WorldWideScience

Sample records for acid induces il-17a

  1. IL17eScan: A Tool for the Identification of Peptides Inducing IL-17 Response

    Directory of Open Access Journals (Sweden)

    Sudheer Gupta

    2017-10-01

    Full Text Available IL-17 cytokines are pro-inflammatory cytokines and are crucial in host defense against various microbes. Induction of these cytokines by microbial antigens has been investigated in the case of ischemic brain injury, gingivitis, candidiasis, autoimmune myocarditis, etc. In this study, we have investigated the ability of amino acid sequence of antigens to induce IL-17 response using machine-learning approaches. A total of 338 IL-17-inducing and 984 IL-17 non-inducing peptides were retrieved from Immune Epitope Database. 80% of the data were randomly selected as training dataset and rest 20% as validation dataset. To predict the IL-17-inducing ability of peptides/protein antigens, different sequence-based machine-learning models were developed. The performance of support vector machine (SVM and random forest (RF was compared with different parameters to predict IL-17-inducing epitopes (IIEs. The dipeptide composition-based SVM-model displayed an accuracy of 82.4% with Matthews correlation coefficient = 0.62 at polynomial (t = 1 kernel on 10-fold cross-validation and outperformed RF. Amino acid residues Leu, Ser, Arg, Asn, and Phe and dipeptides LL, SL, LK, IL, LI, NL, LR, FK, SF, and LE are abundant in IIEs. The present tool helps in the identification of IIEs using machine-learning approaches. The induction of IL-17 plays an important role in several inflammatory diseases, and identification of such epitopes would be of great help to the immunologists. It is freely available at http://metagenomics.iiserb.ac.in/IL17eScan/ and http://metabiosys.iiserb.ac.in/IL17eScan/.

  2. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  3. IL-17A acts via p38 MAPK to increase stability of TNF-alpha-induced IL-8 mRNA in human ASM.

    Science.gov (United States)

    Henness, Sheridan; van Thoor, Eveline; Ge, Qi; Armour, Carol L; Hughes, J Margaret; Ammit, Alaina J

    2006-06-01

    Human airway smooth muscle (ASM) plays an immunomodulatory role in asthma. Recently, IL-17A has become of increasing interest in asthma, being found at elevated levels in asthmatic airways and emerging as playing an important role in airway neutrophilia. IL-17A predominantly exerts its neutrophil orchestrating role indirectly via the induction of cytokines by resident airway structural cells. Here, we perform an in vitro study to show that although IL-17A did not induce secretion of the CXC chemokine IL-8 from ASM cells, IL-17A significantly potentiates TNF-alpha-induced IL-8 protein secretion and gene expression in a concentration- and time-dependent manner (P ASM cells, acting via a p38 MAPK-dependent posttranscriptional pathway to augment TNF-alpha-induced secretion of the potent neutrophil chemoattractant IL-8 from ASM cells.

  4. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane.

    Science.gov (United States)

    Summers, S A; Odobasic, D; Khouri, M B; Steinmetz, O M; Yang, Y; Holdsworth, S R; Kitching, A R

    2014-06-01

    Interleukin (IL)-17A is increased both in serum and in kidney biopsies from patients with lupus nephritis, but direct evidence of pathogenicity is less well established. Administration of pristane to genetically intact mice results in the production of autoantibodies and proliferative glomerulonephritis, resembling human lupus nephritis. These studies sought to define the role of IL-17A in experimental lupus induced by pristane administration. Pristane was administered to wild-type (WT) and IL-17A(-/-) mice. Local and systemic immune responses were assessed after 6 days and 8 weeks, and autoimmunity, glomerular inflammation and renal injury were measured at 7 months. IL-17A production increased significantly 6 days after pristane injection, with innate immune cells, neutrophils (Ly6G(+)) and macrophages (F4/80(+)) being the predominant source of IL-17A. After 8 weeks, while systemic IL-17A was still readily detected in WT mice, the levels of proinflammatory cytokines, interferon (IFN)-γ and tumour necrosis factor (TNF) were diminished in the absence of endogenous IL-17A. Seven months after pristane treatment humoral autoimmunity was diminished in the absence of IL-17A, with decreased levels of immunoglobulin (Ig)G and anti-dsDNA antibodies. Renal inflammation and injury was less in the absence of IL-17A. Compared to WT mice, glomerular IgG, complement deposition, glomerular CD4(+) T cells and intrarenal expression of T helper type 1 (Th1)-associated proinflammatory mediators were decreased in IL-17A(-/-) mice. WT mice developed progressive proteinuria, but functional and histological renal injury was attenuated in the absence of IL-17A. Therefore, IL-17A is required for the full development of autoimmunity and lupus nephritis in experimental SLE, and early in the development of autoimmunity, innate immune cells produce IL-17A. © 2014 British Society for Immunology.

  5. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents.

    Science.gov (United States)

    Qiu, Ao-Wang; Liu, Qing-Huai; Wang, Jun-Ling

    2017-01-01

    Interleukin (IL)-17A, a proinflammatory cytokine, has been implicated in several autoimmune diseases. However, it is unclear whether IL-17A is involved in diabetic retinopathy (DR), one of the most serious complications of autoimmune diabetes. This study aimed to demonstrate that IL-17A exacerbates DR by affecting retinal Müller cell function. High glucose (HG)-treated rat Müller cell line (rMC-1) was exposed to IL-17A, anti-IL-17A-neutralizing monoclonal antibody (mAb) or/and anti-IL-17 receptor (R)A-neutralizing mAb for 24 h. For in vivo study, DR was induced by intraperitoneal injections of streptozotocin (STZ). DR model mice were treated with anti-IL-17A mAb or anti-IL-17RA mAb in the vitreous cavity. Mice that were prepared for retinal angiography were sacrificed two weeks after intravitreal injection, while the rest were sacrificed two days after intravitreal injection. IL-17A production and IL-17RA expression were increased in both HG-treated rMC-1 and DR retina. HG induced rMC-1 activation and dysfunction, as determined by the increased GFAP, VEGF and glutamate levels as well as the downregulated GS and EAAT1 expression. IL-17A exacerbated the HG-induced rMC-1 functional disorders, whereas either anti-IL-17A mAb or anti-IL-17RA mAb alleviated the HG-induced rMC-1 disorders. Intravitreal injections with anti-IL-17A mAb or anti-IL-17RA mAb in DR model mice reduced Müller cell dysfunction, vascular leukostasis, vascular leakage, tight junction protein downregulation and ganglion cell apoptosis in the retina. IL-17A aggravates DR-like pathology at least partly by impairing retinal Müller cell function. Blocking IL-17A is a potential therapeutic strategy for DR. © 2017 The Author(s)Published by S. Karger AG, Basel.

  6. Requirement of TPO/c-mpl for IL-17A-induced granulopoiesis and megakaryopoiesis.

    Science.gov (United States)

    Tan, Weihong; Liu, Bainan; Barsoum, Adel; Huang, Weitao; Kolls, Jay K; Schwarzenberger, Paul

    2013-12-01

    IL-17A is a critical, proinflammatory cytokine essential to host defense and is induced in response to microbial invasion. It stimulates granulopoiesis, leading to neutrophilia, neutrophil activation, and mobilization. TPO synergizes with other cytokines in stimulating and expanding hematopoietic progenitors, also leading to granulopoiesis and megakaryopoiesis, and is required for thrombocytopoiesis. We investigated the effects of in vivo expression of IL-17A on granulopoiesis and megakaryopoiesis in TPO receptor c-mpl-/- mice. IL-17A expression expanded megakaryocytes by 2.5-fold in normal mice but had no such effect in c-mpl-/- mice. The megakaryocyte expansion did not result in increased peripheral platelet counts. IL-17A expression did not impact bone marrow precursors in c-mpl-/- mice; however, it expanded splenic precursors, although to a lesser extent compared with normal controls (CFU-HPP). No peripheral neutrophil expansion was observed in c-mpl-/- mice. Moreover, in c-mpl-/- mice, release of IL-17A downstream cytokines was reduced significantly (KC, MIP-2, GM-CSF). The data suggest that IL-17A requires the presence of functional TPO/c-mpl to exert its effects on granulopoiesis and megakaryopoiesis. Furthermore, IL-17A and its downstream cytokines are important regulators and synergistic factors for the physiologic function of TPO/c-mpl on hematopoiesis.

  7. C5a regulates IL-12+ DC migration to induce pathogenic Th1 and Th17 cells in sepsis.

    Directory of Open Access Journals (Sweden)

    Ning Ma

    Full Text Available OBJECTIVE: It is well known that complement system C5a is excessively activated during the onset of sepsis. However, it is unclear whether C5a can regulate dentritic cells (DCs to stimulate adaptive immune cells such as Th1 and Th17 in sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP. CLP-induced sepsis was treated with anti-C5a or IL-12. IL-12(+DC, IFNγ(+Th1, and IL-17(+Th17 cells were analyzed by flow cytometry. IL-12 was measured by ELISA. RESULTS: Our studies here showed that C5a induced IL-12(+DC cell migration from the peritoneal cavity to peripheral blood and lymph nodes. Furthermore, IL-12(+DC cells induced the expansion of pathogenic IFNγ(+Th1 and IL-17(+Th17 cells in peripheral blood and lymph nodes. Moreover, IL-12, secreted by DC cells in the peritoneal cavity, is an important factor that prevents the development of sepsis. CONCLUSION: Our data suggests that C5a regulates IL-12(+DC cell migration to induce pathogenic Th1 and Th17 cells in sepsis.

  8. Limitations of Using IL-17A and IFN-γ-Induced Protein 10 to Detect Bovine Tuberculosis

    Science.gov (United States)

    Xin, Ting; Gao, Xintao; Yang, Hongjun; Li, Pingjun; Liang, Qianqian; Hou, Shaohua; Sui, Xiukun; Guo, Xiaoyu; Yuan, Weifeng; Zhu, Hongfei; Ding, Jiabo; Jia, Hong

    2018-01-01

    Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection

  9. IL-17A, IL-17RC polymorphisms and IL17 plasma levels in Tunisian patients with rheumatoid arthritis

    Science.gov (United States)

    Chahbi, Mayssa; Haouami, Youssra; Sfar, Imen; Abdelmoula, Leila; Ben Abdallah, Taieb; Gorgi, Yousr

    2018-01-01

    Background Interleukin-17 (IL-17), a cytokine mainly secreted by Th17 cells, seems to play a significant role in the pathogenesis of rheumatoid arthritis (RA). Functional genetic polymorphisms in IL-17 and its receptor genes can influence either qualitatively or quantitatively their functions. Therefore, we aimed to study the impact of IL17-A and IL17RC polymorphisms on plasma level of IL-17 and RA susceptibility and severity. Methods In this context, IL-17A*rs2275913 and IL-17RC*rs708567 polymorphisms were investigated together with the quantification of IL17 plasma level in 115 RA patients and 91 healthy control subjects matched in age, sex and ethnic origin. Results There were no statistically significant associations between IL-17A and IL-17RC studied polymorphisms and RA susceptibility. In contrast, IL-17A plasma levels were significantly higher in patients (55.07 pg/ml) comparatively to controls (4.75 pg/ml), p<10E-12. A ROC curve was used to evaluate the performance of plasma IL-17 in detecting RA. Given 100% specificity, the highest sensitivity of plasma IL-17A was 61.7% at a cut-off value of 18.25 pg/ml; p < 10E-21, CI = [0.849–0.939]. Analytic results showed that the IgM-rheumatoid factor and anti-CCP antibodies were significantly less frequent in patients with the IL-17RC*A/A genotype than those carrying *G/G and *G/A genotypes; p = 0.013 and p = 0.015, respectively. Otherwise, IL-17 plasma levels’ analysis showed a significant association with the activity of RA (DAS28≥5.1 = 74.71 pg/ml vs. DAS28<5.1 = 11.96 pg/ml), p<10E-6. Conclusion IL-17A*rs2275913 (G/A) and IL-17RC*rs708567 (G/A) polymorphisms did not seem to influence RA susceptibility in Tunisian population. This result agrees with those reported previously. Plasma IL-17A level seems to be predictive of severe RA occurrence. PMID:29584788

  10. Secreted protein acidic and rich in cysteine functions in colitis via IL17A regulation in mucosal CD4+ T cells.

    Science.gov (United States)

    Tanaka, Makoto; Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Hotta, Yuma; Toyokawa, Yuki; Ushiroda, Chihiro; Hirai, Yasuko; Aoi, Wataru; Higashimura, Yasuki; Mizushima, Katsura; Okayama, Tetsuya; Katada, Kazuhiro; Kamada, Kazuhiro; Ishikawa, Takeshi; Handa, Osamu; Itoh, Yoshito

    2018-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycol that regulates cell proliferation, tissue repair, and tumorigenesis. Despite evidence linking SPARC to inflammation, the mechanisms are unclear. Accordingly, the role of SPARC in intestinal inflammation was investigated. Colitis was induced in wild-type (WT) and SPARC knockout (KO) mice using trinitrobenzene sulfonic acid (TNBS). Colons were assessed for damage; leukocyte infiltration; Tnf, Ifng, Il17a, and Il10 mRNA expression; and histology. Cytokine profiling of colonic lamina propria mononuclear cells (LPMCs) was performed by flow cytometry. Naïve CD4 + T cells were isolated from WT and SPARC KO mouse spleens, and the effect of SPARC on Th17 cell differentiation was examined. Recombination activating gene 1 knockout (RAG1 KO) mice reconstituted with T cells from either WT or SPARC KO mice were investigated. Trinitrobenzene sulfonic acid exposure significantly reduced bodyweight and increased mucosal inflammation, leukocyte infiltration, and Il17a mRNA expression in WT relative to SPARC KO mice. The percentage of IL17A-producing CD4 + T cells among LPMCs from KO mice was lower than that in WT mice when both groups were exposed to TNBS. Th17 cell differentiation was suppressed in cells from SPARC KO mice. In the T cell transfer colitis model, RAG1 KO mice receiving T cells from WT mice were more severely affected than those reconstituted with cells from SPARC KO mice. Secreted protein acidic and rich in cysteine accelerates colonic mucosal inflammation via modulation of IL17A-producing CD4 + T cells. SPARC is a potential therapeutic target for conditions involving intestinal inflammation. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  11. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis.

    Directory of Open Access Journals (Sweden)

    Qinghong Wang

    Full Text Available IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg efficiently induces IL-23 secretion in a mannose receptor (MR-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.

  12. Two distinct populations of bovine IL-17⁺ T-cells can be induced and WC1⁺IL-17⁺γδ T-cells are effective killers of protozoan parasites.

    Science.gov (United States)

    Peckham, R K; Brill, R; Foster, D S; Bowen, A L; Leigh, J A; Coffey, T J; Flynn, R J

    2014-06-25

    IL-17 has emerged as a key player in the immune system, exhibiting roles in protection from infectious diseases and promoting inflammation in autoimmunity. Initially thought to be CD4 T-cell-derived, the sources of IL-17 are now known to be varied and belong to both the innate and adaptive arms of the immune system. Mechanisms for inducing IL-17 production in lymphoid cells are thought to rely on appropriate antigenic stimulation in the context of TGF-β1, IL-6 and/or IL-1β. Using culture protocols adapted from human studies, we have effectively induced both bovine CD4(+) and WC1(+) γδ T-cells to produce IL-17 termed Th17 and γδ17 cells, respectively. The negative regulatory effect of IFN-γ on mouse and human IL-17 production can be extended to the bovine model, as addition of IFN-γ decreases IL-17 production in both cell types. Furthermore we show that infection with the protozoan Neospora caninum will induce fibroblasts to secrete pro-IL-17 factors thereby inducing a γδ17 phenotype that preferentially kills infected target cells. Our study identifies two T-cell sources of IL-17, and is the first to demonstrate a protective effect of IL-17(+) T-cells in ruminants. Our findings offer further opportunities for future adjuvants or vaccines which could benefit from inducing these responses.

  13. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  14. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Directory of Open Access Journals (Sweden)

    Paola Di Meglio

    2011-02-01

    Full Text Available IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A and common (G allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  15. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Science.gov (United States)

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C; Peris, Ketty; Nestle, Frank O

    2011-02-22

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  16. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis.

    Directory of Open Access Journals (Sweden)

    Paméla Gasse

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt(+ γδ T cells and to a lesser extent by CD4αβ(+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.

  17. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17

    DEFF Research Database (Denmark)

    Muñoz, Melba; Heimesaat, Markus M; Danker, Kerstin

    2009-01-01

    Peroral infection with Toxoplasma gondii leads to the development of small intestinal inflammation dependent on Th1 cytokines. The role of Th17 cells in ileitis is unknown. We report interleukin (IL)-23-mediated gelatinase A (matrixmetalloproteinase [MMP]-2) up-regulation in the ileum of infected...... mice. MMP-2 deficiency as well as therapeutic or prophylactic selective gelatinase blockage protected mice from the development of T. gondii-induced immunopathology. Moreover, IL-23-dependent up-regulation of IL-22 was essential for the development of ileitis, whereas IL-17 was down...

  18. IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kelly M Adams

    Full Text Available The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A, which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4 as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease.

  19. IL-17/Th17 Pathway Is Activated in Acne Lesions

    Science.gov (United States)

    Kelhälä, Hanna-Leena; Palatsi, Riitta; Fyhrquist, Nanna; Lehtimäki, Sari; Väyrynen, Juha P.; Kallioinen, Matti; Kubin, Minna E.; Greco, Dario; Tasanen, Kaisa; Alenius, Harri; Bertino, Beatrice; Carlavan, Isabelle; Mehul, Bruno; Déret, Sophie; Reiniche, Pascale; Martel, Philippe; Marty, Carine; Blume-Peytavi, Ulrike; Voegel, Johannes J.; Lauerma, Antti

    2014-01-01

    The mechanisms of inflammation in acne are currently subject of intense investigation. This study focused on the activation of adaptive and innate immunity in clinically early visible inflamed acne lesions and was performed in two independent patient populations. Biopsies were collected from lesional and non-lesional skin of acne patients. Using Affymetrix Genechips, we observed significant elevation of the signature cytokines of the Th17 lineage in acne lesions compared to non-lesional skin. The increased expression of IL-17 was confirmed at the RNA and also protein level with real-time PCR (RT-PCR) and Luminex technology. Cytokines involved in Th17 lineage differentiation (IL-1β, IL-6, TGF-β, IL23p19) were remarkably induced at the RNA level. In addition, proinflammatory cytokines and chemokines (TNF-α, IL-8, CSF2 and CCL20), Th1 markers (IL12p40, CXCR3, T-bet, IFN-γ), T regulatory cell markers (Foxp3, IL-10, TGF-β) and IL-17 related antimicrobial peptides (S100A7, S100A9, lipocalin, hBD2, hBD3, hCAP18) were induced. Importantly, immunohistochemistry revealed significantly increased numbers of IL-17A positive T cells and CD83 dendritic cells in the acne lesions. In summary our results demonstrate the presence of IL-17A positive T cells and the activation of Th17-related cytokines in acne lesions, indicating that the Th17 pathway is activated and may play a pivotal role in the disease process, possibly offering new targets of therapy. PMID:25153527

  20. Anti-IL-17 Antibody Improves Hepatic Steatosis by Suppressing Interleukin-17-Related Fatty Acid Synthesis and Metabolism

    Directory of Open Access Journals (Sweden)

    Weidong Shi

    2013-01-01

    Full Text Available To investigate the relationship between interleukin-17 and proteins involved in fatty acid metabolism with respect to alcoholic liver disease, male ICR mice were randomized into five groups: control, alcoholic liver disease (ALD at 4 weeks, 8 weeks, and 12 weeks, and anti-IL-17 antibody treated ALD. A proteomic approach was adopted to investigate changes in liver proteins between control and ALD groups. The proteomic analysis was performed by two-dimensional difference gel electrophoresis. Spots of interest were subsequently subjected to nanospray ionization tandem mass spectrometry (MS/MS for protein identification. Additionally, expression levels of selected proteins were confirmed by western blot. Transcriptional levels of some selected proteins were determined by RT-PCR. Expression levels of 95 protein spots changed significantly (ratio >1.5, P<0.05 during the development of ALD. Sterol regulatory element-binding protein-lc (SREBP-1c, carbohydrate response element binding protein (ChREBP, enoyl-coenzyme A hydratase (ECHS1, and peroxisome proliferator-activated receptor alpha (PPAR-α were identified by MS/MS among the proteins shown to vary the most; increased IL-17 elevated the transcription of SREBP-1c and ChREBP but suppressed ECHS1 and PPAR-α. The interleukin-17 signaling pathway is involved in ALD development; anti-IL-17 antibody improved hepatic steatosis by suppressing interleukin-17-related fatty acid metabolism.

  1. Local cryotherapy improves adjuvant-induced arthritis through down-regulation of IL-6 / IL-17 pathway but independently of TNFα.

    Science.gov (United States)

    Guillot, Xavier; Martin, Hélène; Seguin-Py, Stéphanie; Maguin-Gaté, Katy; Moretto, Johnny; Totoson, Perle; Wendling, Daniel; Demougeot, Céline; Tordi, Nicolas

    2017-01-01

    Local cryotherapy is widely and empirically used in the adjuvant setting in rheumatoid arthritis treatment, however its own therapeutic and anti-inflammatory effects are poorly characterized. We aimed to evaluate the effects of local cryotherapy on local and systemic inflammation in Adjuvant-induced arthritis, a murine model of rheumatoid arthritis. The effects of mild hypothermia (30°C for 2 hours) on cytokine protein levels (Multiplex/ELISA) were evaluated in vitro in cultured rat adjuvant-induced arthritis patellae. In vivo, local cryotherapy was applied twice a day for 14 days in arthritic rats (ice: n = 10, cold gas: n = 9, non-treated: n = 10). At day 24 after the induction of arthritis, cytokine expression levels were measured in grinded hind paws (Q-RT-PCR) and in the plasma (Multiplex/ELISA). In vitro, punctual mild hypothermia down-regulated IL-6 protein expression. In vivo, ice showed a better efficacy profile on the arthritis score and joint swelling and was better tolerated, while cold gas induced a biphasic response profile with initial, transient arthritis worsening. Local cryotherapy also exerted local and systemic anti-inflammatory effects, both at the gene and the protein levels: IL-6, IL-17A and IL-1β gene expression levels were significantly down-regulated in hind paws. Both techniques decreased plasma IL-17A while ice decreased plasma IL-6 protein levels. By contrast, we observed no effect on local/systemic TNF-α pathway. We demonstrated for the first time that sub-chronically applied local cryotherapy (ice and cold gas) is an effective and well-tolerated treatment in adjuvant-induced arthritis. Furthermore, we provided novel insights into the cytokine pathways involved in Local cryotherapy's local and systemic anti-inflammatory effects, which were mainly IL-6/IL-17A-driven and TNF-α independent in this model.

  2. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis.

    Science.gov (United States)

    Conti, Heather R; Whibley, Natasha; Coleman, Bianca M; Garg, Abhishek V; Jaycox, Jillian R; Gaffen, Sarah L

    2015-01-01

    Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.

  3. Signaling through IL-17C/IL-17RE Is Dispensable for Immunity to Systemic, Oral and Cutaneous Candidiasis

    Science.gov (United States)

    Conti, Heather R.; Whibley, Natasha; Coleman, Bianca M.; Garg, Abhishek V.; Jaycox, Jillian R.; Gaffen, Sarah L.

    2015-01-01

    Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections. PMID:25849644

  4. IL-17 receptor A signaling is protective in infection-stimulated periapical bone destruction.

    Science.gov (United States)

    AlShwaimi, Emad; Berggreen, Ellen; Furusho, Hisako; Rossall, Jonathan Caleb; Dobeck, Justine; Yoganathan, Subbiah; Stashenko, Philip; Sasaki, Hajime

    2013-08-15

    IL-17 is a pleiotropic cytokine produced by Th17 T cells that induces a myriad of proinflammatory mediators. However, different models of inflammation report opposite functional roles of IL-17 signal in terms of its effects on bone destruction. In this study we determined the role of IL-17RA signal in bone resorption stimulated by dentoalveolar infections. Infrabony resorptive lesions were induced by surgical pulp exposure and microbial infection of mouse molar teeth. IL-17 was strongly induced in periapical tissues in wild-type (WT) mice by 7 d after the infection but was not expressed in uninfected mice. Dentoalveolar infections of IL-17RA knockout (KO) mice demonstrated significantly increased bone destruction and more abscess formation in the apical area compared with WT mice. Infected IL-17RA KO mice exhibited significantly increased neutrophils and macrophages compared with the WT littermates at day 21, suggesting a failure of transition from acute to chronic inflammation in the IL-17RA KO mice. The expression of IL-1 (both α and β isoforms) and MIP2 were significantly upregulated in the IL-17RA KO compared with WT mice at day 21 postinfection. The development of periapical lesions in IL-17RA KO mice was significantly attenuated by neutralization of IL-1β and MIP2. Taken together, these results demonstrate that IL-17RA signal seems to be protective against infection-induced periapical inflammation and bone destruction via suppression of neutrophil and mononuclear inflammation.

  5. Interleukin-17A Promotes Parietal Cell Atrophy by Inducing ApoptosisSummary

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    Full Text Available Background & Aims: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A in causing parietal cell atrophy. Methods: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. Results: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. Conclusions: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a

  6. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis.

    Directory of Open Access Journals (Sweden)

    Heather R Conti

    Full Text Available Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.

  7. High IL-17E and low IL-17C dermal expression identifies a fibrosis-specific motif common to morphea and systemic sclerosis.

    Directory of Open Access Journals (Sweden)

    Paola Adele Lonati

    Full Text Available BACKGROUND: High interleukin (IL-17A levels are characteristically found in the skin of systemic sclerosis (SSc individuals. Our aim was to investigate whether the dermal expression of IL-17A and related IL-17 family members (i.e. IL-17C, IL-17E and IL-17F could distinguish fibrotic from healthy skin and could show similarities in SSc and morphea, two disorders with presumed distinct pathogenesis, but characterized by skin fibrosis. METHODS: Biopsies were obtained from the involved skin of 14 SSc, 5 morphea and 8 healthy donors (HD undergoing plastic surgery. Immunohistochemistry/immunofluorescence techniques were coupled to a semi-automated imaging quantification approach to determine the presence of the IL-17 family members in the skin. The in vitro effects induced by the IL-17 family members on fibroblasts from normal and SSc individuals were assessed by ELISA and RIA. RESULTS: Positive cells for each of the IL-17 isoforms investigated were present in the dermis of all the individuals tested, though with variable frequencies. SSc individuals had increased frequency of IL-17A+ (p = 0.0237 and decreased frequency of IL-17F+ (p = 0.0127 and IL-17C+ cells (p = 0.0008 when compared to HD. Similarly, morphea individuals had less frequent IL-17C+ cells (p = 0.0186 in their skin but showed similar number of IL-17A+ and IL-17F+ cells when compared to HD. Finally, IL-17E+ cells were more numerous in morphea (p = 0.0109 and tended to be more frequent in SSc than in HD. Fibroblast production of IL-6, MMP-1 and MCP-1 was enhanced in a dose-dependent manner in the presence of IL-17E and IL-17F, but not in the presence of IL-17C. None of the cytokine tested had significant effect on type I collagen production. Of interest, in SSc the frequency of both IL-17A and IL-17F positive cells increased with disease duration. CONCLUSIONS: The frequency of IL-17A and IL-17F distinguish SSc to morphea individuals while dermal expression of IL-17C (low and IL-17E (high

  8. Evolutionary Insights into IL17A in Lagomorphs

    Directory of Open Access Journals (Sweden)

    Fabiana Neves

    2015-01-01

    Full Text Available In leporids, IL17A had been implicated in the host defense against extracellular pathogens, such as Francisella tularensis that infects hares and rabbits and causes the zoonotic disease tularemia. Here, we studied IL17A from five lagomorphs, European rabbit, pygmy rabbit, brush rabbit, European brown hare, and American pika. We observed that this protein is highly conserved between these species, with a similarity of 97–99% in leporids and ~88% between leporids and American pika. The exon/intron structure, N-glycosylation sites, and cysteine residues are conserved between lagomorphs. However, at codon 88, one of the interaction sites between IL17A and its receptor IL17RA, there is an Arg>Pro mutation that only occurs in European rabbit and European brown hare. This could induce critical alterations in the IL17A structure and conformation and consequently modify its function. The differences observed between leporids and humans or rodents might also represent important alterations in protein structure and function. In addition, as for other interleukins, IL17A sequences of human and European rabbit are more closely related than the sequences of human and mouse or European rabbit and mouse. This study gives further support to the hypothesis that European rabbit might be a more suitable animal model for studies on human IL17.

  9. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients.

    Science.gov (United States)

    Di Meglio, Paola; Villanova, Federica; Napolitano, Luca; Tosi, Isabella; Terranova Barberio, Manuela; Mak, Rose K; Nutland, Sarah; Smith, Catherine H; Barker, Jonathan N W N; Todd, John A; Nestle, Frank O

    2013-10-01

    We and others have shown that the minor, nonconserved allele Gln381 of the Arg381Gln single-nucleotide polymorphism (rs11209026G>A) of the IL-23 receptor gene (IL23R) protects against psoriasis. Moreover, we have recently shown impaired IL-23-induced IL-17A production and STAT-3 phosphorylation in Th17 cells generated in vitro from healthy individuals heterozygous for the protective A allele (GA). However, the biological effect of this variant has not been determined in homozygous carriers of the protective A allele (AA), nor in psoriatic patients. Here we expand our functional investigation of the IL23R Arg381Gln gene variant to include AA homozygous individuals. By using isolated memory CD4+ T cells, we found attenuated IL-23-induced Th17 response in heterozygous individuals. Moreover, we found that AA homozygous individuals were strikingly unresponsive to IL-23, with minimal or no IL-17A and IL-17F production and failure of human memory Th17 cell survival/expansion. Finally, IL-23-induced Th17 response was also attenuated in age- and sex-matched GA versus GG psoriatic patients undergoing systemic treatment. Taken together, our data provide evidence for an allele-dosage effect for IL-23R Gln381 and indicate that common gene alleles associated with complex diseases might have biological effects of considerable magnitude in homozygous carriers.

  10. Stimulation with Concanavalin-A Induces IL-17 Production by Canine Peripheral T Cells

    Directory of Open Access Journals (Sweden)

    Michelle G. Ritt

    2015-04-01

    Full Text Available The characteristics of canine IL-17-producing cells are incompletely understood. Expression of mRNA encoding orthologs of IL-17 and the IL-17 receptor has been documented in tissues from dogs with arthritis, inflammatory bowel disease, and lymphoma; however, no associations have been found between IL-17 gene expression and disease phenotype in these conditions. Robust assessment of the role of IL-17-producing cells in dogs will require measuring the frequency of these cells in health and disease in balance with other lymphocyte subsets. The aim of this study was to confirm that the T-cell IL-17 response in dogs is evolutionarily conserved. Canine peripheral blood mononuclear cells were stimulated with Concanavalin A with or without polarizing cytokines. We used a canine specific IL-17 ELISA and flow cytometry to identify IL-17-producing T cells. Accumulation of intracellular IL-17 was observed in stimulated CD4 and CD8 T cells. The addition of pro-inflammatory cytokines appeared to enhance polarization of canine CD4 T cells to the Th17 phenotype. Conversely, the addition of IL-2 in the presence of TGF-β resulted in expansion of Treg cells. We conclude that canine IL-17-producing cells behave similarly to those from humans and mice when stimulated with mitogens and polarized with pro-inflammatory or immune regulatory cytokines.

  11. IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Beverly R E A Dixon

    Full Text Available Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization. Specifically, CD4+ T cell responses impact the pathology elicited in response to H. pylori. Because gastritis is believed to be the initiating host response to more detrimental pathological outcomes, there has been a significant interest in pro-inflammatory T cell cytokines, including the cytokines produced by T helper 17 cells. Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22. While these cytokines have been linked to inflammation, IL-17A and IL-22 are also associated with anti-microbial responses and control of bacterial colonization. The goal of this research was to determine the role of IL-22 in activation of antimicrobial responses in models of H. pylori infection using human gastric epithelial cell lines and the mouse model of H. pylori infection. Our data indicate that IL-17A and IL-22 work synergistically to induce antimicrobials and chemokines such as IL-8, components of calprotectin (CP, lipocalin (LCN and some β-defensins in both human and primary mouse gastric epithelial cells (GEC and gastroids. Moreover, IL-22 and IL-17A-activated GECs were capable of inhibiting growth of H. pylori in vitro. While antimicrobials were activated by IL-17A and IL-22 in vitro, using a mouse model of H. pylori infection, the data herein indicate that IL-22 deficiency alone does not render mice more susceptible to infection, change their antimicrobial gene transcription, or significantly change their inflammatory response.

  12. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    Science.gov (United States)

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    Science.gov (United States)

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  14. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Morita, Yoshihiro [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202 (Japan); Hata, Kenji [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan)

    2016-07-15

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.

  15. Marking and quantifying IL-17A-producing cells in vivo.

    Directory of Open Access Journals (Sweden)

    April E Price

    Full Text Available Interleukin (IL-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4(+ T cells, particularly γδ T cells, but also invariant NKT cells and other CD4(-CD3ε(+ cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4(-CD3ε(+ cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges.

  16. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    Science.gov (United States)

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  17. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    International Nuclear Information System (INIS)

    Fang, Zhong-Ze; Zhang, Dunfang; Cao, Yun-Feng; Xie, Cen; Lu, Dan; Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao; Chen, Qianming; Chen, Yu; Wang, Haina; Gonzalez, Frank J.

    2016-01-01

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4 + naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4 + naive T cells.

  18. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhong-Ze [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Zhang, Dunfang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Cao, Yun-Feng [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian (China); Xie, Cen [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Lu, Dan [Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin (China); Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Chen, Qianming; Chen, Yu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wang, Haina [School of Pharmaceutical Sciences, Shandong University, Jinan (China); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2016-01-15

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.

  19. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Zebedeo, Christian Nash; Davis, Chad [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States); Peña, Cecelia [Northwest Nazarene University, Nampa, ID (United States); Ng, Kok Wei [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States); Pfau, Jean C., E-mail: pfaujean@isu.edu [Department of Biological Sciences, Idaho State University, Pocatello, ID (United States)

    2014-03-15

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T{sub H}17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were

  20. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice

    International Nuclear Information System (INIS)

    Zebedeo, Christian Nash; Davis, Chad; Peña, Cecelia; Ng, Kok Wei; Pfau, Jean C.

    2014-01-01

    Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system. Objectives: We performed this study to determine whether erionite evokes autoimmune reactions in mice. Methods: Bone marrow derived macrophages (BMDM) were used to measure toxicity induced by erionite. Cytokine production by BMDM and splenocytes of C57BL/6 mice was examined by bead arrays and ELISA following exposure to erionite, amphiboles and chrysotile. Wild type C57BL/6 mice were exposed to saline, erionite, amphibole asbestos (Libby 6-Mix) or chrysotile through intratracheal instillations at equal mass (60 μg/mouse). Seven months after exposure, sera were examined for anti-nuclear antibodies (ANA) and IL-17. Immunohistochemistry was used to detect immune complex deposition in the kidneys. Results: Erionite and tremolite caused increased cytokine production belonging to the T H 17 profile including IL-17, IL-6, TGF-β, and TNF-α. The frequency of ANA was increased in mice treated with erionite or amphibole compared to saline-treated mice. IL-17 and TNF-α were elevated in the sera of mice treated with erionite. The frequency of immune complex deposition in the kidneys increased from 33% in saline-treated mice to 90% with erionite. Conclusions: These data demonstrate that both erionite and amphibole asbestos induce autoimmune responses in mice, suggesting a potential for adverse effects in exposed communities. - Highlights: • Erionite, a fibrous mineral, is a current public health concern in the western USA. • Erionite exposure induces antinuclear autoantibodies in exposed mice. • Erionite induces a clear Th17 cytokine response in vitro and in vivo. • These responses were distinct

  1. Induction of C-Mip by IL-17 Plays an Important Role in Adriamycin-Induced Podocyte Damage

    Directory of Open Access Journals (Sweden)

    Yanbo Liu

    2015-07-01

    Full Text Available Background/Aims: Although the disturbance of T lymphocyte and glomerular podocyte exerts a crucial function in the pathogenesis of proteinuria, the potential link is still unclear. Methods: The balance of Treg and Th17 cells, and the expression of IL-17/IL-17R and c-mip were investigated in adrimycin-induced nephropathy (AN mice. The effect and mechanism of IL-17 on podocyte were explored in cultured podocytes. Results: The proportion of Th17 cells in peripheral blood mononuclear cells, the amount of IL-17 in serum and kidney cortical homogenates, and the expression of IL-17R and c-mip in glomerular podocyte were increased obviously in AN mice. In cultured podocytes, recombinant IL-17 led to an induction of apoptosis and cytoskeletal disorganization, an overproduction of c-mip while down-regulation of phosphor-nephrin, and an increased binding of c-mip to NF-κB/RelA. Silence of c-mip prevented podocyte apoptosis and reduction of phosphor-nephrin by prompting nuclear translocation of NF-κB/RelA in IL-17 treated cells. Persistent activation of NF-κB up-regulated pro-survival protein Bcl-2 and decreased podocyte apoptosis, but had no effect on phosphor-nephrin level. Conclusion: These findings demonstrated that induction of IL-17 released by Th17 cells plays a key role in podocytopathy most likely through down-regulation of phosphor-nephrin and Bcl-2 level via overproduction of c-mip.

  2. Interleukin (IL)-17A and IL-17F and asthma in Saudi Arabia: mRNA ...

    African Journals Online (AJOL)

    Win-07

    IL17A and IL17F were significantly higher in asthma patients compared to controls [IL17A: 1.112 (2.088) vs 0.938 ... Asthma is a frequently encountered chronic airway in- ... transcription was performed, in 20 μl reaction volume using the.

  3. Increased Circulating Th17 Cells, Serum IL-17A, and IL-23 in Takayasu Arteritis.

    Science.gov (United States)

    Misra, Durga Prasanna; Chaurasia, Smriti; Misra, Ramnath

    2016-01-01

    Introduction. Th17, γδT, NK, and NKT cells in peripheral blood and serum IL-17 and IL-23 in Takayasu arteritis (TA) were measured and correlated with disease activity. Methods. Th17 (anti-CD3APC, CD4PECy7, and IL-17PE), NKT, NK (anti-CD3APC, CD56FITC), and γδT (anti-CD3FITC and γδTCRAPC) cells were enumerated by flow cytometry in peripheral blood of 30 patients with TA (ACR1990 criteria) and 20 healthy controls, serum IL-17 and IL-23 measured by ELISA. Relation with disease activity (NIH criteria, ITAS2010) was analyzed (using nonparametric tests, median with interquartile range). Results. Mean age of patients was 33.47 ± 11.78 years (25 females); mean symptom duration was 7.1 ± 5.3 years. 13 were not on immunosuppressants; 12 were active (ITAS2010 ≥ 4). The percentage of Th17 cells was significantly expanded in TA (patients 2.1 (1.5-3.2) versus controls 0.75 (0.32-1.2); p < 0.0001) with no differences in other cell populations. Serum IL-17 and IL-23 (pg/mL) in patients (6.2 (4.6-8.5) and 15 (14.9-26.5), resp.) were significantly higher (p < 0.001) than controls (3.9 (3.9-7.3) and undetectable median value, resp.). Subgroup analysis revealed no correlation of Th17 cells, serum IL-17, and IL-23 with disease activity or medications, nor any significant difference before and after medication. Conclusions. There is significant expansion of Th17 cells and elevated serum IL-17 and IL-23 levels in TA patients compared to healthy controls.

  4. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK.

    Science.gov (United States)

    Siddesha, Jalahalli M; Valente, Anthony J; Sakamuri, Siva S V P; Gardner, Jason D; Delafontaine, Patrice; Noda, Makoto; Chandrasekar, Bysani

    2014-07-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. © 2013 Wiley Periodicals, Inc.

  5. The IL-17F/IL-17RC Axis Promotes Respiratory Allergy in the Proximal Airways

    Directory of Open Access Journals (Sweden)

    Antonella De Luca

    2017-08-01

    Full Text Available The interleukin 17 (IL-17 cytokine and receptor family is central to antimicrobial resistance and inflammation in the lung. Mice lacking IL-17A, IL-17F, or the IL-17RA subunit were compared with wild-type mice for susceptibility to airway inflammation in models of infection and allergy. Signaling through IL-17RA was required for efficient microbial clearance and prevention of allergy; in the absence of IL-17RA, signaling through IL-17RC on epithelial cells, predominantly by IL-17F, significantly exacerbated lower airway Aspergillus or Pseudomonas infection and allergic airway inflammation. In contrast, following infection with the upper respiratory pathogen Staphylococcus aureus, the IL-17F/IL-17RC axis mediated protection. Thus, IL-17A and IL-17F exert distinct biological effects during pulmonary infection; the IL-17F/IL-17RC signaling axis has the potential to significantly worsen pathogen-associated inflammation of the lower respiratory tract in particular, and should be investigated further as a therapeutic target for treating pathological inflammation in the lung.

  6. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis.

    Science.gov (United States)

    Lin, Jinpiao; Zhou, Zhou; Huo, Rongfen; Xiao, Lianbo; Ouyang, Guilin; Wang, Li; Sun, Yue; Shen, Baihua; Li, Dangsheng; Li, Ningli

    2012-06-01

    Cysteine-rich protein 61 (Cyr61)/CCN1 is a product of an immediate early gene and functions in mediating cell adhesion and inducing cell migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) promotes FLS proliferation and participates in RA pathogenesis with the IL-17-dependent pathway. However, whether Cyr61 in turn regulates Th17 cell differentiation and further enhances inflammation of RA remained unknown. In the current study, we explored the potential role of Cyr61 as a proinflammatory factor in RA pathogenesis. We found that Cyr61 treatment dramatically induced IL-6 production in FLS isolated from RA patients. Moreover, IL-6 production was attenuated by Cyr61 knockdown in FLS. Mechanistically, we showed that Cyr61 activated IL-6 production via the αvβ5/Akt/NF-κB signaling pathway. Further, using a coculture system consisting of purified CD4(+) T cells and RA FLS, we found that RA FLS stimulated Th17 differentiation, and the pro-Th17 differentiation effect of RA FLS can be attenuated or stimulated by Cyr61 RNA interference or addition of exogenous Cyr61, respectively. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the anti-Cyr61 mAb led to reduction of IL-6 levels, decrease of Th17 response, and attenuation of inflammation and disease progression in vivo. Taken together, our results reveal a novel role of Cyr61 in promoting Th17 development in RA via upregulation of IL-6 production by FLS, thus adding a new layer into the functional interplay between FLS and Th17 in RA pathogenesis. Our study also suggests that targeting of Cyr61 may represent a novel strategy in RA treatment.

