lipid hydroperoxides were significantly (Pgallic acid (10 and 20mg/kg) daily for a period of 21days showed significant (Pgallic acid in diabetic rats. In vitro study also revealed the potent antioxidant effect of gallic acid. Thus, the study shows the antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic rats. The effect exerted by 20mg/kg body weight of gallic acid was more effective than 10mg/kg body weight of gallic acid.

  19. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids.

    Science.gov (United States)

    Alakomi, Hanna-Leena; Puupponen-Pimiä, Riitta; Aura, Anna-Marja; Helander, Ilkka M; Nohynek, Liisa; Oksman-Caldentey, Kirsi-Marja; Saarela, Maria

    2007-05-16

    Gram-negative bacteria are important food spoilage and pathogenic bacteria. Their unique outer membrane (OM) provides them with a hydrophilic surface structure, which makes them inherently resistant to many antimicrobial agents, thus hindering their control. However, with permeabilizers, compounds that disintegrate and weaken the OM, Gram-negative cells can be sensitized to several external agents. Although antimicrobial activity of plant-derived phenolic compounds has been widely reported, their mechanisms of action have not yet been well demonstrated. The aim of our study was to elucidate the role of selected colonic microbial metabolites of berry-derived phenolic compounds in the weakening of the Gram-negative OM. The effect of the agents on the OM permeability of Salmonella was studied utilizing a fluorescence probe uptake assay, sensitization to hydrophobic antibiotics, and lipopolysaccharide (LPS) release. Our results show that 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid (3,4-diHPP), 3-(4-hydroxyphenyl)propionic acid, 3-phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid efficiently destabilized the OM of Salmonella enterica subsp. enterica serovar Typhimurium and S. enterica subsp. enterica serovar Infantis as indicated by an increase in the uptake of the fluorescent probe 1-N-phenylnaphthylamine (NPN). The OM-destabilizing activity of the compounds was partially abolished by MgCl2 addition, indicating that part of their activity is based on removal of OM-stabilizing divalent cations. Furthermore, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-diHPP increased the susceptibility of S. enterica subsp. enterica serovar Typhimurium strains for novobiocin. In addition, organic acids present in berries, such as malic acid, sorbic acid, and benzoic acid, were shown to be efficient permeabilizers of Salmonella as shown by an increase in the NPN uptake assay and by LPS release.

  20. Selective constraints on amino acids estimated by a mechanistic codon substitution model with multiple nucleotide changes.

    Directory of Open Access Journals (Sweden)

    Sanzo Miyazawa

    Full Text Available BACKGROUND: Empirical substitution matrices represent the average tendencies of substitutions over various protein families by sacrificing gene-level resolution. We develop a codon-based model, in which mutational tendencies of codon, a genetic code, and the strength of selective constraints against amino acid replacements can be tailored to a given gene. First, selective constraints averaged over proteins are estimated by maximizing the likelihood of each 1-PAM matrix of empirical amino acid (JTT, WAG, and LG and codon (KHG substitution matrices. Then, selective constraints specific to given proteins are approximated as a linear function of those estimated from the empirical substitution matrices. RESULTS: Akaike information criterion (AIC values indicate that a model allowing multiple nucleotide changes fits the empirical substitution matrices significantly better. Also, the ML estimates of transition-transversion bias obtained from these empirical matrices are not so large as previously estimated. The selective constraints are characteristic of proteins rather than species. However, their relative strengths among amino acid pairs can be approximated not to depend very much on protein families but amino acid pairs, because the present model, in which selective constraints are approximated to be a linear function of those estimated from the JTT/WAG/LG/KHG matrices, can provide a good fit to other empirical substitution matrices including cpREV for chloroplast proteins and mtREV for vertebrate mitochondrial proteins. CONCLUSIONS/SIGNIFICANCE: The present codon-based model with the ML estimates of selective constraints and with adjustable mutation rates of nucleotide would be useful as a simple substitution model in ML and Bayesian inferences of molecular phylogenetic trees, and enables us to obtain biologically meaningful information at both nucleotide and amino acid levels from codon and protein sequences.

  1. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B.

    2013-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Parkinson’s disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival. PMID:22750587

  2. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  3. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-05-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of /sup 14/C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three /sup 14/C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin.

  4. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Tarek Boussetta

    Full Text Available BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO. The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.

  5. Selective oxidation of propane to acrylic acid over mixed metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Wei Zheng; Zhenxing Yu; Ping Zhang; Yuhang Zhang; Hongying Fu; Xiaoli Zhang; Qiquan Sun; Xinguo Hu

    2008-01-01

    The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic perfor-mances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1 V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H81 :O2 : H2O : N1 = 4.4 : 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.

  6. Graphene-carbon nanotube composite aerogel for selective detection of uric acid

    Science.gov (United States)

    Zhang, Feifei; Tang, Jie; Wang, Zonghua; Qin, Lu-Chang

    2013-12-01

    Graphene and single-walled carbon nanotube (SWNT) composite aerogel has been prepared by hydrothermal synthesis. The restacking of graphene is effectively reduced by SWNTs inserted in between graphene layers in order to make available more active sites and reactive surface area. Electrochemical experiments show that the graphene-SWNT composite electrode has superior catalytic performance in selective detection of uric acid (UA).

  7. Use of the alr gene as a food-grade selection marker in lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Benchimol, M.G.; Lambert, J.; Palumbo, E.; Deghorain, M.; Delcour, J.; Vos, de W.M.; Kleerebezem, M.; Hols, P.

    2002-01-01

    Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection marker

  8. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  9. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  10. Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid

    Science.gov (United States)

    Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed

    2015-06-01

    Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.

  11. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    Science.gov (United States)

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  12. In Vitro Selection Combined with Ribosomal Translation Containing Non-proteinogenic Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Murakami, Hiroshi

    2016-02-01

    The potential applications of non-proteinogenic amino acids have increased continuously since the introduction of these molecules into a ribosomal translation system. An increasing number of studies concerning topics, such as the addition of an artificial function to a protein, cellular expression of a protein with an artificial residue, and development of an artificial peptide with a novel function, have been done using these molecules. Here, we describe recent studies that elucidate the compatibility of non-proteinogenic amino acids with ribosomal translation. We also describe the development of a simple and high-speed selection method and its potential application for the creation of a novel functional peptide with non-proteinogenic amino acids. As these studies have expanded the diversity of the artificial peptide library and increased the speed of novel functional peptide selection, they will significantly facilitate the development of new molecules, such as pharmaceutical drug candidates and bioassay probes.

  13. Effect of preparation conditions on selective oxidation of propane to acrylic acid

    Institute of Scientific and Technical Information of China (English)

    YU Zhen-xing; ZHENG Wei; XU Wen-long; ZHANG Yu-hang; FU Hong-ying; ZHANG Ping

    2009-01-01

    The effects of chemical composition and preparation conditions, especially calcination atmosphere and water content on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid were investigated. Among the catalysts studied, MO_(1.0)V_(0.3)Te_(0.23)Nb_(0.12)O_x catalyst calcined in inert atmosphere at 600 ℃ shows the best performance in terms of propane conversion and selectivity to acrylic acid. The results reveal that proper chemical composition, calcination atmosphere and water content affect greatly the catalysts in many ways including structure, chemical composition, which are related to their catalytic performances; and 51.0% propane conversion and 30.5% one-pass yield to acrylic acid can be achieved at the same time.

  14. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  15. Tuning the selectivity of Gd3N cluster endohedral metallofullerene reactions with Lewis acids.

    Science.gov (United States)

    Stevenson, Steven; Rottinger, Khristina A; Fahim, Muska; Field, Jessica S; Martin, Benjamin R; Arvola, Kristine D

    2014-12-15

    We demonstrate the manipulation of the Lewis acid strength to selectively fractionate different types of Gd3N metallofullerenes that are present in complex mixtures. Carbon disulfide is used for all Lewis acid studies. CaCl2 exhibits the lowest reactivity but the highest selectivity by precipitating only those gadolinium metallofullerenes with the lowest first oxidation potentials. ZnCl2 selectively complexes Gd3N@C88 during the first 4 h of reaction. Reaction with ZnCl2 for an additional 7 days permits a selective precipitation of Gd3N@C84 as the dominant endohedral isolated. A third fraction is the filtrate, which possesses Gd3N@C86 and Gd3N@C80 as the two dominant metallofullerenes. The order of increasing reactivity and decreasing selectivity (left to right) is as follows: CaCl2 Lewis acids and have the highest selectivity because of their very low precipitation onsets, which are below +0.19 V (i.e., endohedrals with first oxidation potentials below +0.19 V are precipitated). For CaCl2, the precipitation threshold is estimated at a remarkably low value of +0.06 V. Because most endohedrals possess first oxidation potentials significantly higher than +0.06 V, CaCl2 is especially useful in its ability to precipitate only a select group of gadolinium metallofullerenes. The Lewis acids of intermediate reactivity (i.e., precipitation onsets estimated between +0.19 and +0.4 V) are MgCl2, MnCl2, CuCl2, and WCl4. The strongest Lewis acids (WCl6, ZrCl4, AlCl3, and FeCl3) are the least selective and tend to precipitate the entire family of gadolinium metallofullerenes. Tuning the Lewis acid for a specific type of endohedral should be useful in a nonchromatographic purification method. The ability to control which metallofullerenes are permitted to precipitate and which endohedrals would remain in solution is a key outcome of this work.

  16. Soybean germplasms evaluation for acid tidal swamp tolerance using selection index

    Directory of Open Access Journals (Sweden)

    I Made Jana Mejaya

    2010-07-01

    Full Text Available Availability of fertile land on the island of Java in Indonesia decreases due to the shifting from agricultural land to non-agricultural land. Hence, an extensification of soybean culture to outer Java suboptimal land areas is needed, such as tidal swamp which occupies approximately 20.192 million hectares. The main limitations in this soil are soil acidity, Fe toxicity and excess water. To develop soybean varieties tolerant to acid tidal swamp, tolerant soybean gene resources are needed. Hence, glasshouse and field experiments were carried out to identify tolerant gene resources. The glasshouse experiment has been conducted using 185 genotypes of germplasm at the Indonesian Legume and Tuber Crops Research Institute, Malang, East Java. Selection was carried out by using a selection index method. The glasshouse experiment was followed by field experiment at the Belandean research station, Banjarbaru, South Kalimantan, using the best 17 genotypes selected from the glass­house trial. Results showed that there was variability of response of each genotype to acidity and Fe toxicity. Therefore, assessment of soybean tolerance to acidity and Fe toxicity should be conducted by root growth. Based on selection index criteria, varieties of Lawit and Menyapa served as check tolerant varieties and showed lower growth than the 17 selected genotypes. In the field experiment, genotype MLGG 1087 was identified as the most tolerant and can serve as a gene resource tolerant to acid tidal swamp because it has the highest relative root growth on root dry weight, and the highest average of root and shoot dry weight.

  17. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    Science.gov (United States)

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    drive the transformation of normal cells to the cancerous state. These oncogenic alterations induce metabolic changes and dependencies that can be targeted to kill cancerous cells. Here, we find that the cellular transformation resulting from combined expression of the SV40 early region with an oncogenic Ras allele is sufficient to induce cellular susceptibility to fatty acid biosynthetic inhibition. Inhibition of fatty acid biosynthesis in these cells resulted in programmed cell death, which could be rescued by supplementing the medium with nonsaturated fatty acids. Similar results were observed with the expression of oncogenic Ras in nontransformed breast epithelial cells. Combined, our results suggest that specific oncogenic alleles induce metabolic dependencies that can be exploited to selectively kill cancerous cells. PMID:25855740

  18. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Science.gov (United States)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  19. Structure and rheological properties of acid-induced egg white protein gels

    NARCIS (Netherlands)

    Weijers, M.; Velde, van de F.; Stijnman, A.; Pijpekamp, van de A.; Visschers, R.W.

    2006-01-01

    This study compares the rheological properties of acid-induced gels prepared of industrial spray-dried egg white proteins (EWP) with the acid-induced gels prepared of ovalbumin (OA) and whey protein isolate (WPI). Also we aimed to form transparent gels of EWP by means of the cold-gelation process. W

  20. Selective Leaching of Vanadium from Roasted Stone Coal by Dilute Sulfuric Acid Dephosphorization-Two-Stage Pressure Acid Leaching

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2016-07-01

    Full Text Available A novel staged leaching process has been reported in this paper to selectively extract vanadium from roasted stone coal and the mechanisms have been clarified. Results showed that the leaching efficiency of V, Al, P and Fe was 80.46%, 12.24%, 0.67% and 3.12%, respectively, under the optimum dilute sulfuric acid dephosphorization (DSAD-two-stage pressure acid leaching (PAL conditions. The efficient separation of V from Fe, Al and P was realized. As apatite could be leached more easily than mica, the apatite could completely react with sulfuric acid, while the mica had almost no change in the DSAD process, which was the key aspect in realizing the effective separation of V from P. Similarly, the hydrolyzation of Fe and Al could be initiated more easily than that of V by decreasing the residual acid of leachate. The alunite and iron-sulphate compound generated in the first-stage PAL process resulted in the effective separation of V from Fe and Al.

  1. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Joana R. Viola

    2013-01-01

    Full Text Available Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.

  2. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  3. Chiral selectivity of amino acid adsorption on chiral surfaces—The case of alanine on Pt

    Energy Technology Data Exchange (ETDEWEB)

    Franke, J.-H.; Kosov, D. S. [Department of Physics, Campus Plaine - CP 231, Université Libre de Bruxelles, 1050 Brussels (Belgium)

    2015-02-07

    We study the binding pattern of the amino acid alanine on the naturally chiral Pt surfaces Pt(531), Pt(321), and Pt(643). These surfaces are all vicinal to the (111) direction but have different local environments of their kink sites and are thus a model for realistic roughened Pt surfaces. Alanine has only a single methyl group attached to its chiral center, which makes the number of possible binding conformations computationally tractable. Additionally, only the amine and carboxyl group are expected to interact strongly with the Pt substrate. On Pt(531), we study the molecule in its pristine as well as its deprotonated form and find that the deprotonated one is more stable by 0.47 eV. Therefore, we study the molecule in its deprotonated form on Pt(321) and Pt(643). As expected, the oxygen and nitrogen atoms of the deprotonated molecule provide a local binding “tripod” and the most stable adsorption configurations optimize the interaction of this “tripod” with undercoordinated surface atoms. However, the interaction of the methyl group plays an important role: it induces significant chiral selectivity of about 60 meV on all surfaces. Hereby, the L-enantiomer adsorbs preferentially to the Pt(321){sup S} and Pt(643){sup S} surfaces, while the D-enantiomer is more stable on Pt(531){sup S}. The binding energies increase with increasing surface density of kink sites, i.e., they are largest for Pt(531){sup S} and smallest for Pt(643){sup S}.

