WorldWideScience

Sample records for acid induced neurodegeneration

  1. Neuroinflammation Induces Neurodegeneration

    Science.gov (United States)

    Kempuraj, D; Thangavel, R; Natteru, PA; Selvakumar, GP; Saeed, D; Zahoor, H; Zaheer, S; Iyer, SS; Zaheer, A

    2017-01-01

    Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple Sclerosis (MS) are characterized by neuronal degeneration and neuronal death in specific regions of the central nervous system (CNS). In AD, neurons of the hippocampus and entorhinal cortex are the first to degenerate, whereas in PD, dopaminergic neurons in the substantia nigra degenerate. MS patients show destruction of the myelin sheath. Once the CNS neurons are damaged, they are unable to regenerate unlike any other tissue in the body. Neurodegeneration is mediated by inflammatory and neurotoxic mediators such as interleukin-1beta (IL-1β), IL-6, IL-8, IL-33, tumor necrosis factor-alpha (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), CCL5, matrix metalloproteinase (MMPs), granulocyte macrophage colony-stimulating factor (GM-CSF), glia maturation factor (GMF), substance P, reactive oxygen species (ROS), reactive nitrogen species (RNS), mast cells-mediated histamine and proteases, protease activated receptor-2 (PAR-2), CD40, CD40L, CD88, intracellular Ca+ elevation, and activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-kB). Activated microglia, astrocytes, neurons, T-cells and mast cells release these inflammatory mediators and mediate neuroinflammation and neurodegeneration in a vicious manner. Further, immune and inflammatory cells and inflammatory mediators from the periphery cross the defective blood-brain-barrier (BBB) and augment neuroinflammation. Though inflammation is crucial in the onset and the progression of neurodegenerative diseases, anti-inflammatory drugs do not provide significant therapeutic effects in these patients till date, as the disease pathogenesis is not yet clearly understood. In this review, we discuss the possible factors involved in neuroinflammation-mediated neurodegeneration. PMID:28127589

  2. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid.

    Science.gov (United States)

    Calderón Guzmán, David; Brizuela, Norma Osnaya; Ortíz Herrera, Maribel; Hernández García, Ernestina; Barragán Mejía, Gerardo; Juárez Olguín, Hugo; Valenzuela Peraza, Armando; Attilus, Jonas; Labra Ruíz, Norma

    2016-09-01

    The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA). To address this hypothesis, the levels of dopamine (DA) and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP), glutathione (GSH), calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  3. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid

    Directory of Open Access Journals (Sweden)

    Calderón Guzmán David

    2016-09-01

    Full Text Available The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA. To address this hypothesis, the levels of dopamine (DA and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP, glutathione (GSH, calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  4. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures

    DEFF Research Database (Denmark)

    Penkowa, M; Molinero, A; Carrasco, J

    2001-01-01

    , the immunoreactivity for inducible nitric oxide synthase, peroxynitrite-induced nitration of proteins and byproducts of fatty acid peroxidation were dramatically increased, as was that for metallothionein I+II, Mn-superoxide dismutase and Cu/Zn-superoxide dismutase. In accordance, a significant neuronal apoptosis...... was caused by kainic acid, as revealed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and interleukin-1beta converting enzyme/Caspase-1 stainings. In kainic acid-injected interleukin-6 null mice, reactive astrogliosis and microgliosis were reduced, while......The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice...

  5. Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures

    DEFF Research Database (Denmark)

    Penkowa, Milena; Florit, Sergi; Giralt, Mercedes

    2005-01-01

    , such as oxidative stress (formation of nitrotyrosine, malondialdehyde, and 8-oxoguanine), neurodegeneration (neuronal accumulation of abnormal proteins), and apoptotic cell death (judged by TUNEL and activated caspase-3). This reduced bystander damage in TgMT mice could be due to antiinflammatory and antioxidant...

  6. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Xi Lei

    Full Text Available OBJECTIVES: To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. METHODS: Female Sprague-Dawley rats (n = 3 each group were treated with or without an n-3 PUFAs (fish oil enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7 were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control. The 5-bromodeoxyuridine (Brdu was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9, respectively. RESULTS: Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. CONCLUSION: Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working

  7. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol-induced

  8. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  9. The crustacean central nervous system in focus: subacute neurodegeneration induces a specific innate immune response.

    Directory of Open Access Journals (Sweden)

    Paula Grazielle Chaves da Silva

    Full Text Available To date nothing is known about the subacute phase of neurodegeneration following injury in invertebrates. Among few clues available are the results published by our group reporting hemocytes and activated glial cells at chronic and acute phases of the lesion. In vertebrates, glial activation and recruitment of immunological cells are crucial events during neurodegeneration. Here, we aimed to study the subacute stage of neurodegeneration in the crab Ucides cordatus, investigating the cellular/molecular strategy employed 48 hours following ablation of the protocerebral tract (PCT. We also explored the expression of nitric oxide (NO and histamine in the PCT during this phase of neurodegeneration. Three immune cellular features which seem to characterize the subacute phase of neurodegeneration were revealed by: 1 the recruitment of granulocytes and secondarily of hyalinocytes to the lesion site (inducible NO synthase- and histamine-positive cells; 2 the attraction of a larger number of cells than observed in the acute phase; 3 the presence of activated glial cells as shown by the round shaped nuclei and increased expression of glial fibrillary acidic protein. We suggest that molecules released from granulocytes in the acute phase attract the hyalinocytes thus moving the degeneration process to the subacute phase. The importance of our study resides in the characterization of cellular and biochemical strategies peculiar to the subacute stage of the neurodegeneration in invertebrates. Such events are worth studying in crustaceans because in invertebrates this issue may be addressed with less interference from complex strategies resulting from the acquired immune system.

  10. Molecular bases of methamphetamine-induced neurodegeneration.

    Science.gov (United States)

    Cadet, Jean Lud; Krasnova, Irina N

    2009-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.

  11. Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor.

    Science.gov (United States)

    Gobbo, O L; O'Mara, S M

    2005-04-15

    Previous studies have suggested that exercise in a running wheel can be neuroprotective, perhaps due to, among others, gene-expression changes after exercise, increases in trophic proteins and/or enhanced cardiovascular responsivity. Here we ask whether physical exercise or environmental enrichment provide protection after brain damage, especially in terms of recovery of cognitive function. To evaluate the neuroprotective effect of these conditions, we used the kainic acid (KA) model of neuronal injury. Systemically-administered KA induces excitotoxicity by overstimulation of glutamate receptors, resulting in neuronal death by necrosis and apoptosis. Our results show that exercise, but not enriched environment, prior to KA-induced brain damage, improved behavioural performance in both Morris watermaze and object exploration tasks. However, prior exercise did not decrease to control levels the hyperactivity normally seen in KA-treated animals, as measured by ambulation in the open field. Furthermore, both exercise and enriched environment did not protect against neuron loss in CA1, CA2 and CA3 areas of the hippocampus, despite a substantial increase in brain-derived neutrophic factor (BDNF) levels in dentate gyrus of the exercise and KA-treated animals.

  12. NADPH oxidase contributes to streptozotocin-induced neurodegeneration.

    Science.gov (United States)

    Ravelli, Katherine Garcia; Rosário, Barbara Dos Anjos; Vasconcelos, Andrea Rodrigues; Scavone, Cristoforo; Camarini, Rosana; Hernandes, Marina S; Britto, Luiz Roberto

    2017-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive loss of memory. The neurodegeneration induced by AD has been linked to oxidative damage. However, little is known about the involvement of NADPH oxidase 2 (Nox2), a multisubunit enzyme that catalyzes the reduction of oxygen to produce reactive oxygen species, in the pathogenesis of AD. The main purpose of this study was to investigate the involvement of Nox2 in memory, in AD-related brain abnormalities, oxidative damage, inflammation and neuronal death in the hippocampus in the streptozotocin (STZ)-induced AD-like state by comparing the effects of that drug on mice lacking gp91(phox-/-) and wild-type (Wt) mice. Nox2 gene expression was found increased in Wt mice after STZ injection. In object recognition test, Wt mice injected with STZ presented impairment in short- and long-term memory, which was not observed following Nox2 deletion. STZ treatment induced increased phosphorylation of Tau and increased amyloid-β, apoptosis-inducing factor (AIF) and astrocyte and microglial markers expression in Wt mice but not in gp91(phox-/-). STZ treatment increased oxidative damage and pro-inflammatory cytokines' release in Wt mice, which was not observed in gp91(phox-/-) mice. Nox2 deletion had a positive effect on the IL-10 baseline production, suggesting that this cytokine might contribute to the neuroprotection mechanism against STZ-induced neurodegeneration. In summary, our data suggest that the Nox2-dependent reactive oxygen species (ROS) generation contributes to the STZ-induced AD-like state. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice.

    Science.gov (United States)

    Lima, Leandro Ceotto Freitas; Saliba, Soraya Wilke; Andrade, João Marcus Oliveira; Cunha, Maria Luisa; Cassini-Vieira, Puebla; Feltenberger, John David; Barcelos, Lucíola Silva; Guimarães, André Luiz Sena; de-Paula, Alfredo Mauricio Batista; de Oliveira, Antônio Carlos Pinheiro; Santos, Sérgio Henrique Sousa

    2016-05-16

    Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.

  14. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    Science.gov (United States)

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  15. Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Moresco, R.M. [San Raffaele Scientific Institute, IBFM-CNR, University of Milan Bicocca and Nuclear Medicine Department, Milano (Italy); Scientific Institute H San Raffaele, Department of Nuclear Medicine, Milano (Italy); Lavazza, T. [San Raffaele Scientific Institute, Laboratory of Neurobiology of Learning, Milano (Italy); Belloli, S.; Todde, S.; Matarrese, M.; Carpinelli, A.; Turolla, E.; Fazio, F. [San Raffaele Scientific Institute, IBFM-CNR, University of Milan Bicocca and Nuclear Medicine Department, Milano (Italy); Lecchi, M. [University of Milan Statale, San Paolo Hospital, Institute of Radiology, Milan (Italy); Pezzola, A.; Popoli, P. [Istituto Superiore di Sanita, Laboratory of Pharmacology, Rome (Italy); Zimarino, V. [San Raffaele Scientific Institute, DIBIT, Milano (Italy); Malgaroli, A. [San Raffaele Scientific Institute, Laboratory of Neurobiology of Learning, Milano (Italy); Vita-Salute San Raffaele University, Milano (Italy)

    2008-04-15

    Huntington's disease (HD) is a progressive neurodegenerative disorder, which is characterised by prominent neuronal cell loss in the basal ganglia with motor and cognitive disturbances. One of the most well-studied pharmacological models of HD is produced by local injection in the rat brain striatum of the excitotoxin quinolinic acid (QA), which produces many of the distinctive features of this human neurodegenerative disorder. Here, we report a detailed analysis, obtained both in vivo and in vitro of this pharmacological model of HD. By combining emission tomography (PET) with autoradiographic and immunocytochemical confocal laser techniques, we quantified in the QA-injected striatum the temporal behavior (from 1 to 60 days from the excitotoxic insult) of neuronal cell density and receptor availability (adenosine A{sub 2A} and dopamine D{sub 2} receptors) together with the degree of microglia activation. Both approaches showed a loss of adenosine A{sub 2A} and dopamine D{sub 2} receptors paralleled by an increase of microglial activation. This combined longitudinal analysis of the disease progression, which suggested an impairment of neurotransmission, neuronal integrity and a reversible activation of brain inflammatory processes, might represent a more quantitative approach to compare the differential effects of treatments in slowing down or reversing HD in rodent models with potential applications to human patients. (orig.)

  16. The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions.

    Science.gov (United States)

    Pitter, Kenneth L; Tamagno, Ilaria; Feng, Xi; Ghosal, Kaushik; Amankulor, Nduka; Holland, Eric C; Hambardzumyan, Dolores

    2014-10-01

    In response to neurodegeneration, the adult mammalian brain activates a cellular cascade that results in reactive astrogliosis and microgliosis. The mechanism through which astrocytes become reactive and the physiological consequences of their activation in response to neurodegeneration is complex. While the activation and proliferation of astrocytes has been shown to occur during massive neuronal cell death, the functional relationship between these two events has not been clearly elucidated. Here we show that in response to kainic acid- (KA) induced neurodegeneration, the mitogen sonic hedgehog (SHH) is upregulated in reactive astrocytes. SHH activity peaks at 7 days and is accompanied by increased Gli activity and elevated proliferation in several cell types. To determine the functional role of SHH-Gli signaling following KA lesions, we used a pharmacological approach to show that SHH secreted by astrocytes drives the activation and proliferation of astrocytes and microglia. The consequences of SHH-Gli signaling in KA-induced lesions appear to be independent of the severity of neurodegeneration.

  17. Transgenic Drosophila model to study apolipoprotein E4-induced neurodegeneration.

    Science.gov (United States)

    Haddadi, Mohammad; Nongthomba, Upendra; Jahromi, Samaneh Reiszadeh; Ramesh, S R

    2016-03-15

    The ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity.

  18. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain

    DEFF Research Database (Denmark)

    Lauritzen, Knut H.; Hasan-Olive, Md Mahdi; Regnell, Christine E.;

    2016-01-01

    , and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron...

  19. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents excitotoxi

  20. Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid.

    Science.gov (United States)

    Kalani, Anuradha; Kamat, Pradip K; Givvimani, Srikanth; Brown, Kasey; Metreveli, Naira; Tyagi, Suresh C; Tyagi, Neetu

    2014-02-01

    Epigenetic mechanisms underlying nutrition (nutrition epigenetics) are important in understanding human health. Nutritional supplements, for example folic acid, a cofactor in one-carbon metabolism, regulate epigenetic alterations and may play an important role in the maintenance of neuronal integrity. Folic acid also ameliorates hyperhomocysteinemia, which is a consequence of elevated levels of homocysteine. Hyperhomocysteinemia induces oxidative stress that may epigenetically mediate cerebrovascular remodeling and leads to neurodegeneration; however, the mechanisms behind such alterations remain unclear. Therefore, the present study was designed to observe the protective effects of folic acid against hyperhomocysteinemia-induced epigenetic and molecular alterations leading to neurotoxic cascades. To test this hypothesis, we employed 8-weeks-old male wild-type (WT) cystathionine-beta-synthase heterozygote knockout methionine-fed (CBS+/− + Met), WT, and CBS+/− + Met mice supplemented with folic acid (FA) [WT + FA and CBS+/− + Met + FA, respectively, 0.0057-μg g−1 day−1 dose in drinking water/4 weeks]. Hyperhomocysteinemia in CBS+/− + Met mouse brain was accompanied by a decrease in methylenetetrahydrofolate reductase and an increase in S-adenosylhomocysteine hydrolase expression, symptoms of oxidative stress, upregulation of DNA methyltransferases, rise in matrix metalloproteinases, a drop in the tissue inhibitors of metalloproteinases, decreased expression of tight junction proteins, increased permeability of the blood-brain barrier, neurodegeneration, and synaptotoxicity. Supplementation of folic acid to CBS+/− + Met mouse brain led to a decrease in the homocysteine level and rescued pathogenic and epigenetic alterations, showing its protective efficacy against homocysteine-induced neurotoxicity.

  1. In vitro detection of oxygen and glucose deprivation-induced neurodegeneration and pharmacological neuroprotection based on hippocampal stratum pyramidale width.

    Science.gov (United States)

    Öz, Pınar; Saybaşılı, Hale

    2017-01-01

    Ischemia is one of the most prominent risk factors of neurodegenerative diseases such as Alzheimer's disease. The effects of oxygen and glucose depletion in hippocampal tissue due to ischemia can be mimicked in vitro using the oxygen and glucose deprivation (OGD) model. In this study, we applied OGD on acute rat hippocampal slices in order to design an elementary yet quantitative histological technique that compares the neuroprotective effects of (l)-carnitine to known neuroprotectors, such as the N-methyl-d-aspartate (NMDA) receptor antagonist memantine and the gamma-aminobutyric acid (GABA)-B receptor agonist baclofen. The level of neurodegeneration and the efficiency of pharmacological applications were estimated via stratum pyramidale width measurements in CA1 and CA3 regions of Nissl-stained 200-μm thick hippocampal slices. We demonstrated that (l)-carnitine is an effective pharmacological target against the neurodegeneration induced by in vitro ischemia in a narrow range of concentrations. Even though the effect of chemical neuroprotection was significant, full recovery was not achieved in the dose interval of 5-100μM. In addition to chemical applications, hypothermia was used as a physical neuroprotection against ischemia-related neurodegeneration. Our results showed that incubation of slices for 60min at 4°C provided the same level of neuroprotection as the most effective doses of memantine, baclofen, and (l)-carnitine.

  2. Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats.

    Science.gov (United States)

    Liu, Mei; Choi, Dong-Young; Hunter, Randy L; Pandya, Jignesh D; Cass, Wayne A; Sullivan, Patrick G; Kim, Hyoung-Chun; Gash, Don M; Bing, Guoying

    2010-02-01

    Trichloroethylene, a chlorinated solvent widely used as a degreasing agent, is a common environmental contaminant. Emerging evidence suggests that chronic exposure to trichloroethylene may contribute to the development of Parkinson's disease. The purpose of this study was to determine if selective loss of nigrostriatal dopaminergic neurons could be reproduced by systemic exposure of adult Fisher 344 rats to trichloroethylene. In our experiments, oral administration of trichloroethylene induced a significant loss of dopaminergic neurons in the substantia nigra pars compacta in a dose-dependent manner, whereas the number of both cholinergic and GABAergic neurons were not decreased in the striatum. There was a robust decline in striatal levels of 3, 4-dihydroxyphenylacetic acid without a significant depletion of striatal dopamine. Rats treated with trichloroethylene showed defects in rotarod behavior test. We also found a significantly reduced mitochondrial complex I activity with elevated oxidative stress markers and activated microglia in the nigral area. In addition, we observed intracellular alpha-synuclein accumulation in the dorsal motor nucleus of the vagus nerve, with some in nigral neurons, but little in neurons of cerebral cortex. Overall, our animal model exhibits some important features of Parkinsonism, and further supports that trichloroethylene may be an environmental risk factors for Parkinson's disease.

  3. Cerebrolysin protects against rotenone-induced oxidative stress and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abdel-Salam OME

    2014-05-01

    Full Text Available Omar ME Abdel-Salam,1 Nadia A Mohammed,2 Eman R Youness,2 Yasser A Khadrawy,3 Enayat A Omara,4 Amany A Sleem51Department of Toxicology and Narcotics, 2Department of Medical Biochemistry, 3Department of Physiology, 4Department of Pathology, 5Department of Pharmacology, National Research Centre, Dokki, Cairo, EgyptAbstract: We investigated the effect of cerebrolysin, a peptide mixture used for promoting memory and recovery from cerebral stroke, on the development of oxidative stress and nigrostriatal cell injury induced by rotenone administration in rats. Rotenone 1.5 mg/kg was given subcutaneously three times weekly either alone or in combination with cerebrolysin at 21.5, 43, or 86 mg/kg. Rats were euthanized 14 days after starting the rotenone injection. Lipid peroxidation (malondialdehyde, reduced glutathione (GSH, nitric oxide (nitrite concentrations, paraoxonase 1 (PON1, and acetylcholinesterase (AChE activities – as well as the monocyte chemoattractant protein-1 (MCP-1 and the antiapoptotic protein Bcl-2 – were measured in the brain. Histopathology, tyrosine hydroxylase, inducible nitric oxide synthase (iNOS, tumor necrosis factor-α (TNF-α, and cleaved caspase-3 immunohistochemistry were also performed. Rotenone caused a significantly elevated oxidative stress and proinflammatory response in the different brain regions. Malondialdehyde and nitric oxide concentrations were significantly increased, while GSH markedly decreased in the cerebral cortex, striatum, hippocampus, and in the rest of the brain. PON1 and AChE activities significantly decreased with respect to the control levels after rotenone application. Striatal Bcl-2 was significantly decreased while MCP-1 increased following rotenone injection. Rotenone caused prominent iNOS, TNF-α, and caspase-3 immunostaining in the striatum and resulted in markedly decreased tyrosine hydroxylase immunoreactivity in the substantia nigra and striatum. Cerebrolysin coadministered with

  4. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  5. Eugenia jambolana Lam. Increases lifespan and ameliorates experimentally induced neurodegeneration in C. elegans

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Bezerra

    2014-09-01

    Full Text Available Summary. Type-2 diabetes mellitus (T2DM, dyslipidemia (DL and inflammation (IF are associated with reduced lifespan (LS and increased risk of neurodegenerative diseases (NDG. Dysregulation in insulin/insulin-like growth factor-1 (IGF-1 (IIS signaling, forkhead box O transcription factor (FOXO and Silent Information Regulators or Sirtuins (SIRT may be responsible. We investigated the effect of spray dried Jambolan (Eugenia jambolana Lam. fruit in Caenorhabditis elegans model for lifespan, amyloid b1-42 (Ab1-42 aggregation induced paralysis and MPP+ (1-methyl-4-phenylpyridinium induced neurodegeneration. Effect on modulating critical genes involved signaling pathways important in IIS, LS and NDG were also studied in C. elegans. Results show suggest statistically significant increase in lifespan (9-22.7% coupled with a delay in Ab1-42 induced paralysis (11.5% and MPP+ induced paralysis (38-43%. Gene expression studies indicated a significant upregulation in expression of  C. elegans homologs of foxo, sirt1, dopamine D1 receptor and suggested a non-FOXO mediated mechanism of action.Industrial relevance. Jambolan is a bioactive-rich tropical fruit with high colorant potential. Despite this fact, its perishability has hampered its market and industrial use beyond the countries where it is cultivated. Considering that drying is a popular technique able to extend fruits shelf life and concentrate their natural bioactive compounds, this research investigates the health relevance of spray dried jambolan. Here we addressed the potential of dried Jambolan fruit to extend lifespan and inhibit the progression of experimentally induced neurodegeneration using the C. elegans model. We demonstrated that this convenient fruit product was able to increase the lifespan of C. elegans. The jambolan extracts also influenced some critical genes of signaling pathways relevant to metabolic diseases, aging and neurodegeneration. Based on our results, some insight about

  6. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    Institute of Scientific and Technical Information of China (English)

    Li Li; Meng Xu; Bo Shen; Man Li; Qian Gao; Shou-gang Wei

    2016-01-01

    D-galactose has been widely used in aging research because of its efifcacy in inducing senescence and accelerating aging in animal models. The present study investigated the beneifts of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-ga-lactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apop-tosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice.

  7. Tetraspanin (TSP-17 protects dopaminergic neurons against 6-OHDA-induced neurodegeneration in C. elegans.

    Directory of Open Access Journals (Sweden)

    Neda Masoudi

    2014-12-01

    Full Text Available Parkinson's disease (PD, the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA. In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1 and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling.

  8. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus.

    Science.gov (United States)

    Sharma, D R; Wani, W Y; Sunkaria, A; Kandimalla, R J; Sharma, R K; Verma, D; Bal, A; Gill, K D

    2016-06-02

    Aluminum is a light weight and toxic metal present ubiquitously on earth, which has gained considerable attention due to its neurotoxic effects. It also has been linked ecologically and epidemiologically to several neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Guamanian-Parkinsonian complex and Amyotrophic lateral sclerosis (ALS). The mechanism of aluminum neurotoxicity is poorly understood, but it is well documented that aluminum generates reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt-c) from mitochondria to cytosol resulting in apoptotic cell death. Quercetin (a natural flavonoid) protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in aluminum-induced neurodegeneration, and then quercetin should ameliorate neuronal apoptosis. Administration of quercetin (10 mg/kg body wt/day) reduced aluminum (10 mg/kg body wt/day)-induced oxidative stress (decreased ROS production, increased mitochondrial superoxide dismutase (MnSOD) activity). In addition, quercetin also prevents aluminum-induced translocation of cyt-c, and up-regulates Bcl-2, down-regulates Bax, p53, caspase-3 activation and reduces DNA fragmentation. Quercetin also obstructs aluminum-induced neurodegenerative changes in aluminum-treated rats as seen by Hematoxylin and Eosin (H&E) staining. Further electron microscopic studies revealed that quercetin attenuates aluminum-induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that treatment with quercetin may represent a therapeutic strategy to attenuate the neuronal death against aluminum-induced neurodegeneration.

  9. Clinical phenotype and genetic mutation of fatty acid hydroxylase - associated neurodegeneration: analysis of four cases

    Directory of Open Access Journals (Sweden)

    Xiao-jun HUANG

    2017-07-01

    Full Text Available Objective To report 4 cases of fatty acid hydroxylase - associated neurodegeneration (FAHN and to summarize the clinical and genetic characteristics of FAHN by literatures review.  Methods Four cases of FAHN patients' clinical and family data were collected in detail. The gDNA of patients and their parents were extracted from peripheral blood. FA2H gene was conducted and followed by Sanger sequencing.  Results Among the 4 cases, 3 cases (Case 2, Case 3, Case 4 presented typical manifestations of FAHN while the other (Case 1 was atypical. Genetic sequencing showed FA2H gene mutation in all affected patients. Compound heterozygous mutation c.461G > A (p.Arg154His and c.794T > G (p.Phe265Cys were seen in Case 1. In Case 2, only one documented heterozygous mutation c.703C > T (p.Arg235Cys was found, and dificit mutation was not found in single nucleotide polymorphism (SNP chip test of the patient and her mother. Compound heterozygous mutation c.688G > A (p.Glu230Lys and insertion mutation c.172_173insGGGCCAGGAC (p.Ile58ArgfsX47 were presented in Case 3. In Case 4, compound heterozygous mutation c.688G > A (p.Glu230Lys, c.968C > A (p.Pro323Gln and c.976G > A (p. Gly326Asp were seen, while his father was the carrier of c.688G > A (p.Glu230Lys mutation and his mother was the carrier of c.968C > A (p.Pro323Gln and c.976G > A (p.Gly326Asp mutation. According to the standard of American College of Medical Genetics and Genomics (ACMG, c.461G > A (p.Arg154His and c.794T > G (p.Phe265Cys in Case 1, and c.703C > T (p.Arg235Cys in Case 2 were considered as "likely pathogenic", while FA2H gene compound heterozygous mutation c.688G > A (p.Glu230Lys, insertion mutation c.172_173insGGGCCAGGAC (p.Ile58ArgfsX47 in Case 3 was as "pathogenic", and in Case 4, the FA2H gene mutation c.688G > A (p.Glu230Lys and c.968C > A (p.Pro323Gln were "pathogenic" and c.976G > A (p.Gly326Asp was "likely pathogenic".  Conclusions FAHN has highly clinical and genetic

  10. Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD.

    Science.gov (United States)

    Chang, Chongwang; Lang, Hongjuan; Geng, Ning; Wang, Jing; Li, Nan; Wang, Xuelian

    2013-08-26

    Parkinson's disease (PD) is a progressive neurodegenerative disease. Alpha-synuclein aggregation, which can activate microglia to enhance its dopaminergic neurotoxicity, plays a central role in the progression of PD. However the mechanism is still unclear. To investigate how alpha-synuclein affects the neuron, exosomes were derived from alpha-synuclein treated mouse microglia cell line BV-2 cells by differential centrifugation and ultracentrifugation. We found that alpha-synuclein can induce an increase of exosomal secretion by microglia. These activated exosomes expressed a high level of MHC class II molecules and membrane TNF-α. In addition, the activated exosomes cause increased apoptosis. Exosomes secreted from activated microglias might be important mediator of alpha-synuclein-induced neurodegeneration in PD.

  11. Use of Okadaic Acid to Identify Relevant Phosphoepitopes in Pathology: A Focus on Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Jesús Avila

    2013-05-01

    Full Text Available Protein phosphorylation is involved in the regulation of a wide variety of physiological processes and is the result of a balance between protein kinase and phosphatase activities. Biologically active marine derived compounds have been shown to represent an interesting source of novel compounds that could modify that balance. Among them, the marine toxin and tumor promoter, okadaic acid (OA, has been shown as an inhibitor of two of the main cytosolic, broad-specificity protein phosphatases, PP1 and PP2A, thus providing an excellent cell-permeable probe for examining the role of protein phosphorylation, and PP1 and PP2A in particular, in any physiological or pathological process. In the present work, we review the use of okadaic acid to identify specific phosphoepitopes mainly in proteins relevant for neurodegeneration. We will specifically highlight those cases of highly dynamic phosphorylation-dephosphorylation events and the ability of OA to block the high turnover phosphorylation, thus allowing the detection of modified residues that could be otherwise difficult to identify. Finally, its effect on tau hyperhosphorylation and its relevance in neurodegenerative pathologies such as Alzheimer’s disease and related dementia will be discussed.

  12. In vivo protection against NMDA-induced neurodegeneration by MK-801 and nimodipine : Combined therapy and temporal course of protection

    NARCIS (Netherlands)

    Stuiver, BT; Douma, BRK; Bakker, R; Nyakas, C; Luiten, PGM

    1996-01-01

    Neuroprotection against excitotoxicity by a combined therapy with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the L-type Ca2+ channel blocker nimodipine was examined using an in vivo rat model of NMDA-induced neurodegeneration. Attention was focused on the neuroprotective potentia

  13. Protective effects of cholecystokinin-8 on methamphetamine-induced behavioral changes and dopaminergic neurodegeneration in mice.

    Science.gov (United States)

    Gou, Hongyan; Wen, Di; Ma, Chunling; Li, Ming; Li, Yingmin; Zhang, Wenfang; Liu, Li; Cong, Bin

    2015-04-15

    We investigated whether pretreatment with the neuropeptide cholecystokinin-8 affected methamphetamine (METH)-induced behavioral changes and dopaminergic neurodegeneration in male C57/BL6 mice. CCK-8 pretreatment alone had no effect on locomotion and stereotypic behavior and could not induce behavioral sensitization; however, it attenuated, in a dose-dependent manner, hyperlocomotion and behavioral sensitization induced by a low dose of METH (1mg/kg). CCK-8 attenuated METH-induced stereotypic behavior at a dose of 3mg/kg but not at 10mg/kg. CCK-8 pretreatment attenuated METH (10mg/kg)-induced hyperthermia, the decrease of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum, and TH in the substantia nigra. CCK-8 alone had no effect on rectal temperature, TH and DAT expression in the nigrostriatal region. In conclusion, our study demonstrated that pretreatment with CCK-8 inhibited changes typically induced by repeated exposure to METH, such as hyperlocomotion, behavioral sensitization, stereotypic behavior, and dopaminergic neurotoxicity. These findings make CCK-8 a potential therapeutic agent for the treatment of multiple symptoms associated with METH abuse.

  14. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa;

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotection...... and neuroproliferation. In this work, we aimed at evaluating TTR neuroprotective effect against an excitotoxic insult that is known to be prevented by NPY action. We show that despite a putative neuroprotective role of TTR, hippocampal slice cultures from TTR KO mice display a decreased susceptibility to AMPA......-induced neurodegeneration. We also suggest that increased NPY levels in TTR KO mice are not associated with increased cell proliferation in the dentate gyrus or subventricular zone. In summary, the alleged neuroprotective role of TTR in the nervous system should be regarded with caution and should not be generalized to all...

  15. Nitric oxide synthase inhibitor, aminoguanidine reduces intracerebroventricular colchicine induced neurodegeneration, memory impairments and changes of systemic immune responses in rats.

    Science.gov (United States)

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa; Gupta, Pritha

    2017-02-15

    Intracerebroventricular (i.c.v.) injection of colchicine induces neurodegeneration, memory impairments and changes of some systemic immune responses in rats. Though the role of cox 2 in these colchicine induced changes have been evaluated, the influence of nitric oxide synthase (NOS) remains to be studied. The present study was designed to assess the role of NOS on the i.c.v. colchicine induced neurodegeneration, memory impairments and changes of some systemic immune responses by inhibiting its activity with aminoguanidine. In the present study the impairments of working and reference memories, neurodegeneration (chromatolysis and plaque formation) and changes of neuroinflammatory markers in the hippocampus (increased TNF α, IL 1β, ROS and nitrite) along with changes of serum inflammatory markers (TNF α, IL 1β, ROS and nitrite) and alteration of systemic immune responses (higher phagocytic activity of blood WBC and splenic PMN, higher cytotoxicity and lower leukocyte adhesion inhibition index of splenic MNC) were measured in the intracerebroventricular colchicine injected rats (ICIR). Administration of aminoguanidine (p.o. 30/50mg/kg body weight) to ICIR resulted in recovery of neuroinflammation and partial prevention of neurodegeneration which could be corroborated with the partial recovery of memory impairments in this model. The recovery of serum inflammatory markers and the systemic immune responses in ICIR was also observed after administration of aminoguanidine. Therefore, the present study shows that aminoguanidine can protect the colchicine induced neurodegeneration, memory impairments, and changes of systemic immune systemic responses in ICIR by inhibiting the iNOS. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transdermal delivery of cannabidiol attenuates binge alcohol-induced neurodegeneration in a rodent model of an alcohol use disorder.

    Science.gov (United States)

    Liput, Daniel J; Hammell, Dana C; Stinchcomb, Audra L; Nixon, Kimberly

    2013-10-01

    Excessive alcohol consumption, characteristic of alcohol use disorders, results in neurodegeneration and behavioral and cognitive impairments that are hypothesized to contribute to the chronic and relapsing nature of alcoholism. Therefore, the current study aimed to advance the preclinical development of transdermal delivery of cannabidiol (CBD) for the treatment of alcohol-induced neurodegeneration. In Experiment 1, 1.0%, 2.5% and 5.0% CBD gels were evaluated for neuroprotection. The 5.0% CBD gel resulted in a 48.8% reduction in neurodegeneration in the entorhinal cortex assessed by Fluoro-Jade B (FJB), which trended to statistical significance (p=0.069). Treatment with the 5.0% CBD gel resulted in day 3 CBD plasma concentrations of ~100.0 ng/mL so this level was used as a target concentration for development of an optimized gel formulation. Experiment 2 tested a next generation 2.5% CBD gel formulation, which was compared to CBD administration by intraperitoneal injection (IP; 40.0 mg/kg/day). This experiment found similar magnitudes of neuroprotection following both routes of administration; transdermal CBD decreased FJB+ cells in the entorhinal cortex by 56.1% (p<0.05), while IP CBD resulted in a 50.6% (p<0.05) reduction in FJB+ cells. These results demonstrate the feasibility of using CBD transdermal delivery systems for the treatment of alcohol-induced neurodegeneration.

  17. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype.

    Science.gov (United States)

    Marshall, S Alex; McClain, Justin A; Kelso, Matthew L; Hopkins, Deann M; Pauly, James R; Nixon, Kimberly

    2013-06-01

    Excessive alcohol intake, a defining characteristic of an alcohol use disorder (AUD), results in neurodegeneration in the hippocampus and entorhinal cortex that has been linked to a variety of cognitive deficits. Neuroinflammation is thought to be a factor in alcohol-induced neurodegeneration, and microglia activation is a key but not sole component of an inflammatory response. These experiments investigate the effects of ethanol exposure in a well-accepted model of an AUD on both microglial activation and blood brain barrier disruption (BBB) in order to understand their relationship to classical definitions of inflammation and alcohol-induced neurodegeneration. Following a four-day binge ethanol paradigm, rat hippocampal and entorhinal cortex tissue was examined using three distinct approaches to determine microglia phenotype and BBB disruption: immunohistochemistry, autoradiography, and ELISA. After ethanol exposure, there was an increase in [(3)H]-PK-11195 binding and OX-42 immunoreactivity indicative of microglial activation; however, microglia were not fully activated since both OX-6 and ED-1 immunoreactive microglia were absent. This data was supported by functional evidence as there was no increase in the proinflammatory cytokines IL-6 or TNF-α, but a 26% increase in the anti-inflammatory cytokine, IL-10, and a 38% increase in the growth factor, TGF-β, seven days after exposure. Furthermore, there was no evidence of a disruption of the BBB. These data suggest that the four-day binge model of an AUD, which produces neurodegeneration in corticolimbic regions, does not elicit classical neuroinflammation but instead produces partially activated microglia. Partial activation of microglia following binge ethanol exposure suggest that microglia in this model have beneficial or homeostatic roles rather than directly contributing to neurodegeneration and are a consequence of alcohol-induced-damage instead of the source of damage. Copyright © 2013 Elsevier Inc. All

  18. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.

    Science.gov (United States)

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H; Jaenisch, Rudolf; Endres, Matthias

    2008-07-09

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.

  19. Activation of tyrosine kinase c-Abl contributes to α-synuclein–induced neurodegeneration

    Science.gov (United States)

    Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S.; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2016-01-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  20. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease.

    Science.gov (United States)

    Pérez-Cañamás, A; Benvegnù, S; Rueda, C B; Rábano, A; Satrústegui, J; Ledesma, M D

    2017-05-01

    Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.

  1. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    NARCIS (Netherlands)

    Janssen, C.I.F.; Kiliaan, A.J.