  7. Microglia Induce Neurotoxic IL-17+ γδ T Cells Dependent on TLR2, TLR4, and TLR9 Activation.

    Directory of Open Access Journals (Sweden)

    Katja Derkow

    Full Text Available Interleukin-17 (IL-17 acts as a key regulator in central nervous system (CNS inflammation. γδ T cells are an important innate source of IL-17. Both IL-17+ γδ T cells and microglia, the major resident immune cells of the brain, are involved in various CNS disorders such as multiple sclerosis and stroke. Also, activation of Toll-like receptor (TLR signaling pathways contributes to CNS damage. However, the mechanisms underlying the regulation and interaction of these cellular and molecular components remain unclear.In this study, we investigated the crosstalk between γδ T cells and microglia activated by TLRs in the context of neuronal damage. To this end, co-cultures of IL-17+ γδ T cells, neurons, and microglia were analyzed by immunocytochemistry, flow cytometry, ELISA and multiplex immunoassays.We report here that IL-17+ γδ T cells but not naïve γδ T cells induce a dose- and time-dependent decrease of neuronal viability in vitro. While direct stimulation of γδ T cells with various TLR ligands did not result in up-regulation of CD69, CD25, or in IL-17 secretion, supernatants of microglia stimulated by ligands specific for TLR2, TLR4, TLR7, or TLR9 induced activation of γδ T cells through IL-1β and IL-23, as indicated by up-regulation of CD69 and CD25 and by secretion of vast amounts of IL-17. This effect was dependent on the TLR adaptor myeloid differentiation primary response gene 88 (MyD88 expressed by both γδ T cells and microglia, but did not require the expression of TLRs by γδ T cells. Similarly to cytokine-primed IL-17+ γδ T cells, IL-17+ γδ T cells induced by supernatants derived from TLR-activated microglia also caused neurotoxicity in vitro. While these neurotoxic effects required stimulation of TLR2, TLR4, or TLR9 in microglia, neuronal injury mediated by bone marrow-derived macrophages did not require TLR signaling. Neurotoxicity mediated by IL-17+ γδ T cells required a direct cell-cell contact between T

  8. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    Science.gov (United States)

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. The role of CD40L, IL-10 and IL-17 in radioprotection

    International Nuclear Information System (INIS)

    Li Ting

    2003-01-01

    CD40L/CD40 interaction is central to the control of thymus-dependent humoral immunity and cell mediated immune responses. IL-17 has been shown to induce the production of IL-6 and G-CSF, which can induce proliferation and differentiation of CD34 + hematopoietic progenitors. IL-10 can interfere with up-regulation of costimulatory molecules, thus suppressing the production of costimulatory cytokines, such as IL-12. IL-10 has been implicated as an essential mediator in the induction of systemic immune suppression following ultraviolet (UV) exposure. Treating UV-irradiated mice with anti-IL-10 blocks the induction of immune suppression

  10. IL-23 (Interleukin-23)-Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Gallizioli, Mattia; Ludewig, Peter; Thom, Vivien; Arunachalam, Priyadharshini; Rissiek, Björn; Bernreuther, Christian; Glatzel, Markus; Korn, Thomas; Arumugam, Thiruma Valavan; Sedlacik, Jan; Gerloff, Christian; Tolosa, Eva; Planas, Anna M; Magnus, Tim

    2018-01-01

    Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. We show that the ischemic brain was rapidly infiltrated by IRF4 + /CD172a + conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c + cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke. © 2017 American Heart Association, Inc.

  11. Targeting IL-17 AND IL-17D receptors of rheumatoid arthritis using phytocompounds: A Molecular Docking study

    Science.gov (United States)

    Thabitha, A.; Thoufic Ali, A. M. Mohamed; Shweta Kumari, Singh; Rakhi; Swami, Varsha; Mohana Priya, A.; Sajitha Lulu, S.

    2017-11-01

    Rheumatoid arthritis (RA) is a chronic autoimmune condition of the connective tissue in synovial joints, characterized by inflammation which can lead to bone and cartilage destruction. IL-17 and IL-17D cytokines produced by a number of cell types, primarily promote pro-inflammatory immune responses and negative regulator in fibroblast growth factor signalling. Thus, the promising therapeutic strategies focus on targeting these cytokines, which has led to the identification of effective inhibitors. However, several studies focused on identifying the anti-arthritic potential of natural compounds. Therefore, in the present study we undertook in silico investigations to decipher the anti-inflammatory prospective of phytocompounds by targeting IL-17 and IL-17D cytokines using Patch Dock algorithm. Additionally, IL-17 and IL-17D proteins structure were modelled and validated for molecular docking study. Further, phytocompounds based on anti-inflammatory property were subjected to Lipinski filter and ADMET properties indicated that all of these compounds showed desirable drug-like criteria. The outcome of this investigation sheds light on the anti-inflammatory mechanism of phytocompounds by targeting IL-17 and IL-D for effective treatment of RA.

  12. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia.

    Science.gov (United States)

    Paerewijck, Oonagh; Maertens, Brecht; Dreesen, Leentje; Van Meulder, Frederik; Peelaers, Iris; Ratman, Dariusz; Li, Robert W; Lubberts, Erik; De Bosscher, Karolien; Geldhof, Peter

    2017-08-17

    The protozoan parasite Giardia is a highly prevalent intestinal pathogen with a wide host range. Data obtained in mice, cattle and humans revealed the importance of IL-17A in the development of a protective immune response against Giardia. The aim of this study was to further unravel the protective effector mechanisms triggered by IL-17A following G. muris infection in mice, by an RNA-sequencing approach. C57BL/6 WT and C57BL/6 IL-17RA KO mice were orally infected with G. muris cysts. Three weeks post infection, intestinal tissue samples were collected for RNA-sequencing, with samples from uninfected C57BL/6 WT and C57BL/6 IL-17RA KO animals serving as negative controls. Differential expression analysis showed that G. muris infection evoked the transcriptional upregulation of a wide array of genes, mainly in animals with competent IL-17RA signaling. IL-17RA signaling induced the production of various antimicrobial peptides, such as angiogenin 4 and α- and β-defensins and regulated complement activation through mannose-binding lectin 2. The expression of the receptor that regulates the secretion of IgA into the intestinal lumen, the polymeric immunoglobulin receptor, was also dependent on IL-17RA signaling. Interestingly, the transcriptome data showed for the first time the involvement of the circadian clock in the host response following Giardia infection.

  13. IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells.

    Science.gov (United States)

    da Silva, Thiago Aparecido; Mariano, Vania Sammartino; Sardinha-Silva, Aline; de Souza, Maria Aparecida; Mineo, Tiago Wilson Patriarca; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production

  14. IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Thiago Aparecido da Silva

    Full Text Available ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs, as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, Artin

  15. IL10-Deficiency in CD4+ T Cells Exacerbates the IFNγ and IL17 Response During Bacteria Induced Colitis

    Directory of Open Access Journals (Sweden)

    Virginia Seiffart

    2015-07-01

    Full Text Available Background/Aims: IL10 is a key inhibitor of effector T cell activation and a mediator of intestinal homeostasis. In addition, IL10 has emerged as a key immunoregulator during infection with various pathogens, ameliorating the excessive T-cell responses that are responsible for much of the immunopathology associated with the infection. Because IL10 plays an important role in both intestinal homeostasis and infection, we studied the function of IL10 in infection-associated intestinal inflammation. Methods: Wildtype mice and mice deficient in CD4+ T cell-derived or regulatory T cells-derived IL10 were infected with the enteric pathogen Citrobacter (C. rodentium and analyzed for the specific immune response and pathogloy in the colon. Results: We found that IL10 expression is upregulated in colonic tissue after infection with C. rodentium, especially in CD4+ T cells, macrophages and dendritic cells. Whereas the deletion of IL10 in regulatory T cells had no effect on C. rodentium induced colitis, infection of mice deficient in CD4+ T cell-derived IL10 exhibited faster clearance of the bacterial burden but worse colitis, crypt hyperplasia, and pathology than did WT mice. In addition, the depletion of CD4+ T cell-derived IL10 in infected animals was accompanied by an accelerated IFNγ and IL17 response in the colon. Conclusion: Thus, we conclude that CD4+ T cell-derived IL10 is strongly involved in the control of C. rodentium-induced colitis. Interference with this network could have implications for the treatment of infection-associated intestinal inflammation.

  16. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  17. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    Science.gov (United States)

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD. Copyright © 2016 the American Physiological Society.

  18. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer.

    Science.gov (United States)

    Song, Yang; Yang, Jian Ming

    2017-11-04

    Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4 + T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4 + T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fasting induces IL-1 resistance and free fatty acid-mediated up-regulation of IL-1R2 and IL-1RA

    Directory of Open Access Journals (Sweden)

    jenifer j joesting

    2014-07-01

    Full Text Available Objective: Weight loss is a near societal obsession and many diet programs use significant calorie restriction (CR including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 hr fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 hrs. Expression of the endogenous IL-1 antagonists IL-1 receptor type 2 (IL-1R2 and IL-1 receptor antagonist (IL-1RA were determined as were sickness behaviors before and after IL-1 administration.Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver and IL-1RA (68-fold in liver. Fasted mice were protected from IL-1-induced weight loss, hypoglycemia, loss of locomotor and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1 on IL-1R2 gene expression in adipose tissue and liver (2.6-fold and 1.6-fold, respectively. Fasting not only increased IL-1RA and IL-1R2 protein 2.5-fold and 3.2-fold, respectively, in liver; but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14-fold and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation.

  20. IL-17 for therapy.

    Science.gov (United States)

    Kurschus, Florian C; Moos, Sonja

    2017-09-01

    The cytokine IL-17 is now a target for an array of therapeutic monoclonal antibodies supposed to treat a variety of inflammatory diseases. The forerunner Secukinumab, an IL-17A neutralizing antibody, is meanwhile approved as first-line treatments for moderate-to-severe plaque psoriasis, and as second-line treatment for psoriatic arthritis and ankylosing spondylitis. Ixekizumab and Brodalumab, both also targeting the IL-17 pathway, were also recently approved by the FDA for plaque psoriasis. Using mice overexpressing IL-17A in a tissue of choice, we showed that the ectopic expression of this cytokine in keratinocytes resulted in a spontaneous and very strong form of psoriasis-like dermatitis. Interestingly, this model showed some typical comorbidities found in humans with psoriasis. In this review, we will discuss why IL-17 is a good target especially in psoriasis and what we learned from mouse models about its functions in pathological situations. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Chicken IL-17F: identification and comparative expression analysis in Eimeria-infected chickens.

    Science.gov (United States)

    Kim, Woo H; Jeong, Jipseol; Park, Ae R; Yim, Dongjean; Kim, Yong-Hwan; Kim, Kwang D; Chang, Hong H; Lillehoj, Hyun S; Lee, Byung-Hyung; Min, Wongi

    2012-11-01

    Interleukin-17F (IL-17F) is a proinflammatory cytokine, which plays an important role in gut homeostasis. A full-length chicken IL-17F (chIL-17F) cDNA with a 510-bp coding region was identified from ConA-activated chicken splenic lymphocytes. ChIL-17F shares 53% amino acid sequence identity with the previously described chicken IL-17 (chIL-17A) and 38-43% with mammalian homologues. The locus harboring chIL-17 and chIL-17F displayed inverted order compared to those of mammals. ChIL-17F transcript expression was high in lymphoblast cell line CU205 and at moderate levels in small and large intestines and liver. ChIL-17F and chIL-17 expression profiles were examined by quantitative real-time RT-PCR in mitogen-stimulated splenic lymphocytes and intestinal areas affected by Eimeria maxima and Eimeria tenella infections. Expression levels of chIL-17F, like chIL-17, were elevated in mitogen-activated splenic lymphocytes. ChIL-17F, but not chIL-17, expression was upregulated in intestinal tissues affected by E. maxima and E. tenella infections. Recombinant chIL-17F biological activities were similar to that of chIL-17 in primary chicken embryonic fibroblasts. These results suggest that chIL-17F is a unique member of the IL-17 family of cytokines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro.

    Science.gov (United States)

    Zhu, Fang; McCaw, Lindsay; Spaner, David E; Gorczynski, Reginald M

    2018-03-01

    The tumor microenvironment (TME) is critical to the longevity of tumor B cells in chronic lymphocytic leukemia (CLL). Bone marrow mesenchymal stem cells (BMMSCs) and the cytokines they produce including IL-6 are important components of the TME in CLL. We found BMMSCs supported the survival of CLL cells in vitro through an IL-6 dependent mechanism. IL-17 which induces IL-6 generation in a variety of cells increased production of IL-6 both in CLL cells and BMMSCs in vitro. In a xenograft CLL mouse model, BMMSCs and the culture supernatant of BMMSCs increased engraftment of CLL cells through an IL-6 mediated mechanism with human recombinant IL-6 showing similar effects in vivo. Human recombinant IL-17 treatment also increased CLL engraftment in mice through an IL-6 mediated mechanism. Plasma of CLL patients showed elevated levels of both IL-6 and IL-17 by ELISA compared with healthy controls, with levels of IL-6 linearly correlated with IL-17 levels. CLL patients requiring fludarabine based chemotherapy expressed higher levels of IL-6 and IL-17, while CLL patients with the lowest levels of IgA/IgM had higher levels of IL-6, but not IL-17. These data imply an important role for the IL-17/IL-6 axis in CLL which could be therapeutic targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding

    Science.gov (United States)

    Hymowitz, Sarah G.; Filvaroff, Ellen H.; Yin, JianPing; Lee, James; Cai, Liping; Risser, Philip; Maruoka, Miko; Mao, Weiguang; Foster, Jessica; Kelley, Robert F.; Pan, Guohua; Gurney, Austin L.; de Vos, Abraham M.; Starovasnik, Melissa A.

    2001-01-01

    The proinflammatory cytokine interleukin 17 (IL-17) is the founding member of a family of secreted proteins that elicit potent cellular responses. We report a novel human IL-17 homolog, IL-17F, and show that it is expressed by activated T cells, can stimulate production of other cytokines such as IL-6, IL-8 and granulocyte colony-stimulating factor, and can regulate cartilage matrix turnover. Unexpectedly, the crystal structure of IL-17F reveals that IL-17 family members adopt a monomer fold typical of cystine knot growth factors, despite lacking the disulfide responsible for defining the canonical ‘knot’ structure. IL-17F dimerizes in a parallel manner like neurotrophins, and features an unusually large cavity on its surface. Remarkably, this cavity is located in precisely the same position where nerve growth factor binds its high affinity receptor, TrkA, suggesting further parallels between IL-17s and neurotrophins with respect to receptor recognition. PMID:11574464

  4. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Mónica Kurte

    2018-04-01

    Full Text Available The therapeutic effect of mesenchymal stem cells (MSCs in multiple sclerosis (MS and the experimental autoimmune encephalomyelitis (EAE model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA−/− MSCs as compared to wild-type (WT MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA−/− MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA−/− MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.

  5. The role of IL-17 in psoriasis.

    Science.gov (United States)

    Malakouti, Mona; Brown, Gabrielle Elena; Wang, Eva; Koo, John; Levin, Ethan C

    2015-02-01

    Psoriasis is a chronic skin condition traditionally believed to involve the Th1 pathway. Recently, the IL-23/Th17/IL-17 pathway has been highlighted in the pathogenesis of psoriasis and other autoimmune inflammatory conditions. From a clinician's perspective, we sought to review the basic science data relevant to IL-17's role in psoriasis pathogenesis. We performed a Pubmed and Web of Knowledge search for English articles starting from 1990 that discussed the Th17 pathway. Search terms such as "IL-17" and "psoriasis" were utilized. The IL-17 pathway is regulated by IL-23, a cytokine that is vital for the expansion and maintenance of the Th17 cell population. Th17 derived cytokines (IL-17A, IL-17F, IL-17A/F and IL-22) were elevated in both psoriasis-like murine models and human psoriatic lesional biopsies. Ixekizumab (anti-IL-17A) treatment of psoriasis was found to normalize levels of IL-17 downstream gene products. Both preclinical and clinical studies support the central role of IL-17 in the pathogenesis of psoriasis.

  6. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

    Directory of Open Access Journals (Sweden)

    Joel A Mathews

    Full Text Available Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h. We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/- to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.

  7. High IL-17E and Low IL-17C Dermal Expression Identifies a Fibrosis-Specific Motif Common to Morphea and Systemic Sclerosis

    OpenAIRE

    Lonati, Paola Adele; Brembilla, Nicolò Costantino; Montanari, Elisa; Fontao, Lionel; Gabrielli, Armando; Vettori, Serena; Valentini, Gabriele; Laffitte, Emmanuel; Kaya, Gurkan; Meroni, Pier-Luigi; Chizzolini, Carlo

    2014-01-01

    BACKGROUND: High interleukin (IL)-17A levels are characteristically found in the skin of systemic sclerosis (SSc) individuals. Our aim was to investigate whether the dermal expression of IL-17A and related IL-17 family members (i.e. IL-17C, IL-17E and IL-17F) could distinguish fibrotic from healthy skin and could show similarities in SSc and morphea, two disorders with presumed distinct pathogenesis, but characterized by skin fibrosis. METHODS: Biopsies were obtained from the involved skin of...

  8. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis.

    Science.gov (United States)

    Erbel, Christian; Akhavanpoor, Mohammadreza; Okuyucu, Deniz; Wangler, Susanne; Dietz, Alex; Zhao, Li; Stellos, Konstantinos; Little, Kristina M; Lasitschka, Felix; Doesch, Andreas; Hakimi, Maani; Dengler, Thomas J; Giese, Thomas; Blessing, Erwin; Katus, Hugo A; Gleissner, Christian A

    2014-11-01

    Atherosclerosis is a chronic inflammatory disease. Lesion progression is primarily mediated by cells of the monocyte/macrophage lineage. IL-17A is a proinflammatory cytokine, which modulates immune cell trafficking and is involved inflammation in (auto)immune and infectious diseases. But the role of IL-17A still remains controversial. In the current study, we investigated effects of IL-17A on advanced murine and human atherosclerosis, the common disease phenotype in clinical care. The 26-wk-old apolipoprotein E-deficient mice were fed a standard chow diet and treated either with IL-17A mAb (n = 15) or irrelevant Ig (n = 10) for 16 wk. Furthermore, essential mechanisms of IL-17A in atherogenesis were studied in vitro. Inhibition of IL-17A markedly prevented atherosclerotic lesion progression (p = 0.001) by reducing inflammatory burden and cellular infiltration (p = 0.01) and improved lesion stability (p = 0.01). In vitro experiments showed that IL-17A plays a role in chemoattractance, monocyte adhesion, and sensitization of APCs toward pathogen-derived TLR4 ligands. Also, IL-17A induced a unique transcriptome pattern in monocyte-derived macrophages distinct from known macrophage types. Stimulation of human carotid plaque tissue ex vivo with IL-17A induced a proinflammatory milieu and upregulation of molecules expressed by the IL-17A-induced macrophage subtype. In this study, we show that functional blockade of IL-17A prevents atherosclerotic lesion progression and induces plaque stabilization in advanced lesions in apolipoprotein E-deficient mice. The underlying mechanisms involve reduced inflammation and distinct effects of IL-17A on monocyte/macrophage lineage. In addition, translational experiments underline the relevance for the human system. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. Poststroke Neuropsychiatric Symptoms: Relationships with IL-17 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    W. Swardfager

    2014-01-01

    Full Text Available Stroke variably activates interleukin- (IL- 17 expression, reduces regulatory T cells, and induces oxidative stress, which may support neurodegeneration. Ischemic stroke patients were screened for depressive symptoms (Center for Epidemiological Studies Depression (CES-D and cognitive status (Mini Mental State Examination. Proinflammatory cytokines (IL-17, IL-23, and interferon- [IFN-] γ, anti-inflammatory cytokine IL-10, and lipid hydroperoxide (LPH, a measure of oxidative stress, were assayed from fasting serum. Of 47 subjects (age 71.8 ± 14.4 years, 36% female, 19 had depressive symptoms (CES-D ≥ 16, which was associated with poorer cognitive status (F1,46=8.44, P=0.006. IL-17 concentrations did not differ between subjects with and without depressive symptoms (F1,46=8.44, P=0.572; however, IL-17 was associated with poorer cognitive status in subjects with depressive symptoms (F1,46=9.29, P=0.004. In those subjects with depressive symptoms, IL-17 was associated with higher LPH (ρ=0.518, P=0.023 and lower IL-10 (ρ=-0.484, P=0.036, but not in those without. In conclusion, poststroke depressive symptoms may be associated with cognitive vulnerability to IL-17 related pathways, involving an imbalance between proinflammatory and anti-inflammatory activity and increased oxidative stress.

  10. Polycyclic aromatic hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells from both healthy and asthmatic subjects.

    Directory of Open Access Journals (Sweden)

    Coline Plé

    Full Text Available Pollution, including polycyclic aromatic hydrocarbons (PAH, may contribute to increased prevalence of asthma. PAH can bind to the Aryl hydrocarbon Receptor (AhR, a transcription factor involved in Th17/Th22 type polarization. These cells produce IL17A and IL-22, which allow neutrophil recruitment, airway smooth muscle proliferation and tissue repair and remodeling. Increased IL-17 and IL-22 productions have been associated with asthma. We hypothesized that PAH might affect, through their effects on AhR, IL-17 and IL-22 production in allergic asthmatics. Activated peripheral blood mononuclear cells (PBMCs from 16 nonallergic nonasthmatic (NA and 16 intermittent allergic asthmatic (AA subjects were incubated with PAH, and IL-17 and IL-22 productions were assessed. At baseline, activated PBMCs from AA exhibited an increased IL-17/IL-22 profile compared with NA subjects. Diesel exhaust particle (DEP-PAH and Benzo[a]Pyrene (B[a]P stimulation further increased IL-22 but decreased IL-17A production in both groups. The PAH-induced IL-22 levels in asthmatic patients were significantly higher than in healthy subjects. Among PBMCs, PAH-induced IL-22 expression originated principally from single IL-22- but not from IL-17- expressing CD4 T cells. The Th17 transcription factors RORA and RORC were down regulated, whereas AhR target gene CYP1A1 was upregulated. IL-22 induction by DEP-PAH was mainly dependent upon AhR whereas IL-22 induction by B[a]P was dependent upon activation of PI3K and JNK. Altogether, these data suggest that DEP-PAH and B[a]P may contribute to increased IL22 production in both healthy and asthmatic subjects through mechanisms involving both AhR -dependent and -independent pathways.

  11. Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut.

    Science.gov (United States)

    Geginat, Jens; Paroni, Moira; Kastirr, Ilko; Larghi, Paola; Pagani, Massimiliano; Abrignani, Sergio

    2016-10-01

    Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-β and IL-6 in vitro. TGF-β induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Systemic Th17/IL-17A response appears prior to hippocampal neurodegeneration in rats exposed to low doses of ozone.

    Science.gov (United States)

    Solleiro-Villavicencio, H; Rivas-Arancibia, S

    2017-06-03

    Exposure to low doses of O 3 leads to a state of oxidative stress. Some studies show that oxidative stress can modulate both the CNS and systemic inflammation, which are important factors in the development of Alzheimer disease (AD). This study aims to evaluate changes in the frequency of Th17-like cells (CD3 + CD4 + IL-17A + ), the concentration of IL-17A in peripheral blood, and hippocampal immunoreactivity to IL-17A in rats exposed to low doses of O 3 . One hundred eight male Wistar rats were randomly assigned to 6 groups (n=18) receiving the following treatments: control (O 3 free) or O 3 exposure (0.25ppm, 4hours daily) over 7, 15, 30, 60, and 90 days. Twelve animals from each group were decapitated and a peripheral blood sample was taken to isolate plasma and mononuclear cells. Plasma IL-17A was quantified using LUMINEX, while Th17-like cells were counted using flow cytometry. The remaining 6 rats were deeply anaesthetised and underwent transcardial perfusion for immunohistological study of the hippocampus. Results show that exposure to O 3 over 7 days resulted in a significant increase in the frequency of Th17-like cells and levels of IL-17A in peripheral blood. However, levels of Th17/IL-17A in peripheral blood were lower at day 15 of exposure. We also observed increased IL-17A in the hippocampus beginning at 30 days of exposure. These results indicate that O 3 induces a short-term, systemic Th17-like/IL-17A effect and an increase of IL-17A in the hippocampal tissue during the chronic neurodegenerative process. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    Science.gov (United States)

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling.

    Directory of Open Access Journals (Sweden)

    Christiane Desel

    Full Text Available Successful vaccination against intracellular pathogens requires the generation of cellular immune responses. Trehalose-6,6-dibehenate (TDB, the synthetic analog of the mycobacterial cord factor trehalose-6,6-dimycolate (TDM, is a potent adjuvant inducing strong Th1 and Th17 immune responses. We previously identified the C-type lectin Mincle as receptor for these glycolipids that triggers the FcRγ-Syk-Card9 pathway for APC activation and adjuvanticity. Interestingly, in vivo data revealed that the adjuvant effect was not solely Mincle-dependent but also required MyD88. Therefore, we dissected which MyD88-dependent pathways are essential for successful immunization with a tuberculosis subunit vaccine. We show here that antigen-specific Th1/Th17 immune responses required IL-1 receptor-mediated signals independent of IL-18 and IL-33-signaling. ASC-deficient mice had impaired IL-17 but intact IFNγ responses, indicating partial independence of TDB adjuvanticity from inflammasome activation. Our data suggest that the glycolipid adjuvant TDB triggers Mincle-dependent IL-1 production to induce MyD88-dependent Th1/Th17 responses in vivo.

  15. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara (Japan); Ishizuka, Tamotsu [Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Tsurumaki, Hiroaki [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Aoki, Haruka; Mogi, Chihiro [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo (Japan); Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Hisada, Takeshi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi (Japan); Yamada, Masanobu [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan)

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  16. Dynamics of intraocular IFN-γ, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Ulrike Kaufmann

    Full Text Available A major limitation of most animal models of autoimmune diseases is that they do not reproduce the chronic or relapsing-remitting pattern characteristic of many human autoimmune diseases. This problem has been overcome in our rat models of experimentally induced monophasic or relapsing-remitting autoimmune uveitis (EAU, which depend on the inducing antigen peptides from retinal S-Antigen (monophasic EAU or interphotoreceptor retinoid-binding protein (relapsing EAU. These models enable us to compare autoreactive and regulatory T cell populations. Intraocular, but not peripheral T cells differ in their cytokine profiles (IFN-γ, IL-17 and IL-10 at distinct time points during monophasic or relapsing EAU. Only intraocular T cells concomitantly produced IFN-γ, IL-17 and/or IL-10. Monophasic EAU presented rising numbers of cells expressing IFN-γ and IL-17 (Th1/Th17 and cells expressing IL-10 or Foxp3. During relapsing uveitis an increase of intraocular IFN-γ+ cells and a concomitant decrease of IL-17+ cells was detected, while IL-10+ populations remained stable. Foxp3+ cells and cells expressing IL-10, even in combination with IFN-γ or IL-17, increased during the resolution of monophasic EAU, suggesting a regulatory role for these T cells. In general, cells producing multiple cytokines increased in monophasic and decreased in relapsing EAU. The distinct appearance of certain intraocular populations with characteristics of regulatory cells points to a differential influence of the ocular environment on T cells that induce acute and monophasic or relapsing disease. Here we provide evidence that different autoantigens can elicit distinct and differently regulated immune responses. IFN-γ, but not IL-17 seems to be the key player in relapsing-remitting uveitis, as shown by increased, synchronized relapses after intraocular application of IFN-γ. We demonstrated dynamic changes of the cytokine pattern during monophasic and relapsing-remitting disease

  17. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    Science.gov (United States)

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  18. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  19. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  20. Molecular cloning, expression, and in silico structural analysis of guinea pig IL-17.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Ramasamy, Suresh K; McMurray, David N

    2013-11-01

    Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete coding sequence of the guinea pig IL-17A gene (477 nucleotides; 159 amino acids) was subcloned into a prokaryotic expression vector (pET-30a) resulting in the expression of a 17 kDa recombinant guinea pig IL-17A protein which was confirmed by mass spectrometry analysis. Homology modeling of guinea pig IL-17A revealed that the three-dimensional structure resembles that of human IL-17A. The secondary structure predicted for this protein showed the presence of one extra helix in the N-terminal region. The expression profile of IL-17A was analyzed quantitatively in spleen, lymph node, and lung cells from BCG-vaccinated guinea pigs by real-time PCR. The guinea pig IL-17A cDNA and its recombinant protein will serve as valuable tools for molecular and immunological studies in the guinea pig model of pulmonary TB and other human diseases.

  1. The Suppression of Adjuvant-induced Inflammation and the Inhibition of the Serum and Tissue IL-17, TNF-α and IL-1β levels by Thymol and Carvacrol

    Directory of Open Access Journals (Sweden)

    Nasser Gholijani

    2017-06-01

    Full Text Available Background and Aim: Thymol and carvacrol are two important components of thyme that have multiple medicinal uses. This study investigates the in vivo effects of these natural products on adjuvant-induced inflammation and secretion of interleukin (IL-17 and key inflammatory cytokines in rats. Materials and Methods: We injected complete Freund’s adjuvant (CFA into the hind paws of rats in order to induce inflammation. Each of the CFA-treated rat groups received gavages of thymol, carvacrol, or vehicle (CFA-only group. Rats’ paws and ankle edema were measured and then we were able to determine an inflammatory score based on the results. After 72 h of inflammation induction, sera were collected and subsequently inflamed tissue extracts were prepared for cytokine assay by ELISA. Results: Both components significantly decreased paw edema in rats (p<0.01. Thymol decreased ankle edema to 61.6% of edema in CFA-only rats (p<0.001. We observed a decreased inflammatory score in the thymol and carvacrol-treated rats. The evaluation of the tissue and serum inflammatory cytokine levels showed that both components decreased tumor necrosis factor (TNF-α levels (p<0.05. Thymol and carvacrol reduced interleukin (IL-1β serum and tissue levels, respectively. These components reduced tissue levels of IL-17 from 148.4±13.4pg/ml in CFA-only rats to 90.1±18.9pg/ml (thymol and 82.3±9.2pg/ml (carvacrol. Both components decreased serum IL-17 levels in rats (p<0.05. In comparison, the anti-inflammatory drug, indomethacin, reduced the inflammatory score and decreased tissue TNF-α and IL-1β levels but did not affect IL-17 production. Conclusion: Carvacrol and thymol could relieve inflammation symptoms possibly by downregulating serum and tissue IL-17 expression in addition to key pro-inflammatory cytokines, TNFα and IL-1β.

  2. Th17/IL-17A might play a protective role in chronic lymphocytic leukemia immunity.

    Directory of Open Access Journals (Sweden)

    Iwona Hus

    Full Text Available Th17 cells, a recently discovered subset of T helper cells that secrete IL-17A, can affect the inflammation process autoimmune and cancer diseases development. The purpose of this study was to evaluate the role of Th17 cells and IL17A in biology of CLL. The study group included 294 untreated CLL patients in different clinical stages. Here, we show that higher Th17 and IL-17A values were associated with less advanced clinical stage of CLL. Th17 cells' percentages in PB were lower in patients who died due to CLL during follow-up due to CLL (as compared to surviving patients and in patients responding to first-line therapy with fludarabine-based regimens (as compared to non-responders. IL-17A inversely correlated with the time from CLL diagnosis to the start of therapy and was lower in patients who required treatment during follow-up. Th-17 and IL-17A values were lower in patients with adverse prognostic factors (17p and 11q deletion, CD38 and ZAP-70 expression. CLL patients with detectable IL-17A mRNA in T cells were in Rai Stage 0 and negative for both ZAP-70 and CD38 expression. Th17 percentages positively correlated with iNKT and adversely with Treg cells. The results of this study suggest that Th17 may play a beneficial role in CLL immunity.

  3. New insight to IL-23/IL-17 axis in Iranian infected adult patients with gastritis: effects of genes polymorphisms on expression of cytokines.

    Science.gov (United States)

    Shirzad, H; Bagheri, N; Azadegan-Dehkordi, F; Zamanzad, B; Izadpanah, E; Abdi, M; Ramazani, G; Sanei, M H; Ayoubian, H; Ahmadi, A; Jamalzehi, S; Aslani, P; Zandi, F

    2015-06-01

    Chronic inflammation is the hallmark of the pathogenesis of H. pylori-induced gastric cancer. IL-17A and IL-17F are inflammatory cytokines expressed by a novel subset of CD4+Th cells and play critical function in inflammation. We evaluated the relationship between IL-17A G197A, IL-17F A7488G and IL23R+2199 A/C polymorphisms with IL-6, IL-17, IL-21, IL-23 and TGF-β1 mRNAs expression in regard to H. pylori infection with chronic gastritis. Total RNA and genomic DNA were extracted from gastric biopsies of 58 H. pylori-infected patient with gastritis. Afterward, mucosal IL-6, IL-17, IL-21, IL-23 and TGF-β1 mRNAs expression and polymorphisms in IL-17A G197A, IL-17F A7488G and IL-23R +2199A/Cin gastric biopsies were determined by real-time PCR and PCR-RFLP. Our results show that IL-17A G197A, IL-17F A7488G andIL23R +2199A/C polymorphisms have no effect on mucosal expression of IL-6, IL-17, IL-21 and TGF-β1 mRNAs expression in H. pylori-infected patients with chronic gastritis. These results suggest that IL-17A G197A, IL-17F A7488G and IL23R +2199A/C polymorphisms no alter mucosal cytokine pattern in Iranian patients with H. pylori-associated gastritis diseases. © Acta Gastro-Enterologica Belgica.

  4. IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils

    Directory of Open Access Journals (Sweden)

    Savarin Carine

    2012-05-01

    Full Text Available Abstract Background The interplay between IFN-γ, IL-17 and neutrophils during CNS inflammatory disease is complex due to cross-regulatory factors affecting both positive and negative feedback loops. These interactions have hindered the ability to distinguish the relative contributions of neutrophils, Th1 and Th17 cell-derived effector molecules from secondary mediators to tissue damage and morbidity. Methods Encephalitis induced by a gliatropic murine coronavirus was used as a model to assess the direct contributions of neutrophils, IFN-γ and IL-17 to virus-induced mortality. CNS inflammatory conditions were selectively manipulated by adoptive transfer of virus-primed wild-type (WT or IFN-γ deficient (GKO memory CD4+ T cells into infected SCID mice, coupled with antibody-mediated neutrophil depletion and cytokine blockade. Results Transfer of GKO memory CD4+ T cells into infected SCID mice induced rapid mortality compared to recipients of WT memory CD4+ T cells, despite similar virus control and demyelination. In contrast to recipients of WT CD4+ T cells, extensive neutrophil infiltration and IL-17 expression within the CNS in recipients of GKO CD4+ T cells provided a model to directly assess their contribution(s to disease. Recipients of WT CD4+ T cells depleted of IFN-γ did not express IL-17 and were spared from mortality despite abundant CNS neutrophil infiltration, indicating that mortality was not mediated by excessive CNS neutrophil accumulation. By contrast, IL-17 depletion rescued recipients of GKO CD4+ T cells from rapid mortality without diminishing neutrophils or reducing GM-CSF, associated with pathogenic Th17 cells in CNS autoimmune models. Furthermore, co-transfer of WT and GKO CD4+ T cells prolonged survival in an IFN-γ dependent manner, although IL-17 transcription was not reduced. Conclusions These data demonstrate that IL-17 mediates detrimental clinical consequences in an IFN-γ-deprived environment, independent of

  5. Activation of iNKT Cells Prevents Salmonella-Enterocolitis and Salmonella-Induced Reactive Arthritis by Downregulating IL-17-Producing γδT Cells

    Directory of Open Access Journals (Sweden)

    Mariángeles Noto Llana

    2017-09-01

    Full Text Available Reactive arthritis (ReA is an inflammatory condition of the joints that arises following an infection. Salmonella enterocolitis is one of the most common infections leading to ReA. Although the pathogenesis remains unclear, it is known that IL-17 plays a pivotal role in the development of ReA. IL-17-producers cells are mainly Th17, iNKT, and γδT lymphocytes. It is known that iNKT cells regulate the development of Th17 lineage. Whether iNKT cells also regulate γδT lymphocytes differentiation is unknown. We found that iNKT cells play a protective role in ReA. BALB/c Jα18−/− mice suffered a severe Salmonella enterocolitis, a 3.5-fold increase in IL-17 expression and aggravated inflammation of the synovial membrane. On the other hand, activation of iNKT cells with α-GalCer abrogated IL-17 response to Salmonella enterocolitis and prevented intestinal and joint tissue damage. Moreover, the anti-inflammatory effect of α-GalCer was related to a drop in the proportion of IL-17-producing γδT lymphocytes (IL17-γδTcells rather than to a decrease in Th17 cells. In summary, we here show that iNKT cells play a protective role against Salmonella-enterocolitis and Salmonella-induced ReA by downregulating IL17-γδTcells.

  6. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia.

    Science.gov (United States)

    Debnath, Monojit; Berk, Michael

    2017-12-01

    The aetiology of schizophrenia seems to stem from complex interactions amongst environmental, genetic, metabolic, immunologic and oxidative components. Chronic low-grade inflammation has been persistently linked to schizophrenia, and this has primarily been based on the findings derived from Th1/Th2 cytokine balance. While the IL-23/IL-17 axis plays crucial role in the pathogenesis of several immune-mediated disorders, it has remained relatively unexplored in neuropsychiatric disorders. Altered levels of cytokines related to IL-23/IL-17 axis have been observed in schizophrenia patients in a few studies. In addition, other indirect factors known to confer schizophrenia risk like complement activation and altered gut microbiota are shown to modulate the IL-23/IL-17 axis. These preliminary observations provide crucial clues about the functional implications of IL-23/IL-17 axis in schizophrenia. In this review, an attempt has been made to highlight the biology of IL-23/IL-17 axis and its relevance to schizophrenia risk and pathogenesis. Given the pathogenic potential of the IL-23/IL-17 axis, therapeutic targeting of this axis may be a promising approach to benefit patients suffering from this devastating disorder.

  7. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    Science.gov (United States)

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

  8. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    Full Text Available OBJECTIVE: Mesenchymal stem cells (MSCs can differentiate into cells of mesenchymal lineages, such as osteoblasts and chondrocytes. Here we investigated the effects of IL-17, a key cytokine in chronic inflammation, on chondrogenic differentiation of human MSCs. METHODS: Human bone marrow MSCs were pellet cultured in chondrogenic induction medium containing TGF-β3. Chondrogenic differentiation was detected by cartilage matrix accumulation and chondrogenic marker gene expression. RESULTS: Over-expression of cartilage matrix and chondrogenic marker genes was noted in chondrogenic cultures, but was inhibited by IL-17 in a dose-dependent manner. Expression and phosphorylation of SOX9, the master transcription factor for chondrogenesis, were induced within 2 days and phosphorylated SOX9 was stably maintained until day 21. IL-17 did not alter total SOX9 expression, but significantly suppressed SOX9 phosphorylation in a dose-dependent manner. At day 7, IL-17 also suppressed the activity of cAMP-dependent protein kinase A (PKA, which is known to phosphorylate SOX9. H89, a selective PKA inhibitor, also suppressed SOX9 phosphorylation, expression of chondrogenic markers and cartilage matrix, and also decreased chondrogenesis. CONCLUSIONS: IL-17 inhibited chondrogenesis of human MSCs through the suppression of PKA activity and SOX9 phosphorylation. These results suggest that chondrogenic differentiation of MSCs can be inhibited by a mechanism triggered by IL-17 under chronic inflammation.

  9. Interferon-α-conditioned human monocytes combine a Th1-orienting attitude with the induction of autologous Th17 responses: role of IL-23 and IL-12.

    Directory of Open Access Journals (Sweden)

    Stefano M Santini

    Full Text Available IFN-α exerts multiple effects leading to immune protection against pathogens and cancer as well to autoimmune reactions by acting on monocytes and dendritic cells. We analyzed the versatility of human monocytes conditioned by IFN-α towards dendritic cell differentiation (IFN-DC in shaping the autologous T-helper response. Priming of naïve CD4 T cells with autologous IFN-DC in the presence of either SEA or anti-CD3, resulted, in addition to a prominent expansion of CXCR3+ IFN-γ-producing CD4 Th1 cells, in the emergence of two distinct subsets of IL-17-producing CD4 T cells: i a predominant Th17 population selectively producing IL-17 and expressing CCR6; ii a minor Th1/Th17 population, producing both IL-17 and IFN-γ. After phagocytosis of apoptotic cells, IFN-DC induced Th17 cell expansion and IL-17 release. Notably, the use of neutralizing antibodies revealed that IL-23 was an essential cytokine in mediating Th17 cell development by IFN-DC. The demonstration of the IFN-DC-induced expansion of both Th1 and Th17 cell populations reveals the intrinsic plasticity of these DC in orienting the immune response and provides a mechanistic link between IFN-α and the onset of autoimmune phenomena, which have been correlated with both IL-17 production and exposure to IFN-α.

  10. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response.

    Science.gov (United States)

    Luo, Yu; Van Nguyen, Ut; de la Fe Rodriguez, Pedro Y; Devriendt, Bert; Cox, Eric

    2015-10-21

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4(+) ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4(+) ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4(+) ETEC infection and could aid in the design of future ETEC vaccines.

  11. Defining the Roles of IFN-γ and IL-17A in Inflammation and Protection against Helicobacter pylori Infection.

    Directory of Open Access Journals (Sweden)

    Louise Sjökvist Ottsjö

    Full Text Available CD4+ T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection. However, the effector mechanisms leading to reductions in the gastric bacterial loads of vaccinated mice remain unclear. We have investigated the function of IFN-γ and IL-17A for vaccine-induced protection and inflammation (gastritis using IFN-γ-gene-knockout (IFN-γ-/- mice, after sublingual or intragastric immunization with H. pylori lysate antigens and cholera toxin. Bacteria were enumerated in the stomachs of mice and related to the gastritis score and cellular immune responses. We report that sublingually and intragastrically immunized IFN-γ-/- mice had significantly reduced bacterial loads similar to immunized wild-type mice compared to respective unimmunized infection controls. The reduction in bacterial loads in sublingually and intragastrically immunized IFN-γ-/- mice was associated with significantly higher levels of IL-17A in stomach extracts and lower gastritis scores compared with immunized wild-type mice. To study the role of IL-17A for vaccine-induced protection in sublingually immunized IFN-γ-/- mice, IL-17A was neutralized in vivo at the time of infection. Remarkably, the neutralization of IL-17A in sublingually immunized IFN-γ-/- mice completely abolished protection against H. pylori infection and the mild gastritis. In summary, our results suggest that IFN-γ responses in the stomach of sublingually immunized mice promote vaccine-induced gastritis, after infection with H. pylori but that IL-17A primarily functions to reduce the bacterial load.

  12. The IL-17A G-197A and IL-17F 7488T/C polymorphisms are associated with increased risk of cancer in Asians: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Wang H

    2015-09-01

    Full Text Available Huifen Wang,1,* Yanli Zhang,1,* Zhaolan Liu,2 Yin Zhang,3 Hongchuan Zhao,1 Shiyu Du1 1Department of Gastroenterology, China-Japan Friendship Hospital, 2Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 3Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Interleukin-17 (IL-17 is a family of emerged pro-inflammatory cytokines. The IL-17A and IL-17F are two important members of IL-17 family. Previous studies have shown that the functional IL-17A G-197A and IL-17F 7488T/C polymorphisms may contribute to susceptibility to cancer but the results were inconclusive. This meta-analysis was performed to determine the exact association between IL-17 polymorphisms and cancer risk.Methods: Online databases were searched to identify eligible case–control studies. Pooled odds ratios (ORs and confidence intervals (CIs were calculated by fixed-effect models or random-effect models. Publication bias was detected by Egger’s test and Begg’s test.Results: Nine eligible case–control studies of IL-17A G-197A and seven studies of IL-17F 7488T/C, including 3,181 cases and 4,005 controls, were identified. Pooled analysis suggested the variant IL-17A-197A allele was associated with increased risk cancer (GA/AA vs GG, OR =1.27, 95% CI: 1.15, 1.41, Pheterogeneity =0.374; and A vs G, OR =1.30, 95% CI: 1.17, 1.45, Pheterogeneity =0.021. For IL-17F 7488T/C, the homozygote 7488CC genotype significantly increased risk of cancer (CC vs TC/TT, OR =1.36, 95% CI: 0.97, 1.91, Pheterogeneity =0.875; and CC vs TT, OR =1.39, 95% CI: 1.03, 1.88, Pheterogeneity =0.979, especially for gastric cancer.Conclusion: The variant IL-17A-197A allele and IL-17F 7488CC genotype were associated with increased risk of cancer, especially for gastric cancer. Keywords: interleukin-17, gene polymorphism, gastric cancer, risk

  13. IL-25 or IL-17E protects against high-fat diet-induced hepatic steatosis in mice dependent upon IL-13 activation of STAT6

    Science.gov (United States)

    IL-25 is a member of IL-17 cytokine family and has immune-modulating activities. The role of IL-25 in maintaining lipid metabolic homeostasis remains unknown. Here, we investigated the effects of exogenous IL-25 or deficiency of IL-25 on lipid accumulation in the liver. Mice were injected with IL-25...