  4. Fabrication of chemical templates via selective laser-induced desorption of hexadecanethiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Schröter, Anja; Mathieu, Mareike; Franzka, Steffen [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); CENIDE – Center for Nanointegration Duisburg-Essen, 47048 Duisburg (Germany); Feydt, Jürgen; Irsen, Stephan [caesar – Center of Advanced European Studies and Research, 53175 Bonn (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); CENIDE – Center for Nanointegration Duisburg-Essen, 47048 Duisburg (Germany)

    2013-08-01

    A nonlinear photothermal laser patterning technique for rapid fabrication of chemical templates is demonstrated. Hexadecanethiol monolayers on Au-coated Si substrates are processed at λ = 532 nm, a 1/e{sup 2} spot diameter of d{sub 1/e{sup 2}}=2.8μm and ambient conditions. Local laser irradiation at high laser powers and short irradiation times in the micro-/millisecond range induces desorption of thiol molecules. The laser-depleted areas are backfilled with mercaptohexadecanoic acid in order to build up chemical templates. Atomic force microscopy, scanning electron microscopy and scanning Auger electron spectroscopy are used for characterization of these templates. In agreement with a selective laser process, the results indicate the formation of flat chemical patterns with well-defined boundaries. Complementary condensation experiments demonstrate the functionality of the patterns as hydrophilic/hydrophobic templates. In particular, upon decreasing the temperature below the dew point, selective formation of water droplets on the backfilled areas is observed.

  5. Fatty Acid Esters of Phloridzin Induce Apoptosis of Human Liver Cancer Cells through Altered Gene Expression

    Science.gov (United States)

    Nair, Sandhya V. G.; Ziaullah; Rupasinghe, H. P. Vasantha

    2014-01-01

    Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated

  6. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  7. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    Science.gov (United States)

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  8. [Epigenetic variability induced by nicotinic acid in Triticum aestivum L].

    Science.gov (United States)

    Bogdanova, E D

    2003-09-01

    The effect of nicotinic acid (NA) on hereditary traits of spring common wheat cultivar Kazakhstanskaya 126 (K.126) were studied under the laboratory and field conditions. Treatment of seeds and vegetating plants with 0.01-0.1% NA (aqueous solution) induced heritable epigenetic changes in wheat. As a result, strong tall plants with the long productive spike, large seeds, and several quantitative and qualitative characters other than in the original cultivar were obtained in the second and further generations after treatment. Crosses of changed plants with each other did not result in segregation with respect to leaf downiness or anthocyan stem color in F2-F4, suggesting the same epigenetic state of genes responsible for changed characters. In crosses with the original cultivar, characters of the changed plants always dominated in F1. Basing on the current views, the changes were attributed to a transition of the hl1 and pc recessive marker genes into new, dominant epiallelic states Hl1 and Pc, which respectively determine downy leaves and the colored stem. The NA effect was specific, since only one type of the variation was observed. The changed characters were stable, and no reversion to the original phenotype was detected in 57 generations.

  9. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    Science.gov (United States)

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  10. Determination of free fatty acids and triglycerides by gas chromatography using selective esterification reactions.

    Science.gov (United States)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-01-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  11. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  12. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa [Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818 (Japan); Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E. [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States); Guo, Lining, E-mail: lguo@metabolon.com [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States)

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  13. Ameliorative potential of sodium cromoglycate and diethyldithiocarbamic acid in restraint stress-induced behavioral alterations in rats.

    Science.gov (United States)

    Manchanda, Rajneet K; Jaggi, Amteshwar S; Singh, Nirmal

    2011-01-01

    The present study was designed to investigate the ameliorative effects of sodium cromoglycate and diethyldithiocarbamic acid in acute stress-induced behavioral alterations in rats subjected to restraint stress. The rats were placed in the restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Restraint stress-induced behavioral alterations were assessed using the hole-board, social interactions and open field tests. Restraint stress resulted in a decrease in the frequency of head dips, rearing in the hole board, line crossings and rearings in the open field, and an increase in avoidance behaviors in the social interaction tests. Sodium cromoglycate (25 mg/kg and 50 mg/kg, ip), a mast cell stabilizer, and diethyldithiocarbamic acid (75 mg/kg and 150 mg/kg, ip), a selective NF-κB inhibitor, were employed to modulate restraint stress-induced behavioral changes. The administration of sodium cromoglycate and diethyldithiocarbamic acid significantly attenuated the restraint stress-induced behavioral changes. The noted beneficial effects of sodium cromoglycate and diethyldithiocarbamic acid may possibly be attributed to mast cell stabilization and inhibition of NF-κB activity, respectively.

  14. Increased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures.

    Science.gov (United States)

    Ferhat, Lotfi; Esclapez, Monique; Represa, Alfonso; Fattoum, Abdellatif; Shirao, Tomoaki; Ben-Ari, Yezekiel

    2003-01-01

    We have previously shown that, in HEK 293 cells, overexpression of acidic calponin, an actin-binding protein, induces remodeling of actin filaments, leading to a change in cell morphology. In addition, this protein is found in dendritic spines of adult hippocampal neurons. We hypothesized that this protein plays a role in regulating actin-based filaments during dendritic spine plasticity. To assess this hypothesis, the pilocarpine model of temporal lobe epilepsy was selected because an important reorganization of the glutamatergic network, which includes an aberrant sprouting of granule cell axons, neo-synaptogenesis, and dendritic spine remodeling, is well established in the dentate gyrus. This reorganization begins after the initial period of status epilepticus after pilocarpine injection, during the silent period when animals display a normal behavior, and reaches a plateau at the chronic stage when the animals have developed spontaneous recurrent seizures. Our data show that the intensity of immunolabeling for acidic calponin was clearly increased in the inner one-third of the molecular layer of the dentate gyrus, the site of mossy fiber sprouting, and neo-synaptogenesis, at 1 and 2 weeks after pilocarpine injection (silent period) when the reorganization was taking place. In contrast, in chronic pilocarpine-treated animals, when the reorganization was established, the levels of labeling for acidic calponin in the inner molecular layer were similar to those observed in control rats. In addition, double immunostaining studies suggested that the increase in acidic calponin levels occurred within the dendritic spines. Altogether, these results are consistent with an involvement of acidic calponin in dendritic spine plasticity.

  15. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    Science.gov (United States)

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  16. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  17. Using In Vitro Immunomodulatory Properties of Lactic Acid Bacteria for Selection of Probiotics against Salmonella Infection in Broiler Chicks.

    Science.gov (United States)

    Feng, Junchang; Wang, Lihong; Zhou, Luoxiong; Yang, Xin; Zhao, Xin

    2016-01-01

    Poultry is known to be a major reservoir of Salmonella. The use of lactic acid bacteria has become one of successful strategies to control Salmonella in poultry. The purpose of this study was to select lactic acid bacteria strains by their in vitro immunomodulatory properties for potential use as probiotics against Salmonella infection in broiler chicks. Among 101 isolated lactic acid bacteria strains, 13 strains effectively survived under acidic (pH 2.5) and bile salt (ranging from 0.1% to 1.0%) conditions, effectively inhibited growth of 6 pathogens, and adhered to Caco-2 cells. However, their in vitro immunomodulatory activities differed significantly. Finally, three strains with higher in vitro immunomodulatory properties (Lactobacillus plantarum PZ01, Lactobacillus salivarius JM32 and Pediococcus acidilactici JH231) and three strains with lower in vitro immunomodulatory activities (Enterococcus faecium JS11, Lactobacillus salivarius JK22 and Lactobacillus salivarius JM2A1) were compared for their inhibitory effects on Salmonella adhesion and invasion to Caco-2 cells in vitro and their antimicrobial effects in vivo. The former three strains inhibited Salmonella adhesion and invasion to Caco-2 cells in vitro, reduced the number of Salmonella in intestinal content, spleen and liver, reduced the levels of lipopolysaccharide-induced TNF-α factor (LITAF), IL-1β, IL-6 and IL-12 in serum and increased the level of IL-10 in serum during a challenge study in vivo more efficiently than the latter three strains. These results suggest that in vitro immunomodulatory activities could be used as additional parameters to select more effective probiotics as feed supplements for poultry.

  18. Using In Vitro Immunomodulatory Properties of Lactic Acid Bacteria for Selection of Probiotics against Salmonella Infection in Broiler Chicks.

    Directory of Open Access Journals (Sweden)

    Junchang Feng

    Full Text Available Poultry is known to be a major reservoir of Salmonella. The use of lactic acid bacteria has become one of successful strategies to control Salmonella in poultry. The purpose of this study was to select lactic acid bacteria strains by their in vitro immunomodulatory properties for potential use as probiotics against Salmonella infection in broiler chicks. Among 101 isolated lactic acid bacteria strains, 13 strains effectively survived under acidic (pH 2.5 and bile salt (ranging from 0.1% to 1.0% conditions, effectively inhibited growth of 6 pathogens, and adhered to Caco-2 cells. However, their in vitro immunomodulatory activities differed significantly. Finally, three strains with higher in vitro immunomodulatory properties (Lactobacillus plantarum PZ01, Lactobacillus salivarius JM32 and Pediococcus acidilactici JH231 and three strains with lower in vitro immunomodulatory activities (Enterococcus faecium JS11, Lactobacillus salivarius JK22 and Lactobacillus salivarius JM2A1 were compared for their inhibitory effects on Salmonella adhesion and invasion to Caco-2 cells in vitro and their antimicrobial effects in vivo. The former three strains inhibited Salmonella adhesion and invasion to Caco-2 cells in vitro, reduced the number of Salmonella in intestinal content, spleen and liver, reduced the levels of lipopolysaccharide-induced TNF-α factor (LITAF, IL-1β, IL-6 and IL-12 in serum and increased the level of IL-10 in serum during a challenge study in vivo more efficiently than the latter three strains. These results suggest that in vitro immunomodulatory activities could be used as additional parameters to select more effective probiotics as feed supplements for poultry.

  19. Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane ...

    African Journals Online (AJOL)

    Abstract. Purpose: To examine the anticancer effect of salvianolic acid-A against human small cell lung cancer ... to most anticancer drugs and as such, salvianolic acid can be ..... chemistry, pharmacology, pharmacokinetics, and clinical use.

  20. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  1. Selective removal of phosphate for analysis of organic acids in complex samples.

    Science.gov (United States)

    Deshmukh, Sandeep; Frolov, Andrej; Marcillo, Andrea; Birkemeyer, Claudia

    2015-04-03

    Accurate quantitation of compounds in samples of biological origin is often hampered by matrix interferences one of which occurs in GC-MS analysis from the presence of highly abundant phosphate. Consequently, high concentrations of phosphate need to be removed before sample analysis. Within this context, we screened 17 anion exchange solid-phase extraction (SPE) materials for selective phosphate removal using different protocols to meet the challenge of simultaneous recovery of six common organic acids in aqueous samples prior to derivatization for GC-MS analysis. Up to 75% recovery was achieved for the most organic acids, only the low pKa tartaric and citric acids were badly recovered. Compared to the traditional approach of phosphate removal by precipitation, SPE had a broader compatibility with common detection methods and performed more selectively among the organic acids under investigation. Based on the results of this study, it is recommended that phosphate removal strategies during the analysis of biologically relevant small molecular weight organic acids consider the respective pKa of the anticipated analytes and the detection method of choice. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    Science.gov (United States)

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  3. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: lihuijsdx@163.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Key laboratory of plant resource and utilization, Jishou University, Hunan Jishou 416000 (China); Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China)

    2015-02-15

    Highlights: • Preparation of a vanillic acid imprinted mesoporous silica polymers. • Improved selectivity and adsorption capability of this MIPs. • Excellent mass transfer dynamics for the MIPs. • High solid phase extraction applicability toward real sample. - Abstract: A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g{sup −1}. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36–1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption–desorption recycling use could be observed.

  4. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria.

    Science.gov (United States)

    Vlková, Eva; Salmonová, Hana; Bunešová, Věra; Geigerová, Martina; Rada, Vojtěch; Musilová, Šárka

    2015-08-01

    Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...... of catalysts, oxidant pressure, reaction temperature, and substrate concentration were investigated. Quantitative yield of acetic acid was obtained with 1.2 wt % Ru(OH)x/CeO2 under optimized conditions (150 °C, 10 bar O2, 12 h of reaction time, 0.23 mol % Ru to substrate)....

  6. Iron prevents ascorbic acid (vitamin C) induced hydrogen peroxide accumulation in copper contaminated drinking water.

    Science.gov (United States)

    Jansson, Patric J; Lindqvist, Christer; Nordström, Tommy

    2005-11-01

    Ascorbic acid (vitamin C) induced hydrogen peroxide (H(2)O(2)) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H(2)O(2) formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H(2)O(2) formation during acidic conditions (pH: 3.5-5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H(2)O(2) concentration exceeded 400 microM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H(2)O(2) accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H(2)O(2) formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H(2)O(2). Ascorbic acid/Cu(II)-induced H(2)O(2) formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.

  7. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    Science.gov (United States)

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  8. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    Science.gov (United States)

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  9. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs).

    Science.gov (United States)

    Kuduk, Scott D; Beshore, Douglas C

    2014-01-01

    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  10. Microcultures of lactic acid bacteria: characterization and selection of strains, optimization of nutrients and gallic acid concentration.

    Science.gov (United States)

    Guzmán-López, Oswaldo; Loera, Octavio; Parada, José Luis; Castillo-Morales, Alberto; Martínez-Ramírez, Cándida; Augur, Christopher; Gaime-Perraud, Isabelle; Saucedo-Castañeda, Gerardo

    2009-01-01

    Eighteen lactic acid bacteria (LAB) strains, isolated from coffee pulp silages were characterized according to both growth and gallic acid (GA) consumption. Prussian blue method was adapted to 96-well microplates to quantify GA in LAB microcultures. Normalized data of growth and GA consumption were used to characterize strains into four phenotypes. A number of 5 LAB strains showed more than 60% of tolerance to GA at 2 g/l; whereas at 10 g/l GA growth inhibition was detected to a different extent depending on each strain, although GA consumption was observed in seven studied strains (>60%). Lactobacillus plantarum L-08 was selected for further studies based on its capacity to degrade GA at 10 g/l (97%). MRS broth and GA concentrations were varied to study the effect on growth of LAB. Cell density and growth rate were optimized by response surface methodology and kinetic analysis. Maximum growth was attained after 7.5 h of cultivation, with a dilution factor of 1-1/2 and a GA concentration between 0.625 and 2.5 g/l. Results indicated that the main factor affecting LAB growth was GA concentration. The main contribution of this study was to propose a novel adaptation of a methodology to characterize and select LAB strains with detoxifying potential of simple phenolics based on GA consumption and tolerance. In addition, the methodology presented in this study integrated the well-known RSM with an experimental design based on successive dilutions.

  11. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  12. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    Science.gov (United States)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  13. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes

    DEFF Research Database (Denmark)

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte;

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies...

  14. Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid.

    OpenAIRE

    Kondo, S; Yamagishi, A; Oshima, T

    1991-01-01

    Uracil auxotrophs of Sulfolobus acidocaldarius were positively selected by using 5-fluoroorotic acid. The wild-type strain was unable to grow in medium containing 5-fluoroorotic acid, whereas the mutants grew normally. Positive selection could be done for the auxotrophs. Mutants deficient in orotidine-5'-monophosphate pyrophosphorylase activity were isolated.