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important

  2. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    NARCIS (Netherlands)

    Janssen, C.I.F.; Kiliaan, A.J.

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important c

  3. Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration

    Science.gov (United States)

    2004-01-01

    gene expression in the hippocampus. Immunohistochemical methods and electromobility gel shift assays (EMSAs) demonstrate the concerted activation of...Zeiss Inc., Thornwood, NY). Electromobility gel-shift assays (EMSAs) EMSAs were conducted to determine binding of activated NFKB complexes to...the NFxB complex following KA treatment (arrows). D Electromobility gel shift assay demonstrating increased NFrB binding activ- ity in nuclear extracts

  4. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    Science.gov (United States)

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ1-42 mouse model of AD. Single intracerebroventricular injections of Aβ1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ1-42 injection significantly decreased the Aβ1-42-induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ1-42-induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ1-42-treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ1-42-treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ1-42-induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  5. All- Trans-Retinoic Acid Augments the Histopathological Outcome of Neuroinflammation and Neurodegeneration in Lupus-Prone MRL/lpr Mice.

    Science.gov (United States)

    Theus, Michelle H; Sparks, Joshua B; Liao, Xiaofeng; Ren, Jingjing; Luo, Xin M

    2017-02-01

    Recently, we demonstrated that treatment with all- trans-retinoic acid (tRA) induced a paradoxical effect on immune activation during the development of autoimmune lupus. Here, we further describe its negative effects on mediating neuroinflammation and neurodegeneration. Female MRL/lpr mice were orally administered tRA or VARA (retinol mixed with 10% tRA) from 6 to 14 weeks of age. Both treatments had a significant effect on brain weight, which correlated with histopathological evidence of focal astrogliosis, meningitis, and ventriculitis. Infiltration of CD138- and Iba1-positve immune cells was observed in the third ventricle and meninges of treated mice that co-labeled with ICAM-1, indicating their inflammatory nature. Increased numbers of circulating plasma cells, autoantibodies, and total IgG were also apparent. IgG and C3 complement deposition in these brain regions were also prominent as was focal astrogliosis surrounding the ventricular lining and meninges. Using Fluoro-Jade staining, we further demonstrate that neuroinflammation was accompanied by neurodegeneration in the cortex of treated mice compared with vehicle controls. These findings indicate that vitamin A exposure exacerbates the immunogenic environment of the brain during the onset of systemic autoimmune disease. Vitamin A may therefore compromise the immuno-privileged nature of the central nervous system under a predisposed immunogenic environment.

  6. Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not.

    Science.gov (United States)

    Romeo, Stefania; Vitale, Flora; Viaggi, Cristina; di Marco, Stefano; Aloisi, Gabriella; Fasciani, Irene; Pardini, Carla; Pietrantoni, Ilaria; Di Paolo, Mattia; Riccitelli, Serena; Maccarone, Rita; Mattei, Claudia; Capannolo, Marta; Rossi, Mario; Capozzo, Annamaria; Corsini, Giovanni U; Scarnati, Eugenio; Lozzi, Luca; Vaglini, Francesca; Maggio, Roberto

    2017-05-01

    We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [(3)H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Influence of zinc on calcium-dependent signal transduction pathways during aluminium-induced neurodegeneration.

    Science.gov (United States)

    Singla, Neha; Dhawan, D K

    2014-10-01

    Metals perform important functions in the normal physiological system, and alterations in their levels may lead to a number of diseases. Aluminium (Al) has been implicated as a major risk factor, which is linked to several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. On the other hand, zinc (Zn) is considered as a neuromodulator and an essential dietary element that regulates a number of biological activities in our body. The aim of the present study was to investigate the effects of Zn supplementation, if any, in ameliorating the changes induced by Al on calcium signalling pathway. Male Sprague Dawley rats weighing 140-160 g were divided into four different groups viz.: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/l in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment decreased the Ca(2+) ATPase activity whereas increased the levels of 3', 5'-cyclic adenosine monophosphate, intracellular calcium and total calcium content in both the cerebrum and cerebellum, which, however, were modulated upon Zn supplementation. Al treatment exhibited a significant elevation in the protein expressions of phospholipase C, inositol triphosphate and protein kinase A but decreased the expression of protein kinase C, which, however, was reversed upon Zn co-treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of calcium deposits, which were improved upon zinc co-administration. The present study, therefore, suggests that zinc regulates the intracellular calcium signalling pathway during aluminium-induced neurodegeneration.

  8. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production.

    Science.gov (United States)

    Wu, Zhihao; Du, Yumei; Xue, Hua; Wu, Yongsheng; Zhou, Bing

    2012-01-01

    The neurotoxicity of aluminum (Al) - the most abundant metal element on earth - has been known for years. However, the mechanism of Al-induced neurodegeneration and its relationship to Alzheimer's disease are still controversial. In particular, in vivo functional data are lacking. In a Drosophila model with chronic dietary Al overloading, general neurodegeneration and several behavioral changes were observed. Al-induced neurodegeneration is independent of β-amyloid or tau-associated toxicity, suggesting they act in different molecular pathways. Interestingly, Drosophila frataxin (dfh), which causes Friedreich's ataxia if mutated in humans, displayed an interacting effect with Al, suggesting Friedreich's ataxia patients might be more susceptible to Al toxicity. Al-treated flies accumulated large amount of iron and reactive oxygen species (ROS), and exhibited elevated SOD2 activity. Genetic and pharmacological efforts to reduce ROS or chelate excess Fe significantly mitigated Al toxicity. Our results indicate that Al toxicity is mediated through ROS production and iron accumulation and suggest a remedial route to reduce toxicity due to Al exposure.

  9. Physiological disturbance may contribute to neurodegeneration induced by isoflurane or sevoflurane in 14 day old rats.

    Directory of Open Access Journals (Sweden)

    Binbin Wu

    Full Text Available BACKGROUND: Volatile anesthetics are widely used in pediatric anesthesia but their potential neurotoxicity raise significant concerns regarding sequelae after anesthesia. However, whether physiological disturbance during anesthetic exposure contributes to such side effects remains unknown. The aim of the current study is to compare the neurotoxic effects of isoflurane and sevoflurane in 14 day old rat pups under spontaneous breathing or ventilated conditions. METHODS: Postnatal 14 day rats were assigned to one of five groups: 1 spontaneous breathing (SB + room air (control, n = 17; 2 SB + isoflurane (n = 35; 3 SB + sevoflurane (n = 37; 4 mechanical ventilation (MV + isoflurane (n = 29; 5 MV + sevoflurane (n = 32. Anesthetized animal received either 1.7% isoflurane or 2.4% seveoflurane for 4 hours. Arterial blood gases and blood pressure were monitored in the anesthetized groups. Neurodegeneration in the CA3 region of hippocampus was assessed with terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling immediately after exposure. Spatial learning and memory were evaluated with the Morris water maze in other cohorts 14 days after experiments. RESULTS: Most rats in the SB groups developed physiological disturbance whereas ventilated rats did not but become hyperglycemic. Mortality from anesthesia in the SB groups was significantly higher than that in the MV groups. Cell death in the SB but not MV groups was significantly higher than controls. SB + anesthesia groups performed worse on the Morris water maze behavioral test, but no deficits were found in the MV group compared with the controls. CONCLUSIONS: These findings could suggest that physiological disturbance induced by isoflurane or sevoflurane anesthesia may also contribute to their neurotoxicity.

  10. 3-NP-induced neurodegeneration studies in experimental models of Huntington's disease : apoptosis in Huntington's disease

    NARCIS (Netherlands)

    Vis, Johanna Catharina

    2005-01-01

    This thesis investigates the possible role of apoptosis, or programmed cell death, in Huntington's disease (HD). HD is caused by an expanded CAG repeat in the N-terminal region of the huntingtin protein leading to specific neostriatal neurodegeneration. The sequence of events that leads to this sele

  11. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders.

  12. NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss

    OpenAIRE

    Tackenberg, C; Grinschgl, S; Trutzel, A; Santuccione, A C; Frey, M C; Konietzko, U; Grimm, J.; Brandt, R.; Nitsch, R M

    2013-01-01

    Aggregates of amyloid-beta (Aβ) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl--aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aβ- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAβ transgenic mice combined with Sindbis virus-mediated ex...

  13. Genetic Screen Reveals Link between the Maternal Effect Sterile Gene mes-1 and Pseudomonas aeruginosa-induced Neurodegeneration in Caenorhabditis elegans.

    Science.gov (United States)

    Wu, Qiuli; Cao, Xiou; Yan, Dong; Wang, Dayong; Aballay, Alejandro

    2015-12-01

    Increasing evidence indicates that immune responses to microbial infections may contribute to neurodegenerative diseases. Here, we show that Pseudomonas aeruginosa infection of Caenorhabditis elegans causes a number of neural changes that are hallmarks of neurodegeneration. Using an unbiased genetic screen to identify genes involved in the control of P. aeruginosa-induced neurodegeneration, we identified mes-1, which encodes a receptor tyrosine kinase-like protein that is required for unequal cell divisions in the early embryonic germ line. We showed that sterile but not fertile mes-1 animals were resistant to neurodegeneration induced by P. aeruginosa infection. Similar results were observed using animals carrying a mutation in the maternal effect gene pgl-1, which is required for postembryonic germ line development, and the germ line-deficient strains glp-1 and glp-4. Additional studies indicated that the FOXO transcription factor DAF-16 is required for resistance to P. aeruginosa-induced neurodegeneration in germ line-deficient strains. Thus, our results demonstrate that P. aeruginosa infection results in neurodegeneration phenotypes in C. elegans that are controlled by the germ line in a cell-nonautonomous manner.

  14. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells.

    Science.gov (United States)

    Baltanás, Fernando C; Casafont, Iñigo; Weruaga, Eduardo; Alonso, José R; Berciano, María T; Lafarga, Miguel

    2011-07-01

    The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration.

  15. Dual Role of Vitamin C on the Neuroinflammation Mediated Neurodegeneration and Memory Impairments in Colchicine Induced Rat Model of Alzheimer Disease.

    Science.gov (United States)

    Sil, Susmita; Ghosh, Tusharkanti; Gupta, Pritha; Ghosh, Rupsa; Kabir, Syed N; Roy, Avishek

    2016-12-01

    The neurodegeneration in colchicine induced AD rats (cAD) is mediated by cox-2 linked neuroinflammation. The importance of ROS in the inflammatory process in cAD has not been identified, which may be deciphered by blocking oxidative stress in this model by a well-known anti-oxidant vitamin C. Therefore, the present study was designed to investigate the role of vitamin C on colchicine induced oxidative stress linked neuroinflammation mediated neurodegeneration and memory impairments along with peripheral immune responses in cAD. The impairments of working and reference memory were associated with neuroinflammation and neurodegeneration in the hippocampus of cAD. Administration of vitamin C (200 and 400 mg/kg BW) in cAD resulted in recovery of memory impairments, with prevention of neurodegeneration and neuroinflammation in the hippocampus. The neuroinflammation in the hippocampus also influenced the peripheral immune responses and inflammation in the serum of cAD and all of these parameters were also recovered at 200 and 400 mg dose of vitamin C. However, cAD treated with 600 mg dose did not recover but resulted in increase of memory impairments, neurodegeneration and neuroinflammation in hippocampus along with alteration of peripheral immune responses in comparison to cAD of the present study. Therefore, the present study showed that ROS played an important role in the colchicine induced neuroinflammation linked neurodegeneration and memory impairments along with alteration of peripheral immune responses. It also appears from the results that vitamin C at lower doses showed anti-oxidant effect and at higher dose resulted in pro-oxidant effects in cAD.

  16. Modulation of (14) C-labeled glucose metabolism by zinc during aluminium induced neurodegeneration.

    Science.gov (United States)

    Singla, Neha; Dhawan, D K

    2015-09-01

    Aluminium (Al) is one of the most prominent metals in the environment and is responsible for causing several neurological disorders, including Alzheimer's disease. On the other hand, zinc (Zn) is an essential micronutrient that is involved in regulating brain development and function. The present study investigates the protective potential of Zn in the uptake of (14) C-labeled amino acids and glucose and their turnover in rat brain slices during Al intoxication. Male Sprague Dawley rats (140-160 g) were divided into four different groups: normal control, Al treated (100 mg/kg body weight/day via oral gavage), Zn treated (227 mg/liter in drinking water), and Al + Zn treated. Radiorespirometric assay revealed an increase in glucose turnover after Al exposure that was attenuated after Zn treatment. Furthermore, the uptake of (14) C-labeled glucose was increased after Al treatment but was appreciably decreased upon Zn supplementation. In addition, the uptakes of (14) C-lysine, (14) C-leucine, and (14) C-aspartic acid were also found to be elevated following Al exposure but were decreased after Zn treatment. Al treatment also caused alterations in the neurohistoarchitecture of the brain, which were improved after Zn coadministration. Therefore, the present study suggests that Zn provides protection against Al-induced neurotoxicity by regulating glucose and amino acid uptake in rats, indicating that Zn could be a potential candidate for the treatment of various neurodegenerative disorders.

  17. Interleukin-4 Protects Dopaminergic Neurons In vitro but Is Dispensable for MPTP-Induced Neurodegeneration In vivo

    Science.gov (United States)

    Hühner, Laura; Rilka, Jennifer; Gilsbach, Ralf; Zhou, Xiaolai; Machado, Venissa; Spittau, Björn

    2017-01-01

    Microglia are involved in physiological as well as neuropathological processes in the central nervous system (CNS). Their functional states are often referred to as M1-like and M2-like activation, and are believed to contribute to neuroinflammation-mediated neurodegeneration or neuroprotection, respectively. Parkinson’s disease (PD) is one the most common neurodegenerative disease and is characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra resulting in bradykinesia, tremor, and rigidity. Interleukin 4 (IL4)-mediated M2-like activation of microglia, which is characterized by upregulation of alternative markers Arginase 1 (Arg1) and Chitinase 3 like 3 (Ym1) has been well studied in vitro but the role of endogenous IL4 during CNS pathologies in vivo is not well understood. Interestingly, microglia activation by IL4 has been described to promote neuroprotective and neurorestorative effects, which might be important to slow the progression of neurodegenerative diseases. In the present study, we addressed the role of endogenous and exogenous IL4 during MPP+-induced degeneration of mDA neurons in vitro and further addressed the impact of IL4-deficiency on neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Our results clearly demonstrate that exogenous IL4 is important to protect mDA neurons in vitro, but endogenous IL4 seems to be dispensable for development and maintenance of the nigrostriatal system as well as MPTP-induced loss of TH+ neurons in vivo. These results underline the importance of IL4 in promoting a neuroprotective microglia activation state and strengthen the therapeutic potential of exogenous IL4 for protection of mDA neurons in PD models. PMID:28337124

  18. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients.

    Science.gov (United States)

    Santambrogio, Paolo; Dusi, Sabrina; Guaraldo, Michela; Rotundo, Luisa Ida; Broccoli, Vania; Garavaglia, Barbara; Tiranti, Valeria; Levi, Sonia

    2015-09-01

    Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease.

  19. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  20. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    Science.gov (United States)

    Janssen, Carola I F; Kiliaan, Amanda J

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important components of neuronal membranes, while eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid also affect cardiovascular health and inflammation. In neural development, LCPUFA deficiency can lead to severe disorders like schizophrenia and attention deficit hyperactivity disorder. Perinatal LCPUFA supplementation demonstrated beneficial effects in neural development in humans and rodents resulting in improved cognition and sensorimotor integration. In normal aging, the effect of LCPUFA on prevention of cognitive impairment will be discussed. LCPUFA are important for neuronal membrane integrity and function, and also contribute in prevention of brain hypoperfusion. Cerebral perfusion can be compromised as result of obesity, cerebrovascular disease, hypertension, or diabetes mellitus type 2. Last, we will focus on the role of LCPUFA in most common neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. These disorders are characterized by impaired cognition and connectivity and both clinical and animal supplementation studies have shown the potential of LCPUFA to decrease neurodegeneration and inflammation. This review shows that LCPUFA are essential throughout life.

  1. Does α-Amino-β-methylaminopropionic Acid (BMAA Play a Role in Neurodegeneration?

    Directory of Open Access Journals (Sweden)

    Brett A. Neilan

    2011-09-01

    Full Text Available The association of α-amino-β-methylaminopropionic acid (BMAA with elevated incidence of amyotrophic lateral sclerosis/Parkinson’s disease complex (ALS/PDC was first identified on the island of Guam. BMAA has been shown to be produced across the cyanobacterial order and its detection has been reported in a variety of aquatic and terrestrial environments worldwide, suggesting that it is ubiquitous. Various in vivo studies on rats, mice, chicks and monkeys have shown that it can cause neurodegenerative symptoms such as ataxia and convulsions. Zebrafish research has also shown disruption to neural development after BMAA exposure. In vitro studies on mice, rats and leeches have shown that BMAA acts predominantly on motor neurons. Observed increases in the generation of reactive oxygen species (ROS and Ca2+ influx, coupled with disruption to mitochondrial activity and general neuronal death, indicate that the main mode of activity is via excitotoxic mechanisms. The current review pertaining to the neurotoxicity of BMAA clearly demonstrates its ability to adversely affect neural tissues, and implicates it as a potentially significant compound in the aetiology of neurodegenerative disease. When considering the potential adverse health effects upon exposure to this compound, further research to better understand the modes of toxicity of BMAA and the environmental exposure limits is essential.

  2. Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus.

    Directory of Open Access Journals (Sweden)

    Alicia Raquel Rossi

    Full Text Available The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the

  3. Serotonin Depletion Does not Modify the Short-Term Brain Hypometabolism and Hippocampal Neurodegeneration Induced by the Lithium-Pilocarpine Model of Status Epilepticus in Rats.

    Science.gov (United States)

    García-García, Luis; Shiha, Ahmed Anis; Bascuñana, Pablo; de Cristóbal, Javier; Fernández de la Rosa, Rubén; Delgado, Mercedes; Pozo, Miguel A

    2016-05-01

    It has been reported that fluoxetine, a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor, has neuroprotective properties in the lithium-pilocarpine model of status epilepticus (SE) in rats. The aim of the present study was to investigate the effect of 5-HT depletion by short-term administration of p-chlorophenylalanine (PCPA), a specific tryptophan hydroxylase inhibitor, on the brain hypometabolism and neurodegeneration induced in the acute phase of this SE model. Our results show that 5-HT depletion did modify neither the brain basal metabolic activity nor the lithium-pilocarpine-induced hypometabolism when evaluated 3 days after the insult. In addition, hippocampal neurodegeneration and astrogliosis triggered by lithium-pilocarpine were not exacerbated by PCPA treatment. These findings point out that in the early latent phase of epileptogenesis, non-5-HT-mediated actions may contribute, at least in some extent, to the neuroprotective effects of fluoxetine in this model of SE.

  4. dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1.

    Directory of Open Access Journals (Sweden)

    Ismael Al-Ramahi

    2007-12-01

    Full Text Available Spinocerebellar ataxias (SCAs are a genetically heterogeneous group of neurodegenerative disorders sharing atrophy of the cerebellum as a common feature. SCA1 and SCA2 are two ataxias caused by expansion of polyglutamine tracts in Ataxin-1 (ATXN1 and Ataxin-2 (ATXN2, respectively, two proteins that are otherwise unrelated. Here, we use a Drosophila model of SCA1 to unveil molecular mechanisms linking Ataxin-1 with Ataxin-2 during SCA1 pathogenesis. We show that wild-type Drosophila Ataxin-2 (dAtx2 is a major genetic modifier of human expanded Ataxin-1 (Ataxin-1[82Q] toxicity. Increased dAtx2 levels enhance, and more importantly, decreased dAtx2 levels suppress Ataxin-1[82Q]-induced neurodegeneration, thereby ruling out a pathogenic mechanism by depletion of dAtx2. Although Ataxin-2 is normally cytoplasmic and Ataxin-1 nuclear, we show that both dAtx2 and hAtaxin-2 physically interact with Ataxin-1. Furthermore, we show that expanded Ataxin-1 induces intranuclear accumulation of dAtx2/hAtaxin-2 in both Drosophila and SCA1 postmortem neurons. These observations suggest that nuclear accumulation of Ataxin-2 contributes to expanded Ataxin-1-induced toxicity. We tested this hypothesis engineering dAtx2 transgenes with nuclear localization signal (NLS and nuclear export signal (NES. We find that NLS-dAtx2, but not NES-dAtx2, mimics the neurodegenerative phenotypes caused by Ataxin-1[82Q], including repression of the proneural factor Senseless. Altogether, these findings reveal a previously unknown functional link between neurodegenerative disorders with common clinical features but different etiology.

  5. Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment.

    Directory of Open Access Journals (Sweden)

    Tao Yang

    Full Text Available The p75 neurotrophin receptor (p75(NTR is expressed by neurons particularly vulnerable in Alzheimer's disease (AD. We tested the hypothesis that non-peptide, small molecule p75(NTR ligands found to promote survival signaling might prevent Abeta-induced degeneration and synaptic dysfunction. These ligands inhibited Abeta-induced neuritic dystrophy, death of cultured neurons and Abeta-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Abeta-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3beta and c-Jun, and tau phosphorylation, and prevented Abeta-induced inactivation of AKT and CREB. Finally, a p75(NTR ligand blocked Abeta-induced hippocampal LTP impairment. These studies support an extensive intersection between p75(NTR signaling and Abeta pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Abeta-induced neuronal dystrophy and death.

  6. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome.

    Directory of Open Access Journals (Sweden)

    Peter K Todd

    Full Text Available Fragile X Tremor Ataxia Syndrome (FXTAS is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11 suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.

  7. An evaluation of the protective role of Ficus racemosa Linn. in streptozotocin-induced diabetic neuropathy with neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nilay D Solanki

    2015-01-01

    Full Text Available Objective: Ficus racemosa (FR is one of the herbs mentioned in the scriptures of the Ayurveda as Udumbara with high medicinal value. The objective of this study was to estimate the protective effect of FR against streptozotocin (STZ induced diabetic neuropathy with neurodegeneration (DNN. Materials and Methods: Diabetes was induced in Wistar rats with STZ and were divided into six groups namely diabetic vehicle control, FR (four and glibenclamide (one treated rats; while one group was of normal control rats. After the 4th week of diabetes, induction treatment was started for further 28 days (5th to 8th week with FR aqueous extract (250 mg/kg and 500 mg/kg and ethanolic extract (200 mg/kg and 400 mg/kg. Investigation of DNN was carried out through biochemical and behavioral parameter assessment in rats. Results: Study showed a significant fall in glycosylated hemoglobin (HbA1c and blood glucose level by the treatment of FR in diabetic rats. Antioxidant potential of FR showed a great rise in superoxide dismutase, catalase content and reduction observed in serum nitrite level; while significant fall in lipid peroxidation level and of C-reactive protein was observed in FR treated diabetic rats. Further FR treated diabetic rats also showed marked improvement in tail flick latency, pain threshold, the rise in locomotion and fall latency period. Conclusion: Treatment with FR shows protection in the multiple pathways of DNN by improving blood glucose, HbA1c, biochemical, and behavioral parameters, which suggest the protective role of FR in the reversal of DNN.

  8. Dopamine Induced Neurodegeneration in a PINK1 Model of Parkinson's Disease

    Science.gov (United States)

    Yao, Zhi; Duchen, Michael R.; Wood, Nicholas W.; Abramov, Andrey Y.

    2012-01-01

    Background Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood. Methodology We investigated the mechanism of dopamine induced cell death in transgenic PINK1 knockout mouse neurons. We show that dopamine results in mitochondrial depolarisation caused by mitochondrial permeability transition pore (mPTP) opening. Dopamine-induced mPTP opening is dependent on a complex of reactive oxygen species production and calcium signalling. Dopamine-induced mPTP opening, and dopamine-induced cell death, could be prevented by inhibition of reactive oxygen species production, by provision of respiratory chain substrates, and by alteration in calcium signalling. Conclusions These data demonstrate the mechanism of dopamine toxicity in PINK1 deficient neurons, and suggest potential therapeutic strategies for neuroprotection in Parkinson's disease. PMID:22662171

  9. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration.

    Science.gov (United States)

    Xu, Wei; Weissmiller, April M; White, Joseph A; Fang, Fang; Wang, Xinyi; Wu, Yiwen; Pearn, Matthew L; Zhao, Xiaobei; Sawa, Mariko; Chen, Shengdi; Gunawardena, Shermali; Ding, Jianqing; Mobley, William C; Wu, Chengbiao

    2016-05-02

    The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS.

  10. Establishment of an in vitro screening model for neurodegeneration induced by antimalarial drugs of the artemisinin-type..

    Science.gov (United States)

    Schmuck, G; Haynes, R K

    2000-01-01

    The establishment of an in vitro screening model for neurodegeneration inducing antimalarial drugs was conducted in stepwise fashion. Firstly, the in vivo selective neurotoxic potency of artemisinin was tested in neuronal cells in vitro in relation to the cytotoxic potency in other organ cell cultures such as liver and kidney or versus glial cells. Secondly, a comparison between different parts of the brain (cortex vs. brain stem) was performed and in the last step, a fast and sensitive screening endpoint was identified. In summary, non-neuronal cell lines such as hepatocytes (HEP-G2), liver epithelial cells (IAR), proximal tubular cells (LLC-PK(1)) and glial cells from the rat (C6) and human (GO-G-IJKT) displayed only moderate sensitivity to artemisinin and its derivatives. The same was found in undifferentiated neuronal cell lines from the mouse (N-18) and from human (Kelly), whereas during differentiation, these cells became much more sensitive. Primary astrocytes from the rat also were not specifically involved. In the comparison of primary neuronal cell cultures from the cortex and brain stem of the rat, the brain stem was found to be more sensitive than the cortex. The neurotoxic potential was determined by cytoskeleton elements (neurofilaments), which were degradated in vitro by diverse neurodegenerative compounds. In comparison of dog and rat primary brain stem cultures, the dog cells were found to be more sensitive to artemisinin than the rat cells. In addition to the primary brain stem cell cultures it was shown that the sprouting assay, which determines persistent delayed neurotoxic effects, is also useful for screening antimalarial drugs. To other compounds, artemether and artesunate, showed that use of the sprouting assay followed by primary brain stem cultures of the rat will be a good strategy to select candidate compounds.

  11. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Abeta(1-42 is believed to play a causative role in the development of AD. Here we expressed human Abeta(1-42 and amyloid beta 40 (Abeta(1-40 in Drosophila neurons. Abeta(1-42 but not Abeta(1-40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Abeta(1-42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Abeta(1-42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Abeta(1-42 and Abeta(1-40, and reveal an Abeta(1-42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.

  12. Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Alexandre Benedetto

    2010-08-01

    Full Text Available Parkinson's disease (PD-mimicking drugs and pesticides, and more recently PD-associated gene mutations, have been studied in cell cultures and mammalian models to decipher the molecular basis of PD. Thus far, a dozen of genes have been identified that are responsible for inherited PD. However they only account for about 8% of PD cases, most of the cases likely involving environmental contributions. Environmental manganese (Mn exposure represents an established risk factor for PD occurrence, and both PD and Mn-intoxicated patients display a characteristic extrapyramidal syndrome primarily involving dopaminergic (DAergic neurodegeneration with shared common molecular mechanisms. To better understand the specificity of DAergic neurodegeneration, we studied Mn toxicity in vivo in Caenorhabditis elegans. Combining genetics and biochemical assays, we established that extracellular, and not intracellular, dopamine (DA is responsible for Mn-induced DAergic neurodegeneration and that this process (1 requires functional DA-reuptake transporter (DAT-1 and (2 is associated with oxidative stress and lifespan reduction. Overexpression of the anti-oxidant transcription factor, SKN-1, affords protection against Mn toxicity, while the DA-dependency of Mn toxicity requires the NADPH dual-oxidase BLI-3. These results suggest that in vivo BLI-3 activity promotes the conversion of extracellular DA into toxic reactive species, which, in turn, can be taken up by DAT-1 in DAergic neurons, thus leading to oxidative stress and cell degeneration.

  13. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    Directory of Open Access Journals (Sweden)

    Ullah Ikram

    2012-01-01

    Full Text Available Abstract Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met and thymoquinone (TQ during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (ΔψM, which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2, increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol-induced

  14. Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration

    Science.gov (United States)

    Kleinschnitz, Christoph; Grund, Henrike; Wingler, Kirstin; Armitage, Melanie E.; Jones, Emma; Mittal, Manish; Barit, David; Schwarz, Tobias; Geis, Christian; Kraft, Peter; Barthel, Konstanze; Schuhmann, Michael K.; Herrmann, Alexander M.; Meuth, Sven G.; Stoll, Guido; Meurer, Sabine; Schrewe, Anja; Becker, Lore; Gailus-Durner, Valérie; Fuchs, Helmut; Klopstock, Thomas; de Angelis, Martin Hrabé; Jandeleit-Dahm, Karin; Shah, Ajay M.; Weissmann, Norbert; Schmidt, Harald H. H. W.

    2010-01-01

    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4 −/−) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy. PMID:20877715

  15. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  16. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  17. The Role of PP2A Methylation in Susceptibility and Resistance to TBI and AD-Induced Neurodegeneration

    Science.gov (United States)

    2014-10-01

    development and characterization in mice. J Neurotrauma 28, 2171-2183. Wood , G.W., Panzer, M.B., Yu, A.W., Rafaels, K.A., Matthews, K.A., Bass, C.R...INTRODUCTION: Neurodegeneration resulting from both traumatic brain injury (TBI) and Alzheimer’s disease (AD) is characterized by aggregates of...we are staining paraffin embedded sections with H&E stain to examine general anatomical and cellular morphology, and performing

  18. Metals and Neurodegeneration.

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain-Barré disease, Gulf War syndrome, Huntington's disease, multiple sclerosis, Parkinson's disease, and Wilson's disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.

  19. Peroxiredoxins and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    S.H. Lee

    2006-01-01

    Full Text Available Peroxiredoxins (Prxs are a family of novel antioxidant proteins that are found in a variety of species and participate in a number of vital biological processes such as proliferation, differentiation, response to oxidative stress and intracellular signaling. It has been proposed that they might participate in these cellular processes by playing a role in eliminating or regulating the intracellular concentration of peroxides produced during metabolism as well as in the signaling cascades of growth factors and cytokines. Mammalian cells express six isoforms of Prx (Prx I to VI, which are classified into three subgroups (typical 2-Cys, atypical 2-Cys and 1-Cys based on the number and position of cysteine (Cys residues that participate in catalysis and on amino acid sequences and the immunological reactivity. Members of the typical 2-Cys subgroup include Prx I through Prx IV and contain an additional conserved cysteine in the carboxyl-terminal region, whereas Prx V and Prx VI, members of the atypical 2-Cys and 1-Cys subgroups, respectively, do not contain this second conserved Cys. On the other hand, Prxs activity can be regulated by phosphorylation and proteolysis processes in addition to overoxidation. Taken together, this study suggest that the generation of the oxidative stress which caused neurodegeneration may couple with produced Prxs and the reverse is true. However, this argument is still unclear on account of the difficulties of the direct observation of the reactive oxygen species due to their biological lifetime is short. Thus, experiments will be required to solve these problems and to comprehend the actual role of Prxs in neurodegeneration.

  20. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  1. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B.

    2013-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Parkinson’s disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival. PMID:22750587

  2. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  3. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2017-03-30

    The brain uses long-chain fatty acids (LCFAs) to a negligible extent as fuel for the mitochondrial energy generation, in contrast to other tissues that also demand high energy. Besides this generally accepted view, some studies using cultured neural cells or whole brain indicate a moderately active mitochondrial β-oxidation. Here, we corroborate the conclusion that brain mitochondria are unable to oxidize fatty acids. In contrast, the combustion of liver-derived ketone bodies by neural cells is long-known. Furthermore, new insights indicate the use of odd-numbered medium-chain fatty acids as valuable source for maintaining the level of intermediates of the citric acid cycle in brain mitochondria. Non-esterified LCFAs or their activated forms exert a large variety of harmful side-effects on mitochondria, such as enhancing the mitochondrial ROS generation in distinct steps of the β-oxidation and therefore potentially increasing oxidative stress. Hence, the question arises: Why do in brain energy metabolism mitochondria selectively spurn LCFAs as energy source? The most likely answer are the relatively higher content of peroxidation-sensitive polyunsaturated fatty acids and the low antioxidative defense in brain tissue. There are two remarkable peroxisomal defects, one relating to α-oxidation of phytanic acid and the other to uptake of very long-chain fatty acids (VLCFAs) which lead to pathologically high tissue levels of such fatty acids. Both, the accumulation of phytanic acid and that of VLCFAs give an enlightening insight into harmful activities of fatty acids on neural cells, which possibly explain why evolution has prevented brain mitochondria from the equipment with significant β-oxidation enzymatic capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. TRP channels, omega-3 fatty acids, and oxidative stress in neurodegeneration: from the cell membrane to intracellular cross-links

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2011-11-01

    Full Text Available The transient receptor potential channels family (TRP channels is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.

  5. Linking aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer's model.

    Directory of Open Access Journals (Sweden)

    Yong Ping

    2015-03-01

    Full Text Available Alzheimer's disease (AD is the most prevalent form of dementia in the elderly. β-amyloid (Aβ accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aβ has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients. Little, however, is known about whether, and how, increased excitability contributes to downstream pathologies of AD. Here, we show that overexpression of human Aβ42 in a Drosophila model indeed induces increased neuronal activity. We found that the underlying mechanism involves the selective degradation of the A-type K+ channel, Kv4. An age-dependent loss of Kv4 leads to an increased probability of AP firing. Interestingly, we find that loss of Kv4 alone results in learning and locomotion defects, as well as a shortened lifespan. To test whether the Aβ42-induced increase in neuronal excitability contributes to, or exacerbates, downstream pathologies, we transgenically over-expressed Kv4 to near wild-type levels in Aβ42-expressing animals. We show that restoration of Kv4 attenuated age-dependent learning and locomotor deficits, slowed the onset of neurodegeneration, and partially rescued premature death seen in Aβ42-expressing animals. We conclude that Aβ42-induced hyperactivity plays a critical role in the age-dependent cognitive and motor decline of this Aβ42-Drosophila model, and possibly in AD.

  6. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    NARCIS (Netherlands)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2,

  7. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    NARCIS (Netherlands)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2,

  8. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    NARCIS (Netherlands)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2,

  9. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer's disease model rats.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Neuroinflammation, especially innate immunocyte-mediated neuroinflammation, has been reported to participate in pathogenesis of Alzheimer's disease (AD. However, the involvement of adaptive immune cells, such as CD4(+ T lymphocytes, in pathogenesis of AD is not well clarified. Herein, we focus on T helper 17 (Th17 cells, a subpopulation of CD4(+ T cells with high proinflammation, and show the implication of the cells in neurodegeneration of AD. Amyloid β1-42 (Aβ1-42 was bilaterally injected into hippocampus of rats to induce AD. On days 7 and 14 following the Aβ1-42 administration, escape latency of the rats in Morris water maze was increased, expression of amyloid precursor protein was upregulated, but expression of protein phosphatase 2A was downregulated in the hippocampus, and Nissl stain showed neuronal loss and gliosis in CA1 region. Infusion of FITC-linked albumin in blood circulation and combination with immunostaining of hippocampal sections for RORγ, a specific transcriptional factor of Th17 cells, demonstrated blood-brain barrier (BBB disruption and Th17 cells' infiltration into brain parenchyma of AD rats. Expression of Th17 proinflammatory cytokines, interleukin (IL-17 and IL-22, was increased in the hippocampus, and concentrations of the two cytokines were elevated in both the cerebrospinal fluid and the serum in AD occurrence and development. Compared with intact or saline-treated control rats, AD animals indicated an upregulated expression of Fas and FasL in the hippocampus. Further, the immunofluorescent histochemistry on AD hippocampal sections with NeuN, RORγ, Fas and FasL displayed that Fas was principally expressed by neurons and FasL was predominantly expressed by Th17 cells, and that neuronal apoptosis shown by TUNEL and NeuN double-labeled cells increased. These results suggest that Th17 cells, which were infiltrated into AD brain parenchyma, participate in neuroinflammation and neurodegeneration of AD by release of

  10. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer's disease model rats.