  14. Ginger Extract Reduces the Expression of IL-17 and IL-23 in the Sera and Central Nervous System of EAE Mice.

    Science.gov (United States)

    Jafarzadeh, Abdollah; Azizi, Sayyed-Vahab; Nemati, Maryam; Khoramdel-Azad, Hossain; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Hassan, Zuhair Mohammad

    2015-12-01

    IL-17/IL-23 axis plays an important role in the pathogenesis of several autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). The immunomodulatory properties of ginger are reported in previous studies. To evaluate the effects of ginger extract on the expression of IL-17 and IL-23 in a model of EAE. EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein and then treated with PBS or ginger extracts, from day +3 to +30. At day 31, mice were scarificed and the expression of IL-17 and IL-23 mRNA in spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. The mRNA expression of IL-17, IL-23 P19 and IL-23 P40 in CNS and serum levels of IL-17 and IL-23 were significantly higher in PBS-treated EAE mice than non-EAE group (pginger-treated EAE mice the mRNA expression of IL-17, P19 and P40 in CNS and serum IL-23 levels were significantly decreased as compared to PBS-treated EAE mice (pginger-treated EAE group had significantly lower expression of IL-17, P19 and P40 in CNS and lower serum IL-17 and IL-23 levels than PBS-treated EAE group (pGinger extract reduces the expression of IL-17 and IL-23 in EAE mice. The therapeutic potential of ginger for treatment of MS could be considered in further studies.

  15. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model.

    Science.gov (United States)

    Liang, Lin; Hur, Jung; Kang, Ji Young; Rhee, Chin Kook; Kim, Young Kyoon; Lee, Sook Young

    2018-04-19

    The co-occurrence of obesity aggravates asthma symptoms. Diet-induced obesity increases helper T cell (TH) 17 cell differentiation in adipose tissue and the spleen. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pravastatin can potentially be used to treat asthma in obese patients by inhibiting interleukin 17 (IL-17) expression. This study investigated the combined effects of pravastatin and anti-IL-17 antibody treatment on allergic inflammation in a mouse model of obesity-related asthma. High-fat diet (HFD)-induced obesity was induced in C57BL/6 mice with or without ovalbumin (OVA) sensitization and challenge. Mice were administered the anti-IL-17 antibody, pravastatin, or both, and pathophysiological and immunological responses were analyzed. HFD exacerbated allergic airway inflammation in the bronchoalveolar lavage fluid of HFD-OVA mice as compared to OVA mice. Blockading of the IL-17 in the HFD-OVA mice decreased airway hyper-responsiveness (AHR) and airway inflammation compared to the HFD-OVA mice. Moreover, the administration of the anti-IL-17 antibody decreased the leptin/adiponectin ratio in the HFD-OVA but not the OVA mice. Co-administration of pravastatin and anti-IL-17 inhibited airway inflammation and AHR, decreased goblet cell numbers, and increased adipokine levels in obese asthmatic mice. These results suggest that the IL-17-leptin/adiponectin axis plays a key role in airway inflammation in obesity-related asthma. Our findings suggest a potential new treatment for IL-17 as a target that may benefit obesity-related asthma patients who respond poorly to typical asthma medications.

  16. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines.

    Science.gov (United States)

    Gelaleti, Gabriela Bottaro; Borin, Thaiz Ferraz; Maschio-Signorini, Larissa Bazela; Moschetta, Marina Gobbe; Jardim-Perassi, Bruna Victorasso; Calvinho, Guilherme Berto; Facchini, Mariana Castilho; Viloria-Petit, Alicia M; de Campos Zuccari, Debora Aparecida Pires

    2017-08-15

    Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (pmelatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (pmelatonin and IL-25-driven signaling in breast cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Plasma IL-17A levels in patients with late-life depression.

    Science.gov (United States)

    Saraykar, Smita; Cao, Bo; Barroso, Lucelia S; Pereira, Kelly S; Bertola, Laiss; Nicolau, Mariana; Ferreira, Jessica D; Dias, Natalia S; Vieira, Erica L; Teixeira, Antonio L; Silva, Ana Paula M; Diniz, Breno S

    2018-01-01

    A consistent body of research has confirmed that patients with major depressive disorder (MDD) have increased concentrations of pro-inflammatory cytokines, including IL-6, TNF-α, IL-1β, the soluble IL-2 receptor, and C-reactive protein, compared to controls; however, there is limited information on IL-17A in MDD. Moreover, information about IL-17A in older populations, i.e., patients with late-life depression (LLD), is conspicuously missing from the literature. The purpose of this study was to investigate the role of IL-17A in LLD. A convenience sample of 129 individuals, 74 with LLD and 55 non-depressed controls, were enrolled in this study. The Mann-Whitney U test was used to compare plasma IL-17A levels between LLD and controls subjects, and Spearman's rank order correlation was used to investigate correlation of these levels with clinical, neuropsychological, and cognitive assessments. Plasma IL-17A levels were not statistically different between LLD patients and controls (p = 0.94). Among all subjects (LLD + control), plasma IL-17A did not correlate significantly with depressive symptoms (rho = -0.009, p = 0.92) but a significant correlation was observed with cognitive assessments (rho = 0.22, p = 0.01). Our findings do not support an association between plasma IL-17A levels and LLD. Nevertheless, IL-17A may be associated with cognitive impairment in LLD patients. If this finding is confirmed in future longitudinal studies, modulation of the T-helper 17 cell (Th17) immune response may be a treatment target for cognitive impairment in this population.

  18. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    Science.gov (United States)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  19. TCR-independent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL-1 families.

    Directory of Open Access Journals (Sweden)

    Yun Kyung Lee

    Full Text Available The development of Th17 cells is accompanied by the acquisition of responsiveness to both IL-12 and IL-23, cytokines with established roles in the development and/or function of Th1 and Th17 cells, respectively. IL-12 signaling promotes antigen-dependent Th1 differentiation but, in combination with IL-18, allows the antigen-independent perpetuation of Th1 responses. On the other hand, while IL-23 is dispensable for initial commitment to the Th17 lineage, it promotes the pathogenic function of the Th17 cells. In this study, we have examined the overlap between Th1 and Th17 cells in their responsiveness to common pro-inflammatory cytokines and how this affects the antigen-independent cytokine responses of Th17 cells. We found that in addition to the IL-1 receptor, developing Th17 cells also up-regulate the IL-18 receptor. Consequently, in the presence of IL-1β or IL-18, and in the absence of TCR activation, Th17 cells produce Th17 lineage cytokines in a STAT3-dependent manner when stimulated with IL-23, and IFN© via a STAT4-dependent mechanism when stimulated with IL-12. Thus, building on previous findings of antigen-induced plasticity of Th17 cells, our results indicate that this potential of Th17 cells extends to their cytokine-dependent antigen-independent responses. Collectively, our data suggest a model whereby signaling via either IL-1β or IL-18 allows for bystander responses of Th17 cells to pathogens or pathogen products that differentially activate innate cell production of IL-12 or IL-23.

  20. Induction of IL-17A precedes development of airway hyperresponsiveness during diet induced obesity and correlates with complement factor D

    Directory of Open Access Journals (Sweden)

    Joel A. Mathews, Phd

    2014-09-01

    Full Text Available Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR, a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high fat diet (HFD and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique was greater in mice fed HFD versus chow for 24 weeks, but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A+ gd T cells and IL-17A+ CD4+ T (Th17 cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin, a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFa, MIP-1a and MIP-1b, classical markers of systemic inflammation of obesity, were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided

  1. The Role of IL-17 in Vitiligo: A Review

    Science.gov (United States)

    Singh, Rasnik K.; Lee, Kristina M.; Vujkovic-Cvijin, Ivan; Ucmak, Derya; Farahnik, Benjamin; Abrouk, Michael; Nakamura, Mio; Zhu, Tian Hao; Bhutani, Tina; Wei, Maria; Liao, Wilson

    2016-01-01

    IL-17 is involved in the pathogenesis of several autoimmune diseases, however its role in vitiligo has not been well defined. Emerging human and mouse studies have demonstrated that systemic, tissue, and cellular levels of IL-17 are elevated in vitiligo. Many studies have also shown significant positive correlations between these levels and disease activity, extent, and severity. Treatments that improve vitiligo, such as ultraviolet B phototherapy, also modulate IL-17 levels. This review synthesizes our current understanding of how IL-17 may influence the pathogenesis of autoimmune vitiligo at the molecular level. This has implications for defining new vitiligo biomarkers and treatments. PMID:26804758

  2. Salubrinal Suppresses IL-17-Induced Upregulation of MMP-13 and Extracellular Matrix Degradation Through the NF-kB Pathway in Human Nucleus Pulposus Cells.

    Science.gov (United States)

    Yao, Zhixiao; Nie, Lin; Zhao, Yunpeng; Zhang, Yuanqiang; Liu, Yi; Li, Jingkun; Cheng, Lei

    2016-12-01

    Matrix metalloproteinase 13 (MMP-13) plays an important role in the process of pro-inflammatory cytokine-induced intervertebral disc degeneration (IDD). This study examined the effect of IL-17 on the regulation of MMP-13 and the extracellular matrix (ECM) in the intervertebral disc (IVD). We then examined whether salubrinal, a known inhibitor of eIF2α dephosphorylation, inhibited the IL-17-induced changes mentioned above. Furthermore, we demonstrated a potential therapeutic role for salubrinal in alleviating the chronic inflammatory-dependent degenerative state commonly observed in IDD. After inflammatory distress with IL-17, RT-PCR and western blot were employed to investigate the expression of MMP-13, collagen type II (COL2A1), collagen type I (COL1A1), and aggrecan (ACAN) in nucleus pulpous (NP) tissue. Activation of the NF-kB pathway was measured by western blot and immunocytochemistry following IL-17 treatment. We also examine the level of eIF2α phosphorylation after IL-17 treatment with or without salubrinal. Then, we investigated interactions of the NF-kB pathway to eIF2α phosphorylation. Moreover, we employed salubrinal and a specific inhibitor of NF-kB (BAY11-7082) to evaluate their effects on IL-17-driven regulation of MMP-13 and the ECM, as well as on the activation of NF-kB. The results showed that IL-17 increased the production of MMP-13 and decreased expression of COL2A1 and ACAN via the NF-kB pathway. Either IL-17 or salubrinal increased the level of eIF2α phosphorylation, but the effects of BAY11-7082 on the level of p-eIF2α were not detectable. BAY11-7082 and salubrinal significantly suppressed IL-17-driven intervertebral disc degeneration. Furthermore, salubrinal produced stronger effects than BAY11-7082. These results imply the potential involvement of IL-17 in IDD through activation of NF-kB signaling, which successively upregulated the expression of MMP-13 and led to the degradation of the ECM. Furthermore, salubrinal can inhibit this

  3. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  4. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    Science.gov (United States)

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  5. IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Claudia Gonzalez-Lombana

    2013-03-01

    Full Text Available Leishmaniasis, resulting from infection with the protozoan parasite Leishmania, consists of a wide spectrum of clinical manifestations, from healing cutaneous lesions to fatal visceral infections. A particularly severe form of cutaneous leishmaniasis, termed mucosal leishmaniasis, exhibits decreased IL-10 levels and an exaggerated inflammatory response that perpetuates the disease. Using a mouse model of leishmaniasis, we investigated what cytokines contribute to increased pathology when IL-10-mediated regulation is absent. Leishmania major infected C57BL/6 mice lacking IL-10 regulation developed larger lesions than controls, but fewer parasites. Both IFN-γ and IL-17 levels were substantially elevated in mice lacking the capacity to respond to IL-10. IFN-γ promoted an increased infiltration of monocytes, while IL-17 contributed to an increase in neutrophils. Surprisingly, however, we found that IFN-γ did not contribute to increased pathology, but instead regulated the IL-17 response. Thus, blocking IFN-γ led to a significant increase in IL-17, neutrophils and disease. Similarly, the production of IL-17 by cells from leishmaniasis patients was also regulated by IL-10 and IFN-γ. Additional studies found that the IL-1 receptor was required for both the IL-17 response and increased pathology. Therefore, we propose that regulating IL-17, possibly by downregulating IL-1β, may be a useful approach for controlling immunopathology in leishmaniasis.

  6. The role of IL-17 in vitiligo: A review.

    Science.gov (United States)

    Singh, Rasnik K; Lee, Kristina M; Vujkovic-Cvijin, Ivan; Ucmak, Derya; Farahnik, Benjamin; Abrouk, Michael; Nakamura, Mio; Zhu, Tian Hao; Bhutani, Tina; Wei, Maria; Liao, Wilson

    2016-04-01

    IL-17 is involved in the pathogenesis of several autoimmune diseases; however its role in vitiligo has not been well defined. Emerging human and mouse studies have demonstrated that systemic, tissue, and cellular levels of IL-17 are elevated in vitiligo. Many studies have also shown significant positive correlations between these levels and disease activity, extent, and severity. Treatments that improve vitiligo, such as ultraviolet B phototherapy, also modulate IL-17 levels. This review synthesizes our current understanding of how IL-17 may influence the pathogenesis of autoimmune vitiligo at the molecular level. This has implications for defining new vitiligo biomarkers and treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. IL-17-Expressing CD4+ and CD8+ T Lymphocytes in Human Toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Jéssica Líver Alves Silva

    2014-01-01

    Full Text Available This study aimed to measure the synthesis of Th1 and Th2 cytokines by mononuclear cells after culture with live T. gondii and identified Th17 (CD4+ and Tc17 (CD8+ cells in toxoplasma-seronegative and toxoplasma-seropositive parturient and nonpregnant women. Cytometric bead arrays were used to measure cytokine levels (IL-2, TNF-α, IFN-γ, IL-4, IL-5, and IL-10; immunophenotyping was used to characterize Th17 and Tc17 cells, and the cells were stained with antibodies against CD4+ and CD8+ T cells expressing IL-17. The addition of tachyzoites to cell cultures induced the synthesis of IL-5, IL-10, and TNF-α by cells from seronegative parturient women and of IL-5 and IL-10 by cells from seropositive, nonpregnant women. We observed a lower level of IL-17-expressing CD4+ and CD8+ T lymphocytes in cultures of cells from seronegative and seropositive parturient and nonpregnant women that were stimulated with tachyzoites, whereas analysis of the CD4+ and CD8+ T cell populations showed a higher level of CD4+ T cells compared with CD8+ T cells. These results suggest that the cytokine pattern and IL-17-expressing CD4+ and CD8+ T lymphocytes may have important roles in the inflammatory response to T. gondii, thus contributing to the maintenance of pregnancy and control of parasite invasion and replication.

  8. Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells

    Science.gov (United States)

    Kreindler, James L.; Bertrand, Carol A.; Lee, Robert J.; Karasic, Thomas; Aujla, Shean; Pilewski, Joseph M.; Frizzell, Raymond A.; Kolls, Jay K.

    2009-01-01

    The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells. Furthermore, IL-17A levels are increased in sputum from patients during pulmonary exacerbations of cystic fibrosis. Therefore, we investigated the effects of IL-17A on basal, amiloride-sensitive, and forskolin-stimulated ion transport in mature, well-differentiated HBE cells. Exposure of HBE monolayers to IL-17A for 48 h induced a novel forskolin-stimulated bicarbonate secretion in addition to forskolin-stimulated chloride secretion and resulted in alkalinization of liquid on the mucosal surface of polarized cells. IL-17A-induced bicarbonate secretion was cystic fibrosis transmembrane conductance regulator (CFTR)-dependent, mucosal chloride-dependent, partially Na+-dependent, and sensitive to serosal, but not mucosal, stilbene inhibition. These data suggest that IL-17A modulates epithelial bicarbonate secretion and implicate a mechanism by which airway surface liquid pH changes may be abnormal in cystic fibrosis. PMID:19074559

  9. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    International Nuclear Information System (INIS)

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri; Nakae, Susumu; Yamanashi, Yuji

    2016-01-01

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  10. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    Energy Technology Data Exchange (ETDEWEB)

    Waseda, Masazumi; Arimura, Sumimasa [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Shimura, Eri [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Nakae, Susumu [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012 (Japan); Yamanashi, Yuji, E-mail: yyamanas@ims.u-tokyo.ac.jp [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-09-09

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  11. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NARCIS (Netherlands)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-01-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is

  12. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  13. Antigen-specific IL-23/17 pathway activation by murine semi-mature DC-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Shinya; Iwasaki, Takumi; Okano, Tomoko [Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510 (Japan); Chiba, Joe, E-mail: chibaj@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510 (Japan)

    2009-09-11

    We analyzed the phenotype and function of bone marrow-derived dendritic cells (DCs) induced in vitro without using any serum during the late stage of cultivation. These 'serum-free' DCs (SF-DCs) possessed the ability to induce T cell proliferation as well as antibody responses, indicating that they were functional DCs. Surprisingly, the SF-DCs akin to semi-mature DCs in terms of both phenotypic and functional characteristics. The SF-DCs did not produce IL-12 but produced large amounts of IL-23 following lipopolysaccharide stimulation. The antigen-specific production of IL-17 by CD4{sup +} T cells co-cultured with OVA-loaded SF-DCs was significantly higher than that with OVA-loaded conventional DCs. These results suggest that SF-DCs tend to produce IL-23 and can consequently induce the IL-17 producing CD4{sup +} T cells. The semi-mature DC-like cells reported here will be useful vehicles for DC immunization and might contribute to studies on the possible involvement of semi-mature DCs in Th17 cell differentiation.

  14. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation.

    Science.gov (United States)

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A; Young, Deborah A

    2008-02-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4(+)CD45RB(hi)CD25(-) cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22-neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell-dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis.

  15. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis

    Directory of Open Access Journals (Sweden)

    Charlie Bridgewood

    2018-02-01

    Full Text Available The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  16. IL-36γ Is a Strong Inducer of IL-23 in Psoriatic Cells and Activates Angiogenesis.

    Science.gov (United States)

    Bridgewood, Charlie; Fearnley, Gareth W; Berekmeri, Anna; Laws, Philip; Macleod, Tom; Ponnambalam, Sreenivasan; Stacey, Martin; Graham, Anne; Wittmann, Miriam

    2018-01-01

    The IL-1 family member cytokine IL-36γ is recognised as key mediator in the immunopathology of psoriasis, hallmarks of which involve the activation of both resident and infiltrating inflammatory myeloid cells and aberrant angiogenesis. This research demonstrates a role for IL-36γ in both myeloid activation and angiogenesis. We show that IL-36γ induces the production of psoriasis-associated cytokines from macrophages (IL-23 and TNFα) and that this response is enhanced in macrophages from psoriasis patients. This effect is specific for IL-36γ and could not be mimicked by other IL-1 family cytokines such as IL-1α. IL-36γ was also demonstrated to induce endothelial tube formation and branching, in a VEGF-A-dependent manner. Furthermore, IL-36γ-stimulated macrophages potently activated endothelial cells and led to increased adherence of monocytes, effects that were markedly more pronounced for psoriatic macrophages. Interestingly, regardless of stimulus, psoriasis monocytes showed increased adherence to both the stimulated and unstimulated endothelium when compared with monocytes from healthy individuals. Collectively, these findings show that IL-36γ has the potential to enhance endothelium directed leucocyte infiltration into the skin and strengthen the IL-23/IL-17 pathway adding to the growing evidence of pathogenetic roles for IL-36γ in psoriatic responses. Our findings also point to a cellular response, which could potentially explain cardiovascular comorbidities in psoriasis in the form of endothelial activation and increased monocyte adherence.

  17. Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model.

    Science.gov (United States)

    Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Cunningham, David M; Huang, Feng; Ma, Lin; Burris, Thomas P; You, Zongbing

    2017-06-01

    Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected intraperitoneally (i.p.) twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected intravenously (i.v.) once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10 weeks old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. Prostate 77:888-899, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. HCV Specific IL-21 Producing T Cells but Not IL-17A Producing T Cells Are Associated with HCV Viral Control in HIV/HCV Coinfection.

    Directory of Open Access Journals (Sweden)

    Sonya A MacParland

    Full Text Available Decreased hepatitis C virus (HCV clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV coinfection. The CD4+ T helper cytokines interleukin (IL-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control.We measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels.In acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21.These data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals.

  19. IL-22 is required for Th17 cell–mediated pathology in a mouse model of psoriasis-like skin inflammation

    Science.gov (United States)

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A.; Young, Deborah A.

    2008-01-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4+CD45RBhiCD25– cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22–neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell–dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis. PMID:18202747

  20. Th17 cells and IL-17 in protective immunity to vaginal candidiasis.

    Science.gov (United States)

    Pietrella, Donatella; Rachini, Anna; Pines, Mark; Pandey, Neelam; Mosci, Paolo; Bistoni, Francesco; d'Enfert, Cristophe; Vecchiarelli, Anna

    2011-01-01

    Th17 cells play a major role in coordinating the host defence in oropharyngeal candidiasis. In this study we investigated the involvement of the Th17 response in an animal model of vulvovaginal candidiasis (VVC). To monitor the course of infection we exploited a new in vivo imaging technique. i) The progression of VVC leads to a strong influx of neutrophils in the vagina soon after the challenge which persisted despite the resolution of infection; ii) IL-17, produced by vaginal cells, particularly CD4 T cells, was detected in the vaginal wash during the infection, reaching a maximum 14 days after the challenge; iii) The amount and kinetics of IL-23 in vaginal fluids were comparable to those in vaginal cells; iv) The inhibition of Th17 differentiation led to significant inhibition of IL-17 production with consequent exacerbation of infection; v) An increased production of βdefensin 2 was manifested in cells of infected mice. This production was strongly reduced when Th17 differentiation was inhibited and was increased by rIL-17 treatment. These results imply that IL-17 and Th17, along with innate antimicrobial factors, have a role in the immune response to vaginal candidiasis.

  1. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    DEFF Research Database (Denmark)

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  2. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation

    NARCIS (Netherlands)

    Croes, M.; Kruyt, M. C.; Groen, W. M.; Van Dorenmalen, K. M.A.; Dhert, W. J.A.; Öner, F. C.; Alblas, J.

    2018-01-01

    Interleukin 17 (IL-17) stimulates the osteogenic differentiation of progenitor cells in vitro through a synergy with bone morphogenetic protein (BMP)-2. This study investigates whether the diverse responses mediated by IL-17 in vivo also lead to enhanced BMP-2-induced bone formation. Since IL-17 is

  3. Effects of β-D-mannuronic acid, as a novel non-steroidal anti-inflammatory medication within immunosuppressive properties, on IL17, RORγt, IL4 and GATA3 gene expressions in rheumatoid arthritis patients

    Directory of Open Access Journals (Sweden)

    Barati A

    2017-03-01

    Full Text Available Anis Barati,1 Ahmad Reza Jamshidi,2,* Hossein Ahmadi,1 Zahra Aghazadeh,1 Abbas Mirshafiey1,* 1Department of Immunology, School of Public Health, 2Iranian Institute for Health Sciences Research, Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran *These authors contributed equally to this work Abstract: Rheumatoid arthritis (RA is the most common form of chronic inflammatory arthritis characterized by pain, swelling and destruction of joints, with a resultant disability. Disease-modifying anti-rheumatic drugs (DMARDs and biological drugs can interfere with the disease process. In this study, the effect of β-D-mannuronic acid (M2000 as a novel non-steroidal anti-inflammatory drug (NSAID with immunosuppressive and anti-inflammatory effects together with antioxidant effects was evaluated on IL17, RORγt, IL4 and GATA3 gene expression in 12 RA patients. Previously, M2000 driven from sodium alginate (natural product; patented, DEU: 102016113018.4 has shown a notable efficacy in experimental models of multiple sclerosis, RA and nephrotic syndrome. This study was performed on 12 patients with RA who had an inadequate response to conventional treatments. During this trial, patients were permitted to continue the conventional therapy excluding NSAIDs. M2000 was administered orally at a dose of 500 mg twice daily for 12 weeks. The peripheral blood mononuclear cells (PBMCs were collected before and after treatment to evaluate the expression levels of IL4, GATA3, IL17 and RORγt. The gene expression results showed that M2000 has a potent efficacy, so that it could not only significantly decrease IL17 and RORγt levels but also increase IL4 and GATA3 levels after 12 weeks of treatment. Moreover, the gene expression results were in accordance with the clinical and preclinical assessments. In conclusion, M2000 as a natural novel agent has therapeutic and immunosuppressive properties on RA patients (identifier

  4. Imbalance between IL-17A-Producing Cells and Regulatory T Cells during Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yuehua Hu

    2014-01-01

    Full Text Available Immune responses and inflammation are key elements in the pathogenesis of ischemic stroke (IS. Although the involvement of IL-17A in IS has been demonstrated using animal models, the involvement of IL-17A and IL-17-secreting T cell subsets in IS patients has not been verified, and whether the balance of Treg/IL-17-secreting T cells is altered in IS patients remains unknown. In the present study, we demonstrated that the proportion of peripheral Tregs and the levels of IL-10 and TGF-β were reduced in patients with IS compared with controls using flow cytometry (FCM, real-time PCR, and ELISA assays. However, the proportions of Th17 and γδ T cells, the primary IL-17A-secreting cells, increased dramatically, and these effects were accompanied by increases in the levels of IL-17A, IL-23, IL-6, and IL-1β in IS patients. These studies suggest that the increase in IL-17A-producing cells and decrease in Treg cells might contribute to the pathogenesis of IS. Manipulating the balance between Tregs and IL-17A-producing cells might be helpful for the treatment of IS.

  5. IL-17A promotes susceptibility during experimental visceral leishmaniasis caused by Leishmania donovani.

    Science.gov (United States)

    Terrazas, Cesar; Varikuti, Sanjay; Kimble, Jennifer; Moretti, Ellen; Boyaka, Prosper N; Satoskar, Abhay R

    2016-03-01

    Leishmania donovani is an intracellular parasite that infects professional phagocytes and causes visceral leishmaniasis (VL). The immune response during VL has been extensively studied in the context of T-helper (Th)1 and Th2 responses. Immunity against this parasite is dependent on IFN-γ production and subsequent macrophage activation, and the Th2 response promotes granuloma formation. The cytokine IL-17A is associated with neutrophilic inflammation. Depletion of neutrophils during experimental VL results in enhanced parasitic loads. Furthermore, although patients resistant to VL showed enhanced levels of IL-17A in circulation, little is known about the role of IL-17A during VL infection. Here, we used IL-17A-deficient mice and IL-17A reporter mice to address the role of IL-17A during VL. IL-17A(-/-) mice were highly resistant to VL infection, showing decreased parasites in the liver and spleen. This unexpected phenotype was associated with enhanced IFN-γ production by T cells and decreased accumulation of neutrophils and monocytes, resulting in reduced number of granulomas. We also found γδ T and Th17 cells as the main IL-17A(+) cells during VL infection. Our data reveal an unexpected role of IL-17A rendering susceptibility against L. donovani by regulating the IFN-γ response and promoting detrimental inflammation. © FASEB.

  6. MicroRNA-181a-5p Impedes IL-17-Induced Nonsmall Cell Lung Cancer Proliferation and Migration through Targeting VCAM-1

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2017-05-01

    Full Text Available Aim: The contribution of the inflammatory mediator interleukin-17 (IL-17 in nonsmall cell lung cancer (NSCLC malignancy has been reported in the literature. MicroRNA-181a-5p (miR-181a-5p acts as a tumor suppressor which can regulate target gene at the posttranscriptional level. Our study aimed to investigate the interaction between IL-17 and miR-181a-5p in NSCLC. Methods: 35 patients with NSCLC and 24 COPD controls were selected and examined in our study. In vitro, H226 and H460 cell lines were exposed to different doses (20, 40, 60, and 80 ng/mL of IL-17 to examine the effect of IL-17 on miR-181a-5p and vascular cell adhesion molecule 1 (VCAM-1 expression. MiR-181 mimic and miR-181a-5p inhibitor were transfected to explore the regulation of VCAM-1 as well as tumor cell proliferation and migration. Results: miR-181a-5p expression was downregulated, and IL-17 and VCAM-1 expression was upregulated in NSCLC tissues. Furthermore, IL-17 decreased miR-181a-5p expression but increased VCAM-1 expression in H226 and H460 cells. MiR-181 regulated VCAM-1 expression through binding to 3’-UTR sequence. MiR-181 attenuated tumor cell proliferation and migration. IL-17 modulated miR-181a-5p expression through activating NF-κB but not Stat3. Conclusion: Taken together, our data show the regulation of VCAM-1 expression by miR-181a-5p under IL-17 exposure, predicting a potential way for counteracting cancer metastasis.

  7. Changes of serum IL-2, IL-4, IL-10 and IFN-γ levels after treatment with 131I-17-allylamino-17-demethoxygeldanamycin in VX2 rabbit models

    International Nuclear Information System (INIS)

    Gao Wen; Liu Lu; Zhou Yun

    2007-01-01

    Objective: To study the influence of 131 I-17-allylamino-17-demethoxygeldanamycin( 131 I-17-AAG) therapy on immune function in VX2 rabbit models with transplanted liver cancer. Methods: Serum IL-2, IL-4, IL-10 and IFN-γ levels were measured with RIA in 8 VX2 rabbit models with transplanted liver cancer 1-2 weeks after 10mCi 131 I-17-AAG treatment as well as in 8 controls rabbits (models with tumor but without treatment). Results: 1 week after 10mCi 131 I treatment, the serum IL - 2 and IFN-γ levels were significantly lower in the treated rabbits than those in controls (P 0.05). Serum IL-4 and IL-10 levels in the treated rabbits (both at 1 and 2 week) were not significantly different from those in controls (P>0.05). Conclusion: 131 I-17-AAG treatment had transient effects on cellular immunity with no influence on humoral immunity. As a whole, it is a safe to treat VX2 rabbit models with this preparation. (authors)

  8. The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice.

    Science.gov (United States)

    Rolla, Simona; Alchera, Elisa; Imarisio, Chiara; Bardina, Valentina; Valente, Guido; Cappello, Paola; Mombello, Cristina; Follenzi, Antonia; Novelli, Francesco; Carini, Rita

    2016-02-01

    The mechanisms responsible for the evolution of steatosis towards NASH (non-alcoholic steatohepatitis) and fibrosis are not completely defined. In the present study we evaluated the role of CD4(+) T-helper (Th) cells in this process. We analysed the infiltration of different subsets of CD4(+) Th cells in C57BL/6 mice fed on a MCD (methionine choline-deficient) diet, which is a model reproducing all phases of human NASH progression. There was an increase in Th17 cells at the beginning of NASH development and at the NASH-fibrosis transition, whereas levels of Th22 cells peaked between the first and the second expansion of Th17 cells. An increase in the production of IL (interleukin)-6, TNFα (tumour necrosis factor α), TGFβ (transforming growth factor β) and CCL20 (CC chemokine ligand 20) accompanied the changes in Th17/Th22 cells. Livers of IL-17(-/-) mice were protected from NASH development and characterized by an extensive infiltration of Th22 cells. In vitro, IL-17 exacerbated the JNK (c-Jun N-terminal kinase)-dependent mouse hepatocyte lipotoxicity induced by palmitate. IL-22 prevented lipotoxicity through PI3K (phosphoinositide 3-kinase)-mediated inhibition of JNK, but did not play a protective role in the presence of IL-17, which up-regulated the PI3K/Akt inhibitor PTEN (phosphatase and tensin homologue deleted on chromosome 10). Consistently, livers of IL-17(-/-) mice fed on the MCD diet displayed decreased activation of JNK, reduced expression of PTEN and increased phosphorylation of Akt compared with livers of wild-type mice. Hepatic infiltration of Th17 cells is critical for NASH initiation and development of fibrosis in mice, and reflects an infiltration of Th22 cells. Th22 cells are protective in NASH, but only in the absence of IL-17. These data strongly support the potentiality of clinical applications of IL-17 inhibitors that can prevent NASH by both abolishing the lipotoxic action of IL-17 and allowing IL-22-mediated protection. © 2016 Authors

  9. Predictive value of IL-35 and IL-17 in diagnosis of childhood asthma.

    Science.gov (United States)

    Mansour, Amira Ibrahim; Abd Almonaem, Eman Rateb; Behairy, Ola Galal; Gouda, Tahany Mahmoud

    2017-09-01

    This study aimed to evaluate the correlation between serum levels of IL-17 and IL-35 and the presence and severity of childhood asthma. The study was performed on 60 diagnosed asthmatic children, who were further classified into four groups according to the Global Initiative for Asthma Guidelines for Asthma Severity and Control (GINA) 2016, plus 30 age- and sex-matched apparently healthy children. All participants were subjected to full medical history, clinical examination, pulmonary function tests and laboratory evaluation in the form of complete blood count (CBC), serum total IgE, IL-17 and IL-35 by ELISA. Our results revealed that eosinophils count, IgE and IL-17 were significantly higher in the asthmatic group than the control group (p 13.1 pg/mL; this value could predict childhood asthma with sensitivity of 81.7% and 83.3%, and specificity of 76.7% and 70%, respectively. A combination of both cytokines yielded an increase in sensitivity to 95%. In conclusion, in the current study, IL-17 is upregulated while IL-35 is downregulated in childhood asthma with a significant negative correlation between both. These results suggest that both may play an important role in the pathogenesis of childhood asthma.

  10. Cytokines (interleukin-9, IL-17, IL-22, IL-25 and IL-33 and asthma

    Directory of Open Access Journals (Sweden)

    Rahim Farahani

    2014-01-01

    Full Text Available Asthma is a reversible airway obstruction that is characterized by constriction of airway smooth muscle, hyper secretion of mucus, edema and airway hyper responsiveness (AHR, mucus secretion and thickening of the basement membrane underlying the airway epithelium. During the process of airway inflammation, complex interactions of innate and adaptive immune cells as well as structural cells and their cytokines have many important roles. It was believed that airway inflammation is orchestrated by allergen specific T helper (Th 2 cells, which recruit and accumulate in the lungs and produce a range of different effector cytokines. However, more recent studies have revealed the potential collaboration of other helper T cells and their cytokines in this process. Th17 cell may have a role in severe asthma and chronic obstructive pulmonary disease (COPD. Interleukin (IL-9-producing subset called Th9 cell, Th22 cells which primarily secrete IL-22, IL-13 and tumor necrosis factor-α and Th25 cells via producing IL-25 are believed to be important for initiating allergic reactions and developing airway inflammation. Cytokines are important in asthma and play a critical role in orchestrating the allergic inflammatory response, although the precise role of each cytokine remains to be determined. The aim of this review is to summarize the current knowledge about the possible roles of newly identified helper T cells derived cytokines (IL-9, 17, 22, 25 and IL-33 in asthma. The potential therapeutic applications emerging from the roles of these cytokines will be discussed as well.

  11. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Weymar, Anna; Bernreuther, Christian; Velden, Joachim; Arunachalam, Priyadharshini; Steinbach, Karin; Orthey, Ellen; Arumugam, Thiruma V; Leypoldt, Frank; Simova, Olga; Thom, Vivien; Friese, Manuel A; Prinz, Immo; Hölscher, Christoph; Glatzel, Markus; Korn, Thomas; Gerloff, Christian; Tolosa, Eva; Magnus, Tim

    2012-11-01

    The devastating effect of ischemic stroke is attenuated in mice lacking conventional and unconventional T cells, suggesting that inflammation enhances tissue damage in cerebral ischemia. We explored the functional role of αβ and γδ T cells in a murine model of stroke and distinguished 2 different T cell-dependent proinflammatory pathways in ischemia-reperfusion injury. IFN-γ produced by CD4(+) T cells induced TNF-α production in macrophages, whereas IL-17A secreted by γδ T cells led to neutrophil recruitment. The synergistic effect of TNF-α and IL-17A on astrocytes resulted in enhanced secretion of CXCL-1, a neutrophil chemoattractant. Application of an IL-17A-blocking antibody within 3 hours after stroke induction decreased infarct size and improved neurologic outcome in the murine model. In autoptic brain tissue of patients who had a stroke, we detected IL-17A-positive lymphocytes, suggesting that this aspect of the inflammatory cascade is also relevant in the human brain. We propose that selective targeting of IL-17A signaling might provide a new therapeutic option for the treatment of stroke.

  12. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival.

    Science.gov (United States)

    Webster, K E; Kim, H-O; Kyparissoudis, K; Corpuz, T M; Pinget, G V; Uldrich, A P; Brink, R; Belz, G T; Cho, J-H; Godfrey, D I; Sprent, J

    2014-09-01

    Natural killer T (NKT) cells are innate-like T cells that rapidly recognize pathogens and produce cytokines that shape the ensuing immune response. IL-17-producing NKT cells are enriched in barrier tissues, such as the lung, skin, and peripheral lymph nodes, and the factors that maintain this population in the periphery have not been elucidated. Here we show that NKT17 cells deviate from other NKT cells in their survival requirements. In contrast to conventional NKT cells that are maintained by IL-15, RORγt(+) NKT cells are IL-15 independent and instead rely completely on IL-7. IL-7 initiates a T-cell receptor-independent (TCR-independent) expansion of NKT17 cells, thus supporting their homeostasis. Without IL-7, survival is dramatically impaired, yet residual cells remain lineage committed with no downregulation of RORγt evident. Their preferential response to IL-7 does not reflect enhanced signaling through STAT proteins, but instead is modulated via the PI3K/AKT/mTOR signaling pathway. The ability to compete for IL-7 is dependent on high-density IL-7 receptor expression, which would promote uptake of low levels of IL-7 produced in the non-lymphoid sites of lung and skin. This dependence on IL-7 is also reported for RORγt(+) innate lymphoid cells and CD4(+) Th17 cells, and suggests common survival requirements for functionally similar cells.

  13. Th17 Polarization under Hypoxia Results in Increased IL-10 Production in a Pathogen-Independent Manner

    Directory of Open Access Journals (Sweden)

    Roman Volchenkov

    2017-06-01

    Full Text Available The IL-17-producing CD4+ T helper cell (Th17 differentiation is affected by stimulation of the aryl hydrocarbon receptor (AhR pathway and by hypoxia-inducible factor 1 alpha (HIF-1α. In some cases, Th17 become non-pathogenic and produce IL-10. However, the initiating events triggering this phenotype are yet to be fully understood. Here, we show that such cells may be differentiated at low oxygen and regardless of AhR ligand treatment such as cigarette smoke extract. Hypoxia led to marked alterations of the transcriptome of IL-10-producing Th17 cells affecting genes involved in metabolic, anti-apoptotic, cell cycle, and T cell functional pathways. Moreover, we show that oxygen regulates the expression of CD52, which is a cell surface protein that has been shown to suppress the activation of other T cells upon release. Taken together, these findings suggest a novel ability for Th17 cells to regulate immune responses in vivo in an oxygen-dependent fashion.

  14. PTEN drives Th17 cell differentiation by preventing IL-2 production.

    Science.gov (United States)

    Kim, Hyeong Su; Jang, Sung Woong; Lee, Wonyong; Kim, Kiwan; Sohn, Hyogon; Hwang, Soo Seok; Lee, Gap Ryol

    2017-11-06

    T helper 17 (Th17) cells are a CD4 + T cell subset that produces IL-17A to mediate inflammation and autoimmunity. IL-2 inhibits Th17 cell differentiation. However, the mechanism by which IL-2 is suppressed during Th17 cell differentiation remains unclear. Here, we show that phosphatase and tensin homologue (PTEN) is a key factor that regulates Th17 cell differentiation by suppressing IL-2 production. Th17-specific Pten deletion ( Pten fl/fl Il17a cre ) impairs Th17 cell differentiation in vitro and ameliorated symptoms of experimental autoimmune encephalomyelitis (EAE), a model of Th17-mediated autoimmune disease. Mechanistically, Pten deficiency up-regulates IL-2 and phosphorylation of STAT5, but reduces STAT3 phosphorylation, thereby inhibiting Th17 cell differentiation. PTEN inhibitors block Th17 cell differentiation in vitro and in the EAE model. Thus, PTEN plays a key role in Th17 cell differentiation by blocking IL-2 expression. © 2017 Kim et al.

  15. Inflammation in the CNS and Th17 Responses Are Inhibited by IFN-{gamma}-Induced IL-18 Binding Protein

    DEFF Research Database (Denmark)

    Millward, Jason M; Pedersen, Morten Løbner; Wheeler, Rachel D

    2010-01-01

    Inflammatory responses are essential for immune protection but may also cause pathology and must be regulated. Both Th1 and Th17 cells are implicated in the pathogenesis of autoimmune inflammatory diseases, such as multiple sclerosis. We show in this study that IL-18-binding protein (IL-18bp......), the endogenous inhibitor of the Th1-promoting cytokine IL-18, is upregulated by IFN-gamma in resident microglial cells in the CNS during multiple sclerosis-like disease in mice. Test of function by overexpression of IL-18bp in the CNS using a viral vector led to marked reduction in Th17 responses and robust...... inhibition of incidence, severity, and histopathology of disease, independently of IFN-gamma. The disease-limiting action of IL-18bp included suppression of APC-derived Th17-polarizing cytokines. IL-18bp thus acts as a sensor for IFN-gamma and can regulate both Th1 and Th17 responses in the CNS....

  16. Genetic Analysis of IL-17 Gene Polymorphisms in Gout in a Male Chinese Han Population.

    Science.gov (United States)

    Zhou, Zheng; Li, Xinde; Li, Hua; Guo, Mingzhen; Liu, Shiguo; Li, Changgui

    2016-01-01

    Interleukin (IL)-17 is a proinflammatory cytokine mainly secreted by activated T helper 17 cells and involved in inflammatory immune responses. This study aimed to investigate the association between IL-17 variants as well as serum IL-17 levels with gout in male Chinese Han individuals. A total of 1,101 male gout patients and 1,239 ethic-matched controls were enrolled. Genetic distributions of three variants (rs2275913 in IL-17A, rs763780 in IL-17F, and rs4819554 in IL-17RA) were detected by real-time polymerase chain reaction using the Taqman probe method. The plasma concentrations of IL-17A and IL-17F were measured in 228 gout patients and 198 controls that came from above samples by an enzyme-linked immunosorbent assay. No significant differences were observed in the genetic distribution of these polymorphisms between cases and controls (rs2275913: χ2 = 0.15, p = 0.928 by genotype, χ2 = 0.14, p = 0.711 by allele; rs763780: χ2 = 2.24, p = 0.326 by genotype, χ2 = 0.26, p = 0.609 by allele; rs4819554: χ2 = 1.79, p = 0.409 by genotype, χ2 = 1.46, p = 0.227 by allele). Levels of serum IL-17A and IL-17F were significantly decreased in gout patients (both pgout patients between different genotypic carriers of rs2275913 and rs763780 regarding serum IL-17A and IL-17F levels (p>0.05). Although the genetic variants in IL-17 we studied in this research do not appear to be involved in the development of gout in male Chinese Han individuals, the IL-17 cytokine family may participate in gouty inflammation in an undefined way, which requires further validation.