  15. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  16. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  17. Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin

    Science.gov (United States)

    Kliber, Marta; Broda, Małgorzata A.; Nackiewicz, Joanna

    2016-02-01

    Effect of selected amino acids (glycine, L-histidine, L-cysteine, L-serine, L-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366 nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC: amino acids complexes in the gas phase and in water environment as well as the BSSE corrected interaction energies indicates that the more likely is the formation of equatorial complexes in which H-bonds are formed between the COOH groups of the phthalocyanine and carboxyl or amino groups of amino acids. UV-Vis spectra calculated by employing time dependent density functional theory (TD-DFT) are also consistent with this conclusion.

  18. Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin.

    Science.gov (United States)

    Kliber, Marta; Broda, Małgorzata A; Nackiewicz, Joanna

    2016-02-15

    Effect of selected amino acids (glycine, l-histidine, l-cysteine, l-serine, l-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC: amino acids complexes in the gas phase and in water environment as well as the BSSE corrected interaction energies indicates that the more likely is the formation of equatorial complexes in which H-bonds are formed between the COOH groups of the phthalocyanine and carboxyl or amino groups of amino acids. UV-Vis spectra calculated by employing time dependent density functional theory (TD-DFT) are also consistent with this conclusion.

  19. A novel Method for the selective recovery and purification of gamma-polyglutamic acid from Bacillus licheniformis fermentation broth.

    Science.gov (United States)

    Manocha, Bhavik; Margaritis, Argyrios

    2010-01-01

    Microbially produced gamma-polyglutamic acid (gamma-PGA) is a commercially important biopolymer with many applications in biopharmaceutical, food, cosmetic and waste-water treatment industries. Owing to its increasing demand in various industries, production of gamma-PGA is well documented in the literature, however very few methods have been reported for its recovery. In this paper, we report a novel method for the selective recovery and purification of gamma-PGA from cell-free fermentation broth of Bacillus licheniformis. The cell-free fermentation broth was treated with divalent copper ions, resulting in the precipitation of gamma-PGA, which was collected as a pellet by centrifugation. The pellet was resolubilized and dialyzed against de-ionized water to obtain the purified gamma-PGA biopolymer. The efficiency and selectivity of gamma-PGA recovery was compared with ethanol precipitation method. We found that 85% of the original gamma-PGA content in the broth was recovered by copper sulfate-induced precipitation, compared to 82% recovery by ethanol precipitation method. Since ethanol is a commonly used solvent for protein precipitation, the purity of gamma-PGA precipitate was analyzed by measuring proteins that co-precipitated with gamma-PGA. Of the total proteins present in the broth, 48% proteins were found to be co-precipitated with gamma-PGA by ethanol precipitation, whereas in copper sulfate-induced precipitation, only 3% of proteins were detected in the final purified gamma-PGA, suggesting that copper sulfate-induced precipitation offers better selectivity than ethanol precipitation method. Total metal content analysis of the purified gamma-PGA revealed the undetectable amount of copper ions, whereas other metal ions detected were in low concentration range. The purified gamma-PGA was characterized using infrared spectroscopy. Copyright 2010 American Institute of Chemical Engineers

  20. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    Science.gov (United States)

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse.

  1. Trihydroxybenzoic Acid Dimer-induced Apoptosis Effects in vitro

    Institute of Scientific and Technical Information of China (English)

    NIU Feng-lan; WANG Xue-dong; WANG Ying-li; SONG Lian-sheng

    2005-01-01

    The in vitro inhibitory effect of trihydroxybenzoic acid dimer(TAD) extracted from Trapabispinosd roxb on HeLa cell growth was investigated via the MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diophenyl-tetrazolium bromide] reduction method. The morphological changes of HeLa cells were observed by means of an optical microscope and a transmission electron microscope(TEM); the cell circles and apoptosis were detected by a flow cytometer. It was found that TAD can significantly inhibit the growth of Hela cells and can induce the apoptosis of HeLa cells. It was also found that the inhibition to the growth of Hela cells and the induction to the apoptosis of HeLa cells have a dosage-dependent feature. The inhibiting rates of TAD with mass concentrations of 25.000, 12.500 and 6.250 mg/L to the HeLa cell growth were 52.04%, 34.44% and 23.72% after 30 h, respectively, while those with TAD mass concentrations of 100.000, 50.000, 25.000, 12.500, 6.250 and 3.125 mg/L showed positive correlation with a correlation coefficient value of r=0.9859(P<0.01) and a IC50 value of 10.90 mg/L. Observed by means of TEM, the HeLa cells exposed to 25.000, 12.500 and 6.250 mg/L TAD showed apoptosis to various extents, shrinkage of the cell nuclei, condensation and margination of chromatin, and cavitation of mitochondrion. An apoptosis peak was detected via a flow cytometer. It can be drawn from the results that TAD extracted from Trapabispinosd roxb has an evident inhibitory effect on the proliferation of and an inductive effect on the apoptosis of HeLa cells, but has no obvious arrest action towards the cell circles of HeLa cells.

  2. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Erichsen, Mette Navy; Nielsen, Christina Wøhlk

    2009-01-01

    The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the ......- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool....

  3. Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing

    Directory of Open Access Journals (Sweden)

    Yafen Wang

    2017-07-01

    Full Text Available Nucleic acids can be sequenced by a chemical procedure that partially damages the nucleotide positions at their base repetition. Many methods have been reported for the selective recognition of guanine. The accurate identification of guanine in both single and double regions of DNA and RNA remains a challenging task. Herein, we present a new, non-toxic and simple method for the selective recognition of guanine in both DNA and RNA sequences via ammonium persulfate modification. This strategy can be further successfully applied to the detection of 5-methylcytosine by using PCR.

  4. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands.

    Science.gov (United States)

    Elmazar, M M A; Nau, H

    2004-11-01

    Previous studies in our laboratory identified retinoid-induced defects that are mediated by RAR-RXR heterodimerization using interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in mice (Elmazar et al. 1997, Toxicol Appl Pharmacol 146:21-28; Elmazar et al. 2001, Toxicol Appl Pharmacol 170:2-9; Nau and Elmazar 1999, Handbook of experimental pharmacology, vol 139, Retinoids, Springer-Verlag, pp 465-487). The present study was designed to investigate whether these RAR-RXR heterodimer-mediated defects can be also induced by interactions of natural and synthetic ligands for retinoid receptors. A non-teratogenic dose of the natural RXR agonist phytanic acid (100 mg/kg orally) or its precursor phytol (500 mg/kg orally) was coadministered with a synthetic RARalpha-agonist (Am580; 5 mg/kg orally) to NMRI mice on day 8.25 of gestation (GD8.25). Furthermore, a non-teratogenic dose of the synthetic RXR agonist LGD1069 (20 mg/kg orally) was also coadministered with the natural RAR agonist, all- trans-retinoic acid (atRA, 20 mg/kg orally) or its precursor retinol (ROH, 50 mg/kg orally) to NMRI mice on GD8.25. The teratogenic outcome was scored in day-18 fetuses. The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol. Am580-induced exencephaly and cleft palate, which were not potentiated by coadministration with the synthetic RXR agonists, were also not potentiated by coadministration with either phytanic acid or its precursor phytol. LGD1069 potentiated atRA- and ROH-induced resorption, exencephaly, spina bifida, aperta, ear anotia and microtia, macroglossia, kidney hypoplasia, undescended testis, atresia ani, tail defects and fetal weight retardation, but not cleft palate. These results suggest that synergistic

  5. Characterization of AQPs in Mouse, Rat, and Human Colon and Their Selective Regulation by Bile Acids

    DEFF Research Database (Denmark)

    Yde, Jonathan; Keely, Stephen; Wu, Qi

    2016-01-01

    epithelial cells from rats (AQP1, 3, 4, 7, 8) and mice (AQP1, 4, 8). Several AQPs were also detected in human colon (AQP1, 3, 4, 7-9). Immunohistochemistry localized AQP1 to the apical plasma membrane of epithelial cells in the bottom of the crypts, whereas AQP3 (rat, human) and AQP4 (mice, human) were......In normal individuals, the epithelium of the colon absorbs 1.5-2 l of water a day to generate dehydrated feces. However, in the condition of bile acid malabsorption (BAM), an excess of bile acids in the colon results in diarrhea. Several studies have attempted to address the mechanisms contributing...... to BAM induced by various bile acids. However, none have addressed a potential dysregulation of aquaporin (AQP) water channels, which are responsible for the majority of transcellular water transport in epithelial cells, as a contributing factor to the onset of diarrhea and the pathogenesis of BAM...

  6. Synthesis and Preliminary Evaluation of the Antimicrobial Activity of Selected 3-Benzofurancarboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Irena Wolska

    2010-07-01

    Full Text Available Halogen derivatives of selected 3-benzofurancarboxylic acids were prepared using 6-acetyl-5-hydroxy-2-methyl-3-benzofuranocarboxylic acid as starting material. 1H-NMR spectra were obtained for all of the synthesized structures, and for compound VI, an X-ray crystal structure was also obtained. All derivatives were tested for antimicrobial activity against a selection of Gram-positive cocci, Gram-negative rods and yeasts. Three compounds, III, IV, and VI, showed antimicrobial activity against Gram-positive bacteria (MIC 50 to 200 mg/mL. Compounds VI and III exhibited antifungal activity against the Candida strains C. albicans and C. parapsilosis (MIC – 100 mg/mL.

  7. Modulating the selectivity of matriptase-2 inhibitors with unnatural amino acids.

    Science.gov (United States)

    St-Georges, Catherine; Désilets, Antoine; Béliveau, François; Ghinet, Mariana; Dion, Sébastien P; Colombo, Éloic; Boudreault, Pierre-Luc; Najmanovich, Rafael J; Leduc, Richard; Marsault, Éric

    2017-03-31

    Matriptase-2, a type II transmembrane serine protease (TTSP), is expressed in the liver and regulates iron homeostasis via the cleavage of hemojuvelin. Matriptase-2 emerges as an attractive target for the treatment of conditions associated with iron overload, such as hemochromatosis or beta-thalassemia. Starting from the crystal structure of its closest homolog matriptase, we constructed a homology model of matriptase-2 in order to further optimize the selectivity of serine trap peptidomimetic inhibitors for matriptase-2 vs matriptase. Careful modifications of the P4, P3 and P2 positions with the help of unnatural amino acids led to a thorough understanding of Structure-Activity Relationship and a >60-fold increase in selectivity for matriptase-2 vs matriptase. Additionally, the introduction of unnatural amino acids led to significant increases in plasma stability. Such compounds represent useful pharmacological tools to test matriptase-2 inhibition in a context of iron overload.

  8. Synthesis of Homoveratric Acid-Imprinted Polymers and Their Evaluation as Selective Separation Materials

    Directory of Open Access Journals (Sweden)

    Mariusz Dana

    2011-05-01

    Full Text Available A bulk polymerization method was used to easily and efficiently prepare homo-veratric acid (3,4-dimethoxyphenylacetic acid-imprinted polymers from eight basic monomers: 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, N-allylaniline, N-allylpiperazine, allylurea, allylthiourea, and allylamine, in the presence of homoveratric acid as a template in N,N-dimethylformamide as a porogen. The imprinted polymer prepared from allylamine had the highest affinity to the template, showing an imprinting factor of 3.43, and allylamine polymers MIP8/NIP8 were selected for further studies. Their binding properties were analyzed using the Scatchard method. The results showed that the imprinted polymers have two classes of heterogeneous binding sites characterized by two pairs of Kd, Bmax values: Kd(1 = 0.060 μmol/mL, Bmax(1 = 0.093 μmol/mg for the higher affinity binding sites, and Kd(2 = 0.455 μmol/mL, Bmax(2 = 0.248 μmol/mg for the lower affinity binding sites. Non-imprinted polymer has only one class of binding site, with Kd = 0.417 μmol/mL and Bmax = 0.184 μmol/mg. A computational analysis of the energies of the prepolymerization complexes was in agreement with the experimental results. It showed that the selective binding interactions arose from cooperative three point interactions between the carboxylic acid and the two methoxy groups in the template and amino groups in the polymer cavities. Those results were confirmed by the recognition studies performed with the set of structurally related compounds. Allylamine polymer MIP8 had no affinity towards biogenic amines. The obtained imprinted polymer could be used for selective separation of homoveratric acid.

  9. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  10. Selective recognition and separation of amino acids by molecularly imprinted polymers

    OpenAIRE

    Trikka, F.A.; Papi, R. M.; Kyriakidis, D A

    2008-01-01

    Journal URL: http://www.springer.at/amino_acids Molecularly imprinted polymers (MIPs) are smart tailored-made materials used for the sensitive and selective recognition of small molecules and=or biologically important substances. The target molecule acting as a molecular template is copolymerized with an excess of afunctional monomer and a cross-linker. The template is entrapped in the formed polymer and following its removal complementary cavities in structure and in properties to the ...

  11. Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene

    Science.gov (United States)

    Faghihian, Hossein; Mohammadi, Mohammad Hadi

    2013-01-01

    Acid-activated and pillared montmorillonite were prepared as novel catalysts for alkylation of benzene with 1-decene for production of linear alkylbenzene. The catalysts were characterized by X-ray diffraction, FT-IR spectroscopy, N2 adsorption isotherms, temperature programmed desorption of NH3, scanning electron microscopy and elemental and thermal analysis techniques. It was found that acid-activation of clays prior to pillaring increased the porosity, total specific surface area, total pore volume and surface acidity of the catalysts. Optimization of the reaction conditions was performed by varying catalyst concentration (0.25-1.75 wt%), reactants ratio (benzene to 1-decene of 8.75, 12 and 15) and temperature (115-145 °C) in a batch slurry reactor. Under optimized conditions more than 98% conversion of 1-decene, and complete selectivity for monoalkylbenzenes were achieved.

  12. A Multiwall Carbon Nanotube-chitosan Modified Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid

    Institute of Scientific and Technical Information of China (English)

    Ling Yan JIANG; Chuan Yin LIU; Li Ping JIANG; Guang Han LU

    2005-01-01

    A novel multiwall carbon nanotube-chitosan modified electrode has been prepared.The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peak by 212 mY. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine can be determined selectively with the carbon nanotube-chitosan modified electrode. The electrode shows good sensitivity, selectivity and stability.keywords: Nanotube-chitosan modified electrode, dopamine, ascorbic acid.

  13. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    Science.gov (United States)

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  14. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    Science.gov (United States)

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid. © 2013 Published by Elsevier B.V.

  15. Comment: On the consequences of sexual selection for fisheries‐induced evolution

    National Research Council Canada - National Science Library

    Urbach, Davnah; Cotton, Samuel

    2008-01-01

    ...) can have profound evolutionary consequences for life history traits. A recent and welcome publication provided the first description of how sexual selection might influence the outcome of fisheries‐induced evolution (FIE...

  16. Selective-resputtering-induced perpendicular magnetic anisotropy in amorphous TbFe films.

    Science.gov (United States)

    Harris, V G; Pokhil, T

    2001-08-06

    Perpendicular magnetic anisotropy energy in rf magnetron sputtered amorphous TbFe films is measured to increase exponentially with pair-order anisotropy induced by the selective resputtering of surface adatoms during film growth.