    Science.gov (United States)

    Zhang, Jun; Ke, Kai-Fu; Liu, Zhan; Qiu, Yi-Hua; Peng, Yu-Ping

    2013-01-01

    Neuroinflammation, especially innate immunocyte-mediated neuroinflammation, has been reported to participate in pathogenesis of Alzheimer's disease (AD). However, the involvement of adaptive immune cells, such as CD4(+) T lymphocytes, in pathogenesis of AD is not well clarified. Herein, we focus on T helper 17 (Th17) cells, a subpopulation of CD4(+) T cells with high proinflammation, and show the implication of the cells in neurodegeneration of AD. Amyloid β1-42 (Aβ1-42) was bilaterally injected into hippocampus of rats to induce AD. On days 7 and 14 following the Aβ1-42 administration, escape latency of the rats in Morris water maze was increased, expression of amyloid precursor protein was upregulated, but expression of protein phosphatase 2A was downregulated in the hippocampus, and Nissl stain showed neuronal loss and gliosis in CA1 region. Infusion of FITC-linked albumin in blood circulation and combination with immunostaining of hippocampal sections for RORγ, a specific transcriptional factor of Th17 cells, demonstrated blood-brain barrier (BBB) disruption and Th17 cells' infiltration into brain parenchyma of AD rats. Expression of Th17 proinflammatory cytokines, interleukin (IL)-17 and IL-22, was increased in the hippocampus, and concentrations of the two cytokines were elevated in both the cerebrospinal fluid and the serum in AD occurrence and development. Compared with intact or saline-treated control rats, AD animals indicated an upregulated expression of Fas and FasL in the hippocampus. Further, the immunofluorescent histochemistry on AD hippocampal sections with NeuN, RORγ, Fas and FasL displayed that Fas was principally expressed by neurons and FasL was predominantly expressed by Th17 cells, and that neuronal apoptosis shown by TUNEL and NeuN double-labeled cells increased. These results suggest that Th17 cells, which were infiltrated into AD brain parenchyma, participate in neuroinflammation and neurodegeneration of AD by release of

  11. The phosphodiesterase type 2 inhibitor BAY 60-7550 reverses functional impairments induced by brain ischemia by decreasing hippocampal neurodegeneration and enhancing hippocampal neuronal plasticity.

    Science.gov (United States)

    Soares, Ligia Mendes; Meyer, Erika; Milani, Humberto; Steinbusch, Harry W M; Prickaerts, Jos; de Oliveira, Rúbia M Weffort

    2017-02-01

    Cognitive and affective impairments are the most characterized consequences following cerebral ischemia. BAY 60-7550, a selective phosphodiesterase type 2 inhibitor (PDE2-I), presents memory-enhancing and anxiolytic-like properties. The behavioral effects of BAY 60-7550 have been associated with its ability to prevent hydrolysis of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) thereby interfering with neuronal plasticity. Here, we hypothesize that PDE2-I treatment could promote functional recovery after brain ischemia. Mice C57Bl/6 were submitted to bilateral common carotid artery occlusion (BCCAO), an experimental model of transient brain ischemia, for 20 min. During 21 days after reperfusion, the animals were tested in a battery of behavioral tests including the elevated zero maze (EZM), object location task (OLT) and forced swim test (FST). The effects of BAY 60-7550 were evaluated on neuronal nuclei (NeuN), caspase-9, cAMP response element-binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. BCCAO increased anxiety levels, impaired hippocampus-dependent cognitive function and induced despair-like behavior in mice. Hippocampal neurodegeneration was evidenced by a decrease in NeuN and increase incaspase-9 protein levels in BCCAO mice. Ischemic mice also showed low BDNF protein levels in the hippocampus. Repeated treatment with BAY 60-7550 attenuated the behavioral impairments induced by BCCAO in mice. Concomitantly, BAY 60-7550 enhanced expression of pCREB and BDNF protein levels in the hippocampus of ischemic mice. The present findings suggest that chronic inhibition of PDE2 provides functional recovery in BCCAO mice possibly by augmenting hippocampal neuronal plasticity.

  12. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  13. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d’Amati, Giulia

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510

  14. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2(-/-)) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2(-/-) mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration.

  15. Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration.

    Science.gov (United States)

    Hernandes, Marina S; Santos, Graziella D R; Café-Mendes, Cecília C; Lima, Larissa S; Scavone, Cristoforo; Munhoz, Carolina D; Britto, Luiz R G

    2013-01-01

    We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91(phox-/-) 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91(phox-/-) 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91(phox-/-) 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91(phox-/-)-lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91(phox-/-) 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91(phox-/-) 6-OHDA lesioned mice, a likely mechanism whereby gp91(phox-/-) 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction.

  16. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    Science.gov (United States)

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  17. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer’s disease

    Science.gov (United States)

    Vu, Hang Thi; Akatsu, Hiroyasu; Hashizume, Yoshio; Setou, Mitsutoshi; Ikegami, Koji

    2017-01-01

    Neurodegeneration includes acute changes and slow-developing alterations, both of which partly involve common cellular machinery. During neurodegeneration, neuronal processes are impaired along with dysregulated post-translational modifications (PTMs) of cytoskeletal proteins. In neuronal processes, tubulin undergoes unique PTMs including a branched form of modification called glutamylation and loss of the C-terminal tyrosine residue and the penultimate glutamic acid residue forming Δ2-tubulin. Here, we investigated the state of two PTMs, glutamylation and Δ2 form, in both acute and slow-developing neurodegenerations, using a newly generated monoclonal antibody, DTE41, which had 2-fold higher affinity to glutamylated Δ2-tubulin, than to unmodified Δ2-tubulin. DTE41 recognised glutamylated Δ2-tubulin preferentially in immunostaining than in enzyme-linked immunosorbent assay and immunoblotting. In normal mouse brain, DTE41 stained molecular layer of the cerebellum as well as synapse-rich regions in pyramidal neurons of the cerebral cortex. In kainic acid-induced epileptic seizure, DTE41-labelled signals were increased in the hippocampal CA3 region, especially in the stratum lucidum. In the hippocampi of post-mortem patients with Alzheimer’s disease, intensities of DTE41 staining were increased in mossy fibres in the CA3 region as well as in apical dendrites of the pyramidal neurons. Our findings indicate that glutamylation on Δ2-tubulin is increased in both acute and slow-developing neurodegeneration. PMID:28067280

  18. Calcium signaling in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dreses-Werringloer Ute

    2009-05-01

    Full Text Available Abstract Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.

  19. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    OpenAIRE

    2013-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/− ) mouse model did not recapitulate the human disease but showed azo...

  20. Neurodegeneration in schizophrenia.

    Science.gov (United States)

    Archer, Trevor

    2010-07-01

    The neurodegenerative aspect of schizophrenia presupposes gene-environmental interactions involving chromosomal abnormalities and obstetric/perinatal complications that culminate in predispositions that impart a particular vulnerability for drastic and unpredictable precipitating factors, such as stress or chemical agents. The notion of a neurodevelopmental progression to the disease state implies that early developmental insults, with neurodegenerative proclivities, evolve into structural brain abnormalities involving specific regional circuits and neurohumoral agents. This neurophysiological orchestration is expressed in the dysfunctionality observed in premorbid signs and symptoms arising in the eventual diagnosis, as well as the neurobehavioral deficits reported from animal models of the disorder. The relative contributions of perinatal insults, neonatal ventral hippocampus lesion, prenatal methylazoxymethanol acetate and early traumatic experience, as well as epigenetic contributions, are discussed from a neurodegenerative view of the essential neuropathology. It is implied that these considerations of factors that exert disruptive influences upon brain development, or normal aging, operationalize the central hub of developmental neuropathology around which the disease process may gain momentum. Nonetheless, the status of neurodegeneration in schizophrenia is somewhat tenuous and it is possible that brain imaging studies on animal models of the disorder, which may describe progressive alterations to cortical, limbic and ventricular structures similar to those of schizophrenic patients, are necessary to resolve the issue.

  1. [Acute pancreatitis induced by valproic acid].

    Science.gov (United States)

    Jomli, R; Nacef, F; Douki, S

    2013-09-01

    We describe the case of an adult man aged 49, without personal antecedents, or family psychiatric history, treated for bipolar disorder since 1995 and stabilised in the last 8 years by valproic acid, who presented in January 2010 an acute drug-induced pancreatitis. Drug-induced pancreatitis has been described since 1955. It may be induced by more than 260 various molecules, as well as by valproic acid, which remains underreported in the literature because there is a problem of imputability. The prevalence of acute drug-induced pancreatitis is set between 1 and 2 %. However, it must remain as an exclusion diagnosis after conducting an exhaustive etiological investigation that will, notably, eliminate bilary and alcoholic causes. The most incriminated drugs are the inhibitors of the conversion enzyme, sulfa drugs, non-steroidal anti-inflammatory, diuretics and anticonvulsants, including valproic acid. In Tunisia, the prescription of valproic acid is increasing in bipolar disorder therapy because it is known for its weak toxicity and easy handling. The case of our patient, who suffers from an acute Balthazar stage C pancreatitis with severe evolution after the drug was stopped, the imputability of valproic acid was considered strong and the collegial decision between the surgery, pharmacovigilance and psychiatry services maintained the drug-induced origin and consequently stopped the valproic acid. This case supports the idea that acute pancreatitis may be induced by valproic acid, even after a prescription lasting for a long period of time, it has no predictable factors and is totally independent of the drug-related dose and of depakine blood levels. There are no predictive factors to the present day, but the evolution is generally good except in rare cases where it may be dangerous. This leads us to think of bipolar patients who are found within weak grounds, such as alcoholics, cancer and HIV positive patients. Copyright © 2013. Published by Elsevier Masson

  2. Harpagoside attenuates MPTP/MPP⁺ induced dopaminergic neurodegeneration and movement disorder via elevating glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Sun, Xiaoyu; Xiong, Zhongkui; Zhang, Yongfang; Meng, Ya; Xu, Gang; Xia, Zhiming; Li, Jiamei; Zhang, Rui; Ke, Zunji; Xia, Zongqin; Hu, Yaer

    2012-03-01

    Parkinson's disease is a chronic neurodegenerative movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. New therapeutic approaches aiming at delaying or reversing the neurodegenerative process are under active investigations. In this work, we found that harpagoside, an iridoid purified from the Chinese medicinal herb Scrophularia ningpoensis, could not only prevent but also rescue the dopaminergic neurodegeneration in MPTP/MPP(+) intoxication with promising efficacy. Firstly, in cultured mesencephalic neurons, harpagoside significantly attenuated the loss of TH-positive neuron numbers and the shortening of axonal length. Secondly, in a chronic MPTP mouse model, harpagoside dose-dependently improved the loco-motor ability (rotarod test), increased the TH-positive neuron numbers in the substantia nigra pars compacta (unbiased stereological counting) and increased the striatal DAT density ((125) I-FP-CIT autoradiography). Thirdly, harpagoside markedly elevated the GDNF mRNA and GDNF protein levels in MPTP/MPP(+) lesioned models. However, the protecting effect of harpagoside on the dopaminergic degeneration disappeared when the intrinsic GDNF action was blocked by either the Ret inhibitor PP1 or the neutralizing anti-GDNF antibody. Taken together, we conclude that harpagoside attenuates the dopaminergic neurodegeneration and movement disorder mainly through elevating glial cell line-derived neurotrophic factor.

  3. Neurodegeneration with Brain Iron Accumulation: An Overview

    Directory of Open Access Journals (Sweden)

    Seyed Hassan TONEKABONI*

    2014-12-01

    Full Text Available How to Cite This Article: Tonekaboni SH, Mollamohammadi M. Neurodegeneration with Brain Iron Accumulation: An Overview. Iran J Child Neurol. 2014 Autumn;8(4: 1-8.AbstractObjectiveNeurodegeneration with brain iron accumulation (NBIA is a group of neurodegenerative disorder with deposition of iron in the brain (mainly Basal Ganglia leading to a progressive Parkinsonism, spasticity, dystonia, retinal degeneration, optic atrophy often accompanied by psychiatric manifestations and cognitive decline. 8 of the 10 genetically defined NBIA types are inherited as autosomal recessive and the remaining two by autosomal dominant and X-linked dominant manner. Brain MRI findings are almost specific and show abnormal brain iron deposition in basal ganglia some other related anatomicallocations. In some types of NBIA cerebellar atrophy is the major finding in MRI.ReferencesShevel M. Racial hygiene, activeeuthanasia, and Julius Hallervorden. Neurology 1992;42:2214-2219.HayflickSJ. Neurodegeneration with brain Iron accumulation: from genes to pathogenesis.Semin Pediatr Neurol 2006;13:182-185.Zhou B, Westawy SK, Levinson B, et al. A novel pantothenate kinase gene(PANK2 is defective in Hallervorden-Spatzsyndrome. Nat Genet 2001;28:345- 349.www.ncbi.nlm.nihgov/NBK111Y/university of Washington, seattle. Allison Gregory and Susan Hayflick.Paisan-Ruiz C, Li A, Schneider SA, et al. Widesread Levy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2012;33:814-823.Dick KJ, Eckhardt M, Paison-Ruiz C, et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia(SPG 35. Hum Mutat 31: E1251-E1260.Edvardson S, Hama H, Shaag A, et al. Mutation in the fatty acid 2-Hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am I Hum Genet 2008;83:647-648.Schneider SA, Aggarwal A, Bhatt m, et al. Severe tongue protrusion dystonia: clinical syndromes

  4. Neurodegeneration in accelerated aging.

    Science.gov (United States)

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  5. Does kainic acid induce partial brain lesion in an invertebrate model: sepia officinalis? Comparison with electrolytic lesion.

    Science.gov (United States)

    Graindorge, Nicolas; Jozet-Alves, Christelle; Chichery, Raymond; Dickel, Ludovic; Bellanger, Cécile

    2008-10-31

    The present study investigates the feasibility of excitotoxic lesions in the cuttlefish in the mapping of brain functions in Cephalopods. Adult animals were injected locally with a neurotoxin, kainic acid. The brain region receiving the neurotoxin was the vertical lobe, a key brain structure for learning and memory processes. Brain damage induced by these injections was evaluated using different histological stainings: hematoxilin-eosin, Fink-Heimer and DAPI. The results were compared with histological changes after electrolytic lesion of the vertical lobe. Neurodegeneration was revealed in and around the injection site: an intense area of proliferative cells, degenerating terminal axon ramifications and cell death. In comparison with electrolytic lesion, excitotoxic lesion displays important advantages, since fibres of passage are not destroyed by kainic acid injection, which induces only a restricted lesion and so is an appropriate method of investigating the role of the vertical lobe or other brain regions in a Cephalopod model, Sepia officinalis.

  6. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  7. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    : homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage......Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...

  8. Neurodegeneration med jernakkumulation i hjernen

    DEFF Research Database (Denmark)

    Bertelsen, Maria; Hansen, Lars Kjærsgaard

    2015-01-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of syndromes. Whereas NBIA1 (panto-thenate kinase-associated neurodegeneration) has been known since 1922, some of the other diseases in the NBIA group have just been known for a few years. We present the case of a 16-......-year-old man who recently was diagnosed with NBIA4. He had had neurodegenerative symptoms since he was eight years old. The typical MRI findings in the basal ganglia were important in diagnosing NBIA. Furthermore gait analysis and specific genetic testing were performed....

  9. Neurodegeneration in the diabetic eye

    DEFF Research Database (Denmark)

    Simó, Rafael; Hernández, Cristina; Bandello, F;

    2014-01-01

    Diabetic retinopathy (DR), one of the leading causes of preventable blindness, has been considered a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the develop......Diabetic retinopathy (DR), one of the leading causes of preventable blindness, has been considered a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates...

  10. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    Science.gov (United States)

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  11. Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice

    DEFF Research Database (Denmark)

    Carrasco, J; Penkowa, M; Hadberg, H

    2000-01-01

    ), a potent convulsive agent, to examine the neurobiological importance of these MT isoforms. At 35 mg/kg KA, MT-I + II deficient male mice showed a higher number of convulsions and a longer convulsion time than control mice. Three days later, KA-injected mice showed gliosis and neuronal injury...

  12. Aspirin and (or) omega-3 polyunsaturated fatty acids protect against corticohippocampal neurodegeneration and downregulate lipoxin A4 production and formyl peptide receptor-like 1 expression in pentylenetetrazole-kindled rats.

    Science.gov (United States)

    Abd-Elghafour, Basma A; El-Sayed, Norhan M; Ahmed, Amal A M; Zaitone, Sawsan A; Moustafa, Yasser M

    2017-04-01

    There is evidence for a relationship between inflammation and seizures because epilepsy can be caused by or result in inflammation. This study aimed to investigate the effect of aspirin and (or) omega-3 polyunsaturated fatty acids (PUFAs) on seizure activity and neurodegeneration in pentylenetetrazole (PTZ)-kindled rats focusing on their effect on corticohippocampal production of lipoxin A4 (LXA4) and expression of formyl peptide receptor-like 1 (FPRL1) receptors. Male rats were injected with PTZ (35 mg/kg, i.p.) 3 times per week for a total of 15 doses. Rats were treated daily with aspirin (20 mg/kg, i.p.), omega-3 PUFAs (85 mg/kg, p.o.), or a combination of them for 35 days. Both LXA4 level and expression of FPRL1 receptor in the cortices and hippocampi of rats' brains were greater in PTZ-kindled rats compared to a saline control group. Cotreatment with aspirin and (or) omega-3 PUFAs reduced convulsive behaviour; reduced levels of LXA4, interleukin-1β, and nuclear factor-κB; and showed a lower percentage of corticohippocampal degenerative cells compared to PTZ-kindled rats. The combination of the 2 therapeutic agents did not provide significant improvement in comparison with the monotherapies. These findings suggest the use of aspirin or omega-3 PUFAs may delay the development of seizures and provide neuroprotection in a clinical setting.

  13. Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Quintana, Albert; Carrasco, Javier

    2004-01-01

    cell death. We hereby show that the primary injury caused by 6-AN was comparable in wild-type and GFAP-IL6 mice, but MT-I overexpression could significantly protect the brain tissue. As expected, GFAP-IL6 mice showed increased CNS inflammation with more gliosis, macrophages, and lymphocytes, including......Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) induces significant inflammation and neurodegeneration but also affords neuroprotection against acute traumatic brain injury. This neuroprotection......-I+II expression was significantly higher in GFAP-IL6 mice than in wild types, which may contribute to the IL-6-induced neuroprotection. In support of this, overexpression of MT-I in GFAP-IL6 x TgMT as well as TgMT mice protected the brainstem tissue significantly from 6-AN-induced toxicity and secondary brain...

  14. Bile Acid-Induced Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2016-04-01

    Full Text Available Background/Aims: In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Methods: Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: The exposure of human erythrocytes to glycochenodesoxycholic (GCDC and taurochenodesoxycholic (TCDC acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.

  15. The Impact of Vitamin D Supplementation on Neurodegeneration, TNF-α Concentration in Hypothalamus, and CSF-to-Plasma Ratio of Insulin in High-Fat-Diet-Induced Obese Rats.

    Science.gov (United States)

    Nameni, Ghazaleh; Hajiluian, Ghazaleh; Shahabi, Parviz; Farhangi, Mahdieh Abbasalizad; Mesgari-Abbasi, Mehran; Hemmati, Mohammad-Reza; Vatandoust, Seyed Mahdi

    2017-02-01

    There is growing evidence that obesity can lead to neurodegeneration induced by pro-inflammatory cytokines such as tumor necrosis factor (TNF-α). Moreover, obesity is associated with reduced transport of insulin through the blood-brain barrier (BBB). Insulin deficiency in the brain especially in the hypothalamus region has neurodegenerative and obesity-promoting effects. Because of the anti-inflammatory and neuroprotective effects of vitamin D, in the current experimental study, we aimed to investigate the effects of vitamin D supplementation on neurodegeneration, TNF-α concentration in the hypothalamus, and cerebrospinal fluid (CSF) to serum ratio of insulin in high-fat-diet-induced obese rats. At the first phase of the study, the rats were divided into two groups: (1) normal diet (ND, 10% fat) and (2) high-fat diet (HFD, 59% fat) and were fed for 16 weeks. In the second phase, each group was subdivided into four groups including the following: ND, normal diet + vitamin D, HFD, and HFD + vitamin D. Weight was measured and recorded weekly. Vitamin D supplementation for 5 weeks at 500 IU/kg dosage was used. One week after vitamin D supplementation, daily food intake was recorded. At week 22, blood was collected to determine fasting serum glucose, vitamin D, and insulin concentrations, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. CSF samples were also collected to measure insulin concentrations, and the hypothalamus was dissected to determine TNF-α concentration. HFD significantly increased TNF-α concentrations and degenerated neurons in the hypothalamus (P = 0.02). We also observed a significant reduction of CSF-to-serum ratio of insulin in HFD group (P = 0.03). The HOMA-IR test indicated significant increment of insulin resistance in HFD-fed rats (P = 0.006). Vitamin D supplementation in HFD group significantly reduced weight (P = 0.001) and food intake (P = 0.008) and increased CSF-to-serum ratio of insulin

  16. Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice

    Science.gov (United States)

    Amin, Faiz Ul; Shah, Shahid Ali; Kim, Myeong Ok

    2017-01-01

    Increasing evidence demonstrates that β-amyloid (Aβ) elicits oxidative stress, which contributes to the pathogenesis and disease progression of Alzheimer’s disease (AD). The aims of the present study were to determine and explore the antioxidant nature and potential mechanism of vanillic acid (VA) in Aβ1-42-induced oxidative stress and neuroinflammation mediated cognitive impairment in mice. An intracerebroventricular (i.c.v.) injection of Aβ1-42 into the mouse brain triggered increased reactive oxygen species (ROS) levels, neuroinflammation, synaptic deficits, memory impairment, and neurodegeneration. In contrast, the i.p. (intraperitoneal) administration of VA (30 mg/kg, for 3 weeks) after Aβ1-42-injection enhanced glutathione levels (GSH) and abrogated ROS generation accompanied by an induction of the endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) via the activation of Akt and glycogen synthase kinase 3β (GSK-3β) in the brain mice. Additionally, VA treatment decreased Aβ1-42-induced neuronal apoptosis and neuroinflammation and improved synaptic and cognitive deficits. Moreover, VA was nontoxic to HT22 cells and increased cell viability after Aβ1-42 exposure. To our knowledge, this study is the first to reveal the neuroprotective effect of VA against Aβ1-42-induced neurotoxicity. Our findings demonstrate that VA could potentially serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD. PMID:28098243

  17. Myeloperoxidase: Bridging the gap in neurodegeneration.

    Science.gov (United States)

    Ray, R S; Katyal, Anju

    2016-09-01

    Neurodegenerative conditions present a group of complex disease pathologies mostly due to unknown aetiology resulting in neuronal death and permanent neurological disability. Any undesirable stress to the brain, disrupts homeostatic balance, through a remarkable convergence of pathophysiological changes and immune dysregulation. The crosstalk between inflammatory and oxidative mechanisms results in the release of neurotoxic mediators apparently spearheaded by myeloperoxidase derived from activated microglia, astrocytes, neurons as well as peripheral inflammatory cells. These isolated entities combinedly have the potential to flare up and contribute significantly to neuropathology and disease progression. Recent, clinicopathological evidence support the association of myeloperoxidase and its cytotoxic product, hypochlorous acid in a plethora of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Stroke, Epilepsy etc. But the biochemical and mechanistic insights into myeloperoxidase mediated neuroinflammation and neuronal death is still an uncharted territory. The current review outlines the emerging recognition of myeloperoxidase in neurodegeneration, which may offer novel therapeutic and diagnostic targets for neurodegenerative disorders.

  18. Ageing, neuroinflammation and neurodegeneration.

    Science.gov (United States)

    Ward, Roberta J; Dexter, David T; Crichton, Robert R

    2015-06-01

    During ageing, different iron complexes accumulate in specific brain regions which are associated with motor and cognitive dysfunction. In neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in local iron homoeostasis result in altered cellular iron distribution and accumulation, ultimately inducing neurotoxicity. The use of iron chelators which are able to penetrate the blood brain barrier and reduce excessive iron accumulation in specific brain regions have been shown to reduce disease progression in both Parkinson's disease and Friedreich's Ataxia. Neuroinflammation often occurs in neurodegenerative diseases, which is mainly sustained by activated microglia exhibiting the M1 phenotype. Such inflammation contributes to the disease progression. Therapeutic agents which reduce such inflammation, e.g. taurine compounds, may ameliorate the inflammatory process by switching the microglia from a M1 to a M2 phenotype.

  19. Ageing, neurodegeneration and brain rejuvenation

    Science.gov (United States)

    2016-01-01

    Although systemic diseases take the biggest toll on human health and well-being, increasingly, a failing brain is the arbiter of a death preceded by a gradual loss of the essence of being. Ageing, which is fundamental to neurodegeneration and dementia, affects every organ in the body and seems to be encoded partly in a blood-based signature. Indeed, factors in the circulation have been shown to modulate ageing and to rejuvenate numerous organs, including the brain. The discovery of such factors, the identification of their origins and a deeper understanding of their functions is ushering in a new era in ageing and dementia research. PMID:27830812

  20. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity

    OpenAIRE

    Choi, Joungil; Chandrasekaran, Krish; Demarest, Tyler G.; Kristian, Tibor; Xu, Su; Vijaykumar, Kadambari; Dsouza, Kevin Geoffrey; Qi, Nathan R; Yarowsky, Paul J.; Gallipoli, Rao; Koch, Lauren G.; Fiskum, Gary M.; Steven L Britton; Russell, James W.

    2014-01-01

    Objectives Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human “impaired glucose tolerance” or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to the...

  1. Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice.

    Science.gov (United States)

    Lehrmann, Elin; Guidetti, Paolo; Löve, Arthur; Williamson, John; Bertram, Edward H; Schwarcz, Robert

    2008-01-01

    Intracerebral injection of hamster neurotropic (HNT) measles virus in weanling Balb/C mice leads to an encephalitis, which is characterized by glial activation, behavioral seizures, selective neurodegeneration, and, after approximately 7 days, death. To provide a better understanding of the underlying molecular pathology, we studied seizure evolution by continuously monitoring electroencephalographic (EEG) activity, examined neuroglia and neurons histologically, and measured the brain content of glia-derived neuroactive metabolites of the kynurenine pathway of tryptophan degradation. Microglia and astrocytes were activated as early as postinoculation day (PID) 1, with reactive microglia lining the extent of the alveus. This was followed by a more extensive microglial activation that specifically outlined hippocampal pyramidal neurons in areas CA1-CA3 and by increases in the hippocampal levels of the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN). These changes preceded the onset of EEG seizures, which had a mean onset of 108 h after inoculation. Prominent hippocampal cell loss, demonstrated by Nissl- and silver staining, was apparent by PID 5. Thus, we speculate that early glial reactions to HNT inoculation result in the excess formation of 3-HK and QUIN, which in turn causes subclinical seizure activity, behavioral seizures, and, eventually, neurodegeneration. In addition to its conceptual implications, our study indicates that timely interventions modulating glial activation or 3-HK/QUIN synthesis may be of benefit in preventing or arresting seizure-induced neuronal damage.

  2. Interleukin-1 and inflammatory neurodegeneration.

    Science.gov (United States)

    Simi, A; Tsakiri, N; Wang, P; Rothwell, N J

    2007-11-01

    Inflammation occurs rapidly in response to acute brain insults such as stroke, haemorrhage or trauma, and can be sustained for long periods of time, for example in Alzheimer's or Parkinson's diseases and multiple sclerosis. Experimental evidence indicates that inflammation plays a major role in neurodegeneration under these conditions, and that the cytokine IL-1 (interleukin-1) is a pivotal mediator. IL-1 is expressed rapidly in response to neuronal injury, predominantly by microglia, and elevated levels of endogenous or exogenous IL-1 markedly exacerbate injury. The naturally occurring IL-1RA (IL-1 receptor antagonist) markedly inhibits ischaemic, excitotoxic and traumatic brain injury in rodents, and has shown promise in a Phase II clinical trial in stroke patients. The mechanisms of IL-1 expression, release and action in neurodegeneration are not fully elucidated and appear multiple. Systemic IL-1 markedly enhances ischaemic brain injury via release of neutrophils into circulation, neutrophil adhesion to injured cerebrovasculature and CNS (central nervous system) invasion, and cell death via activation of matrix metalloproteinase-9. IL-1 also influences the release of toxins from glial and endothelial cells. Neuronal responses to excitotoxins and physiological factors may have an impact on neuronal survival. IL-1RA, delivered peripherally, can enter the CNS in animals and humans and has no adverse effects in stroke or subarachnoid haemorrhage patients, but shows potential benefit in acute stroke patients.

  3. GABAergic effect of valeric acid from Valeriana wallichii in amelioration of ICV STZ induced dementia in rats

    Directory of Open Access Journals (Sweden)

    Shilpa Vishwakarma

    Full Text Available ABSTRACT Valeriana wallichii DC., Caprifoliaceae, is used to have anti-ulcer, anti-spasmodic, anti-epileptic, memory enhancer, anti-anxiety, anti-rheumatic, sedative, anti-asthmatic and diuretic activities. V. wallichii is reported to contain valpotriates, valeric acid, valerenic acid, valechlorine, valerianine, resins and alkaloids. Valeric acid, found in V. wallichii appears similar in structure to the neurotransmitter GABA. Valeric acid also acts as an NMDA-receptor antagonist. The aim of present study was to investigate the neuroprotective effect of V. wallichii containing valeric acid and its possible mechanism of action in amelioration of intracerebroventricular streptozotocin induced neurodegeneration in Wistar rats. The rhizomes of V. wallichii were powdered coarsely and extracted by percolation method using dichloromethane. Wistar rats (220–250 g of either sex were divided into 5 groups, comprising 6 animals each. Valeric acid was isolated from plant extract and characterized using FT-IR. Picrotoxin (2 mg/kg was used as GABA-A antagonist. Intracerebroventricular streptozotocin administration caused significant (p < 0.05 increase in escape latency, retention transfer latency on morris water maze on 17th, 18th, 19th and 20th day and elevated plus maze on 19th and 20th day respectively, as compared to normal untreated rats. Treatment with V. wallichii extract 100 and 200 mg/kg and valeric acid 20 and 40 mg/kg significantly decreased the escape latency and retention transfer latency, as compared to intracerebroventricular-streptozotocin group. Plant extract and valeric acid also decreased the level of lipid peroxidation and restored glutathione level in rat brains. Administration of picrotoxin significantly reversed the effects produced by plant extract and valeric acid in intracerebroventricular-streptozotocin treated rats. The findings may conclude that valeric acid present in V. wallichii has significant GABAergic effect in

  4. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease.

    Science.gov (United States)

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G

    2014-12-12

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. © 2014 by The American Society

  5. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells.

    Science.gov (United States)

    Debbabi, Meryam; Zarrouk, Amira; Bezine, Maryem; Meddeb, Wiem; Nury, Thomas; Badreddine, Asmaa; Karym, El Mostafa; Sghaier, Randa; Bretillon, Lionel; Guyot, Stéphane; Samadi, Mohammad; Cherkaoui-Malki, Mustapha; Nasser, Boubker; Mejri, Mondher; Ben-Hammou, Sofien; Hammami, Mohamed; Lizard, Gérard

    2017-04-10

    Increased levels of 7-ketocholesterol (7KC), which results mainly from cholesterol auto-oxidation, are often found in the plasma and/or cerebrospinal fluid of patients with neurodegenerative diseases and might contribute to activation of microglial cells involved in neurodegeneration. As major cellular dysfunctions are induced by 7KC, it is important to identify molecules able to impair its side effects. Since consumption of olive and argan oils, and fish is important in the Mediterranean diet, the aim of the study was to determine the ability of oleic acid (OA), a major compound of olive and argan oil, and docosahexaenoic acid (DHA) present in fatty fishes, such as sardines, to attenuate 7KC-induced cytotoxic effects. Since elaidic acid (EA), the trans isomer of OA, can be found in hydrogenated cooking oils and fried foods, its effects on 7KC-induced cytotoxicity were also determined. In murine microglial BV-2 cells, 7KC induces cell growth inhibition, mitochondrial dysfunctions, reactive oxygen species overproduction and lipid peroxidation, increased plasma membrane permeability and fluidity, nuclei condensation and/or fragmentation and caspase-3 activation, which are apoptotic characteristics, and an increased LC3-II/LC3-I ratio, which is a criterion of autophagy. 7KC is therefore a potent inducer of oxiapoptophagy (OXIdation+APOPTOsis+autoPHAGY) on BV-2 cells. OA and EA, but not DHA, also favor the accumulation of lipid droplets revealed with Masson's trichrome, Oil Red O, and Nile Red staining. The cytotoxicity of 7KC was strongly attenuated by OA and DHA. Protective effects were also observed with EA. However, 7KC-induced caspase-3 activation was less attenuated with EA. Different effects of OA and EA on autophagy were also observed. In addition, EA (but not OA) increased plasma membrane fluidity, and only OA (but not EA) was able to prevent the 7KC-induced increase in plasma membrane fluidity. Thus, in BV-2 microglial cells, the principal fatty acids of the

  6. Phytic Acid Protects against 6-Hydroxydopamine-Induced Dopaminergic Neuron Apoptosis in Normal and Iron Excess Conditions in a Cell Culture Model.

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G; Reddy, Manju B

    2011-02-07

    Iron may play an important role in Parkinson's disease (PD) since it can induce oxidative stress-dependent neurodegeneration. The objective of this study was to determine whether the iron chelator, phytic acid (IP6) can protect against 6-hydroxydopamine- (6-OHDA-) induced apoptosis in immortalized rat mesencephalic dopaminergic cells under normal and iron-excess conditions. Caspase-3 activity was increased about 6-fold after 6-OHDA treatment (compared to control; P IP6 pretreatment decreased it by 38% (P IP6 pretreatment. Under iron-excess condition, a 6-fold increase in caspase-3 activity (P IP6. Together, our data suggest that IP6 protects against 6-OHDA-induced cell apoptosis in both normal and iron-excess conditions, and IP6 may offer neuroprotection in PD.

  7. Characterization of prefrontal cortex microstructure and antioxidant status in a rat model of neurodegeneration induced by aluminium chloride and multiple low-dose streptozotocin.

    Science.gov (United States)

    Akinola, Oluwole B; Biliaminu, Sikiru A; Adediran, Rianat A; Adeniye, Kehinde A; Abdulquadir, Fatimah C

    2015-12-01

    Diabetes mellitus (DM) is a risk factor for Alzheimer's disease (AD), and several individuals with AD are diabetic. Most non-transgenic animal models of AD make use of oral treatment with aluminium chloride (AlCl(3)) to induce brain lesions pathognomonic of the disease. Moreover, streptozotocin (STZ) can induce pathological features of either AD or DM depending on the mode of treatment. In the present study, we characterised prefrontal microanatomy and antioxidant defence system in a rat model of AD confounded by DM, with the objective of assessing the suitability of this model in the study of sporadic AD with DM co-morbidity. Adult Wistar rats were randomly assigned to receive either intraperitoneal STZ (30 mg/kg/day for 3 days; to induce DM), oral AlCl(3) (500 mg/kg/day for 4 weeks; to induce some brain lesions characteristic of AD); or both STZ and AlCl(3) (to induce AD with DM co-morbidity). Untreated rats served as controls. During treatment, blood glucose levels and body weights were evaluated repeatedly in all rats. At euthanasia, prefrontal cortex was homogenized in phosphate buffer solution and the supernatants assayed for some antioxidant enzymes (catalase, CAT; superoxide dismutase, SOD; and reduced glutathione, GSH). Moreover, following perfusion-fixation of the brain, frontal lobes were processed by the haematoxylin and eosin (H&E) or Congo red technique. Our findings showed that in rats co-administered AlCl(3) and STZ (AD + DM rats), prefrontal levels of GSH reduced significantly (p 0.05) compared with the controls. Moreover, in this model of AD with DM co-morbidity, extensive neuronal cell loss was observed in the prefrontal cortex, but Congophilic deposits were not present. The neurodegenerative lesions and antioxidant deficits characteristic of this AlCl(3) + STZ (AD + DM) rat model were more pronounced than similar lesions associated with mono-treatment with either STZ (DM) or AlCl(3) (AD) alone; and this makes the AlCl(3) + STZ model a suitable

  8. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    Science.gov (United States)

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  9. Protocatechuic acid protects brain mitochondrial function in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Semaming, Yoswaris; Sripetchwandee, Jirapas; Sa-Nguanmoo, Piangkwan; Pintana, Hiranya; Pannangpetch, Patchareewan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-10-01

    Brain mitochondrial dysfunction has been demonstrated in diabetic animals with neurodegeneration. Protocatechuic acid (PCA), a major metabolite of anthocyanin, has been shown to exert glycemic control and oxidative stress reduction in the heart. However, its effects on oxidative stress and mitochondrial function in the brain under diabetic condition have never been investigated. We found that PCA exerted glycemic control, attenuates brain mitochondrial dysfunction, and contributes to the prevention of brain oxidative stress in diabetic rats.

  10. MicroRNAs in neurodegeneration.

    Science.gov (United States)

    Bushati, Natascha; Cohen, Stephen M

    2008-06-01

    microRNAs (miRNAs) act as post-transcriptional regulators of gene expression in diverse cellular and developmental processes. Many miRNAs are expressed specifically in the central nervous system, where they have roles in differentiation, neuronal survival, and potentially also in plasticity and learning. The absence of miRNAs in a variety of specific postmitotic neurons can lead to progressive loss of these neurons and behavioral defects reminiscent of the phenotypes seen in the pathologies of neurodegenerative diseases. Here, we review recent studies which provide a link between miRNA function and neurodegeneration. We also discuss evidence which might suggest involvement of miRNAs in the emergence or progression of neurodegenerative diseases.