  17. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    Science.gov (United States)

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  18. Relations Between Serum Essential Fatty Acids, Cytokines (IL-6 & IL ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the relations between free radical generation, interleukins (IL-6 & IL-8), apoptotic marker soluble Fas (sFas), and the level of ... IL-6, IL-8 and sFas whereas serum fatty acid revealed that Linoleicacid (LA) and alpha linolenic acid (ALA) were significantly decreased in the studied cases .

  19. IL-17 Genetic and Immunophenotypic Evaluation in Chronic Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Resende

    2014-01-01

    Full Text Available Although interleukin-17 (IL-17 is a recently discovered cytokine associated with several autoimmune diseases, its role in the pathogenesis of chronic graft-versus-host disease (cGVHD was not established yet. The objective of this study was to investigate the association of IL17A and IL17F genes polymorphisms and IL-17A and IL-17F levels with cGVHD. IL-17A expression was also investigated in CD4+ T cells of patients with systemic cGVHD. For Part I of the study, fifty-eight allo-HSCT recipients and donors were prospectively studied. Blood samples were obtained to determine IL17A and IL17F genes polymorphisms. Cytokines levels in blood and saliva were assessed by ELISA at days +35 and +100 after HSCT. In Part II, for the immunophenotypic evaluation, eight patients with systemic cGVHD were selected and the expression of IL-17A was evaluated. We found association between recipient AA genotype with systemic cGVHD. No association was observed between IL-17A levels and cGVHD. Lower IL-17A levels in the blood were associated with AA genotype. In flow cytometry analysis, decreased expression of IL-17A was observed in patients with cGVHD after stimulation. In conclusion, IL-17A may have an important role in the development of systemic cGVHD.

  20. Andrographolide presents therapeutic effect on ulcerative colitis through the inhibition of IL-23/IL-17 axis.

    Science.gov (United States)

    Zhu, Qin; Zheng, Peifen; Chen, Xinyu; Zhou, Feng; He, Qiaona; Yang, Yuefeng

    2018-01-01

    Ulcerative colitis (UC) is a chronic and nonspecific intestinal inflammatory disease, which may increase the risk of colon cancer. Andrographolide is a main active component of Andrographis paniculata . The anti-inflammatory ability of andrographolide suggested its potential therapeutic effect against UC. In the present study, elevated serum concentrations of proinflammatory factors, including (TNF)-α, interleukin (IL)-1β, IL-6 and IL-23, as well as increased percentages of Th17 cells (IL-17+CD4+ cells) in CD4+ cells were detected in UC patients compared to that in healthy donors. These data suggested that Th17 immune responses may involve in the pathogenesis of UC. Experimental colitis mouse model was then established. The results of hematoxylin and eosin staining demonstrated the therapeutic effect of andrographolide on colitis. Enzyme-linked immunosorbent assay (ELISA), flow cytometry and western blotting analyses showed that andrographolide could decreased the levels of proinflammatory factors TNF-α, IL-1β, IL-6 and IL-17A in the serum and in the colon tissues, reduced the percentages of Th17 cells in CD4+ cells, and suppressed the levels of IL-23, IL-17A, ROR-γt (key transcription factor of Th17 cells) and p-STAT3 in the colon tissues. Further, peripheral blood mononuclear cells (PBMCs) were isolated from UC patients and treated with various concentrations of andrographolide (0, 10, 20 and 30 μg/ml). Andrographolide also showed inhibitory effects on the levels of proinflammatory factors, the percentages of Th17 cells and the expression of relative proteins. Similar results were obtained in lipopolysaccharide-treated normal PBMCs. These data suggested that andrographolide may inhibit Th17 immune response via STAT3 signaling. In conclusion, we demonstrated that andrographolide inhibited the activity of IL-23/IL-17 axis and down-stream pro-inflammatory factors so as to suppress inflammation response, resulting in the relieving of UC.

  1. Association of single nucleotide polymorphisms of IL23R and IL17 with ulcerative colitis risk in a Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Pengli Yu

    Full Text Available BACKGROUND: Previous studies implicated that IL23R and IL17 genes play an important role in autoimmune inflammation. Genome-wide association studies have also identified multiple single nucleotide polymorphisms (SNPs in the IL23R gene region associated with inflammatory bowel diseases. This study examined the association of IL23R and IL17A gene SNPs with ulcerative colitis susceptibility in a population in China. METHODOLOGY: A total of 270 ulcerative colitis and 268 healthy controls were recruited for the analyses of 23 SNPs in the IL23R and IL17A regions. Genomic DNA was extracted and analysis of these 23 SNPs using ligase detection reaction allelic (LDR technology. Genotype and allele associations were calculated using SPSS 13.0 software package. PRINCIPAL FINDINGS: Compared to the healthy controls, the variant alleles IL23R rs7530511, and rs11805303 showed a statistically significant difference for ulcerative colitis susceptibility (0.7% vs 3.3%, P = 0.002; 60.4% vs 53.2%, P = 0.0017, respectively. The linkage disequilibrium (LD patterns of these SNPs were measured and three LD blocks from the SNPs of IL23R and one block from those of IL17A were identified. A novel association with ulcerative colitis susceptibility occurred in haplotypes of IL23R (Block1 H3 P = 0.02; Block2 H2 P = 0.019; Block3 H4 P = 0.029 and IL17A (H4 P = 0.034. Pair-wise analyses showed an interaction between the risk haplotypes in IL23R and IL17A (P = 0.014. CONCLUSIONS: Our study demonstrated that rs7530511, and rs11805303 of IL23R were significantly associated with ulcerative colitis susceptibility in the Chinese population. The most noticeable finding was the linkage of IL23R and IL17A gene region to ulcerative colitis risk due to the gene-gene interaction.

  2. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma.

    Science.gov (United States)

    Newcomb, Dawn C; Cephus, Jacqueline Yvonne; Boswell, Madison G; Fahrenholz, John M; Langley, Emily W; Feldman, Amy S; Zhou, Weisong; Dulek, Daniel E; Goleniewska, Kasia; Woodward, Kimberly B; Sevin, Carla M; Hamilton, Robert G; Kolls, Jay K; Peebles, R Stokes

    2015-10-01

    Women have an increased prevalence of severe asthma compared with men. IL-17A is associated with severe asthma and requires IL-23 receptor (IL-23R) signaling, which is negatively regulated by let-7f microRNA. We sought to Determine the mechanism by which 17β-estradiol (E2) and progesterone (P4) increase IL-17A production. IL-17A production was determined by using flow cytometry in TH17 cells from women (n = 14) and men (n = 15) with severe asthma. Cytokine levels were measured by using ELISA, and IL-23R and let-7f expression was measured by using quantitative PCR in TH17-differentiated cells from healthy women (n = 13) and men (n = 14). In sham-operated or ovariectomized female mice, 17β-E2, P4, 17β-E2+P4, or vehicle pellets were administered for 3 weeks before ex vivo TH17 cell differentiation. Airway neutrophil infiltration and CXCL1 (KC) expression were also determined in ovalbumin (OVA)-challenged wild-type female recipient mice with an adoptive transfer of OVA-specific TH17 cells from female and male mice. In patients with severe asthma and healthy control subjects, IL-17A production was increased in TH17 cells from women compared with men. IL-23R expression was increased and let-7f expression was decreased in TH17-differentiated cells from women compared with men. In ovariectomized mice IL-17A and IL-23R expression was increased and Let-7f expression was decreased in TH17 cells from mice administered 17β-E2+P4 compared with those administered vehicle. Furthermore, transfer of female OVA-specific TH17 cells increased acute neutrophil infiltration in the lungs of OVA-challenged recipient mice compared with transfer of male OVA-specific TH17 cells. 17β-E2+P4 increased IL-17A production from TH17 cells, providing a potential mechanism for the increased prevalence of severe asthma in women compared with men. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. IL-33-induced alterations in murine intestinal function and cytokine responses are MyD88, STAT6, and IL-13-dependent

    Science.gov (United States)

    IL-33 is a recently identified cytokine member of the IL-1 family. The biological activities of IL-33 are associated with promotion of Th2 and inhibition of Th1/Th17 immune responses. Exogenous IL-33 induces a typical “type 2” immune response in the gastrointestinal tract, yet the underlying mechani...

  4. Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; Weeks, Brad; Wu, Chaodong; McMurray, David N; Chapkin, Robert S

    2012-01-01

    Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site) and spleen (systemic inflammatory site), and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF) diet (59.2% kcal) alone or an isocaloric HF diet supplemented with fish oil (HF-FO) for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS) enema. The HF-FO diet improved the obese phenotype by reducing i) serum hormone concentrations (leptin and resistin), ii) adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNγ, IL-6, IL17F and IL-21) and iii) total (F4/80⁺ CD11b⁺) and inflammatory adipose tissue M1 (F4/80⁺ CD11c⁺) macrophage content compared to HF (Pdiet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master transcription factor (RORγτ) and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNγ) versus HF (P<0.05). Compared to HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P<0.05). Under ex vivo polarizing conditions, the percentage of HF-FO derived CD4⁺ T cells that reached Th17 cell effector status was suppressed (P = 0.05). Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.

  5. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  6. Allergic Rhinitis and Its Relationship with IL-10, IL-17, TGF-β, IFN-γ, IL 22, and IL-35

    Directory of Open Access Journals (Sweden)

    P. Bayrak Degirmenci

    2018-01-01

    Full Text Available Background. We aimed in our study to research the role of new cytokines such as IL-35, IL-22, and IL-17 that may form a target for novel treatment approaches. Methods. IL-10, IL-17, TGF-β, IFN-γ, IL-22, and IL-35 serum levels of allergic rhinitis (AR patients were measured using ELISA method. Allergic sensitization was demonstrated by the skin prick test. Patients only with olive tree sensitivity were evaluated for seasonal AR (SAR. Patients only with mite sensitivity were included in the study for perennial AR (PAR. AR clinic severity was demonstrated by the nasal symptom scores (NSS. Results. In total, 65 AR patients (patient group, having 31 PAR and 34 SAR patients, and 31 healthy individuals (control group participated in the study. Cytokine levels between the patient group and the control group were compared; IL-17 (p=0.038, IL-22 (p=0.001, and TGF-β (p=0.031 were detected as high in the patient group, and IFN-γ (p<0.001 was detected as low in the patient group. When correlation analysis was made between age, gender, prick test result, NSS, AR duration, and cytokine levels in the patient group, a negative correlation was detected only between IFN-γ (p=0.032/r=−0.266 level and NSS. Conclusions. Accompanied by the literature information, these results made us think that T cell subgroups and cytokines have an important role in AR immunopathogenesis. It is thought that future studies to be conducted relating to this subject will form new targets in treatment.

  7. Vγ4 γδ T Cells Provide an Early Source of IL-17A and Accelerate Skin Graft Rejection.

    Science.gov (United States)

    Li, Yashu; Huang, Zhenggen; Yan, Rongshuai; Liu, Meixi; Bai, Yang; Liang, Guangping; Zhang, Xiaorong; Hu, Xiaohong; Chen, Jian; Huang, Chibing; Liu, Baoyi; Luo, Gaoxing; Wu, Jun; He, Weifeng

    2017-12-01

    Activated γδ T cells have been shown to accelerate allograft rejection. However, the precise role of skin-resident γδ T cells and their subsets-Vγ5 (epidermis), Vγ1, and Vγ4 (dermis)-in skin graft rejection have not been identified. Here, using a male to female skin transplantation model, we demonstrated that Vγ4 T cells, rather than Vγ1 or Vγ5 T cells, accelerated skin graft rejection and that IL-17A was essential for Vγ4 T-cell-mediated skin graft rejection. Moreover, we found that Vγ4 T cells were required for early IL-17A production in the transplanted area, both in skin grafts and in the host epidermis around grafts. Additionally, the chemokine (C-C motif) ligand 20-chemokine receptor 6 pathway was essential for recruitment of Vγ4 T cells to the transplantation area, whereas both IL-1β and IL-23 induced IL-17A production from infiltrating cells. Lastly, Vγ4 T-cell-derived IL-17A promoted the accumulation of mature dendritic cells in draining lymph nodes to subsequently regulate αβ T-cell function after skin graft transplantation. Taken together, our data reveal that Vγ4 T cells accelerate skin graft rejection by providing an early source of IL-17A. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Seasonal influenza A/H3N2 virus infection and IL-1Β, IL-10, IL-17, and IL-28 polymorphisms in Iranian population.

    Science.gov (United States)

    Rogo, Lawal Dahiru; Rezaei, Farhad; Marashi, Seyed Mahdi; Yekaninejad, Mir Saeed; Naseri, Maryam; Ghavami, Nastaran; Mokhtari-Azad, Talat

    2016-12-01

    Increased blood cytokines is the main immunopathological process that were attributed to severe clinical outcomes in cases of influenza A/H3N2 virus infection. The study was aimed to investigate the polymorphisms of IL-1β, IL-10, IL-17, and IL-28 genes to find the possibility of their association with the clinical outcome of influenza A/H3N2 virus infection among the infected patients in Iran. This is a Case-Control study in which influenza A/H3N2 virus positive confirmed with real-time PCR were the cases. DNA samples from groups were genotyped for polymorphisms in rs16944 (IL-1β), rs1800872 (IL-10), rs2275913 (IL-17), and rs8099917 (IL-28). Confidence interval (95%CI) and Odds ratio (OR) were calculated. IL-17 rs2275913 (GG and AG) were associated with risk of infection with that were statistically significant (P rs16944) (GG) was associated with reduced risk of infection (P < 0.01, OR = 0.46). Genotype GG and GT of IL-10 (rs1800872) were associated with increased risk of infection with influenza A/H3N2 virus (P < 0.05, OR = 2.04-2.58). In addition, IL-28 (rs8099917) genotypes GG (P < 0.05, OR = 0.49) and TG (P < 0.05, OR = 0.59) were associated with reduced risk of ILI symptom while genotype TT (P < 0.01, OR = 4.31) was associated with increased risk of ILI symptom. The results of this study demonstrated that polymorphisms of genes involved in the inflammatory and anti-inflammatory process affect the outcome of disease caused by influenza A/H3N2 virus. Thorough insight on host immune response at the time of influenza A virus infection is required to ensure adequate patient care in the case of feature outbreaks. J. Med. Virol. 88:2078-2084, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Lipoteichoic Acid of Probiotic Lactobacillus plantarum Attenuates Poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kyoung Whun Kim

    2017-09-01

    Full Text Available Probiotics in livestock feed supplements are considered a replacement for antibiotics that enhance gastrointestinal immunity. Although bacterial cell wall components have been proposed to be associated with probiotic function, little evidence demonstrates that they are responsible for probiotic functions in livestock. The present study demonstrated that lipoteichoic acid (LTA of Lactobacillus plantarum (Lp.LTA confers anti-inflammatory responses in porcine intestinal epithelial cell line, IPEC-J2. A synthetic analog of viral double-stranded RNA, poly I:C, dose-dependently induced IL-8 production at the mRNA and protein levels in IPEC-J2 cells. Lp.LTA, but not lipoprotein or peptidoglycan from L. plantarum, exclusively suppressed poly I:C-induced IL-8 production. Compared with LTAs from other probiotic Lactobacillus strains including L. delbrueckii, L. sakei, and L. rhamnosus GG, Lp.LTA had higher potential to suppress poly I:C-induced IL-8 production. Dealanylated or deacylated Lp.LTA did not suppress poly I:C-induced IL-8 production, suggesting that D-alanine and lipid moieties in the Lp.LTA structure were responsible for the inhibition. Furthermore, Lp.LTA attenuated the phosphorylation of ERK and p38 kinase as well as the activation of NF-κB, resulting in decreased IL-8 production. Taken together, these results suggest that Lp.LTA acts as an effector molecule to inhibit viral pathogen-induced inflammatory responses in porcine intestinal epithelial cells.

  10. IL-10 dependent suppression of type 1, type 2 and type 17 cytokines in active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Nathella Pavan Kumar

    Full Text Available Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB, their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL and latent tuberculosis (LTB have not been well studied.To identify cytokine responses associated with pulmonary tuberculosis (TB, TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA.PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2; Type 2 (IL-4 and Type 17 (IL-17A and IL-17F cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially the suppression of cytokine responses in PTB.Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB.

  11. Docosahexaenoyl serotonin emerges as most potent inhibitor of IL-17 and CCL-20 released by blood mononuclear cells from a series of N-acyl serotonins identified in human intestinal tissue.

    Science.gov (United States)

    Wang, Ya; Balvers, Michiel G J; Hendriks, Henk F J; Wilpshaar, Tessa; van Heek, Tjarda; Witkamp, Renger F; Meijerink, Jocelijn

    2017-09-01

    Fatty acid amides (FAAs), conjugates of fatty acids with ethanolamine, mono-amine neurotransmitters or amino acids are a class of molecules that display diverse functional roles in different cells and tissues. Recently we reported that one of the serotonin-fatty acid conjugates, docosahexaenoyl serotonin (DHA-5-HT), previously found in gut tissue of mouse and pig, attenuates the IL-23-IL-17 signaling axis in LPS-stimulated mice macrophages. However, its presence and effects in humans remained to be elucidated. Here, we report for the first time its identification in human intestinal (colon) tissue, along with a series of related N-acyl serotonins. Furthermore, we tested these fatty acid conjugates for their ability to inhibit the release of IL-17 and CCL-20 by stimulated human peripheral blood mononuclear cells (PBMCs). Serotonin conjugates with palmitic acid (PA-5-HT), stearic acid (SA-5-HT) and oleic acid (OA-5-HT) were detected in higher levels than arachidonoyl serotonin (AA-5-HT) and DHA-5-HT, while eicosapentaenoyl serotonin (EPA-5-HT) could not be quantified. Among these, DHA-5-HT was the most potent in inhibiting IL-17 and CCL-20, typical Th17 pro-inflammatory mediators, by Concanavalin A (ConA)-stimulated human PBMCs. These results underline the idea that DHA-5-HT is a gut-specific endogenously produced mediator with the capacity to modulate the IL-17/Th17 signaling response. Our findings may be of relevance in relation to intestinal inflammatory diseases like Crohn's disease and Ulcerative colitis. Copyright © 2017. Published by Elsevier B.V.

  12. IL-17A causes depression-like symptoms via NFκB and p38MAPK signaling pathways in mice: Implications for psoriasis associated depression.

    Science.gov (United States)

    Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; Fardan, Ali S; El-Sherbeeny, Ahmed M; Ibrahim, Khalid E; Attia, Sabry M

    2017-09-01

    Psoriasis has been shown to be associated with an increased prevalence of comorbid major depression. IL-17A plays an important role in both depression and psoriasis. IL-17A has been shown to be elevated in systemic circulation of psoriatic patients. IL-17A released from different immune cells during psoriasis may be responsible for the development of neuropsychiatric symptoms associated with depression. Therefore, this study explored the association of systemic IL-17A with depression. The present study utilized imiquimod model of psoriatic inflammation as well as IL-17A administration in mice to investigate the effect of IL-17A on depression-like behavior. Psoriatic inflammation led to enhanced IL-17A expression in peripheral immune cells of both innate and adaptive origin. This was associated with increased NFκB/p38MAPK signaling and inflammatory mediators in different brain regions, and depression-like symptoms (as reflected by sucrose preference and tail suspension tests). The role of IL-17A was further confirmed by administering it alone for ten days, followed by assessment of the same parameters. IL-17A administration produced effects similar to psoriasis-like inflammation on neurobehavior and NFκB/p38MAPK pathways. Moreover, both NFκB and p38MAPK inhibitors led to attenuation in IL-17A associated with depression-like behavior via reduction in inflammatory mediators, such as MCP-1, iNOS, IL-6, and CXCL-2. Furthermore, anti-IL17A antibody also led to a reduction in imiquimod-induced depression-like symptoms, as well as NFκB/p38MAPK signaling. The present study shows that IL-17A plays an important role in comorbid depression associated with psoriatic inflammation, where both NFκB and p38MAPK pathways play significant roles via upregulation of inflammatory mediators in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Science.gov (United States)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  14. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis.

    Science.gov (United States)

    Whibley, Natasha; Tritto, Elaine; Traggiai, Elisabetta; Kolbinger, Frank; Moulin, Pierre; Brees, Dominique; Coleman, Bianca M; Mamo, Anna J; Garg, Abhishek V; Jaycox, Jillian R; Siebenlist, Ulrich; Kammüller, Michael; Gaffen, Sarah L

    2016-06-01

    Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency. © Society for Leukocyte Biology.

  15. Role of IL-17 Variants in Preeclampsia in Chinese Han Women.

    Directory of Open Access Journals (Sweden)

    Haiyan Wang

    Full Text Available Previous studies have suggested an important role for IL-17, mainly secreted by Th17 cells, in the development of systemic inflammation in preeclampsia (PE. This study therefore investigated the association between genetic variants in IL-17A, IL-17F, and IL-17RA and susceptibility to PE in Chinese Han women. We recruited 1,031 PE patients and 1,298 controls of later pregnant women, and used TaqMan allelic discrimination real-time PCR to genotype the polymorphisms of IL17A rs2275913, IL-17F rs763780, and IL-17RA rs4819554. No significant differences in genotypic or allelic frequencies were found at all three polymorphic sites between PE patients and controls (rs2275913: genotype χ2 = 0.218, p = 0.897 and allele χ2 = 0.157, p = 0.692, OR = 1.024, 95%CI 0.911-1.152; rs763780: genotype χ2 = 1.948, p = 0.377 and allele χ2 = 1.242, p = 0.265, OR = 0.897, 95%CI 0.741-1.086; rs4819554: genotype χ2 = 0.633, p = 0.729 and allele χ2 = 0.115, p = 0.735, OR = 1.020, 95%CI 0.908-1.146. There were also no significant differences in genetic distributions between mild/severe PE or early/late-onset PE and control subgroups. Our data indicate that the genetic variants of rs2275913 in IL-17A, rs763780 in IL-17F, and rs4819554 in IL-17RA may not play a role in the pathogenesis of PE in Chinese Han women. However, these findings should be confirmed in other ethnic populations.

  16. Increased systemic and epidermal levels of IL-17A and IL-1β promotes progression of non-segmental vitiligo.

    Science.gov (United States)

    Bhardwaj, Supriya; Rani, Seema; Srivastava, Niharika; Kumar, Ravinder; Parsad, Davinder

    2017-03-01

    Non-segmental vitiligo (NSV) results from autoimmune destruction of melanocytes. The altered levels of various cytokines have been proposed in the pathogenesis of vitiligo. However, the exact immune mechanisms have not yet been fully elucidated. To investigate the role of epidermal and systemic cytokines in active and stable NSV patients. Serum levels of inflammatory cytokines were checked in 42 active and 30 stable NSV patients with 30 controls. The lesional, perilesional and normal skin sections were subjected to H&E staining. The mRNA expression of inflammatory cytokines and their respective receptors were assessed by quantitative PCR in lesional skin of both active and stable NSV skin. The MITF and IL-17A were immunolocalized in lesional, perilesional and normal skin tissue. Significant increase in the expression of inflammatory cytokines, IL-17A, IL-1β and TGF-β was observed in active patients, whereas no change was observed in stable patients. A marked reduction in epidermal thickness was observed in lesional skin sections. Significant increase in IL-17A and significant decrease in microphthalmia associated transcription factor (MITF) expression was observed in lesional and perilesional skin sections. Moreover, qPCR analysis showed significant alterations in the mRNA levels of IL-17A, IL-1β, IFN-γ, TGF-β and their respective receptors in active and stable vitiligo patient samples. Increased levels of IL-17A and IL-1β cytokines and decreased expression of MITF suggested a possible role of these cytokines in dysregulation of melanocytic activity in the lesional skin and hence might be responsible for the progression of active vitiligo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Evaluation of IL-4, IL-17, and IFN-γ Levels in PatientsWith Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mina Rohani Borj

    2017-03-01

    Full Text Available Introduction: Tumor growth depends on intrinsic properties of malignant tumor and tumor microenvironment. Cytokines are secreted substances of the tumor microenvironment which are widely produced by tumor and immune cells. The aim of this research was to evaluate concentrations of interleukin 4 (IL-4, interleukin 7 (IL-17 and interferon gamma (IFN-γ in the breast cancer microenvironment. Methods: One hundred sixteen women between 18-73 years of age (61.15 ± 24.39 were enrolled in this study. Based on pathologic diagnostic assessment, patients were divided into 2 categories: those affected with benign breast tumor, and the subjects suffering from malignant breast tumors. Biopsy specimens were collected. Following homogenization, IFN-γ, IL-17, and IL-4 concentrations were determined in tumor tissues, adjacent tissues of the tumor, and blood serum samples of these 2 groups of patients by enzyme-linked immunosorbent assay (ELISA method. Results: Concentrations of IFN-γ, IL-17, and IL-4 were measured in tumor tissue samples, adjacent tissues of the tumor, and blood serum samples in both groups. Malignant breast tumor samples had significantly higher concentrations of IL-4 and IL-17 compared with benign breast tumor samples. And also the concentration of IFN-γ in adjacent tissues of the tumor and in blood serums in patients with malignant breast tumors was significantly higher than that in the benign breast tumor samples. However, there was no significant difference between the concentration of IFN-γ in neoplastic breast tumor tissues and that in the benign breast tumor tissues (P > 0. 05. Conclusion: Our data indicated that IL-17 and IL-4 cytokines but not IFN-γ had higher concentrations in the subjects with malignant tumor compared with those with benign tumor. The present findings indicated that the concentrations of IL-4 and IL-17 in tumor tissues may be associated with the severity of breast malignancy.

  18. Vaccination with IL-6 analogues induces autoantibodies to IL-6 and influences experimentally induced inflammation

    DEFF Research Database (Denmark)

    Galle, Pia; Jensen, Lene; Andersson, Christina

    2007-01-01

    ; yet they appear healthy and do not exhibit overt clinical or laboratory abnormalities. We induced comparable levels of aAb-IL-6 in different mouse strains by vaccination with immunogenic IL-6 analogues. We observed that the induced aAb-IL-6 protected against collagen-induced arthritis and experimental...

  19. Targeting IL-17 with ixekizumab in patients with psoriasis

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Skov, Lone; Zachariae, Claus

    2015-01-01

    Psoriasis is a multifactorial chronic inflammatory skin disease of unknown etiology. Knowledge of the pathophysiology of psoriasis has evolved and identified IL-17 as a key pro-inflammatory mediator in psoriasis creating new medical avenues. Several agents targeting IL-17 or its receptor are in c......Psoriasis is a multifactorial chronic inflammatory skin disease of unknown etiology. Knowledge of the pathophysiology of psoriasis has evolved and identified IL-17 as a key pro-inflammatory mediator in psoriasis creating new medical avenues. Several agents targeting IL-17 or its receptor...... are in clinical trials for the treatment of moderate-to-severe psoriasis. This review focuses on the biological rationale and the results of clinical trials with ixekizumab, a humanized IgG4 monoclonal antibody. The currently available Phase I to III data indicate that ixekizumab is a well-tolerated promising...

  20. Anandamide attenuates Th-17 cell-mediated delayed-type hypersensitivity response by triggering IL-10 production and consequent microRNA induction.

    Directory of Open Access Journals (Sweden)

    Austin R Jackson

    Full Text Available Endogenous cannabinoids [endocannabinoids] are lipid signaling molecules that have been shown to modulate immune functions. However, their role in the regulation of Th17 cells has not been studied previously. In the current study, we used methylated Bovine Serum Albumin [mBSA]-induced delayed type hypersensitivity [DTH] response in C57BL/6 mice, mediated by Th17 cells, as a model to test the anti-inflammatory effects of endocannabinoids. Administration of anandamide [AEA], a member of the endocannabinoid family, into mice resulted in significant mitigation of mBSA-induced inflammation, including foot pad swelling, cell infiltration, and cell proliferation in the draining lymph nodes [LN]. AEA treatment significantly reduced IL-17 and IFN-γ production, as well as decreased RORγt expression while causing significant induction of IL-10 in the draining LNs. IL-10 was critical for the AEA-induced mitigation of DTH response inasmuch as neutralization of IL-10 reversed the effects of AEA. We next analyzed miRNA from the LN cells and found that 100 out of 609 miRNA species were differentially regulated in AEA-treated mice when compared to controls. Several of these miRNAs targeted proinflammatory mediators. Interestingly, many of these miRNA were also upregulated upon in vitro treatment of LN cells with IL-10. Together, the current study demonstrates that AEA may suppress Th-17 cell-mediated DTH response by inducing IL-10 which in turn triggers miRNA that target proinflammatory pathways.

  1. Dietary n-3 polyunsaturated fatty acids (PUFA decrease obesity-associated Th17 cell-mediated inflammation during colitis.

    Directory of Open Access Journals (Sweden)

    Jennifer M Monk

    Full Text Available Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site and spleen (systemic inflammatory site, and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF diet (59.2% kcal alone or an isocaloric HF diet supplemented with fish oil (HF-FO for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS enema. The HF-FO diet improved the obese phenotype by reducing i serum hormone concentrations (leptin and resistin, ii adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNγ, IL-6, IL17F and IL-21 and iii total (F4/80⁺ CD11b⁺ and inflammatory adipose tissue M1 (F4/80⁺ CD11c⁺ macrophage content compared to HF (P<0.05. In addition, the HF-FO diet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master transcription factor (RORγτ and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNγ versus HF (P<0.05. Compared to HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P<0.05. Under ex vivo polarizing conditions, the percentage of HF-FO derived CD4⁺ T cells that reached Th17 cell effector status was suppressed (P = 0.05. Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.

  2. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    Science.gov (United States)

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  3. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP.

    Directory of Open Access Journals (Sweden)

    Stephen F Murphy

    Full Text Available Chronic pelvic pain syndrome (CPPS is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  4. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP).

    Science.gov (United States)

    Murphy, Stephen F; Schaeffer, Anthony J; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  5. Inflammasome and Fas-Mediated IL-1β Contributes to Th17/Th1 Cell Induction in Pathogenic Bacterial Infection In Vivo.

    Science.gov (United States)

    Uchiyama, Ryosuke; Yonehara, Shin; Taniguchi, Shun'ichiro; Ishido, Satoshi; Ishii, Ken J; Tsutsui, Hiroko

    2017-08-01

    CD4 + Th cells play crucial roles in orchestrating immune responses against pathogenic microbes, after differentiating into effector subsets. Recent research has revealed the importance of IFN-γ and IL-17 double-producing CD4 + Th cells, termed Th17/Th1 cells, in the induction of autoimmune and inflammatory diseases. In addition, Th17/Th1 cells are involved in the regulation of infection caused by the intracellular bacterium Mycobacterium tuberculosis in humans. However, the precise mechanism of Th17/Th1 induction during pathogen infection is unclear. In this study, we showed that the inflammasome and Fas-dependent IL-1β induces Th17/Th1 cells in mice, in response to infection with the pathogenic intracellular bacterium Listeria monocytogenes In the spleens of infected wild-type mice, Th17/Th1 cells were induced, and expressed T-bet and Rorγt. In Pycard -/- mice, which lack the adaptor molecule of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain), Th17/Th1 induction was abolished. In addition, the Fas-mediated IL-1β production was required for Th17/Th1 induction during bacterial infection: Th17/Th1 induction was abolished in Fas -/- mice, whereas supplementation with recombinant IL-1β restored Th17/Th1 induction via IL-1 receptor 1 (IL-1R1), and rescued the mortality of Fas -/- mice infected with Listeria IL-1R1, but not apoptosis-associated speck-like protein containing a caspase recruitment domain or Fas on T cells, was required for Th17/Th1 induction, indicating that IL-1β stimulates IL-1R1 on T cells for Th17/Th1 induction. These results indicate that IL-1β, produced by the inflammasome and Fas-dependent mechanisms, contributes cooperatively to the Th17/Th1 induction during bacterial infection. This study provides a deeper understanding of the molecular mechanisms underlying Th17/Th1 induction during pathogenic microbial infections in vivo. Copyright © 2017 by The American Association of Immunologists

  6. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2015-01-01

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10 −6 M to 1 × 10 −5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  7. The Impact of MicroRNA-223-3p on IL-17 Receptor D Expression in Synovial Cells.

    Directory of Open Access Journals (Sweden)

    Nozomu Moriya

    Full Text Available Rheumatoid arthritis (RA is an autoimmune inflammatory disease affecting joints. Elevated plasma levels of microRNA-223-3p (miR-223-3p in patients with RA are implicated in the pathogenesis of the disease. This study aimed to analyze the functional role of miR-223-3p in the pathogenesis of RA by overexpressing miR-223-3p in synovial cell lines.Arthritis was induced in the RA model of SKG mice by injection of ß-glucan. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Plasma levels of miRNA were determined by panel real-time PCR analysis. Target genes of the differentially expressed miRNAs in SKG mice were analyzed using miRNA target prediction algorithms. The dual-luciferase reporter system was used to evaluate the relationship between miR-223-3p and IL-17 receptor D (IL-17RD. The activity of miR-223-3p was analyzed by transfection of plasmid vectors overexpressing miR-223-3p into IL-17RD-expressing NIH3T3 and MH7A cell lines. Il6 and Il17rd mRNA expression was analyzed by quantitative real-time PCR. IL-17RD protein expression was analyzed by western blot analysis.We identified 17 upregulated miRNAs (fold change > 2.0 in plasma of SKG mice injected with ß-glucan relative to untreated SKG mice. Il17rd was identified as the candidate target gene of miR-223-3p using five miRNA target prediction algorithms. The transfection of plasmid vectors overexpressing miR-223-3p into NIH3T3 and MH7A cells resulted in the downregulation of Il17rd expression and upregulation of Il6 expression. Expression of miR-223-3p and Il6 mRNA in MH7A cells was upregulated; however, that of Il17rd mRNA was downregulated following TNF-α stimulation. IL-17RD expression in synovial tissues from SKG mice and RA patients was inversely correlated with the severity of arthritis.This study is the first to demonstrate that miR-223-3p downregulates IL-17RD in both mouse and human cells; miR-223-3p may contribute to

  8. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer.

    Science.gov (United States)

    Punt, Simone; Fleuren, Gert Jan; Kritikou, Eva; Lubberts, Erik; Trimbos, J Baptist; Jordanova, Ekaterina S; Gorter, Arko

    2015-01-01

    The role of interleukin (IL)-17 in cancer remains controversial. In view of the growing interest in the targeting of IL-17, knowing its cellular sources and clinical implications is crucial. In the present study, we unraveled the phenotype of IL-17 expressing cells in cervical cancer using immunohistochemical double and immunofluorescent triple stainings. In the tumor stroma, IL-17 was found to be predominantly expressed by neutrophils (66%), mast cells (23%), and innate lymphoid cells (8%). Remarkably, T-helper 17 (Th17) cells were a minor IL-17 expressing population (4%). A similar distribution was observed in the tumor epithelium. The Th17 and granulocyte fractions were confirmed in head and neck, ovarian, endometrial, prostate, breast, lung, and colon carcinoma. An above median number of total IL-17 expressing cells was an independent prognostic factor for poor disease-specific survival in early stage disease ( p = 0.016). While a high number of neutrophils showed at trend toward poor survival, the lowest quartile of mast cells correlated with poor survival ( p = 0.011). IL-17 expressing cells and neutrophils were also correlated with the absence of vaso-invasion ( p < 0.01). IL-17 was found to increase cell growth or tightness of cervical cancer cell lines, which may be a mechanism for tumorigenesis in early stage disease. These data suggest that IL-17, primarily expressed by neutrophils, predominantly promotes tumor growth, correlated with poor prognosis in early stage disease. Strikingly, a high number of Th17 cells was an independent prognostic factor for improved survival ( p = 0.026), suggesting Th17 cells are part of a tumor suppressing immune response.

  9. IL-17B Can Impact on Endothelial Cellular Traits Linked to Tumour Angiogenesis

    Directory of Open Access Journals (Sweden)

    Andrew J. Sanders

    2010-01-01

    Full Text Available IL-17B is a member of the IL-17 cytokine family which have been implicated in inflammatory response and autoimmune diseases such as rheumatoid arthritis. The founding member of this family, IL-17 (or IL-17A, has also been implicated in promoting tumour angiogenesis through the induction of other proangiogenic factors. Here we examine the potential of recombinant human IL-17B to contribute to the angiogenic process. In vitro rhIL-17B was able to inhibit HECV endothelial cell-matrix adhesion and cellular migration and also, at higher concentrations, could substantially reduce tubule formation compared to untreated HECV cells in a Matrigel tubule formation assay. This data suggests that IL-17B may act in an antiangiogenic manner.

  10. Pneumocystis-Driven Inducible Bronchus-Associated Lymphoid Tissue Formation Requires Th2 and Th17 Immunity.

    Science.gov (United States)

    Eddens, Taylor; Elsegeiny, Waleed; Garcia-Hernadez, Maria de la Luz; Castillo, Patricia; Trevejo-Nunez, Giraldina; Serody, Katelin; Campfield, Brian T; Khader, Shabaana A; Chen, Kong; Rangel-Moreno, Javier; Kolls, Jay K

    2017-03-28

    Inducible bronchus-associated lymphoid tissue (iBALT) is an ectopic lymphoid structure composed of highly organized T cell and B cell zones that forms in the lung in response to infectious or inflammatory stimuli. Here, we develop a model for fungal-mediated iBALT formation, using infection with Pneumocystis that induces development of pulmonary lymphoid follicles. Pneumocystis-dependent iBALT structure formation and organization required CXCL13 signaling. Cxcl13 expression was regulated by interleukin (IL)-17 family members, as Il17ra -/- , Il17rb -/- , and Il17rc -/- mice failed to develop iBALT. Interestingly, Il17rb -/- mice have intact Th17 responses, but failed to generate an anti-Pneumocystis Th2 response. Given a role for Th2 and Th17 immunity in iBALT formation, we demonstrated that primary pulmonary fibroblasts synergistically upregulated Cxcl13 transcription following dual stimulation with IL-13 and IL-17A in a STAT3/GATA3-dependent manner. Together, these findings uncover a role for Th2/Th17 cells in regulating Cxcl13 expression and provide an experimental model for fungal-driven iBALT formation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    Science.gov (United States)

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  12. CD4(+) T cells producing interleukin (IL)-17, IL-22 and interferon-? are major effector T cells in nickel allergy

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Skov, Lone; Løvendorf, Marianne B

    2013-01-01

    the frequencies of CD4(+) , CD8(+) and γδ T cells producing IL-17, IL-22 and interferon (IFN)-γ in the blood and skin from nickel-allergic patients. Patients/materials/methods Blood samples were collected from 14 patients and 17 controls, and analysed by flow cytometry. Biopsies were taken from 5 patients and 6......-allergic patients, there was massive cellular infiltration dominated by CD4(+) T cells producing IL-17, IL-22 and IFN-γ in nickel-challenged skin but not in vehicle-challenged skin. Conclusion CD4(+) T cells producing IL-17, IL-22 and IFN-γ are important effector cells in the eczematous reactions of nickel......Background It has been suggested that interleukin (IL)-17 and IL-22 play important roles in the elicitation of human allergic contact dermatitis; however, the frequencies of T cell subtypes producing IL-17 and IL-22 in human allergic contact dermatitis are unknown. Objectives To determine...

  13. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    Science.gov (United States)

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments.

    Directory of Open Access Journals (Sweden)

    Cristina Pellegrini

    Full Text Available Several immune-related markers have been implicated in basal cell carcinoma (BCC pathogenesis. The BCC inflammatory infiltrate is dominated by Th2 cytokines, suggesting a specific state of immunosuppression. In contrast, regressing BCC are characterized by a Th1 immune response with IFN-γ promoting a tumor suppressive activity. IL-23/Th17-related cytokines, as interleukin (IL-17, IL-23 and IL-22, play a significant role in cutaneous inflammatory diseases, but their involvement in skin carcinogenesis is controversial and is poorly investigated in BCC. In this study we investigated the expression of IFN-γ, IL-17, IL-23 and IL-22 cytokines in BCC at the protein and mRNA level and their modulation during imiquimod (IMQ treatment or photodynamic therapy (PDT. IFN-γ, IL-17, IL-23 and IL-22 levels were evaluated by immunohistochemistry and quantitative Real Time PCR in 41 histopathologically-proven BCCs (28 superficial and 13 nodular from 39 patients. All BCC samples were analyzed at baseline and 19 of 41 also during medical treatment (9 with IMQ 5% cream and 10 with MAL-PDT. Association between cytokines expression and clinico-pathological variables was evaluated. Higher levels of IFN-γ, IL-17, IL-23 and IL-22 were found in BCCs, mainly in the peritumoral infiltrate, compared to normal skin, with the expression being correlated to the severity of the inflammatory infiltrate. IFN-γ production was higher in superficial BCCs compared to nodular BCCs, while IL-17 was increased in nodular BCCs. A significant correlation was found between IFN-γ and IL-17 expression with both cytokines expressed by CD4+ and CD8+ T-cells. An increase of all cytokines occurred during the inflammatory phase induced by IMQ and at the early time point of PDT treatment, with significant evidence for IFN-γ, IL-23, and IL-22. Our results confirm the role of IFN-γ and support the involvement of IL-23/Th17-related cytokines in BCC pathogenesis and in the inflammatory response

  15. The binding activity of Mel-18 at the Il17a promoter is regulated by the integrated signals of the TCR and polarizing cytokines.

    Science.gov (United States)

    Hod-Dvorai, Reut; Jacob, Eyal; Boyko, Yulia; Avni, Orly

    2011-08-01

    We have previously shown that in differentiated T-helper (Th)1 and Th2 cells, polycomb group (PcG) proteins are associated differentially with the promoters of the signature cytokine genes. The correlation of the binding activity of PcG proteins with gene expression is unusual, since they are well known as epigenetic regulators that maintain transcriptional silencing. Here we show that in Th17 cells, the more phenotypically flexible Th lineage, the PcG proteins Mel-18 and less strikingly Ezh2 are associated differentially with the Il17a promoter. Using the RNAi approach, we found that Mel-18 and Ezh2 positively regulate the expression of Il17a and Il17f. The inducible binding of Mel-18 and Ezh2 at the Il17a promoter was dependent on signaling pathways downstream of the TCR. However, a continuous presence of TGF-β, the cytokine that is necessary to maintain Il17a expression, was required to preserve the binding activity of Mel-18, but not of Ezh2, following restimulation. The binding of Mel-18 at the Il17a promoter was correlated with the recruitment of the lineage-specifying transcription factor RORγt. Altogether, our results suggest that in Th17 cells the TCR and polarizing cytokines synergize to modulate the binding activity of Mel-18 at the Il17a promoter, and consequently to facilitate Il17a expression. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Tang, Y; Bian, Z; Zhao, L; Liu, Y; Liang, S; Wang, Q; Han, X; Peng, Y; Chen, X; Shen, L; Qiu, D; Li, Z; Ma, X

    2011-11-01

    Mechanisms associated with the progression of simple steatosis to non-alcoholic fatty liver disease (NAFLD) remain undefined. Regulatory T cells (T(regs)) play a critical role in regulating inflammatory processes in non-alcoholic steatohepatitis (NASH) and because T helper type 17 (Th17) functionally oppose T(reg)-mediated responses, this study focused on characterizing the role of Th17 cells using a NAFLD mouse model. C57BL/6 mice were fed either a normal diet (ND) or high fat (HF) diet for 8 weeks. Mice in the HF group had a significantly higher frequency of liver Th17 cells compared to ND-fed mice. Neutralization of interleukin (IL)-17 in HF mice ameliorated lipopolysaccharide (LPS)-induced liver injury reflected by decreased serum alanine aminotransferase (ALT) levels and reduced inflammatory cell infiltrates in the liver. In vitro, HepG2 cells cultured in the presence of free fatty acids (FFA; oleic acid and palmitic acid) for 24 h and IL-17 developed steatosis via insulin-signalling pathway interference. IL-17 and FFAs synergized to induce IL-6 production by HepG2 cells and murine primary hepatocytes which, in combination with transforming growth factor (TGF-β), expanded Th17 cells. It is likely that a similar process occurs in NASH patients, as there were significant levels of IL-17(+) cell infiltrates in NASH patient livers. The hepatic expression of Th17 cell-related genes [retinoid-related orphan receptor gamma (ROR)γt, IL-17, IL-21 and IL-23] was also increased significantly in NASH patients compared to healthy controls. Th17 cells and IL-17 were associated with hepatic steatosis and proinflammatory response in NAFLD and facilitated the transition from simple steatosis to steatohepatitis. Strategies designed to alter the balance between Th17 cells and T(regs) should be explored as a means of preventing progression to NASH and advanced liver diseases in NAFLD patients. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for

  17. IL-17A regulates Eimeria tenella schizont maturation and migration in avian coccidiosis

    Science.gov (United States)

    Although IL17A is associated with the immunological control of various infectious diseases, its role in host response to Eimeria infections is not well understood. In an effort to better dissect the role of IL17A in host-pathogen interactions in avian coccidiosis, a neutralizing antibody (Ab) to chi...