  17. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  18. Isolation and Fatty Acid Profile of Selected Microalgae Strains from the Red Sea for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2013-05-01

    Full Text Available The isolation of lipid-rich autochthonous strains of microalgae is a crucial stage for the development of a microalgae-based biofuel production plant, as these microalgae already have the necessary adaptations to withstand competition, predation and the temperatures observed at each production site. This is particularly important in extreme climates such as in Saudi Arabia. Resorting to fluorescence activated cell sorting (FACS we screened for and isolated several microalgal strains from samples collected from the Red Sea. Relying on the fluorescence of BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diazasindacene and growth performance, four promising candidates were identified and the total lipid content and fatty acid profile was assessed for biofuels production. Selected isolates were classified as chlorophytes, belonging to three different genera: Picochlorum, Nannochloris and Desmochloris. The lipid contents were assessed microscopically by means of BODIPY 505/515-associated fluorescence to detect intracellular lipid bodies, which revealed several lipid drops in all selected strains. This result was confirmed by lipid gravimetric determination, which demonstrated that all strains under study presented inner cell lipid contents ranging from 20% to 25% of the biomass dry weight. Furthermore, the fatty acid methyl esters profile of all strains seems ideal for biodiesel production due to a low degree of polyunsaturated fatty acid methyl esters and high amount of palmitic and oleic acids.

  19. Acid-Base Buffering Properties of Five Legumes and Selected Food in vitro

    Directory of Open Access Journals (Sweden)

    Maher M. Al-Dabbas

    2010-01-01

    Full Text Available Problem statement: in vitro acid-Buffering Capacity (BC values of 5% (dry matter aqueous homogenized suspension of five legumes (broad bean, lentils, chickpea, kidney bean and lupine and of selected antacid home preparations (cow's milk, almond, peanut, licorice, carob and lettuce stem were investigated within and among samples from their respective initial pH until pH was decreased to 1.5. BC was the highest for cow's milk, carob, licorice and lettuce stem (BC values 1.65-1.97, intermediate for almond and peanut (BC values, 1.37-1.64 and the lowest for selected legumes (0.84-1.36. Approach: The purpose of this study was to measure in vitro the buffering capacity potential of legumes and other foods commonly used in Jordan as heartburn remedies to determine the ability of these products to de-acidify, neutralize acid, or increase pH levels of an acid and a base solution. Results: BC of the studied legumes showed positive and strong correlations, with protein, aspartic and glutamic amino acids contents (R = 0.95, 0.94, 0.89, respectively and relatively weak correlation with phosphorus content (R = 0.38. Conclusion/Recommendations: The differences in BC within and among studied samples were largely due to the differences in their chemical compositions. Protein, fiber, ash, organic acids and aspartic and glutamic acids contents and alkalinity of ashes showed significant BC, while high fat content in almond and peanut failed to show considerable BC.

  20. Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Susana [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18-26, 08034, Barcelona (Spain)]. E-mail: sgbqam@iiqab.csic.es; Mueller, Jutta [Europa University for Applied Sciences Fresenius, Limburger Strasse 2, D-65510 Idstein (Germany)]. E-mail: mueller.jutta@fh-fresenius.de; Petrovic, Mira [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18-26, 08034, Barcelona (Spain) and Institucio Catalana de Recerca i Estudis Avancats (ICREA) Barcelona (Spain)]. E-mail: mpeqam@cid.csic.es; Barcelo, Damia [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18-26, 08034, Barcelona (Spain)]. E-mail: dbcqam@cid.csic.es; Knepper, Thomas P. [Europa University for Applied Sciences Fresenius, Limburger Strasse 2, D-65510 Idstein (Germany)]. E-mail: knepper@fh-fresenius.de

    2006-12-15

    The biodegradation of selected priority acidic pesticides MCPP, MCPA, 2,4-D, 2,4-DP and bentazone and the acidic pharmaceutical diclofenac was investigated using a membrane bioreactor (MBR) and a fixed-bed bioreactor (FBBR). A pilot plant MBR was fed with raw water spiked with the selected compounds. The experiment was repeated every week during four weeks to enhance the adaptation of microorganisms. In order to further study the biodegradability of these compounds, degradation studies in a FBBR were carried out. All the samples were analysed by solid phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS). The results indicate that in the MBR compounds except for bentazone were eliminated within the first day of the experiment at rates ranging from 44% to 85%. Comparing these results with the degradation rates in the FBBR showed that in the latter only MCPP, MCPA 2,4-D and 2,4-DP were degraded after a much longer adaptation phase of microorganisms. - Biodegradation rate of selected acidic pesticides and pharmaceuticals depends on adaptation.

  1. Identification of target genes of transcription factor CEBPB in acute promyelocytic leukemia cells induced by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Lei Yu; Yang-De Zhang; Jun Zhou; De-Ming Yao; Xiang Li

    2013-01-01

    Objective: To indentify target genes of transcription factor CCAAT enhancer-binding proteinβ (CEBPB) in acute promyelocytic leukemia cells induced by all-trans retinoic acid. Methods:A new strategy for high-throughput identification of direct target genes was established by combining chromatin immunoprecipitation (ChIP) with in vitro selection. Then, 106 potential CEBPB binding fragments from the genome of the all-trans retinoic acid (ATRA)-treated NB4 cells were identified. Results: Of them, 82 were mapped in proximity to known or previously predicted genes; 7 were randomly picked up for further confirmation by ChIP-PCR and 3 genes (GALM, ITPR2 and ORM2) were found to be specifically up-regulated in the ATRA-treated NB4 cells, indicating that they might be the down-stream target genes of ATRA. Conclusions: Our results provided new insight into the mechanisms of ATRA-induced granulocytic differentiation.

  2. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    Science.gov (United States)

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  3. Dual role of endogenous serotonin in 2,4,6-trinitrobenzene sulfonic acid-induced colitis

    Directory of Open Access Journals (Sweden)

    Alberto eRapalli

    2016-03-01

    Full Text Available Background and Aims: Changes in gut serotonin content have been described in Inflammatory Bowel Disease and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous serotonin through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of Inflammatory Bowel Disease. Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135, 5-HT2A (Ketanserin, 5-HT3 (Ondansetron, 5-HT4 (GR125487, 5-HT7 (SB269970 receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylaminotetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4 and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it.Conclusions: The prevailing deleterious contribution given by endogenous serotonin to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders.

  4. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    Science.gov (United States)

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease.

  5. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Science.gov (United States)

    Sanchez, Laura M; Cheng, Andrew T; Warner, Christopher J A; Townsley, Loni; Peach, Kelly C; Navarro, Gabriel; Shikuma, Nicholas J; Bray, Walter M; Riener, Romina M; Yildiz, Fitnat H; Linington, Roger G

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  6. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Directory of Open Access Journals (Sweden)

    Laura M Sanchez

    Full Text Available Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1 was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  7. Electroless Plating on Plastic Induced by Selective Laser Activation

    DEFF Research Database (Denmark)

    Zhang, Yang; Tang, Peter Torben; Hansen, Hans Nørgaard

    2009-01-01

    This paper presents a new method for selective micro metallization of polymers. A Nd:YAG laser is employed to draw patterns on polymer surfaces that are submerged in a liquid (usually water). After subsequent activation with palladium chloride and followed by auto-catalytic electroless plating...... in width with 50μm between two tracks, but further optimization is expected in this field. Due to the porous and rough structure of the laser track, excellent adhesion between metallization and substrate is obtained. On top of the first copper layer, additional metal such as nickel, gold, palladium or tin...

  8. Selection of dairy culture and changes of Podravec cheese acidity during production

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2002-06-01

    Full Text Available The selection and characteristics of dairy culture play a basic role in all types of cheese production process. The most important characteristic is acidification ability i.e. lactic acid formation, which regulates manufacturing and maturing conditions of cheese, thus affecting its organoleptic characteristics as well. In this work the results on control of acidity increase in Podravec cheeseproduction are presented. In the production process, a technical culture as well as identical frozen and concentrated culture, with and without auxiliary Streptococcus thermophilus for direct milk inoculation, were used. It was established that the acidity, expressed as pH value, is more intensively developed in cheeses produced with culture for direct inoculation. This was especially evident in the first phases of production i.e. before cheese salting. During salting the acidity of cheeses, in both cases, was almoust identical. Cheeses produced with identical frozen culture and auxiliary Streptococcus thermophilus culture had more pronounced acidity before salting and lower after salting in comparison with cheeses with the mentioned two cultures. Organoleptic and other characteristics of mature cheeses were identical.

  9. Content of amino acids and minerals in selected sorts of legumes

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2013-07-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The aim of this study was to determine amino acid composition and mineral content in selected legume samples. All analyses were carried out at the laboratory temperature of 21±2 °C in triplicate. Amino acid composition was determined using the automatic amino acid analyzer AAA 400 with post-column derivatization. To assess the nutritional value of protein, index of essential amino acids (EAAI was calculated. Minerals were determined using the atomic absorption spectrometer AA 30. All results were statistically evaluated. The highest content of Cys, Glu, Asp, Leu, Lys and Arg was determined in seeds of G. max; only the content of Cys and His was lower than 10 g kg-1. The greatest total content of essential amino acids (EAA was discovered in soybeans, almost 128 g kg-1. The majority (Na, K, Mg, and Ca, trace (Fe, Zn, and Cr and toxic elements (Pb, Cd were determined. Legumes were rich in Mg and Ca-mainly G. max and Ph. vulgaris. The content of Mg was 2.1 g/1000g in soybeans and 1.6 g/1000g in common beans. Also in these two legumes the greatest concentration of toxic Pb was found. Values obtained during the determination of the chemical composition in samples of legumes and buckwheat products can be influenced by many factors, e.g. climatic conditions, location etc.

  10. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. RES

  11. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    This study examined the effects of simulated acid rain (SAR) of different pH ... in sandy loam soil with sufficient organic matter, pale yellow in color and pH 7.3 and ... Effects of SAR increased more dramatically with the increase of SAR acidity.

  12. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  13. Confined Nystatin Polyenes in Nanopore Induce Biologic Ionic Selectivity

    Directory of Open Access Journals (Sweden)

    Khaoula Boukari

    2016-01-01

    Full Text Available Antifungal polyenes such as nystatin (or amphotericin B molecules play an important role in regulating ions permeability through membrane cell. The creation of self-assembled nanopores into the fungal lipid membranes permits the leakage and the selectivity of ions (i.e., blockage of divalent cations that cause the cell death. These abilities are thus of first interest to promote new biomimetic membranes with improved ionic properties. In the present work, we will use molecular dynamic simulations to interpret recent experimental data that showed the transfer of the nystatin action inside artificial nanopore in terms of ion permeability and selectivity. We will demonstrate that nystatin polyenes can be stabilized in a hydrophobic carbon nanotube, even at high concentration. The high potential interaction between the polyenes and the hydrophobic pore wall ensures the apparition of a hole inside the biomimetic nanopore that changes its intrinsic properties. The probability ratios of cation versus anion show interesting reproducibility of experimental measurements and, to a certain extent, opened the way for transferring biological properties in synthetic membranes.

  14. A micro E-DNA sensor for selective detection of dopamine in presence of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    朱丹; 李敏; 王丽华; 左小磊

    2015-01-01

    In this paper, a novel method for selectively detection of dopamine (DA) in the interference of ascorbic acid (AA) is described. A nanometer-sized gold flower microelectrode (NGFME) is prepared by flame-etching and electrochemical deposition. The electrode tip was characterized by scanning electron microscope (SEM). The NGFME is sized at about 100 µm and dimensions of thorns of the electrode were in nanometers. By modifying with DA aptamer on the surface, the prepared aptasensor can selectively detect DA even in the presence of high concentration AA. Experimental results show that this NGFME has no response to AA. As a comparison, the carbon fiber electrode without DA aptamer modification is unable to effectively detect DA in the presence of AA. The NGFME is easy-to-prepare, selective and sensitive for DA detection down to 25 µM. The electrode can be expected to detect DA in vivo and in real biological samples.

  15. Amino Acid Derivatives as New Zinc Binding Groups for the Design of Selective Matrix Metalloproteinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Mariateresa Giustiniano

    2013-01-01

    Full Text Available A number of matrix metalloproteinases (MMPs are important medicinal targets for conditions ranging from rheumatoid arthritis to cardiomyopathy, periodontal disease, liver cirrhosis, multiple sclerosis, and cancer invasion and metastasis, where they showed to have a dual role, inhibiting or promoting important processes involved in the pathology. MMPs contain a zinc (II ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In an effort to devise new approaches to selective inhibitors, in this paper, we describe the synthesis and preliminary biological evaluation of amino acid derivatives as new zinc binding groups (ZBGs. The incorporation of selected metal-binding functions in more complex biphenyl sulfonamide moieties allowed the identification of one compound able to interact selectively with different MMP enzymatic isoforms.

  16. SOIL POLLUTION OF SELECTED PAHS AS A FACTOR AFFECTING THE PROPERTIES OF HUMIC ACIDS

    Directory of Open Access Journals (Sweden)

    Bożena Dębska

    2014-01-01

    Full Text Available It is well-known that the properties of humus soil substances (including humic acids are soil-type-specific. However, one shall consider the fact that properties of organic matter of soil can be modified by farming system (crop rotation, fertilisation as well as other external factors, including pollutants; PAHs. The objective of the paper is to determine the effect of a single-time pollution of soils with high rates of PAHs on the properties of humic acids. The research was performed with the samples of soils representative for the Kujawy and Pomorze Region (Phaeozems, Luvisol, Haplic Arenosols, Fluvisols. Soil samples were polluted with selected PAHs; fluorene, anthracene, pyrene and chrysene at the amount corresponding to 100 mg PAHs · kg-1. Treatments, i.e., soils + PAHs, were incubated for 180 and 360 days at the temperature of 20–25 ºC and at constant moisture of 50 % of field water capacity. Humic acids were extracted from the soil samples prior to and after 180 and 360 days of incubation. The following analyses were performed for separating humic acids: elemental composition, UV-VIS and IR spectrophotometric analyses, susceptibility to oxidation. Results demonstrated that a single introduction of fluorene, anthracene, pyrene and chrysene at very high rates into soils affects the properties of humic acids. There was mostly recorded a decrease in coefficients of absorbance A2/6 and A4/6, an increase in the parameter defining the susceptibility of humic acids to oxidation. There were also noted changes in the pattern of spectra in infrared and the values of the parameter defining the degree of internal oxidation of the humic acids molecules.

  17. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  18. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    Science.gov (United States)

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  19. Study of coagulation processes of selected humic acids under copper ions influence*

    Science.gov (United States)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution

  20. Selective serotonin-norepinephrine reuptake inhibitors-induced Takotsubo cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Rahul Vasudev

    2016-01-01

    Full Text Available Context: Takotsubo translates to "octopus pot" in Japanese. Takotsubo cardiomyopathy (TTC is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin-norepinephrine reuptake inhibitors (SNRI-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC.

  1. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  2. Specific chiral sensing of amino acids using induced circularly polarized luminescence of bis(diimine)dicarboxylic acid europium(III) complexes.