  11. Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta: Implications for neurodegeneration in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Kanthasamy Anumantha G

    2008-10-01

    Full Text Available Abstract Background In previous work, we investigated dieldrin cytotoxicity and signaling cell death mechanisms in dopaminergic PC12 cells. Dieldrin has been reported to be one of the environmental factors correlated with Parkinson's disease and may selectively destroy dopaminergic neurons. Methods Here we further investigated dieldrin toxicity in a dopaminergic neuronal cell model of Parkinson's disease, namely N27 cells, using biochemical, immunochemical, and flow cytometric analyses. Results In this study, dieldrin-treated N27 cells underwent a rapid and significant increase in reactive oxygen species followed by cytochrome c release into cytosol. The cytosolic cytochrome c activated caspase-dependent apoptotic pathway and the increased caspase-3 activity was observed following a 3 hr dieldrin exposure in a dose-dependent manner. Furthermore, dieldrin caused the caspase-dependent proteolytic cleavage of protein kinase C delta (PKCδ into 41 kDa catalytic and 38 kDa regulatory subunits in N27 cells as well as in brain slices. PKCδ plays a critical role in executing the apoptotic process in dieldrin-treated dopaminergic neuronal cells because pretreatment with the PKCδ inhibitor rottlerin, or transfection and over-expression of catalytically inactive PKCδK376R, significantly attenuates dieldrin-induced DNA fragmentation and chromatin condensation. Conclusion Together, we conclude that caspase-3-dependent proteolytic activation of PKCδ is a critical event in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells.

  12. Environmental neurotoxin dieldrin induces apoptosis via caspase-3-dependent proteolytic activation of protein kinase C delta (PKCdelta): Implications for neurodegeneration in Parkinson's disease.

    Science.gov (United States)

    Kanthasamy, Anumantha G; Kitazawa, Masashi; Yang, Yongjie; Anantharam, Vellareddy; Kanthasamy, Arthi

    2008-10-22

    In previous work, we investigated dieldrin cytotoxicity and signaling cell death mechanisms in dopaminergic PC12 cells. Dieldrin has been reported to be one of the environmental factors correlated with Parkinson's disease and may selectively destroy dopaminergic neurons. Here we further investigated dieldrin toxicity in a dopaminergic neuronal cell model of Parkinson's disease, namely N27 cells, using biochemical, immunochemical, and flow cytometric analyses. In this study, dieldrin-treated N27 cells underwent a rapid and significant increase in reactive oxygen species followed by cytochrome c release into cytosol. The cytosolic cytochrome c activated caspase-dependent apoptotic pathway and the increased caspase-3 activity was observed following a 3 hr dieldrin exposure in a dose-dependent manner. Furthermore, dieldrin caused the caspase-dependent proteolytic cleavage of protein kinase C delta (PKCδ) into 41 kDa catalytic and 38 kDa regulatory subunits in N27 cells as well as in brain slices. PKCδ plays a critical role in executing the apoptotic process in dieldrin-treated dopaminergic neuronal cells because pretreatment with the PKCδ inhibitor rottlerin, or transfection and over-expression of catalytically inactive PKCδ(K)³⁷⁶(R), significantly attenuates dieldrin-induced DNA fragmentation and chromatin condensation. Together, we conclude that caspase-3-dependent proteolytic activation of PKCδ is a critical event in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells.

  13. Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Yuan, Yu-Qing; Wang, Ya-Li; Yuan, Bao-Shi; Yuan, Xin; Hou, Xiao-Ou; Bian, Jin-Song; Liu, Chun-Feng; Hu, Li-Fang

    2017-08-01

    Hydrogen sulfide (H2S), a novel neuromodulator, is linked to the pathogenesis of several neurodegenerative disorders. Exogenous application of H2S exerts neuroprotection via anti-inflammation and anti-oxidative stress in animal and cellular models of Parkinson's disease (PD). However, the role of endogenous H2S and the contribution of its various synthases in PD remain unclear. In the present study, we found a decline of plasma and striatal sulfide level in 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model. Interestingly, among the three H2S generating enzymes, only cystathionine β-synthase (CBS) expression was largely reduced in the striatum of MPTP-treated mice. The in vitro study confirmed a significant decrease of CBS expression in 1-methyl-4-phenylpyridinium (MPP(+))-stimulated astrocytes and microglia, but not in neurons or SH-SY5Y dopaminergic cells. Striatal CBS overexpression, elicited by stereotaxic delivery with Cbs gene using recombinant adeno-associated-virus (rAAV-Cbs), successfully enhanced the sulfide level in the striatum and partially rescued the MPTP-induced dopaminergic neurotoxicity in the midbrain. Specifically, striatal CBS overexpression alleviated the motor deficits and dopaminergic neuron losses in the nigro-striatal pathway, with a concomitant inhibition of glial activation in MPTP-treated mice. Furthermore, compared to rAAV-Vector, rAAV-Cbs injection reduced the aberrant accumulation of nitric oxide and 3-nitrotyrosine (an indicator of protein nitration) in the striatum of MPTP-treated mice. Notably, it also attenuated the increase of nitrated α-synuclein level in MPTP mice. The in vitro study demonstrated that lentivirus-mediated CBS overexpression elevated the sulfide generation in glial cells. Moreover, glial CBS overexpression offered protection to midbrain dopaminergic neurons through repressing nitric oxide overproduction in both glial and neuronal cells induced by MPP(+). Taken together, our data suggest

  14. Propagation of Tau Aggregates and Neurodegeneration.

    Science.gov (United States)

    Goedert, Michel; Eisenberg, David S; Crowther, R Anthony

    2017-07-25

    A pathway from the natively unfolded microtubule-associated protein Tau to a highly structured amyloid fibril underlies human Tauopathies. This ordered assembly causes disease and represents the gain of toxic function. In recent years, evidence has accumulated to suggest that Tau inclusions form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of pathology is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighboring cells. In mice, the intracerebral injection of Tau inclusions induces the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Conformational differences between Tau aggregates from transgenic mouse brain and in vitro assembled recombinant protein account for the greater seeding potency of brain aggregates. Short fibrils constitute the major species of seed-competent Tau in the brains of transgenic mice. The existence of multiple human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.

  15. Nicotine and neurodegeneration in ageing.

    Science.gov (United States)

    Zanardi, Alessio; Leo, Giuseppina; Biagini, Giuseppe; Zoli, Michele

    2002-02-28

    Impairment in cholinergic systems is a highly consistent finding in human dementia. Among cholinergic markers, marked decreases in nicotine binding have been most consistently observed in the telencephalic regions of demented patients and are thought to contribute to the cognitive deficits associated with ageing and age-related neurodegenerative diseases. New evidence that the cholinergic system has a specific pathogenic role in the neurodegenerative alterations of aged and, especially, demented patients is fast accumulating. Both in vivo and in culture, nicotine protects striatal, hippocampal and cortical neurons against the neurotoxicity induced by excitotoxic amino acids as well as the toxicity caused by beta-amyloid, the major component of senile plaques. Further support for the implication of nicotinic receptors in brain ageing is come from recent studies on transgenic animals lacking nicotinic receptor subtypes, which shed light on the mechanisms of nicotine neuroprotection and neurotoxicity.

  16. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Longato Lisa

    2010-03-01

    Full Text Available Abstract Background Type 2 diabetes mellitus (T2DM and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM. Hypothesis Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD or low fat (5%; LFD chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF deficiency and resistance in the context of neurodegeneration. Results HFD ± NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT, which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD ± NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3β (reflecting increased GSK-3β activity, glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats. Conclusions Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of

  17. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  18. Downregulation of 14-3-3 Proteins in a Kainic Acid-Induced Neurotoxicity Model.

    Science.gov (United States)

    Smani, Danyal; Sarkar, Sumit; Raymick, James; Kanungo, Jyotshna; Paule, Merle G; Gu, Qiang

    2017-08-24

    The 14-3-3 proteins are among the most abundant proteins expressed in the brain, comprising about 1% of the total amount of soluble brain proteins. Through phosphoserine- and phosphothreonine-binding motifs, 14-3-3 proteins regulate many signaling proteins and cellular processes including cell death. In the present study, we utilized a well-known kainic acid (KA)-induced excitotoxicity rat model and examined the expression of 14-3-3 and its isoforms in the frontal cortex of KA-treated and control animals. Among the different 14-3-3 isoforms, abundant levels of eta and tau were detected in the frontal cortex, followed by sigma, epsilon, and gamma, while the expression levels of alpha/beta and zeta/delta isoforms were low. Compared to the control animals, KA treatment induced a significant downregulation of the overall 14-3-3 protein level as well as the levels of the abundant isoforms eta, tau, epsilon, and gamma. We also investigated two 14-3-3-interacting proteins that are involved in the cell death process: Bcl-2-associated X (BAX) and extracellular signal-regulated kinase (ERK). Both BAX and phosphorylated ERK showed increased levels following KA treatment. Together, these findings demonstrate an abundance of several 14-3-3 isoforms in the frontal cortex and that KA treatment can cause a downregulation of 14-3-3 expression and an upregulation of 14-3-3-interacting proteins BAX and phospho-ERK. Thus, downregulation of 14-3-3 proteins could be one of the early molecular events associated with excitotoxicity. This could lead to subsequent upregulation of 14-3-3-binding proteins such as BAX and phospho-ERK that contribute to further downstream apoptosis processes, eventually leading to cell death. Maintaining sufficient levels of 14-3-3 expression and function may become a target of therapeutic intervention for excitotoxicity-induced neurodegeneration.

  19. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    Science.gov (United States)

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment.

  20. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro.

    Science.gov (United States)

    Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A

    2013-02-01

    This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.

  1. Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats.

    Science.gov (United States)

    Kalonia, H; Kumar, P; Kumar, A; Nehru, B

    2010-11-24

    The present study has been designed to explore the protective effect of montelukast (leukotriene receptor antagonist) against intrastriatal quinolinic acid (QA; 300 nmol) and malonic acid (MA; 6 μmol) induced Huntington's like symptoms in rats. Quinolinic acid has been reported to induce excitotoxicity by stimulating the N-methyl-D-aspartate receptor, causing calcium overload which in turn leads to the neurodegeneration. On the other hand, MA, being a reversible inhibitor of mitochondrial enzyme complex-II, leads to energy crisis and free radical generation. Recent studies have reported the therapeutic potential of leukotriene receptor antagonists in different neurodegenerative disorders. However, their exact role is yet to be established. The present study accordingly, is an attempt to investigate the effect of montelukast against QA and MA induced behavioral, biochemical and molecular alterations in rat striatum. Oxidative stress, mitochondrial enzyme complex and tumor necrosis factor-alpha (TNF-α) were evaluated on day 21st and 14th post intrastriatal QA and MA treatment, respectively. Findings of the present study demonstrate significant alteration in the locomotor activity and motor coordination as well as oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), mitochondrial enzyme complex (I, II and IV) activities and TNF-α level, in both intrastriatal QA and MA treated animals. Further, montelukast (0.4, 0.8 mg/kg p.o.) treatment for 21 and 14 days respectively, attenuated the behavioral alterations, oxidative stress, mitochondrial dysfunction and TNF-α level in these models of Huntington's disease in a significant manner. In conclusion, the present study emphasizes the neuroprotective potential of montelukast in the therapeutic management of Huntington like symptoms.

  2. NEURODEGENERATION WITH IRON ACCUMULATION TYPE1

    Directory of Open Access Journals (Sweden)

    Shrikhande D Y

    2010-03-01

    Full Text Available Neurodegeneration with iron accumulation type 1 is a rare degenerative disorder presenting with dementia and progressive extrapyramidal dysfunction. A 10 yrs old girl reported with complaints of difficulty in speech and involuntary movements. MRI Brain showed ‘eye of tiger appearance’ which is suggestive of neurodegeneration with iron accumulation type 1. Treatment is symptomatic and chelating agents have no effect. The disease is progressivelyfatal

  3. Role of neuroinflammation in neurodegeneration: new insights.

    Science.gov (United States)

    McManus, Róisín M; Heneka, Michael T

    2017-03-04

    Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past 15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration. It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral immune cells. This is particularly relevant for the progression of Alzheimer's disease, in which it has been demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal pathogens have also been associated with the development of the disease. To date, it is not clear whether these microorganisms are directly related to Alzheimer's disease progression or if they are opportune pathogens that easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This review will discuss the impact of each of these challenges, and examine the changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline.

  4. Impaired Glutathione Synthesis in Neurodegeneration

    Science.gov (United States)

    Aoyama, Koji; Nakaki, Toshio

    2013-01-01

    Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed. PMID:24145751

  5. Impaired glutathione synthesis in neurodegeneration.

    Science.gov (United States)

    Aoyama, Koji; Nakaki, Toshio

    2013-10-18

    Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.

  6. Impaired Glutathione Synthesis in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Toshio Nakaki

    2013-10-01

    Full Text Available Glutathione (GSH was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.

  7. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  8. Extracellular and intracellular arachidonic acid-induced contractions in rat aorta

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Petrescu, G; Nelemans, SA

    1998-01-01

    Arachidonic acid induced contractions of de-endothelized rat aortic rings. A more potent effect was obtained after intracellular administration of arachidonic acid using liposomes. Contractions induced by extracellular arachidonic acid were inhibited similarly to phenylephrine-induced contractions b

  9. Lack of Acid Sphingomyelinase Induces Age-Related Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    Bill X Wu

    Full Text Available Mutations of acid sphingomyelinase (ASMase cause Niemann-Pick diseases type A and B, which are fatal inherited lipid lysosomal storage diseases, characterized with visceral organ abnormalities and neurodegeneration. However, the effects of suppressing retinal ASMase expression are not understood. The goal of this study was to determine if the disruption of ASMase expression impacts the retinal structure and function in the mouse, and begin to investigate the mechanisms underlying these abnormalities.Acid sphingomyelinase knockout (ASMase KO mice were utilized to study the roles of this sphingolipid metabolizing enzyme in the retina. Electroretinogram and morphometric analysis were used to assess the retinal function and structure at various ages. Sphingolipid profile was determined by liquid chromatography-mass spectrometry. Western blots evaluated the level of the autophagy marker LC3-II.When compared to control animals, ASMase KO mice exhibited significant age-dependent reduction in ERG a- and b-wave amplitudes. Associated with these functional deficits, morphometric analysis revealed progressive thinning of retinal layers; however, the most prominent degeneration was observed in the photoreceptor and outer nuclear layer. Additional analyses of ASMase KO mice revealed early reduction in ERG c-wave amplitudes and increased lipofuscin accumulation in the retinal pigment epithelium (RPE. Sphingolipid analyses showed abnormal accumulation of sphingomyelin and sphingosine in ASMase KO retinas. Western blot analyses showed a higher level of the autophagosome marker LC3-II.These studies demonstrate that ASMase is necessary for the maintenance of normal retinal structure and function. The early outer retinal dysfunction, outer segment degeneration, accumulation of lipofuscin and autophagosome markers provide evidence that disruption of lysosomal function contributes to the age-dependent retinal degeneration exhibited by ASMase KO mice.

  10. Lauric acid and myristic acid prevent testosterone induced prostatic hyperplasia in rats.

    Science.gov (United States)

    Veeresh Babu, S V; Veeresh, B; Patil, Anup A; Warke, Y B

    2010-01-25

    Numerous plants have proven to improve uncontrolled growth of the prostate gland and improve urinary tract symptoms associated with benign prostatic hyperplasia. Major components of those plants were lauric acid and myristic acid. Our study investigated whether lauric acid or myristic acid prevent testosterone induced prostatic hyperplasia in rats. Rats were divided into negative control and testosterone induced prostatic hyperplasia rats (positive control, low dose lauric acid treated, high dose lauric acid treated, low dose of myristic acid treated, high dose of myristic acid treated, finasteride treated). Testosterone and drug treatment were carried out for 14 days. Body weights were recorded before and after treatment. On 15th day, rats were sacrificed, prostates were weighed and histopathological studies were carried out. Lauric acid/myristic acid treatment showed significant inhibition of prostate enlargement and protection of histoarchitecture of prostate when compared with positive control group. In conclusion, the study showed that lauric acid/myristic acid reduced the increase of both prostate weight and prostate weight:body weight ratio, markers of testosterone induced prostatic hyperplasia in rats.

  11. 3-nitropropionic acid-induced mitochondrial permeability transition: comparative study of mitochondria from different tissues and brain regions.

    Science.gov (United States)

    Mirandola, Sandra R; Melo, Daniela R; Saito, Angela; Castilho, Roger F

    2010-02-15

    The adult rat striatum is particularly vulnerable to systemic administration of the succinate dehydrogenase inhibitor 3-nitropropionic acid (3NP), which is known to induce degeneration of the caudate-putamen, as occurs in Huntington's disease. The aim of the present study was to compare the susceptibility of isolated mitochondria from different rat brain regions (striatum, cortex, and cerebellum) as well as from the liver, kidney, and heart to mitochondrial permeability transition (MPT) induced by 3NP and Ca(2+). In the presence of micromolar Ca(2+) concentrations, 3NP induces MPT in a dose-dependent manner, as estimated by mitochondrial swelling and a decrease in the transmembrane electrical potential. A 3NP concentration capable of promoting a 10% inhibition of ADP-stimulated, succinate-supported respiration was sufficient to stimulate Ca(2+)-induced MPT. Brain and heart mitochondria were generally more sensitive to 3NP and Ca(2+)-induced MPT than mitochondria from liver and kidney. In addition, a partial inhibition of mitochondrial respiration by 3NP resulted in more pronounced MPT in striatal mitochondria than in cortical or cerebellar organelles. A similar inhibition of succinate dehydrogenase activity was observed in rat tissue homogenates obtained from various brain regions as well as from liver, kidney, and heart 24 hr after a single i.p. 3NP dose. Mitochondria isolated from forebrains of 3NP-treated rats were also more susceptible to Ca(2+)-induced MPT than those of control rats. We propose that the increased susceptibility of the striatum to 3NP-induced neurodegeneration may be partially explained by its susceptibility to MPT, together with the greater vulnerability of this brain region to glutamate receptor-mediated Ca(2+) influx.

  12. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  13. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Science.gov (United States)

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  14. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  15. Molecular neurodegeneration: basic biology and disease pathways.

    Science.gov (United States)

    Vassar, Robert; Zheng, Hui

    2014-09-23

    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013.

  16. CRTC1 Function During Memory Encoding Is Disrupted in Neurodegeneration.

    Science.gov (United States)

    Parra-Damas, Arnaldo; Chen, Meng; Enriquez-Barreto, Lilian; Ortega, Laura; Acosta, Sara; Perna, Judith Camats; Fullana, M Neus; Aguilera, José; Rodríguez-Alvarez, José; Saura, Carlos A

    2017-01-15

    Associative memory impairment is an early clinical feature of dementia patients, but the molecular and cellular mechanisms underlying these deficits are largely unknown. In this study, we investigated the functional regulation of the cyclic adenosine monophosphate response element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) by associative learning in physiological and neurodegenerative conditions. We evaluated the activation of CRTC1 in the hippocampus of control mice and mice lacking the Alzheimer's disease-linked presenilin genes (presenilin conditional double knockout [PS cDKO]) after one-trial contextual fear conditioning by using biochemical, immunohistochemical, and gene expression analyses. PS cDKO mice display classical features of neurodegeneration occurring in Alzheimer's disease including age-dependent cortical atrophy, neuron loss, dendritic degeneration, and memory deficits. Context-associative learning, but not single context or unconditioned stimuli, induces rapid dephosphorylation (Ser151) and translocation of CRTC1 from the cytosol/dendrites to the nucleus of hippocampal neurons in the mouse brain. Accordingly, context-associative learning induces differential CRTC1-dependent transcription of c-fos and the nuclear receptor subfamily 4 (Nr4a) genes Nr4a1-3 in the hippocampus through a mechanism that involves CRTC1 recruitment to CRE promoters. Deregulation of CRTC1 dephosphorylation, nuclear translocation, and transcriptional function are associated with long-term contextual memory deficits in PS cDKO mice. Importantly, CRTC1 gene therapy in the hippocampus ameliorates context memory and transcriptional deficits and dendritic degeneration despite ongoing cortical degeneration in this neurodegeneration mouse model. These findings reveal a critical role of CRTC1 in the hippocampus during associative memory, and provide evidence that CRTC1 deregulation underlies memory deficits during neurodegeneration. Copyright © 2016

  17. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-08-02

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  18. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    Science.gov (United States)

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients.

  19. The Liver-Brain Axis of Alcohol-Mediated Neurodegeneration: Role of Toxic Lipids

    Directory of Open Access Journals (Sweden)

    Suzanne M. de la Monte

    2009-07-01

    Full Text Available Alcohol abuse causes progressive toxicity and degeneration in liver and brain due to insulin resistance, which exacerbates oxidative stress and pro-inflammatory cytokine activation. Alcohol-induced steatohepatitis promotes synthesis and accumulation of ceramides and other toxic lipids that cause insulin resistance. Ceramides can readily cross the blood-brain barrier, and ceramide exposure causes neurodegeneration with insulin resistance and oxidative stress, similar to the effects of alcohol. Therefore, in addition to its direct neurotoxic effects, alcohol misuse establishes a liver-brain axis of neurodegeneration mediated by toxic lipid trafficking across the blood-brain barrier, leading to progressive white matter degeneration and cognitive impairment.

  20. [Calpains and their endo- and exogenous regulators in various neurodegeneration models].

    Science.gov (United States)

    Lysenko, L A; Kantserova, N P; Rendakov, N L; Nemova, N N

    2014-01-01

    On the basis of experimental series with murine models there was obtained the evidence on calcium-dependent protease activity changes in rat brain at induced neurodegeneration. The properties of the proteolytic and regulatory components of calpain system under the effect of neurotoxic stimuli--amyloid beta-peptide or glutamate--were characterized; the basic endogenous regulatory mechanisms of calcium-dependent proteolysis modulation were determined as well. Neuroprotective properties of exogenous calpain regulators differing in the mechanisms of action (sex steroids, calcium regulators) were tested on studied neurodegeneration models.

  1. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia.

    Directory of Open Access Journals (Sweden)

    Rouh-Mei Hu

    Full Text Available BACKGROUND: Fusaric acid (5-butylpicolinic acid, a mycotoxin, is noxious to some microorganisms. Stenotrophomonas maltophilia displays an intrinsic resistance to fusaric acid. This study aims to elucidate the mechanism responsible for the intrinsic fusaric acid resistance in S. maltophilia. METHODOLOGY: A putative fusaric acid resistance-involved regulon fuaR-fuaABC was identified by the survey of the whole genome sequence of S. maltophilia K279a. The fuaABC operon was verified by reverse transcriptase-PCR. The contribution of the fuaABC operon to the antimicrobial resistance was evaluated by comparing the antimicrobials susceptibility between the wild-type strain and fuaABC knock-out mutant. The regulatory role of fuaR in the expression of the fuaABC operon was assessed by promoter transcription fusion assay. RESULTS: The fuaABC operon was inducibly expressed by fusaric acid and the inducibility was fuaR dependent. FuaR functioned as a repressor of the fuaABC operon in absence of a fusaric acid inducer and as an activator in its presence. Overexpression of the fuaABC operon contributed to the fusaric acid resistance. SIGNIFICANCE: A novel tripartite fusaric acid efflux pump, FuaABC, was identified in this study. Distinct from the formally classification, the FuaABC may constitute a new type of subfamily of the tripartite efflux pump.

  2. Alpha-linolenic acid protects against gentamicin induced toxicity

    Directory of Open Access Journals (Sweden)

    Priyadarshini M

    2012-11-01

    Full Text Available Medha Priyadarshini, Mohammad Aatif, Bilqees BanoDepartment of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, IndiaBackground: Recent studies indicate that reactive oxygen species are the major culprits behind the renal damage induced by gentamicin, an aminoglycoside antibiotic used to treat serious and life threatening Gram-negative infections. Experimental evidence suggests a protective role of alpha-linolenic acid supplementation against oxidative stress. The aim of the present study was to investigate the possible beneficial role of alpha-linolenic acid against gentamicin induced renal distress.Methods: Male Wistar rats were divided into three groups of eight rats each, with the first group serving as a control. The other groups were treated intraperitoneally with gentamicin 100 mg/kg body weight per day for 10 days ± alpha-linolenic acid and vitamin E (each given as 250 mg/kg body weight per day. Concentrations of creatinine, urea, cholesterol, inorganic phosphate in serum, malondialdehyde and total sulfhydryl levels, and glutathione-S-transferase, superoxide dismutase, and catalase activity in kidney tissues were determined.Results: Administration of gentamicin to rats induced marked renal failure, characterized by a profound increase in serum creatinine, urea, and cholesterol concentrations, accompanied by significant lowering of renal alkaline phosphatase and acid phosphatase activity, an increase in malondialdehyde, a decline in total sulfhydryl levels, and lowered superoxide dismutase, catalase, and glutathione-S-transferase activity. Cotreatment with alpha-linolenic acid produced amelioration in these biochemical indices of nephrotoxicity in serum as well as in tissue. Further histopathological and human studies are necessary to demonstrate the beneficial effects of alpha-linolenic acid in renal disease.Conclusion: Alpha-linolenic acid may represent a nontoxic and effective intervention strategy in

  3. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    Science.gov (United States)

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  4. Amoxicillin/clavulanic acid-induced pemphigus vulgaris: case report.

    Science.gov (United States)

    Baroni, Adone; Russo, Teresa; Faccenda, Franco; Piccolo, Vincenzo

    2012-01-01

    Drug-induced pemphigus is a well-established variety of pemphigus, presenting with clinical and histopathologic features identical to idiopathic form. Medical history plays a fundamental role in the diagnosis of drug-induced pemphigus. A large variety of drugs have been implicated in its pathogenesis and they may induce acantholysis via biochemical and/or immune mechanism. We present a case of a 69-year-old woman affected by amoxicillin/clavulanic acid-induced pemphigus and discuss its pathogenetic mechanism.

  5. Epigenetic mechanisms governing the process of neurodegeneration.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-01-01

    Studies elucidating how and why neurodegeneration unfolds suggest that a complex interplay between genetic and environmental factors is responsible for disease pathogenesis. Recent breakthroughs in the field of epigenetics promise to advance our understanding of these mechanisms and to promote the development of useful and effective pre-clinical risk stratification strategies, molecular diagnostic and prognostic methods, and disease-modifying treatments.

  6. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    OpenAIRE

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into ...

  7. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    Science.gov (United States)

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016.

  8. Neuroprotective strategies against calpain-mediated neurodegeneration

    Directory of Open Access Journals (Sweden)

    Yildiz-Unal A

    2015-02-01

    Full Text Available Aysegul Yildiz-Unal,1 Sirin Korulu,2 Arzu Karabay3 1Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Koçman University, Kötekli, Mugla, Turkey; 2Department of Molecular Biology and Genetics, Istanbul Arel University, Istanbul Turkey; 3Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey Abstract: Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases. Keywords: calpain, neurodegeneration, neuroprotection, calpain inhibitors, NMDAR, Speedy/RINGO

  9. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    Science.gov (United States)

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  10. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    Science.gov (United States)

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  11. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  12. Protective effects of bupivacaine against kainic acid-induced seizure and neuronal cell death in the rat hippocampus.

    Science.gov (United States)

    Chiu, Kuan Ming; Wu, Chia Chan; Wang, Ming Jiuh; Lee, Ming Yi; Wang, Su Jane

    2015-01-01

    The excessive release of glutamate is a critical element in the neuropathology of epilepsy, and bupivacaine, a local anesthetic agent, has been shown to inhibit the release of glutamate in rat cerebrocortical nerve terminals. This study investigated whether bupivacaine produces antiseizure and antiexcitotoxic effects using a kainic acid (KA) rat model, an animal model used for temporal lobe epilepsy, and excitotoxic neurodegeneration experiments. The results showed that administering bupivacaine (0.4 mg/kg or 2 mg/kg) intraperitoneally to rats 30 min before intraperitoneal injection of KA (15 mg/kg) increased seizure latency and reduced the seizure score. In addition, bupivacaine attenuated KA-induced hippocampal neuronal cell death, and this protective effect was accompanied by the inhibition of microglial activation and production of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in the hippocampus. Moreover, bupivacaine shortened the latency of escaping onto the platform in the Morris water maze learning performance test. Collectively, these data suggest that bupivacaine has therapeutic potential for treating epilepsy.

  13. Protective effects of ursodeoxycholic acid on chenodeoxycholic acid-induced liver injury in hamsters

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effects of ursodeoxycholic acid (UDCA) on chenodeoxycholic acid (CDCA)-induced liver injury in hamsters, and to elucidate a correlation between liver injury and bile acid profiles in the liver.METHODS: Liver injury was induced in hamsters by administration of 0.5% (w/w) CDCA in their feed for 7 d.UDCA (50 mg/kg and 150 mg/kg) was administered for the last 3 d of the experiment.RESULTS: At the end of the experiment, serum alanine aminotransferase (ALT) increased more than 10 times and the presence of liver injury was confirmed histologically. Marked increase in bile acids was observed in the liver. The amount of total bile acids increased approximately three-fold and was accompanied by the increase in hydrophobic bile acids, CDCA and lithocholic acid (LCA). UDCA (50 mg/kg and 150 mg/kg) improved liver histology, with a significant decrease (679.3 ±77.5 U/L vs 333.6 ± 50.4 U/L and 254.3 ± 35.5 U/L, respectively, P < 0.01) in serum ALT level. UDCA decreased the concentrations of the hydrophobic bile acids, and as a result, a decrease in the total bile acid level in the liver was achieved.CONCLUSION: The results show that UDCA improves oral CDCA-induced liver damage in hamsters. The protective effects of UDCA appear to result from a decrease in the concentration of hydrophobic bile acids, CDCA and LCA, which accumulate and show the cytotoxicity in the liver.

  14. Increased isoprostane levels in oleic acid-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  15. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    Science.gov (United States)

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-04-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a `right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas `left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a `mother' subunit nanoparticle spawns a slightly tilted, consequential `daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  16. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma

    Science.gov (United States)

    Kabadi, Shruti V; Stoica, Bogdan A; Byrnes, Kimberly R; Hanscom, Marie; Loane, David J; Faden, Alan I

    2012-01-01

    Traumatic brain injury (TBI) induces secondary injury mechanisms, including cell-cycle activation (CCA), which lead to neuronal cell death, microglial activation, and neurologic dysfunction. Here, we show progressive neurodegeneration associated with microglial activation after TBI induced by controlled cortical impact (CCI), and also show that delayed treatment with the selective cyclin-dependent kinase inhibitor roscovitine attenuates posttraumatic neurodegeneration and neuroinflammation. CCI resulted in increased cyclin A and D1 expressions and fodrin cleavage in the injured cortex at 6 hours after injury and significant neurodegeneration by 24 hours after injury. Progressive neuronal loss occurred in the injured hippocampus through 21 days after injury and correlated with a decline in cognitive function. Microglial activation associated with a reactive microglial phenotype peaked at 7 days after injury with sustained increases at 21 days. Central administration of roscovitine at 3 hours after CCI reduced subsequent cyclin A and D1 expressions and fodrin cleavage, improved functional recovery, decreased lesion volume, and attenuated hippocampal and cortical neuronal cell loss and cortical microglial activation. Furthermore, delayed systemic administration of roscovitine improved motor recovery and attenuated microglial activation after CCI. These findings suggest that CCA contributes to progressive neurodegeneration and related neurologic dysfunction after TBI, likely in part related to its induction of microglial activation. PMID:21829212

  17. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration

    Science.gov (United States)

    Fang, Yuqiang; Iu, Catherine Y. Y.; Lui, Cathy N. P.; Zou, Yukai; Fung, Carmen K. M.; Li, Hung Wing; Xi, Ning; Yung, Ken K. L.; Lai, King W. C.

    2014-11-01

    Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.

  18. Molecular neurodegeneration: basic biology and disease pathways

    OpenAIRE

    2014-01-01

    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington’s disease, and Down syndrome. Recent developments have also facilitated initial efforts to...

  19. Oral microbiome link to neurodegeneration in glaucoma.

    Directory of Open Access Journals (Sweden)

    Konstantin Astafurov

    Full Text Available BACKGROUND: Glaucoma is a progressive optic nerve degenerative disease that often leads to blindness. Local inflammatory responses are implicated in the pathology of glaucoma. Although inflammatory episodes outside the CNS, such as those due to acute systemic infections, have been linked to central neurodegeneration, they do not appear to be relevant to glaucoma. Based on clinical observations, we hypothesized that chronic subclinical peripheral inflammation contributes to neurodegeneration in glaucoma. METHODS: Mouthwash specimens from patients with glaucoma and control subjects were analyzed for the amount of bacteria. To determine a possible pathogenic mechanism, low-dose subcutaneous lipopolysaccharide (LPS was administered in two separate animal models of glaucoma. Glaucomatous neurodegeneration was assessed in the retina and optic nerve two months later. Changes in gene expression of toll-like receptor 4 (TLR4 signaling pathway and complement as well as changes in microglial numbers and morphology were analyzed in the retina and optic nerve. The effect of pharmacologic blockade of TLR4 with naloxone was determined. FINDINGS: Patients with glaucoma had higher bacterial oral counts compared to control subjects (p<0.017. Low-dose LPS administration in glaucoma animal models resulted in enhancement of axonal degeneration and neuronal loss. Microglial activation in the optic nerve and retina as well as upregulation of TLR4 signaling and complement system were observed. Pharmacologic blockade of TLR4 partially ameliorated the enhanced damage. CONCLUSIONS: The above findings suggest that the oral microbiome contributes to glaucoma pathophysiology. A plausible mechanism by which increased bacterial loads can lead to neurodegeneration is provided by experiments in animal models of the disease and involves activation of microglia in the retina and optic nerve, mediated through TLR4 signaling and complement upregulation. The finding that commensal

  20. Bile-acid-induced cell injury and protection

    Institute of Scientific and Technical Information of China (English)

    Maria J Perez; Oscar Briz

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-Nmethylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties.

  1. Endosome-lysosomes and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  2. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  3. DIETARY ADENINE ALLEVIATES FATTY LIVER INDUCED BY OROTIC ACID

    Directory of Open Access Journals (Sweden)

    Yohanes Buang

    2010-12-01

    Full Text Available The effects of dietary adenine in fatty liver induced by orotic acid (OA were studied. Rats were paired-fed 1% OA-supplemented diets with/or without 0.25% adenine or a diet without OA for 10 days. Serum lipid profiles were measured using enzyme assay kits. Lipids of liver tissues were extracted and liver lipid contents were determined. A peach of liver was prepared to determine the activities of fatty acid synthase (FAS and fatty acid β-oxidation. The results showed that liver TG content of OA-fed rats increased markedly in comparison to basal group.  However, the addition of adenine to the diet reversed promotion of liver TG content to basal level. It was also found that FAS activities decreased. Furthermore, these diets reversed the inhibition of fatty acid β-oxidation to basal level and induced the serum lipid levels secretion. Therefore, the alleviation of fatty liver in OA-treated rats given dietary adenine is associated with the inhibition of FAS activities accompanied with the promotion of mitochondrial fatty acid β-oxidation and the promotion of serum lipid secretion from the hepatic tissue into the bloodstream.

  4. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    Science.gov (United States)

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  5. Werner coordination chemistry and neurodegeneration.

    Science.gov (United States)

    Telpoukhovskaia, Maria A; Orvig, Chris

    2013-02-21

    Neurodegenerative diseases are capturing the world's attention as being the next set of diseases we must tackle collectively. Not only are the patients experiencing gradual cognitive and physical decline in most cases, but these diseases are fatal with no prevention currently available. As these diseases are progressive, providing care and symptom treatment for the ageing population is becoming both a medical and a financial challenge. This review discusses how Werner coordination chemistry plays a role in three diseases - those of Alzheimer's, Parkinson's, and prions. Metal ions are considered to be involved in these diseases in part via their propensity to cause toxic aggregation of proteins. First, the coordination of metal ions, with emphasis on copper(II), to metalloproteins that are hallmarks of these diseases - amyloid β, α-synuclein, and prion, respectively - will be discussed. We will present the current understanding of the metal coordination environments created by the amino acids of these proteins, as well as metal binding affinity. Second, a diverse set of examples of rationally designed metal chelators to outcompete this deleterious binding will be examined based on coordination mode and affinity toward bio-relevant metal ions. Overall, this review will give a general overview of protein and metal chelator coordination environments in neurodegenerative diseases.