  18. Regulation of IL-17 family members by adrenal hormones during experimental sepsis in mice.

    Science.gov (United States)

    Bosmann, Markus; Meta, Fabien; Ruemmler, Robert; Haggadone, Mikel D; Sarma, J Vidya; Zetoune, Firas S; Ward, Peter A

    2013-04-01

    Severe sepsis is a life-threatening disease that causes major morbidity and mortality. Catecholamines and glucocorticoids often have been used for the treatment of sepsis. Several recent studies have suggested a potential role of IL-17 during the development and progression of sepsis in small animal models. In this study, the cross-talk of catecholamines and glucocorticoids with members of the IL-17 family was investigated during sepsis in C57BL/6 mice. The concentrations in plasma of IL-17A, IL-17F, and the IL-17AF heterodimer all were increased greatly in mice after endotoxemia or cecal ligation and puncture as compared with sham mice. Surprisingly, when compared with IL-17A (487 pg/mL), the concentrations of IL-17F (2361 pg/mL) and the heterodimer, IL-17AF (5116 pg/mL), were much higher 12 hours after endotoxemia. After surgical removal of the adrenal glands, mice had much higher mortality after endotoxemia or cecal ligation and puncture. The absence of endogenous adrenal gland hormones (cortical and medullary) was associated with 3- to 10-fold higher concentrations of IL-17A, IL-17F, IL-17AF, and IL-23. The addition of adrenaline, noradrenaline, hydrocortisone, or dexamethasone to lipopolysaccharide-activated peritoneal macrophages dose-dependently suppressed the expression and release of IL-17s. The production of IL-17s required activation of c-Jun-N-terminal kinase, which was antagonized by both catecholamines and glucocorticoids. These data provide novel insights into the molecular mechanisms of immune modulation by catecholamines and glucocorticoids during acute inflammation. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Central Role of IL-23 and IL-17 Producing Eosinophils as Immunomodulatory Effector Cells in Acute Pulmonary Aspergillosis and Allergic Asthma.

    Science.gov (United States)

    Guerra, Evelyn Santos; Lee, Chrono K; Specht, Charles A; Yadav, Bhawna; Huang, Haibin; Akalin, Ali; Huh, Jun R; Mueller, Christian; Levitz, Stuart M

    2017-01-01

    Aspergillus fumigatus causes invasive pulmonary disease in immunocompromised hosts and allergic asthma in atopic individuals. We studied the contribution of lung eosinophils to these fungal diseases. By in vivo intracellular cytokine staining and confocal microscopy, we observed that eosinophils act as local sources of IL-23 and IL-17. Remarkably, mice lacking eosinophils had a >95% reduction in the percentage of lung IL-23p19+ cells as well as markedly reduced IL-23 heterodimer in lung lavage fluid. Eosinophils killed A. fumigatus conidia in vivo. Eosinopenic mice had higher mortality rates, decreased recruitment of inflammatory monocytes, and decreased expansion of lung macrophages after challenge with conidia. All of these functions underscore a potential protective role for eosinophils in acute aspergillosis. Given the postulated role for IL-17 in asthma pathogenesis, we assessed whether eosinophils could act as sources of IL-23 and IL-17 in models where mice were sensitized to either A. fumigatus antigens or ovalbumin (OVA). We found IL-23p19+ IL-17AF+ eosinophils in both allergic models. Moreover, close to 95% of IL-23p19+ cells and >90% of IL-17AF+ cells were identified as eosinophils. These data establish a new paradigm in acute and allergic aspergillosis whereby eosinophils act not only as effector cells but also as immunomodulatory cells driving the IL-23/IL-17 axis and contributing to inflammatory cell recruitment.

  20. Vγ4+ T Cells: A Novel IL-17-Producing γδ T Subsets during the Early Phase of Chlamydial Airway Infection in Mice

    Directory of Open Access Journals (Sweden)

    Li-da Sun

    2018-01-01

    Full Text Available Our previous studies showed that γδ T cells provided immune protection against Chlamydial muridarum (Cm, an obligate intracellular strain of chlamydia trachomatis, lung infection by producing abundant IL-17. In this study, we investigated the proliferation and activation of lung γδ T cell subsets, specifically the IL-17 and IFNγ production by them following Cm lung infection. Our results found that five γδ T cell subsets, Vγ1+ T, Vγ2+ T, Vγ4+ T, Vγ5+ T, and Vγ6+ T, expressed in lungs of naïve mice, while Cm lung infection mainly induced the proliferation and activation of Vγ4+ T cells at day 3 p.i., following Vγ1+ T cells at day 7 p.i. Cytokine detection showed that Cm lung infection induced IFNγ secretion firstly by Vγ4+ T cells at very early stage (day 3 and changed to Vγ1+ T cells at midstage (day 7. Furthermore, Vγ4+ T cell is the main γδ T cell subset that secretes IL-17 at the very early stage of Cm lung infection and Vγ1+ T cell did not secrete IL-17 during the infection. These findings provide in vivo evidence that Vγ4+T cells are the major IL-17 and IFNγ-producing γδ T cell subsets at the early period of Cm lung infection.

  1. The involvement of IL-17A in the murine response to sub-lethal inhalational infection with Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Gal Markel

    2010-06-01

    Full Text Available Francisella tularensis is an intercellular bacterium often causing fatal disease when inhaled. Previous reports have underlined the role of cell-mediated immunity and IFNgamma in the host response to Francisella tularensis infection.Here we provide evidence for the involvement of IL-17A in host defense to inhalational tularemia, using a mouse model of intranasal infection with the Live Vaccine Strain (LVS. We demonstrate the kinetics of IL-17A production in lavage fluids of infected lungs and identify the IL-17A-producing lymphocytes as pulmonary gammadelta and Th17 cells. The peak of IL-17A production appears early during sub-lethal infection, it precedes the peak of immune activation and the nadir of the disease, and then subsides subsequently. Exogenous airway administration of IL-17A or of IL-23 had a limited yet consistent effect of delaying the onset of death from a lethal dose of LVS, implying that IL-17A may be involved in restraining the infection. The protective role for IL-17A was directly demonstrated by in vivo neutralization of IL-17A. Administration of anti IL-17A antibodies concomitantly to a sub-lethal airway infection with 0.1xLD(50 resulted in a fatal disease.In summary, these data characterize the involvement and underline the protective key role of the IL-17A axis in the lungs from inhalational tularemia.

  2. Elevated pleural effusion IL-17 is a diagnostic marker and outcome predictor in lung cancer patients

    Science.gov (United States)

    2014-01-01

    Background Interleukin 17 (IL-17) is a proinflammatory cytokine produced mainly by CD4+ T-lymphocytes and may be important in tumor cell growth and progression. In this study, we aimed to evaluate the diagnostic and prognostic value of pleural effusion levels of IL-17 in lung cancer patients with malignant pleural effusion (MPE). Methods Pleural effusion samples were collected from 78 lung cancer patients with MPE and from 45 patients with nonmalignant pleural effusion. Pleural fluid concentrations of IL-17 were measured by using enzyme-linked immunosorbent assays. Results Malignant effusion exhibited higher IL-17 levels than nonmalignant effusion (20.49 ± 5.27 pg/ml vs. 13.16 ± 2.25 pg/ml; P < 0.01). Lung cancer patients with pleural fluid IL-17 levels below 15 pg/ml had longer overall survival than those patients with higher levels (10.8 months vs. 4.7 months; P < 0.05). On the basis of multivariate analysis, we found that pleural fluid IL-17 level was an independent prognostic factor in lung cancer patients with MPE. Conclusions Measurement of IL-17 levels might be a useful diagnostic and prognostic test for lung cancer patients with MPE. PMID:24887477

  3. Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells.

    Science.gov (United States)

    Kim, A Reum; Ahn, Ki Bum; Kim, Hyun Young; Seo, Ho Seong; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-11-01

    Streptococcus gordonii, a Gram-positive oral bacterium, is a life-threatening pathogen that causes infective endocarditis. It is frequently isolated from the periapical lesions of patients with apical periodontitis and has thus been implicated in inflammatory responses. However, little is known about the virulence factors of S. gordonii responsible for the induction of inflammatory responses in the periapical areas. Here, we investigated the role of S. gordonii cell wall-associated virulence factors on interleukin (IL)-8 induction in human periodontal ligament (PDL) cells using ethanol-inactivated wild-type S. gordonii, a lipoteichoic acid (LTA)-deficient mutant (ΔltaS), and a lipoprotein-deficient mutant (Δlgt). Wild-type S. gordonii induced IL-8 expression at both the protein and mRNA levels in human PDL cells in a dose- and time-dependent manner. A transient transfection and reporter gene assay demonstrated that wild-type S. gordonii activated Toll-like receptor 2 (TLR2). Additionally, IL-8 production induced by wild-type S. gordonii was substantially inhibited by anti-TLR2-neutralizing antibodies. Both wild-type S. gordonii and the ΔltaS mutant induced IL-8 production; however, this response was not observed when cells were stimulated with the Δlgt mutant. Interestingly, lipoproteins purified from S. gordonii induced IL-8 production, whereas purified LTA did not. In addition, purified lipoproteins stimulated TLR2 more potently than LTA. Furthermore, S. gordonii-induced IL-8 expression was specifically inhibited by blocking p38 kinase, while lipoprotein-induced IL-8 expression was inhibited by blocking p38 kinase, ERK, or JNK. Of particular note, exogenous addition of purified S. gordonii lipoproteins enhanced Δlgt-induced IL-8 production in human PDL cells to an extent similar to that induced by the wild-type strain. Collectively, these results suggest that lipoproteins are an important component of S. gordonii for the induction of IL-8 production in human

  4. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis.

    Science.gov (United States)

    Conti, Heather R; Bruno, Vincent M; Childs, Erin E; Daugherty, Sean; Hunter, Joseph P; Mengesha, Bemnet G; Saevig, Danielle L; Hendricks, Matthew R; Coleman, Bianca M; Brane, Lucas; Solis, Norma; Cruz, J Agustin; Verma, Akash H; Garg, Abhishek V; Hise, Amy G; Richardson, Jonathan P; Naglik, Julian R; Filler, Scott G; Kolls, Jay K; Sinha, Satrajit; Gaffen, Sarah L

    2016-11-09

    Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17ra ΔK13 ). Following oral Candida infection, Il17ra ΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra -/- mice. Susceptibility in Il17ra ΔK13 mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3 -/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Moutia, Mouna; Seghrouchni, Fouad; Abouelazz, Omar; Elouaddari, Anass; Al Jahid, Abdellah; Elhou, Abdelhalim; Nadifi, Sellama; Jamal Eddine, Jamal; Habti, Norddine; Badou, Abdallah

    2016-09-29

    Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

  6. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Science.gov (United States)

    Lowe, Margaret M; Mold, Jeff E; Kanwar, Bittoo; Huang, Yong; Louie, Alexander; Pollastri, Michael P; Wang, Cuihua; Patel, Gautam; Franks, Diana G; Schlezinger, Jennifer; Sherr, David H; Silverstone, Allen E; Hahn, Mark E; McCune, Joseph M

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  7. Characterization of αβ and γδ T cell subsets expressing IL-17A in ruminants and swine.

    Science.gov (United States)

    Elnaggar, Mahmoud M; Abdellrazeq, Gaber S; Dassanayake, Rohana P; Fry, Lindsay M; Hulubei, Victoria; Davis, William C

    2018-08-01

    As part of our ongoing program to expand immunological reagents available for research in cattle, we developed a monoclonal antibody (mAb) to bovine interleukin-17A (IL-17A), a multifunctional cytokine centrally involved in regulating innate and adaptive immune responses. Initial comparative studies demonstrated the mAb recognizes a conserved epitope expressed on orthologues of IL-17A in sheep, goats and pigs. Comparative flow cytometric analyses of lymphocyte subsets stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin revealed differences in expression of IL-17A by CD4, CD8, and γδ T cells across ruminants and swine species. Results in cattle showed the largest proportion of IL-17A + cells were CD4 + followed by γδ and CD8 + T cells. Further analysis revealed the IL-17A + γδ T cell subset was comprised of WC1.1 + , WC1.2 + , and WC1 - subsets. Analysis of the IL-17A + CD8 + T cell subset revealed it was comprised of αβ and γδ T cell subsets. Results in sheep and goats revealed IL-17A is expressed mainly by CD4 + and CD8 + T cells, with little expression by γδ T cells. Analysis of IL-17A + CD8 + T cells showed the majority were CD8 + αβ in sheep, whereas they were CD8 + γδ in goats. The majority of the sheep and goat IL-17A + γδ T cells were WC1 + . Results obtained in swine showed expression of IL-17A by CD4, CD8, and γδ T cell subsets were similar to results reported in other studies. Comparison of expression of IL-17A with IFN-γ revealed subsets co-expressed IL-17A and IFN-γ in cattle, sheep, and goats. The new mAb expands opportunities for immunology research in ruminants and swine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Naturally-occurring estradiol-17β-fatty acid esters, but not estradiol-17β, preferentially induce mammary tumorigenesis in female rats: Implications for an important role in human breast cancer

    International Nuclear Information System (INIS)

    Mills, Laura H.; Yu Jina; Xu Xiaomeng; Lee, Anthony J.; Zhu Baoting

    2008-01-01

    Because mammary glands are surrounded by adipose tissues, we hypothesize that the ultra-lipophilic endogenous estrogen-17β-fatty acid esters may have preferential hormonal and carcinogenic effects in mammary tissues compared to other target organs (such as the uterus and pituitary). This hypothesis is tested in the present study. We found that all 46 rats implanted with an estradiol-17β pellet developed large pituitary tumors (average weight = 251 ±103 mg) and had to be terminated early, but only 48% of them developed mammary tumors. In addition, approximately one-fourth of them developed a huge uterus. In the 26 animals implanted with a mixture containing estradiol-17β-stearate and estradiol-17β-palmitate (two representative estradiol-17β-fatty acid esters) or in the 29 animals implanted with estradiol-17β-stearate alone (in the same molar dose as estradiol-17β), 73% and 79%, respectively, of them developed mammary tumors, whereas only 3 or 2 animals, respectively, had to be terminated early due to the presence of a large pituitary tumor. Both tumorous and normal mammary tissues contained much higher levels of estrogen esterase than other tissues, which catalyzes the releases of bioactive estrogens from their fatty acid esters. In conclusion, while estradiol-17β is much stronger in inducing pituitary tumor (100% incidence) than mammary tumor, estradiol-17β-fatty acid esters have a higher efficacy than estradiol-17β in inducing mammary tumor and yet it only has little ability to induce uterine out-growth and pituitary tumorigenesis. This study establishes the endogenous estrogen-17β-fatty acid esters as preferential inducers of mammary tumorigenesis

  9. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  10. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer

    NARCIS (Netherlands)

    S. Punt (Simone); G.J. Fleuren (G.); E. Kritikou (Eva); E.W. Lubberts (Erik); J.B. Trimbos; E.S. Jordanova (Ekaterina S.); A. Gorter (Arko)

    2015-01-01

    textabstractThe role of interleukin (IL)-17 in cancer remains controversial. In view of the growing interest in the targeting of IL-17, knowing its cellular sources and clinical implications is crucial. In the present study, we unraveled the phenotype of IL-17 expressing cells in cervical cancer

  11. Antibacterial properties of the mammalian L-amino acid oxidase IL4I1.

    Directory of Open Access Journals (Sweden)

    Marie-Line Puiffe

    Full Text Available L-amino acid oxidases (LAAO are flavoproteins that catalyze the oxidative deamination of L-amino acids to a keto-acid along with the production of H₂O₂ and ammonia. Interleukin 4 induced gene 1 (IL4I1 is a secreted LAAO expressed by macrophages and dendritic cells stimulated by microbial derived products or interferons, which is endowed with immunoregulatory properties. It is the first LAAO described in mammalian innate immune cells. In this work, we show that this enzyme blocks the in vitro and in vivo growth of Gram negative and Gram positive bacteria. This antibiotic effect is primarily mediated by H₂O₂ production but is amplified by basification of the medium due to the accumulation of ammonia. The depletion of phenylalanine (the primary amino acid catabolized by IL4I1 may also participate in the in vivo inhibition of staphylococci growth. Thus, IL4I1 plays a distinct role compared to other antibacterial enzymes produced by mononuclear phagocytes.

  12. IL-17A promotes the migration and invasiveness of cervical cancer cells by coordinately activating MMPs expression via the p38/NF-κB signal pathway.

    Directory of Open Access Journals (Sweden)

    Minjuan Feng

    Full Text Available IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs and tissue inhibitor of metalloproteinases (TIMPs were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB signal pathway was detected too.Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.

  13. Molecular Cloning, Expression, and In Silico Structural Analysis of Guinea Pig IL-17

    OpenAIRE

    Dirisala, Vijaya R.; Jeevan, Amminikutty; Ramasamy, Suresh K.; McMurray, David N.

    2013-01-01

    Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete ...

  14. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  15. IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids.

    Science.gov (United States)

    Muredda, Laura; Kępczyńska, Małgorzata A; Zaibi, Mohamed S; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-01

    Regulation of the expression of GPCR fatty acid receptor genes has been examined in human adipocytes differentiated in culture. TNFα and IL-1β induced a marked reduction in GPR120 expression, mRNA level falling 17-fold at 24 h in adipocytes incubated with TNFα. In contrast, GPR84 mRNA was dramatically increased by these cytokines (>500-fold for IL-1β at 4 h); GPR41 expression was also stimulated. Rosiglitazone did not affect GPR84 expression, but GPR120 and GPR41 expression increased. Dexamethasone, insulin, linoleic and docosahexaenoic acids (DHA), and TUG891 (GPR120 agonist) had little effect on GPR120 and GPR84 expression. TUG891 did not attenuate the pro-inflammatory actions of TNFα and IL-1β. DHA slightly countered the actions of IL-1β on CCL2, IL6 and ADIPOQ expression, though not on secretion of these adipokines. GPR120 and GP84 gene expression in human adipocytes is highly sensitive to pro-inflammatory mediators; the inflammation-induced inhibition of GPR120 expression may compromise the anti-inflammatory action of GPR120 agonists.

  16. Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production.

    Directory of Open Access Journals (Sweden)

    Margaret M Lowe

    Full Text Available The aryl hydrocarbon receptor (AHR binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17 and IL-22 versus regulatory T cells (Treg involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1 tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2 many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA, is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.

  17. IL-17 and γδ T-lymphocytes play a critical role in innate immunity against Nocardia asteroides GUH-2

    Science.gov (United States)

    Tam, Stanley; Maksaereekul, Saipiroon; Hyde, Dallas M.; Godinez, Ivan; Beaman, Blaine L.

    2012-01-01

    The early host response during pulmonary nocardiosis is highly dependent on neutrophils and the successful clearance of bacteria in tissue. The data presented in this study showed that IL-17 mediated the neutrophil response following intranasal inoculation with Nocardia asteroides strain GUH-2. Flow cytometry revealed that neutrophil levels in C57BL/6 mice were increased by day 1 post inoculation and remained elevated until day 3, during which time the majority of bacterial clearance occurred. Intracellular cytokine staining for IL-17 showed a 3.5- to 5-fold increase in IL-17 producing T-lymphocytes that were predominately comprised by CD4−CD8− γδ T-lymphocytes. The importance of IL-17 and γδ T-cells was determined by the in vivo administration of antibody, capable of blocking IL-17 binding or TCR δ, respectively. Neutralization of either IL-17 or γδ T-cells in Nocardia treated mice resulted in attenuated neutrophil infiltration. Paralleling this impaired neutrophil recruitment, nearly a 10-fold increase in bacterial burden was observed in both anti-IL-17 and anti-TCR δ treated animals. Together, these data indicate a protective role for IL-17 and suggest that IL-17 producing γδ T-lymphocytes contribute to neutrophil infiltration during pulmonary nocardiosis. PMID:22634423

  18. HSP90 inhibitors potentiate PGF2α-induced IL-6 synthesis via p38 MAP kinase in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujita

    Full Text Available Heat shock protein 90 (HSP90 that is ubiquitously expressed in various tissues, is recognized to be a major molecular chaperone. We have previously reported that prostaglandin F2α (PGF2α, a potent bone remodeling mediator, stimulates the synthesis of interleukin-6 (IL-6 through p44/p42 mitogen-activated protein (MAP kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that Rho-kinase acts at a point upstream of p38 MAP kinase. In the present study, we investigated the involvement of HSP90 in the PGF2α-stimulated IL-6 synthesis and the underlying mechanism in MC3T3-E1 cells. Geldanamycin, an inhibitor of HSP90, significantly amplified both the PGF2α-stimulated IL-6 release and the mRNA expression levels. In addition, other HSP90 inhibitors, 17-allylamino-17demethoxy-geldanamycin (17-AAG and 17-dimethylamino-ethylamino-17-demethoxy-geldanamycin (17-DMAG and onalespib, enhanced the PGF2α-stimulated IL-6 release. Geldanamycin, 17-AAG and onalespib markedly strengthened the PGF2α-induced phosphorylation of p38 MAP kinase. Geldanamycin and 17-AAG did not affect the PGF2α-induced phosphorylation of p44/p42 MAP kinase and myosin phosphatase targeting subunit (MYPT-1, a substrate of Rho-kinase, and the protein levels of RhoA and Rho-kinase. In addition, HSP90-siRNA enhanced the PGF2α-induced phosphorylation of p38 MAP kinase. Furthermore, SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by geldanamycin, 17-AAG or 17-DMAG of the PGF2α-stimulated IL-6 release. Our results strongly suggest that HSP90 negatively regulates the PGF2α-stimulated IL-6 synthesis in osteoblasts, and that the effect of HSP90 is exerted through regulating p38 MAP kinase activation.

  19. Expression of TNF, IL-17A, IL-4 and IL-10 cytokines in irradiated peripheral blood mononuclear cells 'In vitro'

    International Nuclear Information System (INIS)

    Amaral, Ademir de Jesus; Leite, Lidía Lúcia Bezerra; Nascimento, Ayala Gomes do; Diniz, Ewerton Clementino; Silva, Gicielne Freitas da; Fernandes, Thiago de Salazar e; Silva, Edvane Borges da; Cavalcanti, Mariana Brayner; Veras, Robson Cavalcante; Medeiros, Isac Almeida de

    2017-01-01

    The aim of the present study was to determine and to compare the profile of cytokines produced by non-irradiated and irradiated peripheral blood mononuclear cells (PBMCs) and the possible application of this analysis as a biomarker of individual radiosensitivity. For this, peripheral blood (PB) samples were collected from seven healthy volunteers, and each sample divided in two aliquots: one aliquot was irradiated with a dose of 2 Gy (from a 6MV Linear Accelerator) and while the other one was kept non irradiated. All PBMCs were cultured in RPMI 1640 supplemented with 10% Bovine Fetal Serum for 48 hours at 37°C and 5% CO2. The cytokines TNF, IL-17A, IL-4 and IL-10 were measured by flow cytometry. Wilcoxon test was performed with the level of significance of 95%. In the irradiated samples it was observed a slight increase of the median of the level of cytokines TNF, IL-4 and IL-10 (from 1040.9 to 1196.1 pg/mL, from 127.3 to 138 pg/mL, and from 99.9 to 120.8 pg/mL, respectively) and a slight decrease in median of cytokines IL- 17A (from 841.1 to 799.4 pg/mL). In addition to this evidence, there was a high inter-individual variability of cytokine concentrations in response to irradiation. It was observed that some individuals are more responsive to the expression of some inflammatory proteins after exposure to X-rays. Although further studies are necessary, the hypothesis that raises is that these biomarkers could be predictor of future individual responses to ionizing radiation exposure. (author)

  20. IL-1 signal affects both protection and pathogenesis of virus-induced chronic CNS demyelinating disease

    Directory of Open Access Journals (Sweden)

    Kim Byung S

    2012-09-01

    Full Text Available Abstract Background Theiler’s virus infection induces chronic demyelinating disease in mice and has been investigated as an infectious model for multiple sclerosis (MS. IL-1 plays an important role in the pathogenesis of both the autoimmune disease model (EAE and this viral model for MS. However, IL-1 is known to play an important protective role against certain viral infections. Therefore, it is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease. Methods Female C57BL/6 mice and B6.129S7-Il1r1tm1Imx/J mice (IL-1R KO were infected with Theiler’s murine encephalomyelitis virus (1 x 106 PFU. Differences in the development of demyelinating disease and changes in the histopathology were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry. Results Administration of IL-1β, thereby rending resistant B6 mice susceptible to TMEV-induced demyelinating disease, induced a high level of Th17 response. Interestingly, infection of TMEV into IL-1R-deficient resistant C57BL/6 (B6 mice also induced TMEV-induced demyelinating disease. High viral persistence was found in the late stage of viral infection in IL-1R-deficient mice, although there were few differences in the initial anti-viral immune responses and viral persistent levels between the WT B6 and IL-1R-deficiecent mice. The initial type I IFN responses and the expression of PDL-1 and Tim-3 were higher in the CNS of TMEV-infected IL-1R-deficient mice, leading to deficiencies in T cell function that permit viral persistence. Conclusions These results suggest that the presence of high IL-1 level exerts the pathogenic role by elevating pathogenic Th17 responses, whereas the lack of IL-1 signals promotes viral persistence in the spinal cord due to insufficient T cell activation by elevating the production of

  1. Salivary Levels of IL-6 and IL-17 Could Be an Indicator of Disease Severity in Patients with Calculus Associated Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Husniah Batool

    2018-01-01

    Full Text Available Background/Purpose. Chronic periodontitis is an inflammatory disease of gums that causes loss of supporting structures of teeth, that is, gingiva, periodontal ligament, cementum, and alveolar bone. Levels of various cytokines in the serum, gingival tissues, and gingival crevicular fluid in patients with chronic periodontitis have been studied, but limited data are available on the level of cytokines in saliva. Therefore, a study was designed to determine levels of salivary IL-6 and IL-17 in patients with calculus associated chronic periodontitis. Materials and Methods. It was a comparative, cross-sectional study that is comprised of 41 healthy controls and 41 calculus associated chronic periodontitis patients (CP patients. According to the degree of attachment loss, CP patients were subcategorized as mild (CAL 1-2 mm, moderate (CAL 3-4 mm, and severe (CAL > 5 mm forms of periodontitis. Salivary levels of IL-6 and IL-17 were determined using enzyme-linked immunosorbent assay (ELISA technique. Data was analyzed using SPSS 20.0. Results. Between healthy controls and CP patients (moderate and severe disease, a statistically significant difference was observed in the concentrations of IL-6 and IL-17. In CP patients, the highest mean ± SD of salivary IL-6 and IL-17 was observed in severe CP, followed by moderate and mild CP. Regarding level of IL-6, a statistically significant difference was observed between mild and severe disease and between moderate and severe subcategories of CP patients. Similarly, statistically significant difference was observed in the level of IL-17 between mild and moderate, mild and severe disease, and moderate and severe disease. Conclusion. The levels of salivary IL-6 and IL-17 were increased significantly in calculus associated CP patients as compared to healthy controls and these levels increased with the progression of CP. Clinical Significance. Salivary levels of IL-6 and IL-17 may help in the subcategorization

  2. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.

    Science.gov (United States)

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho

    2016-04-04

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.

  3. Interleukin 13– and interleukin 17A–induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution

    Science.gov (United States)

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M.; Reibman, Joan

    2014-01-01

    Abstract Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response–induced pulmonary hypertension. PMID:25610601

  4. IL-17 in psoriasis: Implications for therapy and cardiovascular co-morbidities

    Science.gov (United States)

    Golden, Jackelyn B.; McCormick, Thomas S.; Ward, Nicole L.

    2013-01-01

    Psoriasis is a prevalent, chronic inflammatory disease of the skin mediated by cross-talk occurring between epidermal keratinocytes, dermal vascular cells and immunocytes, including activated antigen presenting cells (APCs), monocytes/macrophages, and Th1 and Th17 cells. Increased proliferation of keratinocytes and endothelial cells in conjunction with immune cell infiltration leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Interaction of activated T cells with monocytes/macrophages occurs via the Th17/IL-23 axis and is crucial for maintaining the chronic inflammation. Recent epidemiological evidence has demonstrated that psoriasis patients have an increased risk of developing and dying of cardiovascular disease. Similar pathology between psoriasis and cardiovascular disease, including involvement of key immunologic cell populations together with release of common inflammatory mediators such as IL-17A suggest a mechanistic link between the two diseases. This review will focus on concepts critical to psoriasis pathogenesis, systemic manifestations of psoriasis, the role of IL-17 in psoriasis and cardiovascular disease and the potential role for IL-17 in mediating cardiovascular co-morbidities in psoriasis patients. PMID:23562549

  5. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Klein Michael L

    2011-07-01

    Full Text Available Abstract Background Age related macular degeneration (AMD is the leading cause of irreversible blindness in elderly populations worldwide. Inflammation, among many factors, has been suggested to play an important role in AMD pathogenesis. Recent studies have demonstrated a strong genetic association between AMD and complement factor H (CFH, the down-regulatory factor of complement activation. Elevated levels of complement activating molecules including complement component 5a (C5a have been found in the serum of AMD patients. Our aim is to study whether C5a can impact human T cells and its implication in AMD. Methods Human peripheral blood mononuclear cells (PBMCs were isolated from the blood of exudative form of AMD patients using a Ficoll gradient centrifugation protocol. Intracellular staining and enzyme-linked immunosorbent assays were used to measure protein expression. Apoptotic cells were detected by staining of cells with the annexin-V and TUNEL technology and analyzed by a FACS Caliber flow cytometer. SNP genotyping was analyzed by TaqMan genotyping assay using the Real-time PCR system 7500. Results We show that C5a promotes interleukin (IL-22 and IL-17 expression by human CD4+ T cells. This effect is dependent on B7, IL-1β and IL-6 expression from monocytes. We have also found that C5a could protect human CD4+ cells from undergoing apoptosis. Importantly, consistent with a role of C5a in promoting IL-22 and IL-17 expression, significant elevation in IL-22 and IL-17 levels was found in AMD patients as compared to non-AMD controls. Conclusions Our results support the notion that C5a may be one of the factors contributing to the elevated serum IL-22 and IL-17 levels in AMD patients. The possible involvement of IL-22 and IL-17 in the inflammation that contributes to AMD may herald a new approach to treat AMD.

  6. Expression of TNF, IL-17A, IL-4 and IL-10 cytokines in irradiated peripheral blood mononuclear cells 'In vitro'; Expressão das citocinas TNF, IL-17A, IL-4 e IL-10 em células mononucleares do sangue periférico irradiadas 'in vitro'

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Ademir de Jesus; Leite, Lidía Lúcia Bezerra; Nascimento, Ayala Gomes do; Diniz, Ewerton Clementino; Silva, Gicielne Freitas da; Fernandes, Thiago de Salazar e; Silva, Edvane Borges da; Cavalcanti, Mariana Brayner, E-mail: maribrayner@yahoo.com.br [Universidade Federal de Pernambuco (GERAR/DEN/UFPE), Recife, PE (Brazil). Grupo de Estudos em Radioproteção e Radioecologia; Dantas, Samuel César [Instituto de Medicina Integrada Prof. Antônio Figueira (IMIP), PE (Brazil); Veras, Robson Cavalcante; Medeiros, Isac Almeida de [Universidade Federal da Paraiba (DCF/UFPB), PB (Brazil). Departamento de Ciências Farmacêuticas

    2017-07-01

    The aim of the present study was to determine and to compare the profile of cytokines produced by non-irradiated and irradiated peripheral blood mononuclear cells (PBMCs) and the possible application of this analysis as a biomarker of individual radiosensitivity. For this, peripheral blood (PB) samples were collected from seven healthy volunteers, and each sample divided in two aliquots: one aliquot was irradiated with a dose of 2 Gy (from a 6MV Linear Accelerator) and while the other one was kept non irradiated. All PBMCs were cultured in RPMI 1640 supplemented with 10% Bovine Fetal Serum for 48 hours at 37°C and 5% CO2. The cytokines TNF, IL-17A, IL-4 and IL-10 were measured by flow cytometry. Wilcoxon test was performed with the level of significance of 95%. In the irradiated samples it was observed a slight increase of the median of the level of cytokines TNF, IL-4 and IL-10 (from 1040.9 to 1196.1 pg/mL, from 127.3 to 138 pg/mL, and from 99.9 to 120.8 pg/mL, respectively) and a slight decrease in median of cytokines IL- 17A (from 841.1 to 799.4 pg/mL). In addition to this evidence, there was a high inter-individual variability of cytokine concentrations in response to irradiation. It was observed that some individuals are more responsive to the expression of some inflammatory proteins after exposure to X-rays. Although further studies are necessary, the hypothesis that raises is that these biomarkers could be predictor of future individual responses to ionizing radiation exposure. (author)

  7. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy

    NARCIS (Netherlands)

    Roeleveld, D.M.; Koenders, M.I.

    2015-01-01

    Over the past few years, the importance of Interleukin (IL)-17 and T helper (Th)17 cells in the pathology of Rheumatoid Arthritis (RA) has become apparent. RA is a systemic autoimmune disease that affects up to 1% of the population worldwide. It is characterized by an inflamed, hyperplastic synovium

  8. [Changes of CD(4)(+)Foxp3(+) regulatory T cells and CD(4)(+)IL-17(+)T cells in cigarette smoke-exposed rats].

    Science.gov (United States)

    Meng, Jing-jing; Zhong, Xiao-ning; Bai, Jing; He, Zhi-yi; Zhang, Jian-quan; Huang, Qiu-pin

    2012-01-01

    To evaluate the changes of CD(4)(+)IL-17(+) T (Th17) and CD(4)(+)Foxp3(+) regulatory T (Treg) cells in peripheral blood and bronchoalveolar lavage fluid (BALF), and therefore to explore the role of Th17 and Treg in cigarette smoke-induced airway inflammation/COPD in rats. Forty male Wistar rats were randomly divided into 4 groups: a 12 wk smoke-exposure group, a 24 wk smoke-exposure group, a 12 wk control group and a 24 wk control group (n = 10 each). Cells in BALF were collected and analyzed by absolute and differential cell counts. IL-17 and IL-6 levels in serum and BALF were tested by enzyme linked immunosorbent assay (ELISA). The proportion of CD(4)(+)IL-17(+) T and CD(4)(+)Foxp3(+) Treg in peripheral blood and BALF were determined by flow cytometry. The mRNA expressions of IL-17 and Foxp3 were measured by real-time PCR. Comparisons of the data between different groups were performed using one-way ANOVA, and SNK and Games-Howell test were used for comparison between 2 groups. Levels of IL-17 were remarkable increased in the 12 wk smoke-exposure group and the 24 wk smoke-exposure group in serum [(52.6 ± 1.8) ng/L, (75.4 ± 6.0) ng/L] and BALF [(78.1 ± 5.8) ng/L, (95.0 ± 6.8) ng/L] compared with the 12 wk control group [(40.0 ± 3.2)ng/L, (54.5 ± 4.6) ng/L] and the 24 wk control group [(36.7 ± 3.2) ng/L, (53.9 ± 3.7) ng/L], all P cells and macrophages (r = 0.512, 0.543, all P cells and an increase of inflammatory cytokines were evident in airway inflammation of cigarette smoke-exposed rats, suggesting that Treg was involved in the immunological regulation and Th17 was associated with the persistent inflammation in cigarette smoke-induced airway inflammation in rats.

  9. CD5 costimulation induces stable Th17 development by promoting IL-23R expression and sustained STAT3 activation

    NARCIS (Netherlands)

    de Wit, Jelle; Souwer, Yuri; van Beelen, Astrid J.; de Groot, Rosa; Muller, Femke J. M.; Klaasse Bos, Hanny; Jorritsma, Tineke; Kapsenberg, Martien L.; de Jong, Esther C.; van Ham, S. Marieke

    2011-01-01

    IL-17-producing CD4(+) T helper (Th17) cells are important for immunity against extracellular pathogens and in autoimmune diseases. The factors that drive Th17 development in human remain a matter of debate. Here we show that, compared with classic CD28 costimulation, alternative costimulation via

  10. No meaningful association between suicidal behavior and the use of IL-17A-neutralizing or IL-17RA-blocking agents.

    Science.gov (United States)

    Chiricozzi, Andrea; Romanelli, Marco; Saraceno, Rosita; Torres, Tiago

    2016-12-01

    An emerging class of agents blocking IL-17 signaling represents a very promising therapeutic approach. One of these agents, brodalumab, has been associated with an increased risk of suicide behavior. Areas covered: This review sought to provide an overview strictly focused on suicide behavior signals related to the use of IL-17 agents. Data collection regarding this peculiar safety aspect was primarily based on: (i) a revision of safety outcomes belonging to phase II and phase III trials; (ii) a systematic search using the Pubmed Medline database; and (iii) collecting recent data issued as posters or communications in eminent international meetings. Expert opinion: Whilst secukinumab and ixekizumab were not associated with increased signal of suicidal behavior, being recently approved for the treatment of psoriasis by EMA and FDA, brodalumab raised concern because of suicide behavior cases that led to pause momentarily its development program during pre-marketing stage before obtaining the positive recommendation by an FDA advisory panel for its approval. Indeed, a careful re-evaluation of brodalumab safety profile is being performed and no evidence clarified a significant association or a pathogenic mechanism linking brodalumab treatment to the risk of suicidal behavior, suggesting that cases of suicidal behavior accidentally occurred during brodalumab trials.

  11. Inactive Gingipains from P. gingivalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner

    Directory of Open Access Journals (Sweden)

    Jan Potempa

    2017-04-01

    Full Text Available Gingipain cysteine proteases are considered key virulence factors of Porphyromonas gingivalis. They significantly influence antibacterial and homeostatic functions of macrophages, neutrophils, the complement system, and cytokine networks. Recent data indicate the role of P. gingivalis in T cell differentiation; however, the involvement of gingipains in this process remains elusive. Therefore, the aim of this study was to investigate the contribution of danger signals triggered by the gingipains on the generation of Th17 cells, which play a key role in protection against bacterial diseases but may cause chronic inflammation and bone resorption. To this end we compared the effects of the wild-type strain of P. gingivalis (W83 with its isogenic mutant devoid of gingipain activity (ΔKΔRAB, and bacterial cells pretreated with a highly-specific inhibitor of gingipains activity (KYTs. Antigen presenting cells (APCs, both professional (dendritic cells, and non-professional (gingival keratinocytes, exposed to viable bacteria expressed high amounts of cytokines (IL-6, IL-21, IL-23. These cytokines are reported to either stimulate or balance the Th17-dependent immune response. Surprisingly, cells infected with P. gingivalis devoid of gingipain activity showed increased levels of all tested cytokines compared to bacteria with fully active enzymes. The effect was dependent on both the reduction of cytokine proteolysis and the lack of cross-talk with other bacterial virulence factors, including LPS and fimbriae that induce de novo synthesis of cytokines. The profile of lymphocyte T differentiation from naive T cells showed enhanced generation of Th17 in response to bacteria with inactive gingipains. Moreover, we found that gingipain-dependent induction of Th17 cells was highly specific, since other T cell-subsets remained unchanged. Finally, inhibition of IL-6 signaling in dendritic cells led to a significant depletion of the Th17 population. Cumulatively

  12. Inactive Gingipains from P. gingivalis Selectively Skews T Cells toward a Th17 Phenotype in an IL-6 Dependent Manner.

    Science.gov (United States)

    Glowczyk, Izabela; Wong, Alicia; Potempa, Barbara; Babyak, Olena; Lech, Maciej; Lamont, Richard J; Potempa, Jan; Koziel, Joanna

    2017-01-01

    Gingipain cysteine proteases are considered key virulence factors of Porphyromonas gingivalis . They significantly influence antibacterial and homeostatic functions of macrophages, neutrophils, the complement system, and cytokine networks. Recent data indicate the role of P. gingivalis in T cell differentiation; however, the involvement of gingipains in this process remains elusive. Therefore, the aim of this study was to investigate the contribution of danger signals triggered by the gingipains on the generation of Th17 cells, which play a key role in protection against bacterial diseases but may cause chronic inflammation and bone resorption. To this end we compared the effects of the wild-type strain of P. gingivalis (W83) with its isogenic mutant devoid of gingipain activity (ΔKΔRAB), and bacterial cells pretreated with a highly-specific inhibitor of gingipains activity (KYTs). Antigen presenting cells (APCs), both professional (dendritic cells), and non-professional (gingival keratinocytes), exposed to viable bacteria expressed high amounts of cytokines (IL-6, IL-21, IL-23). These cytokines are reported to either stimulate or balance the Th17-dependent immune response. Surprisingly, cells infected with P. gingivalis devoid of gingipain activity showed increased levels of all tested cytokines compared to bacteria with fully active enzymes. The effect was dependent on both the reduction of cytokine proteolysis and the lack of cross-talk with other bacterial virulence factors, including LPS and fimbriae that induce de novo synthesis of cytokines. The profile of lymphocyte T differentiation from naive T cells showed enhanced generation of Th17 in response to bacteria with inactive gingipains. Moreover, we found that gingipain-dependent induction of Th17 cells was highly specific, since other T cell-subsets remained unchanged. Finally, inhibition of IL-6 signaling in dendritic cells led to a significant depletion of the Th17 population. Cumulatively, this study

  13. Elevated Serum IL-17 Expression at Cessation Associated with Graves’ Disease Relapse

    Directory of Open Access Journals (Sweden)

    Jianhui Li

    2018-01-01

    Full Text Available Background. Antithyroid drug (ATD treatment occupies the cornerstone therapeutic modality of Graves’ disease (GD with a high relapse rate after discontinuation. This study aimed to assess potential risk factors for GD relapse especially serum interleukin-17 (IL-17 expression. Methods. Consecutive newly diagnosed GD patients who were scheduled to undergo ATD therapy from May 2011 to May 2014 were prospectively enrolled. Risk factors for GD relapse were analyzed by univariate and multivariate Cox proportional hazard analyses. The association between serum IL-17 expression at cessation and GD relapse was analyzed with relapse-free survival (RFS by the Kaplan–Meier survival analysis and log-rank test. Results. Of the 117 patients, 72 (61.5% maintained a remission for 12 months after ATD withdrawal and 45 (38.5% demonstrated GD relapse. The final multivariate Cox analysis indicated elevated IL-17 expression at cessation to be an independent risk factor for GD relapse within 12 months after ATD withdrawal (HR: 3.04, 95% CI: 1.14–7.67, p=0.021. Patients with higher expressions of IL-17 (≥median value at cessation demonstrated a significantly higher RFS than those with lower levels by the Kaplan–Meier analysis and log-rank test (p=0.028. Conclusions. This present study indicated elevated serum IL-17 expression at cessation to be a predictor for GD relapse within 12 months.