    Science.gov (United States)

    Okutani, Kazuhiro; Nozaki, Koichi; Iwamura, Munetaka

    2014-06-02

    The circularly polarized luminescence (CPL) from [Eu(pda)2](-) (pda = 1,10-phenanthroline-2,9-dicarboxylic acid) and [Eu(bda)2](-) (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) in aqueous solutions containing various amino acids was investigated. The europium(III) complexes exhibited bright-red luminescence assignable to the f-f transition of the Eu(III) ion when irradiated with UV light. Although the luminescence was not circularly polarized in the solid state or in aqueous solutions, in accordance with the achiral crystal structure, the complexes exhibited detectable induced CPL (iCPL) in aqueous solutions containing chiral amino acids. In the presence of L-pyrrolidonecarboxylic acid, both [Eu(pda)2](-) and [Eu(bda)2](-) showed similar iCPL intensity (glum ∼ 0.03 for the (5)D0 → (7)F1 transition at 1 mol·dm(-3) of the amino acid). On the other hand, in the presence of L-histidine or L-arginine, [Eu(pda)2](-) exhibited intense CPL (glum ∼ 0.08 for the (5)D0 → (7)F1 transition at 0.10 mol·dm(-3) of the amino acid), whereas quite weak CPL was observed for [Eu(bda)2](-) under the same conditions (glum amino acids, [Eu(pda)2](-) was found to be a good chiral CPL probe with high sensitivity (about 10(-2) mol·dm(-3)) and high selectivity for L-histidine at pH 3 and for L-arginine at pH 7. The mechanism of iCPL was evaluated by analysis of the fine structures in the luminescence spectra and the amino acid concentration dependence of glum. For the [Eu(pda)2](-)-histidine/arginine systems, the europium(III) complexes possess coordination structures similar to that in the crystal with slight distortion to form a chiral structure due to specific interaction with two zwitterionic amino acids. This mechanism was in stark contrast to that of the europium(III) complex-pyrrolidonecarboxylic acid system in which one amino acid coordinates to the Eu(III) ion to yield an achiral coordination structure.

  3. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    Science.gov (United States)

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  4. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    Science.gov (United States)

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.

  5. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions.

    Science.gov (United States)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-02-28

    Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100-1100mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15mg/gh were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16g/m(2).

  6. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent.

  7. Absence of correlation between ACh-induced Ca influx and phosphatidic acid labeling in rat uterus.

    Science.gov (United States)

    Ichida, S; Moriyama, M; Hirooka, Y; Okazaki, Y; Yoshioka, K

    1984-11-27

    Rat uterine smooth muscle was preincubated in Ca-depleted modified Locke-Ringer solution to investigate the correlation between the 32Pi incorporation into phosphatidic acid induced by acetylcholine and the contractile response to acetylcholine induced by the addition of CaCl2 (Ca influx). The results showed that in rat uterine smooth muscle under these conditions phosphatidic acid does not act as a Ca ionophore or as a trigger for opening the Ca channel.

  8. Re-engineering of CYP2C9 to probe acid-base substrate selectivity.

    Science.gov (United States)

    Tai, Guoying; Dickmann, Leslie J; Matovic, Nicholas; DeVoss, James J; Gillam, Elizabeth M J; Rettie, Allan E

    2008-10-01

    A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites.

  9. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Domenico Cerri

    2011-04-01

    Full Text Available The aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  10. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Barbara Turchi

    2011-05-01

    Full Text Available he aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  11. Semiconductor effect on the selective photocatalytic reaction of. alpha. -hydroxycarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H.; Ueda, T. (Meisei Univ., Tokyo (Japan)); Sakata, T. (Institute for Molecular Science, Okazaki (Japan))

    1989-02-23

    Photocatalytic and photoelectrochemical reactions of {alpha}-hydroxycarboxylic acids were compared for various types of semiconductor electrode (TiO{sub 2}, CdS, SrTiO{sub 3}, and ZnO) and suspension of particulate semiconductor (TiO{sub 2}, CdS, MoS{sub 2}, and ZnS). These reactions were found to depend strongly on the type of semiconductor studied. In the cases of Pt/CdS and ZnS photocatalysts, the hydroxy group of the acids was oxidized selectively into the corresponding keto acids, whereas in the cases of Pt/TiO{sub 2}, decarboxylation took place in addition to dehydrogenation. The same dependence was observed in the photoelectrochemical reactions with semiconductor single-crystal electrodes. For the TiO{sub 2} electrode, the reaction depends strongly on pH, whereas it does not for CdS. The results of pH effects, electrochemical reaction with various metal electrodes, and Fenton reaction in a homogeneous solution suggest the importance of adsorption of the reactants on the semiconductor and metal surfaces for the selective reaction.

  12. Naturally occurring and process-induced trans fatty acids and ...

    African Journals Online (AJOL)

    CHOKRI

    2013-05-22

    May 22, 2013 ... found in position 9, such as elaidic acid, with a Gaussian distribution of FAs with the ... traditional method of manually churning the naturally fermented milk and heating the ..... trans PUFA and CLA. PC1 was heavily weighted.

  13. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    Directory of Open Access Journals (Sweden)

    Rohit Aiyer

    2016-01-01

    Full Text Available We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium.

  14. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction.

  15. Acid-induced death in neurons and glia.

    Science.gov (United States)

    Nedergaard, M; Goldman, S A; Desai, S; Pulsinelli, W A

    1991-08-01

    Lactic acidosis has been proposed to be one factor promoting cell death following cerebral ischemia. We have previously demonstrated that cultured neurons and glial are killed by relatively brief (10 min) exposure to acidic solutions of pH less than 5 (Goldman et al., 1989). In the present series of experiments, we investigated the relationship between changes in intracellular pH (pHi) and cellular viability. pHi was measured using fluorescent pH probes and was manipulated by changing extracellular pH (pHe). Homeostatic mechanisms regulating pHi in neurons and glia were quickly overwhelmed: neither neurons nor glial cells were able to maintain baseline pHi when incubated at pHe below 6.8. Neuronal and glial death was a function of both the degree and the duration of intracellular acidification, such that the LD50 following timed exposure to HCl increased from pH, 3.5 for 10-min acid incubations to pHi 5.9 for 2-hr exposures and pHi 6.5 for 6-hr exposures. Replacement of HCl with lactic acid raised the LD50 to pHi 4.5 for 10-min acid exposures, but did not change the LD50 for longer exposures: pHi measurements concurrent with extracellular acidification suggested that the greater cytotoxicity of lactic acid relative to that of HCl was caused by the more rapid intracellular acidification associated with lactic acid. The onset of death after exposure to moderately acidic solutions was delayed in some cells, such that death of the entire cell population became evident only 48 hr after acid exposure. During this latency period, cellular viability indices and ATP levels fell in parallel.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Cytotoxicity of the compounds isolated from Pulsatilla chinensis saponins and apoptosis induced by 23-hydroxybetulinic acid.

    Science.gov (United States)

    Liu, Ming; Zhao, Xingzeng; Xiao, Lin; Liu, Ge; Liu, Haizhou; Wang, Xiangyun; Feng, Xu; Lin, Xiukun

    2015-01-01

    The rizoma of Pulsatilla chinensis (Bunge) Regel has been used as a traditional Chinese medicinal herb for thousands of years. Total saponins from P. chinensis can induce the apoptosis of solid cancer cells; however, their activity on chronic myeloid leukemia and the mechanisms remains unknown. To study the activity of total saponins and the main active fractions from P. chinensis saponins on chronic myeloid leukemia, and to illustrate the mechanisms underlying the anticancer activities. The cytotoxic activity were assayed by MTT; cell cycle arrest and apoptosis were tested by flow cytometry system; changes in the mitochondrial membrane potential were determined using JC-1; and the apoptosis signaling pathway was determined by western blotting. We demonstrated that total P. chinensis saponin displayed cytotoxic activity against K562 cell line. In addition, we identified 23-hydroxybetulinic acid (HBA), pulchinenoside A (PA), and anemoside B4 (AB4) from the total saponins, with the most cytotoxic compound HBA. Glycosylation at C3 and C28 of HBA significantly reduces its cytotoxicity. HBA could promote cell cycle arrest at S phase and induce apoptosis via intrinsic pathway. HBA disrupts mitochondrial membrane potential significantly (p < 0.01) and selectively downregulates the levels of Bcl-2, survivin and upregulates Bax, cytochrome C, cleaved caspase-9 and -3. Total saponins from P. chinensis may be effective natural products against human chronic myelogenous leukemia; HBA is one of the bioactive components responsible for its anticancer activity, and could be further investigated as an alternative therapeutic drug for leukemia.

  17. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You

    2009-01-01

    BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown.OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects.DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007.MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA.METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similady administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) clay 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray.MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group.RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of

  18. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice.

    Science.gov (United States)

    Ince, Sinan; Keles, Hikmet; Erdogan, Metin; Hazman, Omer; Kucukkurt, Ismail

    2012-07-01

    The protective effect of boric acid against liver damage was evaluated by its attenuation of carbon tetrachloride (CCl(4))-induced hepatotoxicity in mice. Male albino mice were treated intraperitoneally (i.p.) with boric acid (50, 100, and 200 mg/kg) or silymarin daily for 7 days and received 0.2% CCl(4) in olive oil (10 mL/kg, i.p.) on day 7. Results showed that administration of boric acid significantly reduced the elevation in serum levels of aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase, and the level of malondialdehyde in the liver that were induced by CCl(4) in mice. Boric acid treatment significantly increased glutathione content, as well as the activities of superoxide dismutase and catalase in the liver. Boric acid treatment improved the catalytic activity of cytochrome P450 2E1 and maintained activation of nuclear factor kappa light-chain enhancer of activated B cell gene expression, with no effect on inducible nitric oxide synthase gene expression in the livers of mice. Histopathologically, clear decreases in the severity of CCl(4)-induced lesions were observed, particularly at high boric acid concentrations. Results suggest that boric acid exhibits potent hepatoprotective effects on CCl(4)-induced liver damage in mice, likely the result of both the increase in antioxidant-defense system activity and the inhibition of lipid peroxidation.

  19. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  20. Preparation, characterization and selective recognition for vanillic acid imprinted mesoporous silica polymers

    Science.gov (United States)

    Li, Hui; Xu, Miaomiao; Wang, Susu; Lu, Cuimei; Li, Zhiping

    2015-02-01

    A vanillic acid imprinted mesoporous silica polymer (MIPs) was prepared by copolymerizing a modified mesoporous silica molecular sieve with template molecule, functional monomer and cross-linker in present work. Interaction between the template and functional monomer was investigated by ultraviolet/visible spectrophotometry. These MIPs were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption dynamics and thermodynamic behavior of MIPs was explored and the selective recognition capability evaluated. Also, the applicability for the MIPs as solid phase extraction media was tested. Results indicated the 1:1 (mole ratio) complex of vanillic acid-4-vinylpyridine might predominate in the pre-polymerization mixture and the MIPs obtained possessed rapid binding dynamics and higher affinity toward template molecules, reaching adsorption equilibrium within 230 min with the highest adsorption amount of 50.7 mg g-1. Freundlich model was shown best to describe isotherm adsorption for the MIPs. The MIPs could selectively bind template molecule with selectivity coefficients of 1.36-1.50. In addition, a higher enrichment capability when using it for gathering target compound from methanol extract of Artemisia stelleriana and a good reusability during adsorption-desorption recycling use could be observed.

  1. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  2. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice.

    Directory of Open Access Journals (Sweden)

    Jung Chao

    Full Text Available Gallic acid (GA, a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more "holistic view" approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%, or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally. Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis, amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be

  3. Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Raja Kumar Vadivelu

    2012-01-01

    Full Text Available Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P<0.05. Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.

  4. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats

    OpenAIRE

    Omoruyi, F. O.; Budiaman, A.; Eng, Y.; F. E. Olumese; Hoesel, J. L.; Ejilemele, A.; Okorodudu, A. O.

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the gro...

  5. Oxidized fatty acid analysis by charge-switch derivatization, selected reaction monitoring, and accurate mass quantitation.

    Science.gov (United States)

    Liu, Xinping; Moon, Sung Ho; Mancuso, David J; Jenkins, Christopher M; Guan, Shaoping; Sims, Harold F; Gross, Richard W

    2013-11-01

    A highly sensitive, specific, and robust method for the analysis of oxidized metabolites of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was developed using charge-switch derivatization, liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) with selected reaction monitoring (SRM) and quantitation by high mass accuracy analysis of product ions, thereby minimizing interferences from contaminating ions. Charge-switch derivatization of LA, AA, and DHA metabolites with N-(4-aminomethylphenyl)-pyridinium resulted in a 10- to 30-fold increase in ionization efficiency. Improved quantitation was accompanied by decreased false positive interferences through accurate mass measurements of diagnostic product ions during SRM transitions by ratiometric comparisons with stable isotope internal standards. The limits of quantitation were between 0.05 and 6.0pg, with a dynamic range of 3 to 4 orders of magnitude (correlation coefficient r(2)>0.99). This approach was used to quantitate the levels of representative fatty acid metabolites from wild-type (WT) and iPLA2γ(-/-) mouse liver identifying the role of iPLA2γ in hepatic lipid second messenger production. Collectively, these results demonstrate the utility of high mass accuracy product ion analysis in conjunction with charge-switch derivatization for the highly specific quantitation of diminutive amounts of LA, AA, and DHA metabolites in biologic systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp.

    Science.gov (United States)

    He, Yu-Cai; Wu, Ya-Dong; Pan, Xue-He; Ma, Cui-Luan

    2014-02-01

    The nitrilase from Rhodococcus sp. CCZU10-1 catalyses the hydrolysis of dinitriles to acids without the formation of amides and cyanocarboxylic acids. It was induced by benzonitrile and its analogues (tetrachloroterephthalonitrile > ε-caprolactam > benzonitrile > phenylacetonitrile), and had activity towards aromatic nitriles (terephthalonitrile > tetrachloroterephthalonitrile > isophthalonitrile > tetrachloroisophthalonitrile > tetrafluoroterephthalonitrile > benzonitrile). After the optimization, the highest nitrilase induction [311 U/(g DCW)] was achieved with tetrachloroterephthalonitrile (1 mM) in the medium after 24 h at 30 °C after optimum enzyme activity was at pH 6.8 and at 30 °C. Efficient biocatalyst recycling was achieved by cell immobilization in calcium alginate, with a product-to-biocatalyst ratios of 776 g terephthalic acid/g DCW and 630 g isophthalic acid/g DCW.

  7. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    Science.gov (United States)

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Simultaneous determination of amino acid nitrogen and total acid in soy sauce using near infrared spectroscopy combined with characteristic variables selection.

    Science.gov (United States)

    Zhao, Jiewen; Ouyang, Qin; Chen, Quansheng; Lin, Hao

    2013-08-01

    Amino acid nitrogen and total acid are two most important quality indices to assess the quality of soy sauce in China. This work employed near infrared spectroscopy combined with synergy interval partial least square and genetic algorithm to detect amino acid nitrogen and total acid content in soy sauce. First, synergy interval partial least square was used to select efficient spectral regions from the full spectrum region; and then, genetic algorithm was used to selected variables from the efficient spectral regions, to build partial least square model. The optimal genetic algorithm synergy interval partial least square models were obtained as follows: Rc  = 0.9988 and Rp = 0.9988 for amino acid nitrogen content model using 64 variables; Rc = 0.9917 and Rp = 0.9902 for total acid content model using 81 variables. Genetic algorithm synergy interval partial least square models showed superiority over the partial least square and synergy interval partial least square models. The results indicated that amino acid nitrogen and total acid content in soy sauce could be rapidly determined by near infrared spectroscopy technique. Also, the results indicated that genetic algorithm synergy interval partial least square can improve the performance in measurement of amino acid nitrogen and total acid content by near infrared spectroscopy.

  9. Selection of tropical lactic acid bacteria for enhancing the quality of maize silage.

    Science.gov (United States)

    Santos, A O; Ávila, C L S; Schwan, R F

    2013-01-01

    The objective of this study was to select lactic acid bacteria (LAB) strains isolated from silage and assess their effect on the quality of maize silage. The LAB strains were inoculated into aqueous extract obtained from maize to evaluate their production of metabolites and pH reduction. The ability to inhibit the pathogenic and silage-spoilage microorganisms' growth was evaluated. Nine LAB strains that showed the best results were assessed in polyvinyl chloride experimental silos. The inoculation of the LAB strains influenced the concentration of lactic and acetic acids and the diversity of Listeria. The inoculation of silages with Lactobacillus buchneri (UFLA SLM11 and UFLA SLM103 strains) resulted in silages with greater LAB populations and improvements after aerobic exposure. The UFLA SLM11 and SLM103 strains identified as L. buchneri showed to be promising in the treatment of maize silage.

  10. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst.

    Science.gov (United States)

    Liu, Huizhen; Jiang, Tao; Han, Buxing; Liang, Shuguang; Zhou, Yinxi

    2009-11-27

    Cyclohexanone is an industrially important intermediate in the synthesis of materials such as nylon, but preparing it efficiently through direct hydrogenation of phenol is hindered by over-reduction to cyclohexanol. Here we report that a previously unappreciated combination of two common commercial catalysts-nanoparticulate palladium (supported on carbon, alumina, or NaY zeolite) and a Lewis acid such as AlCl3-synergistically promotes this reaction. Conversion exceeding 99.9% was achieved with >99.9% selectivity within 7 hours at 1.0-megapascal hydrogen pressure and 50 degrees C. The reaction was accelerated at higher temperature or in a compressed CO(2) solvent medium. Preliminary kinetic and spectroscopic studies suggest that the Lewis acid sequentially enhances the hydrogenation of phenol to cyclohexanone and then inhibits further hydrogenation of the ketone.

  11. Harvest-induced phenotypic selection in an island population of moose, Alces alces.

    Science.gov (United States)

    Kvalnes, Thomas; Saether, Bernt-Erik; Haanes, Hallvard; Røed, Knut H; Engen, Steinar; Solberg, Erling J

    2016-07-01

    Empirical evidence strongly indicates that human exploitation has frequently led to rapid evolutionary changes in wild populations, yet the mechanisms involved are often poorly understood. Here, we applied a recently developed demographic framework for analyzing selection to data from a 20-year study of a wild population of moose, Alces alces. In this population, a genetic pedigree has been established all the way back to founders. We demonstrate harvest-induced directional selection for delayed birth dates in males and reduced body mass as calf in females. During the study period, birth date was delayed by 0.81 days per year for both sexes, whereas no significant changes occurred in calf body mass. Quantitative genetic analyses indicated that both traits harbored significant additive genetic variance. These results show that selective harvesting can induce strong selection that oppose natural selection. This may cause evolution of less favorable phenotypes that become maladaptive once harvesting ceases.

  12. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    Science.gov (United States)

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pKa's (estimated error of 1.3 pKa units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol(-1), were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pKa units. A linear correlation exhibiting a 2.6 pKa unit change of the Lewis acid-water adduct per ten kcal mol(-1) change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pKa units. On average, a ten kcal mol(-1) change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pKa unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pKa of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pKa of a main group dihydrogen complex is described. The pKa of H2-B(C6F5)3 was determined to be 5.8 ± 0.2 in acetonitrile.

  13. Protective effect of alpha-linolenic acid on gentamicin-induced ototoxicity in mice.

    Science.gov (United States)

    Kaplan, Halil Mahir; Şingirik, Ergin; Erdoğan, Kıvılcım Eren; Doran, Figen

    2017-07-31

    Alpha-linolenic acid is one of the fatty acids known as omega 3. Previous studies have shown the antioxidant and anti-inflammatory effects of alpha-linolenic acid, which prevented cell damage by inhibiting apoptotic pathway. Also, it is known that gentamicin activates apoptotic mediators and causes necrosis in the kidney. Due to this reason, we planned a study to evaluate the protective effects of alpha-linolenic acid on gentamicin induced ototoxicity by evaluating inflammation and apoptotic mediators. For this purpose, 100 mg/kg gentamicin (i.p; intraperitoneally) and 200 mg/kg alpha-linolenic acid (gavage) are administered to mice for 9 days. On 9th and 10th days, rotarod performance was assessed to test the effect of gentamicin and alpha-linolenic acid treatment on the motor coordination of mice. Gentamicin treatment decreased fall latency of mice and gentamicin treatment together with alpha-linolenic acid increased fall latency of mice. Gentamicin treatment also increased expression of phospholipase A2(plA2), cyclooxygenase-2(COX-2) and inducible nitric oxide syntheses (iNOS). Furthermore, it increased Bax and caspase-3, which are proapoptotic proteins and decreased bcl-2 that is an antiapoptotic protein. Gentamicin treatment together alpha-linolenic acid recovered the change of expression of these enzymes. In conclusion, this study showed that alpha-linolenic acid will be useful to prevent gentamicin-induced ototoxicity by inhibiting apoptosis and inflammation.

  14. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

    Science.gov (United States)

    Akagi, Sosuke; Kono, Nozomu; Ariyama, Hiroyuki; Shindou, Hideo; Shimizu, Takao; Arai, Hiroyuki

    2016-05-01

    The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by dietary consumption of fatty acids such as saturated fatty acids and polyunsaturated fatty acids (PUFAs). Cells must adapt to changes in composition of membrane fatty acids by regulating lipid-metabolizing enzymes. In this study, we investigated how cells respond to loading with excess PUFAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. A lipidomics analysis revealed that dipalmitoylphosphatidylcholine (DPPC) was increased after the production of PUFA-containing phospholipids in cells loaded with PUFAs. An RNA interference screen of lipid-metabolizing enzymes revealed that lysophosphatidylcholine acyltransferase 1 (LPCAT1) was involved in the DPPC production. Moreover, LPCAT1 knockdown markedly enhanced the cytotoxicity induced by excess PUFAs. PUFA-induced cytotoxicity was dependent on caspase and unfolded protein response (UPR) sensor proteins inositol requiring 1α and protein kinase R-like endoplasmic reticulum kinase, suggesting that excess PUFAs trigger UPR-mediated apoptosis. In murine retina, in which PUFAs are highly enriched, DPPC was produced along with increase of PUFA-containing phospholipids. In LPCAT1 knockout mice, DPPC level was reduced and UPR was activated in the retina. Our results provide insight into understanding of the retinal degeneration seen in rd11 mice that lack LPCAT1.-Akagi, S., Kono, N., Ariyama, H., Shindou, H., Shimizu, T., Arai, H. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

  15. PPARgamma agonist induced cardiac enlargement is associated with reduced fatty acid and increased glucose utilization in myocardium of Wistar rats.

    Science.gov (United States)

    Edgley, Amanda J; Thalén, Pia G; Dahllöf, Björn; Lanne, Boel; Ljung, Bengt; Oakes, Nicholas D

    2006-05-24

    In toxicological studies, high doses of peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists cause cardiac enlargement. To investigate whether this could be explained by a large shift from free fatty acid to glucose utilization by the heart, Wistar rats were treated for 2-3 weeks with a potent, selective PPARgamma agonist (X334, 3 micromol/kg/d), or vehicle. X334 treatment increased body-weight gain and ventricular mass. Treatment lowered plasma triglycerides by 61%, free fatty acid levels by 72%, insulin levels by 45%, and reduced total plasma protein concentration by 7% (indicating plasma volume expansion) compared to vehicle animals. Fasting plasma glucose levels were unaltered. To assess cardiac free fatty acid and glucose utilization in vivo we used simultaneous infusions of non-beta-oxidizable free fatty acid analogue, [9,10-(3)H](R)-2-bromopalmitate and [U-(14)C]2-deoxy-d-glucose tracers, which yield indices of local free fatty acid and glucose utilization. In anesthetized, 7 h fasted animals, left ventricular glucose utilization was increased to 182% while free fatty acid utilization was reduced by 28% (P<0.05) compared to vehicle. In separate studies we attempted to prevent the X334-induced hypolipidemia. Various dietary fat supplements were unsuccessful. By contrast, restricting the time during which the treated animals had access to food (promoting endogenous lipolysis), restored plasma free fatty acid from 27% to 72% of vehicle control levels and prevented the cardiac enlargement. Body-weight gain in these treated-food restricted rats was not different from vehicle controls. In conclusion, the cardiac enlargement caused by intense PPARgamma activation in normal animals is associated with marked changes in free fatty acid/glucose utilization and the enlargement can be prevented by restoring free fatty acid availability.

  16. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mandi M. Hopkins

    2016-01-01

    Full Text Available Many key actions of ω-3 (n-3 fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs in the free fatty acid receptor (FFAR family, FFA1 (GPR40 and FFA4 (GPR120. n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA, and the tyrosine kinase receptor activated by epidermal growth factor (EGF, was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  17. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    David M Bland

    Full Text Available Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  18. Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.

    Science.gov (United States)

    Bland, David M; Eisele, Nicholas A; Keleher, Lauren L; Anderson, Paul E; Anderson, Deborah M

    2011-03-02

    Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.

  19. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Science.gov (United States)

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness.

  20. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  1. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  2. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  3. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø;

    2008-01-01

    A series of analogues based on N-hydroxypyrazole as a bioisostere for the distal carboxylate group of aspartate have been designed, synthesized, and pharmacologically characterized. Affinity studies on the major glutamate receptor subgroups show that these 4-substituted N-hydroxypyrazol-5-yl...... glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools...

  4. Sequence selective recognition of double-stranded RNA using triple helix-forming peptide nucleic acids.

    Science.gov (United States)

    Zengeya, Thomas; Gupta, Pankaj; Rozners, Eriks

    2014-01-01

    Noncoding RNAs are attractive targets for molecular recognition because of the central role they play in gene expression. Since most noncoding RNAs are in a double-helical conformation, recognition of such structures is a formidable problem. Herein, we describe a method for sequence-selective recognition of biologically relevant double-helical RNA (illustrated on ribosomal A-site RNA) using peptide nucleic acids (PNA) that form a triple helix in the major grove of RNA under physiologically relevant conditions. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail.

  5. Drug-induced Fanconi syndrome associated with fumaric acid esters treatment for psoriasis: A case series

    NARCIS (Netherlands)

    D.M.W. Balak (Deepak); J.N.B. Bavinck (Jan Nico Bouwes); De Vries, A.P.J. (Aiko P. J.); Hartman, J. (Jenny); Martino Neumann, H.A. (Hendrik A.); R. Zietse (Bob); H.B. Thio (Bing)

    2016-01-01

    textabstractBackground: Fumaric acid esters (FAEs), an oral immunomodulating treatment for psoriasis and multiple sclerosis, have been anecdotally associated with proximal renal tubular dysfunction due to a drug-induced Fanconi syndrome. Few data are available on clinical outcomes of FAE-induced Fan

  6. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  7. Sequence-selective targeting of duplex DNA by peptide nucleic acids

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide...... nucleic acid (PNA) can recognize duplex DNA with high sequence specificity and affinity in triplex, duplex and double-duplex invasive modes or non-invasive triplex modes. Novel PNA modification has improved the affinity for DNA recognition via duplex invasion, double-duplex invasion and triplex...... recognition considerably. Such modifications have also resulted in new approaches to targeted gene repair and sequence-selective double-strand cleavage of genomic DNA....

  8. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  9. Selective Michael-type addition of a D-glucuronic acid derivative in the synthesis of model substances for uronic acid containing polysaccharides

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available A flexible protocol for the preparation of model substances for uronic acid containing polysaccharides is presented. We have synthesized a D-glucuronic acid derivative which is designed so that it easily can be conjugated with different structures and architectures by selective Michael-type addition. By successful coupling of the glucuronic acid derivative to polyethylene glycol with high degree of conversion, products were obtained that were easily characterized and which resembled polysaccharides in terms of solubility and purification methods that could be employed. The model substance can potentially be used to facilitate optimization of low-degree modification reactions of high molecular weight D-glucuronic acid containing polysaccharides.

  10. [Pseudothrombocytopenia induced by ethylenediaminetetraacetic acid in burned patients].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Contreras-Domínguez, Vladimir

    2004-01-01

    The EDTA-dependent pseudothrombocytopenia is a false decrease in the number of platelets below the normal value when analyzed with automated devices. There is an incidence of 0.09 to 0.21% in hospitalized patients. Pseudothrombocytopenia is secondary to platelet clumping induced by antibodies in the presence of EDTA and has been associated with sepsis, cancer, cardiac surgery and drugs. We report the first case of pseudothrombocytopenia induced by EDTA in a burn patient.

  11. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    Science.gov (United States)

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing.

  12. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  13. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  14. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat.

    Science.gov (United States)

    Sakurai, Masashi; Kurokawa, Haruna; Shimada, Akinori; Nakamura, Kazuhiro; Miyata, Hajime; Morita, Takehito

    2015-02-01

    Recurrent seizures without interictal resumption (status epilepticus) have been reported to induce neuronal death in the midline thalamic region that has functional roles in memory and decision-making; however, the pathogenesis underlying status epilepticus-induced thalamic neuronal death is yet to be determined. We performed histological and immunohistochemical studies as well as cerebral blood flow measurement using 4.7 tesla magnetic resonance imaging spectrometer on midline thalamic region in Sprague-Dawley rats (n = 75, male, 7 weeks after birth, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (10 mg/kg) to induce status epilepticus (n = 55) or normal saline solution (n = 20). Histological study using paraffin-embedded specimens revealed neuronal death showing ischemic-like changes and Fluoro-Jade C positivity with calcium deposition in the midline thalamic region of epileptic rats. The distribution of neuronal death was associated with focal loss of immunoreactivity for excitatory amino acid transporter 2 (EAAT2), stronger immunoreaction for glutamate and increase in number of Iba-1-positive microglial cells showing swollen cytoplasm and long processes. Double immunofluorescence study demonstrated co-expression of interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) within microglial cells, and loss of EAAT2 immunoreactivity in reactive astrocytes. These microglial alterations and astrocytic EAAT2 downregulation were also observed in tissue without obvious neuronal death in kainic acid-treated rats. These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline thalamic region following kainic acid-induced status epilepticus due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS.

  15. PGC-1alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Oleic acid (OA stimulates vascular smooth muscle cell (VSMC proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma coactivator-1 alpha (PGC-1alpha on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis.

  16. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    Science.gov (United States)

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  17. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat.