  6. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  7. Phytic Acid Protects against 6-Hydroxydopamine-Induced Dopaminergic Neuron Apoptosis in Normal and Iron Excess Conditions in a Cell Culture Model

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2011-01-01

    Full Text Available Iron may play an important role in Parkinson's disease (PD since it can induce oxidative stress-dependent neurodegeneration. The objective of this study was to determine whether the iron chelator, phytic acid (IP6 can protect against 6-hydroxydopamine- (6-OHDA- induced apoptosis in immortalized rat mesencephalic dopaminergic cells under normal and iron-excess conditions. Caspase-3 activity was increased about 6-fold after 6-OHDA treatment (compared to control; <.001 and 30 μmol/L IP6 pretreatment decreased it by 38% (<.05. Similarly, a 63% protection (<.001 against 6-OHDA induced DNA fragmentation was observed with IP6 pretreatment. Under iron-excess condition, a 6-fold increase in caspase-3 activity (<.001 and a 42% increase in DNA fragmentation (<.05 with 6-OHDA treatment were decreased by 41% (<.01 and 27% (<.05, respectively, with 30 μmol/L IP6. Together, our data suggest that IP6 protects against 6-OHDA-induced cell apoptosis in both normal and iron-excess conditions, and IP6 may offer neuroprotection in PD.

  8. Metals and Neurodegeneration [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2016-03-01

    Full Text Available Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.

  9. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  10. Mitophagy in neurodegeneration and ageing

    Directory of Open Access Journals (Sweden)

    Konstantinos ePalikaras

    2012-12-01

    Full Text Available Macroautophagy is a cellular catabolic process that involves the sequestration of cytoplasmic constituents into double-membrane vesicles known as autophagosomes, which subsequently fuse with lysosomes, where they deliver their cargo for degradation. The main physiological role of autophagy is to recycle intracellular components, under conditions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or protein aggregates that would otherwise compromise cell viability. Mitophagy is a selective type of autophagy, whereby damaged or superfluous mitchondria are eliminated to maintain proper mitochondrial numbers and quality control. While mitophagy shares key regulatory factors with the general macroautophagy pathway, it also involves distinct steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the phosphatase and tensin homolog (PTEN-induced putative kinase protein 1 (PINK1, which have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, also regulate mitophagy and function to maintain mitochondrial homeostasis. Here, we survey the molecular mechanisms that govern the process of mitophagy and discuss its involvement in the onset and progression of neurodegenerative diseases during ageing.

  11. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration.

    Science.gov (United States)

    Lunnon, Katie; Teeling, Jessica L; Tutt, Alison L; Cragg, Mark S; Glennie, Martin J; Perry, V Hugh

    2011-06-15

    Chronic neurodegeneration is a major worldwide health problem, and it has been suggested that systemic inflammation can accelerate the onset and progression of clinical symptoms. A possible explanation is that systemic inflammation "switches" the phenotype of microglia from a relatively benign to a highly aggressive and tissue-damaging phenotype. The current study investigated the molecular mechanism underlying this microglia phenotype "switching." We show in mice with chronic neurodegeneration (ME7 prion model) that there is increased expression of receptors that have a key role in macrophage activation and associated signaling pathways, including TREM-2, Siglec-F, CD200R, and FcγRs. Systemic inflammation induced by LPS further increased protein levels of the activating FcγRIII and FcγRIV, but not of other microglial receptors, including the inhibitory FcγRII. In addition to these changes in receptor expression, IgG levels in the brain parenchyma were increased during chronic neurodegeneration, and these IgG levels further increased after systemic inflammation. γ-Chain-deficient mice show modified proinflammatory cytokine expression in the brain after systemic inflammation. We conclude that systemic inflammation during chronic neurodegeneration increases the expression levels of activating FcγR on microglia and thereby lowers the signaling threshold for Ab-mediated cell activation. At the same time, IgG influx into the brain could provide a cross-linking ligand resulting in excessive microglia activation that is detrimental to neurons already under threat by misfolded protein.

  12. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  13. Loss of tau rescues inflammation-mediated neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nicole eMaphis

    2015-06-01

    Full Text Available Neuroinflammation is one of the neuropathological hallmarks of Alzheimer’s disease (AD and related tauopathies. Activated microglia spatially coexist with microtubule-associated protein tau (Mapt or tau-burdened neurons in the brains of human AD and non-AD tauopathies. Numerous studies have suggested that neuroinflammation precedes tau pathology and that induction or blockage of neuroinflammation via lipopolysaccharide (LPS or anti-inflammatory compounds (such as FK506 accelerate or block tau pathology, respectively in several animal models of tauopathy. We have previously demonstrated that microglia-mediated neuroinflammation via deficiency of the microglia-specific chemokine (fractalkine receptor, CX3CR1, promotes tau pathology and neurodegeneration in a mouse model of LPS-induced systemic inflammation. Here, we demonstrate that tau mediates the neurotoxic effects of LPS in Cx3cr1-/- mice. First, Mapt+/+ neurons displayed elevated levels of Annexin V (A5 and TUNEL (markers of neurodegeneration when co-cultured with LPS-treated Cx3cr1-/-microglia, which is rescued in Mapt-/- neurons. Second, a neuronal population positive for phospho-S199 (AT8 tau in the dentate gyrus is also positive for activated or cleaved caspase (CC3 in the LPS-treated Cx3cr1-/- mice. Third, genetic deficiency for tau in Cx3cr1-/- mice resulted in reduced microglial activation, altered expression of inflammatory genes and a significant reduction in the number of neurons positive for CC3 compared to Cx3cr1-/- mice. Finally, Cx3cr1-/- mice exposed to LPS displayed a lack of inhibition in an open field exploratory behavioral test, which is rescued by tau deficiency. Taken together, our results suggest that pathological alterations in tau mediate inflammation-induced neurotoxicity and that deficiency of Mapt is neuroprotective. Thus, therapeutic approaches towards either reducing tau levels or blocking neuroinflammatory pathways may serve as a potential strategy in treating

  14. Prion proteins leading to neurodegeneration.

    Science.gov (United States)

    La Mendola, D; Mendola, D L; Pietropaolo, A; Pappalardo, G; Zannoni, C; Rizzarelli, E

    2008-12-01

    Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evidences indicate that prion is a copper binding protein and thus involved in the copper metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in mammals while they seem to be spared to other species. The chicken prion protein (chPrP C) shares about 30% of identity in its primary sequence with mammal PrP C. Both types of proteins have an N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR studies have highlighted a similar globular domain containing three alpha-helices, one short 3(10)-helix and a short antiparallel beta-sheet. Despite this structural similarity, it should be noted that the normal isoform of mammalian PrP C is totally degraded by proteinase K, while avian PrP C is not, thereby producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper binding sites, the affinity and the coordination environment of metal ions are still matter of discussion for both mammal and avian proteins. In this review, we summarize the similarities and the differences between mammalian and avian prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, using a range of

  15. Quinolinic acid induces oxidative stress in rat brain synaptosomes.

    Science.gov (United States)

    Santamaría, A; Galván-Arzate, S; Lisý, V; Ali, S F; Duhart, H M; Osorio-Rico, L; Ríos, C; St'astný, F

    2001-03-26

    The oxidative action of quinolinic acid (QUIN), and the protective effects of glutathione (GSH), and 2-amino-5-phosphonovaleric acid (APV), were tested in rat brain synaptosomes, Reactive oxygen species (ROS) formation was quantified after the exposure of synaptosomes to increasing concentrations of QUIN (25-500 microM). The potency of QUIN to induce lipid peroxidation (LP) was tested as a regional index of thiobarbituric acid-reactive substances (TBARS) production, and the antioxidant actions of both GSH (50 microM) and APV (250 microM) on QUIN-induced LP were evaluated in synaptosomes prepared from different brain regions. QUIN induced concentration-dependent increases in ROS formation and TBARS in all regions analyzed, but increased production of fluorescent peroxidized lipids only in the striatum and the hippocampus, whereas both GSH and APV decreased this index. These results suggest that the excitotoxic action of QUIN involves regional selectivity in the oxidative status of brain synaptosomes, and may be prevented by substances exhibiting antagonism at the NMDA receptor.

  16. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  17. DNA damage and mutations induced by arachidonic acid peroxidation.

    Science.gov (United States)

    Lim, Punnajit; Sadre-Bazzaz, Kianoush; Shurter, Jesse; Sarasin, Alain; Termini, John

    2003-12-30

    Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.

  18. Promethazine protects against 3-nitropropionic acid-induced neurotoxicity.

    Science.gov (United States)

    Cleren, Carine; Calingasan, Noel Y; Starkov, Anatoly; Jacquard, Carine; Chen, Junya; Brouillet, Emmanuel; Beal, M Flint

    2010-01-01

    Promethazine (PMZ), an FDA-approved antihistaminergic drug, was identified as a potentially neuroprotective compound in a NINDS screening program. It was shown to protect against ischemia in mice, to delay disease onset in a mouse model of amyotrophic lateral sclerosis and to inhibit Ca(2+)-induced mitochondrial permeability transition in rat liver mitochondria. We investigated whether PMZ could protect against the neurotoxic effects induced by 3-nitropropionic acid (3-NP), an inhibitor of the succinate dehydrogenase, used to model Huntington's disease (HD) in rats. Lewis rats receiving chronic subcutaneous infusion of 3-NP were treated with PMZ. The findings indicate that chronic PMZ treatment significantly reduced 3-NP-induced striatal lesion volume, loss of GABAergic neurons and number of apoptotic cells in the striatum. PMZ showed a strong neuroprotective effect against 3-NP toxicity in vivo. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    Science.gov (United States)

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  20. Neurodegeneration and chronic renal failure in methylmalonic aciduria--a pathophysiological approach.

    Science.gov (United States)

    Morath, M A; Okun, J G; Müller, I B; Sauer, S W; Hörster, F; Hoffmann, G F; Kölker, S

    2008-02-01

    In the last decades the survival of patients with methylmalonic aciduria has been improved. However, the overall outcome of affected patients remains disappointing. The disease course is often complicated by acute life-threatening metabolic crises, which can result in multiple organ failure or even death, resembling primary defects of mitochondrial energy metabolism. Biochemical abnormalities during metabolic derangement, such as metabolic acidosis, ketonaemia/ketonuria, lactic acidosis, hypoglycaemia and hyperammonaemia, suggest mitochondrial dysfunction. In addition, long-term complications such as chronic renal failure and neurological disease are frequently found. Neuropathophysiological studies have focused on various effects caused by accumulation of putatively toxic organic acids, the so-called 'toxic metabolite' hypothesis. In previous studies, methylmalonate (MMA) has been considered as the major neurotoxin in methylmalonic aciduria, whereas more recent studies have highlighted a synergistic inhibition of mitochondrial energy metabolism (pyruvate dehydrogenase complex, tricarboxylic acid cycle, respiratory chain, mitochondrial salvage pathway of deoxyribonucleoside triphosphate (dNTP)) induced by propionyl-CoA, 2-methylcitrate and MMA as the key pathomechanism of inherited disorders of propionate metabolism. Intracerebral accumulation of toxic metabolites ('trapping' hypothesis') is considered a biochemical risk factor for neurodegeneration. Secondary effects of mitochondrial dysfunction, such as oxidative stress and impaired mtDNA homeostasis, contribute to pathogenesis of these disorders. The underlying pathomechanisms of chronic renal insufficiency in methylmalonic acidurias are not yet understood. We hypothesize that renal and cerebral pathomechanisms share some similarities, such as an involvement of dicarboxylic acid transport. This review aims to give a comprehensive overview on recent pathomechanistic concepts for methylmalonic acidurias.

  1. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  2. Acid Exposure Induces Multiplication of Salmonella enterica Serovar Typhi

    Science.gov (United States)

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K.; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali

    2014-01-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens. PMID:25320227

  3. Toll-like receptors in neurodegeneration

    DEFF Research Database (Denmark)

    Owens, Trevor

    2009-01-01

    Innate pattern recognition receptors are implicated in first-line defense against pathogens but also participate in maintenance of tissue homeostasis and response to injury. This chapter reviews the role of Toll-like receptors (TLRs) in neuronal and glial responses that are associated with neurod...... of TLR signaling in the nervous system with capability for neurotoxocity and gliotoxicity....... with neurodegeneration. Accompanying roles for infection and inflammation, involvement in clinical neurodegenerative disorders, and heterogeneity of glial response are discussed. A "strength of signal" hypothesis is advanced in an attempt to reconcile evolutionarily selected and therefore likely beneficial effects...

  4. Valproic acid induces antimicrobial compound production in Doratomyces microspores.

    Directory of Open Access Journals (Sweden)

    Christoph eZutz

    2016-04-01

    Full Text Available One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called cryptic, often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these cryptic metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D. microsporus treated with valproic acid (VPA displayed antimicrobial activity against Staphylococcus (S. aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine (cPM, p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline (cFP, indole-3-carboxylic acid, phenylacetic acid (PAA and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of cryptic antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against

  5. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    Science.gov (United States)

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  6. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats.

    Science.gov (United States)

    Rizk, Hanan A; Masoud, Marwa A; Maher, Omar W

    2017-08-16

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use cause neurobiological side effects. The aim of the present study was to investigate the prophylactic effect exerted by daily administration of ellagic acid (EA) and rosmarinic acid (RA) on DOX-induced neurotoxicity in rats. Our data showed that DOX-induced significant elevation of brain malondialdehyde, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), caspase-3, and cholinesterase associated with significant reduction in reduced glutathione, monoamines namely serotonin, dopamine, as well as norepinephrine. Concomitant administration of EA (10 mg/kg/day, p.o. for 14 days) and/or RA (75 mg/kg/day, p.o. for 14 days) with DOX significantly mitigated the neural changes induced by DOX. Meanwhile, treatment ameliorated pro-inflammatory cytokines as TNF-α, iNOS, and attenuated oxidative stress biomarkers as well as brain monoamines. In conclusion, EA and RA can effectively protect against DOX-induced neurotoxicity, and the mechanisms underlying the neuroprotective effect are potentially associated with its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2017 Wiley Periodicals, Inc.

  7. S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration.

    Science.gov (United States)

    Seneviratne, Uthpala; Nott, Alexi; Bhat, Vadiraja B; Ravindra, Kodihalli C; Wishnok, John S; Tsai, Li-Huei; Tannenbaum, Steven R

    2016-04-12

    Protein S-nitrosation (SNO-protein), the nitric oxide-mediated posttranslational modification of cysteine thiols, is an important regulatory mechanism of protein function in both physiological and pathological pathways. A key first step toward elucidating the mechanism by which S-nitrosation modulates a protein's function is identification of the targeted cysteine residues. Here, we present a strategy for the simultaneous identification of SNO-cysteine sites and their cognate proteins to profile the brain of the CK-p25-inducible mouse model of Alzheimer's disease-like neurodegeneration. The approach-SNOTRAP (SNO trapping by triaryl phosphine)-is a direct tagging strategy that uses phosphine-based chemical probes, allowing enrichment of SNO-peptides and their identification by liquid chromatography tandem mass spectrometry. SNOTRAP identified 313 endogenous SNO-sites in 251 proteins in the mouse brain, of which 135 SNO-proteins were detected only during neurodegeneration. S-nitrosation in the brain shows regional differences and becomes elevated during early stages of neurodegeneration in the CK-p25 mouse. The SNO-proteome during early neurodegeneration identified increased S-nitrosation of proteins important for synapse function, metabolism, and Alzheimer's disease pathology. In the latter case, proteins related to amyloid precursor protein processing and secretion are S-nitrosated, correlating with increased amyloid formation. Sequence analysis of SNO-cysteine sites identified potential linear motifs that are altered under pathological conditions. Collectively, SNOTRAP is a direct tagging tool for global elucidation of the SNO-proteome, providing functional insights of endogenous SNO proteins in the brain and its dysregulation during neurodegeneration.

  8. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders.

    Science.gov (United States)

    Luna-Medina, Rosario; Cortes-Canteli, Marta; Sanchez-Galiano, Susana; Morales-Garcia, Jose A; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2007-05-23

    Inflammation and neurodegeneration coexist in many acute damage and chronic CNS disorders (e.g., stroke, Alzheimer's disease, Parkinson's disease). A well characterized animal model of brain damage involves administration of kainic acid, which causes limbic seizure activity and subsequent neuronal death, especially in the CA1 and CA3 pyramidal cells and interneurons in the hilus of the hippocampus. Our previous work demonstrated a potent anti-inflammatory and neuroprotective effect of two thiadiazolidinones compounds, NP00111 (2,4-dibenzyl-[1,2,4]thiadiazolidine-3,5-dione) and NP01138 (2-ethyl-4-phenyl-[1,2,4]thiadiazolidine-3,5-dione), in primary cultures of cortical neurons, astrocytes, and microglia. Here, we show that injection of NP031112, a more potent thiadiazolidinone derivative, into the rat hippocampus dramatically reduces kainic acid-induced inflammation, as measured by edema formation using T2-weighted magnetic resonance imaging and glial activation and has a neuroprotective effect in the damaged areas of the hippocampus. Last, NP031112-induced neuroprotection, both in vitro and in vivo, was substantially attenuated by cotreatment with GW9662 (2-chloro-5-nitrobenzanilide), a known antagonist of the nuclear receptor peroxisome proliferator-activated receptor gamma, suggesting that the effects of NP031112 can be mediated through activation of this receptor. As such, these findings identify NP031112 as a potential therapeutic agent for the treatment of neurodegenerative disorders.

  9. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  10. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  11. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes

    OpenAIRE

    2011-01-01

    Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged...

  12. Regulation of Water Deficit-Induced Abscisic Acid Accumulation by Apoplastic Ascorbic Acid in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    Jian-Fang HU; Gui-Fen LI; Zhi-Hui GAO; Lin CHEN; Hui-Bo REN; Wen-Suo JIA

    2005-01-01

    Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 μmol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 μmol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e.approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that

  13. Berberine and neurodegeneration: A review of literature.

    Science.gov (United States)

    Ahmed, Touqeer; Gilani, Anwar-Ul-Hassan; Abdollahi, Mohammad; Daglia, Maria; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2015-10-01

    The excessive production of reactive oxygen species in nervous tissues is considered one of the major risk factors of neurodegenerative diseases. During the last two decades, much attention has been paid to the antioxidant and anti-inflammatory activity of natural products and compounds isolated from natural products which are often characterized by high efficacy and low adverse effects. Berberine is an isoquinoline alkaloid, widely present in different medicinal herbs, especially in the genus Berberis. It is mainly used as antidiarrhoeal, antibacterial, antifungal, and antiprotozoal agent. However, current research has focused on its beneficial role in neurodegenerative diseases, mainly due to its powerful antioxidant effect. The therapeutic potential of Berberine in different neurodegenerative diseases such as Alzheimer, Parkinson and Huntington disease has been brought to evidence by numerous studies. However, a limited number of reviews focus on the beneficial role of Berberine against neurodegeneration. The main objective of this review is to discuss the role of oxidative stress in neurodegeneration and the potential role of antioxidant compounds, in particular Berberine which is analyzed in its chemical structure, source, bioavailability, therapeutic potential, with special attention to its mechanism of action at a molecular level.

  14. Radiation induced crystallinity damage in poly(L-lactic acid)

    CERN Document Server

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  15. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  16. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  17. Cystoid Macular Edema Induced by Low Doses of Nicotinic Acid

    Directory of Open Access Journals (Sweden)

    Daniela Domanico

    2013-01-01

    Full Text Available Cystoid macular edema (CME is a condition that involves the macula, causing painless vision loss. In this paper, we report a case of niacin-induced bilateral cystoid macular edema (CME in a middle-age woman taking low dose of niacin (18 mg of nicotinic acid. Optical coherence tomography (OCT showed retinal thickening and cystoid spaces in both eyes, whereas fluorescein angiography (FA; HRA 2, Heidelberg Engineering revealed the absence of fluorescein leakage also in later phases. Four weeks after discontinuation of therapy there were a complete disappearance of macular edema at funduscopic examination and an improvement of visual acuity in both eyes. Furthermore OCT showed a normal retinal profile in both eyes. In our opinion considering the wide availability of niacin, medical monitoring and periodical examination should be considered during niacin administration. To our knowledge, this is the first report in the literature that described the very low-dose niacin-induced bilateral niacin maculopathy.

  18. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    Science.gov (United States)

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success.

  19. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    Science.gov (United States)

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage.

  20. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2005-02-01

    Full Text Available We previously described that betulinic acid (BetA, a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D. Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.

  1. The Effect of Opsteoporotic Model Rats Induced by Retinoic Acid

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Yao Jianfeng; Jin Weizhang; Cai Qiankun; Guo Xiong

    2005-01-01

    Objective: To study the effect of retinoic acid on inducing osteoporosis in female rat. Methods: 48SD female rats were divided randomly into experiment group and control group. Retinoic acid was administered orally to experiment group with 80mg.kg-1d-1 for 15 days. Then the rats were sacrificed on the 0th, 30th, 60th days after last administration. The serum concentration of Ca, P, BGP, E2, AKP and TRAP were detected. Components of collagen and proteoglycan in the bones and BMD were also assayed .The femoral morphometric change and epiphyseal plate cartilage histological changes were observed. Results: After a 15-day period treatment with retinoic acid, charateristics of experiment group were compared with control, it is shown that the concentration of serum E2 and BGP declined, the activity of AKP and TRAP increased while BMP decreased, the bone mass of both spongy bone and cortical bone reduced, the number of spongy bone osteoclasts and their activity increased, number of epiphyseal plate chondrocyte reduced, cartilage hypertrophic zone displayed dyscalcification, and no difference of other markers was found in the two groups. On the 30th day after the last administration, the experiment group appeared a declined number of cancellous bone osteoclast and level of serum AKP yet they were still higher than control. Number of epiphyseal chondrocyte, serum BGP and tibial BMD, though higher than before, were still lower than control. Other markers were no difference. On the 60th day after treatment, although the femoral cancellous bone mass was still less and cancellous osteoblast was more than control, the cortical bone mass, cancellous osteoclast number and level of serum Ca and P were all remained no different between two groups.Conclusion: Retinoic acid possessed a better short-term effect than long-term effect. Cancellous bone loss lasted much longer than cortical bone and more obviously; the bone matrix in this osteoporosis model was able to repair itself

  2. Acid aspiration-induced airways hyperresponsiveness in mice.

    Science.gov (United States)

    Allen, Gilman B; Leclair, Timothy R; von Reyn, Jessica; Larrabee, Yuna C; Cloutier, Mary E; Irvin, Charles G; Bates, Jason H T

    2009-12-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways.

  3. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    Science.gov (United States)

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  4. Enzymology of Pyrimidine Metabolism and Neurodegeneration.

    Science.gov (United States)

    Vincenzetti, Silvia; Polzonetti, Valeria; Micozzi, Daniela; Pucciarelli, Stefania

    2016-01-01

    It is well known that disorders of pyrimidine pathways may lead to neurological, hematological, immunological diseases, renal impairments, and association with malignancies. Nucleotide homeostasis depends on the three stages of pyrimidine metabolism: de novo synthesis, catabolism and recycling of these metabolites. Cytidine and uridine, in addition to be used as substrates for pyrimidine nucleotide salvaging, also act as the precursors of cytidine triphosphate used in the biosynthetic pathway of both brain's phosphatidylcholine and phosphatidylethanolamine via the Kennedy cycle. The synthesis in the brain of phosphatidylcholine and other membrane phosphatides can utilize, in addition to glucose, three compounds present in the blood stream: choline, uridine, and a polyunsaturated fatty acids like docosahexaenoic acid. Some authors, using rat models, found that oral administration of two phospholipid precursors such as uridine and omega-3 fatty acids, along with choline from the diet, can increase the amount of synaptic membrane generated by surviving striatal neurons in rats with induced Parkinson's disease. Other authors found that in hypertensive rat fed with uridine and choline, cognitive deficit resulted improved. Uridine has also been recently considered as a neuroactive molecule, because of its involvement in important neurological functions by improving memory, sleep disorders, anti-epileptic effects, as well as neuronal plasticity. Cytidine and uridine are uptaken by the brain via specific receptors and successively salvaged to the corresponding nucleotides. The present review is devoted to the enzymology of pyrimidine pathways whose importance has attracted the attention of several researchers investigating on the mechanisms underlying the physiopathology of brain.

  5. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Science.gov (United States)

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  6. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  7. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Piet Habbel; Karsten H Weylandt; Katja Lichopoj; Johannes Nowak; Martin Purschke; Jing-Dong Wang; Cheng-Wei He; Daniel C Baumgart; Jing X Kang

    2009-01-01

    AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth.METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in cells incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2ELISA.RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dosedependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly,DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation.DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dosedependent manner.CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.

  8. Alterations of Na(+)/K(+)-ATPase, cholinergic and antioxidant enzymes activity by protocatechuic acid in cadmium-induced neurotoxicity and oxidative stress in Wistar rats.

    Science.gov (United States)

    Adefegha, Stephen A; Oboh, Ganiyu; Omojokun, Olasunkanmi S; Adefegha, Omowunmi M

    2016-10-01

    This study assessed the possible protective mechanisms of protocatechuic acid (PCA) against cadmium (Cd)-induced oxidative stress and neurotoxicity in rats. Male wistar strain rats weighing between 150-160g were purchased and acclimatized for two weeks. The rats were divided into seven groups of seven each; NC group received normal saline, CAD group received 6mg/kg of Cd-solution, CAD+PSG group received Cd-solution and prostigmine (5mg/kg), CAD+PCA-10 and CAD+PCA-20 groups received Cd-solution and PCA (10mg/kg and 20mg/kg) respectively, PCA-10 and PCA-20 groups received 10mg/kg and 20mg/kg PCA each. Animals were administered normal saline, Cd and PCA daily by oral gavage for 21days. After which the animals were sacrificed, the brain excised, homogenized and centrifuged. The activities of enzymes (Na(+)/K(+)-ATPase, cholinesterases, catalase, glutathione peroxidase, superoxide dismutase) and levels of oxidative stress markers (lipid peroxidation and reduced glutathione) linked to neurodegeneration were subsequently assessed. Significant (penzyme activities and levels of oxidative stress markers were observed in CAD group when compared to the NC group. However, the activities of the enzymes were reversed in CAD+PSG and CAD+PCA groups. PCA may protect against cadmium-induced neurotoxicity by altering the activities of Na(+)/K(+)-ATPase, acetylcholinesterase, butyrylcholinesterase and endogenous antioxidant enzymes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Topiramate increases the risk of valproic acid-induced encephalopathy.

    Science.gov (United States)

    Noh, Young; Kim, Dong Wook; Chu, Kon; Lee, Soon-Tae; Jung, Keun-Hwa; Moon, Hye-Jin; Lee, Sang Kun

    2013-01-01

    Metabolic encephalopathy is a rare but serious complication of valproic acid (VPA) therapy that usually presents with impaired consciousness or increased seizure frequency. Although it has been suggested that topiramate (TPM) increases the risk of VPA-induced encephalopathy, the additional risk in patients receiving TPM therapy has not been evaluated. We reviewed all adult patients who took VPA between January 2005 and February 2009 at the Seoul National University Hospital and identified patients with VPA-induced encephalopathy based on clinical and electroencephalography (EEG) data. Information on sex, age, serum ammonia level, serum VPA level, liver function test, and EEG was collected from patient registry and medical data. We enrolled 8,372 patients who received VPA therapy and 1,236 patients who received VPA/TPM combination therapy. We identified 11 patients with VPA-induced encephalopathy (0.13%), 7 of whom received a combination therapy of VPA and TPM. The odds ratio of VPA-induced encephalopathy with TPM over that without TPM was 10.16. There were no significant differences in sex distribution, number of antiepileptic agents, ammonia level, VPA serum level, underlying diseases, dosage of VPA, duration of VPA treatment, treatment of encephalopathy, and outcomes between the two groups. Our study showed that the prevalence of VPA-induced encephalopathy is approximately 0.1% among patients treated with VPA and that the risk of this condition, although still low, can increase by approximately 10 times in the presence of TPM therapy. Based on these results, we suggest that TPM should be carefully used in patients receiving VPA treatment.

  10. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chang

    2010-12-01

    Conclusion: Caffeic acid induces apoptosis by inhibiting Bcl-2 activity, leading to release of cytochrome c and subsequent activation of caspase-3, indicating that caffeic acid induces apoptosis via the mitochondrial apoptotic pathway. This also suggests that caffeic acid has a strong anti-tumor effect and may be a promising chemopreventive or chemotherapeutic agent.

  11. Resveratrol Attenuates Neurodegeneration and Improves Neurological Outcomes after Intracerebral Hemorrhage in Mice

    Directory of Open Access Journals (Sweden)

    Frederick Bonsack

    2017-08-01

    Full Text Available Intracerebral hemorrhage (ICH is a devastating type of stroke with a substantial public health impact. Currently, there is no effective treatment for ICH. The purpose of the study was to evaluate whether the post-injury administration of Resveratrol confers neuroprotection in a pre-clinical model of ICH. To this end, ICH was induced in adult male CD1 mice by collagenase injection method. Resveratrol (10 mg/kg or vehicle was administered at 30 min post-induction of ICH and the neurobehavioral outcome, neurodegeneration, cerebral edema, hematoma resolution and neuroinflammation were assessed. The Resveratrol treatment significantly attenuated acute neurological deficits, neurodegeneration and cerebral edema after ICH in comparison to vehicle treated controls. Further, Resveratrol treated mice exhibited improved hematoma resolution with a concomitant reduction in the expression of proinflammatory cytokine, IL-1β after ICH. Altogether, the data suggest the efficacy of post-injury administration of Resveratrol in improving acute neurological function after ICH.

  12. Mitochondrial optic neuropathy: In vivo model of neurodegeneration and neuroprotective strategies

    Directory of Open Access Journals (Sweden)

    Julio C Rojas

    2010-03-01

    Full Text Available Julio C Rojas, Francisco Gonzalez-LimaDepartments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USAAbstract: This review summarizes the characteristics of a rodent toxicologic model of optic neuropathy induced by the mitochondrial complex I inhibitor rotenone. This model has been developed to fulfill the demand for a drug-screening tool providing a sound mechanistic context to address the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative disorders. It features biochemical, structural, and functional retinal deficits that resemble those of patients with Leber’s hereditary optic neuropathy, a mitochondrial disease characterized by selective degeneration of retinal ganglion cells, and for which an environmental component is believed to play a major triggering role. The available data support the efficiency, sensitivity, and versatility of the model for providing insights into the mechanisms of neurodegeneration, including mitochondrial dysfunction, oxidative stress and excitotoxicity. Screening work with this model has provided proof-of-principle that interventions targeting the electron transport chain, such as USP methylene blue and near-infrared light therapy, are effective at preventing neurodegeneration induced by mitochondrial dysfunction in vivo. Prospective developments of this model include the use of neuronal reporter genes for in vivo non-invasive assessment of retinal degeneration at different time points, and its combination with genetic approaches to elucidate the synergism of environmental and genetic factors in neurodegeneration.Keywords: animal model, neuroprotection, mitochondrial dysfunction, visual function, oxidative stress, cytochrome oxidase

  13. Metal and Microelement Biomarkers of Neurodegeneration in Early Life Permethrin-Treated Rats

    Directory of Open Access Journals (Sweden)

    Cinzia Nasuti

    2016-01-01

    Full Text Available Hair is a non-invasive biological material useful in the biomonitoring of trace elements because it is a vehicle for substance excretion from the body, and it permits evaluating long-term metal exposure. Here, hair from an animal model of neurodegeneration, induced by early life permethrin treatment from the sixth to 21th day of life, has been analyzed with the aim to assess if metal and microelement content could be used as biomarkers. A hair trace element assay was performed by the ICP-MS technique in six- and 12-month-old rats. A significant increase of As, Mg, S and Zn was measured in the permethrin-treated group at 12 months compared to six months, while Si and Cu/Zn were decreased. K, Cu/Zn and S were increased in the treated group compared to age-matched controls at six and 12 months, respectively. Cr significantly decreased in the treated group at 12 months. PCA analysis showed both a best difference between treated and age-matched control groups at six months. The present findings support the evidence that the Cu/Zn ratio and K, measured at six months, are the best biomarkers for neurodegeneration. This study supports the use of hair analysis to identify biomarkers of neurodegeneration induced by early life permethrin pesticide exposure.

  14. Somatic mutations in aging, cancer and neurodegeneration.

    Science.gov (United States)

    Kennedy, Scott R; Loeb, Lawrence A; Herr, Alan J

    2012-04-01

    The somatic mutation theory of aging posits that the accumulation of mutations in the genetic material of somatic cells as a function of time results in a decrease in cellular function. In particular, the accumulation of random mutations may inactivate genes that are important for the functioning of the somatic cells of various organ systems of the adult, result in a decrease in organ function. When the organ function decreases below a critical level, death occurs. A significant amount of research has shown that somatic mutations play an important role in aging and a number of age related pathologies. In this review, we explore evidence for increases in somatic nuclear mutation burden with age and the consequences for aging, cancer, and neurodegeneration. We then review evidence for increases in mitochondrial mutation burden and the consequences for dysfunction in the disease processes.

  15. Near-critical GLUT1 and Neurodegeneration.

    Science.gov (United States)

    Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin

    2017-02-02

    Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Biology and genetics of prions causing neurodegeneration.

    Science.gov (United States)

    Prusiner, Stanley B

    2013-01-01

    Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in β-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified, and a similar number has been found in fungi. In both mammals and fungi, variations in the prion conformation encipher the biological properties of distinct prion strains. Increasing evidence argues that prions cause many neurodegenerative diseases (NDs), including Alzheimer's, Parkinson's, Creutzfeldt-Jakob, and Lou Gehrig's diseases, as well as the tauopathies. The majority of NDs are sporadic, and 10% to 20% are inherited. The late onset of heritable NDs, like their sporadic counterparts, may reflect the stochastic nature of prion formation; the pathogenesis of such illnesses seems to require prion accumulation to exceed some critical threshold before neurological dysfunction manifests.

  17. Insights into Mechanisms of Chronic Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abigail B. Diack

    2016-01-01

    Full Text Available Chronic neurodegenerative diseases such as Alzheimer’s disease (AD, Parkinson’s disease (PD, and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases.

  18. Interconnection between brain and retinal neurodegenerations.

    Science.gov (United States)

    Jindal, Vishal

    2015-01-01

    The eye is a special sensory organ, which is basically an extension of the brain. Both are derived from neural tube and consist of neurons. Therefore, diseases of both the brain and eye should have some similarity. Neurodegenerative disorders like Alzheimer's disease (AD) is the major cause of dementia in the world. Amyloid deposition in the cerebral cortex and hippocampal region is the basic pathology in AD. But along with it, there are various changes that take place in the eye, i.e., abnormal pupillary reaction, decreased vision, decreased contrast sensitivity, visual field changes, loss of retinal ganglionic cells and retinal fiber layer, peripapillary atrophy, increased cup-disk ratio, retinal thinning, tortuosity of blood vessels, and deposition of Aβ-like substance in the retina. And these changes are present in the early part of the disease when only mild cognitive impairment is there. As the brain is covered by a hard bony skull which makes it difficult to directly visualize the changes occurring in the brain at molecular levels, finer details of disease progression are not available with us. But the eye is the window of the brain; with advanced modern techniques, we can directly visualize the changes in the retina at a very fine level. Therefore, by depicting neurodegenerative changes in the eye, we can diagnose and manage AD at very early stages. Along with it, retinal neurodegenerations like glaucoma and age-related macular degeneration (ARMD) are the major cause of loss of vision, and still, there are no effective treatment modalities for these blinding conditions. So if we can understand its pathogenesis and progression by correlating with brain neurodegenerations, we can come up with a better therapy for glaucoma and ARMD.

  19. Salicylic Acid Attenuates Gentamicin-Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Pavle Randjelovic

    2012-01-01

    Full Text Available Gentamicin (GM is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  20. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  1. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    Science.gov (United States)

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  2. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    Science.gov (United States)

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  3. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-03-14

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. In this study, we aimed to determine whether uric acid could reduce endpoints associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. This article is protected by copyright. All rights reserved.

  4. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    Science.gov (United States)

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  5. NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins.

    Science.gov (United States)

    Ocampo, Alejandro; Liu, Jingjing; Barrientos, Antoni

    2013-05-01

    Increased levels of nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) act as a powerful suppressor of Wallerian degeneration and ataxin- and tau-induced neurodegeneration in flies and mice. However, the nature of the suppression mechanism/s remains controversial. Here, we show that in yeast models of proteinopathies, overexpression of the NMNAT yeast homologs, NMA1 and NMA2, suppresses polyglutamine (PolyQ) and α-synuclein-induced cytotoxicities. Unexpectedly, overexpression of other genes in the salvage pathway for NAD(+) biosynthesis, including QNS1, NPT1 and PNC1 also protected against proteotoxicity. Our data revealed that in all cases, this mechanism involves extensive clearance of the non-native protein. Importantly, we demonstrate that suppression by NMA1 does not require the presence of a functional salvage pathway for NAD(+) biosynthesis, SIR2 or an active mitochondrial oxidative phosphorylation (OXPHOS) system. Our results imply the existence of histone deacetylase- and OXPHOS-independent crosstalk between the proteins in the salvage pathway for NAD(+) biosynthesis and the proteasome that can be manipulated to achieve cellular protection against proteotoxic stress.