  14. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia.

    Science.gov (United States)

    Dann, Sara M; Manthey, Carolin F; Le, Christine; Miyamoto, Yukiko; Gima, Lauren; Abrahim, Andrew; Cao, Anthony T; Hanson, Elaine M; Kolls, Jay K; Raz, Eyal; Cong, Yingzi; Eckmann, Lars

    2015-09-01

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide. It colonizes the lumen and epithelial surface of the small intestine, but does not invade the mucosa. Acute infection causes only minimal mucosal inflammation. Effective immune defenses exist, yet their identity and mechanisms remain incompletely understood. Interleukin (IL)-17A has emerged as an important cytokine involved in inflammation and antimicrobial defense against bacterial pathogens at mucosal surfaces. In this study, we demonstrate that IL-17A has a crucial function in host defense against Giardia infection. Using murine infection models with G. muris and G. lamblia, we observed marked and selective induction of intestinal IL-17A with peak expression after 2 weeks. Th17 cells in the lamina propria and innate immune cells in the epithelial compartment of the small intestine were responsible for the IL-17A response. Experiments in gene-targeted mice revealed that the cytokine, and its cognate receptor IL-17RA, were required for eradication of the parasite. The actions of the cytokine were mediated by hematopoietic cells, and were required for the transport of IgA into the intestinal lumen, since IL-17A deficiency led to marked reduction of fecal IgA levels, as well as for increased intestinal expression of several other potential effectors, including β-defensin 1 and resistin-like molecule β. In contrast, intestinal hypermotility, another major antigiardial defense mechanism, was not impacted by IL-17A loss. Taken together, these findings demonstrate that IL-17A and IL-17 receptor signaling are essential for intestinal defense against the important lumen-dwelling intestinal parasite Giardia. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Influence of IL1B, IL6 and IL10 gene variants and plasma fatty acid interaction on metabolic syndrome risk in a cross-sectional population-based study.

    Science.gov (United States)

    Maintinguer Norde, Marina; Oki, Erica; Ferreira Carioca, Antonio Augusto; Teixeira Damasceno, Nágila Raquel; Fisberg, Regina Mara; Lobo Marchioni, Dirce Maria; Rogero, Marcelo Macedo

    2018-04-01

    Metabolic syndrome (MetS) is a cluster of interrelated risk factors for type 2 diabetes mellitus, and cardiovascular disease, with underlying inflammatory pathophysiology. Genetic variations and diet are well-known risk factor for MetS, but the interaction between these two factors is less explored. The aim of the study was to evaluate the influence of interaction between SNP of inflammatory genes (encoding interleukin (IL)-6, IL-1β and IL-10) and plasma fatty acids on the odds of MetS, in a population-based cross-sectional study. Among participants of the Health Survey - São Paulo, 301 adults (19-59 y) from whom a blood sample was collected were included. Individuals with and without MetS were compared according to their plasma inflammatory biomarkers, fatty acid profile, and genotype frequency of the IL1B (rs16944, rs1143623, rs1143627, rs1143634 and rs1143643), IL6 (rs1800795, rs1800796 and rs1800797) and IL10 (rs1554286, rs1800871, rs1800872, rs1800890 and rs3024490) genes SNP. The influence of gene-fatty acids interaction on MetS risk was investigated. IL6 gene SNP rs1800795 G allele was associated with higher odds for MetS (OR = 1.88; p = 0.017). Gene-fatty acid interaction was found between the IL1B gene SNP rs116944 and stearic acid (p inter = 0.043), and between rs1143634 and EPA (p inter = 0.017). For the IL10 gene SNP rs1800896, an interaction was found for arachidonic acid (p inter = 0.007) and estimated D5D activity (p inter = 0.019). The IL6 gene SNP rs1800795 G allele is associated with increased odds for MetS. Plasma fatty acid profile interacts with the IL1B and IL10 gene variants to modulate the odds for MetS. This and other interactions of risk factors can account for the unexplained heritability of MetS, and their elucidation can lead to new strategies for genome-customized prevention of MetS. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. The IL-17 and Th17 cell immune response in cervical cancer : angels or demons : it depends on the context

    NARCIS (Netherlands)

    Punt, Birgitte Simone

    2015-01-01

    This thesis provides novel insights into the role of IL-17 and Th17 cells in cervical cancer. While IL-17 was shown to be predominantly produced by innate myeloid cells such as neutrophils and correlated with poor survival, Th17 cells were generally a small cell population correlated with improved

  17. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells.

    Science.gov (United States)

    Zhao, Jinming; Minami, Yoshinori; Etling, Emily; Coleman, John M; Lauder, Sarah N; Tyrrell, Victoria; Aldrovandi, Maceler; O'Donnell, Valerie; Claesson, Hans-Erik; Kagan, Valerian; Wenzel, Sally

    2017-12-01

    Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.

  18. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  19. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    International Nuclear Information System (INIS)

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro

    2015-01-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8

  20. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    Science.gov (United States)

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  1. Vγ4+γδT Cells Aggravate Severe H1N1 Influenza Virus Infection-Induced Acute Pulmonary Immunopathological Injury via Secreting Interleukin-17A

    Directory of Open Access Journals (Sweden)

    Chunxue Xue

    2017-08-01

    Full Text Available The influenza A (H1N1 pdm09 virus remains a critical global health concern and causes high levels of morbidity and mortality. Severe acute lung injury (ALI and acute respiratory distress syndrome (ARDS are the major outcomes among severely infected patients. Our previous study found that interleukin (IL-17A production by humans or mice infected with influenza A (H1N1 pdm09 substantially contributes to ALI and subsequent morbidity and mortality. However, the cell types responsible for IL-17A production during the early stage of severe influenza A (H1N1 pdm09 infection remained unknown. In this study, a mouse model of severe influenza A (H1N1 pdm09 infection was established. Our results show that, in the lungs of infected mice, the percentage of γδT cells, but not the percentages of CD4+Th and CD8+Tc cells, gradually increased and peaked at 3 days post-infection (dpi. Further analysis revealed that the Vγ4+γδT subset, but not the Vγ1+γδT subset, was significantly increased among the γδT cells. At 3 dpi, the virus induced significant increases in IL-17A in the bronchoalveolar lavage fluid (BALF and serum. IL-17A was predominantly secreted by γδT cells (especially the Vγ4+γδT subset, but not CD4+Th and CD8+Tc cells at the early stage of infection, and IL-1β and/or IL-23 were sufficient to induce IL-17A production by γδT cells. In addition to secreting IL-17A, γδT cells secreted interferon (IFN-γ and expressed both an activation-associated molecule, natural killer group 2, member D (NKG2D, and an apoptosis-associated molecule, FasL. Depletion of γδT cells or the Vγ4+γδT subset significantly rescued the virus-induced weight loss and improved the survival rate by decreasing IL-17A secretion and reducing immunopathological injury. This study demonstrated that, by secreting IL-17A, lung Vγ4+γδT cells, at least, in part mediated influenza A (H1N1 pdm09-induced immunopathological injury. This mechanism might serve as a

  2. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes1

    Science.gov (United States)

    Duhen, Thomas; Campbell, Daniel J

    2014-01-01

    In humans, Th1/17 cells, identified by co-expression of the chemokine receptors CCR6 and CXCR3, have been proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the pro-inflammatory cytokines IL-17, IFN-γ and GM-CSF. However, their developmental requirements, relationship with “classic” Th17 and Th1 cells and physiological role in normal immune responses are not well understood. Here, we examined CCR6+CXCR3+ Th1/17 cells from healthy individuals, and found that ex vivo those cells produced the effector cytokines IL-17, IL-22 and IFN-γ in all possible combinations, and were highly responsive to both IL-12 and IL-23. Moreover, although the antigen specificity of CCR6+CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into “pathogenic” CCR6+CXCR3+ Th1/17 cells in patients with autoimmune diseases. PMID:24890729

  3. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A

    Directory of Open Access Journals (Sweden)

    Liu L

    2016-04-01

    Full Text Available Ling Liu,1 Jirong Lu,1 Barrett W Allan,2 Ying Tang,2 Jonathan Tetreault,1 Chi-kin Chow,1 Barbra Barmettler,2 James Nelson,2 Holly Bina,1 Lihua Huang,3 Victor J Wroblewski,4 Kristine Kikly1 1Biotechnology Discovery Research, Indianapolis, IN, 2Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, 3Bioproduct Research and Development, 4Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Abstract: Interleukin (IL-17A exists as a homodimer (A/A or as a heterodimer (A/F with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC. IL-17A stimulates the release of cytokines and chemokines designed to recruit and activate both neutrophils and memory T-cells to the site of injury or inflammation and maintain a proinflammatory state. IL-17A-producing pathogenic T-cells contribute to the pathogenesis of autoimmune diseases, including psoriasis, psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis. This study describes the generation and characterization of ixekizumab, a humanized IgG4 variant IL-17A-neutralizing antibody. Ixekizumab binds human and cynomolgus monkey IL-17A with high affinity and binds rabbit IL-17A weakly but does not bind to rodent IL-17A or other IL-17 family members. Ixekizumab effectively inhibits the interaction between IL-17A and its receptor in binding assays and potently blocks IL-17A-induced GRO or KC secretion in cell-based assays. In an in vivo mouse pharmcodynamic model, ixekizumab blocks human IL-17A-induced mouse KC secretion. These data provide a comprehensive preclinical characterization of ixekizumab, for which the efficacy and safety have been demonstrated in human clinical trials in psoriasis and psoriatic arthritis.Keywords: ixekizumab, IL-17A monoclonal antibody

  4. IL-34 Upregulated Th17 Production through Increased IL-6 Expression by Rheumatoid Fibroblast-Like Synoviocytes

    OpenAIRE

    Wang, Bing; Ma, Zijian; Wang, Miaomiao; Sun, Xiaotong; Tang, Yawei; Li, Ming; Zhang, Yan; Li, Fang; Li, Xia

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease which is characterized by synovial inflammation and cartilage damage for which causes articular dysfunction. Activation of fibroblast-like synoviocytes (FLS) is a critical step that promotes disease progression. In this study, we aimed to explore the effect of interleukin-34 (IL-34) on RA FLS as a proinflammatory factor and IL-34-stimulated FLS on the production of Th17. We found that serum IL-34 levels were increased compared to those...

  5. Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4+ T Cells (Th17 Cells in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Janette Furuzawa-Carballeda

    2012-01-01

    Full Text Available Previous studies showed that polymerized-type I collagen (polymerized collagen exhibits potent immunoregulatory properties. This work evaluated the effect of intramuscular administration of polymerized collagen in early and established collagen-induced arthritis (CIA in mice and analyzed changes in Th subsets following therapy. Incidence of CIA was of 100% in mice challenged with type II collagen. Clinimorphometric analysis showed a downregulation of inflammation after administration of all treatments (P<0.05. Histological analysis showed that the CIA-mice group had extensive bone erosion, pannus and severe focal inflammatory infiltrates. In contrast, there was a remarkable reduction in the severity of arthritis in mice under polymerized collagen, methotrexate or methotrexate/polymerized collagen treatment. Polymerized Collagen but not methotrexate induced tissue joint regeneration. Polymerized Collagen and methotrexate/polymerized collagen but not methotrexate alone induces downregulation of CD4+/IL17A+ T cells and upregulation of Tregs and CD4+/IFN-γ+ T cells. Thus, Polymerized Collagen could be an effective therapeutic agent in early and established rheumatoid arthritis by exerting downregulation of autoimmune inflammation.

  6. The modulatory role of cytokines IL-4 and IL-17 in the functional activity of phagocytes in diabetic pregnant women.

    Science.gov (United States)

    Fagundes, Danny L G; França, Eduardo L; Gonzatti, Michelangelo B; Rugde, Marilza V C; Calderon, Iracema M P; Honorio-França, Adenilda C

    2018-01-01

    The study investigated the role of cytokines IL-4 and IL-17 in the modulation of the functional activity of mononuclear phagocytes in diabetic pregnant women with hyperglycemia. Sixty pregnant women were assigned to the following groups: nondiabetic (ND), mild gestational hyperglycemia (MGH), gestational diabetes mellitus (GDM), or type 2 diabetes mellitus (DM2). The functional activity of phagocytes from maternal blood, cord blood, and colostrum was assessed by determining their superoxide release, phagocytosis, microbicidal activity, and intracellular Ca 2+ release. Irrespective of glycemic status, colostrum and blood cells treated with IL-4 and IL-17 increased superoxide release in the presence of enteropathogenic Escherichia coli (EPEC). The highest phagocytosis rate was observed in cells from the DM2 group treated with IL-4. In all the groups, phagocytes from colostrum, maternal blood, and cord blood exhibited higher microbicidal activity against EPEC when treated with cytokines. IL-17 increased intracellular Ca 2+ release by colostrum phagocytes in diabetic groups. The results indicate that the IL-4 and IL-17 modulate the functional activity of phagocytes in the maternal blood, cord blood, and colostrum of diabetic mother. The natural immunity resulting from the interaction between the cells and cytokines tested may be an alternative procedure to improve the prognosis of maternal and newborn infections. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  7. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  8. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins.

    Science.gov (United States)

    Nolin, James D; Tully, Jane E; Hoffman, Sidra M; Guala, Amy S; van der Velden, Jos L; Poynter, Matthew E; van der Vliet, Albert; Anathy, Vikas; Janssen-Heininger, Yvonne M W

    2014-08-01

    Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A. Copyright © 2014 Elsevier Inc

  9. Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease

    Science.gov (United States)

    Kong, Su-Kang; Soo Kim, Byung; Gi Uhm, Tae; Soo Chang, Hun; Sook Park, Jong; Woo Park, Sung; Park, Choon-Sik; Chung, Il Yup

    2016-01-01

    Aspirin hypersensitivity is a hallmark of aspirin-exacerbated respiratory disease (AERD), a clinical syndrome characterized by the severe inflammation of the respiratory tract after ingestion of cyclooxygenase-1 inhibitors. We investigated the capacity of aspirin to induce interleukin-4 (IL-4) production in inflammatory cells relevant to AERD pathogenesis and examined the associated biochemical and molecular pathways. We also compared IL-4 production in peripheral blood mononuclear cells (PBMCs) from patients with AERD vs aspirin-tolerant asthma (ATA) upon exposure to aspirin. Aspirin induced IL-4 expression and activated the IL-4 promoter in a report assay. The capacity of aspirin to induce IL-4 expression correlated with its activity to activate mitogen-activated protein kinases, to form DNA–protein complexes on P elements in the IL-4 promoter and to synthesize nuclear factor of activated T cells, critical transcription factors for IL-4 transcription. Of clinical importance, aspirin upregulated IL-4 production twice as much in PBMCs from patients with AERD compared with PBMCs from patients with ATA. Our results suggest that IL-4 is an inflammatory component mediating intolerance reactions to aspirin, and thus is crucial for AERD pathogenesis. PMID:27534531

  10. The immune imbalance in the second hit of pancreatitis is independent of IL-17A.

    Science.gov (United States)

    Thomson, John-Edwin; Brand, Martin; Fonteh, Pascaline

    2018-04-01

    Severe acute pancreatitis (SAP) is characterised by two distinct clinical phases. Organ dysfunction and death is initially as a result of a systemic inflammatory response syndrome (SIRS). Systemic sepsis from infected pancreatic necrosis characterises the second phase, the so called 'second hit' of acute pancreatitis (AP). An immune imbalance during the second hit is postulated to contribute to the formation of the septic complications that occur in these patients. The pro-inflammatory T-helper (Th) 17 pathway has been shown to be an initiator of early SIRS in AP, however to date its role has not been established in the second hit in AP. Thirty-six patients with mild (n = 16), moderate (n = 10) and severe (n = 10) acute pancreatitis were enrolled. Peripheral blood samples were drawn on days 7, 9, 11 and 13 of illness for analysis of routine clinical markers as well as cytokine analysis. Flow cytometry and a IL-17A ELISA was performed to determine cytokine concentrations. There were no significant differences between days 7, 9, 11 and 13 for either the mild/moderate or SAP groups for IL-17A (CBA assay or ELISA), IFN-γ, TNF-α, IL-2 or IL-4. For each of the study days, the mean IL-6 and IL-10 concentrations were significantly higher in the SAP group compared to the mild/moderate group. WCC, CRP and PCT were all significantly higher in severe acute pancreatitis over the study days. An immune imbalance exists in patients with SAP, however secreted IL-17A is not responsible for the second hit in AP. Copyright © 2018 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  11. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  12. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis.

    Science.gov (United States)

    Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib

    2017-10-01

    IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Increased IL-17 and 22 mRNA expression in pediatric patients with otitis media with effusion.

    Science.gov (United States)

    Kwon, Oh Eun; Park, Sang Hyun; Kim, Sung Su; Shim, Haeng Seon; Kim, Min Gyeong; Kim, Young Il; Kim, Sang Hoon; Yeo, Seung Geun

    2016-11-01

    Middle ear effusion has been reported to be associated with immune responses in patients with otitis media with effusion (OME). Although various cytokines are involved in immunologic responses in patients with OME, no study to date has assessed the involvement of the pro-inflammatory cytokines interleukin (IL)-17 and IL-22. This study analyzed the levels of expression of IL-17 and IL-22 in the middle ear effusion of patients with OME. Patients aged Effusion fluid samples were obtained during surgery and levels of IL-17 and IL-22 mRNAs assessed by real-time PCR. IL-17 and IL-22 mRNA levels were compared in patients with effusion fluid positive and negative for bacteria; in patients with and without accompanying diseases, recurrent disease, and re-operation; and relative to fluid characteristics. The study cohort included 70 pediatric patients, 46 boys and 24 girls, of mean age 4.31 ± 2.11 years. The levels of IL-17 and IL-22 mRNA were higher in patients with than without sinusitis, but only IL-22 mRNA levels differed significantly (p < 0.05). The level of IL-17 mRNA was significantly higher in patients who did than did not undergo T&A (p < 0.05). The level of IL-22 expression was significantly higher in mucoid and purulent middle ear fluid samples than in serous fluid samples (p < 0.05). IL-17 and IL-22 mRNAs are involved in the pathophysiology of OME and are significantly higher in subjects with than without accompanying diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Serum IL-10, IL-17 and IL-23 levels as "bioumoral bridges" between dyslipidemia and atopy.

    Science.gov (United States)

    Manti, S; Leonardi, S; Panasiti, I; Arrigo, T; Salpietro, C; Cuppari, C

    2017-11-01

    Although several studies suggest a possible link between dyslipidemia and atopy, literature findings are still unclear. The aim of the study was to investigate the relationship between dyslipidemia and atopy in a pediatric population affected by dyslipidemia or dyslipidemia/atopic predisposition. Children with dyslipidemia, dyslipidemia and atopy as well as healthy children were recruited. Serum total IgE, IL-10, IL-17, and IL-23 levels as well as fasting lipid values (total cholesterol, LDL, HDL and triglycerides) were performed on all enrolled children. The present study evaluated 23 patients affected by dyslipidemia, 26 patients affected by atopy and dyslipidemia and, 22healthy children. Serum total IgE levels significantly related also with serum cholesterol levels: positively with total cholesterol (pdyslipidemia than patients with dyslipidemia (pdyslipidemia than patients with dyslipidemia (pdyslipidemia and atopic predisposition share the same immune pathways as well as they offer new insights in the complex crosstalk between hyperlipidemia and atopy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of IL-12RB1, IL-12B, CXCR-3 and IL-17a expression in cases affected by a non-healing form of cutaneous leishmaniasis: an observational study design.

    Science.gov (United States)

    Moafi, Mohammad; Rezvan, Hossein; Sherkat, Roya; Taleban, Roya; Asilian, Ali; Zarkesh Esfahani, Seyed Hamid; Nilforoushzadeh, Mohammad Ali; Jaffary, Fariba; Feizi, Awat

    2017-01-27

    Seldom cutaneous leishmaniasis (CL) may present as a lasting and active lesion(s), known as a non-healing form of CL (NHCL). Non-functional type 1 T helper (Th1) cells are assumed the most important factor in the outcome of the disease. The present study aims to assess some molecular defects that potentially contribute to Th1 impairment in NHCL. This prospective observational study will be implemented among five groups. The first and second groups comprise patients afflicted with non-healing and healing forms of CL, respectively. The third group consists of those recovered participants who have scars as a result of CL. Those participants who have never lived or travelled to endemic areas of leishmaniasis will comprise the fourth group. The fifth group comprises participants living in hyperendemic areas for leishmaniasis, although none of them have been afflicted by CL. The aim is to recruit 10 NHCL cases and 30 participants in each of the other groups. A leishmanin skin test (LST) will be performed to assess in vivo immunity against the Leishmania infection. The cytokine profile (interleukin (IL)-12p70, interferon (IFN)-γ, C-X-C motif chemokine ligand (CXCL)-11 and IL-17a) of the isolated peripheral blood mononuclear cells (PBMCs) will be evaluated through ELISA. Real-time PCR will determine the C-X-C motif chemokine receptor (CXCR)-3 and IL-17a gene expression and expression of IL-12Rβ1 will be assessed by flow cytometry. Furthermore, IL-12B and IL-12RB1 mutation analysis will be performed. It is anticipated that the outcome of the current study will identify IL-12B and IL-12RB1 mutations, which lead to persistent lesions of CL. Furthermore, our expected results will reveal an association between NHCL and pro-inflammatory cytokines (IL-12p70, IFN-γ IL-17a and CXCL-11), as well as CXCR-3 expression. This study has been approved by a local ethical committee. The final results will be disseminated through peer-reviewed journals and scientific conferences

  16. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.

    Science.gov (United States)

    Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min

    2017-08-25

    Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Ung, Trong Thuan; Khoi, Pham Ngoc; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2016-01-01

    Carbon monoxide (CO), a byproduct of heme oxygenase (HO), presents antioxidant, anti-inflammatory, and anti-tumor properties. Accumulating evidence supports that interleukin (IL)-8 contribute to the vascularity of human gastric cancer. However, the inhibition of IL-8 expression by CO is yet to be elucidated. Here, we utilized CO releasing molecule-2 (CORM-2) to investigate the effect of CO on IL-1β-induced IL-8 expression and the underlying molecular mechanisms in human gastric cancer AGS cells. CORM-2 dose-dependently suppressed IL-1β-induced IL-8 mRNA and protein expression as well as IL-8 promoter activity. IL-1β induced the translocation of p47 phox to activate reactive oxygen species (ROS)-producing NADPH oxidase (NOX). Moreover, IL-1β activated MAPKs (Erk1/2, JNK1/2, and p38 MAPK) and promoted nuclear factor (NF)-kB and activator protein (AP)-1 binding activities. Pharmacological inhibition and mutagenesis studies indicated that NOX, ROS, Erk1/2, and p38 MAPK are involved in IL-1β-induced IL-8 expression. Transient transfection of deletion mutant constructs of the IL-8 promoter in cells suggested that NF-kB and AP-1 are critical for IL-1β-induced IL-8 transcription. NOX-derived ROS and MAPKs (Erk1/2 and p38 MAPK) functioned as upstream activators of NF-κB and AP-1, respectively. CORM-2 pretreatment significantly mitigated IL-1β-induced activation of ROS/NF-kB and Erk1/2/AP-1 cascades, blocking IL-8 expression and thus significantly reducing endothelial cell proliferation in the tumor microenvironment.

  18. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils.

    Science.gov (United States)

    Fu, Chia-Hsiang; Tsai, Wan-Chun; Lee, Ta-Jen; Huang, Chi-Che; Chang, Po-Hung; Su Pang, Jong-Hwei

    2016-01-01

    IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.

  19. Th17-cells in atopic dermatitis stimulate orthodontic root resorption.

    Science.gov (United States)

    Yamada, K; Yamaguchi, M; Asano, M; Fujita, S; Kobayashi, R; Kasai, K

    2013-10-01

    The aim of this study was to investigate how atopic dermatitis (AD) contributes to root resorption during orthodontic tooth movement. Atopic dermatitis model mice and wild-type mice were subjected to an excessive orthodontic force (OF) to induce movement of the upper first molars. The expression levels of the tartrate-resistant acid phosphatase (TRAP), IL-17, IL-6, and RANKL proteins were determined in the periodontal ligament (PDL) by an immunohistochemical analysis. Furthermore, the effects of the compression force on co-cultures of CD4(+) cells from AD patients or healthy individuals and human PDL cells were investigated with regard to the levels of secretion and mRNA expression of IL-17, IL-6, RANKL, and osteoprotegerin. The immunoreactivities for TRAP, IL-17, IL-6, and RANKL in the AD group were found to be significantly increased. The double immunofluorescence analysis for IL-17/CD4 detected immunoreaction. The secretion of IL-17, IL-6, and RANKL, and the mRNA levels of IL-6 and RANKL in the AD patients were increased compared with those in healthy individuals. Th17 cells may therefore be associated with the deterioration of root resorption of AD mice, and may explain why AD patients are more susceptible to root resorption than healthy individuals when an excessive OF is applied. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis.

    Science.gov (United States)

    Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L; Ahmed, Mushtaq; Bambouskova, Monika; Gopal, Radha; Gondi, Suhas; Muñoz-Torrico, Marcela; Salazar-Lezama, Miguel A; Cruz-Lagunas, Alfredo; Jiménez-Álvarez, Luis; Ramirez-Martinez, Gustavo; Espinosa-Soto, Ramón; Sultana, Tamanna; Lyons-Weiler, James; Reinhart, Todd A; Arcos, Jesus; de la Luz Garcia-Hernandez, Maria; Mastrangelo, Michael A; Al-Hammadi, Noor; Townsend, Reid; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B; Kaplan, Gilla; Horne, William; Kolls, Jay K; Artyomov, Maxim N; Rangel-Moreno, Javier; Zúñiga, Joaquín; Khader, Shabaana A

    2017-10-05

    Mycobacterium tuberculosis (Mtb) is a global health threat, compounded by the emergence of drug-resistant strains. A hallmark of pulmonary tuberculosis (TB) is the formation of hypoxic necrotic granulomas, which upon disintegration, release infectious Mtb. Furthermore, hypoxic necrotic granulomas are associated with increased disease severity and provide a niche for drug-resistant Mtb. However, the host immune responses that promote the development of hypoxic TB granulomas are not well described. Using a necrotic Mtb mouse model, we show that loss of Mtb virulence factors, such as phenolic glycolipids, decreases the production of the proinflammatory cytokine IL-17 (also referred to as IL-17A). IL-17 production negatively regulates the development of hypoxic TB granulomas by limiting the expression of the transcription factor hypoxia-inducible factor 1α (HIF1α). In human TB patients, HIF1α mRNA expression is increased. Through genotyping and association analyses in human samples, we identified a link between the single nucleotide polymorphism rs2275913 in the IL-17 promoter (-197G/G), which is associated with decreased IL-17 production upon stimulation with Mtb cell wall. Together, our data highlight a potentially novel role for IL-17 in limiting the development of hypoxic necrotic granulomas and reducing disease severity in TB.

  1. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.

    Science.gov (United States)

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J; Siebenlist, Ulrich; Chan, Yvonne R; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.

  2. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia

    NARCIS (Netherlands)

    Paerewijck, O. (Oonagh); Maertens, B. (Brecht); L. Dreesen (Leentje); Van Meulder, F. (Frederik); Peelaers, I. (Iris); Ratman, D. (Dariusz); Li, R.W. (Robert W.); E.W. Lubberts (Erik); K. De Bosscher; P. Geldhof (Peter)

    2017-01-01

    textabstractThe protozoan parasite Giardia is a highly prevalent intestinal pathogen with a wide host range. Data obtained in mice, cattle and humans revealed the importance of IL-17A in the development of a protective immune response against Giardia. The aim of this study was to further unravel the

  3. Correlation between serum IL-17A level and SALT score in patients with alopecia areata before and after NB-UVB therapy.

    Science.gov (United States)

    Morsy, Hanan; Maher, Reham; Negm, Dalia

    2018-06-01

    There is strong evidence that alopecia areata is of immunological background; Interleukin-17 (IL-17) is a Th17 pro-inflammatory cytokine that has been allied to the pathogenesis of different autoimmune and inflammatory diseases. This study aimed to measure serum IL-17A in patients with alopecia areata, and to study associations between IL-17A levels and disease severity before and after Narrowband-Ultraviolet B (NB-UVB), patient gender and age. Twenty patients with AA of the scalp were treated with (NB-UVB), and 15 healthy subjects' age and sex matched were enrolled as controls. Patients were assessed clinically by SALT score. Assay of serum levels of IL-17A by ELISA was done in patients and controls. The mean level of IL-17A was (15.63 Â ± 10.89 Pg/mL) in AA patient group, and (16.50 Â ± 5.02 Pg/mL) in control group. No statistically significant correlation was detected between SALT score and IL-17A level before (NB-UVB) treatment while a significant negative correlation between SALT score and IL-17A level was observed after treatment (r = -.448, P = .047). Mean SALT score for patients was (14.03 Â ± 13.48), and correlated positively with age (r = .446, P = .049). Although (NB-UVB) is an immune-modulatory type of treatment for alopecia areata of mild efficacy especially if it's used alone, it has shown significant decrease in serum IL-17A level among patients, and correlation to disease severity. © 2018 Wiley Periodicals, Inc.

  4. Hypomethylation of IL17RC Promoter Associates with Age-related Macular Degeneration

    Science.gov (United States)

    Wei, Lai; Liu, Baoying; Tuo, Jingsheng; Shen, Defen; Chen, Ping; Li, Zhiyu; Liu, Xunxian; Ni, Jia; Dagur, Pradeep; Sen, H. Nida; Jawad, Shayma; Ling, Diamond; Park, Stanley; Chakrabarty, Sagarika; Meyerle, Catherine; Agron, Elvira; Ferris, Frederick L.; Chew, Emily Y.; McCoy, J. Philip; Blum, Emily; Francis, Peter J.; Klein, Michael L.; Guymer, Robyn H.; Baird, Paul N.; Chan, Chi-Chao; Nussenblatt, Robert B.

    2012-01-01

    SUMMARY Age related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population worldwide. While recent studies have demonstrated strong genetic associations of single nucleotide polymorphisms within a number of genes and AMD, other modes of regulation are also likely to play a role in its etiology. We identified a significantly decreased level of methylation on the IL17RC promoter in AMD patients. Further, we showed that hypomethylation of the IL17RC promoter in AMD patients led to an elevated expression of its protein and mRNA in peripheral blood as well as in the affected retina and choroid, suggesting that the DNA methylation pattern and expression of IL17RC may potentially serve as a biomarker for the diagnosis of AMD and likely plays a role in disease pathogenesis. PMID:23177625

  5. Interleukin-17 retinotoxicity is prevented by gene transfer of a soluble interleukin-17 receptor acting as a cytokine blocker: implications for age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Daniel Ardeljan

    Full Text Available Age-related macular degeneration (AMD is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.

  6. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects

    Science.gov (United States)

    Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi

    2006-01-01

    Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037

  7. Molecular cloning and characterization of duck interleukin-17

    Science.gov (United States)

    Interleukin-17 (IL-17) belonging to the Th17 family is a proinflammatory cytokine produced by activated T cells. A 1034-bp cDNA encoding duck IL-17 (duIL-17) was cloned from ConA-activated splenic lymphocytes of ducks. The encoded protein, predicted to consisted of 169 amino acids, displayed a molec...

  8. [Changes of CD(4)(+) Foxp3+ regulatory T cells and CD(4)(+)IL-17+T cells in acrolein exposure rats].

    Science.gov (United States)

    Wei, Ming; Tu, Ling; Liang, Yinghong; Li, Jia; Gong, Yanjie; Zhang, Yihua; Yang, Lu

    2015-09-01

    To evaluate the changes of CD(4)(+) IL-17+T (Th17) and CD(4)(+)Foxp3+regulatory T (Treg) cells in peripheral blood and bronchoalveolar lavage fluid (BALF) , and therefore to explore the role of Th17 and Treg in acrolein exposure airway inflammation in rats. Forty male Wistar rats were randomly divided into 4 groups: a 2 wk acrolein exposure group, a 4 wk acrolein exposure group, a 2 wk control group and a 4 wk control group (n=10 each). Cells in BALF were collected and analyzed by absolute and differential cell counts.IL-17 and IL-6 levels in serum and BALF were tested by enzyme linked immunosorbent assay (ELISA). The proportion of CD(4)(+)IL-17+T and CD(4)(+) Foxp3+Treg in peripheral blood and BALF were determined by flow cytometry.The mRNA expressions of IL-17 and Foxp3 were measured by real-time PCR. Comparisons of the data between different groups were performed using one-way ANOVA, and SNK and Games-Howell test were used for comparison between 2 groups. Levels of IL-17 were remarkable increased in the 2 wk acrolein exposure group and the 4 wk acrolein exposure group in serum [(52.64 ± 1.89) ng/L, (76.73 ± 5.57) ng/L], and BALF [(79.07 ± 5.67) ng/L, (96.61 ± 6.44) ng/L] compared with the 2 wk control group [(40.05 ± 3.12) ng/L, (56.75 ± 4.37) ng/L] and the 4 wk control group [(38.75 ± 3.23) ng/L, (53.27 ± 4.48) ng/L], all Pcells and macrophages (r=0.5126, 0.5437, all Pcells and an vary of inflammatory cytokines were evident in airway inflammation of acrolein exposed rats, suggesting that Treg was involved in the immunological regulation and Th17 was associated with the persistent inflammation in acrolein induced airway inflammation in rats.

  9. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva

    Science.gov (United States)

    Buckley, Katherine M; Ho, Eric Chun Hei; Hibino, Taku; Schrankel, Catherine S; Schuh, Nicholas W; Wang, Guizhi; Rast, Jonathan P

    2017-01-01

    IL17 cytokines are central mediators of mammalian immunity. In vertebrates, these factors derive from diverse cellular sources. Sea urchins share a molecular heritage with chordates that includes the IL17 system. Here, we characterize the role of epithelial expression of IL17 in the larval gut-associated immune response. The purple sea urchin genome encodes 10 IL17 subfamilies (35 genes) and 2 IL17 receptors. Most of these subfamilies are conserved throughout echinoderms. Two IL17 subfamilies are sequentially strongly upregulated and attenuated in the gut epithelium in response to bacterial disturbance. IL17R1 signal perturbation results in reduced expression of several response genes including an IL17 subtype, indicating a potential feedback. A third IL17 subfamily is activated in adult immune cells indicating that expression in immune cells and epithelia is divided among families. The larva provides a tractable model to investigate the regulation and consequences of gut epithelial IL17 expression across the organism. DOI: http://dx.doi.org/10.7554/eLife.23481.001 PMID:28447937

  10. IL22/IL-22R pathway induces cell survival in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Hussein Akil

    Full Text Available Interleukin-22 (IL-22 is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1 and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM. Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.

  11. The Treg/Th17 axis: A dynamic balance regulated by the gut microbiome

    Directory of Open Access Journals (Sweden)

    Sara eOmenetti

    2015-12-01

    Full Text Available T-helper 17 (Th17 and T-regulatory (Treg cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fate of antigen-naïve T-cells to either Th17 or Treg lineages is finely regulated by key mediators, including TGFβ, IL-6 and all-trans retinoic acid (RA. Importantly, the intestinal microbiome also provides immunostimulatory signals, which can activate innate, and downstream adaptive, immune responses. Specific components of the gut microbiome have been implicated in the production of proinflammatory cytokines by innate immune cells, such as IL-6, IL-23, IL-1β, and the subsequent generation and expansion of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of intestinal Tregs that can actively induce mucosal tolerance. As such, dysbiosis of the gut microbiome may not solely represent a consequence of gut inflammation, but rather shape the Treg/Th17 commitment and influence susceptibility to inflammatory bowel disease (IBD. In this review, we discuss Treg and Th17 cell plasticity, its dynamic regulation by the microbiome, and highlight its impact on intestinal homeostasis and disease.

  12. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion.

    Science.gov (United States)

    Li, X; Zhou, Q; Yang, W B; Xiong, X Z; Du, R H; Zhang, J C

    2013-05-01

    IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions.

  13. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling.

    Science.gov (United States)

    Chang, Mei-Chi; Chan, Chiu-Po; Chen, Yi-Jane; Hsien, Hsiang-Chi; Chang, Ya-Ching; Yeung, Sin-Yuet; Jeng, Po-Yuan; Cheng, Ru-Hsiu; Hahn, Liang-Jiunn; Jeng, Jiiang-Huei

    2016-03-29

    Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.

  14. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo.

    Directory of Open Access Journals (Sweden)

    Shuwang Ge

    Full Text Available Interleukin (IL-17A signaling via Interleukin 17 receptor A (Il17ra contributes to the inflammatory host response by inducing recruitment of innate immune cells, but also plays a role in homeostatic neutrophilic granulocyte regulation. Monocytes, the other main innate immune cell, have a longer life span and can pursue multiple differentiation pathways towards tissue macrophages. Monocytes are divided into two subpopulations by expression of the Ly6C/Gr1 surface marker in mice. We here investigated the role of Il17ra in monocyte homeostasis and macrophage generation. In Il17ra(-/- and in mixed bone marrow chimeric wt/Il17ra(-/- mice, the concentrations of circulating Il17ra(-/- Gr1(low monocytes were significantly decreased compared to wt cells. Pulmonary, splenic and resident peritoneal Il17ra(-/- macrophages were significantly fewer than of wt origin. Bone marrow progenitor and monocyte numbers were equal, but the proportion of Il17ra(-/- Gr1(low monocytes was already decreased at bone marrow level. After monocyte depletion, initial Gr1(high and Gr1(low monocyte regeneration of Il17ra(-/- and wt cells was very similar. However, Il17ra(-/- Gr1(low counts were not sustained. After labeling with either fluorescent beads or BrdU, Il17ra(-/- Gr1(high monocyte transition to Gr1(low cells was not detectable unlike wt cells. Monocyte recruitment in acute peritonitis, which is known to be largely due to Gr1(high cell migration, was unaffected in an identical environment. Unilateral ureteral obstruction induces a less acute inflammatory and fibrotic kidney injury. Compared to wt cells in the same environment, Il17ra(-/- macrophage accumulation in the kidney was decreased. In the absence of Il17ra on all myeloid cells, renal fibrosis was significantly attenuated. Our data show that Il17ra modulates Gr1(low monocyte counts and suggest defective Gr1(high to Gr1(low monocyte transition as an underlying mechanism. Lack of Il17ra altered homeostatic tissue

  15. Expression of IL-17A concentration and effector functions of peripheral blood neutrophils in food allergy hypersensitivity patients.

    Science.gov (United States)

    Żbikowska-Gotz, Magdalena; Pałgan, Krzysztof; Gawrońska-Ukleja, Ewa; Kuźmiński, Andrzej; Przybyszewski, Michał; Socha, Ewa; Bartuzi, Zbigniew

    2016-03-01

    Lymphocytes Th17 and other types of immune system cells produce IL17. By induction of cytokines and chemokines, the IL17 cytokine is involved in mechanisms of allergic reaction with participation of neutrophil granulocytes. It affects activation, recruitment, and migration of neutrophils to the tissues, regulating inflammatory reaction intensity. Excited neutrophils secrete inter alia elastase and reactive oxygen species (ROS)--significant mediators of inflammation process responsible for tissues damage.The aim of the study was to evaluate the concentrations of serum interleukin 17A, serum neutrophil elastase, and ROS production by neutrophils in patients with food allergy.The study included 30 patients with food allergy diagnosed based on interview, clinical symptoms, positive SPT, placebo controlled double-blind oral provocation trial, and the presence of asIgE in blood serum against selected food allergens using fluoro-immuno-enzymatic method FEIA UNICap 100. The control group consisted of 10 healthy volunteers. The concentrations of IL17A were determined in all patients using ELISA method with eBioscience kits, and elastase using BenderMed Systems kits. Chemiluminescence of non-stimulated neutrophils was evaluated using luminol-dependent kinetic method for 40 min on Luminoskan (Labsystems luminometer).The results of serum IL-17A concentrations and the values of chemiluminescence obtained by non-activated neutrophils, as well as elastase concentrations, were higher in patients with food allergic hypersensitivity compared to healthy volunteers.This study demonstrates a significance of IL-17A and activated neutrophil granulocytes in the course of diseases with food allergic hypersensitivity. © The Author(s) 2015.

  16. Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis

    NARCIS (Netherlands)

    Res, P.C.M.; Piskin, G.; de Boer, O.J.; van der Loos, C.M.; Teeling, P.; Bos, J.D.; Teunissen, M.B.M.

    2010-01-01

    Background: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. Methodology/Principal Findings: By spectral imaging

  17. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma.

    Science.gov (United States)

    Agrawal, Swati; Townley, Robert G

    2014-02-01

    Asthma markedly diminishes quality of life due to limited activity, absences from work or school and hospitalizations. Patients with severe asthma which are not controlled despite taking effective therapy are most in need of new treatment approaches. IL-13 was demonstrated as 'central mediator of allergic asthma'. IL-13 has been implicated in the pathogenesis of asthma, idiopathic pulmonary fibrosis and COPD. IL-13 levels in the sputum and bronchial biopsy samples remain elevated in severe asthma despite the use of inhaled and systemic corticosteroids. Thus, IL-13 is a mediator involved in corticosteroid resistance. Periostin enhances profibrotic TGF-β signaling in subepithelial fibrosis associated with asthma. IL-13 induces bronchial epithelial cells to secrete periostin. Periostin may be a biomarker for Th2 induced airway inflammation. Lebrikizumab is a monoclonal antibody against IL-13. Lebrikizumab improved lung function in asthmatics who were symptomatic despite treatment with long acting beta agonist and inhaled corticosteroids and provided benefit in the treatment of severe uncontrolled asthma. Lebrikizumab block IL-13 signaling through the IL-13Rα1/IL-4Rα receptor. There was a larger reduction in FENO in the high periostin subgroup than in the low periostin subgroup (34.4 vs 4.3%). Serum CCL17, CCL13 and total IgE levels decreased in the lebrikizumab group.

  18. Serum 25-OH vitamin D level in treatment-naïve systemic lupus erythematosus patients: Relation to disease activity, IL-23 and IL-17.

    Science.gov (United States)

    Shahin, D; El-Farahaty, R M; Houssen, M E; Machaly, S A; Sallam, M; ElSaid, T O; Neseem, N O

    2017-08-01

    Objectives The aim of this study was to assess the vitamin D status in treatment-naïve SLE patients and its association with clinical and laboratory markers of disease activity, including serum levels of IL-17 and IL-23. Methods Fifty-seven treatment-naïve SLE patients along with 42 matched controls were included. SLEDAI score was used to estimate disease activity. Serum levels of 25(OH) D, IL-17 and IL-23 were measured. Results The median level of 25(OH) D in SLE patients (40.8; 4-70 ng/ml) was significantly lower than in the controls (47; 25-93 ng/ml) ( P = 0.001). A total of 38.6% of SLE cases had 25 (OH) D levels < 30 ng/ml (hypovitaminosis D) vs. 4.8% of the controls ( P < 0.0001). Apart from thrombocytopenia, vitamin D was not associated with clinical signs of SLE. There were negative correlations between serum 25(OH) D and serum levels of IL-17, IL-23 and ANA (rho = -0.5, -0.8, -0.5, P ≤ 0.05) in SLE patients. Conclusion Hypovitaminosis D is prevalent in treatment naïve SLE patients. It contributes to ANA antibody production and is associated with high serum levels of IL-23 and IL-17; thus they may trigger the inflammatory process in SLE.

  19. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis.

    Science.gov (United States)

    Liang, Lu; Dong, Chunlan; Chen, Xiaojun; Fang, Zhihong; Xu, Jie; Liu, Meng; Zhang, Xiaoguang; Gu, Dong Sheng; Wang, Ding; Du, Weiting; Zhu, Delin; Han, Zhong Chao

    2011-01-01

    Mesenchymal stem cells (MSCs), which are poorly immunogenic and have potent immunosuppressive activities, have emerged as a promising candidate for cellular therapeutics for the treatment of disorders caused by abnormal immune responses. In this study we investigated whether human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could ameliorate colitis in a trinitrobenzene sulfonic acid (TNBS)-induced colitis model. TNBS-treated colitic mice were infused with hUC-MSCs or vehicle control. The mice were sacrificed on day 1, 3, and 5 after infusion, and their clinical and pathological conditions were evaluated by body weight, colon length, and histological analysis. The expression levels of proinflammatory cytokine proteins in colon were examined by ELISA. The homing of hUC-MSCs was studied by live in vivo imaging and immunofluorescent microscopy. hUC-MSCs were found to migrate to the inflamed colon and effectively treated the colitic mice with improved clinical and pathological signs. The levels of IL-17 and IL-23 as well as IFN-γ and IL-6 were significantly lower in the colon tissues of the hUC-MSC-treated mice in comparison with the vehicle-treated mice. Coculture experiments showed that hUC-MSCs not only could inhibit IFN-γ expression but also significantly inhibit IL-17 production by lamina propria mononuclear cells (LPMCs) or splenocytes of the colitic mice or by those isolated from normal animals and stimulated with IL-23. Systemically infused hUC-MSCs could home to the inflamed colon and effectively ameliorate colitis. In addition to the known suppressive effects on Th1-type immune responses, hUC-MSC-mediated modulation of IL-23/IL-17 regulated inflammatory reactions also plays an important role in the amelioration of colitis.

  20. Hypomethylation of the IL17RC Promoter Associates with Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Lai Wei

    2012-11-01

    Full Text Available Age-related macular degeneration (AMD is the leading cause of irreversible blindness in the elderly population worldwide. Although recent studies have demonstrated strong genetic associations between AMD and SNPs in a number of genes, other modes of regulation are also likely to play a role in the etiology of this disease. We identified a significantly decreased level of methylation on the IL17RC promoter in AMD patients. Furthermore, we showed that hypomethylation of the IL17RC promoter in AMD patients led to an elevated expression of its protein and messenger RNA in peripheral blood as well as in the affected retina and choroid, suggesting that the DNA methylation pattern and expression of IL17RC may potentially serve as a biomarker for the diagnosis of AMD and likely plays a role in disease pathogenesis.

  1. The role of IL 23 in the treatment of psoriasis.

    Science.gov (United States)

    Puig, Lluís

    2017-06-01

    The IL-23/IL-17 axis is currently considered to be crucial in the pathogenesis of psoriasis. Human IL-23 is primarily produced by antigen-presenting cells and induces and maintains differentiation of Th17 cells and Th22 cells, a primary cellular source of proinflammatory cytokines such as IL-17 and IL-22, which mediate the epidermal hyperplasia, keratinocyte immune activation and tissue inflammation inherent in psoriasis. Agents that target the p40 subunit common to both IL-12 and IL-23 have shown robust clinical activity, but selectivity for IL-23p19 could offer advantages in efficacy and safety with respect to anti-p40 blockade. Areas covered: Relevant references regarding the role of the IL-23/IL-17 pathway in the pathogenesis of psoriasis/psoriatic arthritis and clinical trials with IL-23p40 and IL-23p19 blocking agents were obtained through a literature search in MEDLINE/Pubmed for articles published until November 2016. Moreover, ongoing registered clinical trials (RCTs) of moderate-to-severe psoriasis and psoriatic arthritis were searched through clinicaltrials.gov website, and a manual search was made for pertinent communications at the 2016 American Academy of Dermatology and European Academy of Dermatology and Venereology meetings. Expert commentary: There are potential advantages in selective blockade of the IL23-specific p19 subunit with respect to distal blockade of IL-17A or its receptor. Acting upstream in the IL-23/IL-17 cytokine pathway is likely to reduce the expression of multiple pro-inflammatory cytokines acting on keratinocytes -including IL-17F, IL-21 and IL-22-, in addition to IL-17A. On the other hand, safety data thus far suggest that these drugs might be devoid of some adverse effects of IL-17A blockade that seem to be class related, such as mucocutaneous Candida infections or triggering or worsening of inflammatory bowel disease. Specific IL-23p19 blockade with high-affinity monoclonal antibodies seems to be able to induce long

  2. 17β-estradiol exerts anticancer effects in anoikis-resistant hepatocellular carcinoma cell lines by targeting IL-6/STAT3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seulki, E-mail: sl10f@naver.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Lee, Minjong, E-mail: minjonglee2@naver.com [Division of Gastroenterology, Department of Internal Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do (Korea, Republic of); Kim, Jong Bin, E-mail: kkimjp@hanmail.net [Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912 (United States); Jo, Ara, E-mail: loveara0315@naver.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Cho, Eun Ju, E-mail: creatioex@gmail.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Yu, Su Jong, E-mail: ydoctor2@hanmail.net [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Lee, Jeong-Hoon, E-mail: pindra@empal.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Yoon, Jung-Hwan, E-mail: yoonjh@snu.ac.kr [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Kim, Yoon Jun, E-mail: yoonjun@snu.ac.kr [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of)

    2016-05-13

    17β-Estradiol (E2) has been proven to exert protective effects against HCC; however, its mechanism on HCC proliferation and suppression of invasion remains to be further explored. Because HCC up-regulates serum Interleukin-6 (IL-6) levels and Signal Transducer and Activator of Transcription 3 (STAT3), molecular agents that attenuate IL-6/STAT3 signaling can potentially suppress HCC development. In this study, we examined involvement of E2 in anoikis resistance that induces invasion capacities and chemo-resistance. Huh-BAT and HepG2 cells grown under anchorage-independent condition were selected. The anoikis-resistant (AR) cells showed stronger chemo-resistance against sorafenib, doxorubicin, 5-fluorouracil and cisplatin compared to adherent HCC cells. AR HCC cells exhibited decreased expression of E-cadherin and increased expression of the N-cadherin and vimentin compared to adherent HCC cells. We then demonstrated that E2 suppressed cell proliferation in AR HCC cells. IL-6 treatment enhanced invasive characteristics, and E2 reversed it. Regarding mechanism of E2, it decreased in the phosphorylation of STAT3 that overexpressed on AR HCC cells. The inhibitory effect of E2 on cell growth was accompanied with cell cycle arrest at G2/M phase and caspase-3/9/PARP activation through c-Jun N-terminal Kinase (JNK) phosphorylation. Taken together, these findings suggested that E2 inhibited the proliferation of AR HCC cells through down-regulation of IL-6/STAT3 signaling. Thus, E2 can be a potential therapeutic drug for treatment of metastatic or chemo-resistant HCC. -- Highlights: •Anoikis-resistant HCC cells characterized chemo-resistant and metastatic potentials. •17β-Estradiol down-regulated IL-6/STAT3 signaling in anoikis-resistant HCC cells. •17β-Estradiol suppressed cell proliferation by inducing G2/M phase arrest and apoptosis though JNK phosphorylation.

  3. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc; Sparfel, Lydie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of

  4. Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?

    Science.gov (United States)

    Andelid, Kristina; Tengvall, Sara; Andersson, Anders; Levänen, Bettina; Christenson, Karin; Jirholt, Pernilla; Åhrén, Christina; Qvarfordt, Ingemar; Ekberg-Jansson, Ann; Lindén, Anders

    2015-01-01

    We examined whether systemic cytokine signaling via interleukin (IL)-17 and growth-related oncogene-α (GRO-α) is impaired in smokers with obstructive pulmonary disease including chronic bronchitis (OPD-CB). We also examined how this systemic cytokine signaling relates to bacterial colonization in the airways of the smokers with OPD-CB. Currently smoking OPD-CB patients (n=60, corresponding to Global initiative for chronic Obstructive Lung Disease [GOLD] stage I–IV) underwent recurrent blood and sputum sampling over 60 weeks, during stable conditions and at exacerbations. We characterized cytokine protein concentrations in blood and bacterial growth in sputum. Asymptomatic smokers (n=10) and never-smokers (n=10) were included as control groups. During stable clinical conditions, the protein concentrations of IL-17 and GRO-α were markedly lower among OPD-CB patients compared with never-smoker controls, whereas the asymptomatic smoker controls displayed intermediate concentrations. Notably, among OPD-CB patients, colonization by opportunistic pathogens was associated with markedly lower IL-17 and GRO-α, compared with colonization by common respiratory pathogens or oropharyngeal flora. During exacerbations in the OPD-CB patients, GRO-α and neutrophil concentrations were increased, whereas protein concentrations and messenger RNA for IL-17 were not detectable in a reproducible manner. In smokers with OPD-CB, systemic cytokine signaling via IL-17 and GRO-α is impaired and this alteration may be linked to colonization by opportunistic pathogens in the airways. Given the potential pathogenic and therapeutic implications, these findings deserve to be validated in new and larger patient cohorts. PMID:25848245

  5. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    Science.gov (United States)

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Treg/IL-17 ratio and Treg differentiation in patients with COPD.

    Directory of Open Access Journals (Sweden)

    Yang Jin

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by chronic pulmonary and systematic inflammation. An abnormal adaptive immune response leads to an imbalance between pro- and anti-inflammatory processes. T-helper (Th, T-cytotoxic (Tc and T-regulatory (Treg cells may play important roles in immune and inflammatory responses. This study was conducted to clarify the changes and imbalance of cytokines and T lymphocyte subsets in patients with COPD, especially during acute exacerbations (AECOPD.Twenty-three patients with stable COPD (SCOPD and 21 patients with AECOPD were enrolled in the present study. In addition, 20 age-, sex- and weight-matched non-smoking healthy volunteers were included as controls. The serum levels of selected cytokines (TGF-β, IL-10, TNF-α, IL-17 and IL-9 were measured by enzyme-linked immunosorbent assay (ELISA kits. Furthermore, the T lymphocyte subsets collected from peripheral blood samples were evaluated by flow cytometry after staining with anti-CD3-APC, anti-CD4-PerCP, anti-CD8- PerCP, anti-CD25-FITC and anti-FoxP3-PE monoclonal antibodies. Importantly, to remove the confounding effects of inflammatory factors, the authors introduced a concept of "inflammation adjustment" and corrected each measured value using representative inflammatory markers, such as TNF-α and IL-17.Unlike the other cytokines, serum TGF-β levels were considerably higher in patients with AECOPD relative to the control group regardless of adjustment. There were no significant differences in the percentages of either CD4+ or CD8+ T cells among the three groups. Although Tregs were relatively upregulated during acute exacerbations, their capacities of generation and differentiation were far from sufficient. Finally, the authors noted that the ratios of Treg/IL-17 were similar among groups.These observations suggest that in patients with COPD, especially during acute exacerbations, both pro-inflammatory and anti-inflammatory reactions

  7. Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.

    Science.gov (United States)

    Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E

    2009-10-01

    The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.

  8. The Modulatory Effect of Ellagic Acid and Rosmarinic Acid on Ultraviolet-B-Induced Cytokine/Chemokine Gene Expression in Skin Keratinocyte (HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Serena Lembo

    2014-01-01

    Full Text Available Ultraviolet radiation (UV induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA and rosmarinic acid (RA are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm2 and simultaneously with EA (5 μM in 0.1% DMSO or RA (2.7 μM in 0.5% DMSO. Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function.

  9. Differentiation of IL-17-Producing Invariant Natural Killer T Cells Requires Expression of the Transcription Factor c-Maf

    Directory of Open Access Journals (Sweden)

    Jhang-Sian Yu

    2017-10-01

    Full Text Available c-Maf belongs to the large Maf family of transcription factors and plays a key role in the regulation of cytokine production and differentiation of TH2, TH17, TFH, and Tr1 cells. Invariant natural killer T (iNKT cells can rapidly produce large quantity of TH-related cytokines such as IFN-γ, IL-4, and IL-17A upon stimulation by glycolipid antigens, such as α-galactosylceramide (α-GalCer. However, the role of c-Maf in iNKT cells and iNKT cells-mediated diseases remains poorly understood. In this study, we demonstrate that α-GalCer-stimulated iNKT cells express c-Maf transcript and protein. By using c-Maf-deficient fetal liver cell-reconstituted mice, we further show that c-Maf-deficient iNKT cells produce less IL-17A than their wild-type counterparts after α-GalCer stimulation. While c-Maf deficiency does not affect the development and activation of iNKT cells, c-Maf is essential for the induction of IL-17-producing iNKT (iNKT17 cells by IL-6, TGF-β, and IL-1β, and the optimal expression of RORγt. Accordingly, c-Maf-deficient iNKT17 cells lose the ability to recruit neutrophils into the lungs. Taken together, c-Maf is a positive regulator for the expression of IL-17A and RORγt in iNKT17 cells. It is a potential therapeutic target in iNKT17 cell-mediated inflammatory disease.

  10. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    LENUS (Irish Health Repository)

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  11. Molecular cloning, characterization and mRNA expression of duck interleukin-17F

    Science.gov (United States)

    Interleukin-17F (IL-17F) is a proinflammatory cytokine that plays an important role in gut homeostasis. A full-length duck IL-17F (duIL-17F) cDNA with a 501-bp coding region was identified in ConA-activated splenic lymphocytes. duIL-17F is predicted to encode 166 amino acids, including a 26-amino ...

  12. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei

    2015-01-01

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release

  13. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei, E-mail: chtw@sina.com

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  14. IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance.

    Science.gov (United States)

    Shiokawa, Aya; Tanabe, Kosuke; Tsuji, Noriko M; Sato, Ryuichiro; Hachimura, Satoshi

    2009-06-30

    Oral tolerance is a key feature of intestinal immunity, generating systemic tolerance to ingested antigens (Ag). Dendritic cells (DC) have been revealed as important immune regulators, however, the precise role of DC in oral tolerance induction remains unclear. We investigated the characteristics of DC in spleen, mesenteric lymph node (MLN), and Peyer's patch (PP) after oral Ag administration in a TCR-transgenic mouse model. DC from PP and MLN of tolerized mice induced IL-10 production but not Foxp3 expression in cocultured T cells. IL-10 production was markedly increased after 5-7-day Ag administration especially in PP DC. On the other hand, IL-27 production was increased after 2-5-day Ag administration. CD11b(+) DC, which increased after ingestion of Ag, prominently expressed IL-10 and IL-27 compared with CD11b(-) DC. These results suggest that IL-10 and IL-27 producing DC are increased by interaction with antigen specific T cells in PP, and these DC act as an inducer of IL-10 producing T cells in oral tolerance.

  15. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  16. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    DEFF Research Database (Denmark)

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup

    2000-01-01

    with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited binding...... in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients...

  17. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    Directory of Open Access Journals (Sweden)

    Tae Sik Goh

    2017-01-01

    Full Text Available IL-7 signaling via IL-7Rα and common γ-chain (γc is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα.

  18. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    Science.gov (United States)

    Goh, Tae Sik; Jo, Yuna; Lee, Byunghyuk; Kim, Geona; Hwang, Hyunju; Ko, Eunhee; Kang, Seung Wan; Oh, Sae-Ock; Baek, Sun-Yong; Yoon, Sik; Lee, Jung Sub

    2017-01-01

    IL-7 signaling via IL-7Rα and common γ-chain (γc) is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα. PMID:28127156

  19. Activated Α7nachr Improves Postoperative Cognitive Dysfunction and Intestinal Injury Induced by Cardiopulmonary Bypass in Rats: Inhibition of the Proinflammatory Response Through the Th17 Immune Response

    Directory of Open Access Journals (Sweden)

    Keyan Chen

    2018-04-01

    Full Text Available Backgrund/Aims: To investigate the effects of activated α7 nicotinic acetylcholine receptor (α7nAChR on postoperative cognitive dysfunction (POCD and intestinal injury induced by cardiopulmonary bypass (CPB and its relationship with the Th17 response in order to provide a theoretical basis for organ protection and targeted drug therapy during the perioperative period. Methods: Sprague-Dawley rat models of CPB were established. Rat intestinal and brain injuries were observed after CPB using hematoxylin and eosin staining. Cell apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling. Inflammatory factors and markers of brain injury in rat serum were measured using enzyme-linked immunosorbent assay. The expression levels of Bcl-2, Bax, caspase-3, ZO-1, occludin, AQP4, RORγT, and α7nAchR were examined using western blotting. Transcription factor RORγT expression was determined using real-time fluorescent quantitative polymerase chain reaction. Th17 cells in the peripheral blood and spleen were determined using flow cytometry. α7nAchR knockout rats were established. The Th17 response in the peripheral blood and spleen of α7nAchR knockout rats was further verified using flow cytometry. Results: CPB can induce POCD and intestinal injury in rats. α7nAchR activation markedly reduced intestinal injury, POCD, neuronal apoptosis, proinflammatory factor expression, and number of CD4+IL-17+ cells. α7nAchR knockout significantly increased serum D-lactic acid, FABP2, S-100β, NSE, TNF-α, IL-6, and IL-17 secretion. The number of CD4+IL-17+ cells was also significantly increased. Conclusion: α7nAchR activation markedly ameliorates the intestinal injury and POCD induced by CPB. Inhibition of the Th17 immune response can reduce the proinflammatory response, which could provide a new method for clinical perioperative organ protection and targeted drug therapy.

  20. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia

    DEFF Research Database (Denmark)

    Maiorino, C; Khorooshi, R; Ruffini, F

    2013-01-01

    Interleukin-25 (IL-25) is the only anti-inflammatory cytokine of the IL-17 family, and it has been shown to be efficacious in inhibiting neuroinflammation. Known for its effects on cells of the adaptive immune system, it has been more recently described to be effective also on cells of the innate...... was partly inhibited and the CNS protected from immune-mediated damage. To our knowledge, this is the first example of M2 shift (alternative activation) induced in vivo on CNS-resident myeloid cells by gene therapy, and may constitute a promising strategy to investigate the potential role of protective...

  1. The role of soluble tumor necrosis factor like weak inducer of apoptosis and interleukin-17A in the etiopathogenesis of celiac disease

    Science.gov (United States)

    Yuksel, Mahmut; Kaplan, Mustafa; Ates, Ihsan; Kilic, Zeki Mesut Yalın; Kilic, Hasan; Suna, Nuretdin; Ates, Hale; Kayacetin, Ertugrul

    2016-01-01

    Abstract Our aim in this study was to determine soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) and interleukin-17A (IL-17A) levels in celiac disease, and their association with the gluten diet and autoantibodies. Eighty patients with celiac diagnosis and 80 healthy control individuals with similar age, gender and body mass index to the patient group were included in the study. Serum sTWEAK and IL-17A levels were measured by the serum enzyme-linked immunosorbent assay kit. The median IL-17A (117.5 pg/mL vs. 56.7 pg/mL; P = 0.001) level in celiac patients was higher than in the control group, while the median sTWEAK (543 pg/mL vs. 643 pg/mL; P = 0.016) level in patients was determined to be lower. In the patient group, patients who complied with the gluten diet had a lower level of median IL-17A (98.1 pg/mL vs. 197.5 pg/mL; P = 0.034) and a higher level of sTWEAK (606 pg/mL vs. 522.8 pg/mL; P = 0.031) than those who did not adhere. Furthermore, the IL-17A level was higher and the sTWEAK level was lower in celiac patients with positive antibody than those with negative antibody. A positive correlation was determined among anti-gliadin antibody IgA, anti-gliadin antibody IgG, anti-tissue transglutaminase IgG levels and the IL-17A level, and a negative correlation was determined with the sTWEAK level. In celiac disease, the sTWEAK and IL-17A levels differ between patients who cannot adapt to the gluten diet and who are autoantibody positive, and patients who adapt to the diet and are autoantibody negative. We believe that sTWEAK and IL-17A are associated with the inflammation in celiac pathogenesis. PMID:27367991

  2. CD4 T cells play important roles in maintaining IL-17-producing γδ T-cell subsets in naive animals.

    Science.gov (United States)

    Do, Jeong-Su; Visperas, Anabelle; O'Brien, Rebecca L; Min, Booki

    2012-04-01

    A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.

  3. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells.

    Science.gov (United States)

    Alivand, Mohammad Reza; Sabouni, Farzaneh; Soheili, Zahra-Soheila

    2016-09-01

    To survey the changes of promoter CpG methylation status and mRNA expression of IL17RC (interleukin 17 receptor C) gene in retinal pigment epithelium (RPE) cells under chemical hypoxia condition for choroidal neovascularization (CNV) modeling in vitro. RPE cells were cultured in both untreated as a control group and treated by cobalt chloride media as a hypoxia group for various concentrations (100-150μM) and times (24-36 hrs.) To confirm chemical hypoxia condition, mRNA expression of HIF (Hypoxia Inducible Factor) -1α, -2α, and Vascular Endothelial Growth Factor (VEGF) was compared between two groups by Real-time PCR. Also, in normoxia and hypoxia conditions, IL17RC expression changes and promoter CpG methylation status were evaluated by Real-time PCR and methylation-specific PCR (MSP) techniques, respectively. Overexpression of HIF-1α, HIF-2α, and VEGF was significant in hypoxia versus normoxia conditions. Our data showed overexpression of IL17RC (2.1- to 6.3-fold) and decreasing of its promoter methylation in comparison with hypoxia and normoxia conditions. It was found that there are significant association between promoter methylation status and expression of IL17RC in chemical hypoxia condition. Therefore, methylation of IL17RC could play as a marker in CNV and degeneration of RPE cells in vitro. Additionally, HIF-α and methylation phenomena may be considered as critical targets for blocking in angiogenesis of age-related degeneration in future studies.

  4. The role of genetic variation across IL-1β, IL-2, IL-6, and BDNF in antipsychotic-induced weight gain.

    Science.gov (United States)

    Fonseka, Trehani M; Tiwari, Arun K; Gonçalves, Vanessa F; Lieberman, Jeffrey A; Meltzer, Herbert Y; Goldstein, Benjamin I; Kennedy, James L; Kennedy, Sidney H; Müller, Daniel J

    2015-01-01

    Antipsychotics with high weight gain-inducing propensities influence the expression of immune and neurotrophin genes, which have been independently related to obesity indices. Thus, we investigated whether variants in the genes encoding interleukin (IL)-1β, IL-2, and IL-6 and brain-derived neurotrophic factor (BDNF) Val66Met are associated with antipsychotic-induced weight gain (AIWG). Nineteen polymorphisms were genotyped using Taqman(®) assays in 188 schizophrenia patients on antipsychotic treatment for up to 14 weeks. Mean weight change (%) from baseline was compared across genotypic groups using analysis of covariance (ANCOVA). Epistatic effects between cytokine polymorphisms and BDNF Val66Met were tested using Model-Based Multifactor Dimensionality Reduction. In European patients, IL-1β rs16944*GA (P = 0.013, Pcorrected = 0.182), IL-1β rs1143634*G (P = 0.001, Pcorrected = 0.014), and BDNF Val66Met (Val/Val, P = 0.004, Pcorrected = 0.056) were associated with greater AIWG, as were IL-1β rs4849127*A (P = 0.049, Pcorrected = 0.784), and IL-1β rs16944*GA (P = 0.012, Pcorrected = 0.192) in African Americans. BDNF Val66Met interacted with both IL-1β rs13032029 (Val/Met+ TT, PPerm = 0.029), and IL-6 rs2069837 (Val/Val+ AA, PPerm = 0.021) in Europeans, in addition to IL-1β rs16944 (Val/Val+ GA, PPerm = 0.006) in African Americans. SNPs across IL-1β and BDNF Val66Met may influence AIWG. Replication of these findings in larger, independent samples is warranted.

  5. Th17 cells in neuromyelitis optica spectrum disorder: a review.

    Science.gov (United States)

    Lin, Jie; Li, Xiang; Xia, Junhui

    2016-12-01

    Neuromyelitis optica spectrum disorder (NMOSD) has been identified as a central nervous system (CNS) autoimmune inflammatory disorder, which has been recognized as a B cell-mediated humoral immune disease. However, cases have been reported indicating that some of the neuromyelitis optica (NMO) patients have been resistant to B cell-related treatments. Recently, more and more evidence has shown that T cell-mediated immunity may take part in the pathogenesis of NMOSD, especially in the Th17 phenotype. In our PUBMED search, we used the following keywords: Th17 cell, Th17 cell-related cytokines, T cells, B cells, B cell-related productions, NMO, NMOSD, recurrent/bilateral optic neuritis, recurrent transverse myelitis and longitudinally extensive transverse myelitis. We systemically reviewed the role of Th17 cells and Th17 cell-related cytokines in NMOSD. We found that Th17 cells and Th17-related cytokines, such as IL-6, IL-1β, IL-17, IL-21, IL-22, IL-23 and TGF-β, are not only directly involved in the pathogenesis but also collaborated with B cells and B cell-related antibody production to induce CNS lesions. Th17 cell-related therapy has also been reviewed in this article, and the data suggested that Th17 may be a new therapeutic target of NMOSD.

  6. Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2.

    Science.gov (United States)

    Kang, Seok-Seong; Noh, Su Young; Park, Ok-Jin; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Staphylococcus aureus can cause the intestinal inflammatory diseases. However, little is known about the molecular mechanism of S. aureus infection in the intestine. In the present study, we investigated whether S. aureus could stimulate human intestinal epithelial cells triggering inflammation. When the human intestinal epithelial cell-line, Caco-2, and the primary colon cells were stimulated with ethanol-inactivated S. aureus, IL-8 expression was induced in a dose-dependent manner. The inactivated S. aureus preferentially stimulated Toll-like receptor (TLR) 2 rather than TLR4. Lipoproteins, lipoteichoic acid (LTA), and peptidoglycan (PGN) are considered as potential TLR2 ligands of S. aureus. Interestingly, S aureus lipoproteins and Pam2CSK4 mimicking Gram-positive bacterial lipoproteins, but not LTA and PGN of S. aureus, significantly induced IL-8 expression in Caco-2 cells. Furthermore, lipoprotein-deficient S. aureus mutant strain failed to induce IL-8 production. Collectively, these results suggest that S. aureus stimulates the human intestinal epithelial cells to induce the chemokine IL-8 production through its lipoproteins, potentially contributing the development of intestinal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in

  8. IL-17 producing innate lymphoid cells 3 (ILC3) but not Th17 cells might be the potential danger factor for preeclampsia and other pregnancy associated diseases.

    Science.gov (United States)

    Barnie, Prince A; Lin, Xin; Liu, Yueqin; Xu, Huaxi; Su, Zhaoliang

    2015-01-01

    In pregnancy, the immunologic system plays an important role that ensures normal pregnancy development and can as well promote the development of complications. Pregnancy success appears to rely on a discrete balance between the Th cytokines, which are involved in fetal growth and development. Preeclampsia and gestational diabetes are known complications associated with pregnancy. However, the source of the increased IL-17 cytokine in preeclampsia and other pregnancy associated diseases still remains unclear amidst numerous inconsistencies. The recent identification of innate lymphoid cells (ILC) has raised more doubts about the sources of most of the Th associated cytokines. We investigated the source of peripheral IL-17 levels in preeclamptic, gestational diabetics and chronic diabetics compared to healthy pregnancy subjects. To evaluate the source of the increased IL-17 cytokine among preeclampsia, chronic diabetic and gestational diabetic patients we investigated the proportion of Th17 cell populations in peripheral blood mononuclear cells using flow cytometry as well as analyzing levels of IFN-γ, IL-17, IL-1β and HMGB1. This study found that the Th17 cell populations in peripheral blood of preeclamptic, gestational nor chronic diabetes during pregnancy did not correlate with the increased IL-17. We report that the increased IL-17 levels observed in patients with preeclampsia, gestational diabetes and chronic diabetes are associated with innate lymphoid cells 3 (ILC3) and may pose threats to the fetus if disregulated.

  9. The Th1/Th2/Th17/Treg paradigm induced by stachydrine hydrochloride reduces uterine bleeding in RU486-induced abortion mice.

    Science.gov (United States)

    Li, Xia; Wang, Bin; Li, Yuzhu; Wang, Li; Zhao, Xiangzhong; Zhou, Xianbin; Guo, Yuqi; Jiang, Guosheng; Yao, Chengfang

    2013-01-09

    The Th1/Th2/Th17/Treg paradigm plays an important role in achieving maternal-fetal immunotolerance and participates in RU486-induced abortion. Excessive uterine bleeding is the most common side effect of RU486-induced abortion; however, its etiopathogenesis has not been fully understood. Therefore, elucidating the correlation between the Th1/Th2/Th17/Treg paradigm and the volume of uterine bleeding may offer novel therapeutic target for reducing uterine bleeding in RU486-induced abortion. Leonurus sibiricus has been used in clinics to reduce postpartum hemorrhage with low toxicity and high efficiency; however, the effective constituents and therapeutic mechanism have not been described. Stachydrine hydrochloride is the main constituent of L. sibiricus, therefore L. sibiricus is regarded as a candidate for reducing uterine bleeding in RU486-induced abortion mice by regulating the Th1/Th2/Th17/Treg paradigm. The purpose of this study was to determine the Th1/Th2/Th17/Treg paradigm in uterine bleeding of RU486-induced abortion mice and to elucidate the immunopharmacologic effects of stachydrine hydrochloride on inducing the Th1/Th2/Th17/Treg paradigm in reducing the uterine bleeding volume in RU486-induced abortion mice. To investigate the Th1/Th2/Th17/Treg paradigm in uterine bleeding during RU486-induced abortion mice, pregnant BALB/c mice were treated with high- and low-dose RU486 (1.5mg/kg and 0.9 mg/kg, respectively), and the serum progesterone (P(4)) protein level, uterine bleeding volume, and proportions of Th1/Th2/Th17/Treg cells in mice at the maternal-fetal interface were detected by ELISA assay, alkaline hematin photometric assay, and flow cytometry, respectively. To determine the regulatory effect of stachydrine hydrochloride on the Th1/Th2/Th17/Treg paradigm in vitro, splenocytes of non-pregnant mice were separated and treated with P(4,) RU486, and/or stachydrine hydrochloride (10(-5)M, 10(-4)M, and 10(-3)M, respectively). The proportions of Th1/Th2/Th17

  10. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  11. CCR3 expression induced by IL-2 and IL-4 functioning as a death receptor for B cells

    DEFF Research Database (Denmark)

    Jinquan, Tan; Jacobi, Henrik H; Jing, Chen

    2003-01-01

    We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (approximately 98% CCR3(+)). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19......-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant....... Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the development of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests...

  12. Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1.

    Directory of Open Access Journals (Sweden)

    Thomas Maslanik

    Full Text Available Regular interactions between commensal bacteria and the enteric mucosal immune environment are necessary for normal immunity. Alterations of the commensal bacterial communities or mucosal barrier can disrupt immune function. Chronic stress interferes with bacterial community structure (specifically, α-diversity and the integrity of the intestinal barrier. These interferences can contribute to chronic stress-induced increases in systemic IL-6 and TNF-α. Chronic stress, however, produces many physiological changes that could indirectly influence immune activity. In addition to IL-6 and TNF-α, exposure to acute stressors upregulates a plethora of inflammatory proteins, each having unique synthesis and release mechanisms. We therefore tested the hypothesis that acute stress-induced inflammatory protein responses are dependent on the commensal bacteria, and more specifically, lipopolysaccharide (LPS shed from Gram-negative intestinal commensal bacteria. We present evidence that both reducing commensal bacteria using antibiotics and neutralizing LPS using endotoxin inhibitor (EI attenuates increases in some (inflammasome dependent, IL-1 and IL-18, but not all (inflammasome independent, IL-6, IL-10, and MCP-1 inflammatory proteins in the blood of male F344 rats exposed to an acute tail shock stressor. Acute stress did not impact α- or β- diversity measured using 16S rRNA diversity analyses, but selectively reduced the relative abundance of Prevotella. These findings indicate that commensal bacteria contribute to acute stress-induced inflammatory protein responses, and support the presence of LPS-mediated signaling in stress-evoked cytokine and chemokine production. The selectivity of the commensal bacteria in stress-evoked IL-1β and IL-18 responses may implicate the inflammasome in this response.

  13. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential

    Science.gov (United States)

    Nagpal, Gandharva; Usmani, Salman Sadullah; Dhanda, Sandeep Kumar; Kaur, Harpreet; Singh, Sandeep; Sharma, Meenu; Raghava, Gajendra P. S.

    2017-01-01

    In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/). PMID:28211521

  14. PRL-3 Is Involved in Estrogen- and IL-6-Induced Migration of Endometrial Stromal Cells From Ectopic Endometrium.

    Science.gov (United States)

    Ren, Shifan; Zhou, Yefang; Fang, Xiaoling; She, Xiaoling; Wu, Yilin; Wu, Xianqing

    2016-05-24

    To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway. © The Author(s) 2016.

  15. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  16. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  17. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  18. Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health.

    Science.gov (United States)

    Zou, Jun; Chassaing, Benoit; Singh, Vishal; Pellizzon, Michael; Ricci, Matthew; Fythe, Michael D; Kumar, Matam Vijay; Gewirtz, Andrew T

    2018-01-10

    Dietary supplementation with fermentable fiber suppresses adiposity and the associated parameters of metabolic syndrome. Microbiota-generated fiber-derived short-chain fatty acids (SCFAs) and free fatty acid receptors including GPR43 are thought to mediate these effects. We find that while fermentable (inulin), but not insoluble (cellulose), fiber markedly protected mice against high-fat diet (HFD)-induced metabolic syndrome, the effect was not significantly impaired by either inhibiting SCFA production or genetic ablation of GPR43. Rather, HFD decimates gut microbiota, resulting in loss of enterocyte proliferation, leading to microbiota encroachment, low-grade inflammation (LGI), and metabolic syndrome. Enriching HFD with inulin restored microbiota loads, interleukin-22 (IL-22) production, enterocyte proliferation, and antimicrobial gene expression in a microbiota-dependent manner, as assessed by antibiotic and germ-free approaches. Inulin-induced IL-22 expression, which required innate lymphoid cells, prevented microbiota encroachment and protected against LGI and metabolic syndrome. Thus, fermentable fiber protects against metabolic syndrome by nourishing microbiota to restore IL-22-mediated enterocyte function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Ralfkiær, Ulrik; Clasen-Linde, Erik

    2011-01-01

    IL-17 is a proinflammatory cytokine that is crucial for the host's protection against a range of extracellular pathogens. However, inappropriately regulated expression of IL-17 is associated with the development of inflammatory diseases and cancer. In cutaneous T-cell lymphoma (CTCL), malignant T...

  20. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Wentong Xia

    Full Text Available BACKGROUND: Recent studies demonstrated that nasal polyps (NP patients in China and other Asian regions possessed distinct Th17-dominant inflammation and enhanced tissue remodeling. However, the mechanism underlying these observations is not fully understood. This study sought to evaluate the association of interleukin (IL-17A with MUC5AC expression and goblet cell hyperplasia in Chinese NP patients and to characterize the signaling pathway underlying IL-17A-induced MUC5AC expression in vitro. METHOD: We enrolled 25 NP patients and 22 normal controls and examined the expression of IL-17A, MUC5AC and act1 in polyp tissues by immunohistochemical (IHC staining, quantitative polymerase chain reaction (qPCR and western blot. Moreover, by using an in vitro culture system of polyp epithelial cells (PECs, IL-17A-induced gene expression was screened in cultured PECs by DNA microarray. The expression of IL-17RA, IL-17RC, act1 and MUC5AC and the activation of the MAPK pathway (ERK, p38 and JNK, were further examined in cultured PECs and NCI-H292 cells by qPCR and western blotting, respectively. RESULTS: We found that increased IL-17A production was significantly correlated with MUC5AC and act1 expression and goblet cell hyperplasia in polyp tissues (p<0.05. IL-17A significantly stimulated the expression of IL-17RA, IL-17RC, act1 and MUC5AC, and the activation of the MAPK pathway in cultured PECs and NCI-H292 cells (p<0.05. In addition, IL-17RA, IL-17RC and act1 siRNA significantly blocked IL-17A-induced MUC5AC production in vitro (p<0.05. CONCLUSION: Our results suggest that IL-17A plays a crucial role in stimulating the production of MUC5AC and goblet cell hyperplasia through the act1-mediated signaling pathway and may suggest a promising strategy for the management of Th17-dominant NP patients.

  2. IL-11, IL-1α, IL-6, and TNF-α are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo.

    Science.gov (United States)

    Li, Wen-Hwa; Pappas, Apostolos; Zhang, Li; Ruvolo, Eduardo; Cavender, Druie

    2013-07-01

    The loss of subcutaneous (sc) fat is associated with aging. Inflammatory cytokines, such as interleukin-1 α (IL-1α), interleukin-11 (IL-11) and tumor necrosis factor-α (TNF-α), are known to inhibit the differentiation of preadipocytes. This study investigated the potential role of inflammatory cytokines in solar-radiation-induced facial fat loss. Cultured fibroblasts, keratinocytes, and skin equivalents were exposed to various doses of radiation from a solar simulator. Inflammatory cytokines' mRNA production and protein secretion were examined by qRT-PCR and ELISA, respectively. In some experiments, epidermal-dermal equivalents were pretreated topically with a broad-spectrum sunscreen prior to solar simulated radiation (SSR). Human facial preadipocytes treated with recombinant IL-11 or with conditioned media from solar-irradiated equivalents were evaluated for the level of adipocyte differentiation by image analyses, Oil red O staining, and the expression of adipocyte differentiation markers. IL-11, IL-1α, IL-6, and TNF-α protein secretion were induced from epidermal-dermal equivalents by exposure to SSR. A sunscreen prevented SSR-induced inflammatory cytokines production from such equivalents. Exposure of facial preadipocytes to conditioned medium from solar-irradiated epidermal-dermal equivalents inhibited their differentiation into mature adipocytes. Consequently, conditioned medium from sunscreen-pretreated, solar-irradiated equivalents did not inhibit differentiation of preadipocytes. A cocktail of neutralizing antibodies to IL-11, IL-1α, IL-6 and TNF-α significantly reduced the SSR-induced inhibition of preadipocyte differentiation. These results support the hypothesis that SSR-induced inflammatory cytokine may be involved in the photoaging-induced loss of facial subcutaneous fat. Inhibition of this process, e.g. by sunscreens, might slow or prevent photoaging-induced changes in facial contouring. Copyright © 2013 Japanese Society for Investigative

  3. Subcutaneous administration of polymerized type I collagen downregulates interleukin (IL)-17A, IL-22 and transforming growth factor-β1 expression, and increases Foxp3-expressing cells in localized scleroderma.

    Science.gov (United States)

    Furuzawa-Carballeda, J; Ortíz-Ávalos, M; Lima, G; Jurado-Santa Cruz, F; Llorente, L

    2012-08-01

    Localized scleroderma (LS) is a disfiguring inflammatory autoimmune disease of the skin and underlying tissue. As in systemic sclerosis, a key feature is the presence of T cells in inflammatory lesions. To evaluate the effect of polymerized type I collagen vs. methylprednisolone (MP) in LS, and to determine the influence of this polymerized collagen (PC) on CD4+ peripheral T cells expressing interleukin (IL)-4, IL-17A, interferon-γ and Forkhead box protein (Foxp)3, and on cells expressing transforming growth factor (TGF)-β1, IL-17A, IL-22 and Foxp3 in the skin. In total, 16 patients with LS were treated for 3 months with monthly subcutaneous intralesional injections of 0.1 mL MP (giving a total dose of 20 mg/mL each month) and 15 patients were treated, with weekly subcutaneous intralesional injections of PC, ranging from 0.2 mL (equivalent to 1.66 mg collagen) for a lesion of 50 mm in size, up to a maximum of 1.0 mL (8.3 mg collagen) for a lesion > 100 mm in size, and followed up for a further 6 months. Skin biopsies were obtained from lesions at baseline (before treatment) and 9 months later (6 months after treatment end). Tissue sections were evaluated by histology and immunohistochemistry (IL-17A, IL-22, TGF-β1 and Foxp3). CD4+ T-cell subsets were determined in peripheral blood by flow cytometry. Abnormal tissue architecture was seen in the biopsies taken from patients treated with MP, whereas the PC treatment restored normal skin architecture. PC downregulated pro-inflammatory/profibrotic cytokine expression in peripheral cells, and upregulated the number of regulatory T cells (Tregs) in skin. PC was safe and well tolerated. PC is not only an antifibrotic/fibrolytic agent but also an immunomodulator biodrug that restores the balance between T helper (Th)1, Th2, Th17 and Tregs, downregulates production of pro-inflammatory or profibrogenic cytokines (IL-17A, IL-22 and TGF-β1), and renews skin architecture, without adverse effects. © The Author(s). CED

  4. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  5. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T.; Wani, Mohan R.

    2010-01-01

    Research highlights: → IL-3 inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. → IL-3 inhibits RANKL-induced JNK activation. → IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. → IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. → IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-κB (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  6. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  7. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    Science.gov (United States)

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery

    Directory of Open Access Journals (Sweden)

    Jensen-Waern Marianne

    2008-08-01

    Full Text Available Abstract Background Knowledge of the cytokine response at infection with Brachyspira hyodysenteriae can help understanding disease mechanisme involved during swine dysentery. Since this knowledge is still limited the aim of the present study was to induce dysentery experimentally in pigs and to monitor the development of important immunoregulatory cytokines in blood collected at various stages of the disease. Methods Ten conventional pigs (~23 kg were orally inoculated with Brachyspira hyodysenteriae B204T. Eight animals developed muco-haemorrhagic diarrhoea with impaired general body condition. Blood was sampled before inoculation and repeatedly during acute dysentery and recovery periods and cytokine levels of IL-1β, IL-6, Il-10, TNF-α and IFN-γ were measured by ELISA. Results IL-1β was increased at the beginning of the dysentery period and coincided with the appearance of Serum amyloid A and clinical signs of disease. TNF-α increased in all animals after inoculation, with a peak during dysentery, and IL-6 was found in 3 animals during dysentery and in the 2 animals that did not develop clinical signs of disease. IL-10 was found in all sick animals during the recovery period. IFN-γ was not detected on any occasion. Conclusion B. hyodysenteriae inoculation induced production of systemic levels of IL-1β during the dysentery period and increased levels of IL-10 coincided with recovery from dysentery.

  10. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Noh, Minsoo

    2012-03-01

    Lineage commitment of human bone marrow mesenchymal stem cells (hBM-MSCs) to adipocytes or osteoblasts has been suggested as a model system to study the relationship between type II diabetes and abnormal bone metabolism. Leptin and IL-17A inhibit adipogenesis whereas they promote osteogenesis in MSCs. Due to pathophysiologic roles of IL-17A in human metabolic diseases and bone metabolism, it was evaluated whether IL-17A-dependent inverse regulation on adipogenesis and osteogenesis was related to endogenous leptin production in hBM-MSCs. In the analysis of adiponectin and leptin secretion profiles of hBM-MSCs in response to various combinations of differentiation inducing factors, it was found that dexamethasone, a common molecule used for both adipogenesis and osteogenesis, increased leptin production in hBM-MSCs. Importantly, the level of leptin production during osteogenesis in hBM-MSCs was higher than that during adipogenesis, implicating a significant leptin production in extra-adipose tissues. IL-17A increased leptin production in hBM-MSCs and also under the condition of osteogenesis. In spite of direct inhibition on adipogenesis, IL-17A up-regulated leptin production in hBM-MSC-derived adipocytes. Anti-leptin antibody treatment partially antagonized the IL-17A dependent inhibition of adipogenesis in hBM-MSCs, suggesting a role of leptin in mediating the inverse regulation of IL-17A on osteogenesis and adipogenesis in hBM-MSCs. Therefore, the IL-17A-induced leptin production may provide a key clue to understand a molecular mechanism on the lineage commitment of hBM-MSCs into adipocytes or osteoblasts. In addition, leptin production in extra-adipose tissues like MSCs and osteoblasts should be considered in future studies on leptin-associated human diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Liver fibrosis in bile duct-ligated rats correlates with increased hepatic IL-17 and TGF-β2 expression.

    Science.gov (United States)

    Zepeda-Morales, Adelaida Sara M; Del Toro-Arreola, Susana; García-Benavides, Leonel; Bastidas-Ramírez, Blanca E; Fafutis-Morris, Mary; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R

    2016-01-01

    BACKGROUND AND RATIONALE FOR THE STUDY: IL-17, TGF-β1/2 are cytokines involved in the development of kidney, pulmonary and liver fibrosis. However, their expression kinetics in the pathogenesis of cholestatic liver fibrosis have not yet been fully explored. The aim of the study was to analyze the expression of IL-17, RORγt, NKp46, TGF-β1, and TGF-β2 in the liver of rats with bile duct ligation (BDL). Hepatic IL-17A gene expression analyzed by qRT-PCR showed a dramatic increase of 350 and 10 fold, at 8 and 30 days post BDL, respectively. TGFβ1 and TGFβ2 gene expression significantly increased throughout the whole fibrotic process. At the protein level in liver homogenates, IL-17, TGF-β1, and RORγt significantly increased at 8 and 30 days after BDL. Interestingly, a significant increase in the protein levels of TGF-β2 and decrease of NKp46 was observed only 30 days after BDL. Unexpectedly, TGF-β2 exhibited stronger signals than TGF-β1 at the gene expression and protein levels. Histological analysis showed bile duct proliferation and collagen deposition. Our results suggest that pro-fibrogenic cytokines IL-17, TGF-β1 and, strikingly, TGF-β2 might be important players of liver damage in the pathogenesis of early and advanced experimental cholestatic fibrosis. Th17 cells might represent an important source of IL-17, while NK cell depletion may account for the perpetuation of liver damage in the BDL model.

  12. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells

    Science.gov (United States)

    Saito, Masako; Nagasawa, Masayuki; Takada, Hidetoshi; Hara, Toshiro; Tsuchiya, Shigeru; Agematsu, Kazunaga; Yamada, Masafumi; Kawamura, Nobuaki; Ariga, Tadashi; Tsuge, Ikuya; Nonoyama, Shigeaki; Karasuyama, Hajime

    2011-01-01

    Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17–producing CD4+ T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (Treg cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of Treg cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10–treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4+ T cells to FOXP3+ induced Treg cells (iTreg cells). These results suggest that the defective generation of IL-10–induced tolerogenic DCs and iTreg cells may contribute to inflammatory changes in HIES. PMID:21300911

  13. Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis.

    Directory of Open Access Journals (Sweden)

    Masahiro Ishizuka

    Full Text Available Hypersensitivity pneumonitis (HP is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif ligand 5 (CXCL5 in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils.

  14. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity.

    Science.gov (United States)

    Li, Bo; Wang, Xi; Choi, In Young; Wang, Yu-Chen; Liu, Siyuan; Pham, Alexander T; Moon, Heesung; Smith, Drake J; Rao, Dinesh S; Boldin, Mark P; Yang, Lili

    2017-10-02

    Autoreactive CD4 T cells that differentiate into pathogenic Th17 cells can trigger autoimmune diseases. Therefore, investigating the regulatory network that modulates Th17 differentiation may yield important therapeutic insights. miR-146a has emerged as a critical modulator of immune reactions, but its role in regulating autoreactive Th17 cells and organ-specific autoimmunity remains largely unknown. Here, we have reported that miR-146a-deficient mice developed more severe experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). We bred miR-146a-deficient mice with 2D2 T cell receptor-Tg mice to generate 2D2 CD4 T cells that are deficient in miR-146a and specific for myelin oligodendrocyte glycoprotein (MOG), an autoantigen in the EAE model. miR-146a-deficient 2D2 T cells induced more severe EAE and were more prone to differentiate into Th17 cells. Microarray analysis revealed enhancements in IL-6- and IL-21-induced Th17 differentiation pathways in these T cells. Further study showed that miR-146a inhibited the production of autocrine IL-6 and IL-21 in 2D2 T cells, which in turn reduced their Th17 differentiation. Thus, our study identifies miR-146a as an important molecular brake that blocks the autocrine IL-6- and IL-21-induced Th17 differentiation pathways in autoreactive CD4 T cells, highlighting its potential as a therapeutic target for treating autoimmune diseases.

  15. The interleukin (IL-1a precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines

    Directory of Open Access Journals (Sweden)

    Busun eKim

    2013-11-01

    Full Text Available Among the eleven members of the IL-1 family cytokines, the precursors of IL-1a, IL-1b, and IL-33 have relatively long N-terminal pro-sequences of approximately one hundred amino acid residues prior to the N-terminus of the mature forms. Compared to the mature forms secreted from the cell, 80-90% of the primary translation product is in the intracellular compartment in the precursor form. However, the precursors are readily released from cells during infections but also with non-infectious conditions such a hypoxia and trauma. In this setting, the precursors act rapidly as alarmins in the absence of a processing mechanism to remove the pro-sequence and generate a mature form. In the case of IL-1a, the release of the precursor activates adjacent cells via receptor-mediated signaling. However, there are no data comparing the specific activity of the IL-1a precursor to the mature form. In the present study, we compared the precursor and mature forms of recombinant human IL-1a, IL-1b and IL-33 proteins on the induction of cytokines from A549 cells as well as from human peripheral blood mononuclear cells (PBMC. Similar to the mature form, the IL-1a precursor was active in inducing IL 6 and TNFa, whereas the precursor forms of IL 1b and IL-33 were not active. On PBMC, precursor and mature IL-1a at 0.04 and 0.2 nano-mole were equally active in inducing IL-6. Given the fact that during necrotic cell death, the IL-1a precursor is released intact and triggers IL-1 receptors on tissue macrophages, these data identify the precursor form of IL-1a as a key player in sterile inflammation.

  16. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  17. Melatonin as potential inducer of Th17 cell differentiation.

    Science.gov (United States)

    Kuklina, Elena M

    2014-09-01

    The subset of T lymphocytes producing IL-17 (Th17) plays a key role in the immune system. It has been implicated in host defense, inflammatory diseases, tumorigenesis, autoimmune diseases, and transplant rejection. Careful analysis of the data available holds that Th17 cell subpopulation should be under the direct control of pineal hormone melatonin: the key Th17 differentiation factor RORα serves in the meantime as a high-affinity melatonin receptor. Since the levels of melatonin have diurnal and seasonal variation, as well as substantial deviations in some physiological or pathological conditions, melatonin-dependent regulation of Th17 cells should implicate multiform manifestation, such as influencing the outcome of infectious challenge or determining predisposition, etiology and progression of immune-related morbidities. Another important reason to raise a point of the new melatonin effects is current considering the possibilities of its clinical trials. Especially, the differentiation of Th17 upon melatonin treatment must aggravate the current recession in autoimmune diseases or induce serious complications in pregnancy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F+IL-23+ CD161+ CD4+ T helper cells in psoriatic arthritis joints.

    Science.gov (United States)

    Fiocco, Ugo; Stramare, Roberto; Martini, Veronica; Coran, Alessandro; Caso, Francesco; Costa, Luisa; Felicetti, Mara; Rizzo, Gaia; Tonietto, Matteo; Scanu, Anna; Oliviero, Francesca; Raffeiner, Bernd; Vezzù, Maristella; Lunardi, Francesca; Scarpa, Raffaele; Sacerdoti, David; Rubaltelli, Leopoldo; Punzi, Leonardo; Doria, Andrea; Grisan, Enrico

    2017-02-01

    To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F + CD161 + IL23 + CD4 + T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F + IL23 + - IL17A-F + CD161 + - and IL17A-F + CD161 + IL23 + CD4 + T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4 + T and CD4 + IL23 + T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA.

  19. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Directory of Open Access Journals (Sweden)

    Seong Gyu Jeon

    Full Text Available Specific intestinal microbiota has been shown to induce Foxp3(+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+ dendritic cells (DCs mediated B. breve-induced development of IL-10-producing T cells. CD103(+ DCs from Il10(-/-, Tlr2(-/-, and Myd88(-/- mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+ DCs failed to induce IL-10 production from co-cultured Il27ra(-/- T cells. B. breve treatment of Tlr2(-/- mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+ T cells from wild-type mice, but not Il10(-/- mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  20. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Science.gov (United States)

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  1. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  2. IL-1β, But Not Programed Death-1 and Programed Death Ligand Pathway, Is Critical for the Human Th17 Response to Mycobacterium tuberculosis

    Science.gov (United States)

    Stephen-Victor, Emmanuel; Sharma, Varun Kumar; Das, Mrinmoy; Karnam, Anupama; Saha, Chaitrali; Lecerf, Maxime; Galeotti, Caroline; Kaveri, Srinivas V.; Bayry, Jagadeesh

    2016-01-01

    The programed death-1 (PD-1)–programed death ligand-1 (PD-L1) and PD-L2 co-inhibitory pathway has been implicated in the evasion strategies of Mycobacterium tuberculosis. Specifically, M. tuberculosis-induced PD-L1 orchestrates expansion of regulatory T cells and suppression of Th1 response. However, the role of PD pathway in regulating Th17 response to M. tuberculosis has not been investigated. In the present report, we demonstrate that M. tuberculosis and M. tuberculosis-derived antigen fractions have differential abilities to mediate human monocyte- and dendritic cell (DC)-mediated Th17 response and were independent of expression of PD-L1 or PD-L2 on aforementioned antigen-presenting cells. Importantly, we observed that blockade of PD-L1 or PD-1 did not significantly modify either the frequencies of Th17 cells or the production of IL-17 from CD4+ T cells though IFN-γ response was significantly enhanced. On the contrary, IL-1β from monocytes and DCs were critical for the Th17 response to M. tuberculosis. Together, our results indicate that IL-1β, but not members of the programed death pathway, is critical for human Th17 response to M. tuberculosis. PMID:27867382

  3. IL-1β but not programmed death-1 and programmed death-ligand pathway is critical for the human Th17 response to M. tuberculosis

    Directory of Open Access Journals (Sweden)

    Emmanuel Stephen-Victor

    2016-11-01

    Full Text Available The programmed death-1 (PD-1- programmed death ligand-1 (PD-L1 and PD-L2 co-inhibitory pathway has been implicated in the evasion strategies of Mycobacterium tuberculosis. Specifically, M. tuberculosis-induced PD-L1 orchestrates expansion of regulatory T cells (Tregs and suppression of Th1 response. However, the role of PD pathway in regulating Th17 response to M. tuberculosis has not been investigated. In the present report, we demonstrate that M. tuberculosis and M. tuberculosis-derived antigen fractions have differential abilities to mediate human monocyte and dendritic cell (DC-mediated Th17 response and were independent of expression of PD-L1 or PD-L2 on aforementioned antigen-presenting cells. Importantly, we observed that blockade of PD-L1 or PD-1 did not significantly modify either the frequencies of Th17 cells or the production of IL-17 from CD4+ T cells though IFN-γ response was significantly enhanced. On the contrary, IL-1β from monocytes and DCs were critical for the Th17 response to M. tuberculosis. Together, our results indicate that IL-1β but not members of the programmed death pathway is critical for human Th17 response to M. tuberculosis

  4. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner

    LENUS (Irish Health Repository)

    Minogue, Aedín M

    2012-06-14

    AbstractBackgroundCompelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNFα, IL-6 and IL-1β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κB (NFκB) complex and the Janus kinases (JAKs)\\/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS).MethodsWe examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats.ResultsTNFα was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NFκB signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK\\/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNFα induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNFα receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNFα and IL-1β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release.ConclusionsThese data indicate that TNFα may regulate IL-6 production through activation of JAK\\/STAT signaling and that the subsequent production of IL-6 may impact on the release of

  5. Runx1 and Runx3 are involved in the generation and function of highly suppressive IL-17-producing T regulatory cells.

    Directory of Open Access Journals (Sweden)

    Lequn Li

    Full Text Available CD4(+Foxp3(+ T regulatory cells (Tregs display phenotypic and functional plasticity that is regulated by cytokines and other immune cells. Previously, we determined that during co-culture with CD4(+CD25(- T cells and antigen presenting cells, Tregs produced IL-17. Here, we investigated the mechanisms underlying the differentiation of IL-17-producing Treg (Tr17 cells and their molecular and functional properties. We determined that during stimulation via TCR/CD3 and CD28, the combination of IL-1β and IL-2 was necessary and sufficient for the generation of Tr17 cells. Tr17 cells expressed Runx1 transcription factor, which was required for sustained expression of Foxp3 and RORγt and for production of IL-17. Surprisingly, Tr17 cells also expressed Runx3, which regulated transcription of perforin and granzyme B thereby mediating cytotoxic activity. Our studies indicate that Tr17 cells concomitantly express Foxp3, RORγt, Runx1 and Runx3 and are capable of producing IL-17 while mediating potent suppressive and cytotoxic function.

  6. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2010-05-01

    Full Text Available Abstract Background Two decades after the introduction of oil-based vaccines in the control of bacterial and viral diseases in farmed salmonids, the mechanisms of induced side effects manifested as intra-abdominal granulomas remain unresolved. Side effects have been associated with generation of auto-antibodies and autoimmunity but the underlying profile of inflammatory and immune response has not been characterized. This study was undertaken with the aim to elucidate the inflammatory and immune mechanisms of granuloma formation at gene expression level associated with high and low side effect (granuloma indices. Groups of Atlantic salmon parr were injected intraperitoneally with oil-adjuvanted vaccines containing either high or low concentrations of Aeromonas salmonicida or Moritella viscosa antigens in order to induce polarized (severe and mild granulomatous reactions. The established granulomatous reactions were confirmed by gross and histological methods at 3 months post vaccination when responses were known to have matured. The corresponding gene expression patterns in the head kidneys were profiled using salmonid cDNA microarrays followed by validation by real-time quantitative PCR (qPCR. qPCR was also used to examine the expression of additional genes known to be important in the adaptive immune response. Results Granulomatous lesions were observed in all vaccinated fish. The presence of severe granulomas was associated with a profile of up-regulation of innate immunity-related genes such as complement factors C1q and C6, mannose binding protein, lysozyme C, C-type lectin receptor, CD209, Cathepsin D, CD63, LECT-2, CC chemokine and metallothionein. In addition, TGF-β (p = 0.001, IL-17A (p = 0.007 and its receptor (IL-17AR (p = 0.009 representing TH17 were significantly up-regulated in the group with severe granulomas as were arginase and IgM. None of the genes directly reflective of TH1 T cell lineage (IFN-γ, CD4 or TH2 (GATA-3

  7. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    Science.gov (United States)

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  8. Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis

    DEFF Research Database (Denmark)

    Kaas, A; Pfleger, Claudia Christina; Hansen, Lene

    2010-01-01

    progressers and remitters. Serum concentrations of adiponectin, interleukin (IL)-1ra, inducible protein 10 (IP-10), IL-6 and glutamic acid decarboxylase (GAD), IA-2A and islet-cell antibodies (ICA) were measured at 1, 6 and 12 months. We found that adiponectin concentrations at 1 month predicted disease......The progression of type 1 diabetes after diagnosis is poorly understood. Our aim was to assess the relation of disease progression of juvenile-onset type 1 diabetes, determined by preserved beta cell function the first year after diagnosis, with systemic cytokine concentrations and number...

  9. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes.

    Science.gov (United States)

    Zaibi, Mohamed S; Kępczyńska, Małgorzata A; Harikumar, Parvathy; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-15

    Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1β. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells.

    Science.gov (United States)

    Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A; Byrd, John C; Satoskar, Abhay R

    Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF-β, IL-10 and IL-18. While ibrutinib dampened MHC-II and CD86 expression on DCs, CD80 expression was upregulated. Further, ibrutinib-treated DCs promoted T cell proliferation and enhanced IL-17 production upon co-culture with nylon wool enriched T cells. Taken together, our results indicate that ibrutinib modulates TLR-4 mediated DC activation to promote an IL-17 response. We describe a novel mode of action for ibrutinib on DCs which should be explored to treat other forms of cancer besides B cell malignancies.

  11. Intranasal delivery of cholera toxin induces th17-dominated T-cell response to bystander antigens.

    Directory of Open Access Journals (Sweden)

    Jee-Boong Lee

    Full Text Available Cholera toxin (CT is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2 response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses.

  12. Endogenous IL-22 Plays a Dual Role in Arthritis: Regulation of Established Arthritis via IFN-γ Responses

    Science.gov (United States)

    Justa, Shivali; Zhou, Xiaoqun; Sarkar, Sujata

    2014-01-01

    Objective IL-22 is elevated in patients with inflammatory arthritis and correlates with disease activity. IL-22 deficient mice have reduced incidence of arthritis. Recombinant IL-22 restrains progression of arthritis via increase in IL-10 responses when administered prior to onset of arthritis. These findings imply a possible dual role of IL-22 in inflammatory arthritis depending on the phase of arthritis. Experiments outlined here were designed to elucidate the contribution of endogenous IL-22 before and after the onset of arthritis. Methods Collagen induced arthritis (CIA) was induced in DBA1 or IFN-γ deficient mice following immunization with collagen and complete Freund's adjuvant. Anti-IL-22 antibody or isotype control were administered prior to or after onset of arthritis and disease progression assessed by clinical scoring and histopathology. IL-22, IL-17 and IFN-γ responses were measured by ELISA and flowcytometry. Anti-collagen antibody responses were analyzed by ELISA. Expression of IL-22R1 in CD4+ cells was elucidated by flowcytometry and real time PCR. Results Collagen specific IL-22 responses were expanded during arthritis and IL-22 producing cells were discrete from IL-17 or IFN-γ producing cells. Neutralization of IL-22 after onset of arthritis resulted in significant increase in Th1 responses and significantly reduced severity of arthritis. CD4+ cells from arthritic mice showed increased surface expression of IL-22R1. In vitro, CD4+T cells cultured with antigen presenting cells in the presence or absence of IL-22 suppressed or induced IFN-γ, respectively. The protective effect of anti-IL-22 was reversed in IFN-γ deficient mice. Moreover, administration of anti-IL-22 prior to onset of arthritis augmented arthritis severity. Conclusion We show for the first time that IL-22 plays a dual role: protective prior to the onset of arthritis and pathogenic after onset of arthritis. The pathogenic effect of IL-22 is dependent on suppression of IFN

  13. Relationship between female genital tract infections, mucosal interleukin-17 production and local T helper type 17 cells.

    Science.gov (United States)

    Masson, Lindi; Salkinder, Amy L; Olivier, Abraham Jacobus; McKinnon, Lyle R; Gamieldien, Hoyam; Mlisana, Koleka; Scriba, Thomas J; Lewis, David A; Little, Francesca; Jaspan, Heather B; Ronacher, Katharina; Denny, Lynette; Abdool Karim, Salim S; Passmore, Jo-Ann S

    2015-12-01

    T helper type 17 (Th17) cells play an important role in immunity to fungal and bacterial pathogens, although their role in the female genital tract, where exposure to these pathogens is common, is not well understood. We investigated the relationship between female genital tract infections, cervicovaginal interleukin-17 (IL-17) concentrations and Th17 cell frequencies. Forty-two cytokines were measured in cervicovaginal lavages from HIV-uninfected and HIV-infected women. Frequencies of Th17 cells (CD3(+) CD4(+) IL-17a(+)) were evaluated in cervical cytobrushes and blood by flow cytometry. Women were screened for Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis and herpes simplex virus 2 by PCR, and candidal infections and bacterial vaginosis by Gram stain. Women with bacterial sexually transmitted infections (STIs), specifically chlamydia and gonorrhoea, had higher genital IL-17 concentrations than women with no STI, whereas women with candidal pseudohyphae/spores had lower IL-17 concentrations compared with women without candidal infections. Viral STIs (herpes simplex virus 2 and HIV) were not associated with significant changes in genital IL-17 concentrations. Genital IL-17 concentrations correlated strongly with other inflammatory cytokines and growth factors. Although Th17 cells were depleted from blood during HIV infection, cervical Th17 cell frequencies were similar in HIV-uninfected and HIV-infected women. Cervical Th17 cell frequencies were also not associated with STIs or candida, although few women had a STI. These findings suggest that IL-17 production in the female genital tract is induced in response to bacterial but not viral STIs. Decreased IL-17 associated with candidal infections suggests that candida may actively suppress IL-17 production or women with dampened IL-17 responses may be more susceptible to candidal outgrowth. © 2015 John Wiley & Sons Ltd.

  14. Sea Cucumber Lipid-Soluble Extra Fraction Prevents Ovalbumin-Induced Allergic Airway Inflammation.

    Science.gov (United States)

    Lee, Da-In; Kang, Shin Ae; Md, Anisuzzaman; Jeong, U-Cheol; Jin, Feng; Kang, Seok-Joong; Lee, Jeong-Yeol; Yu, Hak Sun

    2018-01-01

    In a previous study, our research group demonstrated that sea cucumber (Apostichopus japonicus) extracts ameliorated allergic airway inflammation through CD4 + CD25 + Foxp3 + T (regulatory T; Treg) cell activation and recruitment to the lung. In this study, we aimed to determine which components of sea cucumber contribute to the amelioration of airway inflammation. We used n-hexane fractionation to separate sea cucumber into three phases (n-hexane, alcohol, and solid) and evaluated the ability of each phase to elevate Il10 expression in splenocytes and ameliorate symptoms in mice with ovalbumin (OVA)/alum-induced asthma. Splenocytes treated with the n-hexane phase showed a significant increase in Il10 expression. In the n-hexane phase, 47 fatty acids were identified. Individual fatty acids that comprised at least 5% of the total fatty acids were 16:0, 16:1n-7, 18:0, 18:1n-7, 20:4n-6, and 20:5n-3 (eicosapentaenoic acid). After administering the n-hexane phase to mice with OVA/alum-induced asthma, their asthma symptoms were ameliorated. Several immunomodulatory effects were observed in the n-hexane phase-pretreated group, compared with a vehicle control group. First, eosinophil infiltration and goblet cell hyperplasia were significantly reduced around the airways. Second, the concentrations of Th2-related cytokines (IL-4, IL-5, and IL-13) and Th17-related cytokines (IL-17) were significantly decreased in the spleen and bronchoalveolar lavage fluid (BALF). Finally, the concentrations of TGF-β and IL-10, which are associated with Treg cells, were significantly increased in the BALF and splenocyte culture medium. In conclusion, a fatty acid-rich fraction (n-hexane phase) of sea cucumber extract ameliorated allergic airway inflammation in a mouse model.

  15. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Muromoto, Ryuta; Takahashi, Miki [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Takeda, Yukimasa; Jetten, Anton M. [National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 (United States); Matsuda, Tadashi [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)

    2012-03-15

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10{sup −6} M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides

  16. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M.; Matsuda, Tadashi

    2012-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against RORα/γ. In this study, we investigated the RORα/γ activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed RORα- and/or RORγ-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed RORγ inverse agonistic activity at concentrations of 10 −6 M. However, unlike T0901317, these fungicides failed to show any LXRα/β agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting RORα and RORγ mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in RORα/γ-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via RORα/γ. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ► Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. ► Five azole-type fungicides act as RORα/γ inverse agonists. ► These fungicides suppress

  17. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance

    Science.gov (United States)

    Patin, Emmanuel C.; Jones, Adam V.; Thompson, Aiysha; Clement, Mathew; Liao, Chia-Te; Griffiths, James S.; Wallace, Leah E.; Bryant, Clare E.; Lang, Roland; Rosenstiel, Philip; Humphreys, Ian R.; Taylor, Philip R.

    2016-01-01

    Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens. PMID:27259855

  18. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.

    Science.gov (United States)

    Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong

    2012-10-01

    In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.

  19. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  20. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells

    International Nuclear Information System (INIS)

    Escudero-Lourdes, C.; Wu, T.; Camarillo, J.M.; Gandolfi, A.J.

    2012-01-01

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation. -- Highlights: ► IL-8 is over-expressed in human MMA(III)-exposed urothelial

  1. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3

    International Nuclear Information System (INIS)

    Tsuyama, Naohiro; Danjoh, Inaho; Otsuyama, Ken-ichiro; Obata, Masanori; Tahara, Hidetoshi; Ohta, Tsutomu; Ishikawa, Hideaki

    2005-01-01

    IL-6 is a growth and survival factor for myeloma cells, although the mechanism by which it induces myeloma cell proliferation through gene expression is largely unknown. Microarray analysis showed that some B-cell lymphoma-associated oncogenes such as Bcl6, which is absent in normal plasma cells, were upregulated by IL-6 in IL-6-dependent myeloma cell lines. We found that Bcl6 variant 2 was upregulated by STAT3. ChIP assay and EMSA showed that STAT3 bound to the upstream region of variant 2 DNA. Expression of p53, a direct target gene of Bcl6, was downregulated in the IL-6-stimulated cells, and this process was impaired by an HDAC inhibitor. Bcl6 was knocked down by introducing small hairpin RNA, resulting in decreased proliferation and increased sensitivity to a DNA damaging agent. Thus, STAT3-inducible Bcl6 variant 2 appears to generate an important IL-6 signal that supports proliferation and survival of IL-6-dependent myeloma cells

  2. Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice.

    Science.gov (United States)

    Tang, Xiaobin; Zhang, Bo; Jarrell, Justin A; Price, Jordan V; Dai, Hongjie; Utz, Paul J; Strober, Samuel

    2014-05-01

    Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19(+) B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108(lo)CD4(-)NK1.1(-) phenotype, whereas the IL-21 secreting subset expressed the Ly108(hi)CD4(+)NK1.1(-) phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells.

    Science.gov (United States)

    Kulkarni, Upasana; Herrmenau, Christoph; Win, Stephanie J; Bauer, Michael; Kamradt, Thomas

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions.

  4. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma.

    Directory of Open Access Journals (Sweden)

    Ying Lei

    Full Text Available In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.

  5. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth.

    Science.gov (United States)

    De Simone, V; Franzè, E; Ronchetti, G; Colantoni, A; Fantini, M C; Di Fusco, D; Sica, G S; Sileri, P; MacDonald, T T; Pallone, F; Monteleone, G; Stolfi, C

    2015-07-01

    Colorectal cancers (CRCs) often show a dense infiltrate of cytokine-producing immune/inflammatory cells. The exact contribution of each immune cell subset and cytokine in the activation of the intracellular pathways sustaining CRC cell growth is not understood. Herein, we isolate tumor-infiltrating leukocytes (TILs) and lamina propria mononuclear cells (LPMCs) from the tumor area and the macroscopically unaffected, adjacent, colonic mucosa of patients who underwent resection for sporadic CRC and show that the culture supernatants of TILs, but not of LPMCs, potently enhance the growth of human CRC cell lines through the activation of the oncogenic transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappa B (NF-kB). Characterization of immune cell complexity of TILs and LPMCs reveals no differences in the percentages of T cells, natural killer T cells, natural killer (NK) cells, macrophages and B cells. However, T cells from TILs show a functional switch compared with those from LPMCs to produce large amounts of T helper type 17 (Th17)-related cytokines (that is, interleukin-17A (IL-17A), IL-17F, IL-21 and IL-22), tumor necrosis factor-α (TNF-α) and IL-6. Individual neutralization of IL-17A, IL-17F, IL-21, IL-22, TNF-α or IL-6 does not change TIL-derived supernatant-driven STAT3 and NF-kB activation, as well as their proproliferative effect in CRC cells. In contrast, simultaneous neutralization of both IL-17A and TNF-α, which abrogates NF-kB signaling, and IL-22 and IL-6, which abrogates STAT3 signaling, reduces the mitogenic effect of supernatants in CRC cells. IL-17A, IL-21, IL-22, TNF-α and IL-6 are also produced in excess in the early colonic lesions in a mouse model of sporadic CRC, associated with enhanced STAT3/NF-kB activation. Mice therapeutically given BP-1-102, an orally bioavailable compound targeting STAT3/NF-kB activation and cross-talk, exhibit reduced colon tumorigenesis and diminished expression of

  6. Titanium dioxide particle – induced goblet cell hyperplasia : association with mast cells and IL-13

    Directory of Open Access Journals (Sweden)

    Kim Soo-Ho

    2005-04-01

    Full Text Available Abstract Background Inhalation of particles aggravates respiratory symptoms including mucus hypersecretion in patients with chronic airway disease and induces goblet cell hyperplasia (GCH in experimental animal models. However, the underlying mechanisms remain poorly understood. Methods To understand this, the numbers of goblet cells, Muc5ac (+ expressing epithelial cells and IL-13 expressing mast cells were measured in the trachea of sham or TiO2 particles – treated rats using periodic acid-Schiff, toluidine blue and immunohistochemical staining. RT-PCR for Muc-1, 2 and 5ac gene transcripts was done using RNA extracted from the trachea. Differential cell count and IL-13 levels were measured in bronchoalveolar lavage (BAL fluid. In pretreatment groups, cyclophosphamide (CPA or dexamethasone (DEX was given before instillation of TiO2. TiO2 treatment markedly increased Muc5ac mRNA expression, and Muc5ac (+ or PAS (+ epithelial cells 48 h following treatment. Results The concentration of IL-13 in BAL fluids was higher in TiO2 treated – rats when compared to those in sham rats (p 2 treated – rats (p 0.05. In contrast, pretreatment with dexamethasone (DEX diminished the percentage of PAS (+ cells and the levels of IL-13 (p 2 treatment increased the IL-13 (+ mast cells (p 0.05. In addition there were significant correlations of IL-13 (+ rate of mast cells in the trachea with IL-13 concentration in BAL fluid (p 2 treated rats (p Conclusion In conclusion, TiO2 instillation induces GCH and Muc5ac expression, and this process may be associated with increased production of IL-13 by mast cells.

  7. 3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), physicochemical and physiological properties of a new fluorinated bile acid that prevents 17α-ethynyl-estradiol-induced cholestasis in rats

    International Nuclear Information System (INIS)

    Clerici, Carlo; Castellani, Danilo; Asciutti, Stefania; Pellicciari, Roberto; Setchell, Kenneth D.R.; O'Connell, Nancy C.; Sadeghpour, Bahman; Camaioni, Emidio; Fiorucci, Stefano; Renga, Barbara; Nardi, Elisabetta; Sabatino, Giuseppe; Clementi, Mattia; Giuliano, Vittorio; Baldoni, Monia; Orlandi, Stefano; Mazzocchi, Alessandro; Morelli, Antonio; Morelli, Olivia

    2006-01-01

    3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), the 7α-fluorine analog of hyodeoxycholic acid (HDCA), was synthesized to improve bioavailability and stability of ursodeoxycholic acid (UDCA). Acute rat biliary fistula and chronic cholestasis induced by 17α-ethynyl-estradiol (17EE) models were used to study and compare the effects of UPF-680 (dose range 0.6-6.0 μmol/kg min) with UDCA on bile flow, biliary bicarbonate (HCO 3 - ), lipid output, biliary bile acid composition, hepatic enzymes and organic anion pumps. In acute infusion, UPF-680 increased bile flow in a dose-related manner, by up to 40.9%. Biliary HCO 3 - output was similarly increased. Changes were observed in phospholipid secretion only at the highest doses. Treatment with UDCA and UPF-680 reversed chronic cholestasis induced by 17EE; in this model, UDCA had no effect on bile flow in contrast to UPF-680, which significantly increased bile flow. With acute administration of UPF-680, the biliary bile acid pool became enriched with unconjugated and conjugated UPF-680 (71.7%) at the expense of endogenous cholic acid and muricholic isomers. With chronic administration of UPF-680 or UDCA, the main biliary bile acids were tauro conjugates, but modification of biliary bile acid pool was greater with UPF-680. UPF-680 increased the mRNA for cytochrome P450 7A1 (CYP7A1) and cytochrome P450 8B (CYP8B). Both UDCA and UPF-680 increased the mRNA for Na + taurocholate co-transporting polypeptide (NCTP). In conclusion, UPF-680 prevented 17EE-induced cholestasis and enriched the biliary bile acid pool with less detergent and cytotoxic bile acids. This novel fluorinated bile acid may have potential in the treatment of cholestatic liver disease

  8. The Role of Th17 in Neuroimmune Disorders: Target for CAM Therapy. Part II

    Directory of Open Access Journals (Sweden)

    Aristo Vojdani

    2011-01-01

    Full Text Available Decades of research went into understanding the role that Th1 autoreactive T-cells play in neuroinflammation. Here we describe another effector population, the IL-17-producing T-helper lineage (Th17, which drives the inflammatory process. Through the recruitment of inflammatory infiltration neutrophils and the activation of matrix metalloproteinases, IL-17, a cytokine secreted by Th17 cells, contributes to blood-brain barrier breakdown and the subsequent attraction of macrophages and monocytes into the nervous system. The entry of cells along with the local production of inflammatory cytokines leads to myelin and axonal damage. This activation of the inflammatory response system is induced by different pathogenic factors, such as gut bacterial endotoxins resulting in progressive neurodegeneration by Th17 cells. Through the understanding of the role of bacterial endotoxins and other pathogenic factors in the induction of autoimmune diseases by Th17 cells, CAM practitioners will be able to design CAM therapies targeting IL-17 activity. Targeted therapy can restore the integrity of the intestinal and blood-brain barriers using probiotics, N-acetyl-cysteine, α-lipoic acid, resveratrol and others for their patients with autoimmunities, in particular those with neuroinflammation and neurodegeneration.

  9. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    Science.gov (United States)

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  10. Modulation of pulmonary fibrosis by IL-13Rα2.

    Science.gov (United States)

    Lumsden, Robert V; Worrell, Julie C; Boylan, Denise; Walsh, Sinead M; Cramton, Jennifer; Counihan, Ian; O'Beirne, Sarah; Medina, Maria Fe; Gauldie, Jack; Fabre, Aurelie; Donnelly, Seamas C; Kane, Rosemary; Keane, Michael P

    2015-04-01

    Pulmonary fibrosis is a progressive and fatal disease that involves the remodeling of the distal airspace and the lung parenchyma, which results in compromised gas exchange. The median survival time once diagnosed is less than three years. Interleukin (IL)-13 has been shown to play a role in a number of inflammatory and fibrotic diseases. IL-13 modulates its effector functions via a complex receptor system that includes the IL-4 receptor (R) α, IL-13Rα1, and the IL-13Rα2. IL-13Rα1 binds IL-13 with low affinity, yet, when it forms a complex with IL-4α, it binds with much higher affinity, inducing the effector functions of IL-13. IL-13Rα2 binds IL-13 with high affinity but has a short cytoplasmic tail and has been shown to act as a nonsignaling decoy receptor. Transfection of fibroblasts and epithelial cells with IL-13Rα2 inhibited the IL-13 induction of soluble collagen, TGF-β, and CCL17. Adenoviral overexpression of IL-13Rα2 in the lung reduced bleomycin-induced fibrosis. Our work shows that overexpression of IL-13Rα2 inhibits the IL-13 induction of fibrotic markers in vitro and inhibits bleomycin-induced pulmonary fibrosis. In summary our study highlights the antifibrotic nature of IL-13Ra2. Copyright © 2015 the American Physiological Society.

  11. Podoplanin is a negative regulator of Th17 inflammation.

    Science.gov (United States)

    Nylander, Alyssa N; Ponath, Gerald D; Axisa, Pierre-Paul; Mubarak, Mayyan; Tomayko, Mary; Kuchroo, Vijay K; Pitt, David; Hafler, David A

    2017-09-07

    Recent data indicate that there are different subpopulations of Th17 cells that can express a regulatory as opposed to an inflammatory gene signature. The transmembrane glycoprotein PDPN is critical in the development of multiple organs including the lymphatic system and has been described on T cells in mouse models of autoimmune Th17 inflammation. Here, we demonstrate that unlike in mice, PDPN+ T cells induced under classic Th17-polarizing conditions express transcription factors associated with Th17 cells but do not produce IL-17. Moreover, these cells express a transcriptional profile enriched for immunosuppressive and regulatory pathways and express a distinct cytokine profile compared with potentially pathogenic PDPN- Th17 cells. Ligation of PDPN by its ligand CLEC-2 ameliorates the Th17 inflammatory response. IL-17 secretion is restored with shRNA gene silencing of PDPN. Furthermore, PDPN expression is reduced via an Sgk1-mediated pathway under proinflammatory, high sodium chloride conditions. Finally, CD3+PDPN+ T cells are devoid of IL-17 in skin biopsies from patients with candidiasis, a prototypical Th17-driven skin disease. Thus, our data support the hypothesis that PDPN may serve as a marker of a nonpathogenic Th17 cell subset and may also functionally regulate pathogenic Th17 inflammation.

  12. Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids.

    Directory of Open Access Journals (Sweden)

    Md Mostafizur Rahman

    Full Text Available The bioactive sphingolipid sphingosine 1-phosphate (S1P is found in increased amounts in the airways of asthmatics. S1P can regulate airway smooth muscle functions associated with asthmatic inflammation and remodeling, including cytokine secretion. To date however, whether S1P induces secretion of an important chemokine responsible for neutrophilia in airway inflammation--IL-8--was unexplored. The aim of this study was to investigate whether S1P induces IL-8 gene expression and secretion to enhance neutrophil chemotaxis in vitro, as well as examine the molecular mechanisms responsible for repression by the corticosteroid dexamethasone. We show that S1P upregulates IL-8 secretion from ASM cells and enhance neutrophil chemotaxis in vitro. The corticosteroid dexamethasone significantly represses IL-8 mRNA expression and protein secretion in a concentration- and time-dependent manner. Additionally, we reveal that S1P-induced IL-8 secretion is p38 MAPK and ERK-dependent and that these key phosphoproteins act on the downstream effector mitogen- and stress-activated kinase 1 (MSK1 to control secretion of the neutrophil chemoattractant cytokine IL-8. The functional relevance of this in vitro data was demonstrated by neutrophil chemotaxis assays where S1P-induced effects can be significantly attenuated by pretreatment with dexamethasone, pharmacological inhibition of p38 MAPK- or ERK-mediated pathways, or by knocking down MSK-1 with siRNA. Taken together, our study reveals the molecular pathways responsible for IL-8 secretion from ASM cells in response to S1P and indicates ways in which the impact on IL-8-driven neutrophilia may be lessened.

  13. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Rattik, Sara; Wigren, Maria; Vallejo, Jenifer; Marinkovic, Goran; Schiopu, Alexandru; Björkbacka, Harry; Nilsson, Jan; Bengtsson, Eva

    2018-01-01

    The role of CD4+ T cells in atherosclerosis has been shown to be dependent on cytokine cues that regulate lineage commitment into mature T helper sub-sets. In this study, we tested the roles of IL-1R1 and MyD88 signalling in CD4+ T cells in atherosclerosis. We transferred apoe-/-myd88+/+ or apoe-/-myd88-/- CD4+ T cells to T- and B-cell-deficient rag1-/-apoe-/- mice fed high fat diet. Mice given apoe-/-myd88-/- CD4+ T cells exhibited reduced atherosclerosis compared with mice given apoe-/-myd88+/+ CD4+ T cells. CD4+ T cells from apoe-/-myd88-/- produced less IL-17 but similar levels of IFN-γ. Treatment of human CD4+ T cells with a MyD88 inhibitor inhibited IL-17 secretion in vitro. Transfer of il1r1-/- CD4+ T cells recapitulated the phenotype seen by transfer of myd88-/- CD4+ T cells with reduced lesion development and a reduction in Th17 and IL-17 production compared with wild type CD4+ T cell recipients. Relative collagen content of lesions was reduced in mice receiving il1r1-/- CD4+ T cells. We demonstrate that both IL1R and MyD88 signalling in CD4+ T cells promote Th17 immunity, plaque growth and may regulate plaque collagen levels. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  14. Th17 cells in the pathogenesis of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Marek Juszczak

    2009-10-01

    Full Text Available Th17 cells are a recently described subset of T helper lymphocytes characterized by the production of IL-17 (IL-17A. Since their discovery in 2003, studies on Th17 cells have become increasingly popular among immunologists and they have emerged as key players in the pathogenesis of multiple sclerosis (MS and other autoimmune disorders traditionally attributed to Th1 cells. Murine Th17 lymphocytes differentiate from naive CD4 cells in a specific cytokine environment, which includes TGF- and IL-6 or IL-21, whereas human Th17 cell development requires TGF-, IL-1, and IL-2 in combination with IL-6, IL-21, or IL-23. Th17-related response is additionally enhanced by osteopontin, TNF, and PGE2 and suppressed by IL-25, IL-27, IL-35, and IL-10. Apart from their main cytokine, Th17 cells can also express IL-17F, IL-21, IL-22, TNF, CCL20, and, in humans, IL-26. All of these mediators may contribute to the proinflammatory action of Th17 .cells both in the clearance of various pathogens and in autoimmunity. At least some of these functions are exerted through the induction of neutrophil-recruiting chemokines (CXCL1, CXCL2, CXCL8 by IL-17. Accumulating evidence from studies on mice and humans indicates an important role of Th17 cells in mediating autoimmune neuroinflammation. This has led some immunologists to question the previously exhibited importance of Th1 cells in MS pathology. However, more recent data suggest that both these T-cell subsets are capable of inducing and promoting the disease. Further investigation is required to clarify the role of Th17 cells in the pathogenesis of MS since some of the Th17-related molecules appear as attractive targets for future therapeutic strategies

  15. Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human Chagas' disease.

    Directory of Open Access Journals (Sweden)

    Paulo Marcos Matta Guedes

    Full Text Available BACKGROUND: Myocardium damage during Chagas' disease results from the immunological imbalance between pro- and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation and parasite induced myocarditis. Here, we investigated the role of IL-17 and regulatory T cell during human Chagas' disease. METHODOLOGY/PRINCIPAL FINDINGS: First, we observed CD4(+IL-17(+ T cells in culture of peripheral blood mononuclear cells (PBMC from Chagas' disease patients and we evaluated Th1, Th2, Th17 cytokine profile production in the PBMC cells from Chagas' disease patients (cardiomyopathy-free, and with mild, moderate or severe cardiomyopathy cultured with T. cruzi antigen. Cultures of PBMC from patients with moderate and severe cardiomyopathy produced high levels of TNF-α, IFN-γ and low levels of IL-10, when compared to mild cardiomyopathy or cardiomyopathy-free patients. Flow cytometry analysis showed higher CD4(+IL-17(+ cells in PBMC cultured from patients without or with mild cardiomyopathy, in comparison to patients with moderate or severe cardiomyopathy. We then analyzed the presence and function of regulato