    Science.gov (United States)

    Li, X F; Ma, J F; Matsumoto, H

    2000-08-01

    Al-Induced secretion of organic acids from the roots has been considered as a mechanism of Al tolerance, but the processes leading to the secretion of organic acids are still unknown. In this study, the secretion pattern and alteration in the metabolism of organic acids under Al stress were examined in rye (Secale cereale L. cv King) and wheat (Triticum aestivum L. cv Atlas 66). Al induced rapid secretion of malate in the wheat, but a lag (6 and 10 h for malic and citric acids, respectively) between the exposure to Al and the secretion of organic acids was observed in the rye. The activities of isocitrate dehydrogenase, phosphoenolpyruvate carboxylase, and malate dehydrogenase were not affected by Al in either plant. The activity of citrate synthase was increased by the exposure to Al in the rye, but not in the wheat. The secretion of malate was not suppressed at low temperature in the wheat, but that of citrate was stopped in the rye. The Al-induced secretion of citrate from roots of the rye was inhibited by the inhibitors of a citrate carrier, which transports citrate from the mitochondria to the cytoplasm. All of these results suggest that alteration in the metabolism of organic acids is involved in the Al-induced secretion of organic acids in rye, but only activation of an anion channel seems to be responsible for the rapid secretion of malate in the wheat.

  18. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    Science.gov (United States)

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  19. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

    Science.gov (United States)

    Holmes, Philip V; Reiss, Jenny I; Murray, Patrick S; Dishman, Rod K; Spradley, Jessica M

    2015-05-01

    Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect.

  20. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA......Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  1. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.

    Science.gov (United States)

    Yu, Wen-Yueh; Mullen, Gregory M; Flaherty, David W; Mullins, C Buddie

    2014-08-06

    Pd-Au catalysts have shown exceptional performance for selective hydrogen production via HCOOH decomposition, a promising alternative to solve issues associated with hydrogen storage and distribution. In this study, we utilized temperature-programmed desorption (TPD) and reactive molecular beam scattering (RMBS) in an attempt to unravel the factors governing the catalytic properties of Pd-Au bimetallic surfaces for HCOOH decomposition. Our results show that Pd atoms at the Pd-Au surface are responsible for activating HCOOH molecules; however, the selectivity of the reaction is dictated by the identity of the surface metal atoms adjacent to the Pd atoms. Pd atoms that reside at Pd-Au interface sites tend to favor dehydrogenation of HCOOH, whereas Pd atoms in Pd(111)-like sites, which lack neighboring Au atoms, favor dehydration of HCOOH. These observations suggest that the reactivity and selectivity of HCOOH decomposition on Pd-Au catalysts can be tailored by controlling the arrangement of surface Pd and Au atoms. The findings in this study may prove informative for rational design of Pd-Au catalysts for associated reactions including selective HCOOH decomposition for hydrogen production and electro-oxidation of HCOOH in the direct formic acid fuel cell.

  2. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    Institute of Scientific and Technical Information of China (English)

    Xue-Jun Dong; Guo-Rong Zhang; Qing-Jun Zhou; Ruo-Lang Pan; Ye Chen; Li-Xin Xiang; Jian-Zhong Shao

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  3. Effects of receptor-selective retinoids on CYP26 gene expression and metabolism of all-trans-retinoic acid in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-05-01

    Retinoids mediate most of their function via interaction with retinoid receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)], which act as ligand-activated transcription factors controlling the expression of a number of target genes. The complex mechanistic pattern of retinoid-induced effects on gene expression of CYP26 and intestinal metabolism of all-trans-retinoic acid (RA) was investigated here by studying the effects of retinoid ligands with relative selectivity for binding and transactivation of the retinoid acid receptors, RARs and RXRs, in human intestinal Caco-2 cells. We show here that CYP26 is expressed in human duodenum and colon. In Caco-2 cells not only all-trans-RA but also synthetic agonists of the RAR induced intestinal CYP26 gene expression and all-trans-RA metabolism as well. The RARalpha ligand Am580 induced the CYP26 gene expression more than the RARbeta ligand CD2019 or the RARgamma ligand CD437 suggesting the highest specificity for RARalpha on intestinal CYP26 gene regulation. RXR ligands alone did not induce CYP26 gene expression or RA metabolism in Caco-2 cells at all. But together with the RARalpha ligand, Am580, there were enhanced effects on the induction of CYP26 gene expression and on the induction of the metabolism of all-trans-RA. We conclude that gene regulation of CYP26 and the metabolism of all-trans-RA in intestinal cells is regulated through RXR and RAR heterodimerization. When coadministered, RAR agonists showed the highest potency for CYP26 gene regulation. Receptor-selective retinoids showed enhanced effects on induction of CYP26 gene expression and all-trans-retinoic acid metabolism.

  4. Anomalous spin polarization in the photoreduction of chromone-2-carboxylic acid with alcohol induced by hydrochloric acid

    Science.gov (United States)

    Ohara, Keishi; Mukai, Kazuo

    2000-02-01

    The addition effect of hydrochloric acid (HCl) on the photoreduction of chromone-2-carboxylic acid (CRCA) is studied by time-resolved EPR. The EPR lines of CRCA ketyl radical show an enhanced absorption in the presence of HCl, while without HCl these show an emissive character. On the other hand, the lines of the CRCA alkyl type radical show an emissive character whether HCl is included or not. The simultaneous reactions of the closely-lying two excited triplet states (T 1 and T 2) of CRCA may induce the above anomalous CIDEP behavior.

  5. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    Science.gov (United States)

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  6. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    Science.gov (United States)

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  7. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agen

  8. Reversible Altered Consciousness and Brain Atrophy Induced by Valproic Acid

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available A 5-year-old female child with valproic acid (VPA-related alteration of consciousness and brain atrophy that progressed over a 3 day period and resolved within 12 hours of discontinuing VPA is reported from Dokkyo University School of Medicine and Shimotsuga General Hospital, Tochigi, Japan.

  9. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for

  10. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Effects of SAR increased more dramatically with the increase of SAR acidity. ... in color and pH 7.3 and 65 % water holding capacity. ... the soil. After 15 days of sowing, thinning operation was done and 60 cm inter-row and 30 cm inter-plant.

  11. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex...

  12. Folic Acid Treatment of Anticonvulsant-Induced Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-10-01

    Full Text Available The prevalence of hyperhomocysteinemia (HHcy in 123 childhood epilepsy patients treated with antiepileptic drugs (AED and the effect of folic acid supplements (1 mg/day on plasma Hcy levels were determined in a study at three regional hospitals and pediatric centers in Austria.

  13. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  14. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    Science.gov (United States)

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II.

  15. Fatty acid-induced changes in vascular reactivity in healthy adult rats.

    Science.gov (United States)

    Christon, Raymond; Marette, André; Badeau, Mylène; Bourgoin, Frédéric; Mélançon, Sébastien; Bachelard, Hélène

    2005-12-01

    Dietary fatty acids (FAs) are known to modulate endothelial dysfunction, which is the first stage of atherosclerosis. However, their exact role in this initial phase is still unclear. The effects of isolated or combined (by 2) purified FAs from the main FA families were studied on the vascular response of isolated thoracic aorta in healthy rats to get a better understanding of the mechanisms of action of dietary FAs in regulating vascular endothelial function. Cumulative contraction curves to phenylephrine and relaxation curves to carbachol and then to sodium nitroprusside were obtained in the absence or presence of the FAs studied allowing endothelium-dependent and endothelium-independent ability of the smooth muscle to relax to be assessed in each experimental group. The endothelium-dependent vasodilator response to carbachol was lowered by eicosapentaenoic acid, whereas it was not altered either by docosahexaenoic acid alone or by combined eicosapentaenoic acid-docosahexaenoic acid, oleic acid, or stearic acid, and it was increased by linoleic acid (LA). A decreased phenylephrine-induced contraction was observed after incubation with arachidonic acid and with stearic acid. On the other hand, the endothelium-dependent relaxation was reduced by the addition of combined LA-arachidonic acid and LA-oleic acid. In conclusion, these data point out the differential effects of different types of FAs and of FAs alone vs combined on vascular reactivity. The complex nature of these effects could be partially linked to metabolic specificities of endothelial cells and to interactions between some FAs.

  16. How to distinguish conformational selection and induced fit based on chemical relaxation rates

    CERN Document Server

    Paul, Fabian

    2016-01-01

    Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event ('conformational selection') or after a binding event ('induced fit'), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes - also in cases in which such a distinction is not possible under pseudo-first-order conditions - and to extract conformational transition rates of proteins from chemical relaxation data.

  17. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats.

    Science.gov (United States)

    Yüce, Abdurrauf; Ateşşahin, Ahmet; Ceribaşi, Ali Osman; Aksakal, Mesut

    2007-11-01

    Cisplatin is one of the most active cytotoxic agents in the treatment of cancer. High doses of cisplatin have also been known to produce hepatotoxicity, and several studies suggest that supplemental antioxidants can reduce cisplatin-induced hepatotoxicity. The present study was designed to determine the effects on the liver and heart oxidant/antioxidant system and the possible protective effects of ellagic acid on liver and heart toxicity induced by cisplatin. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The rats were killed at the end of the treatment period. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione-peroxidase (GSH-Px) and catalase (CAT) activities were determined in liver and heart tissue. While administration of cisplatin increased the MDA levels in liver and heart tissues, it decreased the GSH, GSH-Px and CAT in these samples when compared to the control group. The administration of ellagic acid to cisplatin-treated rats decreased the MDA levels, and increased GSH, GSH-Px and CAT in these samples. Cisplatin caused marked damages in the histopathological status of liver and heart tissues. These damages were ameliorated by ellagic acid administration. In conclusion, ellagic acid may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters.

  18. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    Science.gov (United States)

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways.

  19. Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid.

    Science.gov (United States)

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2003-02-01

    The vascular effect of a component of hydrolysable tannins, gallic acid, was examined in isolated rat thoracic aorta. Gallic acid exerted a contractile effect on the phenylephrine- or prostaglandin F(2/alpha)-precontracted endothelium-intact arteries. In endothelium-denuded arteries, the contractile response to-gallic acid was absent. Pretreatment with N(G)-nitro-L-arginine methyl ester (30 microM) abolished the gallic acid-induced contraction. Pretreatment with indomethacin (10 microM) or BQ610 (100 nM) had no observed effect. Pretreatment with gallic acid (1-10 microM) significantly attenuated the relaxation induced by acetylcholine, and that with 10 microM gallic acid also reduced the potency of sodium nitroprusside in the relaxation, without a reduction in efficacy, in endothelium-denuded arteries. These findings indicate that gallic acid induced endothelium-dependent contraction and strongly inhibited the endothelium-dependent relaxation rather than the endothelium-independent relaxation, probably through inhibition of endothelial nitric oxide (NO) production. Since NO plays an important role in vasodilative regulation and inflammatory disorders, these findings may also indicate that gallic acid interferes with the inflammatory responses.

  20. Linoleic and alpha linolenic acids ameliorate streptozotocin-induced diabetes in mice.

    Science.gov (United States)

    Canetti, Lea; Werner, Haim; Leikin-Frenkel, Alicia

    2014-02-01

    Streptozotocin (STZ)-induced diabetes in mice progresses with decreased desaturase activities and alterations in the metabolism of essential fatty acids (EFA). Based on our previous studies with soybean oil that ameliorated the STZ damage in mice, we tested here the accountability of its main EFA components, i.e. linoleic acid (LA) and alpha linolenic acid (ALA), in the prevention of pancreas damage and Δ6 desaturase decrease. Seven days after injection with STZ and EFA gavage, ICR mice were sacrificed. Plasma glucose and insulin levels, pancreas histology and liver fatty acid desaturases were analysed. EFA reduced pancreas damage, insulin and glucose plasma levels and restored Δ6 desaturase activity and mRNA expression levels. By reducing pancreas damage, EFA ameliorated insulin levels, Δ6 desaturase and fatty acid metabolism. LA further enhanced Fads2 promoter activity. EFA ameliorate STZ induced diabetes in mice.

  1. Cysteamine-induced duodenal ulcer and acid secretion in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1980-01-01

    Duodenal ulcers can be produced in rats within 24 h by a single subcutaneous administration of cysteamine. To determine the role of gastric acid secretion in the pathogenesis of these ulcers, secretory and pathoanatomic studies were performed in chronic fistula rats ater an ulcerogenic dose...... of cysteamine. A prolonged increase of acid secretion was seen after cysteamine, reaching fourfold the basal level after 5 h. The acid response lasted for 10 to 11 h. After vagotomy cysteamine-induced acid secretion was markedly reduced. Ulcer formation was prevented by vagotomy and by drainage of the gastric...... for ulcer formation, the hypersecretion of acid induced by cysteamine is not the only factor responsible for the development of duodenal ulcer....

  2. Nanosized SnO2 Particles Dispersed on a Graphite Electrode for Selective Detection of Dopamine and Ascorbic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel nano-SnO2/graphite electrode has been prepared via polishing procedure to produce active and stable surface. The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peaks by 230 mV. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine and ascorbic acid can be determined simultaneously with the modified electrode. The electrode shows good sensitivity, selectivity and stability.

  3. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    Directory of Open Access Journals (Sweden)

    Chunye Chen

    2016-01-01

    Full Text Available Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas.

  4. CHANGES IN SELECTIVITY OF GAMMA-AMINOBUTYRIC ACID FORMATION EFFECTED BY FERMENTATION CONDITIONS AND MICROORGANISMS RESOURCES

    Directory of Open Access Journals (Sweden)

    Kamila Kovalovská

    2011-10-01

    Full Text Available In this study we observe the effect of fermentation conditions and resources of microorganisms for production of γ-aminobutyric acid (GABA. The content of produced GABA depends on various conditions such as the amount of precursor, an addition of salt, enzyme and the effect of pH. The highest selectivity of GABA (74.0 % from the precursor (L-monosodium glutamate has been determinate in the follow conditions: in the presence of pre-cultured microorganisms from Encián cheese in amount 1.66 % (w/v the source of microorganisms/volume of the fermentation mixture, after the addition of 0.028 % (w/v of CaCl2/volume of the fermentation mixture, 100 μM of pyridoxal-5-phosphate (P-5-P and the GABA precursor concentration in the fermentation mixture 2.6 mg ml-1 in an atmosphere of gas nitrogen. Pure cultures of lactic acid bacteria increased the selectivity of GABA by an average of 20 % compared with bacteria from the path of Encián.

  5. Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique.

    Science.gov (United States)

    Magaia, Telma; Uamusse, Amália; Sjöholm, Ingegerd; Skog, Kerstin

    2013-12-01

    The harvesting, utilization and marketing of indigenous fruits and nuts have been central to the livelihoods of the majority of rural communities in African countries. In this study we report on the content of dietary fiber, minerals and selected organic acids in the pulps and kernels of the wild fruits most commonly consumed in southern Mozambique. The content of soluble fiber in the pulps ranged from 4.3 to 65.6 g/100 g and insoluble fiber from 2.6 to 45.8 g/100 g. In the kernels the content of soluble fiber ranged from 8.4 to 42.6 g/100 g and insoluble fiber from 14.7 to 20.9 g/100 g. Citric acid was found in all fruits up to 25.7 g/kg. The kernels of Adansonia digitata and Sclerocarya birrea were shown to be rich in calcium, iron, magnesium and zinc. The data may be useful in selecting wild fruit species appropriate for incorporation into diets.

  6. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    Directory of Open Access Journals (Sweden)

    Tony Velkov

    2013-01-01

    Full Text Available Fatty acid binding proteins (FABPs act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs. PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L- FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed.

  7. Determination of tartaric acid in wines by FIA with tubular tartrate-selective electrodes.

    Science.gov (United States)

    Sales, M G; Amaral, C E; Matos, C M

    2001-03-01

    A flow injection analysis (FIA) system comprising a tartrate-(TAT) selective electrode has been developed for determination of tartaric acid in wines. Several electrodes constructed for this purpose had a PVC membrane with a complex of quaternary ammonium and TAT as anion exchanger, a phenol derivative as additive, and a more or less polar mediator solvent. Characterization of the electrodes showed behavior was best for membranes with o-nitrophenyl octyl ether as solvent. On injection of 500 microL into a phosphate buffer carrier (pH = 3.1; ionic strength 10(-2) mol/L) flowing at 3 mL/min, the slope was 58.06 +/- 0.6 with a lower limit of linear range of 5.0 x 10(-4) mol/L TAT and R2 = 0.9989. The interference of several species, e.g. chloride, bromide, iodide, nitrate, gallic acid, tannin, sucrose, glucose, fructose, acetate, and citrate, was evaluated in terms of potentiometric selectivity coefficients. The Hofmeister series was followed for inorganic species and the most interfering organic ion was citrate. When red and white wines were analyzed and the results compared with those from an independent method they were found to be accurate, with relative standard deviations below 5.0%.

  8. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.

    Science.gov (United States)

    Teigen, Knut; McKinney, Jeffrey Alan; Haavik, Jan; Martínez, Aurora

    2007-01-01

    Hydroxylation of the aromatic amino acids phenylalanine, tyrosine and tryptophan is carried out by a family of non-heme iron and tetrahydrobiopterin (BH4) dependent enzymes, i.e. the aromatic amino acid hydroxylases (AAHs). The reactions catalyzed by these enzymes are important for biomedicine and their mutant forms in humans are associated with phenylketonuria (phenylalanine hydroxylase), Parkinson's disease and DOPA-responsive dystonia (tyrosine hydroxylase), and possibly neuropsychiatric and gastrointestinal disorders (tryptophan hydroxylase 1 and 2). We attempt to rationalize current knowledge about substrate and inhibitor specificity based on the three-dimensional structures of the enzymes and their complexes with substrates, cofactors and inhibitors. In addition, further insights on the selectivity and affinity determinants for ligand binding in the AAHs were obtained from molecular interaction field (MIF) analysis. We applied this computational structural approach to a rational analysis of structural differences at the active sites of the enzymes, a strategy that can help in the design of novel selective ligands for each AAH.

  9. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  10. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis.

    Science.gov (United States)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson's disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson's disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  11. Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA.

    Directory of Open Access Journals (Sweden)

    Mari Gotoh

    Full Text Available Cyclic phosphatidic acid (cPA is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2 to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A cells with CoCl(2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1, LPA(2, and LPA(6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1 and LPA(2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1 and LPA(2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1 and LPA(3 antagonist, was adopted to know the LPA(1 function and siRNA was used to knockdown the expression of LPA(2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2-induced hypoxia damage is mediated via LPA(2.

  12. Marker assisted selection of low phytic acid trait in maize (Zea mays L.).

    Science.gov (United States)

    Sureshkumar, S; Tamilkumar, P; Senthil, N; Nagarajan, P; Thangavelu, A U; Raveendran, M; Vellaikumar, S; Ganesan, K N; Balagopal, R; Vijayalakshmi, G; Shobana, V

    2014-02-01

    Maize is the third important major food crop. Breeding for low phytate maize genotypes is an effective strategy for decreasing the content of kernel phytic acid (a chelator of cations such as Ca(2+) and Fe(3+) ) and thereby increasing the bioavailability of nutritive minerals in human diet and animal feed. Previous studies have established that a mutant plant with a lpa2-2 allele accumulates less phytic acid in seeds. Therefore, the marker assisted backcross breeding (MABB), which involves introgression of lpa2-2 recessive allele (which confer low phytate trait) from a lpa2-2 mutant line into a well-adapted line using backcrosses and selection of lines possessing lpa2-2 allele in each backcross population using molecular markers, is an effective strategy for developing low phytate maize. So far, no studies have developed any lpa2-2 allele specific molecular markers for this purpose. Here, using backcross and selfed progenies, obtained by crossing low phytate mutant line 'EC 659418' (i.e. donor of lpa2-2 allele) into agronomically superior line 'UMI395', we have validated that a SSR marker 'umc2230', located 0.4 cM downstream of lpa2-2, cosegregate, in a Mendelian fashion, with low phytic acid trait. Therefore umc2230 can be dependably used in MABB for the development of low phytate maize.

  13. Effect of Selected Organic Acids on Cadmium Sorption by Variable-and Permanent-Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HU Hong-Qing; LIU Hua-Liang; HE Ji-Zheng; HUANG Qiao-Yun

    2007-01-01

    Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-cinnamon soil and generally the yellow-brown soil (permanent-charge soils)decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the variable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol.

  14. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations.

  15. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    Science.gov (United States)

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  16. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  17. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity.

    Science.gov (United States)

    Akyol, Sumeyya; Ginis, Zeynep; Armutcu, Ferah; Ozturk, Gulfer; Yigitoglu, M Ramazan; Akyol, Omer

    2012-07-01

    Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.

  18. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    Science.gov (United States)

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  19. Moulded interconnect device fabrication by two shot molding and lasert induced selective activation

    DEFF Research Database (Denmark)

    Sun, Jie; Hansen, Hans Nørgaard

    This report on the project “Molded Interconnect Device (MID) by two shot injection molding and laser induced selective activation” has been submitted to fulfil the requirements for the master project at department of Manufacturing Engineering and Management of Technical University of Denmark (IPL...... interconnect device was achieved with two innovative processes such as two shot injection molding which combines platetable and none-platetable thermoplastics, and laser induced selective activation which uses a laser to draw circuit on the thermoplastic surface containing laser sensitive additive. Different...

  20. Yoghurts with addition of selected vegetables: acidity, antioxidant properties and sensory quality

    Directory of Open Access Journals (Sweden)

    Dorota Najgebauer-Lejko

    2014-03-01

    Full Text Available Background. Yoghurt is a fermented milk of unique sensory, nutritive and dietetic value offered in a variety of types and in different fl avours. Vegetables belong to the group of food products rich in antioxidant substances (e.g., vitamin C, carotenoids, tocopherols, polyphenols which regular consumption lowers the risk of many diseases including cancers and cardiovascular disorders. The aim of the present work was to manufacture and assess the acidity, sensory quality and antioxidant capacity of yoghurts with addition of selected vegetables during 2-week refrigerated storage. Material and methods. The vegetable preparations (carrot, pumpkin, broccoli and red sweet pepper were added to the cow’s milk fermented using DVS type yoghurt culture after initial cooling to 15-20°C in the amount of 10% (w/w. The following analyses were performed: determination of pH, titratable acidity, antioxidant activity by ferric reducing antioxidant power (FRAP and 2,2’-diphenyl-1-picrylhydrazyl (DPPH method as well as sensory evaluation and were conducted after 1, 7 and 14 days of cold storage. Results. The yoghurt supplementation with selected vegetables had no signifi cant effect on the pH and titratable acidity level. The highest ability to scavenge DPPH radicals was stated for yoghurts with broccoli and red sweet pepper. The latter treatment gained the highest notes in sensory evaluation. All vegetable yoghurts were characterised by higher than the natural yoghurt FRAP values measured directly after production. However, the level of this parameter signifi cantly decreased after storage. Conclusions. The red sweet pepper additive was the most benefi cial regarding antioxidant properties and organoleptic acceptance of the studied yoghurts.

  1. Comment: On the consequences of sexual selection for fisheries-induced evolution

    OpenAIRE

    Urbach, D.; Cotton, S

    2008-01-01

    It is becoming increasingly recognized that fishing (and other forms of nonrandom harvesting) can have profound evolutionary consequences for life history traits. A recent and welcome publication provided the first description of how sexual selection might influence the outcome of fisheries-induced evolution (FIE). One of the main conclusions was that if sexual selection generates a positive relationship between body size and reproductive success, increased fishing pressure on large individua...

  2. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 1: Model system studies.

    Science.gov (United States)

    Yuan, Yuan; Tarres, Adrienne; Bessaire, Thomas; Stadler, Richard H; Delatour, Thierry

    2017-07-15

    This study describes, for the first time, the role of pipecolic acid betaine and pipecolic acid, naturally present in some foods, in the formation of the plant growth regulator N,N-dimethylpiperidinium (mepiquat) under dry thermal conditions. The formation of mepiquat and intermediate compounds was investigated in model systems using high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Mepiquat is released with a yield of up to 0.66mol% after thermal treatment (>150°C) of pipecolic acid betaine. Similar conversion rates are attained with the congener piperidine-2-carboxylic acid (dl-pipecolic acid), albeit in the presence of alkylating agents, such as choline, glycine betaine or trigonelline, that are fairly widespread in food crops. These new pathways to mepiquat indicate that the occurrence of low levels of this thermally induced compound is probably more widespread in processed foods than initially suspected (see Part 2 of this study on the occurrence of mepiquat in selected foodstuffs).

  3. High Fat Feeding Induces Hepatic Fatty Acid Elongation in Mice

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; van Dijk, Theo H.; Tietge, Uwe J. F.; Boer, Theo; Havinga, Rick; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2009-01-01

    Background: High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Metho

  4. Selective activation of liver X receptors by acanthoic acid-related diterpenes.

    Science.gov (United States)

    Traves, Paqui G; Hortelano, Sonsoles; Zeini, Miriam; Chao, Ta-Hsiang; Lam, Thanh; Neuteboom, Saskia T; Theodorakis, Emmanuel A; Palladino, Michael A; Castrillo, Antonio; Bosca, Lisardo

    2007-06-01

    Terpenoids constitute a large family of natural steroids that are widely distributed in plants and insects. We investigated the effects of a series of diterpenes structurally related to acanthoic acid in macrophage functions. We found that diterpenes with different substitutions at the C4 position in ring A are potent activators of liver X receptors (LXRalpha and LXRbeta) in both macrophage cell lines from human and mouse origin and primary murine macrophages. Activation of LXR by these diterpenes was evaluated in transient transfection assays and gene expression analysis of known LXR-target genes, including the cholesterol transporters ABCA1 and ABCG1, the sterol regulatory element-binding protein 1c, and the apoptosis inhibitor of macrophages (Spalpha). Moreover, active diterpenes greatly stimulated cholesterol efflux from macrophages. It is interesting that these diterpenes antagonize inflammatory gene expression mainly through LXR-dependent mechanisms, indicating that these compounds can activate both LXR activation and repression functions. Stimulation of macrophages with acanthoic acid diterpenes induced LXR-target gene expression and cholesterol efflux to similar levels observed with synthetic agonists 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)-amino]propyloxy]phenylacetic acid hydrochloride (GW3965) and N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide [T1317 (T0901317)]. These effects observed in gene expression were deficient in macrophages lacking both LXR isoforms (LXRalpha,beta(-/-)). These results show the ability of certain acanthoic acid diterpenes to activate efficiently both LXRs and suggest that these compounds can exert beneficial effects from a cardiovascular standpoint through LXR-dependent mechanisms.

  5. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.

    Science.gov (United States)

    Procházka, Erik; Escher, Beate I; Plewa, Michael J; Leusch, Frederic D L

    2015-10-19

    The process of disinfecting drinking water inadvertently leads to the formation of numerous disinfection byproducts (DBPs). Some of these are mutagenic, genotoxic, teratogenic, and cytotoxic, as well as potentially carcinogenic both in vivo and in vitro. We investigated the in vitro biological activity of five DBPs: three monohaloacetic acids (monoHAAs) [chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA)] and two novel halobenzoquinones (HBQs) [2,6-dichloro-p-benzoquinone (DCBQ) and 2,6-dibromo-p-benzoquinone]. We focused particularly on cytotoxicity and induction of two adaptive stress response pathways: the oxidative stress responsive Nrf2/ARE and DNA-damage responsive p53 pathways. All five DBPs were cytotoxic to the Caco-2 cell line after a 4 h exposure, and all DBPs induced both of the adaptive stress response pathways, Nrf2/ARE and p53, in the micromolar range, as measured by two β-lactamase-based reporter gene assays. The decreasing order of potency for all three endpoints for the five DBPs was IAA ∼ BAA > DCBQ ∼ DBBQ > CAA. Induction of oxidative stress was previously proposed to be the molecular initiating event (MIE) for both classes of DBPs. However, comparing the levels of activation of the two pathways uncovered that the Nrf2/ARE pathway was the more sensitive endpoint for HAAs, whereas the p53 pathway was more sensitive in the case of HBQs. Therefore, the DNA damage-responsive p53 pathway may be an important piece of information to fill in a gap in the adverse outcome pathway framework for the assessment of HBQs. Finally, we cautiously compared the potential risk of the two novel HBQs using a benchmarking approach to that of the well-studied CAA, which suggested that their relative risk may be lower than that of BAA and IAA.

  6. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    Science.gov (United States)

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  7. G-quadruplex DNAzymes-induced highly selective and sensitive colorimetric sensing of free heme in rat brain.

    Science.gov (United States)

    Li, Ruimin; Jiang, Qin; Cheng, Hanjun; Zhang, Guoqiang; Zhen, Mingming; Chen, Daiqin; Ge, Jiechao; Mao, Lanqun; Wang, Chunru; Shu, Chunying

    2014-04-21

    Direct selective determination of free heme in the cerebral system is of great significance due to the crucial roles of free heme in physiological and pathological processes. In this work, a G-quadruplex DNAzymes-induced highly sensitive and selective colorimetric sensing of free heme in rat brain is established. Initially, the conformation of an 18-base G-rich DNA sequence, PS2.M (5'-GTGGGTAGGGCGGGTTGG-3'), in the presence of K(+), changes from a random coil to a "parallel" G-quadruplex structure, which can bind free heme in the cerebral system with high affinity through π-π stacking. The resulted heme/G-quadruplex complex exhibits high peroxidase-like activity, which can be used to catalyze the oxidation of colorless ABTS(2-) to green ABTS˙(-) by H2O2. The concentration of heme can be evaluated by the naked eye and determined by UV-vis spectroscopy. The signal output showed a linear relationship for heme within the concentration range from 1 to 120 nM with a detection limit of 0.637 nM. The assay demonstrated here was highly selective and free from the interference of physiologically important species such as dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbate acid (AA), cysteine, uric acid (UA), glucose and lactate in the cerebral system. The basal dialysate level of free heme in the microdialysate from the striatum of adult male Sprague-Dawley rats was determined to be 32.8 ± 19.5 nM (n = 3). The analytic protocol possesses many advantages, including theoretical simplicity, low-cost technical and instrumental demands, and responsible detection of heme in rat brain microdialysate.

  8. Genetic parameters for rennet- and acid-induced coagulation properties in milk from Swedish Red dairy cows.

    Science.gov (United States)

    Gustavsson, F; Glantz, M; Poulsen, N A; Wadsö, L; Stålhammar, H; Andrén, A; Lindmark Månsson, H; Larsen, L B; Paulsson, M; Fikse, W F

    2014-01-01

    Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G'), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h(2)) for G' and YS in rennet and acid gels were found to be high (h(2)=0.38-0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G'acid and YSacid, both of which were strong. The high heritability (h(2)=0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and

  9. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    Science.gov (United States)

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  10. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gen