  6. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  7. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  8. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    OpenAIRE

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Park...

  9. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  10. Analysis of Salicylic Acid Induced Proteins in Rice

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An analysis using SDS-PAGE of acidic and basic protein fractions extracted from rice seedling treated with salicylic acid (SA) yielded several new proteins, some of which are similar in relative molecular mass to PR-1a,c, PR-2, 2e and PR-3d, 3e of tobacco.Direct assays for peroxidases and β-1,3-glucanases demonstrated that the activities of the two enzymes in the rice seedlings increased rapidly with time after SA treatment, reaching a maximum 6 days after treatment.Disease resistance tests showed that SA treated rice seedlings stunted the development of blight lesions and displayed higher resistance to rice blight pathogen (Xanthomonas oryzea pv.oryzea).The data suggest that the treatment with SA, even for plants with high endogenous SA levels such as rice, may induce the appearance of new proteins and the formation of disease resistance.The results contribute to the analysis of the SA role in rice systemic acquired resistance.

  11. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    Science.gov (United States)

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  12. Effect of Ascorbic Acid on Lipid Peroxidation Induced by Ceftazidime

    Directory of Open Access Journals (Sweden)

    Devbhuti P*,1

    2011-01-01

    Full Text Available Lipid peroxidation is the oxidative deterioration of polyunsaturated lipids which is a free radical related process and responsible for thedevelopment of many diseases and disorders like diabetes mellitus, hypertension, cancer etc. End products of lipid peroxidation aremalondialdehyde (MDA, 4-hydroxy-2-nonenal (4-HNE, etc. which are the ultimate mediator of toxicity. Antioxidants have the capability toinhibit lipid peroxidation. Keeping in mind this fact, the present in vitro study was carried out to evaluate lipid peroxidation induction potential of ceftazidime, a cephalosporin antibiotic and its suppression with ascorbic acid considering some laboratory markers of lipid peroxidation like MDA, 4-HNE and reduced glutathione (GSH. Goat liver was used as the lipid source. After treatment of the liver homogenate with drug and/or antioxidant the levels of 4-HNE, MDA and GSH were estimated in different samples at different hours of incubation. The results showed that the drug ceftazidime could significantly induce lipid peroxidation and the antioxidant ascorbic acid has the capability to inhibit ceftazidime-inducedlipid peroxidation.

  13. Mycophenolic Acid-Induced Developmental Defects in Zebrafish Embryos.

    Science.gov (United States)

    Jiang, Ling-Ling; Liu, Mei-Hui; Li, Jian-Ying; He, Zhi-Heng; Li, Huan; Shen, Ning; Wei, Ping; He, Ming-Fang

    2016-11-01

    With the increasing use of mycophenolic acid (MPA) in solid organ transplantation, some clinical studies indicate that it is also a human teratogen. However, it is unknown by which mechanism MPA acts as a teratogen. Mycophenolic acid was a selective blocker of de novo purine synthesis, and its immunosuppressive effect is mediated by the inhibition of inosine monophosphate dehydrogenase, which could be a target for MPA-induced toxicity as well. The aim of our study was to examine the direct influence of MPA exposure on zebrafish (Danio rerio) embryos. Morphological defects including tail curvature and severe pericardial edema in zebrafish embryos caused by MPA (3.7-11.1 µmol/L) were found in a dose-dependent manner. The teratogenic index (25% lethal concentration value (LC25)/no observed adverse effect level ratio) was 16, which indicated MPA as a teratogen. Quantitative polymerase chain reaction analysis revealed that the expression level of impdh1b and impdh2 was significantly reduced by MPA treatment at 8 µmol/L (equals to LC25 level). All the toxic effects could be partially reversed by the addition of 33.3 µmol/L guanosine. Our results indicated that MPA impairs the development of zebrafish embryos via inhibition of impdh activity, which subsequently caused a guanosine nucleotide depletion in vivo.

  14. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keshab R. Parajuli

    2015-05-01

    Full Text Available Aminomethylphosphonic acid (AMPA and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145 through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  15. High dose of ascorbic acid induces cell death in mesothelioma cells.

    Science.gov (United States)

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  16. Chronic Hypertension Leads to Neurodegeneration in the TgSwDI Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Kruyer, Anna; Soplop, Nadine; Strickland, Sidney; Norris, Erin H

    2015-07-01

    Numerous epidemiological studies link vascular disorders, such as hypertension, diabetes mellitus, and stroke, with Alzheimer's disease (AD). Hypertension, specifically, is an important modifiable risk factor for late-onset AD. To examine the link between midlife hypertension and the onset of AD later in life, we chemically induced chronic hypertension in the TgSwDI mouse model of AD in early adulthood. Hypertension accelerated cognitive deficits in the Barnes maze test (Phypertension induced hippocampal neurodegeneration at an early age in this mouse line (43% reduction in the dorsal subiculum; P<0.05), establishing this as a useful research model of AD with mixed vascular and amyloid pathologies.

  17. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Directory of Open Access Journals (Sweden)

    Magd A. Kotb

    2012-07-01

    Full Text Available Ursodeoxycholic acid (UDCA is a steroid bile acid approved for primary biliary cirrhosis (PBC. UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively. “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day and toxic dose (28 mg/kg/day, and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  18. Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells.

    Science.gov (United States)

    Hughes-Fulford, Millie; Tjandrawinata, Raymond R; Li, Chai-Fei; Sayyah, Sina

    2005-09-01

    For the past 60 years, dietary intake of essential fatty acids has increased. Moreover, the omega-6 fatty acids have recently been found to play an important role in regulation of gene expression. Proliferation of human prostate cells was significantly increased 48 h after arachidonic acid (AA) addition. We have analyzed initial uptake using nile red fluorescence and we found that the albumin conjugated AA is endocytosed into the cells followed by the induction of RNA within minutes, protein and PGE2 synthesis within hours. Here we describe that AA induces expression of cytosolic phospholipase A2 (cPLA2) in a dose-dependent manner and that this upregulation is dependent upon downstream synthesis of PGE2. The upregulation of cox-2 and cPLA2 was inhibited by flurbiprofen, a cyclooxygenase (COX) inhibitor, making this a second feed-forward enzyme in the eicosanoid pathway. Cox-2 specific inhibitors are known to inhibit colon and prostate cancer growth in humans; however, recent findings show that some of these have cardiovascular complications. Since cPLA2 is upstream in the eicosanoid pathway, it may be a good alternative for a pharmaceutical target for the treatment of cancer.

  19. Hyaluronic acid induces activation of the κ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  20. Temperature Induced Aggregation and Clouding in Humic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Leah Shaffer

    2015-01-01

    Full Text Available Humic acids in aqueous solution demonstrate inverse temperature-solubility relationships when solution conditions are manipulated to reduce coulombic repulsion among the humic polyanions. These effects were followed by dynamic light scattering (DLS measurements of the resulting aggregates, as well as the addition of a polarity sensitive fluorescent probe (pyrene. The humic solutions could be primed for temperature induced clouding by carefully lowering the pH to a point where hydration effects became dominant. The exact value of the cloud point (CP was a function of both pH and humate concentration. The CPs mostly lay in the range 50–90°C, but DLS showed that temperature induced aggregation proceeded from approximately 30°C onward. Similar effects could be achieved by adding multivalent cations at concentrations below those which cause spontaneous precipitation. The declouding of clouded humate solutions could be affected by lowering the temperature combined with mechanical agitation to disentangle the humic polymers.

  1. Carbon nanotubes induced gelation of unmodified hyaluronic acid.

    Science.gov (United States)

    Zamora-Ledezma, Camilo; Buisson, Lionel; Moulton, Simon E; Wallace, Gordon; Zakri, Cécile; Blanc, Christophe; Anglaret, Eric; Poulin, Philippe

    2013-08-13

    This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.

  2. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. PRINCIPAL FINDINGS: Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. CONCLUSION: Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  3. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    Science.gov (United States)

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  4. Neuroprotective effects of citicoline in in vitro models of retinal neurodegeneration.

    Science.gov (United States)

    Matteucci, Andrea; Varano, Monica; Gaddini, Lucia; Mallozzi, Cinzia; Villa, Marika; Pricci, Flavia; Malchiodi-Albedi, Fiorella

    2014-04-14

    In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  5. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2014-04-01

    Full Text Available In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  6. THE EFFECT OF CUCUMBER ( ) EXTRACT ON ACID INDUCED ...

    African Journals Online (AJOL)

    LIVINGSTON

    ... of corneal acid burn. Cucumber extract, corneal acid burn, guinea pigs, alpha hydroxyl acids, beta hydroxyl ..... cholesterol arteriosclerosis in rabbits. Circulation.12:696 ... production in human skin fibroblast cultures in vitro. Dermatol. Surg.

  7. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats.

    Science.gov (United States)

    Punithavathi, Vilapakkam Ranganathan; Prince, Ponnian Stanely Mainzen; Kumar, Ramesh; Selvakumari, Jemmi

    2011-01-10

    The present study aims to evaluate the antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic male Wistar rats. To induce diabetes mellitus, rats were injected with streptozotocin intraperitoneally at a single dose of 40mg/kg. Streptozotocin induced diabetic rats showed significant (Pacid reactive substances and lipid hydroperoxides were significantly (Pgallic acid (10 and 20mg/kg) daily for a period of 21days showed significant (Pgallic acid in diabetic rats. In vitro study also revealed the potent antioxidant effect of gallic acid. Thus, the study shows the antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic rats. The effect exerted by 20mg/kg body weight of gallic acid was more effective than 10mg/kg body weight of gallic acid.

  8. LINGO-1 and Neurodegeneration: Pathophysiologic Clues for Essential Tremor.

    Science.gov (United States)

    Zhou, Zhi-Dong; Sathiyamoorthy, Sushmitha; Tan, Eng-King

    2012-01-01

    Essential tremor (ET), one of the most common adult-onset movement disorders, has been associated with cerebellar Purkinje cell degeneration and formation of brainstem Lewy bodies. Recent findings suggest that genetic variants of the leucine-rich repeat and Ig domain containing 1 (LINGO-1) gene could be risk factors for ET. The LINGO-1 protein contains both leucine-rich repeat (LRR) and immunoglobulin (Ig)-like domains in its extracellular region, as well as a transmembrane domain and a short cytoplasmic tail. LINGO-1 can form a ternary complex with Nogo-66 receptor (NgR1) and p75. Binding of LINGO-1 with NgR1 can activate the NgR1 signaling pathway, leading to inhibition of oligodendrocyte differentiation and myelination in the central nervous system. LINGO-1 has also been found to bind with epidermal growth factor receptor (EGFR) and induce downregulation of the activity of EGFR-PI3K-Akt signaling, which might decrease Purkinje cell survival. Therefore, it is possible that genetic variants of LINGO-1, either alone or in combination with other genetic or environmental factors, act to increase LINGO-1 expression levels in Purkinje cells and confer a risk to Purkinje cell survival in the cerebellum.Here, we provide a concise summary of the link between LINGO-1 and neurodegeneration and discuss various hypotheses as to how this could be potentially relevant to ET pathogenesis.

  9. Interactions between Calcium and Alpha-Synuclein in Neurodegeneration

    Science.gov (United States)

    Rcom-H’cheo-Gauthier, Alex; Goodwin, Jacob; Pountney, Dean L.

    2014-01-01

    In Parkinson’s disease and some atypical Parkinson’s syndromes, aggregation of the α-synuclein protein (α-syn) has been linked to neurodegeneration. Many triggers for pathological α-syn aggregation have been identified, including port-translational modifications, oxidative stress and raised metal ions, such as Ca2+. Recently, it has been found using cell culture models that transient increases of intracellular Ca2+ induce cytoplasmic α-syn aggregates. Ca2+-dependent α-syn aggregation could be blocked by the Ca2+ buffering agent, BAPTA-AM, or by the Ca2+ channel blocker, Trimethadione. Furthermore, a greater proportion of cells positive for aggregates occurred when both raised Ca2+ and oxidative stress were combined, indicating that Ca2+ and oxidative stress cooperatively promote α-syn aggregation. Current on-going work using a unilateral mouse lesion model of Parkinson’s disease shows a greater proportion of calbindin-positive neurons survive the lesion, with intracellular α-syn aggregates almost exclusively occurring in calbindin-negative neurons. These and other recent findings are reviewed in the context of neurodegenerative pathologies and suggest an association between raised Ca2+, α-syn aggregation and neurotoxicity. PMID:25256602

  10. Interactions between Calcium and Alpha-Synuclein in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alex Rcom-H'cheo-Gauthier

    2014-08-01

    Full Text Available In Parkinson’s disease and some atypical Parkinson’s syndromes, aggregation of the α-synuclein protein (α-syn has been linked to neurodegeneration. Many triggers for pathological α-syn aggregation have been identified, including port-translational modifications, oxidative stress and raised metal ions, such as Ca2+. Recently, it has been found using cell culture models that transient increases of intracellular Ca2+ induce cytoplasmic α-syn aggregates. Ca2+-dependent α-syn aggregation could be blocked by the Ca2+ buffering agent, BAPTA-AM, or by the Ca2+ channel blocker, Trimethadione. Furthermore, a greater proportion of cells positive for aggregates occurred when both raised Ca2+ and oxidative stress were combined, indicating that Ca2+ and oxidative stress cooperatively promote α-syn aggregation. Current on-going work using a unilateral mouse lesion model of Parkinson’s disease shows a greater proportion of calbindin-positive neurons survive the lesion, with intracellular α-syn aggregates almost exclusively occurring in calbindin-negative neurons. These and other recent findings are reviewed in the context of neurodegenerative pathologies and suggest an association between raised Ca2+, α-syn aggregation and neurotoxicity.

  11. Sesamin ameliorates oxidative stress and mortality in kainic acid-induced status epilepticus by inhibition of MAPK and COX-2 activation

    Directory of Open Access Journals (Sweden)

    Lin Ching-Huei

    2011-05-01

    Full Text Available Abstract Background Kainic acid (KA-induced status epilepticus (SE was involved with release of free radicals. Sesamin is a well-known antioxidant from sesame seeds and it scavenges free radicals in several brain injury models. However the neuroprotective mechanism of sesamin to KA-induced seizure has not been studied. Methods Rodents (male FVB mice and Sprague-Dawley rats were fed with sesamin extract (90% of sesamin and 10% sesamolin, 15 mg/kg or 30 mg/kg, for 3 days before KA subcutaneous injection. The effect of sesamin on KA-induced cell injury was also investigated on several cellular pathways including neuronal plasticity (RhoA, neurodegeneration (Caspase-3, and inflammation (COX-2 in PC12 cells and microglial BV-2 cells. Results Treatment with sesamin extract (30 mg/kg significantly increased plasma α-tocopherol level 50% and 55.8% from rats without and with KA treatment, respectively. It also decreased malondialdehyde (MDA from 145% to 117% (p = 0.017 and preserved superoxide dismutase from 55% of the vehicle control mice to 81% of sesamin-treated mice, respectively to the normal levels (p = 0.013. The treatment significantly decreased the mortality from 22% to 0% in rats. Sesamin was effective to protect PC12 cells and BV-2 cells from KA-injury in a dose-dependent manner. It decreased the release of Ca2+, reactive oxygen species, and MDA from PC12 cells. Western blot analysis revealed that sesamin significantly reduced ERK1/2, p38 mitogen-activated protein kinases, Caspase-3, and COX-2 expression in both cells and RhoA expression in BV-2 cells. Furthermore, Sesamin was able to reduce PGE2 production from both cells under KA-stimulation. Conclusions Taken together, it suggests that sesamin could protect KA-induced brain injury through anti-inflammatory and partially antioxidative mechanisms.

  12. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-05-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of /sup 14/C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three /sup 14/C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin.

  13. 20-Hydroxyeicosatetraenoic Acid Inhibition by HET0016 Offers Neuroprotection, Decreases Edema, and Increases Cortical Cerebral Blood Flow in a Pediatric Asphyxial Cardiac Arrest Model in Rats.

    Science.gov (United States)

    Shaik, Jafar Sadik B; Poloyac, Samuel M; Kochanek, Patrick M; Alexander, Henry; Tudorascu, Dana L; Clark, Robert Sb; Manole, Mioara D

    2015-11-01

    Vasoconstrictive and vasodilatory eicosanoids generated after cardiac arrest (CA) may contribute to cerebral vasomotor disturbances and neurodegeneration. We evaluated the balance of vasodilator/vasoconstrictor eicosanoids produced by cytochrome P450 (CYP) metabolism, and determined their role on cortical perfusion, functional outcome, and neurodegeneration after pediatric asphyxial CA. Cardiac arrest of 9 and 12 minutes was induced in 16- to 18-day-old rats. At 5 and 120 minutes after CA, we quantified the concentration of CYP eicosanoids in the cortex and subcortical areas. In separate rats, we inhibited 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis after CA and assessed cortical cerebral blood flow (CBF), neurologic deficit score, neurodegeneration, and edema. After 9 minutes of CA, vasodilator eicosanoids markedly increased versus sham. Conversely, after 12 minutes of CA, vasoconstrictor eicosanoid 20-HETE increased versus sham, without compensatory increases in vasodilator eicosanoids. Inhibition of 20-HETE synthesis after 12 minutes of CA decreased cortical 20-HETE levels, increased CBF, reduced neurologic deficits at 3 hours, and reduced neurodegeneration and edema at 48 hours versus vehicle-treated rats. In conclusion, cerebral vasoconstrictor eicosanoids increased after a pediatric CA of 12 minutes. Inhibition of 20-HETE synthesis improved cortical perfusion and short-term neurologic outcome. These results suggest that alterations in CYP eicosanoids have a role in cerebral hypoperfusion and neurodegeneration after CA and may represent important therapeutic targets.

  14. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Tarek Boussetta

    Full Text Available BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO. The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.

  15. Oligodendroglia and neurotrophic factors in neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Andrew N.Bankston; Mariana D.Mandler; Yue Feng

    2013-01-01

    Myelination by oligodendroglial cells (OLs) enables the propagation of action potentials along neuronal axons,which is essential for rapid information flow in the central nervous system.Besides saltatory conduction,the myelin sheath also protects axons against inflammatory and oxidative insults.Loss of myelin results in axonal damage and ultimately neuronal loss in demyelinating disorders.However,accumulating evidence indicates that OLs also provide support to neurons via mechanisms beyond the insulating function of myelin.More importantly,an increasing volume of reports indicates defects of OLs in numerous neurodegenerative diseases,sometimes even preceding neuronal loss in pre-symptomatic episodes,suggesting that OL pathology may be an important mechanism contributing to the initiation and/or progression of neurodegeneration.This review focuses on the emerging picture of neuronal support by OLs in the pathogenesis of neurodegenerative disorders through diverse molecular and cellular mechanisms,including direct neuron-myelin interaction,metabolic support by OLs,and neurotrophic factors produced by and/or acting on OLs.

  16. Damage, DNA Repair, Aging, and Neurodegeneration

    Science.gov (United States)

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2017-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  17. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Michael Fasullo

    2015-04-01

    Full Text Available Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.

  18. Effects of hypothalamic neurodegeneration on energy balance.

    Directory of Open Access Journals (Sweden)

    Allison Wanting Xu

    2005-12-01

    Full Text Available Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp or proopiomelanocortin (Pomc, neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging.

  19. Post-translational modifications in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Federico Benetti

    2015-12-01

    Full Text Available Post-translational modifications increase proteome functionality for managing all aspects of normal cell biology. They are based on the covalent attachment of functional groups, leading to phosphorylation, acetylation, glycosylation, acylation, ubiquitination, SUMOylation and oxidation of protein targets. Post-translational modifications occur at any step of protein life cycle, modulating in time and space protein folding, subcellular localization and activity. Aberrant post-translational modifications of one or more culprit proteins may lead to neurodegeneration, as shown in paradigmatic neurological disorders such as Alzheimer’s, Parkinson’s and prion diseases. In this review, we report the most important post-translational modifications found in neurodegenerative disorders, illustrating the pathophysiological mechanisms in which they are involved. This work highlights the lack of a global framework of post-translational modifications in terms of complexity and regulation. Therefore, in the next future many efforts are required to describe the interplay existing between post-translational modifications and their combinatorial patterns on protein targets.

  20. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Science.gov (United States)

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  1. The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes.

    Science.gov (United States)

    Colín-González, A L; Paz-Loyola, A L; Serratos, I N; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-12-01

    Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced and accumulated in the brain of children affected by severe organic acidemias (OAs) with neurodegeneration. Oxidative stress and excitotoxicity have been involved in the toxic pattern exerted by these organic acids. Studying the early pattern of toxicity exerted by these metabolites is crucial to explain the extent of damage that they can produce in the brain. Herein, we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) on early markers of GA-, 3-OHGA-, MMA- and PA-induced toxicity in brain synaptosomes from adult (90-day-old) and adolescent (30-day-old) rats. As pre-treatment, WIN exerted protective effects on the GA- and MMA-induced mitochondrial dysfunction, and prevented the reactive oxygen species (ROS) formation and lipid peroxidation induced by all metabolites. Our findings support a protective and modulatory role of cannabinoids in the early toxic events elicited by toxic metabolites involved in OAs.

  2. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Science.gov (United States)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  3. Structure and rheological properties of acid-induced egg white protein gels

    NARCIS (Netherlands)

    Weijers, M.; Velde, van de F.; Stijnman, A.; Pijpekamp, van de A.; Visschers, R.W.

    2006-01-01

    This study compares the rheological properties of acid-induced gels prepared of industrial spray-dried egg white proteins (EWP) with the acid-induced gels prepared of ovalbumin (OA) and whey protein isolate (WPI). Also we aimed to form transparent gels of EWP by means of the cold-gelation process. W

  4. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  5. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    Science.gov (United States)

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  6. [Epigenetic variability induced by nicotinic acid in Triticum aestivum L].

    Science.gov (United States)

    Bogdanova, E D

    2003-09-01

    The effect of nicotinic acid (NA) on hereditary traits of spring common wheat cultivar Kazakhstanskaya 126 (K.126) were studied under the laboratory and field conditions. Treatment of seeds and vegetating plants with 0.01-0.1% NA (aqueous solution) induced heritable epigenetic changes in wheat. As a result, strong tall plants with the long productive spike, large seeds, and several quantitative and qualitative characters other than in the original cultivar were obtained in the second and further generations after treatment. Crosses of changed plants with each other did not result in segregation with respect to leaf downiness or anthocyan stem color in F2-F4, suggesting the same epigenetic state of genes responsible for changed characters. In crosses with the original cultivar, characters of the changed plants always dominated in F1. Basing on the current views, the changes were attributed to a transition of the hl1 and pc recessive marker genes into new, dominant epiallelic states Hl1 and Pc, which respectively determine downy leaves and the colored stem. The NA effect was specific, since only one type of the variation was observed. The changed characters were stable, and no reversion to the original phenotype was detected in 57 generations.

  7. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    Science.gov (United States)

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  8. Regulated protein aggregation: stress granules and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Wolozin Benjamin

    2012-11-01

    Full Text Available Abstract The protein aggregation that occurs in neurodegenerative diseases is classically thought to occur as an undesirable, nonfunctional byproduct of protein misfolding. This model contrasts with the biology of RNA binding proteins, many of which are linked to neurodegenerative diseases. RNA binding proteins use protein aggregation as part of a normal regulated, physiological mechanism controlling protein synthesis. The process of regulated protein aggregation is most evident in formation of stress granules. Stress granules assemble when RNA binding proteins aggregate through their glycine rich domains. Stress granules function to sequester, silence and/or degrade RNA transcripts as part of a mechanism that adapts patterns of local RNA translation to facilitate the stress response. Aggregation of RNA binding proteins is reversible and is tightly regulated through pathways, such as phosphorylation of elongation initiation factor 2α. Microtubule associated protein tau also appears to regulate stress granule formation. Conversely, stress granule formation stimulates pathological changes associated with tau. In this review, I propose that the aggregation of many pathological, intracellular proteins, including TDP-43, FUS or tau, proceeds through the stress granule pathway. Mutations in genes coding for stress granule associated proteins or prolonged physiological stress, lead to enhanced stress granule formation, which accelerates the pathophysiology of protein aggregation in neurodegenerative diseases. Over-active stress granule formation could act to sequester functional RNA binding proteins and/or interfere with mRNA transport and translation, each of which might potentiate neurodegeneration. The reversibility of the stress granule pathway also offers novel opportunities to stimulate endogenous biochemical pathways to disaggregate these pathological stress granules, and perhaps delay the progression of disease.

  9. Anticholinergics boost the pathological process of neurodegeneration with increased inflammation in a tauopathy mouse model.

    Science.gov (United States)

    Yoshiyama, Yasumasa; Kojima, Ayako; Itoh, Kimiko; Uchiyama, Tomoyuki; Arai, Kimihito

    2012-01-01

    Anticholinergics, and drugs with anticholinergic properties, are widely and frequently prescribed, especially to the elderly. It is well known that these drugs decrease cognitive function and increase the risk of dementia. Although the mechanism of anticholinergic drug-induced cognitive impairment has been assumed to be functionally reduced acetylcholine (ACh) neurotransmission, some data have indicated that anticholinergics might enhance the pathology of Alzheimer's disease. In this study, we investigated the pathological effects of anticholinergics on neurodegeneration. We chronically administered two anticholinergics, trihexyphenidyl (TP) and propiverine (PP) (the latter with less central anticholinergic action), to neurodegenerative tauopathy model mice 2 to 10 months old. Furthermore, because the ACh nervous system regulates both central and peripheral inflammation, we administered TP or PP to PS19 mice in which we had artificially induced inflammation by lipopolysaccharide injection. Tau pathology, synaptic loss, and neurodegeneration in the hippocampal region, as well as tau insolubility and phosphorylation, were markedly increased in TP-treated mice and mildly increased in PP-treated mice. Furthermore, immunohistochemical analysis revealed microglial proliferation and activation. Moreover, anticholinergics increased interleukin-1β expression in both the spleen and brain of the tauopathy model mice intraperitoneally injected with lipopolysaccharide to induce systemic inflammation. Interestingly, these alterations were more strongly observed in TP-treated mice than in PP-treated mice, consistent with the level of central anticholinergic action. Anticholinergic drugs not only impair cognitive function by decreased ACh neurotransmission, but also accelerate neurodegeneration by suppressing an ACh-dependent anti-inflammatory system. Anticholinergics should be less readily prescribed to reduce the risk of dementia.

  10. Genetics Home Reference: fatty acid hydroxylase-associated neurodegeneration

    Science.gov (United States)

    ... classified as having a separate disorder called spastic paraplegia 35. People with mutations in this gene resulting ... Genetic Testing (1 link) Genetic Testing Registry: Spastic paraplegia 35 Other Diagnosis and Management Resources (1 link) ...

  11. Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane ...

    African Journals Online (AJOL)

    Abstract. Purpose: To examine the anticancer effect of salvianolic acid-A against human small cell lung cancer ... to most anticancer drugs and as such, salvianolic acid can be ..... chemistry, pharmacology, pharmacokinetics, and clinical use.

  12. Sprouty2 and -4 hypomorphism promotes neuronal survival and astrocytosis in a mouse model of kainic acid induced neuronal damage.

    Science.gov (United States)

    Thongrong, Sitthisak; Hausott, Barbara; Marvaldi, Letizia; Agostinho, Alexandra S; Zangrandi, Luca; Burtscher, Johannes; Fogli, Barbara; Schwarzer, Christoph; Klimaschewski, Lars

    2016-05-01

    Sprouty (Spry) proteins play a key role as negative feedback inhibitors of the Ras/Raf/MAPK/ERK pathway downstream of various receptor tyrosine kinases. Among the four Sprouty isoforms, Spry2 and Spry4 are expressed in the hippocampus. In this study, possible effects of Spry2 and Spry4 hypomorphism on neurodegeneration and seizure thresholds in a mouse model of epileptogenesis was analyzed. The Spry2/4 hypomorphs exhibited stronger ERK activation which was limited to the CA3 pyramidal cell layer and to the hilar region. The seizure threshold of Spry2/4(+/-) mice was significantly reduced at naive state but no difference to wildtype mice was observed 1 month following KA treatment. Histomorphological analysis revealed that dentate granule cell dispersion (GCD) was diminished in Spry2/4(+/-) mice in the subchronic phase after KA injection. Neuronal degeneration was reduced in CA1 and CA3 principal neuron layers as well as in scattered neurons of the contralateral CA1 and hilar regions. Moreover, Spry2/4 reduction resulted in enhanced survival of somatostatin and neuropeptide Y expressing interneurons. GFAP staining intensity and number of reactive astrocytes markedly increased in lesioned areas of Spry2/4(+/-) mice as compared with wildtype mice. Taken together, although the seizure threshold is reduced in naive Spry2/4(+/-) mice, neurodegeneration and GCD is mitigated following KA induced hippocampal lesions, identifying Spry proteins as possible pharmacological targets in brain injuries resulting in neurodegeneration. The present data are consistent with the established functions of the ERK pathway in astrocyte proliferation as well as protection from neuronal cell death and suggest a novel role of Spry proteins in the migration of differentiated neurons.

  13. Induced Polarization Surveying for Acid Rock Screening in Highway Design

    Science.gov (United States)

    Butler, K. E.; Al, T.; Bishop, T.

    2004-05-01

    Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary

  14. Iron prevents ascorbic acid (vitamin C) induced hydrogen peroxide accumulation in copper contaminated drinking water.

    Science.gov (United States)

    Jansson, Patric J; Lindqvist, Christer; Nordström, Tommy

    2005-11-01

    Ascorbic acid (vitamin C) induced hydrogen peroxide (H(2)O(2)) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H(2)O(2) formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H(2)O(2) formation during acidic conditions (pH: 3.5-5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H(2)O(2) concentration exceeded 400 microM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H(2)O(2) accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H(2)O(2) formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H(2)O(2). Ascorbic acid/Cu(II)-induced H(2)O(2) formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.

  15. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    Science.gov (United States)

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  16. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda; Dal Bosco, Simone Morelo

    2015-12-05

    Glycation, a process that occurs endogenously and generates advanced glycation end products (AGEs), presents an important role in cases of neurodegeneration, as for instance Alzheimer's disease (AD). Methylglyoxal (MG), a dicarbonyl compound, is the most potent inducer of AGEs, whose levels have been found increased in samples obtained from subjects suffering from AD. Moreover, MG induces protein cross-linking and redox impairment in vitro and in vivo. Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, exerts protective effects in neuronal cells by increasing antioxidant defenses and detoxification systems. In the present work, we aimed to investigate whether there is a role for CA against MG-induced neurotoxicity. Data obtained here clearly demonstrate that CA pretreatment (1 μM for 12 h) caused cytoprotective effects and counteracted the damage elicited by MG in SH-SY5Y cells. CA inhibited loss of mitochondrial membrane polarity (MMP) and cytochrome c release from mitochondria, consequently blocking activation of pro-apoptotic caspase enzymes. Furthermore, CA alleviated MG-induced oxidative and nitrosative damage. CA prevented MG-dependent neurotoxicity by activating the PI3K/Akt/Nrf2 signaling pathway and the antioxidant enzymes modulated by Nrf2 transcription factor. Overall, the data presented here show the protective role of CA by its ability to counteract MG negative effects.

  17. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  18. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    Science.gov (United States)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  19. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    Science.gov (United States)

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse.

  20. Trihydroxybenzoic Acid Dimer-induced Apoptosis Effects in vitro

    Institute of Scientific and Technical Information of China (English)

    NIU Feng-lan; WANG Xue-dong; WANG Ying-li; SONG Lian-sheng

    2005-01-01

    The in vitro inhibitory effect of trihydroxybenzoic acid dimer(TAD) extracted from Trapabispinosd roxb on HeLa cell growth was investigated via the MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diophenyl-tetrazolium bromide] reduction method. The morphological changes of HeLa cells were observed by means of an optical microscope and a transmission electron microscope(TEM); the cell circles and apoptosis were detected by a flow cytometer. It was found that TAD can significantly inhibit the growth of Hela cells and can induce the apoptosis of HeLa cells. It was also found that the inhibition to the growth of Hela cells and the induction to the apoptosis of HeLa cells have a dosage-dependent feature. The inhibiting rates of TAD with mass concentrations of 25.000, 12.500 and 6.250 mg/L to the HeLa cell growth were 52.04%, 34.44% and 23.72% after 30 h, respectively, while those with TAD mass concentrations of 100.000, 50.000, 25.000, 12.500, 6.250 and 3.125 mg/L showed positive correlation with a correlation coefficient value of r=0.9859(P<0.01) and a IC50 value of 10.90 mg/L. Observed by means of TEM, the HeLa cells exposed to 25.000, 12.500 and 6.250 mg/L TAD showed apoptosis to various extents, shrinkage of the cell nuclei, condensation and margination of chromatin, and cavitation of mitochondrion. An apoptosis peak was detected via a flow cytometer. It can be drawn from the results that TAD extracted from Trapabispinosd roxb has an evident inhibitory effect on the proliferation of and an inductive effect on the apoptosis of HeLa cells, but has no obvious arrest action towards the cell circles of HeLa cells.

  1. Neurodegeneration in drop-dead mutant drosophila melanogaster is associated with the respiratory system but not with Hypoxia.

    Directory of Open Access Journals (Sweden)

    Christine Lynn Sansone

    Full Text Available Mutations in the gene drop-dead (drd cause diverse phenotypes in adult Drosophila melanogaster including early lethality, neurodegeneration, tracheal defects, gut dysfunction, reduced body mass, and female sterility. Despite the identification of the drd gene itself, the causes of early lethality and neurodegeneration in the mutant flies remain unknown. To determine the pattern of drd expression associated with the neurodegenerative phenotype, knockdown of drd with various Gal4 drivers was performed. Early adult lethality and neurodegeneration were observed upon knockdown of drd in the tracheal system with two independent insertions of the breathless-Gal4 driver and upon knockdown in the tracheal system and elsewhere with the DJ717-Gal4 driver. Surprisingly, rescue of drd expression exclusively in the tracheae in otherwise mutant flies rescued the neurodegenerative phenotype but not adult lethality. Gut dysfunction, as measured by defecation rate, was not rescued in these flies, and gut function appeared normal upon tracheal-specific knockdown of drd. Finally, the hypothesis that tracheal dysfunction in drd mutants results in hypoxia was tested. Hypoxia-sensitive reporter transgenes (LDH-Gal4 and LDH-LacZ were placed on a drd mutant background, but enhanced expression of these reporters was not observed. In addition, manipulation of drd expression in the tracheae did not affect expression of the hypoxia-induced genes LDH, tango, and similar. Overall, these results indicate that there are at least two causes of adult lethality in drd mutants, that gut dysfunction and neurodegeneration are independent phenotypes, and that neurodegeneration is associated with tracheal expression of drd but not with hypoxia.

  2. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    Science.gov (United States)

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  3. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease.

    Science.gov (United States)

    Zlatic, Stephanie; Comstra, Heather Skye; Gokhale, Avanti; Petris, Michael J; Faundez, Victor

    2015-09-01

    ATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of-function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to the hypoactivity of a limited number of copper-dependent enzymes, a hypothesis that we refer as the oligoenzymatic pathogenic hypothesis. This hypothesis, which has dominated the field for 25 years, only explains some systemic Menkes phenotypes. However, we argue that this hypothesis does not fully account for the Menkes neurodegeneration or neurodevelopmental phenotypes. Here, we propose revisions of the oligoenzymatic hypothesis that could illuminate the pathogenesis of Menkes neurodegeneration and neurodevelopmental defects through unsuspected overlap with other neurological conditions including Parkinson's, intellectual disability, and schizophrenia.

  4. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    Science.gov (United States)

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid. © 2013 Published by Elsevier B.V.

  5. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  6. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer's disease models.

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    Full Text Available Neuroprotectin D1 (NPD1 is a stereoselective mediator derived from the omega-3 essential fatty acid docosahexaenoic acid (DHA with potent inflammatory resolving and neuroprotective bioactivity. NPD1 reduces Aβ42 peptide release from aging human brain cells and is severely depleted in Alzheimer's disease (AD brain. Here we further characterize the mechanism of NPD1's neurogenic actions using 3xTg-AD mouse models and human neuronal-glial (HNG cells in primary culture, either challenged with Aβ42 oligomeric peptide, or transfected with beta amyloid precursor protein (βAPP(sw (Swedish double mutation APP695(sw, K595N-M596L. We also show that NPD1 downregulates Aβ42-triggered expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2 and of B-94 (a TNF-α-inducible pro-inflammatory element and apoptosis in HNG cells. Moreover, NPD1 suppresses Aβ42 peptide shedding by down-regulating β-secretase-1 (BACE1 while activating the α-secretase ADAM10 and up-regulating sAPPα, thus shifting the cleavage of βAPP holoenzyme from an amyloidogenic into the non-amyloidogenic pathway. Use of the thiazolidinedione peroxisome proliferator-activated receptor gamma (PPARγ agonist rosiglitazone, the irreversible PPARγ antagonist GW9662, and overexpressing PPARγ suggests that the NPD1-mediated down-regulation of BACE1 and Aβ42 peptide release is PPARγ-dependent. In conclusion, NPD1 bioactivity potently down regulates inflammatory signaling, amyloidogenic APP cleavage and apoptosis, underscoring the potential of this lipid mediator to rescue human brain cells in early stages of neurodegenerations.

  7. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites

    Science.gov (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V.; Sograte Idrissi, Shama; Notarangelo, Francesca M.; Estranero, Jasper G.; Moore, Gareth G. L.; Green, Edward W.; Kyriacou, Charalambos P.; Schwarcz, Robert; Giorgini, Flaviano

    2016-01-01

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway—kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP—the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington’s disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer’s and Parkinson’s disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits. PMID:27114543

  8. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity.

    Science.gov (United States)

    Choi, Joungil; Chandrasekaran, Krish; Demarest, Tyler G; Kristian, Tibor; Xu, Su; Vijaykumar, Kadambari; Dsouza, Kevin Geoffrey; Qi, Nathan R; Yarowsky, Paul J; Gallipoli, Rao; Koch, Lauren G; Fiskum, Gary M; Britton, Steven L; Russell, James W

    2014-08-01

    Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human "impaired glucose tolerance" or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD(+)-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction.

  9. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases.

    Science.gov (United States)

    Tumani, Hayrettin; Teunissen, Charlotte; Süssmuth, Sigurd; Otto, Markus; Ludolph, Albert C; Brettschneider, Johannes

    2008-07-01

    Chronic neurological diseases (CND) like amyotrophic lateral sclerosis (ALS), dementia or multiple sclerosis (MS) share a chronic progressive course of disease that frequently leads to the common pathological pathway of neurodegeneration, including neuroaxonal damage, apoptosis and gliosis. There is an ongoing search for biomarkers that could support early diagnosis of CND and help to identify responders to interventions in therapeutic treatment trials. Cerebrospinal fluid (CSF) is a promising source of biomarkers in CND, since the CSF compartment is in close anatomical contact with the brain interstitial fluid, where biochemical changes related to CND are reflected. We review recent advances in CSF biomarkers research in CND and thereby focus on markers associated with neurodegeneration.

  10. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    Science.gov (United States)

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease.

  11. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. RES

  12. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    This study examined the effects of simulated acid rain (SAR) of different pH ... in sandy loam soil with sufficient organic matter, pale yellow in color and pH 7.3 and ... Effects of SAR increased more dramatically with the increase of SAR acidity.

  13. Vascular Changes and Neurodegeneration in the Early Stages of Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Jonsson, Karoline Boegeberg; Frydkjaer-Olsen, Ulrik; Grauslund, Jakob

    2016-01-01

    INTRODUCTION: Neurodegeneration is an early component of diabetic retinopathy (DR). It is unclear whether neurodegeneration is an independent factor or a consequence of damaged retinal vasculature. The aims of this study were to review the literature concerning neurodegeneration in diabetic...... patients without or with early DR, and to examine whether neurodegeneration precedes visible vasculopathy in the pathogenesis of DR. METHODS: A systematic literature search was performed to identify studies which used optical coherence tomography (OCT) or multifocal electroretinography (mfERG) to detect...

  14. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  15. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.

    Science.gov (United States)

    Galvao, Joana; Elvas, Filipe; Martins, Tiago; Cordeiro, M Francesca; Ambrósio, António Francisco; Santiago, Ana Raquel

    2015-11-01

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

  16. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    Science.gov (United States)

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  17. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

  18. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    Science.gov (United States)

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.

  19. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent.

  20. The P66Shc/Mitochondrial Permeability Transition Pore Pathway Determines Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Costanza Savino

    2013-01-01

    Full Text Available Mitochondrial-mediated oxidative stress and apoptosis play a crucial role in neurodegenerative disease and aging. Both mitochondrial permeability transition (PT and swelling of mitochondria have been involved in neurodegeneration. Indeed, knockout mice for cyclophilin-D (Cyc-D, a key regulatory component of the PT pore (PTP that triggers mitochondrial swelling, resulted to be protected in preclinical models of multiple sclerosis (MS, Parkinson’s disease (PD, and amyotrophic lateral sclerosis (ALS. However, how neuronal stress is transduced into mitochondrial oxidative stress and swelling is unclear. Recently, the aging determinant p66Shc that generates H2O2 reacting with cytochrome c and induces oxidation of PTP and mitochondrial swelling was found to be involved in MS and ALS. To investigate the role of p66Shc/PTP pathway in neurodegeneration, we performed experimental autoimmune encephalomyelitis (EAE experiments in p66Shc knockout mice (p66Shc−/−, knock out mice for cyclophilin-D (Cyc-D−/−, and p66Shc Cyc-D double knock out (p66Shc/Cyc-D−/− mice. Results confirm that deletion of p66Shc protects from EAE without affecting immune response, whereas it is not epistatic to the Cyc-D mutation. These findings demonstrate that p66Shc contributes to EAE induced neuronal damage most likely through the opening of PTP suggesting that p66Shc/PTP pathway transduces neurodegenerative stresses.

  1. Absence of correlation between ACh-induced Ca influx and phosphatidic acid labeling in rat uterus.

    Science.gov (United States)

    Ichida, S; Moriyama, M; Hirooka, Y; Okazaki, Y; Yoshioka, K

    1984-11-27

    Rat uterine smooth muscle was preincubated in Ca-depleted modified Locke-Ringer solution to investigate the correlation between the 32Pi incorporation into phosphatidic acid induced by acetylcholine and the contractile response to acetylcholine induced by the addition of CaCl2 (Ca influx). The results showed that in rat uterine smooth muscle under these conditions phosphatidic acid does not act as a Ca ionophore or as a trigger for opening the Ca channel.

  2. Naturally occurring and process-induced trans fatty acids and ...

    African Journals Online (AJOL)

    CHOKRI

    2013-05-22

    May 22, 2013 ... found in position 9, such as elaidic acid, with a Gaussian distribution of FAs with the ... traditional method of manually churning the naturally fermented milk and heating the ..... trans PUFA and CLA. PC1 was heavily weighted.

  3. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    Directory of Open Access Journals (Sweden)

    Rohit Aiyer

    2016-01-01

    Full Text Available We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium.

  4. Acid-induced death in neurons and glia.

    Science.gov (United States)

    Nedergaard, M; Goldman, S A; Desai, S; Pulsinelli, W A

    1991-08-01

    Lactic acidosis has been proposed to be one factor promoting cell death following cerebral ischemia. We have previously demonstrated that cultured neurons and glial are killed by relatively brief (10 min) exposure to acidic solutions of pH less than 5 (Goldman et al., 1989). In the present series of experiments, we investigated the relationship between changes in intracellular pH (pHi) and cellular viability. pHi was measured using fluorescent pH probes and was manipulated by changing extracellular pH (pHe). Homeostatic mechanisms regulating pHi in neurons and glia were quickly overwhelmed: neither neurons nor glial cells were able to maintain baseline pHi when incubated at pHe below 6.8. Neuronal and glial death was a function of both the degree and the duration of intracellular acidification, such that the LD50 following timed exposure to HCl increased from pH, 3.5 for 10-min acid incubations to pHi 5.9 for 2-hr exposures and pHi 6.5 for 6-hr exposures. Replacement of HCl with lactic acid raised the LD50 to pHi 4.5 for 10-min acid exposures, but did not change the LD50 for longer exposures: pHi measurements concurrent with extracellular acidification suggested that the greater cytotoxicity of lactic acid relative to that of HCl was caused by the more rapid intracellular acidification associated with lactic acid. The onset of death after exposure to moderately acidic solutions was delayed in some cells, such that death of the entire cell population became evident only 48 hr after acid exposure. During this latency period, cellular viability indices and ATP levels fell in parallel.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice.

    Science.gov (United States)

    Ince, Sinan; Keles, Hikmet; Erdogan, Metin; Hazman, Omer; Kucukkurt, Ismail

    2012-07-01

    The protective effect of boric acid against liver damage was evaluated by its attenuation of carbon tetrachloride (CCl(4))-induced hepatotoxicity in mice. Male albino mice were treated intraperitoneally (i.p.) with boric acid (50, 100, and 200 mg/kg) or silymarin daily for 7 days and received 0.2% CCl(4) in olive oil (10 mL/kg, i.p.) on day 7. Results showed that administration of boric acid significantly reduced the elevation in serum levels of aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase, and the level of malondialdehyde in the liver that were induced by CCl(4) in mice. Boric acid treatment significantly increased glutathione content, as well as the activities of superoxide dismutase and catalase in the liver. Boric acid treatment improved the catalytic activity of cytochrome P450 2E1 and maintained activation of nuclear factor kappa light-chain enhancer of activated B cell gene expression, with no effect on inducible nitric oxide synthase gene expression in the livers of mice. Histopathologically, clear decreases in the severity of CCl(4)-induced lesions were observed, particularly at high boric acid concentrations. Results suggest that boric acid exhibits potent hepatoprotective effects on CCl(4)-induced liver damage in mice, likely the result of both the increase in antioxidant-defense system activity and the inhibition of lipid peroxidation.

  6. MicroRNAs and deregulated gene expression networks in neurodegeneration.

    Science.gov (United States)

    Sonntag, Kai-Christian

    2010-06-18

    Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.

  7. Opiates May Have Neuroprotective Properties against Neurodegeneration and Premature Death

    OpenAIRE

    Alen J Salerian

    2015-01-01

    Endorphins and endorphin agonists play a crucial role in the neuromodulation of mood, anxiety, pain and addiction. Review of clinical studies seem to elucidate possible protective role of opiates against neurodegeneration and premature death. The historical, biological, experimental, clinical and neuroimaging data strongly support the potential properties of opiates as neuro protectors.

  8. Phosphatidylinositol transfer protein alpha and its role in neurodegeneration

    NARCIS (Netherlands)

    Bunte, H.

    2007-01-01

    Selective neuronal loss is a prominent feature in neurodegenerative disorders. Recently, a link between neurodegeneration and a deficiency in the protein phosphatidylinositol transfer protein alpha (PI-TPalpha) has been demonstrated. In this context it is of importance that fibroblasts overexpressin

  9. Investigating bacterial sources of toxicity as an environmental contributor to dopaminergic neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Kim A Caldwell

    Full Text Available Parkinson disease (PD involves progressive neurodegeneration, including loss of dopamine (DA neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS, involved in protein degradation. The misfolding and accumulation of proteins, such as alpha-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH, the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent

  10. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats

    OpenAIRE

    Omoruyi, F. O.; Budiaman, A.; Eng, Y.; F. E. Olumese; Hoesel, J. L.; Ejilemele, A.; Okorodudu, A. O.

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the gro...

  11. Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp.

    Science.gov (United States)

    He, Yu-Cai; Wu, Ya-Dong; Pan, Xue-He; Ma, Cui-Luan

    2014-02-01

    The nitrilase from Rhodococcus sp. CCZU10-1 catalyses the hydrolysis of dinitriles to acids without the formation of amides and cyanocarboxylic acids. It was induced by benzonitrile and its analogues (tetrachloroterephthalonitrile > ε-caprolactam > benzonitrile > phenylacetonitrile), and had activity towards aromatic nitriles (terephthalonitrile > tetrachloroterephthalonitrile > isophthalonitrile > tetrachloroisophthalonitrile > tetrafluoroterephthalonitrile > benzonitrile). After the optimization, the highest nitrilase induction [311 U/(g DCW)] was achieved with tetrachloroterephthalonitrile (1 mM) in the medium after 24 h at 30 °C after optimum enzyme activity was at pH 6.8 and at 30 °C. Efficient biocatalyst recycling was achieved by cell immobilization in calcium alginate, with a product-to-biocatalyst ratios of 776 g terephthalic acid/g DCW and 630 g isophthalic acid/g DCW.

  12. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    Science.gov (United States)

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pKa's (estimated error of 1.3 pKa units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol(-1), were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pKa units. A linear correlation exhibiting a 2.6 pKa unit change of the Lewis acid-water adduct per ten kcal mol(-1) change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pKa units. On average, a ten kcal mol(-1) change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pKa unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pKa of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pKa of a main group dihydrogen complex is described. The pKa of H2-B(C6F5)3 was determined to be 5.8 ± 0.2 in acetonitrile.

  13. Protective effect of alpha-linolenic acid on gentamicin-induced ototoxicity in mice.

    Science.gov (United States)

    Kaplan, Halil Mahir; Şingirik, Ergin; Erdoğan, Kıvılcım Eren; Doran, Figen

    2017-07-31

    Alpha-linolenic acid is one of the fatty acids known as omega 3. Previous studies have shown the antioxidant and anti-inflammatory effects of alpha-linolenic acid, which prevented cell damage by inhibiting apoptotic pathway. Also, it is known that gentamicin activates apoptotic mediators and causes necrosis in the kidney. Due to this reason, we planned a study to evaluate the protective effects of alpha-linolenic acid on gentamicin induced ototoxicity by evaluating inflammation and apoptotic mediators. For this purpose, 100 mg/kg gentamicin (i.p; intraperitoneally) and 200 mg/kg alpha-linolenic acid (gavage) are administered to mice for 9 days. On 9th and 10th days, rotarod performance was assessed to test the effect of gentamicin and alpha-linolenic acid treatment on the motor coordination of mice. Gentamicin treatment decreased fall latency of mice and gentamicin treatment together with alpha-linolenic acid increased fall latency of mice. Gentamicin treatment also increased expression of phospholipase A2(plA2), cyclooxygenase-2(COX-2) and inducible nitric oxide syntheses (iNOS). Furthermore, it increased Bax and caspase-3, which are proapoptotic proteins and decreased bcl-2 that is an antiapoptotic protein. Gentamicin treatment together alpha-linolenic acid recovered the change of expression of these enzymes. In conclusion, this study showed that alpha-linolenic acid will be useful to prevent gentamicin-induced ototoxicity by inhibiting apoptosis and inflammation.

  14. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

    Science.gov (United States)

    Akagi, Sosuke; Kono, Nozomu; Ariyama, Hiroyuki; Shindou, Hideo; Shimizu, Takao; Arai, Hiroyuki

    2016-05-01

    The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by dietary consumption of fatty acids such as saturated fatty acids and polyunsaturated fatty acids (PUFAs). Cells must adapt to changes in composition of membrane fatty acids by regulating lipid-metabolizing enzymes. In this study, we investigated how cells respond to loading with excess PUFAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. A lipidomics analysis revealed that dipalmitoylphosphatidylcholine (DPPC) was increased after the production of PUFA-containing phospholipids in cells loaded with PUFAs. An RNA interference screen of lipid-metabolizing enzymes revealed that lysophosphatidylcholine acyltransferase 1 (LPCAT1) was involved in the DPPC production. Moreover, LPCAT1 knockdown markedly enhanced the cytotoxicity induced by excess PUFAs. PUFA-induced cytotoxicity was dependent on caspase and unfolded protein response (UPR) sensor proteins inositol requiring 1α and protein kinase R-like endoplasmic reticulum kinase, suggesting that excess PUFAs trigger UPR-mediated apoptosis. In murine retina, in which PUFAs are highly enriched, DPPC was produced along with increase of PUFA-containing phospholipids. In LPCAT1 knockout mice, DPPC level was reduced and UPR was activated in the retina. Our results provide insight into understanding of the retinal degeneration seen in rd11 mice that lack LPCAT1.-Akagi, S., Kono, N., Ariyama, H., Shindou, H., Shimizu, T., Arai, H. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

  15. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mandi M. Hopkins

    2016-01-01

    Full Text Available Many key actions of ω-3 (n-3 fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs in the free fatty acid receptor (FFAR family, FFA1 (GPR40 and FFA4 (GPR120. n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA, and the tyrosine kinase receptor activated by epidermal growth factor (EGF, was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  16. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Science.gov (United States)

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness.

  17. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  18. Drug-induced Fanconi syndrome associated with fumaric acid esters treatment for psoriasis: A case series

    NARCIS (Netherlands)

    D.M.W. Balak (Deepak); J.N.B. Bavinck (Jan Nico Bouwes); De Vries, A.P.J. (Aiko P. J.); Hartman, J. (Jenny); Martino Neumann, H.A. (Hendrik A.); R. Zietse (Bob); H.B. Thio (Bing)

    2016-01-01

    textabstractBackground: Fumaric acid esters (FAEs), an oral immunomodulating treatment for psoriasis and multiple sclerosis, have been anecdotally associated with proximal renal tubular dysfunction due to a drug-induced Fanconi syndrome. Few data are available on clinical outcomes of FAE-induced Fan

  19. [Pseudothrombocytopenia induced by ethylenediaminetetraacetic acid in burned patients].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Contreras-Domínguez, Vladimir

    2004-01-01

    The EDTA-dependent pseudothrombocytopenia is a false decrease in the number of platelets below the normal value when analyzed with automated devices. There is an incidence of 0.09 to 0.21% in hospitalized patients. Pseudothrombocytopenia is secondary to platelet clumping induced by antibodies in the presence of EDTA and has been associated with sepsis, cancer, cardiac surgery and drugs. We report the first case of pseudothrombocytopenia induced by EDTA in a burn patient.

  20. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    Science.gov (United States)

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing.

  1. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  2. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    Science.gov (United States)

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  3. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  4. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  5. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat.

    Science.gov (United States)

    Sakurai, Masashi; Kurokawa, Haruna; Shimada, Akinori; Nakamura, Kazuhiro; Miyata, Hajime; Morita, Takehito

    2015-02-01

    Recurrent seizures without interictal resumption (status epilepticus) have been reported to induce neuronal death in the midline thalamic region that has functional roles in memory and decision-making; however, the pathogenesis underlying status epilepticus-induced thalamic neuronal death is yet to be determined. We performed histological and immunohistochemical studies as well as cerebral blood flow measurement using 4.7 tesla magnetic resonance imaging spectrometer on midline thalamic region in Sprague-Dawley rats (n = 75, male, 7 weeks after birth, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (10 mg/kg) to induce status epilepticus (n = 55) or normal saline solution (n = 20). Histological study using paraffin-embedded specimens revealed neuronal death showing ischemic-like changes and Fluoro-Jade C positivity with calcium deposition in the midline thalamic region of epileptic rats. The distribution of neuronal death was associated with focal loss of immunoreactivity for excitatory amino acid transporter 2 (EAAT2), stronger immunoreaction for glutamate and increase in number of Iba-1-positive microglial cells showing swollen cytoplasm and long processes. Double immunofluorescence study demonstrated co-expression of interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) within microglial cells, and loss of EAAT2 immunoreactivity in reactive astrocytes. These microglial alterations and astrocytic EAAT2 downregulation were also observed in tissue without obvious neuronal death in kainic acid-treated rats. These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline thalamic region following kainic acid-induced status epilepticus due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS.

  6. PGC-1alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Oleic acid (OA stimulates vascular smooth muscle cell (VSMC proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma coactivator-1 alpha (PGC-1alpha on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis.

  7. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    Science.gov (United States)

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  8. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat.

    Science.gov (United States)

    Li, X F; Ma, J F; Matsumoto, H

    2000-08-01

    Al-Induced secretion of organic acids from the roots has been considered as a mechanism of Al tolerance, but the processes leading to the secretion of organic acids are still unknown. In this study, the secretion pattern and alteration in the metabolism of organic acids under Al stress were examined in rye (Secale cereale L. cv King) and wheat (Triticum aestivum L. cv Atlas 66). Al induced rapid secretion of malate in the wheat, but a lag (6 and 10 h for malic and citric acids, respectively) between the exposure to Al and the secretion of organic acids was observed in the rye. The activities of isocitrate dehydrogenase, phosphoenolpyruvate carboxylase, and malate dehydrogenase were not affected by Al in either plant. The activity of citrate synthase was increased by the exposure to Al in the rye, but not in the wheat. The secretion of malate was not suppressed at low temperature in the wheat, but that of citrate was stopped in the rye. The Al-induced secretion of citrate from roots of the rye was inhibited by the inhibitors of a citrate carrier, which transports citrate from the mitochondria to the cytoplasm. All of these results suggest that alteration in the metabolism of organic acids is involved in the Al-induced secretion of organic acids in rye, but only activation of an anion channel seems to be responsible for the rapid secretion of malate in the wheat.

  9. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    Science.gov (United States)

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  10. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

    Science.gov (United States)

    Holmes, Philip V; Reiss, Jenny I; Murray, Patrick S; Dishman, Rod K; Spradley, Jessica M

    2015-05-01

    Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect.

  11. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA......Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  12. Anomalous spin polarization in the photoreduction of chromone-2-carboxylic acid with alcohol induced by hydrochloric acid

    Science.gov (United States)

    Ohara, Keishi; Mukai, Kazuo

    2000-02-01

    The addition effect of hydrochloric acid (HCl) on the photoreduction of chromone-2-carboxylic acid (CRCA) is studied by time-resolved EPR. The EPR lines of CRCA ketyl radical show an enhanced absorption in the presence of HCl, while without HCl these show an emissive character. On the other hand, the lines of the CRCA alkyl type radical show an emissive character whether HCl is included or not. The simultaneous reactions of the closely-lying two excited triplet states (T 1 and T 2) of CRCA may induce the above anomalous CIDEP behavior.

  13. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    Science.gov (United States)

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  14. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    Science.gov (United States)

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  15. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agen

  16. Reversible Altered Consciousness and Brain Atrophy Induced by Valproic Acid

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available A 5-year-old female child with valproic acid (VPA-related alteration of consciousness and brain atrophy that progressed over a 3 day period and resolved within 12 hours of discontinuing VPA is reported from Dokkyo University School of Medicine and Shimotsuga General Hospital, Tochigi, Japan.

  17. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for

  18. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Effects of SAR increased more dramatically with the increase of SAR acidity. ... in color and pH 7.3 and 65 % water holding capacity. ... the soil. After 15 days of sowing, thinning operation was done and 60 cm inter-row and 30 cm inter-plant.

  19. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex...

  20. Folic Acid Treatment of Anticonvulsant-Induced Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-10-01

    Full Text Available The prevalence of hyperhomocysteinemia (HHcy in 123 childhood epilepsy patients treated with antiepileptic drugs (AED and the effect of folic acid supplements (1 mg/day on plasma Hcy levels were determined in a study at three regional hospitals and pediatric centers in Austria.

  1. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  2. Fatty acid-induced changes in vascular reactivity in healthy adult rats.

    Science.gov (United States)

    Christon, Raymond; Marette, André; Badeau, Mylène; Bourgoin, Frédéric; Mélançon, Sébastien; Bachelard, Hélène

    2005-12-01

    Dietary fatty acids (FAs) are known to modulate endothelial dysfunction, which is the first stage of atherosclerosis. However, their exact role in this initial phase is still unclear. The effects of isolated or combined (by 2) purified FAs from the main FA families were studied on the vascular response of isolated thoracic aorta in healthy rats to get a better understanding of the mechanisms of action of dietary FAs in regulating vascular endothelial function. Cumulative contraction curves to phenylephrine and relaxation curves to carbachol and then to sodium nitroprusside were obtained in the absence or presence of the FAs studied allowing endothelium-dependent and endothelium-independent ability of the smooth muscle to relax to be assessed in each experimental group. The endothelium-dependent vasodilator response to carbachol was lowered by eicosapentaenoic acid, whereas it was not altered either by docosahexaenoic acid alone or by combined eicosapentaenoic acid-docosahexaenoic acid, oleic acid, or stearic acid, and it was increased by linoleic acid (LA). A decreased phenylephrine-induced contraction was observed after incubation with arachidonic acid and with stearic acid. On the other hand, the endothelium-dependent relaxation was reduced by the addition of combined LA-arachidonic acid and LA-oleic acid. In conclusion, these data point out the differential effects of different types of FAs and of FAs alone vs combined on vascular reactivity. The complex nature of these effects could be partially linked to metabolic specificities of endothelial cells and to interactions between some FAs.

  3. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats.

    Science.gov (United States)

    Yüce, Abdurrauf; Ateşşahin, Ahmet; Ceribaşi, Ali Osman; Aksakal, Mesut

    2007-11-01

    Cisplatin is one of the most active cytotoxic agents in the treatment of cancer. High doses of cisplatin have also been known to produce hepatotoxicity, and several studies suggest that supplemental antioxidants can reduce cisplatin-induced hepatotoxicity. The present study was designed to determine the effects on the liver and heart oxidant/antioxidant system and the possible protective effects of ellagic acid on liver and heart toxicity induced by cisplatin. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The rats were killed at the end of the treatment period. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione-peroxidase (GSH-Px) and catalase (CAT) activities were determined in liver and heart tissue. While administration of cisplatin increased the MDA levels in liver and heart tissues, it decreased the GSH, GSH-Px and CAT in these samples when compared to the control group. The administration of ellagic acid to cisplatin-treated rats decreased the MDA levels, and increased GSH, GSH-Px and CAT in these samples. Cisplatin caused marked damages in the histopathological status of liver and heart tissues. These damages were ameliorated by ellagic acid administration. In conclusion, ellagic acid may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters.

  4. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    Science.gov (United States)

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways.

  5. Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid.

    Science.gov (United States)

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2003-02-01

    The vascular effect of a component of hydrolysable tannins, gallic acid, was examined in isolated rat thoracic aorta. Gallic acid exerted a contractile effect on the phenylephrine- or prostaglandin F(2/alpha)-precontracted endothelium-intact arteries. In endothelium-denuded arteries, the contractile response to-gallic acid was absent. Pretreatment with N(G)-nitro-L-arginine methyl ester (30 microM) abolished the gallic acid-induced contraction. Pretreatment with indomethacin (10 microM) or BQ610 (100 nM) had no observed effect. Pretreatment with gallic acid (1-10 microM) significantly attenuated the relaxation induced by acetylcholine, and that with 10 microM gallic acid also reduced the potency of sodium nitroprusside in the relaxation, without a reduction in efficacy, in endothelium-denuded arteries. These findings indicate that gallic acid induced endothelium-dependent contraction and strongly inhibited the endothelium-dependent relaxation rather than the endothelium-independent relaxation, probably through inhibition of endothelial nitric oxide (NO) production. Since NO plays an important role in vasodilative regulation and inflammatory disorders, these findings may also indicate that gallic acid interferes with the inflammatory responses.

  6. Linoleic and alpha linolenic acids ameliorate streptozotocin-induced diabetes in mice.

    Science.gov (United States)

    Canetti, Lea; Werner, Haim; Leikin-Frenkel, Alicia

    2014-02-01

    Streptozotocin (STZ)-induced diabetes in mice progresses with decreased desaturase activities and alterations in the metabolism of essential fatty acids (EFA). Based on our previous studies with soybean oil that ameliorated the STZ damage in mice, we tested here the accountability of its main EFA components, i.e. linoleic acid (LA) and alpha linolenic acid (ALA), in the prevention of pancreas damage and Δ6 desaturase decrease. Seven days after injection with STZ and EFA gavage, ICR mice were sacrificed. Plasma glucose and insulin levels, pancreas histology and liver fatty acid desaturases were analysed. EFA reduced pancreas damage, insulin and glucose plasma levels and restored Δ6 desaturase activity and mRNA expression levels. By reducing pancreas damage, EFA ameliorated insulin levels, Δ6 desaturase and fatty acid metabolism. LA further enhanced Fads2 promoter activity. EFA ameliorate STZ induced diabetes in mice.

  7. Cysteamine-induced duodenal ulcer and acid secretion in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1980-01-01

    Duodenal ulcers can be produced in rats within 24 h by a single subcutaneous administration of cysteamine. To determine the role of gastric acid secretion in the pathogenesis of these ulcers, secretory and pathoanatomic studies were performed in chronic fistula rats ater an ulcerogenic dose...... of cysteamine. A prolonged increase of acid secretion was seen after cysteamine, reaching fourfold the basal level after 5 h. The acid response lasted for 10 to 11 h. After vagotomy cysteamine-induced acid secretion was markedly reduced. Ulcer formation was prevented by vagotomy and by drainage of the gastric...... for ulcer formation, the hypersecretion of acid induced by cysteamine is not the only factor responsible for the development of duodenal ulcer....

  8. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    Directory of Open Access Journals (Sweden)

    Chunye Chen

    2016-01-01

    Full Text Available Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas.

  9. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  10. [Pentylenetetrazole kindling in rats: whether neurodegeneration is associated with manifestations of seizure activity?].

    Science.gov (United States)

    Pavlova, T V; Iakovleva, A A; Stepanichev, M Iu; Guliaeva, N V

    2005-07-01

    Structural changes in neurons and oxidative stress in hippocampus were studied in rats "tolerant" (TR) and susceptible (SR) to tonic and clonic seizures in pentylenetetrazole (PTZ) kindling. The number of normal neurons was significantly decreased in CA1 subfield of TR hippocampus after 11 injections of PTZ, while in SR neuronal cell loss was evident in CA1 and fascia dentata. In both groups, neuronal cell loss was accompanied by increase in damaged neuron number in CA4 subfield. After 21 injections of PTZ, the decrease in normal neuron number was revealed in CA1 subfield of both TR and SR, while the number of damaged neurons was above the control level in hippocampal subfields CA1 and CA4 in TR only. Glutathione level was decreased in hippocampus of both TR and SR as compared with control rats. Thus, rats tolerant to PTZ-induced convulsions demonstrated oxidative stress and neurodegeneration in hippocampus. The results suggest that, in PTZ kindling model, oxidative damage of neurons resulting in neurodegeneration in hippocampus is not directly related to the convulsive activity.

  11. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease

    Science.gov (United States)

    Martin, Ian; Kim, Jungwoo Wren; Lee, Byoung Dae; Kang, Ho Chul; Xu, Jin-Chong; Jia, Hao; Stankowski, Jeannette; Kim, Min-Sik; Zhong, Jun; Kumar, Manoj; Andrabi, Shaida A.; Xiong, Yulan; Dickson, Dennis W.; Wszolek, Zbigniew K.; Pandey, Akhilesh; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Summary Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phospho-deficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation, and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phospho-deficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo. PMID:24725412

  12. A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation.

    Directory of Open Access Journals (Sweden)

    Lihong Zhao

    2011-05-01

    Full Text Available Sphingolipids, lipids with a common sphingoid base (also termed long chain base backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln and toppler (to, with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydroceramide synthase 1 (CerS1, which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases.

  13. Systemic Escherichia coli infection does not influence clinical symptoms and neurodegeneration in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kumar, Prateek; Friebe, Katharina; Schallhorn, Rieka; Moinfar, Zahra; Nau, Roland; Bähr, Mathias; Schütze, Sandra; Hein, Katharina

    2015-06-19

    Systemic infections can influence the course of multiple sclerosis (MS), especially by driving recurrent acute episodes. The question whether the infection enhances tissue damage is of great clinical importance and cannot easily be assessed in clinical trials. Here, we investigated the effects of a systemic infection with Escherichia coli, a Gram-negative bacterium frequently causing urinary tract infections, on the clinical course as well as on neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Rats were immunized with myelin oligodendrocyte glycoprotein (MOG1-125) and challenged intraperitoneally with live E. coli K1 in the preclinical or in the clinical phase of the disease. To ensure the survival of animals, antibiotic treatment with ceftriaxone was initiated 36 h after the infection and continued for 3 consecutive days. Systemic infection with E. coli did not influence the onset of clinical EAE symptoms or disease severity. Analysis of the optic nerve and retinal ganglion cells revealed no significant changes in the extent of inflammatory infiltrates, demyelination and neurodegeneration after E. coli infection. We could not confirm the detrimental effect of lipopolysaccharide-induced systemic inflammation, a model frequently used to mimic the bacterial infection, previously observed in animal models of MS. Our results indicate that the effect of an acute E. coli infection on the course of MS is less pronounced than suspected and underline the need for adequate models to test the role of systemic infections in the pathogenesis of MS.

  14. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration

    OpenAIRE

    Rao, Rammohan V.; Bredesen, Dale E.

    2004-01-01

    The accumulation of misfolded proteins (e.g. mutant or damaged proteins) triggers cellular stress responses that protect cells against the toxic buildup of such proteins. However, prolonged stress due to the buildup of these toxic proteins induces specific death pathways. Dissecting these pathways should be valuable in understanding the pathogenesis of, and ultimately in designing therapy for, neurodegenerative diseases that feature misfolded proteins.

  15. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    Science.gov (United States)

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  16. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  17. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity.

    Science.gov (United States)

    Akyol, Sumeyya; Ginis, Zeynep; Armutcu, Ferah; Ozturk, Gulfer; Yigitoglu, M Ramazan; Akyol, Omer

    2012-07-01

    Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.

  18. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    Science.gov (United States)

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  19. Reversible phenotypic modulation induced by deprivation of exogenous essential fatty acids.

    Science.gov (United States)

    Laposata, M; Minda, M; Capriotti, A M; Hartman, E J; Furth, E E; Iozzo, R V

    1988-12-01

    Essential fatty acid deficiency, produced by deprivation of omega-6 and omega-3 fatty acids, is a condition characterized by renal disease, dermatitis, and infertility. Although many of the biochemical aspects of this disorder have been investigated, little is known about the ultrastructural changes induced by essential fatty acid deficiency. Using a unique fatty acid-deficient cell line (EFD-1), which demonstrates the in vivo fatty acid changes of essential fatty acid deficiency, and the prostaglandin E2-producing mouse fibrosarcoma line from which it was derived (HSDM1C1), we correlated ultrastructural and biochemical changes induced by prolonged deprivation of all exogenous lipids and subsequent repletion of selected essential fatty acids. We found that in cells deprived of all exogenous lipids, there was dilation of rough endoplasmic reticulum and an associated defect in protein secretion; these changes were specifically reversed by arachidonate. There was also an accumulation of secondary lysosomes containing degraded membranes in these cells with an associated increase in phospholipids relative to parent HSDM1C1 cells. Cytoplasmic lipid bodies present in parent cells disappeared, with an associated decrease in triacylglycerol. After just 2 days in lipid-free medium, all these changes were apparent, and prostaglandin E2 production was markedly impaired despite normal amounts of cellular arachidonate. Incubation of EFD-1 cells with arachidonate, the major prostaglandin precursor fatty acid, induced a reversion to the HSDM1C1 phenotype, whereas other fatty acids were totally ineffective. These results indicate changes in fatty acid metabolism in essential fatty acid deficiency are associated with marked alterations in ultrastructure and secretion of protein from cells.

  20. High Fat Feeding Induces Hepatic Fatty Acid Elongation in Mice

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; van Dijk, Theo H.; Tietge, Uwe J. F.; Boer, Theo; Havinga, Rick; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2009-01-01

    Background: High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Metho

  1. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    Science.gov (United States)

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  2. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    Science.gov (United States)

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  3. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  4. Lipoic acid effects on glutamate and taurine concentrations in rat hippocampus after pilocarpine-induced seizures

    Directory of Open Access Journals (Sweden)

    P S Santos

    2011-01-01

    Full Text Available Pilocarpine-induced seizures can be mediated by increases in oxidative stress and by cerebral amino acid changes. The present research suggests that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures in cellular level. The objective of the present study was to evaluate the lipoic acid (LA effects in glutamate and taurine contents in rat hippocampus after pilocarpine-induced seizures. Wistar rats were treated intraperitoneally (i.p. with 0.9% saline (Control, pilocarpine (400 mg/kg, Pilocarpine, LA (10 mg/kg, LA, and the association of LA (10 mg/kg plus pilocarpine (400 mg/kg, that was injected 30 min before of administration of LA (LA plus pilocarpine. Animals were observed during 24 h. The amino acid concentrations were measured using high-performance liquid chromatograph (HPLC. In pilocarpine group, it was observed a significant increase in glutamate content (37% and a decrease in taurine level (18% in rat hippocampus, when compared to control group. Antioxidant pretreatment significantly reduced the glutamate level (28% and augmented taurine content (32% in rat hippocampus, when compared to pilocarpine group. Our findings strongly support amino acid changes in hippocampus during seizures induced by pilocarpine, and suggest that glutamate-induced brain damage plays a crucial role in pathogenic consequences of seizures, and imply that strong protective effect could be achieved using lipoic acid through the release or decrease in metabolization rate of taurine amino acid during seizures.

  5. Eicosapentaenoic Acid Protects against Palmitic Acid-Induced Endothelial Dysfunction via Activation of the AMPK/eNOS Pathway

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lee

    2014-06-01

    Full Text Available Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs treated with palmitic acid (PA were used to explore the protective effects of EPA. The results revealed that EPA attenuated PA-induced cell death and activation of apoptosis-related proteins, such as caspase-3, p53 and Bax. Additionally, EPA reduced the PA-induced increase in the generation of reactive oxygen species, the activation of NADPH oxidase, and the upregulation of inducible nitric oxide synthase (iNOS. EPA also restored the PA-mediated reduction of endothelial nitric oxide synthase (eNOS and AMP-activated protein kinase (AMPK phosphorylation. Using AMPK siRNA and the specific inhibitor compound C, we found that EPA restored the PA-mediated inhibitions of eNOS and AKT activities via activation of AMPK. Furthermore, the NF-κB signals that are mediated by p38 mitogen-activated protein kinase (MAPK were involved in protective effects of EPA. In summary, these results provide new insight into the possible molecular mechanisms by which EPA protects against atherogenesis via the AMPK/eNOS-related pathway.

  6. Neuroprotective effect of a new DJ-1-binding compound against neurodegeneration in Parkinson's disease and stroke model rats

    Directory of Open Access Journals (Sweden)

    Yasui Hiroyuki

    2011-07-01

    Full Text Available Abstract Background Parkinson's disease (PD and cerebral ischemia are chronic and acute neurodegenerative diseases, respectively, and onsets of these diseases are thought to be induced at least by oxidative stress. PD is caused by decreased dopamine levels in the substantia nigra and striatum, and cerebral ischemia occurs as a result of local reduction or arrest of blood supply. Although a precursor of dopamine and inhibitors of dopamine degradation have been used for PD therapy and an anti-oxidant have been used for cerebral ischemia therapy, cell death progresses during treatment. Reagents that prevent oxidative stress-induced cell death are therefore necessary for fundamental therapies for PD and cerebral ischemia. DJ-1, a causative gene product of a familial form of PD, PARK7, plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in the onset of PD. Superfluous oxidation of cysteine at amino acid 106 (C106 of DJ-1 renders DJ-1 inactive, and such oxidized DJ-1 has been observed in patients with the sporadic form of PD. Results In this study, a compound, comp-23, that binds to DJ-1 was isolated by virtual screening. Comp-23 prevented oxidative stress-induced death of SH-SY5Y cells and primary neuronal cells of the ventral mesencephalon but not that of DJ-1-knockdown SH-SY5Y cells, indicating that the effect of the compound is specific to DJ-1. Comp-23 inhibited the production of reactive oxygen species (ROS induced by oxidative stress and prevented excess oxidation of DJ-1. Furthermore, comp-23 prevented dopaminergic cell death in the substantia nigra and restored movement abnormality in 6-hydroxyldopamine-injected and rotenone-treated PD model rats and mice. Comp-23 also reduced infarct size of cerebral ischemia in rats that had been induced by middle cerebral artery occlusion. Protective activity of comp-23 seemed to be stronger than that of previously identified compound B

  7. ACE Inhibition with Captopril Retards the Development of Signs of Neurodegeneration in an Animal Model of Alzheimer’s Disease

    Science.gov (United States)

    AbdAlla, Said; Langer, Andreas; Fu, Xuebin; Quitterer, Ursula

    2013-01-01

    Increased generation of reactive oxygen species (ROS) is a significant pathological feature in the brains of patients with Alzheimer’s disease (AD). Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta) aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE) level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP), and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration. PMID:23959119

  8. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway

    Science.gov (United States)

    Lehnardt, Seija; Massillon, Leon; Follett, Pamela; Jensen, Frances E.; Ratan, Rajiv; Rosenberg, Paul A.; Volpe, Joseph J.; Vartanian, Timothy

    2003-01-01

    Innate immunity is an evolutionarily ancient system that provides organisms with immediately available defense mechanisms through recognition of pathogen-associated molecular patterns. We show that in the CNS, specific activation of innate immunity through a Toll-like receptor 4 (TLR4)-dependent pathway leads to neurodegeneration. We identify microglia as the major lipopolysaccharide (LPS)-responsive cell in the CNS. TLR4 activation leads to extensive neuronal death in vitro that depends on the presence of microglia. LPS leads to dramatic neuronal loss in cultures prepared from wild-type mice but does not induce neuronal injury in CNS cultures derived from tlr4 mutant mice. In an in vivo model of neurodegeneration, stimulating the innate immune response with LPS converts a subthreshold hypoxic-ischemic insult from no discernable neuronal injury to severe axonal and neuronal loss. In contrast, animals bearing a loss-of-function mutation in the tlr4 gene are resistant to neuronal injury in the same model. The present study demonstrates a mechanistic link among innate immunity, TLRs, and neurodegeneration. PMID:12824464

  9. ACE Inhibition with Captopril Retards the Development of Signs of Neurodegeneration in an Animal Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Ursula Quitterer

    2013-08-01

    Full Text Available Increased generation of reactive oxygen species (ROS is a significant pathological feature in the brains of patients with Alzheimer’s disease (AD. Experimental evidence indicates that inhibition of brain ROS could be beneficial in slowing the neurodegenerative process triggered by amyloid-beta (Abeta aggregates. The angiotensin II AT1 receptor is a significant source of brain ROS, and AD patients have an increased brain angiotensin-converting enzyme (ACE level, which could account for an excessive angiotensin-dependent AT1-induced ROS generation. Therefore, we analyzed the impact of ACE inhibition on signs of neurodegeneration of aged Tg2576 mice as a transgenic animal model of AD. Whole genome microarray gene expression profiling and biochemical analyses demonstrated that the centrally active ACE inhibitor captopril normalized the excessive hippocampal ACE activity of AD mice. Concomitantly, the development of signs of neurodegeneration was retarded by six months of captopril treatment. The neuroprotective profile triggered by captopril was accompanied by reduced amyloidogenic processing of the amyloid precursor protein (APP, and decreased hippocampal ROS, which is known to enhance Abeta generation by increased activation of beta- and gamma-secretases. Taken together, our data present strong evidence that ACE inhibition with a widely used cardiovascular drug could interfere with Abeta-dependent neurodegeneration.

  10. The relation between inflammation and neurodegeneration in multiple sclerosis brains

    DEFF Research Database (Denmark)

    Frischer, J.M.; Bramow, S.; Dal-Bianco, A.

    2009-01-01

    disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell...... infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation......Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation...

  11. Free fatty acids normalize a rosiglitazone-induced visfatin release.

    Science.gov (United States)

    Haider, Dominik G; Mittermayer, Friedrich; Schaller, Georg; Artwohl, Michaela; Baumgartner-Parzer, Sabina M; Prager, Gerhard; Roden, Michael; Wolzt, Michael

    2006-11-01

    The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.

  12. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice.

    Science.gov (United States)

    Hu, Wen; Zhang, Yaodong; Wu, Wenning; Yin, Yanyan; Huang, Dake; Wang, Yuchan; Li, Weiping; Li, Weizu

    2016-02-01

    Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and depression. Chronic glucocorticoids (GCs) exposure has deleterious effects on the structure and function of neurons and is associated with development and progression of AD. However, little is known about the proinflammatory effects of chronic GCs exposure on neurodegeneration in brain. Therefore, the aim of this study was to evaluate the effects of chronic dexamethasone (DEX) treatment (5mg/kg, s.c. for 7, 14, 21 and 28 days) on behavior, neurodegeneration and neuroinflammatory parameters of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 1 (NLRP-1) inflammasome in male mice. The results showed that DEX treatment for 21 and 28 days significantly reduced the spontaneous motor activity and exploratory behavior of the mice. In addition, these mice showed significant neurodegeneration and a decrease of microtubule-associated protein 2 (MAP2) in the frontal cortex and hippocampus CA3. DEX treatment for 7, 14, 21 and 28 days significantly decreased the mRNA and protein expression of glucocorticoid receptor (GR). Moreover, DEX treatment for 21 and 28 days significantly increased the proteins expression of NLRP-1, Caspase-1, Caspase-5, apoptosis associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), IL-18 and IL-6 in the frontal cortex and hippocampus brain tissue. DEX treatment for 28 days also significantly increased the mRNA expression levels of NLRP-1, Caspase-1, ASC and IL-1β. These results suggest that chronic GCs exposure may increase brain inflammation via NLRP-1 inflammasome activation and induce neurodegeneration.

  13. Molecular Basis of Neurodegeneration and Neurodevelopmental Defects in Menkes Disease

    OpenAIRE

    Zlatic, Stephanie; Comstra, Heather Skye; Gokhale, Avanti; Petris, Michael J.; Faundez, Victor

    2015-01-01

    ATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to hypoactivity of a limited number of copper-depen...

  14. Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nina Vardjan

    2017-02-01

    Full Text Available Although the central nervous system (CNS consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.

  15. Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration

    Science.gov (United States)

    Vardjan, Nina; Verkhratsky, Alexej; Zorec, Robert

    2017-01-01

    Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration. PMID:28208745

  16. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Science.gov (United States)

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  17. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration

    Directory of Open Access Journals (Sweden)

    Maria Emilia Figueiredo-Pereira

    2015-01-01

    Full Text Available The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia and prion diseases. Cyclooxygenases (COX -1 and COX-2, which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1 exert their actions, (2 potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3 disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4 contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury, and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.

  18. Effect of dentifrices against hydrochloric acid-induced erosion.

    Science.gov (United States)

    Messias, Danielle Cristine; Maeda, Fernando Akio; Turssi, Cecilia Pedroso; Serra, Mônica Campos

    2011-01-01

    This in vitro investigation assessed whether different dentifrices would be capable of controlling the enamel erosion progression caused by HCl. Sixty bovine enamel slabs were covered with acid-resistant varnish, except for a 2.5-mm2 circular area on the labial surface. According to a complete block design, the experimental units were immersed in HCl solution (pH 1.2; 0.1M). After storage in artificial saliva for 1 h, specimens (n = 15) were exposed to different dentifrices: Sensodyne Cool Gel (1100 ppm F), Sensodyne ProNamel (1450 ppm F), and PrevDent 5000 (5000 ppm F). The control group was immersed in deionised water. Following five cycles of erosive challenge, the slabs were prepared for porosity evaluation using solutions of copper sulfate and rubeanic acid. ANOVA demonstrated no difference in the enamel porosity as a function of the dentifrice employed (P = 0.5494). The damage caused by a simulated intrinsic erosive challenge seems unable to be controlled by fluoridated dentifrices, even when this ion is found in elevated concentrations.

  19. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice.

    Science.gov (United States)

    Bak, Eun-Jung; Kim, Jinmoon; Jang, Sungil; Woo, Gye-Hyeong; Yoon, Ho-Geun; Yoo, Yun-Jung; Cha, Jeong-Heon

    2013-12-01

    Gallic acid, a phenolic phytochemical, has been shown to exert a variety of effects, including anti-oxidative, anti- carcinogenic, anti-allergic, and anti-inflammatory effects. In this study, we attempted to determine whether gallic acid affects metabolic syndrome such as obesity and diabetes. Diet-induced obesity mice were treated intraperitoneally once per day with gallic acid (10 mg/kg/day). After 2 weeks of treatment, the mice were sacrificed to collect the blood for metabolic parameter assessments, and the adipose tissues and liver to weigh and analyze. The triglyceride concentrations were significantly improved in the gallic acid group relative to those measured in the control group. And most importantly, the blood glucose concentrations in the gallic acid group were significantly improved. In the epididymal white adipose tissue of the gallic acid group, adipocyte size was reduced, PPARγ expression was induced, and the Akt signaling pathway was activated. Our results demonstrate that gallic acid improves glucose tolerance and lipid metabolism in the obesity mice, thereby showing evidence of anti-hyperglycemic activity. The findings of an upregulation of PPARγ expression and Akt activation also contribute to our current understanding of the mechanisms underlying the effects of gallic acid on glucose metabolism.

  20. The potential benefits and adverse effects of phytic Acid supplement in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Omoruyi, F O; Budiaman, A; Eng, Y; Olumese, F E; Hoesel, J L; Ejilemele, A; Okorodudu, A O

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the group fed phytic acid supplement compared to the other groups. The spike in random blood glucose was the lowest in the same group. We noted reduced serum triglycerides and increased total cholesterol and HDL cholesterol levels in the group fed phytic acid supplement. Serum alkaline phosphatase and alanine amino transferase activities were significantly (P phytic acid supplementation. Systemic IL-1 β level was significantly (P phytic acid supplementation may be beneficial in the management of diabetes mellitus. The observed adverse effect on the liver may be due to the combined effect of streptozotocin-induced diabetes and phytic acid supplementation.

  1. Evidence for a trigger function of valproic acid in xenobiotic-induced hepatotoxicity.

    Science.gov (United States)

    Klee, S; Johanssen, S; Ungemach, F R

    2000-08-01

    The influence of the antiepileptic drug, valproic acid (2-n-propylpentanoic acid), on the hepatocellular capacity, to cope with an extrinsic oxidative stress was investigated. Freshly isolated rat hepatocytes exposed to therapeutic concentrations of valproic acid (0.25-1.0 mmol/l) were less resistant than controls, as evidenced by a significant cytotoxic response after challenge of the cells with a non-toxic dose of allyl alcohol (2-propen-1-ol). Valproic acid alone was not toxic to hepatocytes even at ten times higher concentrations (10 mmol/l), suggesting that cell damage was not a mere additive effect. Incubation with valproic acid plus allyl alcohol induced an irreversible depletion of hepatocellular glutathione, in contrast to allyl alcohol alone which induced a transient loss. Hepatocytes treated with valproic acid plus allyl alcohol were protected by N-acetylcysteine, a precursor of glutathione. These findings indicate that valproic acid affects hepatocellular defence mechanisms and suggest that a predisposition of hepatocytes to oxidative stress may play a role in the fatal hepatotoxicity of valproic acid in epileptic patients.

  2. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias.

    Science.gov (United States)

    Matilla-Dueñas, A; Ashizawa, T; Brice, A; Magri, S; McFarland, K N; Pandolfo, M; Pulst, S M; Riess, O; Rubinsztein, D C; Schmidt, J; Schmidt, T; Scoles, D R; Stevanin, G; Taroni, F; Underwood, B R; Sánchez, I

    2014-04-01

    Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.

  3. Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Sahu, Bidya Dhar; Rentam, Kiran Kumar Reddy; Putcha, Uday Kumar; Kuncha, Madhusudana; Vegi, Ganga Modi Naidu; Sistla, Ramakrishna

    2011-12-01

    Nephrotoxicity is one of the serious dose limiting side effects of cisplatin when used in the treatment of various malignant conditions. Accumulating evidence suggests that oxidative stress caused by free radicals and apoptosis of renal cells contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Present study was aimed to explore the effect of carnosic acid, a potent antioxidant, against cisplatin induced oxidative stress and nephrotoxicity in rats. A single dose of cisplatin (7.5mg/kg) caused marked renal damage, characterized by a significant (PGSH (reduced glutathione) levels and lowered tissue nitrite, SOD (superoxide dismutase), CAT (catalase), GSH-Px (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) levels compared to normal control. Carnosic acid treatment significantly (PGSH-Px, GR and GST compared to cisplatin control. The present study demonstrates that carnosic acid has a protective effect on cisplatin induced experimental nephrotoxicity and is attributed to its potent antioxidant and antiapoptotic properties.

  4. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    Science.gov (United States)

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (pacetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  5. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  6. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  7. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case.

    Science.gov (United States)

    Ray, Sukanta; Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-08-01

    Valproic acid is the most widely used anti-epilep-tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up.

  8. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Science.gov (United States)

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  9. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  10. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  11. Modification of polyethylene by radiation-induced graft polymerization of acrylic acid

    Science.gov (United States)

    Sidorova, L. P.; Aliev, A. D.; Zlobin, V. B.; Aliev, R. E.; Chalykh, A. E.; Kabanov, V. Ya.

    The kinetics investigation of the radiation-induced graft polymerization of acrylic acid onto low density polyethylene by direct method in aqueous solution in the presence of Mohr's salt, was performed. The technique of the contrasting of polyacrylic acid (PAA) graft layer was worked out by Ag +-ions. The structural and morphological peculiarities of grafted copolymers of PE with PAA were determined by the method of electron probe, and X-ray microanalysis by means of the electron microscopy.

  12. A defect in amino acid transport of filamentous Escherichia coli induced by penicillin.

    OpenAIRE

    内藤, 伸明; 友近, 健一; 口分田,晃; 塩出,純二; 金政, 泰弘

    1983-01-01

    This paper describes a new type of penicillin action on the cytoplasmic membrane of Escherichia coli. The ability of filamentous cells to uptake amino acids induced by low concentrations of penicillin increased with cell elongation. This defect in amino acid transport was mostly observed on the substrate of the osmotic shock resistant transport system. Penicillin treatment, however, did not disturb the other membrane functions such as the uptake of α-D-methyl glucopyranoside and triphenylmeth...

  13. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators.

    Science.gov (United States)

    Smith, Andria N; Muffley, Lara A; Bell, Austin N; Numhom, Surawej; Hocking, Anne M

    2012-09-01

    Mesenchymal stem cells (MSC) represent emerging cell-based therapies for diabetes and associated complications. Ongoing clinical trials are using exogenous MSC to treat type 1 and 2 diabetes, cardiovascular disease and non-healing wounds due to diabetes. The majority of these trials are aimed at exploiting the ability of these multipotent mesenchymal stromal cells to release soluble mediators that reduce inflammation and promote both angiogenesis and cell survival at sites of tissue damage. Growing evidence suggests that MSC secretion of soluble factors is dependent on tissue microenvironment. Despite the contribution of fatty acids to the metabolic environment of type 2 diabetes, almost nothing is known about their effects on MSC secretion of growth factors and cytokines. In this study, human bone marrow-derived MSC were exposed to linoleic acid, an omega-6 polyunsaturated fatty acid, or oleic acid, a monounsaturated fatty acid, for seven days in the presence of 5.38 mM glucose. Outcomes measured included MSC proliferation, gene expression, protein secretion and chemotaxis. Linoleic and oleic acids inhibited MSC proliferation and altered MSC expression and secretion of known mediators of angiogenesis. Both unsaturated fatty acids induced MSC to increase secretion of interleukin-6, VEGF and nitric oxide. In addition, linoleic acid but not oleic acid induced MSC to increase production of interleukin-8. Collectively these data suggest that exposure to fatty acids may have functional consequences for MSC therapy. Fatty acids may affect MSC engraftment to injured tissue and MSC secretion of cytokines and growth factors that regulate local cellular responses to injury.

  14. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  15. Valproic Acid-Induced Syringomyelia in Rat Fetuses

    Directory of Open Access Journals (Sweden)

    M. Jalali

    2005-01-01

    Full Text Available Among antiepileptic drugs, valproic acid (VA is a well known teratogenic agent. Although axial skeletal malformations (vertebral column and limb defects have been described, its main target organ is neuroepithelium of neural tube. Therefore it seems that administration of VA during early pregnancy may affect on neural tube and adjacent tissues. The goal of present study was to determine whether there is a relationship between maternal valproic acid exposure and developmental changes during neural tube and notochord and their interactions.For this reason, on 9th day of gestation, wistar rats were treated with double dose of 600 mg/kg VA given once in the morning and another in the evening (in experimental group. The controls were received the same volume of normal saline by animal feeding. For teratological studies, fetuses were examined on 20th day of gestation and histological study were carried out.Our findings showed that in addition to some well known congenital malformations (such as axial skeletal defects and spina bifida there was an abnormal cavitation in cervical and thoracic segments of spinal cord (syringomyelia which was accompanied with a delay in determination of notochord at these levels. At these area, the syrinx (cyst is lined by compact glial tissue. In this kind of abnormality there is an atrophy of gray and white matter in the neighboring of syrinx in the spinal cord.These data revealed that, there is a strong association between maternal VA administration and risk for severe spinal cord defect such as syringomyelia and the same pathological changes might occur in human .

  16. 37% Phosphoric Acid Induced Stronger Matrix Metalloproteinase-8 Expression of the Dental Pulp than 19% Ethylene Diamine Tetraacetic Acid

    Directory of Open Access Journals (Sweden)

    Nadie Fatimatuzzahro

    2014-11-01

    Full Text Available Etching agents such as ethylene diamine tetraacetic acid (EDTA and phosphoric acid which are widely used in adhesive restoration system aimed to increase for retention of restorative materials, may act a chemical irritant that induce inflammation of dental pulp. Inflammation is a body response against irritant and infectious agents. Matrix metalloproteinase-8, the major collagenolytic enzyme, degrades collagen type 1. This enzyme is expressed in low level in normal condition, however, the expression will increase during inflammation. The purpose of the present research was to study the effect of 19% EDTA and 37% phosphoric acid application as an etching agents on the MMP-8 expression of dental pulp. Forty-five male Sprague Dawley rats were divided into 3 groups. Cavity preparation was made on the occlusal surface of maxillary first molar using a round diamond bur. 19% EDTA, 37% phosphoric acid, and distilled water were applied on the surface of the cavity of the teeth in group I, II, and III subsequently. The cavity then filed by glass ionomer cements. The rats were sacrified at 1, 3, 5, 7, and 14 days after the treatment (n=3 for each day. The specimens were then processed histologically. Immunohistochemical (IHC analysis was performed using rabbit anti rat MMP-8 polyclonal antibody to examine MMP-8 expression and HE (Hematoxylen Eosin staining to observe the number of macrophages. The results showed 37% phosphoric acid application induced stronger expression of MMP-8 and higher number of macrophages than 19% EDTA. The strongest expression of MMP-8 seems on 5 days after the treatment where the highest number of macrophages were also found.

  17. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    Science.gov (United States)

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats.

  18. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    Science.gov (United States)

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively.

  19. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  20. Mycolic Acid-Containing Bacteria Induce Natural-Product Biosynthesis in Streptomyces Species▿ †

    Science.gov (United States)

    Onaka, Hiroyasu; Mori, Yukiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2011-01-01

    Natural products produced by microorganisms are important starting compounds for drug discovery. Secondary metabolites, including antibiotics, have been isolated from different Streptomyces species. The production of these metabolites depends on the culture conditions. Therefore, the development of a new culture method can facilitate the discovery of new natural products. Here, we show that mycolic acid-containing bacteria can influence the biosynthesis of cryptic natural products in Streptomyces species. The production of red pigment by Streptomyces lividans TK23 was induced by coculture with Tsukamurella pulmonis TP-B0596, which is a mycolic acid-containing bacterium. Only living cells induced this pigment production, which was not mediated by any substances. T. pulmonis could induce natural-product synthesis in other Streptomyces strains too: it altered natural-product biosynthesis in 88.4% of the Streptomyces strains isolated from soil. The other mycolic acid-containing bacteria, Rhodococcus erythropolis and Corynebacterium glutamicum, altered biosynthesis in 87.5 and 90.2% of the Streptomyces strains, respectively. The coculture broth of T. pulmonis and Streptomyces endus S-522 contained a novel antibiotic, which we named alchivemycin A. We concluded that the mycolic acid localized in the outer cell layer of the inducer bacterium influences secondary metabolism in Streptomyces, and this activity is a result of the direct interaction between the mycolic acid-containing bacteria and Streptomyces. We used these results to develop a new coculture method, called the combined-culture method, which facilitates the screening of natural products. PMID:21097597

  1. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-09-01

    Full Text Available Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α, as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  2. Pu-Erh tea and GABA attenuates oxidative stress in kainic acid-induced status epilepticus

    OpenAIRE

    2011-01-01

    Abstract Background Pu-Erh tea is one of the most-consumed beverages due to its taste and the anti-anxiety-producing effect of the gamma-aminobutyric acid (GABA) if contains. However the protective effects of Pu-Erh tea and its constituent, GABA to kainic acid (KA)-induced seizure have not been fully investigated. Methods We analyzed the effect of Pu-Erh tea leaf (PETL) and GABA on KA-induced neuronal injury in vivo and in vitro. Results PETL and GABA reduced the maximal seizure classes, pred...

  3. NAADP induces pH changes in the lumen of acidic Ca2+ stores

    OpenAIRE

    2006-01-01

    Abstract NAADP-induced Ca 2+} release has been proposed to occur selectively from acidic stores in several cell types including sea urchin eggs. Using fluorescence measurements, we have investigated whether NAADP-induced Ca 2+} release alters the luminal pH (pHL) within these acidic stores in egg homogenates and observed their prompt, concentration-dependent alkalinization by NAADP (but not {beta}-NAD +} or NADP). Like Ca 2+} release, the pH L} change was desensitized by low concen...

  4. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  5. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    Science.gov (United States)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  6. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  7. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice.

    Science.gov (United States)

    Peng, Chang; Luo, Xiaomei; Li, Shuo; Sun, Huichao

    2017-03-28

    Cardiac hypertrophy is a complex process involving highly coordinated but tight regulation of multiple elements, such as in epigenetics, which make an important contribution to myocardium remodeling and cardiac hypertrophy. Epigenetic regulations, particularly histone acetylation, have been implicated in cardiac hypertrophy, however, the exact mechanism is still largely unknown. In the present study, we explored the potential attenuating effects of Chinese herbal extract anacardic acid on phenylephrine-induced cardiac hypertrophy and the underlying mechanism. The mouse cardiac hypertrophy model was established and the hearts were collected from C57BL/6 mice for further analyses. The data showed that anacardic acid modulated the cardiac genes expression and attenuated the phenylephrine-induced cardiac hypertrophy via the suppression of histone acetylases activity and downstream cardiac genes. In addition, anacardic acid abrogated histone and MEF2A acetylation and DNA-binding activity by blocking p300-HAT and PCAF-HAT activities. In addition, anacardic acid normalized the cardiac hypertrophy-related genes expressions (ANP, BNP, cTnT, cTnI, β-MHC, and Cx43) induced by phenylephrine at the level of transcription and translation. In addition, anacardic acid did not affect the blood routine index, hepatic function, renal function, and myocardial enzymes. Therefore, anacardic acid may prove to be a candidate drug to cure hypertrophic cardiomyopathy.

  8. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis

    Science.gov (United States)

    2012-01-01

    The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E) staining and Masson Trichrome (MT) examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis. PMID:22559721

  9. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Gao Hong-Ying

    2012-05-01

    Full Text Available Abstract The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, hexadecenoic acid (HA, laminin (LN, hydroxyproline (Hyp, and glutathione (GSH, malondialdehyde (MDA, superoxide dismutase (SOD in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E staining and Masson Trichrome (MT examination. The expression of transforming growth factor-β1 (TGF-β1 and α-smooth muscle actin (α-SMA was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis.

  10. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  11. Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia.

    Science.gov (United States)

    Ma, Shuai; Li, Xin-Yan; Gong, Nian; Wang, Yong-Xiang

    2015-12-10

    Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

  12. Protection of arsenic-induced testicular oxidative stress by arjunolic acid.

    Science.gov (United States)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2008-01-01

    Arsenic-induced tissue damage is a major concern to the human population. An impaired antioxidant defense mechanism followed by oxidative stress is the major cause of arsenic-induced toxicity, which can lead to reproductive failure. The present study was carried out to investigate the preventive role of arjunolic acid, a triterpenoid saponin isolated from the bark of Terminalia arjuna, against arsenic-induced testicular damage in mice. Administration of arsenic (in the form of sodium arsenite, NaAsO(2), at a dose of 10 mg/kg body weight) for 2 days significantly decreased the intracellular antioxidant power, the activities of the antioxidant enzymes, as well as the levels of cellular metabolites. In addition, arsenic intoxication enhanced testicular arsenic content, lipid peroxidation, protein carbonylation and the level of glutathione disulfide (GSSG). Exposure to arsenic also caused significant degeneration of the seminiferous tubules with necrosis and defoliation of spermatocytes. Pretreatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days could prevent the arsenic-induced testicular oxidative stress and injury to the histological structures of the testes. Arjunolic acid had free radical scavenging activity in a cell-free system and antioxidant power in vivo. In summary, the results suggest that the chemopreventive role of arjunolic acid against arsenic-induced testicular toxicity may be due to its intrinsic antioxidant property.

  13. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover.

  14. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    Science.gov (United States)

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  15. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    Science.gov (United States)

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved.

  16. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  17. Inappropriate platelet transfusion in a patient with ethylenediamine tetra- acetic acid (EDTA)--induced pseudothrombocytopenia.

    Science.gov (United States)

    Kakkar, Naveen; Garg, Geetu

    2006-01-01

    Automated platelet counts in the laboratory may be fictitiously low at times and require manual confirmation. Ethylenediaminetetra-acetic acid (EDTA) in few patients and healthy individuals can induce platelet aggregation, giving rise to a spuriously low automated platelet count. This phenomenon which occurs due to the presence of IgG antibodies, if unrecognized, can result in incorrect diagnosis and consequent inappropriate treatment. We present a patient who received inappropriate platelet transfusion as a result of EDTA induced spurious thrombocytopenia.

  18. Exacerbation of alcohol-induced oxidative stress in rats by polyunsaturated fatty acids and iron load

    Directory of Open Access Journals (Sweden)

    S N Patere

    2011-01-01

    Full Text Available The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography, polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron.

  19. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine.

    Science.gov (United States)

    Koriem, Khaled M M; Soliman, Rowan E

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective.

  20. Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae.

    Science.gov (United States)

    Shen, Bing; Liu, Hong-Cui; Ou, Wen-Bin; Eilers, Grant; Zhou, Sheng-Mei; Meng, Fan-Guo; Li, Chun-Qi; Li, Yong-Quan

    2015-12-01

    Basic Violet 14, Direct Red 28 and Acid Red 26 are classified as carcinogenic dyes in the European textile ecology standard, despite insufficient toxicity data. In this study, the toxicity of these dyes was assessed in a zebrafish model, and the underlying toxic mechanisms were investigated. Basic Violet 14 and Direct Red 28 showed acute toxicity with a LC50 value at 60.63 and 476.84 µg ml(-1) , respectively, whereas the LC50 of Acid Red 26 was between 2500 and 2800 µg ml(-1) . Treatment with Basic Violet 14, Direct Red 28 and Acid Red 26 resulted in common developmental abnormalities including delayed yolk sac absorption and swimming bladder deflation. Hepatotoxicity was observed in zebrafish treated with Basic Violet 14, and cardiovascular toxicity was found in zebrafish treated with Acid Red 26 at concentrations higher than 2500 µg ml(-1) . Basic Violet 14 also caused significant up-regulation of GCLC gene expression in a dose-dependent manner whereas Acid Red 26 induced significant up-regulation of NKX2.5 and down-regulation of GATA4 at a high concentration in a dose-dependent manner. These results suggest that Basic Violet 14, Direct Red 28 and Acid Red 26 induce developmental and organ-specific toxicity, and oxidative stress may play a role in the hepatotoxicity of Basic Violet 14, the suppressed GATA4 expression may have a relation to the cardiovascular toxicity of Acid Red 26. Copyright © 2015 John Wiley & Sons, Ltd.

  1. All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway.

    Science.gov (United States)

    Elsayed, Abdelrahman M; Abdelghany, Tamer M; Akool, El-Sayed; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2016-03-01

    Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on

  2. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    Science.gov (United States)

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  3. Temperature induced denaturation of collagen in acidic solution.

    Science.gov (United States)

    Mu, Changdao; Li, Defu; Lin, Wei; Ding, Yanwei; Zhang, Guangzhao

    2007-07-01

    The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.

  4. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes.

    Science.gov (United States)

    Chowdhury, Subir K Roy; Dobrowsky, Rick T; Fernyhough, Paul

    2011-11-01

    Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.

  5. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain.

    Science.gov (United States)

    Currais, Antonio; Fischer, Wolfgang; Maher, Pamela; Schubert, David

    2017-01-01

    Age is, by far, the greatest risk factor for Alzheimer's disease (AD), yet few AD drug candidates have been generated that target pathways specifically associated with the aging process itself. Two ubiquitous features of the aging brain are the intracellular accumulation of aggregated proteins and inflammation. As intraneuronal amyloid protein is detected before markers of inflammation, we argue that old, age-associated, aggregated proteins in neurons can induce inflammation, resulting in multiple forms of brain toxicities. The consequence is the increased risk of old, age-associated, neurodegenerative diseases. As most of these diseases are associated with the accumulation of aggregated proteins, it is possible that any therapeutic that reduces intracellular protein aggregation will benefit all.-Currais, A., Fischer, W., Maher, P., Schubert, D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain.

  6. Neuroprotective effect of lignans extracted from Eucommia ulmoides Oliv. on glaucoma-related neurodegeneration.

    Science.gov (United States)

    Li, Chao-Peng; Qiu, Gui-Zhen; Liu, Ban; Chen, Jin-Long; Fu, Hai-Tao

    2016-05-01

    Glaucoma is a progressive neurodegenerative disease, characterized by retinal ganglion cells (RGCs) and axon degeneration. The development of neuroprotective drug is required for improving the efficiency of glaucoma treatment. Eucommia ulmoides Oliv. has been used as a source of traditional medicine and as a beneficial health food. Lignans is one of the main bioactive components of Eucommia ulmoides. Here, we show that lignans protects RGCs against oxidative stress-induced injury in vitro. Moreover, lignans exerts neuroprotective effect on glaucoma-associated optic neuropathy in glaucomatous rats. Lignans treatment could improve oxidative stress response in RGCs and retinas of glaucomatous rats. Lignans plays an anti-oxidative stress role via the activation of AMPK signaling. This study provides evidence that lignans possesses protective effect on glaucoma-associated optic neuropathy. Lignans might be an alternative for the prevention and treatment of glaucomatous neurodegeneration.

  7. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    Science.gov (United States)

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  8. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Hakan Ozdener

    2005-06-01

    Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological impairment, and neuropathological changes are found in 90% of autopsied cases. Approximately 30% of untreated HIV-infected persons may develop dementia. The mechanisms behind these pathological changes are still not understood. Mounting data obtained by in vivo and in vitro experiments suggest that neuronal apoptosis is a major feature of HIV associated dementia (HAD), which can occur in the absence of direct infection of neurons. The major pathway of neuronal apoptosis occurs indirectly through release of neurotoxins by activated cells in the central nervous system (CNS) involving the induction of excitotoxicity and oxidative stress. In addition a direct mechanism induced by viral proteins in the pathogenesis of HAD may also play a role. This review focuses on the molecular mechanisms of HIV-associated dementia and possible therapeutic strategies.

  9. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Claudia Consales

    2012-01-01

    Full Text Available Electromagnetic fields (EMFs originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.

  10. Traumatic brain injury, neuroimaging, and neurodegeneration.

    Science.gov (United States)

    Bigler, Erin D

    2013-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  11. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  12. Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta.

    Science.gov (United States)

    Criddle, D N; de Moura, R S; Greenwood, I A; Large, W A

    1996-06-01

    1. The effects of niflumic acid, an inhibitor of calcium-activated chloride channels, were compared with the actions of the calcium channel antagonist nifedipine on noradrenaline-evoked contractions in isolated preparations of the rat aorta. 2. The cumulative concentration-effect curve to noradrenaline (NA) was depressed by both nifedipine and niflumic acid in a reversible and concentration-dependent manner. The degree of inhibition of the maximal contractile response to NA (1 microM) produced by 10 microM niflumic acid (38%) was similar to the effect of 1 microM nifedipine (39%). 3. Contractions to brief applications (30 s) of 1 microM NA were inhibited by 55% and 62% respectively by 10 microM niflumic acid and 1 microM nifedipine. 4. In the presence of 0.1 microM nifedipine, niflumic acid (10 microM) produced no further inhibition of the NA-evoked contractions. Thus, the actions of niflumic acid and nifedipine were not additive. 5. In Ca-free conditions the transient contraction induced by 1 microM NA was not inhibited by niflumic acid (10 microM) and therefore this agent does not reduce the amount of calcium released from the intracellular store or reduce the sensitivity of the contractile apparatus to calcium. 6. Niflumic acid 10 microM did not inhibit the contractions produced by KCl (up to 120 mM) which were totally blocked by nifedipine. Contractions induced by 25 mM KCl were completely inhibited by 1 microM levcromakalim but were unaffected by niflumic acid. 7. It was concluded that niflumic acid produces selective inhibition of a component of NA-evoked contraction which is probably mediated by voltage-gated calcium channels. These data are consistent with a model in which NA stimulates a calcium-activated chloride conductance which leads to the opening of voltage-gated calcium channels to produce contraction.

  13. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    Science.gov (United States)

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  14. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    Science.gov (United States)

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  15. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Directory of Open Access Journals (Sweden)

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  16. Diabetes and Overexpression of proNGF Cause Retinal Neurodegeneration via Activation of RhoA Pathway

    Science.gov (United States)

    Matragoon, Suraporn; Abdelsaid, Mohammed A.; El-Azab, Mona F.; Shanab, Ahmed Y.; Ha, Yonju; Smith, Sylvia B.; Bollinger, Kathryn E.; El-Remessy, Azza B.

    2013-01-01

    Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotosin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC) cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways. PMID:23365678

  17. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    Science.gov (United States)

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  18. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  19. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  20. Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynt