WorldWideScience

Sample records for acid improves embryonic

  1. Effects of acid precipitation on embryonic mortality of Ambystoma salamanders in the Connecticut Valley of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R P

    1983-01-01

    An investigation of increased embryonic mortality of the spotted salamander Ambystoma maculatum concomitant with breeding pond acidification from acid rainfall in the Connecticut Valley of Massachusetts analyzes the pH and chemistry of rain and pond water and monitored embryonic mortality in 1976 and 1977. Although acid rain continues to occur in the area and Ambystoma breeding ponds are acidic, the average pH of six ponds dropped from 5.62 to 5.10 during the study. Pond pH decreased up to 0.75 pH units following heavy rainfall. Despite this, embryonic mortality of spotted and Jefferson salamanders was low, and no significant correlation between pond pH and percent embryonic mortality was found. The size of present populations and the embryonic acid tolerance exhibited by the salamander indicate that acid rain has not had an effect in this location. 22 references, 2 figures, 4 tables.

  2. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells.

    Science.gov (United States)

    Liu, Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-Lin; X Wilson, John

    2010-09-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14-16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system.

  3. Retinoic acid synthesis and functions in early embryonic development

    Directory of Open Access Journals (Sweden)

    Kam Richard Kin Ting

    2012-03-01

    Full Text Available Abstract Retinoic acid (RA is a morphogen derived from retinol (vitamin A that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR and retinoic acid X receptor (RXR which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.

  4. Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata).

    Science.gov (United States)

    Baéza, E; Chartrin, P; Bordeau, T; Lessire, M; Thoby, J M; Gigaud, V; Blanchet, M; Alinier, A; Leterrier, C

    2017-09-01

    The welfare of ducks can be affected by unwanted behaviors such as excessive reactivity and feather pecking. Providing long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) during gestation and early life has been shown to improve the brain development and function of human and rodent offspring. The aim of this study was to test whether the pecking behavior of Muscovy ducks during rearing could be reduced by providing LC n-3 PUFA during embryonic and/or post-hatching development of ducklings. Enrichment of eggs, and consequently embryos, with LC n-3 PUFA was achieved by feeding female ducks (n-3F) a diet containing docosahexaenoic (DHA) and linolenic acids (microalgae and linseed oil). A control group of female ducks (CF) was fed a diet containing linoleic acid (soybean oil). Offspring from both groups were fed starter and grower diets enriched with DHA and linolenic acid or only linoleic acid, resulting in four treatment groups with 48 ducklings in each. Several behavioral tests were performed between 1 and 3 weeks of age to analyze the adaptation ability of ducklings. The growth performance, time budget, social interactions, feather growth, and pecking behavior of ducklings were recorded regularly during the rearing period. No significant interaction between maternal and duckling feeding was found. Ducklings from n-3F ducks had a higher body weight at day 0, 28, and 56, a lower feed conversion ratio during the growth period, and lower reactivity to stress than ducklings from CF ducks. Ducklings from n-3F ducks also exhibited a significantly reduced feather pecking frequency at 49 and 56 days of age and for the whole rearing period. Moreover, consumption of diets enriched with n-3 PUFA during the starter and grower post-hatching periods significantly improved the tibia mineralization of ducklings and the fatty acid composition of thigh muscles at 84 days of age by increasing the n-3 FA content. © 2017 Poultry Science Association Inc.

  5. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Science.gov (United States)

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  6. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Directory of Open Access Journals (Sweden)

    Jacqueline Gürke

    Full Text Available During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2, branched chain ketoacid dehydrogenase (Bckdha and dehydrolipoyl dehydrogenase (Dld, were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  7. Evidence for conjugated linoleic acid-induced embryonic mortality that is independent of egg storage conditions and changes in egg relative fatty acids.

    Science.gov (United States)

    Leone, V A; Stransky, D L; Aydin, R; Cook, M E

    2009-09-01

    Three experiments were performed to determine the effect of conjugated linoleic acid (CLA) on embryonic development in the absence of vitelline membrane disruption. In experiment 1, when eggs from control and CLA (0.5%)-fed hens were stored at 21 or 15 degrees C for 48 h, mineral movement between the yolk and albumen was not observed (with the exception of Mg and Na). Also, it was found that CLA-induced changes in yolk fatty acid content (e.g., increased saturated fatty acids and CLA) had begun to change after 5 d of feeding hens CLA, and no differences were detected in fatty acid composition after 14 d. In experiment 2, the hatchability of eggs incubated directly after oviposition or stored 24 h at 21 or 15 degrees C was determined from hens fed control or 0.5% CLA diets. Regardless of storage conditions, CLA reduced hatchability. These data showed that CLA elicits negative effects on hatchability independent of vitelline membrane disruption or egg storage condition. In experiment 3, eggs were collected from hens fed 0 or 1% CLA daily for 3 wk, stored at 21 degrees C for 24 h, and incubated. Not only did CLA decrease hatchability, the data showed as the days of CLA feeding increased, the days of survival during incubation decreased. Average days of embryonic survival during incubation for the CLA group diminished to 18.0, 13.4, and 6.3 d for wk 1, 2, and 3 of CLA feeding, respectively, and control remained at 20.6, 20.8, and 19.8 for the 3 wk. These studies suggested that without the disruption of the vitelline membrane, hatchability and embryonic days of survival were significantly reduced by maternal CLA feeding in comparison to control-fed hens. Evidence that embryos die earlier the longer the hens are fed CLA, even though no additional changes in the fatty acid content of eggs were found, suggested that factors other than storage and egg yolk fatty acid composition played a role in CLA-induced embryonic mortality.

  8. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid

    OpenAIRE

    Ixchelt Cuaranta-Monroy; Zoltan Simandi; Zsuzsanna Kolostyak; Quang-Minh Doan-Xuan; Szilard Poliska; Attila Horvath; Gergely Nagy; Zsolt Bacso; Laszlo Nagy

    2014-01-01

    Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocy...

  9. Embryonic cerebellar neurons accumulate [3H-gamma-aminobutyric acid: visualization of developing gamma-aminobutyric acid-utilizing neurons in vitro and in vivo

    International Nuclear Information System (INIS)

    Hatten, M.E.; Francois, A.M.; Napolitano, E.; Roffler-Tarlov, S.

    1984-01-01

    gamma-Aminobutyric acid (GABA) is the proposed neurotransmitter for four types of cerebellar neurons-Purkinje, Golgi, basket, and stellate neurons. With this investigation we have begun studies to establish when these neurons acquire their neurotransmitter ''identification''. Autoradiographic studies of both cultured embryonic (embryonic day 13) cerebellar cells and of intact embryonic cerebellum (embryonic day 13) were conducted with tritiated GABA. Two to 5% of the embryonic cerebellar cells accumulated [ 3 H]GABA in vitro. By morphological and immunocytochemical criteria, labeled cells were large neurons with either a thick, apical process, a multipolar shape, or were bipolar with longer processes. The identification of cells which accumulated [ 3 H]GABA as neuronal precursors was supported by the differential sensitivity to drugs that preferentially inhibit accumulation of [ 3 H]GABA by neurons and glia. The results of the in vitro experiments were confirmed and extended with in vivo experiments. When intact cerebellar tissue was removed at embryonic day 13, stripped of meninges and choroid plexus, exposed to low concentrations of [ 3 H]GABA, and processed for light microscopic autoradiography, heavily labeled cells were seen in the middle of the cerebellar anlage. Labeled cells were not seen in the ventricular zone of proliferating neuroblasts lining the fourth ventricle or in the external granular layer emerging at the lateral aspect of the pial surface. The accumulation of [ 3 H]GABA by these cells also showed the pharmacological characteristics of uptake by neurons. This study shows that among migrating, immature forms of the larger neurons of the embryonic cerebellum, there is a select group which accumulates [ 3 H]GABA and other classes of cells which do not. These results indicate very early acquisition of transmitter expression by cerebellar neurons, far in advance of their final positioning and establishment of synapses

  10. Collagen Type I Improves the Differentiation of Human Embryonic Stem Cells towards Definitive Endoderm

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Petersen, Dorthe Roenn; Møller, Jonas Bech

    2015-01-01

    Human embryonic stem cells have the ability to generate all cell types in the body and can potentially provide an unlimited source of cells for cell replacement therapy to treat degenerative diseases such as diabetes. Current differentiation protocols of human embryonic stem cells towards insulin...... and consistent differentiation of stem cells to definitive endoderm. The results shed light on the importance of extracellular matrix proteins for differentiation and also points to a cost effective and easy method to improve differentiation....... embryonic stem cells to the definitive endoderm lineage. The percentage of definitive endoderm cells after differentiation on collagen I and fibronectin was >85% and 65%, respectively. The cells on collagen I substrates displayed different morphology and gene expression during differentiation as assessed...

  11. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ana Cañete

    2017-02-01

    Full Text Available Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA, acting through nuclear retinoic acid receptors (RARs, is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.

  12. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    International Nuclear Information System (INIS)

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena

    2007-01-01

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor α = 0.51 and maximum velocity by a factor β = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations

  13. Sequential induction of embryonic and adult forms of glutamic acid decarboxylase during in vitro-induced neurogenesis in cloned neuroectodermal cell-line, NE-7C2.

    Science.gov (United States)

    Varju, Patricia; Katarova, Zoya; Madarász, Emília; Szabó, Gábor

    2002-02-01

    The expression of different forms of glutamate decarboxylases and GABA was investigated in the course of retinoic acid-induced neuronal differentiation of NE-7C2 cell-line established from brain vesicles of 9-day-old mouse embryos lacking functional p53 gene. Non-induced NE-7C2 cells expressed embryonic GAD mRNAs with a low level of embryonic GAD25 protein and did not contain detectable amounts of GABA. Addition of 10(-6) M retinoic acid induced the expression of N-tubulin and a significant increase in the level of embryonic GAD messages and GAD25 protein in early stage differentiating neurones. The enzymatically active embryonic GAD44 was detected at later stages of induction in neurone-like cells and showed a maximum of expression at the time of neurite elongation and network formation. With the advance of neuronal maturation, the expression of embryonic forms declined while the adult GAD65 and GAD67 transcripts became dominant. GABA-containing neurones were first demonstrated on the sixth day of induction coinciding with the peak of GAD44 expression and the beginning of GAD65 expression. The sequential induction of different GAD forms and the stage-dependent GABA synthesis in NE-7C2 cells is highly reminiscent of the temporal pattern found in vivo and suggests that these processes might be involved in the differentiation of neuronal progenitors.

  14. Studies on improving ostrich egg hatch ability and its relation with some factors affecting embryonic development during artificial incubation

    International Nuclear Information System (INIS)

    Amer, N.S.I.

    2012-01-01

    The present study was carried out in co-operation between the Ostrich Production Farm, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt and the Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo, Egypt. Ostrich eggs were obtained from Resk Company for Ostrich Production and set for incubation at ElShfie Farm, Belbas, Sharkia, Egypt. The objectives are:1- To follow up changes in some vital physiological parameters and blood components associated with ostrich embryonic development during incubation and to provide reference blood biochemical baseline values for future studies of avian species and to document novel information on some normal changes associated with growth of the developing ostrich embryo during the incubation, as no similar and complete data could be found on this aspect in the literature. 2- In an effort to improve the hatch ability and hatching performance of ostrich eggs by testing the effect of in ovo injection of several nutrients. Two trials were carried out: 1-First trial To follow up changes in some vital physiological parameters and blood components associated with ostrich embryonic development during incubation. A total number of 60 ostrich eggs weighed between 1300 and 1500 g were obtained from from Resk Company for Ostrich Production. Eggs were collected weekly in patches of 25 eggs and Egg incubation was performed in ElShfie Farm, Belbas, Egypt. Egg weight and egg weight loss during incubation were determined on each eggs.2- Second Trial In vivo injection In an effort to improve the hatch ability and hatching performance of ostrich eggs by testing the effect of in ovo injection of several nutrients. A total of 100 fertile ostrich eggs weighed between 1300 and 1500 g were obtained from from Resk Company for Ostrich Production. Eggs were collected weekly in patches of 25 eggs and egg incubation was performed in ElShfie Farm, Belbas, Egypt. Eggs were injected at the 7 th day of incubation to deposit test material in

  15. Altered glucose transport to utero-embryonic unit in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Arnab, Banerjee; Amitabh, Krishna

    2011-02-10

    The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; psphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Improvement of protein and amino acid contents in seeds of food legumes. A case study in Phaseolus

    Directory of Open Access Journals (Sweden)

    Baudoin J.P.

    1999-01-01

    Full Text Available Food legumes are considered as the major source of dietary proteins among the plant species. Protein and amino acid contents were evaluated in a wide sample of both wild and cultivated genotypes of Phaseolus species, with a view to investigate possibilities of genetic improvement in seed nutritional quality. Results indicate a variation in relation with taxa, biological status within species (such as in P. lunatus, ecological conditions, seed parts (testa, cotyledons and embryonic axis, and major protein groups. However, the sulphur containing amino acids remain a limiting factor, which could be better overcome by mixing food legumes with other plant species such as cereals.

  17. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  18. Marked accumulation of valproic acid in embryonic neuroepithelium of the mouse during early organogenesis

    International Nuclear Information System (INIS)

    Dencker, L.; Nau, H.; D'Argy, R.

    1990-01-01

    Valproic acid, an antiepileptic drug, causes neural tube defects in mice and man. 14C-labeled valproic acid (sodium-salt) was administered to pregnant mice on days 8 and 9 of gestation (period of high sensitivity in regard to formation of neural tube defects in this species). Two dose levels of valproic acid (1 and 400 mg/kg) were used; in each case the total radioactivity administered was the same: 400 microCi/kg or 14.7 MBq/kg. Autoradiography combined with computerized densitometry revealed that in low-dose animals most of the radioactivity was confined to maternal liver and kidney, while at high doses more activity was observed in soft tissues and fluids, including amniotic fluid. In the embryo, the neuroepithelium showed the highest concentration, irrespective of dose and survival interval (30 min, 3 h, and 6 h). Upon administration of the high dose, up to five times more radioactivity (approximately 2,000 times more valproic acid) was recovered in embryonic tissues than after the low dose. It is concluded that high doses of VPA saturate the capacities of metabolism, excretion, and protein binding in the maternal organism, resulting in a higher proportion of the dose reaching the embryo, allowing more of the drug to be accumulated by the target organ, the neuroepithelium

  19. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  20. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  1. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.

    Science.gov (United States)

    Xu, Keming; Narayanan, Karthikeyan; Lee, Fan; Bae, Ki Hyun; Gao, Shujun; Kurisawa, Motoichi

    2015-09-01

    The propagation of human embryonic stem cells (hESCs) in three-dimensional (3D) scaffolds facilitates the cell expansion process and supplies pluripotent cells of high quality for broad-spectrum applications in regenerative medicine. Herein, we report an enzyme-mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. HA-Tyr hydrogels were formed by crosslinking the tyramine moieties with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). By changing the HRP and H2O2 concentration, we prepared HA-Tyr hydrogels of different mechanical strength and studied the self-renewal properties of hESCs in these scaffolds. We observed that both the chemical composition and mechanical strength of substrates were important factors affecting cell proliferation and pluripotency. The HA-Tyr hydrogel with a compressive modulus of ∼350Pa supported the proliferation of hESCs at the pluripotent state in both mTeSR1 medium and mouse embryonic fibroblast (MEF)-conditioned medium. Immunohistochemical analyses revealed that hESCs proliferated well and formed spheroid structures in 3D, without undergoing apoptosis. The hESCs cultured in HA-Tyr hydrogels showed high expression of CD44 and pluripotency markers. These cells exhibited the capability to form cell derivatives of all three embryonic germ layers in vitro and in vivo. In addition, the genetic integrity of the hESCs was unaffected in the 3D cultivation system. The scope of this study is to provide a stable 3D cultivation system for the expansion of human embryonic stem cells (hESCs) towards clinical applications. We report an enzyme mediated hyaluronic acid-tyramine (HA-Tyr) hydrogel that encapsulated and propagated hESCs in 3D. Unlike other HA-based photo-crosslinked hydrogel systems reported, we investigated the effects of mechanical strength of hydrogels on the self-renewal properties of hESCs in 3D. Then, we characterized hESCs cultured in hydrogels with lower mechanical strength

  2. α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period

    Directory of Open Access Journals (Sweden)

    P. Prathima

    Full Text Available The aim of this study was to evaluate the probable protective effect of α-lipoic acid against testicular toxicity in rats exposed to carbimazole during the embryonic period. Time-mated pregnant rats were exposed to carbimazole from the embryonic days 9–21. After completion of the gestation period, all the rats were allowed to deliver pups and weaned. At postnatal day 100, F1 male pups were assessed for the selected reproductive endpoints. Gestational exposure to carbimazole decreased the reproductive organ indices, testicular daily sperm count, epididymal sperm variables viz., sperm count, viable sperm, motile sperm and HOS-tail coiled sperms. Significant decrease in the activity levels of 3β- and 17β-hydroxysteroid dehydrogenases and expression of StAR mRNA levels with a significant increase in the total cholesterol levels were observed in the testis of experimental rats over the controls. These events were also accompanied by a significant reduction in the serum testosterone levels in CBZ exposed rats, indicating reduced steroidogenesis. In addition, the deterioration of the testicular architecture and reduced fertility ability were noticed in the carbimazole exposed rats. Significant reduction in the activity levels of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione content with a significant increase in the levels of lipid peroxidation were observed in the testis of carbimazole exposed rats over the controls. Conversely, supplementation of α-lipoic acid (70 mg/Kg bodyweight ameliorated the male reproductive health in rats exposed to carbimazole during the embryonic period as evidenced by enhanced reproductive organ weights, selected sperm variables, testicular steroidogenesis, and testicular enzymatic and non-enzymatic antioxidants. To conclude, diminished testicular antioxidant balance associated with reduced spermatogenesis and steroidogenesis might be responsible

  3. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  4. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    Science.gov (United States)

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T

    2009-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research...... embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers......: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell...

  6. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    Science.gov (United States)

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. © 2016. Published by The Company of Biologists Ltd.

  7. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    Science.gov (United States)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  8. Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls.

    Science.gov (United States)

    Tian, Xinghui; Kaufman, Dan S

    2008-07-01

    Hematopoietic development from embryonic stem cells has been one of the most productive areas of stem cell biology. Recent studies have progressed from work with mouse to human embryonic stem cells. Strategies to produce defined blood cell populations can be used to better understand normal and abnormal hematopoiesis, as well as potentially improve the generation of hematopoietic cells with therapeutic potential. Molecular profiling, phenotypic and functional analyses have all been utilized to demonstrate that hematopoietic cells derived from embryonic stem cells most closely represent a stage of hematopoiesis that occurs at embryonic/fetal developmental stages. Generation of hematopoietic stem/progenitor cells comparable to hematopoietic stem cells found in the adult sources, such as bone marrow and cord blood, still remains challenging. However, genetic manipulation of intrinsic factors during hematopoietic differentiation has proven a suitable approach to induce adult definitive hematopoiesis from embryonic stem cells. Concrete evidence has shown that embryonic stem cells provide a powerful approach to study the early stage of hematopoiesis. Multiple hematopoietic lineages can be generated from embryonic stem cells, although most of the evidence suggests that hematopoietic development from embryonic stem cells mimics an embryonic/fetal stage of hematopoiesis.

  9. Human Embryonic Stem Cell Therapy in Crohn’s Disease: A Case Report

    Science.gov (United States)

    Shroff, Geeta

    2016-01-01

    Patient: Male, 21 Final Diagnosis: Crohn’s disease Symptoms: Intolerance to specific foods • abdominal pain and diarrhea Medication: Human embryonic stem cell therapy Clinical Procedure: Human embryonic stem cell transplantation Specialty: Gastroenterology Objective: Unusual or unexpected effect of treatment Background: Crohn’s disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565 000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn’s disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn’s disease. Case Report: A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Conclusions: Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn’s disease. PMID:26923312

  10. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  11. Human Embryonic Stem Cell Therapy in Crohn's Disease: A Case Report.

    Science.gov (United States)

    Shroff, Geeta

    2016-02-29

    Crohn's disease is a chronic inflammatory disease of the intestines, mainly the colon and ileum, related with ulcers and fistulae. It is estimated to affect 565,000 people in the United States. Currently available therapies, such as antibiotics, thiopurines, and anti-tumor necrosis factor-alpha agents, are only observed to reduce the complications associated with Crohn's disease and to improve quality of life, but cannot cure the disease. Stem cell therapy appears to have certain advantages over conventional therapies. Our study aimed to evaluate the efficacy of human embryonic stem cell therapy in a patient with Crohn's disease. A 21-year-old male with chief complaints of intolerance to specific foods, abdominal pain, and diarrhea underwent human embryonic stem cell therapy for two months. After undergoing human embryonic stem cell therapy, the patient showed symptomatic relief. He had no complaints of back pain, abdominal pain, or diarrhea and had improved digestion. The patient had no signs and symptoms of skin infection, and had improved limb stamina, strength, and endurance. The condition of patient was stable after the therapy. Human embryonic stem cell therapy might serve as a new optimistic treatment approach for Crohn's disease.

  12. Mechanical signaling coordinates the embryonic heartbeat

    Science.gov (United States)

    Chiou, Kevin K.; Rocks, Jason W.; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E.; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F.; Prosser, Benjamin L.; Discher, Dennis E.; Liu, Andrea J.

    2016-01-01

    In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts—consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats. PMID:27457951

  13. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons.

    Directory of Open Access Journals (Sweden)

    Dennis E Coyle

    Full Text Available The NTERA2 cl D1 (NT2 cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR. Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.

  14. Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid.

    Science.gov (United States)

    Juliandi, Berry; Abematsu, Masahiko; Sanosaka, Tsukasa; Tsujimura, Keita; Smith, Austin; Nakashima, Kinichi

    2012-01-01

    Within the developing mammalian cortex, neural progenitors first generate deep-layer neurons and subsequently more superficial-layer neurons, in an inside-out manner. It has been reported recently that mouse embryonic stem cells (mESCs) can, to some extent, recapitulate cortical development in vitro, with the sequential appearance of neurogenesis markers resembling that in the developing cortex. However, mESCs can only recapitulate early corticogenesis; superficial-layer neurons, which are normally produced in later developmental periods in vivo, are under-represented. This failure of mESCs to reproduce later corticogenesis in vitro implies the existence of crucial factor(s) that are absent or uninduced in existing culture systems. Here we show that mESCs can give rise to superficial-layer neurons efficiently when treated with valproic acid (VPA), a histone deacetylase inhibitor. VPA treatment increased the production of Cux1-positive superficial-layer neurons, and decreased that of Ctip2-positive deep-layer neurons. These results shed new light on the mechanisms of later corticogenesis. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  15. Human embryonic stem cell-derived pancreatic endoderm alleviates diabetic pathology and improves reproductive outcome in C57BL/KsJ-Lep(db/+) gestational diabetes mellitus mice.

    Science.gov (United States)

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-07-01

    Gestational diabetes mellitus is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal maldevelopment. The cause of gestational diabetes mellitus can be attributed to both genetic and environmental factors, hence complicating its diagnosis and treatment. Pancreatic progenitors derived from human embryonic stem cells were shown to be able to effectively treat diabetes in mice. In this study, we have developed a system of treating diabetes using human embryonic stem cell-derived pancreatic endoderm in a mouse model of gestational diabetes mellitus. Human embryonic stem cells were differentiated in vitro into pancreatic endoderm, which were then transplanted into db/+ mice suffering from gestational diabetes mellitus. The transplant greatly improved glucose metabolism and reproductive outcome of the females compared with the control groups. Our findings support the feasibility of using differentiated human embryonic stem cells for treating gestational diabetes mellitus patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Lawniczak, Cynthia J; Teece, Mark A

    2009-05-01

    The metabolism of lipids and fatty acids during embryonic development of Chelydra serpentina (common snapping turtle) was investigated. Substantial changes in lipid class and fatty acid composition occurred as lipids were transferred from the yolk to the yolk sac membrane (YSM) and then to the brain, eyes, heart, and lungs of the hatchling. Lipids were hydrolyzed in the yolk prior to transport to the YSM, shown by a large increase in free fatty acids (FFAs) during the second half of development. Triglyceride-derived docosahexaenoic acid (DHA) was utilized preferentially to phospholipid-derived DHA. In the YSM, arachidonic acid (ARA) was selectively incorporated into phospholipids while DHA was preferentially incorporated into triglycerides. Selective incorporation of DHA and ARA into the brain and eyes, and ARA into the heart was observed, indicating the importance of these PUFAs for organ development and function. The amount of DHA and ARA in each organ was less than 1% of that measured in the yolk of the freshly laid egg, indicating that only a small portion of yolk PUFAs were incorporated into the hatchling organs studied. We discuss the differences in the mechanisms and utilization of yolk lipids in turtles compared with lipid uptake during embryonic development in birds.

  17. Effect of the cryopreservation method used, the embryonic stage and the use of conjugated linoleic acid isomers on the cryotolerance of in vitro-produced bovine embryos

    Directory of Open Access Journals (Sweden)

    Luciana Simões Rafagnin Marinho

    2015-12-01

    Full Text Available Conjugated linoleic acid (CLA might be able to improve the cryotolerance of in vitro-produced (IVP embryos. The effect of two CLA isomers on the cryotolerance of bovine IVP embryos, as well as that of the stage of embryonic development and the method used for cryopreservation was evaluated by three experiments. In Experiment 1, oocytes (n = 3,917 were fertilized in vitro and cultured with 0, 50, 100, or 200 ?M trans-10, cis-12 (t10, c12 CLA. In Experiment 2, fertilized oocytes (n = 2,131 were cultured with 100 ?M t10, c12 or cis-9, trans-11 (c9, t11 CLA, or a combination of both isomers. The embryos were vitrified at the blastocyst (BL or the expanded blastocyst (EB stage. In Experiment 3, oocytes (n = 1,720 were fertilized and cultured with or without 100 ?M t10, c12 CLA, and the blastocysts were vitrified or frozen. Blastocyst development rate as well as the rates of re-expansion and hatching after thawing was recorded. Moreover, the mean cell number and mRNA expression of acetyl-CoA carboxylase (ACC1 and stearoyl-CoA desaturase (SCD1 as well as fatty acid synthase (FASN multienzyme complex were determined. In Experiment 1, the highest concentration of t10, c12 CLA that did not reduce blastocyst development rate was 100 ?M. In Experiment 2, the rates of re-expansion and hatching among the EBs obtained through IVP after supplementation with t10, c12 CLA (73.1% and 57.7%, with c9, t11 CLA (80.0% and 68.6%, with the combination (78.3% and 52.2%, and with the control group (85.4% and 58.3% were similar. At the BL stage, the rates of re-expansion and hatching were lower than those at the EB stage, and CLA combination allowed a hatching rate (8.0% lower than that observed in the control group (40.0%. In Experiment 3, the hatching rates for vitrified EBs (vitrified control; 67.4% and vitrified CLA EBs (65.8% were higher than those obtained for frozen EBs, exposed (13.3% or not exposed (28.6% to CLA. In addition, in Experiment 3, the hatching rate was

  18. 14-3-3σ regulates β-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3β.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chang

    Full Text Available Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear.In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding.Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion.

  19. Function of JARID2 in bovines during early embryonic development

    Directory of Open Access Journals (Sweden)

    Yao Fu

    2017-12-01

    Full Text Available Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05, and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the

  20. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain.

    Directory of Open Access Journals (Sweden)

    Anke Popp

    Full Text Available BACKGROUND: GABA (gamma-aminobutyric acid, the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD. GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. METHODOLOGY/PRINCIPAL FINDINGS: QPCR was used to precisely investigate the postnatal expression level of GAD related mRNAs in cortex, hippocampus, cerebellum, and olfactory bulb of rats from P1 throughout adulthood. Within the first three postnatal weeks the expression of both GAD65 and GAD67 mRNAs reached adult levels in hippocampus, cortex, and cerebellum. The olfactory bulb showed by far the highest expression of GAD65 as well as GAD67 transcripts. Embryonic GAD67 splice variants were still detectable at birth. They continuously declined to barely detectable levels during postnatal development in all investigated regions with exception of a comparatively high expression in the olfactory bulb. Radioactive in situ hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream. CONCLUSIONS/SIGNIFICANCE: Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or

  1. Relationship Between Dietary Fatty Acids and Reproductive Functions in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Ercan Soydan

    2017-12-01

    Full Text Available Selection of dairy cattle for higher milk yield, without considering important non-production traits, has decreased reproductive efficiency. Thus, low reproductive performance is a major problem in high yielding dairy cattle. Previous studies showed that dietary manipulation to improve fertility holds much promise and dietary fats have positive effects on reproductive functions in high yielding dairy cattle. Positive effects of fats on reproductive performance due to the fatty acids, which are the precursors of progesterone and prostaglandins. Progesterone and prostaglandins hormones are most important factors that play a role on the control of reproductive functions. The amount of linoleic, linolenic and arachidonic fattty acids in ration can be increase or decrease progesterone and prostaglandins synthesis especially PGF2α from ovary and uterus, respectively. Also fatty acids can be influence follicular development, ovulation, embryonic implantation and maternal recognition of pregnancy. This review focuses on the relationships between dietary fatty acids and reproductive functions such as hormone profiles, ovarian function and follicular development, oocyte quality, embryo development, embryonic implantation and maternal recognition of pregnancy in dairy cattle.

  2. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    Science.gov (United States)

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  3. Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia).

    Science.gov (United States)

    Chen, M X; Li, X G; Yan, H C; Wang, X Q; Gao, C Q

    2016-06-01

    The objective of this study was to investigate the effect of egg weight on the composition of the egg, the growth of the embryo, and the expression of amino acid transporter genes in the yolk sac membranes and small intestines of the domestic pigeon (Columba livia). A total of 240 fertilized eggs were collected and divided into two groups based on the weight of the eggs, light (LE) and heavy (HE). The composition of 20 eggs from each group was measured, and the remaining eggs were weighed and placed in an incubator. On embryonic days (E) 9, 11, 13, and 15 and day of hatch (DOH), 15 embryos/hatchlings from each group were measured for embryonic growth, and samples were collected. The HE had heavier yolk and albumen weights than the LE (P < 0.01). Compared with the LE, the HE had heavier yolk-free embryonic body and yolk sac weights from E13 to DOH (P < 0.05). Additionally, the HE had larger yolk sac membrane weights from E13 to E15 (P < 0.05) and had more residual yolk sac content on DOH than those of the LE (P < 0.01). The yolk absorption was greater for the HE than for the LE from E11 to E13 (P < 0.05). Furthermore, the abundance of CAT2 and PepT1 mRNA in the yolk sac membranes was greater in the HE than in the LE on E13 (P < 0.05). Compared with the LE, the gene expression of EAAT2 in the intestine on E13 was greater in the HE, whereas the expression of EAAT3 was lower in the HE (P < 0.05). Taken together, our results suggest that egg weight influenced the composition of the eggs, embryonic development, and expression of amino acid transporter genes in the yolk sac membranes and small intestines of pigeon embryos. © 2016 Poultry Science Association Inc.

  4. Safflower and olive oil dietary treatments rescue aberrant embryonic arachidonic acid and nitric oxide metabolism and prevent diabetic embryopathy in rats.

    Science.gov (United States)

    Higa, R; White, V; Martínez, N; Kurtz, M; Capobianco, E; Jawerbaum, A

    2010-04-01

    Aberrant arachidonic acid and nitric oxide (NO) metabolic pathways are involved in diabetic embryopathy. Previous works have found diminished concentrations of PGE(2) and PGI(2) in embryos from diabetic rats, and that PGI(2) is capable of increasing embryonic PGE(2) concentrations through the activation of the nuclear receptor PPARdelta. PPARdelta activators are lipid molecules such as oleic and linoleic acids, present in high concentrations in olive and safflower oils, respectively. The aim of this study was to analyze the capability of dietary supplementation with either 6% olive or 6% safflower oils to regulate PGE(2), PGI(2) and NO concentrations in embryos and deciduas from control and diabetic rats during early organogenesis. Diabetes was induced by a single injection of streptozotocin (55 mg/kg) 1 week before mating. Animals were fed with the oil-supplemented diets from Days 0.5 to 10.5 of gestation. PGI(2) and PGE(2) were measured by EIA and NO through the evaluation of its stable metabolites nitrates-nitrites in 10.5 day embryos and deciduas. We found that the olive and safflower oil-supplemented treatments highly reduced resorption and malformation rates in diabetic animals, and that they were able to prevent maternal diabetes-induced alterations in embryonic and decidual PGI(2) and PGE(2) concentrations. Moreover, these dietary treatments prevented NO overproduction in embryos and deciduas from diabetic rats. These data indicate that in maternal diabetes both the embryo and the decidua benefit from the olive and safflower oil supplementation probably through mechanisms that involve the rescue of aberrant prostaglandin and NO generation and that prevent developmental damage during early organogenesis.

  5. Lipofection improves gene targeting efficiency in E14 TG2a mouse embryonic stem cells

    OpenAIRE

    Sandra M. López-Heydeck

    2009-01-01

    Electroporation has been the method of election for transfection of murine embryonic stem cells for over 15 years; however, it is a time consuming protocol because it requires large amounts of DNA and cells, as well as expensive and delicate equipment. Lipofection is a transfection method that requires lower amounts of cells and DNA than electroporation, and has proven to be effi cient in a large number of cell lines. It has been shown that after lipofection, mouse embryonic stem cells remain...

  6. Retinol improves bovine embryonic development in vitro

    Directory of Open Access Journals (Sweden)

    Edwards J Lannett

    2004-12-01

    Full Text Available Abstract Retinoids are recognized as important regulators of vertebrate development, cell differentiation, and tissue function. Previous studies, performed both in vivo and in vitro, indicate that retinoids influence several reproductive events, including follicular development, oocyte maturation and early embryonic development. The present study evaluated in vitro effects of retinol addition to media containing maturing bovine oocytes and developing embryos in both a low oxygen atmosphere (7% and under atmospheric oxygen conditions (20%. In the first experiment, abbatoir collected bovine oocytes were matured in the presence or absence of varying concentrations of retinol. After a 22–24 hour maturation period the oocytes were fertilized, denuded 18 hours later and cultured in a modified synthetic oviductal fluid (mSOF in a humidified atmosphere at 38.5 degrees C, 5% CO2, 7% O2 and 88% N2. Cleavage rates did not differ among control and retinol-treated oocytes in all three experiments. Addition of 5 micromolar retinol to the maturation medium (IVM tended (p

  7. Embryonal rhabdomyosarcoma of the cervix | Ocheke | African ...

    African Journals Online (AJOL)

    Embryonal rhabdomyosarcoma (sarcoma botyroides) of the cervix, which is rare, is described in a 16-yearold. The combined use of chemotherapy, radiotherapy and surgery has markedly improved survival in those with this condition. However, our patient did not benefit from this treatment modality due to late presentation ...

  8. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    Directory of Open Access Journals (Sweden)

    Florian Hiermeier

    2017-11-01

    Full Text Available Valveless pumping phenomena (peristalsis, Liebau-effect can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  9. Graphene for enhanced embryonic stem cell photo-transfection efficiency

    CSIR Research Space (South Africa)

    Mthunzi, P

    2013-04-01

    Full Text Available Due to their pluripotency properties, embryonic stem (ES) cells possess great potential in regenerative therapy. Since reported a promising tissue engineering scaffold material, here, graphene is demonstrated to significantly improve the ES cell...

  10. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  11. Bacterial cells with improved tolerance to isobutyric acid

    DEFF Research Database (Denmark)

    2017-01-01

    Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds.......Bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as isobutyric acid and related compounds, and methods of preparing and using such bacterial cells for production of isobutyric acid and related compounds....

  12. Mechanobiology of embryonic limb development.

    Science.gov (United States)

    Nowlan, Niamh C; Murphy, Paula; Prendergast, Patrick J

    2007-04-01

    Considerable evidence exists to support the hypothesis that mechanical forces have an essential role in healthy embryonic skeletal development. Clinical observations and experimental data indicate the importance of muscle contractions for limb development. However, the influence of these forces is seldom referred to in biological descriptions of bone development, and perhaps this is due to the fact that the hypothesis that mechanical forces are essential for normal embryonic skeletal development is difficult to test and elaborate experimentally in vivo, particularly in humans. Computational modeling has the potential to address this issue by simulating embryonic growth under a range of loading conditions but the potential of such models has yet to be fully exploited. In this article, we review the literature on mechanobiology of limb development in three main sections: (a) experimental alteration of the mechanical environment, (b) mechanical properties of embryonic tissues, and (c) the use of computational models. Then we analyze the main issues, and suggest how experimental and computational fields could work closer together to enhance our understanding of mechanobiology of the embryonic skeleton.

  13. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired

  14. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  15. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    Science.gov (United States)

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  16. MSX-1 gene expression and regulation in embryonic palatal tissue.

    Science.gov (United States)

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  17. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair.

    Science.gov (United States)

    Mozafari, Roghayeh; Kyrylenko, Sergiy; Castro, Mateus Vidigal; Ferreira, Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre Leite Rodrigues

    2018-01-01

    Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F + T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. The experiments indicated that

  18. Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b

    Directory of Open Access Journals (Sweden)

    Wenteng He

    2018-02-01

    Full Text Available Summary: Androgenetic haploid embryonic stem cells (AG-haESCs hold great promise for exploring gene functions and generating gene-edited semi-cloned (SC mice. However, the high incidence of self-diploidization and low efficiency of SC mouse production are major obstacles preventing widespread use of these cells. Moreover, although SC mice generation could be greatly improved by knocking out the differentially methylated regions of two imprinted genes, 50% of the SC mice did not survive into adulthood. Here, we found that the genome-wide DNA methylation level in AG-haESCs is extremely low. Subsequently, downregulation of both de novo methyltransferase Dnmt3b and other methylation-related genes was determined to be responsible for DNA hypomethylation. We further demonstrated that ectopic expression of Dnmt3b in AG-haESCs could effectively improve DNA methylation level, and the high incidence of self-diploidization could be markedly rescued. More importantly, the developmental potential of SC embryos was improved, and most SC mice could survive into adulthood. : Ectopic expression of Dnmt3b could rescue DNA methylation level in repetitive sequences of hypomethylated AG-haESCs, suppress high incidence of self-diploidization, and promote developmental potential of SC embryos, and most SC mice could survive into adulthood. Keywords: androgenetic haploid embryonic stem cells, self-diploidization, semi-cloned mice, DNA methylation, Dnmt3b

  19. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    Science.gov (United States)

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  20. How the embryonic chick brain twists

    OpenAIRE

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A.

    2016-01-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left–right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic m...

  1. Induction of murine embryonic stem cell differentiation by medicinal plant extracts

    Energy Technology Data Exchange (ETDEWEB)

    Reynertson, Kurt A. [Center for Complementary and Integrative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States); Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States); Charlson, Mary E. [Center for Complementary and Integrative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States); Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Center for Complementary and Integrative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States); Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States); Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065 (United States)

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells.

  2. Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model.

    Directory of Open Access Journals (Sweden)

    Els Willems

    Full Text Available Different animal models have been used to study the effects of prenatal protein undernutrition and the mechanisms by which these occur. In mammals, the maternal diet is manipulated, exerting both direct nutritional and indirect hormonal effects. Chicken embryos develop independent from the hen in the egg. Therefore, in the chicken, the direct effects of protein deficiency by albumen removal early during incubation can be examined. Prenatal protein undernutrition was established in layer-type eggs by the partial replacement of albumen by saline at embryonic day 1 (albumen-deprived group, compared to a mock-treated sham and a non-treated control group. At hatch, survival of the albumen-deprived group was lower compared to the control and sham group due to increased early mortality by the manipulation. No treatment differences in yolk-free body weight or yolk weight could be detected. The water content of the yolk was reduced, whereas the water content of the carcass was increased in the albumen-deprived group, compared to the control group, indicating less uptake of nutrients from the yolk. At embryonic day 16, 20 and at hatch, plasma triiodothyronine (T3, corticosterone, lactate or glucose concentrations and hepatic glycogen content were not affected by treatment. At embryonic day 20, the plasma thyroxine (T4 concentrations of the albumen-deprived embryos was reduced compared to the control group, indicating a decreased metabolic rate. Screening for differential protein expression in the liver at hatch using two-dimensional difference gel electrophoresis revealed not only changed abundance of proteins important for amino acid metabolism, but also of enzymes related to energy and glucose metabolism. Interestingly, GLUT1, a glucose transporter, and PCK2 and FBP1, two out of three regulatory enzymes of the gluconeogenesis were dysregulated. No parallel differences in gene expressions causing the differences in protein abundance could be detected

  3. Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-12-01

    The present review focuses on the role of hyaluronate (hyaluronic acid; HA) during limb and tail regeneration in amphibians and lizards mainly in relation to cells of the immune system. This non-sulfated glycosaminoglycan (GAG) increases in early stages of wound healing and blastema formation, like during limb or tail embryogenesis, when the immune system is still immature. The formation of a regenerating blastema occurs by the accumulation of mesenchymal cells displaying embryonic-like antigens and HA. This GAG adsorbs large amount of water and generates a soft tissue over 80% hydrated where mesenchymal and epithelial cells can move and interact, an obligatory passage for organ regeneration. GAGs and HA in particular rise to a high amount and coat plasma membranes of blastema cells forming a shield that likely impedes to the circulating immune cells to elicit an immune reaction against the embryonic-like antigens present on blastema cells. The evolution of limb-tail regeneration in amphibians dates back to the Devonian-Carboniferous, while tail regeneration in lizards is a more recent evolution process, possibly occurred since the Jurassic, which is unique among amniotes. Both processes are associated with the reactivation of proliferating embryonic programs that involve the upregulation of genes for Wnt, non-coding RNAs, and HA synthesis in an immune-suppress organ, the regenerative blastema. Failure of maintaining a lasting HA synthesis for the formation of a highly hydrated blastema leads to scarring, the common healing process of amniotes equipped with an efficient immune system. The study of amphibian and lizard regeneration indicates that attempts to stimulate organ regeneration in other vertebrates require the induction of a highly hydrated and immune-depressed, HA-rich environment, similar to the extracellular environment present during development. © 2017 Wiley Periodicals, Inc.

  4. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim

    2011-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However......, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed...... the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells...

  5. Effect of valproic acid on 65Zn distribution in the pregnant rat

    International Nuclear Information System (INIS)

    Keen, C.L.; Peters, J.M.; Hurley, L.S.

    1989-01-01

    The effect of valproic acid on the distribution of gavaged 65 Zn in maternal and embryonic tissue of Sprague-Dawley rats was examined 24 h after gavaging of the drug on d 13 of pregnancy. Valproic acid treatment resulted in a significantly higher retention of 65 Zn in maternal liver and lower amounts in uterus, placenta and embryos than in controls. Compared to controls, gel chromatography of maternal liver from valproic acid-treated dams showed higher 65 Zn counts associated with a protein peak of molecular weight of 6,500, the approximate molecular weight of the Zn-binding protein metallothionein. These results support the idea that the teratogenicity of valproic acid is in part due to an induction of embryonic Zn deficiency secondary to a drug-induced sequestering of Zn into maternal liver that results in a decrease in maternal plasma Zn and subsequent reduction in embryonic Zn uptake

  6. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy.

    Science.gov (United States)

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni

    2017-11-28

    Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  7. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    KAUST Repository

    Parrotta, Elvira

    2017-11-28

    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  8. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

    KAUST Repository

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Cuda, Giovanni

    2017-01-01

    Background: Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Methods: Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Results: Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm–1, which is enriched in human induced pluripotent stem cells. Conclusions: Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  9. Mallard or chicken? Comparing the isolation of avian influenza A viruses in embryonated Mallard and chicken eggs

    Directory of Open Access Journals (Sweden)

    Josef D. Järhult

    2015-09-01

    Full Text Available Background: To date, the most efficient and robust method for isolating avian influenza A viruses (IAVs is using embryonated chicken eggs (ECEs. It is known that low-pathogenic avian IAVs undergo rapid genetic changes when introduced to poultry holdings, but the factors driving mutagenesis are not well understood. Despite this, there is limited data on the effects of the standard method of virus isolation of avian-derived viruses, that is, whether isolation in ECEs causes adaptive changes in avian IAVs. Eggs from a homologous species could potentially offer an isolation vessel less prone to induce adaptive changes. Methods: We performed eight serial passages of two avian IAVs isolated from fecal samples of wild Mallards in both ECEs and embryonated Mallard eggs, and hemagglutination assay titers and hemagglutinin sequences were compared. Results: There was no obvious difference in titers between ECEs and embryonated Mallard eggs. Sequence analyses of the isolates showed no apparent difference in the rate of introduction of amino acid substitutions in the hemagglutinin gene (three substitutions in total in embryonated Mallard eggs and two substitutions in ECEs. Conclusion: Embryonated Mallard eggs seem to be good isolation vessels for avian IAVs but carry some practical problems such as limited availability and short egg-laying season of Mallards. Our study finds isolation of Mallard-derived avian IAVs in ECEs non-inferior to isolation in embryonated Mallard eggs, but more research in the area may be warranted as this is a small-scale study.

  10. A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

    Directory of Open Access Journals (Sweden)

    Reza Ebrahimzadeh-Vesal

    2014-08-01

    Conclusion: In this study, we demonstrated the in vitro generation of mouse embryonic stem cells to germ cells by using a backbone vector containing the fusion gene Stra8-EGFP. The Stra8 gene is a retinoic acid-responsive protein and is able to regulate meiotic initiation.

  11. Parental and embryonic experiences with predation risk affect prey offspring behaviour and performance.

    Science.gov (United States)

    Donelan, Sarah C; Trussell, Geoffrey C

    2018-03-14

    Because phenotypic plasticity can operate both within and between generations, phenotypic outcomes are often shaped by a complex history of environmental signals. For example, parental and embryonic experiences with predation risk can both independently and interactively influence prey offspring traits early in their life. Parental and embryonic risk experiences can also independently shape offspring phenotypes throughout an offspring's ontogeny, but the persistence of their interactive effects throughout offspring ontogeny is unknown. We examined the effects of parental and embryonic experiences with predation risk on the response of 1-year-old prey (the carnivorous snail, Nucella lapillus ) offspring to current predation risk. We found that parental and embryonic risk experiences had largely independent effects on offspring performance and that these effects were context dependent. Parental experience with risk had strong impacts on multiple offspring traits in the presence of current risk that generally improved offspring performance under risk, but embryonic risk experience had relatively weaker effects and only operated in the absence of current risk to reduce offspring growth. These results illustrate that past environmental experiences can dynamically shape organism phenotypes across ontogeny and that attention to these effects is key to a better understanding of predator/prey dynamics in natural systems. © 2018 The Author(s).

  12. The Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation

    Directory of Open Access Journals (Sweden)

    Annett Thate

    2013-10-01

    Full Text Available The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.

  13. Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish

    OpenAIRE

    Xiang, Fan; Hagos, Engda G.; Xu, Bo; Sias, Christina; Kawakami, Koichi; Burdine, Rebecca D.; Dougan, Scott T.

    2007-01-01

    In many vertebrates, extra-embryonic tissues are important signaling centers that induce and pattern the germ layers. In teleosts, the mechanism by which the extra-embryonic yolk syncytial layer (YSL) patterns the embryo is not understood. Although the Nodal-related protein Squint is expressed in the YSL, its role in this tissue is not known. We generated a series of stable transgenic lines with GFP under the control of squint genomic sequences. In all species, nodal-related genes induce thei...

  14. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    Science.gov (United States)

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  15. Induction of murine embryonic stem cell differentiation by medicinal plant extracts.

    Science.gov (United States)

    Reynertson, Kurt A; Charlson, Mary E; Gudas, Lorraine J

    2011-01-01

    Epidemiological evidence indicates that diets high in fruits and vegetables provide a measure of cancer chemoprevention due to phytochemical constituents. Natural products are a rich source of cancer chemotherapy drugs, and primarily target rapidly cycling tumor cells. Increasing evidence indicates that many cancers contain small populations of resistant, stem-like cells that have the capacity to regenerate tumors following chemotherapy and radiation, and have been linked to the initiation of metastases. Our goal is to discover natural product-based clinical or dietary interventions that selectively target cancer stem cells, inducing differentiation. We adapted an alkaline phosphatase (AP) stain to assay plant extracts for the capacity to induce differentiation in embryonic stem (ES) cells. AP is a characteristic marker of undifferentiated ES cells, and this represents a novel approach to screening medicinal plant extracts. Following a survey of approximately 100 fractions obtained from 12 species of ethnomedically utilized plants, we found fractions from 3 species that induced differentiation, decreasing AP and transcript levels of pluripotency markers (Nanog, Oct-4, Rex-1). These fractions affected proliferation of murine ES, and human embryonal, prostate, and breast carcinoma cells in a dose-dependent manner. Several phytochemical constituents were isolated; the antioxidant phytochemicals ellagic acid and gallic acid were shown to affect viability of cultured breast carcinoma cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The embryonic development of the central American wandering spider Cupiennius salei

    Directory of Open Access Journals (Sweden)

    Hilbrant Maarten

    2011-06-01

    Full Text Available Abstract Background The spider Cupiennius salei (Keyserling 1877 has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies. This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1 early differentiation of the precheliceral neuroectoderm; 2 the morphogenetic process of inversion and 3 initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the

  17. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development.

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior

  18. Peculiarities of Embryonic and Post-Embryonic Development of Оesophagostomum dentatum (Nematoda, Strongylidae Larvae Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Yevstafieva V. А.

    2017-02-01

    Full Text Available Morphometric peculiarities of the development of Оesophagostomum dentatum Rudolphi, 1803 from egg to infective larva were studied under laboratory conditions at various temperatures. The determined optimum temperature for embryonic and post-embryonic development of О. dentatum larvae from domestic pig (Sus scrofa domesticus Linnaeus, 1758 is 22 °С. At this temperature, 81 % of larvae develop to the third stage (L3 on the 10th day. Temperatures of 24 °С and 20 °С are less favorable for the development of the nematode, at those temperatures only 67 and 63 % of larvae, respectively, reached infective stage by the 10th day of cultivation. Embryonic development of О. dentatum eggs is characterized by their lengthening (by 8.87-9.50 %, р < 0.01 and widening (by 6.77-9.35 %, р < 0.05-0.01, and post-embryonic larval development is associated with lengthening (by 4.59-17.33 %, р < 0.01-0.001.

  19. Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development.

    Science.gov (United States)

    Christensen, Karen E; Hou, Wenyang; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga V; Arning, Erland; Bottiglieri, Teodoro; Caudill, Marie A; Jerome-Majewska, Loydie A; Rozen, Rima

    2016-11-01

    Moderately high folic acid intake in pregnant women has led to concerns about deleterious effects on the mother and fetus. Common polymorphisms in folate genes, such as methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) R653Q, may modulate the effects of elevated folic acid intake. We investigated the effects of moderate folic acid supplementation on reproductive outcomes and assessed the potential interaction of the supplemented diet with MTHFD1-synthetase (Mthfd1S) deficiency in mice, which is a model for the R653Q variant. Female Mthfd1S +/+ and Mthfd1S +/- mice were fed a folic acid-supplemented diet (FASD) (5-fold higher than recommended) or control diets before mating and during pregnancy. Embryos and placentas were assessed for developmental defects at embryonic day 10.5 (E10.5). Maternal folate and choline metabolites and gene expression in folate-related pathways were examined. The combination of FASD and maternal MTHFD1-synthetase deficiency led to a greater incidence of defects in E10.5 embryos (diet × maternal genotype, P = 0.0016; diet × embryonic genotype, P = 0.054). The methylenetetrahydrofolate reductase (MTHFR) protein and methylation potential [ratio of S-adenosylmethionine (major methyl donor):S-adenosylhomocysteine) were reduced in maternal liver. Although 5-methyltetrahydrofolate (methylTHF) was higher in maternal circulation, the methylation potential was lower in embryos. The presence of developmental delays and defects in Mthfd1S +/- embryos was associated with placental defects (P = 0.003). The labyrinth layer failed to form properly in the majority of abnormal placentas, which compromised the integration of the maternal and fetal circulation and presumably the transfer of methylTHF and other nutrients. Moderately higher folate intake and MTHFD1-synthetase deficiency in pregnant mice result in a lower methylation potential in maternal liver and embryos and a greater

  20. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    Science.gov (United States)

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.

  1. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...

  2. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.

    Directory of Open Access Journals (Sweden)

    Ryutaro Hirasawa

    Full Text Available The great majority of embryos generated by somatic cell nuclear transfer (SCNT display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts. The embryos retrieved from the uteri were separated into embryonic (epiblast and extraembryonic (extraembryonic ectoderm and ectoplacental cone tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs (>2-fold vs. controls than did the extraembryonic tissues (P<1.0 × 10(-26. In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1-5% per embryos transferred in our laboratory, because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.

  3. The interrelationship between bile acid and vitamin A homeostasis

    NARCIS (Netherlands)

    Saeed, Ali; Hoekstra, Mark; Hoeke, Martijn Oscar; Heegsma, Janette; Faber, Klaas Nico

    Vitamin A is a fat-soluble vitamin important for vision, reproduction, embryonic development, cell differentiation, epithelial barrier function and adequate immune responses. Efficient absorption of dietary vitamin A depends on the fat-solubilizing properties of bile acids. Bile acids are

  4. Cultivo in vitro de eixos embrionários de paricá In vitro culture of paricá embryonic axes

    Directory of Open Access Journals (Sweden)

    Iulla Naiff Rabelo de Souza Reis

    2009-02-01

    Full Text Available Objetivou-se, neste trabalho, avaliar a influência do meio de cultura MS normal e com as concentrações dos sais reduzidas à metade (½ MS, a presença de ácido giberélico (AG3 e de ácido cítrico em eixos embrionários de paricá cultivados in vitro. Os eixos embrionários foram extraídos das sementes e inoculados em meio de cultura básico MS e ½ MS, suplementados ou não com ácido cítrico (1 g.L-1 e com AG3 (3 mg.L-1, constituindo 6 tratamentos e 7 repetições. Os eixos embrionários de paricá podem ser cultivados em meio MS com metade das concentrações dos sais, não sendo necessária a adição de ácido cítrico, e a presença de 3 mg.L-1 de AG3 afetou o desenvolvimento das plântulas de paricá.The aim of this study was to evaluate the influence of normal MS culture medium and at half strength of its salts (½ MS, the presence of gibberellic acid (GA3 and citric acid on the in vitro culture of paricá embryonic axes. The embryonic axes were extracted from seeds and inoculated on basic MS and ½ MS culture media, supplemented or not with citric acid (1 g.L-1 and GA3 (3 mg.L-1, constituting 6 treatments and 7 replications. The embryonic axes of paricá may be cultivated on MS medium at half strength of its salts, the addition of citric acid not being necessary, and the presence of 3 mg.L-1 GA3 affected the development of paricá seedling.

  5. The 'ventral organs' of Pycnogonida (Arthropoda are neurogenic niches of late embryonic and post-embryonic nervous system development.

    Directory of Open Access Journals (Sweden)

    Georg Brenneis

    Full Text Available Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i immunolabeling, (ii histology and (iii scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida, the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two

  6. Aquifer restoration system improvement using an acid fluid purge

    International Nuclear Information System (INIS)

    Hodder, E.A.; Peck, C.A.

    1992-01-01

    The implementation of a water pump acid purge procedure at a free-phase liquid hydrocarbon recovery site has increased water pump operational run times and improved the effectiveness of the aquifer restoration effort. Before introduction of this technique, pumps at some locations would fail within 14 days of operation due to CaSO 4 .2H 2 O (calcium sulfate) precipitate fouling. After acid purge implementation at these locations, pump operational life improved to an average of over 110 days. Other locations, where pump failures would occur within one month, were improved to approximately six months of operation. The increase in water pump run time has also improved the liquid hydrocarbon recovery rate by 2,000 gallons per day; representing a 20% increase for the aquifer restoration system. Other concepts tested in attempts to prolong pump life included: specially designed electric submersible pumps, submersible pump shrouds intended to reduce the fluid pressure shear that enhances CaSO 4 .2H 2 O precipitation, and high volume pneumatic gas lift pumps. Due to marginal pump life improvement or other undesirable operational features, these concepts were primarily ineffective. The purge apparatus utilizes an acid pump, hose, and discharge piping to deliver the solution directly into the inlet of an operating water pump. The water pumps used for this activity require stainless steel construction with Teflon or other acid resistant bearings and seals. Purges are typically conducted before sudden discharge pressure drops (greater than 15 psig) occur for the operating water pump. Depending on volume of precipitate accumulation and pump type, discharge pressure is restored after introduction of 10 to 40 gallons of hydrochloric acid solution. The acid purge procedure outlined herein eliminates operational downtime and does not require well head pump removal and the associated costs of industry cleaning procedures

  7. G-quadruplexes as novel cis-elements controlling transcription during embryonic development.

    Science.gov (United States)

    David, Aldana P; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B

    2016-05-19

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The effect of valproic acid on rat ovarium and the protective role of ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... specific ROS that mediates valproic acid-induced toxicity. In addition, valproic acid ... from murine pluripotent embryonic stem cells through an increase in ROS (Defoort ... vitamin E and folic acid. MATERIALS AND METHODS.

  9. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  10. Wafer Cakes of Improved Amino Acid Structure

    Directory of Open Access Journals (Sweden)

    Roksolana Boidunyk

    2017-11-01

    Full Text Available The article presents the results of the study of the amino acid composition of newly developed wafer cakes with adipose fillings combined with natural additives. The appropriateness of the using non-traditional raw materials (powder of willow herb, poppy oilcake, carob, as well as skimmed milk powder in order to increase the biological value of wafer cakes and improve their amino acid composition is proven.

  11. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. The role of nanotechnology in induced pluripotent and embryonic stem cells research.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen

    2014-12-01

    This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.

  13. Bio-engineering inslulin-secreting cells from embryonic stem cells: a review of progress.

    Science.gov (United States)

    Roche, E; Sepulcre, M P; Enseñat-Waser, R; Maestre, I; Reig, J A; Soria, B

    2003-07-01

    According to the Edmonton protocol, human islet transplantation can result in insulin independency for periods longer than 3 years. However, this therapy for type 1 diabetes is limited by the scarcity of cadaveric donors. Owing to the ability of embryonic stem cells to expand in vitro and differentiate into a variety of cell types, research has focused on ways to manipulate these cells to overcome this problem. It has been demonstrated that mouse embryonic stem cells can differentiate into insulin-containing cells, restoring normoglycaemia in diabetic mice. To this end, mouse embryonic stem cells were transfected with a DNA construct that provides resistance to neomycin under the control of the regulatory regions of the human insulin gene. However, this protocol has a very low efficiency, needing improvements for this technology to be transferred to human stem cells. Optimum protocols will be instrumental in the production of an unlimited source of cells that synthesise, store and release insulin in a physiological manner. The review focuses on the alternative source of tissue offered by embryonic stem cells for regenerative medicine in diabetes and some key points that should be considered in order for a definitive protocol for in vitro differentiation to be established.

  14. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Mio, Yasuyuki

    2016-07-01

    Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.

  15. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    DEFF Research Database (Denmark)

    Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer

    2013-01-01

    Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought...... not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants....

  16. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    Science.gov (United States)

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient

  17. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.

    Science.gov (United States)

    Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E

    1987-07-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.

  18. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development

    International Nuclear Information System (INIS)

    Simeone, A.; Mavilio, F.; Acampora, D.

    1987-01-01

    Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomains identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hybridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny

  19. Nitrogen excretion during embryonic development of the green iguana, Iguana iguana (Reptilia; Squamata).

    Science.gov (United States)

    Sartori, M R; Taylor, E W; Abe, A S

    2012-10-01

    Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02 mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55 days of incubation then were unchanged until hatching. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. How the embryonic chick brain twists.

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Forsch, Nickolas; Taber, Larry A

    2016-11-01

    During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain. © 2016 The Author(s).

  1. Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells.

    Science.gov (United States)

    Linta, Leonhard; Stockmann, Marianne; Kleinhans, Karin N; Böckers, Anja; Storch, Alexander; Zaehres, Holm; Lin, Qiong; Barbi, Gotthold; Böckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2012-04-10

    Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells. © Mary Ann Liebert, Inc.

  2. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    Science.gov (United States)

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  3. Bioengineering Embryonic Stem Cell Microenvironments for the Study of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yubing Xie

    2011-11-01

    Full Text Available Breast cancer is the most prevalent disease amongst women worldwide and metastasis is the main cause of death due to breast cancer. Metastatic breast cancer cells and embryonic stem (ES cells display similar characteristics. However, unlike metastatic breast cancer cells, ES cells are nonmalignant. Furthermore, embryonic microenvironments have the potential to convert metastatic breast cancer cells into a less invasive phenotype. The creation of in vitro embryonic microenvironments will enable better understanding of ES cell-breast cancer cell interactions, help elucidate tumorigenesis, and lead to the restriction of breast cancer metastasis. In this article, we will present the characteristics of breast cancer cells and ES cells as well as their microenvironments, importance of embryonic microenvironments in inhibiting tumorigenesis, convergence of tumorigenic and embryonic signaling pathways, and state of the art in bioengineering embryonic microenvironments for breast cancer research. Additionally, the potential application of bioengineered embryonic microenvironments for the prevention and treatment of invasive breast cancer will be discussed.

  4. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development.

    Science.gov (United States)

    Rabatel, Andréane; Febvay, Gérard; Gaget, Karen; Duport, Gabrielle; Baa-Puyoulet, Patrice; Sapountzis, Panagiotis; Bendridi, Nadia; Rey, Marjolaine; Rahbé, Yvan; Charles, Hubert; Calevro, Federica; Colella, Stefano

    2013-04-10

    Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch

  5. Radiometric microassay for glutamic acid decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Maderdrut, J L [North Carolina Dept. of Mental Health, Raleigh (USA); North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1979-01-01

    A simple method for purifying L-(/sup 3/H) glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating ..gamma..-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 ..mu..g. The cation-exchange method is compared with the anion-exchange and CO/sub 2/-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis.

  6. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  7. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  8. Multidisciplinary Inquiry-Based Investigation Learning Using an Ex Ovo Chicken Culture Platform: Role of Vitamin A on Embryonic Morphogenesis

    Science.gov (United States)

    Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.

    2012-01-01

    Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…

  9. Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

    Directory of Open Access Journals (Sweden)

    Mohsen Azimi-Nezhad

    2014-05-01

    Full Text Available Vascular endothelial growth factor (VEGF is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases.

  10. The primary role of zebrafish nanog is in extra-embryonic tissue.

    Science.gov (United States)

    Gagnon, James A; Obbad, Kamal; Schier, Alexander F

    2018-01-09

    The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.

  11. An improved synthesis of carbon-14 labelled carboxylic acids from carbon-14 labelled amino acids

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Ravi, S.; Viswanathan, K.V.

    1988-01-01

    Various carbon-14 labelled amino acids including the aromatic ones viz., tyrosine, phenylalanine and tryptophan are converted to the corresponding carboxylic acids in high yield (70-90%) on a micromolar scale synthesis by reaction with hydroxyl-amine-O-sulphonic acid and in a short reaction time. The improvement in yield has been achieved by using aqeuous alcohol as solvent in lieu of water alone as the medium of reaction. (author)

  12. Pathways in pluripotency and differentiation of embryonic cells

    NARCIS (Netherlands)

    du Puy, L.

    2010-01-01

    Pluripotency - the potential to differentiate into derivatives of the three embryonic germ layers endoderm, ectoderm and mesoderm - is the main characteristic of embryonic stem (ES) cells. ES cells are derived from the inner cell mass (ICM) of a pre-implantation blastocyst and can self-renew

  13. GLI1 is involved in cell cycle regulation and proliferation of NT2 embryonal carcinoma stem cells

    DEFF Research Database (Denmark)

    Vestergaard, Janni; Lind-Thomsen, Allan; Pedersen, Mikkel W.

    2008-01-01

    of altered HH signaling are interpreted by specific cell types. We have investigated the role of the HH transcription factor glioma-associated oncogene homolog 1 (GLI1) in the human Ntera2=D1 (NT2) embryonal carcinoma stem cell line. The study revealed that expression of GLI1 and its direct transcriptional......1 phase cyclins. In conclusion, our results suggest that GLI1 is involved in cell cycle and proliferation control in the embryonal carcinoma stem cell line NT2....... target Patched (PTCH) is downregulated in the early stages of retinoic acid-induced neuronal differentiation of NT2 cells. To identify transcriptional targets of the HH transcription factor GLI1 in NT2 cells, we performed global expression profiling following GLI1 RNA interference (RNAi). Of the similar...

  14. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment

    OpenAIRE

    Yu, Xiaobing; Zou, Jizhong; Ye, Zhaohui; Hammond, Holly; Chen, Guibin; Tokunaga, Akinori; Mali, Prashant; Li, Yue-Ming; Civin, Curt; Gaiano, Nicholas; Cheng, Linzhao

    2008-01-01

    The Notch signaling pathway plays important roles in cell fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell fate choices in human embryonic stem (hES) cells. Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hES cell lines. We report here that activation of Notch signaling is required for undifferentiated hES cells to form the pr...

  15. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  16. A radiometric microassay for glutamic acid decarboxylase

    International Nuclear Information System (INIS)

    Maderdrut, J.L.; North Carolina Univ., Chapel Hill

    1979-01-01

    A simple method for purifying L-[ 3 H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO 2 -trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  17. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Mummery, C.L.; Krijgsveld, J.; Heck, A.

    2008-01-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological

  18. Childhood Central Nervous System Embryonal Tumors (PDQ®)—Health Professional Version

    Science.gov (United States)

    Pediatric CNS embryonal tumors are a collection of heterogeneous lesions (medulloblastoma, and nonmedulloblastoma). Molecular genetic studies are used to classify embryonal tumors, stratify risk, and plan treatment. Get detailed information about tumor biology, diagnosis, prognosis, and treatment of untreated and recurrent CNS embryonal tumors in this summary for clinicians.

  19. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  20. File list: Unc.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.05.AllAg.Embryonic_pancreas.bed ...

  1. File list: Unc.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Embryonic_pancreas.bed ...

  2. File list: Unc.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.10.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.10.AllAg.Embryonic_pancreas.bed ...

  3. File list: Unc.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Embryonic_pancreas mm9 Unclassified Embryo Embryonic pancreas http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Embryonic_pancreas.bed ...

  4. File list: Pol.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Embryonic_palates mm9 RNA polymerase Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Embryonic_palates.bed ...

  5. File list: Pol.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Embryonic_palates mm9 RNA polymerase Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Embryonic_palates.bed ...

  6. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations

    Directory of Open Access Journals (Sweden)

    Mathilde Couteaudier

    2015-03-01

    Full Text Available A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

  7. The effect of dietary protein on reproduction in the mare. VII. Embryonic development, early embryonic death, foetal losses and their relationship with serum progestagen

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1998-07-01

    Full Text Available Sixty-four Thoroughbred and Anglo-Arab mares aged 6-12 years were randomly allocated to 4 dietary groups and fed diets that differed in the total protein content and quality (essential amino-acids. Forty mares were non-lactating and 24 lactating. Eight mares were withdrawn from the investigation owing to injuries or gynaecological pathology. An overall conception rate of 94.6%and a foaling rate of 80%was achieved. Five of 14 (35.7 % mares (Group 1 fed a low-quality protein diet suffered from early embryonic loss before 90 days of pregnancy compared to 3 of 41 (7.3 % mares in the remaining groups that received the higher-quality protein in their diets. Serum progestagen concentrations of mares in Group 1 that suffered foetal loss were indicative of luteal function insufficiency during the 1st 40 days post-ovulation. Non-lactating mares in all 4 groups gained on average approximately 30 kg in mass during the 90 days before the breeding period. Lactating mares in Group 1 (low-quality protein lost on average 25 kg in mass during lactation, with no weight loss observed among the lactating mares in the other 3 groups. No difference in the diameter of the embryonic vesicle was found between dietary groups until Day 35 of pregnancy.

  8. File list: Oth.Emb.10.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.10.AllAg.Embryonic_palates.bed ...

  9. File list: Oth.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.20.AllAg.Embryonic_palates.bed ...

  10. File list: Oth.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.50.AllAg.Embryonic_palates.bed ...

  11. File list: Oth.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.AllAg.Embryonic_palates mm9 TFs and others Embryo Embryonic palates http...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.05.AllAg.Embryonic_palates.bed ...

  12. File list: Pol.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Embryonic_pancreas.bed ...

  13. File list: Pol.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.10.AllAg.Embryonic_pancreas.bed ...

  14. File list: Pol.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Embryonic_pancreas mm9 RNA polymerase Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Embryonic_pancreas.bed ...

  15. Raman microscopy of individual living human embryonic stem cells

    Science.gov (United States)

    Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.

    2010-04-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.

  16. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization

    OpenAIRE

    Jin, Muzi; Wu, Asga; Dorzhin, Sergei; Yue, Qunhua; Ma, Yuzhen; Liu, Dongjun

    2012-01-01

    Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts we...

  17. File list: DNS.Emb.20.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Embryonic_testis mm9 DNase-seq Embryo Embryonic testis SRX1156635 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Embryonic_testis.bed ...

  18. File list: ALL.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Embryonic_palates mm9 All antigens Embryo Embryonic palates ERX650...310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Embryonic_palates.bed ...

  19. File list: ALL.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_palates mm9 All antigens Embryo Embryonic palates ERX650...310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_palates.bed ...

  20. File list: ALL.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_palates mm9 All antigens Embryo Embryonic palates ERX650...310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_palates.bed ...

  1. File list: Pol.Emb.20.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.Embryonic_heart mm9 RNA polymerase Embryo Embryonic heart SRX11293...9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.20.AllAg.Embryonic_heart.bed ...

  2. File list: Pol.Emb.10.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Embryonic_heart mm9 RNA polymerase Embryo Embryonic heart SRX11293...9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.10.AllAg.Embryonic_heart.bed ...

  3. File list: Pol.Emb.05.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Embryonic_heart mm9 RNA polymerase Embryo Embryonic heart SRX11293...9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.AllAg.Embryonic_heart.bed ...

  4. File list: Pol.Emb.50.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Embryonic_heart mm9 RNA polymerase Embryo Embryonic heart SRX11293...9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.50.AllAg.Embryonic_heart.bed ...

  5. File list: DNS.Emb.20.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Embryonic_trunk mm9 DNase-seq Embryo Embryonic trunk SRX191030 htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Embryonic_trunk.bed ...

  6. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  7. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells

    DEFF Research Database (Denmark)

    Pines, Alex; Kelstrup, Christian D; Vrouwe, Mischa G

    2011-01-01

    (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia...... rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view...

  8. File list: His.Emb.10.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.AllAg.Embryonic_trunk mm9 Histone Embryo Embryonic trunk SRX093317,SRX09...3316 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.AllAg.Embryonic_trunk.bed ...

  9. File list: His.Emb.50.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Embryonic_trunk mm9 Histone Embryo Embryonic trunk SRX093317,SRX09...3316 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.50.AllAg.Embryonic_trunk.bed ...

  10. Evaluation Of Some Blood Biochemical And Hormonal Levels During Different Ages Of Ostrich Embryonic Development

    International Nuclear Information System (INIS)

    ELSAYED, M.A.; FARGHALY, H.A.M.; MAHROSE, KH.

    2010-01-01

    Eighty ostrich eggs were collected from the breeding flock at the ostrich farm in the Nuclear Research Centre, Atomic Energy Authority, Inshas, Sharkia Governorate, Egypt, during the period from March to May 2008 to evaluate some blood constituents during ostrich embryonic development. All adult birds were kept under the same managerial, hygienic and environmental conditions and had 2.1 kg palletized feed per bird per day. Eggs were collected at 15.00 pm each day. Eggs were washed and weighed on an electric balance(±)0.01 g.The eggs were placed in the setter for 39 days at 36.5 0 C and 25 % relative humidity. After 39 days, eggs were transferred to hatcher machine at 35.5 0 C and 40 - 45 % relative humidity until hatch. Blood samples were collected at days 21, 28, 35 and 39 of embryonic development and at one day age after 12 hours of hatch. Serum total protein, albumin, globulin, creatinine, urea and uric acid levels were determined. Serum aspartate transaminase and alanine transaminase, total cholesterol, triglycerides and triiodothyronine levels were estimated. The results showed that chicks of one day old and older embryos of ostriches had significant higher values of serum blood components than younger embryos.On the other hand, blood serum cholesterol level was decreased significantly with age advancement during embryonic development and as well as chicks of one day old.

  11. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation.

    Science.gov (United States)

    Handschel, Jörg; Naujoks, Christian; Depprich, Rita; Lammers, Lydia; Kübler, Norbert; Meyer, Ulrich; Wiesmann, Hans-Peter

    2011-07-14

    Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin. © 2011 Handschel et al; licensee BioMed Central Ltd.

  12. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    Directory of Open Access Journals (Sweden)

    Meyer Ulrich

    2011-07-01

    Full Text Available Abstract Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG. After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin.

  13. File list: Oth.Emb.50.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.embryonic_skin mm9 TFs and others Embryo embryonic skin SRX1062971...,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.50.AllAg.embryonic_skin.bed ...

  14. File list: Oth.Emb.20.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.embryonic_skin mm9 TFs and others Embryo embryonic skin SRX1062971...,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.20.AllAg.embryonic_skin.bed ...

  15. File list: Oth.Emb.10.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.embryonic_skin mm9 TFs and others Embryo embryonic skin SRX1062971...,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.10.AllAg.embryonic_skin.bed ...

  16. File list: Oth.Emb.05.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.AllAg.embryonic_skin mm9 TFs and others Embryo embryonic skin SRX1062971...,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.05.AllAg.embryonic_skin.bed ...

  17. File list: DNS.Emb.10.AllAg.Embryonic_limb [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Embryonic_limb mm9 DNase-seq Embryo Embryonic limb SRX191032,SRX19...1037 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.10.AllAg.Embryonic_limb.bed ...

  18. File list: Oth.Emb.05.AllAg.Embryonic_face [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.AllAg.Embryonic_face mm9 TFs and others Embryo Embryonic face SRX330164,...SRX139877 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.05.AllAg.Embryonic_face.bed ...

  19. File list: Unc.Emb.20.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.Embryonic_heart mm9 Unclassified Embryo Embryonic heart SRX248279,...SRX190172,SRX112936,SRX022494 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.20.AllAg.Embryonic_heart.bed ...

  20. File list: Unc.Emb.50.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.50.AllAg.Embryonic_heart mm9 Unclassified Embryo Embryonic heart SRX248279,...SRX190172,SRX112936,SRX022494 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Emb.50.AllAg.Embryonic_heart.bed ...

  1. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.

  2. Generation of hematopoietic lineage cells from embryonic like cells

    Directory of Open Access Journals (Sweden)

    Gholam Reza Khamisipour

    2014-10-01

    Full Text Available Background: Epigenetic reprogramming of somatic cells into embryonic stem cells has attracted much attention, because of the potential for stem cell transplantation and compatibility with recipient. However, the therapeutic application of either nuclear transfer or nuclear fusion of somatic cell has been hindered by technical complications as well as ethical objections. Recently, a new method is reported whereby ectopic expression of embryonic specific transcription factors was shown to induce fibroblasts to become embryonic like SCs (induced pluripotent stem cells. A major limitation of this method is the use of potentially harmful genome integrating viruses such as reto- or lentivirus. The main aim of this investigation was generation of human hematopoietic stem cells from induced fibroblasts by safe adenovectors carrying embryonically active genes. Material and Methods: Isolated fibroblasts from foreskin were expanded and recombinant adenoviruses carrying human Sox2, Oct4, Klf4, cMyc genes were added to culture. After formation of embryonic like colonies and cell expansion, they were transferred to embryonic media without bFGF, and embryoid bodies were cultured on stromal and non-stromal differentiation media for 14 days. Results: Expression of CD34 gene and antigenic markers, CD34, CD38 & CD133 in stromal culture showed significant difference with non-differentiation and non-stromal media. Conclusion: These findings show high hematopoietic differentiation rate of Adeno-iPS cells in stromal culture and no need to use growth factors. While, there was no difference between non-differentiation and non-stromal media.

  3. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube

    NARCIS (Netherlands)

    Fijnvandraat, Arnoud C.; van Ginneken, Antoni C. G.; de Boer, Piet A. J.; Ruijter, Jan M.; Christoffels, Vincent M.; Moorman, Antoon F. M.; Lekanne Deprez, Ronald H.

    2003-01-01

    OBJECTIVE: After formation of the linear heart tube a chamber-specific program of gene expression becomes active that underlies the formation of the chamber myocardium. To assess whether this program is recapitulated in in vitro differentiated embryonic stem cells, we performed qualitative and

  4. CNS embryonal tumours: WHO 2016 and beyond.

    Science.gov (United States)

    Pickles, J C; Hawkins, C; Pietsch, T; Jacques, T S

    2018-02-01

    Embryonal tumours of the central nervous system (CNS) present a significant clinical challenge. Many of these neoplasms affect young children, have a very high mortality and therapeutic strategies are often aggressive with poor long-term outcomes. There is a great need to accurately diagnose embryonal tumours, predict their outcome and adapt therapy to the individual patient's risk. For the first time in 2016, the WHO classification took into account molecular characteristics for the diagnosis of CNS tumours. This integration of histological features with genetic information has significantly changed the diagnostic work-up and reporting of tumours of the CNS. However, this remains challenging in embryonal tumours due to their previously unaccounted tumour heterogeneity. We describe the recent revisions made to the 4th edition of the WHO classification of CNS tumours and review the main changes, while highlighting some of the more common diagnostic testing strategies. © 2017 British Neuropathological Society.

  5. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  6. File list: His.Emb.20.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.AllAg.embryonic_skin mm9 Histone Embryo embryonic skin SRX1062969,SRX106...2968,SRX1062966,SRX1062965 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.20.AllAg.embryonic_skin.bed ...

  7. File list: His.Emb.50.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.embryonic_skin mm9 Histone Embryo embryonic skin SRX1062969,SRX106...2968,SRX1062966,SRX1062965 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.50.AllAg.embryonic_skin.bed ...

  8. File list: His.Emb.05.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.05.AllAg.embryonic_skin mm9 Histone Embryo embryonic skin SRX1062965,SRX106...2966,SRX1062968,SRX1062969 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.05.AllAg.embryonic_skin.bed ...

  9. Are there factors preventing cancer development during embryonic life

    International Nuclear Information System (INIS)

    Einhorn, L.

    1983-01-01

    On the basis of the following literature observations, a hypothesis is advanced that the development of cancer is actively inhibited during embryonic life. Although the processes of cell differentiation and proliferation are - without comparison - most pronounced during embryonic life, cancer is rarely found in the newborn and is seldom a cause of neonatal death or spontaneous abortion. Attempts to induce cancer in early-stage animal embryos by irradiation or by transplacental chemical carcinogenesis have been unsuccessful, even when exposed animals have been observed throughout their lifetime. After the period of major organogenesis, however, the embryos become susceptible to carcinogenesis. In humans, the most common embryonic tumors arise in tissues which have an unusually late ongoing development and are still partly immature at or shortly before birth. For many human embryonic tumors the survival rates are higher, and spontaneous regression more frequent, in younger children, i.e. prognosis is age-dependent. Thus, although cancer generally appears in tissues capable of proliferation and differentiation, induction of malignancy in the developmentally most active tissues seems to be beset with difficulty. One possible explanation for this paradox could be that cancer is controlled by the regulators influencing development, regulators that are most active during embryonic life. (Auth.)

  10. Tension (re)builds: Biophysical mechanisms of embryonic wound repair.

    Science.gov (United States)

    Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Endolymphatic potassium of the chicken vestibule during embryonic development.

    Science.gov (United States)

    Masetto, Sergio; Zucca, Giampiero; Bottà, Luisa; Valli, Paolo

    2005-08-01

    The endolymph fills the lumen of the inner ear membranous labyrinth. Its ionic composition is unique in vertebrates as an extracellular fluid for its high-K(+)/low-Na(+) concentration. The endolymph is actively secreted by specialized cells located in the vestibular and cochlear epithelia. We have investigated the early phases of endolymph secretion by measuring the endolymphatic K(+) concentration in the chicken vestibular system during pre-hatching development. Measurements were done by inserting K(+)-selective microelectrodes in chicken embryo ampullae dissected at different developmental stages from embryonic day 9 up to embryonic day 21 (day of hatching). We found that the K(+) concentration is low (<10mM/L) up to embryonic day 11, afterward it increases steeply to reach a plateau level of about 140 mM/L at embryonic day 19--21. We have developed a short-term in vitro model of endolymph secretion by culturing vestibular ampullae dissected from embryonic day 11 chicken embryos for a few days. The preparation reproduced a double compartment system where the luminal K(+) concentration increased along with the days of culturing. This model could be important for (1) investigating the development of cellular mechanisms contributing to endolymph homeostasis and (2) testing compounds that influence those mechanisms.

  12. Improving a natural enzyme activity through incorporation of unnatural amino acids.

    Science.gov (United States)

    Ugwumba, Isaac N; Ozawa, Kiyoshi; Xu, Zhi-Qiang; Ely, Fernanda; Foo, Jee-Loon; Herlt, Anthony J; Coppin, Chris; Brown, Sue; Taylor, Matthew C; Ollis, David L; Mander, Lewis N; Schenk, Gerhard; Dixon, Nicholas E; Otting, Gottfried; Oakeshott, John G; Jackson, Colin J

    2011-01-19

    The bacterial phosphotriesterases catalyze hydrolysis of the pesticide paraoxon with very fast turnover rates and are thought to be near to their evolutionary limit for this activity. To test whether the naturally evolved turnover rate could be improved through the incorporation of unnatural amino acids and to probe the role of peripheral active site residues in nonchemical steps of the catalytic cycle (substrate binding and product release), we replaced the naturally occurring tyrosine amino acid at position 309 with unnatural L-(7-hydroxycoumarin-4-yl)ethylglycine (Hco) and L-(7-methylcoumarin-4-yl)ethylglycine amino acids, as well as leucine, phenylalanine, and tryptophan. Kinetic analysis suggests that the 7-hydroxyl group of Hco, particularly in its deprotonated state, contributes to an increase in the rate-limiting product release step of substrate turnover as a result of its electrostatic repulsion of the negatively charged 4-nitrophenolate product of paraoxon hydrolysis. The 8-11-fold improvement of this already highly efficient catalyst through a single rationally designed mutation using an unnatural amino acid stands in contrast to the difficulty in improving this native activity through screening hundreds of thousands of mutants with natural amino acids. These results demonstrate that designer amino acids provide easy access to new and valuable sequence and functional space for the engineering and evolution of existing enzyme functions.

  13. Ethical and regulatory aspects of embryonic stem cell research.

    Science.gov (United States)

    Jain, Kewal K

    2002-12-01

    Ethical and regulatory issues concerning embryonic stem (ES) cell research are reviewed here a year after the controversy became a public and political issue in the US. The background of various issues are examined and the current regulations in various countries are reviewed. In the US, the debate is linked with abortion, as well as the status of a fetus as a human being, and is politically driven. Obtaining stem cells from embryonic tissues involves destruction of the embryo, to which objections are raised. Religious beliefs are examined and no serious impediments to ES cell research could be identified. Regulations vary from one country to another and it is unlikely that there will ever be any universally uniform ethical and regulatory standards for ES cell research. Currently, the most liberal and favourable environments for ES cell research are in the UK, Singapore, Sweden, India, Israel and China. Unless the US liberalises ES cell research, it may lose its lead in ES cell research and investments in this area may drift to countries with better environments for research. Suggestions are offered in this review to improve the ethical environment for ES cell research.

  14. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  15. In vitro differentiation of mouse embryonic stem cells into functional ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... hepatocyte transplantation therapy and toxicity screening in drug discovery. Key words: Embryonic stem cells, hepatic-like cells, in vitro differentiation, sodium butyrate, ... from embryonic stem (ES) cell or induced pluripotent.

  16. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    Science.gov (United States)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  17. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    Science.gov (United States)

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. File list: ALL.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87023,SRX287022,SRX287021,SRX287020,SRX287016,SRX287026,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_pancreas.bed ...

  19. File list: Oth.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.AllAg.Embryonic_pancreas mm9 TFs and others Embryo Embryonic pancreas SR...X287017,SRX287023,SRX287022,SRX287021,SRX287020,SRX287016 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.05.AllAg.Embryonic_pancreas.bed ...

  20. File list: ALL.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87021,SRX287020,SRX287023,SRX287016,SRX287022,SRX287026,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_pancreas.bed ...

  1. File list: Oth.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.Embryonic_pancreas mm9 TFs and others Embryo Embryonic pancreas SR...X287021,SRX287020,SRX287023,SRX287016,SRX287022,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.50.AllAg.Embryonic_pancreas.bed ...

  2. File list: Oth.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Embryonic_pancreas mm9 TFs and others Embryo Embryonic pancreas SR...X287023,SRX287022,SRX287021,SRX287020,SRX287016,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.20.AllAg.Embryonic_pancreas.bed ...

  3. File list: Oth.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.Embryonic_pancreas mm9 TFs and others Embryo Embryonic pancreas SR...X287023,SRX287022,SRX287020,SRX287021,SRX287016,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.10.AllAg.Embryonic_pancreas.bed ...

  4. File list: ALL.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87023,SRX287022,SRX287020,SRX287021,SRX287016,SRX287017,SRX287026 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_pancreas.bed ...

  5. File list: ALL.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87017,SRX287023,SRX287022,SRX287021,SRX287026,SRX287020,SRX287016 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Embryonic_pancreas.bed ...

  6. Embryonic kidney function in a chronic renal failure model in rodents.

    Science.gov (United States)

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  7. Formation of sulphite, cysteic acid and taurine from sulphate by the egg embryo; Formation de sulfite, d'acide cysteique et de taurine a partir de sulfate par l'oeuf embryonne

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F; Fromageot, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    It is shown that the formation of taurine from sulphate by the chicken embryo involves the reduction of sulphate to sulphite (I), the synthesis of cysteic acid (II) and its decarboxylation (Ill). The reaction (I) takes place in the vitellin sac. The reaction (II) results from the condensation of the sulphite with a-amino-acrylic acid and is carried out by the yolk. The enzymes responsible for the decarboxylation (III) are distributed both in the embryo and in its appendages. (author) [French] On demontre que la formation de taurine a partir de sulfate par l'embryon de poulet implique la reduction du sulfate en sulfite (1), la synthese de l'acide cysteique (Il) et sa decarboxylation (III). La reaction (I) a lieu dans le sac vitellin. La reaction (II) resulte de la condensation du sulfite avec l'acide a-amino-acrylique et est realisee par le jaune. Les enzymes assurant la decarboxylation (III) sont repartis aussi bien dans l'embryon que dans ses annexes. (auteur)

  8. The ethics of patenting human embryonic stem cells.

    Science.gov (United States)

    Chapman, Audrey R

    2009-09-01

    Just as human embryonic stem cell research has generated controversy about the uses of human embryos for research and therapeutic applications, human embryonic stem cell patents raise fundamental ethical issues. The United States Patent and Trademark Office has granted foundational patents, including a composition of matter (or product) patent to the Wisconsin Alumni Research Foundation (WARF), the University of Wisconsin-Madison's intellectual property office. In contrast, the European Patent Office rejected the same WARF patent application for ethical reasons. This article assesses the appropriateness of these patents placing the discussion in the context of the deontological and consequentialist ethical issues related to human embryonic stem cell patenting. It advocates for a patent system that explicitly takes ethical factors into account and explores options for new types of intellectual property arrangements consistent with ethical concerns.

  9. File list: ALL.Emb.20.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_testis mm9 All antigens Embryo Embryonic testis SRX14917...57137,SRX1156635,SRX149168,SRX149172,SRX1175150,SRX149166,SRX149170,SRX1175149 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_testis.bed ...

  10. File list: ALL.Emb.10.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_testis mm9 All antigens Embryo Embryonic testis SRX14917...9169,SRX149166,SRX1175147,SRX957137,SRX1175148,SRX149170,SRX1175150,SRX1175149 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_testis.bed ...

  11. File list: ALL.Emb.50.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.embryonic_skin mm9 All antigens Embryo embryonic skin SRX1062969,S...RX1062968,SRX1062966,SRX1062967,SRX1062972,SRX1062971,SRX1062970,SRX1062965 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.embryonic_skin.bed ...

  12. File list: ALL.Emb.20.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.embryonic_skin mm9 All antigens Embryo embryonic skin SRX1062969,S...RX1062968,SRX1062966,SRX1062971,SRX1062967,SRX1062972,SRX1062965,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.embryonic_skin.bed ...

  13. File list: ALL.Emb.10.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.embryonic_skin mm9 All antigens Embryo embryonic skin SRX1062972,S...RX1062971,SRX1062966,SRX1062969,SRX1062968,SRX1062965,SRX1062967,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.embryonic_skin.bed ...

  14. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.

    Science.gov (United States)

    Lee, Jinsuk J; Crook, Nathan; Sun, Jie; Alper, Hal S

    2016-01-01

    Polylactic acid (PLA) is an important renewable polymer, but current processes for producing its precursor, lactic acid, suffer from process inefficiencies related to the use of bacterial hosts. Therefore, improving the capacity of Saccharomyces cerevisiae to produce lactic acid is a promising approach to improve industrial production of lactic acid. As one such improvement required, the lactic acid tolerance of yeast must be significantly increased. To enable improved tolerance, we employed an RNAi-mediated genome-wide expression knockdown approach as a means to rapidly identify potential genetic targets. In this approach, several gene knockdown targets were identified which confer increased acid tolerance to S. cerevisiae BY4741, of which knockdown of the ribosome-associated chaperone SSB1 conferred the highest increase (52%). This target was then transferred into a lactic acid-overproducing strain of S. cerevisiae CEN.PK in the form of a knockout and the resulting strain demonstrated up to 33% increased cell growth, 58% increased glucose consumption, and 60% increased L-lactic acid production. As SSB1 contains a close functional homolog SSB2 in yeast, this result was counterintuitive and may point to as-yet-undefined functional differences between SSB1 and SSB2 related to lactic acid production. The final strain produced over 50 g/L of lactic acid in under 60 h of fermentation.

  15. File list: InP.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Embryonic_palates mm9 Input control Embryo Embryonic palates http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.05.AllAg.Embryonic_palates.bed ...

  16. File list: InP.Emb.10.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Embryonic_palates mm9 Input control Embryo Embryonic palates http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.10.AllAg.Embryonic_palates.bed ...

  17. File list: InP.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Embryonic_palates mm9 Input control Embryo Embryonic palates http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.20.AllAg.Embryonic_palates.bed ...

  18. File list: InP.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_palates mm9 Input control Embryo Embryonic palates http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_palates.bed ...

  19. File list: NoD.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Embryonic_pancreas mm9 No description Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.10.AllAg.Embryonic_pancreas.bed ...

  20. File list: NoD.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Embryonic_pancreas mm9 No description Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.05.AllAg.Embryonic_pancreas.bed ...

  1. File list: NoD.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Embryonic_pancreas mm9 No description Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.20.AllAg.Embryonic_pancreas.bed ...

  2. File list: NoD.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Embryonic_pancreas mm9 No description Embryo Embryonic pancreas ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.50.AllAg.Embryonic_pancreas.bed ...

  3. File list: ALL.Emb.20.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX112938,...7,SRX967654,SRX967653,SRX1100404,SRX244285,SRX112936,SRX1100405,SRX022494,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_heart.bed ...

  4. File list: ALL.Emb.05.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX967652,...4,SRX1437348,SRX377683,SRX377685,SRX377687,SRX190172,SRX244285,SRX1100405,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Embryonic_heart.bed ...

  5. File list: ALL.Emb.50.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX112938,...52,SRX967653,SRX112936,SRX1100405,SRX112937,SRX185857,SRX244285,SRX022494,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_heart.bed ...

  6. File list: ALL.Emb.10.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX1437350...RX1437340,SRX1437357,SRX1437344,SRX1437336,SRX1437356,SRX377685,SRX022494,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_heart.bed ...

  7. File list: InP.Emb.50.AllAg.Embryonic_flank [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_flank mm9 Input control Embryo Embryonic flank SRX804059... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_flank.bed ...

  8. File list: InP.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Embryonic_pancreas mm9 Input control Embryo Embryonic pancreas SRX...287026 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.05.AllAg.Embryonic_pancreas.bed ...

  9. File list: InP.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_pancreas mm9 Input control Embryo Embryonic pancreas SRX...287026 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_pancreas.bed ...

  10. File list: InP.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Embryonic_pancreas mm9 Input control Embryo Embryonic pancreas SRX...287026 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.10.AllAg.Embryonic_pancreas.bed ...

  11. File list: InP.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Embryonic_pancreas mm9 Input control Embryo Embryonic pancreas SRX...287026 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.20.AllAg.Embryonic_pancreas.bed ...

  12. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    Science.gov (United States)

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  13. File list: NoD.Emb.10.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Embryonic_palates mm9 No description Embryo Embryonic palates ERX6...50310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.10.AllAg.Embryonic_palates.bed ...

  14. File list: NoD.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Embryonic_palates mm9 No description Embryo Embryonic palates ERX6...50310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.50.AllAg.Embryonic_palates.bed ...

  15. File list: NoD.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Embryonic_palates mm9 No description Embryo Embryonic palates ERX6...50310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.05.AllAg.Embryonic_palates.bed ...

  16. Role of adiponectin in delayed embryonic development of the short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2014-12-01

    The aim of this study was to evaluate the role of adiponectin in the delayed embryonic development of Cynopterus sphinx. Adiponectin receptor (ADIPOR1) abundance was first observed to be lower during the delayed versus non-delayed periods of utero-embryonic unit development. The effects of adiponectin treatment on embryonic development were then evaluated during the period of delayed development. Exogenous treatment increased the in vivo rate of embryonic development, as indicated by an increase in weight, ADIPOR1 levels in the utero-embryonic unit, and histological changes in embryonic development. Treatment with adiponectin during embryonic diapause showed a significant increase in circulating progesterone and estradiol concentrations, and in production of their receptors in the utero-embryonic unit. The adiponectin-induced increase in estradiol synthesis was correlated with increased cell survival (BCL2 protein levels) and cell proliferation (PCNA protein levels) in the utero-embryonic unit, suggesting an indirect effect of adiponectin via estradiol synthesis by the ovary. An in vitro study further confirmed the in vivo findings that adiponectin treatment increases PCNA levels together with increased uptake of glucose by increasing the abundance of glucose transporter 8 (GLUT8) in the utero-embryonic unit. The in vitro study also revealed that adiponectin, together with estradiol but not alone, significantly increased ADIPOR1 protein levels. Thus, adiponectin works in concert with estradiol to increase glucose transport to the utero-embryonic unit and promote cell proliferation, which together accelerate embryonic development. © 2014 Wiley Periodicals, Inc.

  17. Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism.

    Directory of Open Access Journals (Sweden)

    John K Meissen

    Full Text Available Induced pluripotent stem cells are different from embryonic stem cells as shown by epigenetic and genomics analyses. Depending on cell types and culture conditions, such genetic alterations can lead to different metabolic phenotypes which may impact replication rates, membrane properties and cell differentiation. We here applied a comprehensive metabolomics strategy incorporating nanoelectrospray ion trap mass spectrometry (MS, gas chromatography-time of flight MS, and hydrophilic interaction- and reversed phase-liquid chromatography-quadrupole time-of-flight MS to examine the metabolome of induced pluripotent stem cells (iPSCs compared to parental fibroblasts as well as to reference embryonic stem cells (ESCs. With over 250 identified metabolites and a range of structurally unknown compounds, quantitative and statistical metabolome data were mapped onto a metabolite networks describing the metabolic state of iPSCs relative to other cell types. Overall iPSCs exhibited a striking shift metabolically away from parental fibroblasts and toward ESCs, suggestive of near complete metabolic reprogramming. Differences between pluripotent cell types were not observed in carbohydrate or hydroxyl acid metabolism, pentose phosphate pathway metabolites, or free fatty acids. However, significant differences between iPSCs and ESCs were evident in phosphatidylcholine and phosphatidylethanolamine lipid structures, essential and non-essential amino acids, and metabolites involved in polyamine biosynthesis. Together our findings demonstrate that during cellular reprogramming, the metabolome of fibroblasts is also reprogrammed to take on an ESC-like profile, but there are select unique differences apparent in iPSCs. The identified metabolomics signatures of iPSCs and ESCs may have important implications for functional regulation of maintenance and induction of pluripotency.

  18. PTBP1 is required for embryonic development before gastrulation.

    Science.gov (United States)

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  19. File list: InP.Emb.20.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.embryonic_skin mm9 Input control Embryo embryonic skin SRX1062967,...SRX1062972 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.20.AllAg.embryonic_skin.bed ...

  20. File list: InP.Emb.10.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.embryonic_skin mm9 Input control Embryo embryonic skin SRX1062972,...SRX1062967 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.10.AllAg.embryonic_skin.bed ...

  1. File list: InP.Emb.50.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.embryonic_skin mm9 Input control Embryo embryonic skin SRX1062967,...SRX1062972 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.embryonic_skin.bed ...

  2. File list: InP.Emb.50.AllAg.Embryonic_eye [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_eye mm9 Input control Embryo Embryonic eye SRX804057,SRX...804055 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_eye.bed ...

  3. File list: NoD.Emb.20.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Embryonic_trunk mm9 No description Embryo Embryonic trunk ERX40226...7,ERX402264 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.20.AllAg.Embryonic_trunk.bed ...

  4. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  5. Regulation and patterns of endogenous and exogenous gene expression during differentiation of embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Astigiano, S.; Sherman, M.I.; Abarzua, P.

    1989-01-01

    Embryonal carcinoma (EC) cells offer an interesting model system for evaluating differentiation because the cells are pluripotent, thus resembling germ cells and embryonic stem cells, and because a number of agents have been defined that are capable of promoting the differentiation of these cells. This chapter examines how EC cells might be triggered to differentiate, with emphasis on retinoic acid because this compound is a potent, naturally occurring inducer that has been studied extensively in this system. The nature of alterations in gene expression during EC cell differentiation is reviewed from the perspective of evaluating whether these changes are likely to be responsible for, or a result of, the differentiation event. Finally, the authors consider in molecular terms why EC cells, but not their differentiated derivatives, are refractory to the expression of many viral genomes following infection. Based upon these studies, they propose that fundamental changes in gene expression that are observed when differentiation is triggered in EC cells are likely to be due to the disappearance or neutralization of strong repressor elements

  6. File list: NoD.Emb.10.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.10.AllAg.Embryonic_heart mm9 No description Embryo Embryonic heart SRX11004...02,SRX1100404,SRX1100405 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.10.AllAg.Embryonic_heart.bed ...

  7. File list: NoD.Emb.20.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Embryonic_heart mm9 No description Embryo Embryonic heart SRX11004...02,SRX1100404,SRX1100405 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.20.AllAg.Embryonic_heart.bed ...

  8. File list: NoD.Emb.05.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.05.AllAg.Embryonic_heart mm9 No description Embryo Embryonic heart SRX11004...04,SRX1100402,SRX1100405 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.05.AllAg.Embryonic_heart.bed ...

  9. File list: NoD.Emb.50.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.50.AllAg.Embryonic_heart mm9 No description Embryo Embryonic heart SRX11004...02,SRX1100404,SRX1100405 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.50.AllAg.Embryonic_heart.bed ...

  10. A toolbox to explore the mechanics of living embryonic tissues

    Science.gov (United States)

    Campàs, Otger

    2016-01-01

    The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360

  11. Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A

    2009-12-01

    The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.

  12. File list: InP.Emb.50.AllAg.Embryonic_limb [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_limb mm9 Input control Embryo Embryonic limb SRX804047,S...69,SRX083262,SRX083272 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_limb.bed ...

  13. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  14. Maternal Embryonic Leucine Zipper Kinase (MELK: A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

    Directory of Open Access Journals (Sweden)

    Pengfei Jiang

    2013-10-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.

  15. Impact of nutritional stress on early embryonic survival

    Directory of Open Access Journals (Sweden)

    Sukanta Mondal

    2015-09-01

    Full Text Available Background: Low reproductive efficiency is the most critical problem faced by the livestock industry across the globe. Early embryonic loss is one the major cause of poor reproductive efficiency resulting in delayed pregnancy, fewer calves born, reduced milk production, slower genetic progress and substantial financial loss to the beef or dairy industry. The establishment of pregnancy results from the interaction between the embryo and the dam and is the culmination of a series of events initiated with development of the follicle and gametes. Among numerous internal and external factors nutrition has the potency to alter the micro-environment of the oocyte and the embryo, making it more hostile to optimal fertilization and pre-implantation embryonic growth. Understanding the impact of nutritional stress on oocyte function, embryo development and reciprocal signaling networks between the embryo and uterus will lead to alleviation of the problems of early embryonic mortality.

  16. alpha-Ketoglutarate application in hemodialysis patients improves amino acid metabolism.

    Science.gov (United States)

    Riedel, E; Nündel, M; Hampl, H

    1996-01-01

    In hemodialysis patients, free amino acids and alpha-ketoacids in plasma were determined by fluorescence HPLC to assess the effect of alpha-ketoglutarate administration in combination with the phosphate binder calcium carbonate on the amino acid metabolism. During 1 year of therapy in parallel to inorganic phosphate, urea in plasma decreased significantly, histidine, arginine and proline as well as branched chain alpha-ketoacids, in particular alpha-ketoisocaproate, a regulator of protein metabolism, increased. Thus, administration of alpha-ketoglutarate with calcium carbonate effectively improves amino acid metabolism in hemodialysis patients as it decreases hyperphosphatemia.

  17. Chromatin in embryonic stem cell neuronal differentiation.

    Science.gov (United States)

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  18. Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice

    DEFF Research Database (Denmark)

    Serup, Palle; Gustavsen, Carsten; Klein, Tino

    2012-01-01

    Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent...... extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can...

  19. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells.

    Science.gov (United States)

    Lefevre, James G; Chiu, Han S; Combes, Alexander N; Vanslambrouck, Jessica M; Ju, Ali; Hamilton, Nicholas A; Little, Melissa H

    2017-03-15

    Human pluripotent stem cells, after directed differentiation in vitro , can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation. © 2017. Published by The Company of Biologists Ltd.

  20. E1A FUNCTIONS AS A COACTIVATOR OF RETINOIC ACID-DEPENDENT RETINOIC ACID RECEPTOR-BETA-2 PROMOTER ACTIVATION

    NARCIS (Netherlands)

    KRUYT, FAE; FOLKERS, GE; WALHOUT, AJM; VANDERLEEDE, BM; VANDERSAAG, PT; Kruyt, Frank

    The retinoic acid (RA) receptor (RAR) beta2 promoter is strongly activated by RA in embryonal carcinoma (EC) cells. We examined this activation in the P19 EC-derived END-2 cell line and in E1A-expressing counterparts and found strong RA-dependent RARbeta2 promoter activation in the E1A-expressing

  1. Periconceptional maternal one-carbon biomarkers are associated with embryonic development according to the Carnegie stages.

    Science.gov (United States)

    Parisi, F; Rousian, M; Koning, A H J; Willemsen, S P; Cetin, I; Steegers-Theunissen, R P M

    2017-03-01

    .15; -0.01), P < 0.05). High tHcy concentrations (+2SD, 10.4 µmol/l) were associated with a delay of 1.6 days (95% CI: 1.5-1.7) in embryonic development compared with low concentrations (-2SD, 3.0 µmol/l). The study was performed in a tertiary care center, resulting in high rates of folic acid supplement use and comorbidity that may reduce the external validity of our findings. In periconceptional care, maternal I-C biomarkers should be taken into account as predictors of embryonic morphological development. Combining embryonic size measurements with morphological assessment could better define normal embryonic development. The work was funded by the Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands. RPMST is CSO of the startup company Slimmere Zorg and CEO of eHealth Care Solutions. The authors declare no conflicts of interest. Not applicable. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    Science.gov (United States)

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  3. File list: InP.Emb.10.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Embryonic_testis mm9 Input control Embryo Embryonic testis SRX1491...74,SRX149168,SRX957136,SRX149172,SRX149166,SRX1175150,SRX1175149 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.10.AllAg.Embryonic_testis.bed ...

  4. File list: InP.Emb.50.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_testis mm9 Input control Embryo Embryonic testis SRX1491...74,SRX149168,SRX149172,SRX1175150,SRX149166,SRX957136,SRX1175149 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_testis.bed ...

  5. Effects of Exogenous Oxytocin on Embryonic Survival in Cows

    Directory of Open Access Journals (Sweden)

    A. Yildiz

    2006-01-01

    Full Text Available The aim of this study was to evaluate the effect of oxytocin on embryonic survival in dairy cows. Pregnancy was verified using the early pregnancy factor (EPF activity on Day 4 after artificial insemination (AI. Pregnant cows were randomly allotted to two groups: treated (n = 8 and control (n = 8. Oxytocin (100 IU, 5 ml, DIF Turkey was administered twice daily by intravenous injections to treated cows and sterile saline (5 ml to control cows immediately before milking on days 4 to 7 after AI. Blood samples were taken via jugular vein every day from day 4 to 8 and every other day until Day 20 following insemination to evaluate the effect of oxytocin on embryonic survival. The embryonic loss was diagnosed in 3 of the 8 cows treated with oxytocin, and embryonic survival rate was 62.5% in this group versus 87.5% in controls. Short cycles occurred in 37.5% of oxytocin-treated cows. At the same time their serum progesterone concentrations rose more slowly than in controls. It was concluded that cows administered oxytocin on days 4 to 7 after insemination are at a higher risk of pregnancy loss.

  6. Embryonic Methamphetamine Exposure Inhibits Methamphetamine Cue Conditioning and Reduces Dopamine Concentrations in Adult N2 Caenorhabditis elegans.

    Science.gov (United States)

    Katner, Simon N; Neal-Beliveau, Bethany S; Engleman, Eric A

    2016-01-01

    Methamphetamine (MAP) addiction is substantially prevalent in today's society, resulting in thousands of deaths and costing billions of dollars annually. Despite the potential deleterious consequences, few studies have examined the long-term effects of embryonic MAP exposure. Using the invertebrate nematode Caenorhabditis elegans allows for a controlled analysis of behavioral and neurochemical changes due to early developmental drug exposure. The objective of the current study was to determine the long-term behavioral and neurochemical effects of embryonic exposure to MAP in C. elegans. In addition, we sought to improve our conditioning and testing procedures by utilizing liquid filtration, as opposed to agar, and smaller, 6-well testing plates to increase throughput. Wild-type N2 C. elegans were embryonically exposed to 50 μM MAP. Using classical conditioning, adult-stage C. elegans were conditioned to MAP (17 and 500 μM) in the presence of either sodium ions (Na+) or chloride ions (Cl-) as conditioned stimuli (CS+/CS-). Following conditioning, a preference test was performed by placing worms in 6-well test plates spotted with the CS+ and CS- at opposite ends of each well. A preference index was determined by counting the number of worms in the CS+ target zone divided by the total number of worms in the CS+ and CS- target zones. A food conditioning experiment was also performed in order to determine whether embryonic MAP exposure affected food conditioning behavior. For the neurochemical experiments, adult worms that were embryonically exposed to MAP were analyzed for dopamine (DA) content using high-performance liquid chromatography. The liquid filtration conditioning procedure employed here in combination with the use of 6-well test plates significantly decreased the time required to perform these experiments and ultimately increased throughput. The MAP conditioning data found that pairing an ion with MAP at 17 or 500 μM significantly increased the preference

  7. File list: InP.Emb.50.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Embryonic_heart mm9 Input control Embryo Embryonic heart SRX143735...RX377685,SRX377687,SRX967654,SRX077933,SRX377683,SRX967652,SRX244285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.50.AllAg.Embryonic_heart.bed ...

  8. File list: InP.Emb.20.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Embryonic_heart mm9 Input control Embryo Embryonic heart SRX967652...RX077933,SRX377683,SRX377685,SRX377681,SRX377687,SRX967654,SRX244285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.20.AllAg.Embryonic_heart.bed ...

  9. File list: InP.Emb.05.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Embryonic_heart mm9 Input control Embryo Embryonic heart SRX967652...RX698167,SRX377681,SRX967654,SRX377683,SRX377685,SRX377687,SRX244285 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.05.AllAg.Embryonic_heart.bed ...

  10. File list: InP.Emb.10.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Embryonic_heart mm9 Input control Embryo Embryonic heart SRX967652...RX967654,SRX377683,SRX185886,SRX698167,SRX244285,SRX377687,SRX377685 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Emb.10.AllAg.Embryonic_heart.bed ...

  11. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification.

    Science.gov (United States)

    Ye, Lidan; Zhao, Hua; Li, Zhi; Wu, Jin Chuan

    2013-05-01

    Acid tolerance of Lactobacillus pentosus ATCC 8041 was improved by error-prone amplification of its genomic DNA using random primers and Taq DNA polymerase. The resulting amplification products were transferred into wild-type L. pentosus by electroporation and the transformants were screened for growth on low-pH agar plates. After only one round of mutation, one mutant (MT3) was identified that was able to completely consume 20 g/L of glucose to produce lactic acid at a yield of 95% in 1L MRS medium at pH 3.8 within 36 h, whereas no growth or lactic acid production was observed for the wild-type strain under the same conditions. The acid tolerance of mutant MT3 remained genetically stable for at least 25 subcultures. Therefore, the error-prone whole genome amplification technique is a very powerful tool for improving phenotypes of this lactic acid bacterium and may also be applicable for other microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Impacts of maternal dietary protein intake on fetal survival, growth, and development.

    Science.gov (United States)

    Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao

    2018-03-01

    Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new

  13. Method of improving the decontaminating efficiency of ruthenium in evaporating treatment of nitric acid

    International Nuclear Information System (INIS)

    Kubota, Kanya; Yamana, Hajime; Takeda, Seiichiro.

    1984-01-01

    Purpose: To significantly improve the ruthenium removing efficiency in a nitric acid solution in an acid recovery system for the recovery of nitric acid from nitric acid liquid wastes through evaporating condensation. Method: Upon evaporating treatment of nitric acid solution containing ruthenium by supplying and heating the solution to a nitric acid evaporating device, hydrazine is previously added to the nitric acid solution. Hydrazine and intermediate reaction product of hydrazine such as azide causes a reduction reaction with intermediate reaction product of ruthenium tetraoxide to suppress the oxidation of ruthenium and thereby improve the decontaminating efficiency of ruthenium. The amount of hydrazine to be added is preferably between 20 - 500 mg/l and most suitably between 200 - 2000 mg/l per one liter of the liquid in the evaporating device. (Seki, T.)

  14. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    Science.gov (United States)

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Meenakumari, Karukayil J; Krishna, Amitabh

    2005-01-01

    The unusual feature of the breeding cycle of Cynopterus sphinx at Varanasi is the significant variation in gestation length of the two successive pregnancies of the year. The aim of this study was to investigate whether the prolongation of the first pregnancy in C. sphinx is due to delayed embryonic development. The first (winter) pregnancy commences in late October and lasts until late March and has a gestation period of about 150 days. The second (summer) pregnancy commences in April and lasts until the end of July or early August with a gestation period of about 125 days. Changes in the size and weight of uterine cornua during the two successive pregnancies suggest retarded embryonic growth during November and December. Histological analysis during the period of retarded embryonic development in November and December showed a slow gastrulation process. The process of amniogenesis was particularly slow. When the embryos attained the early primitive streak stage, their developmental rate suddenly increased considerably. During the summer pregnancy, on the other hand, the process of gastrulation was much faster and proceeded quickly. A comparison of the pattern of embryonic development for 4 consecutive years consistently showed retarded or delayed embryonic development during November and December. The time of parturition and post-partum oestrus showed only a limited variation from 1 year to another. This suggests that delayed embryonic development in C. sphinx may function to synchronize parturition among females. The period of delayed embryonic development in this species clearly coincides with the period of fat deposition. The significance of this correlation warrants further investigation.

  16. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  17. Data on the potential impact of food supplements on the growth of mouse embryonic stem cells.

    Science.gov (United States)

    Correia, Marcelo; Sousa, Maria I; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Ramalho-Santos, João

    2016-06-01

    The use of new compounds as dietary supplements is increasing, but little is known in terms of possible consequences of their use. Pluripotent stem cells are a promising research tool for citotoxicological research for evaluation of proliferation, cell death, pluripotency and differentiation. Using the mouse embryonic stem cell (mESC) model, we present data on three different compounds that have been proposed as new potential supplements for co-adjuvant disease treatments: kaempferol, berberine and Tauroursodeoxycholic acid (TUDCA). Cell number and viability were monitored following treatment with increased concentrations of each drug in pluripotent culture conditions.

  18. The influence of IVF/ICSI treatment on human embryonic growth trajectories.

    Science.gov (United States)

    Eindhoven, S C; van Uitert, E M; Laven, J S E; Willemsen, S P; Koning, A H J; Eilers, P H C; Exalto, N; Steegers, E A P; Steegers-Theunissen, R P M

    2014-12-01

    Is in vitro fertilization treatment with or without intracytoplasmatic sperm injection (IVF/ICSI) associated with changes in first and second trimester embryonic and fetal growth trajectories and birthweight in singleton pregnancies? Embryonic and fetal growth trajectories and birthweight are not significantly different between pregnancies conceived with IVF/ICSI treatment and spontaneously conceived pregnancies with reliable pregnancy dating. IVF/ICSI treatment has been associated with increased risks of preterm birth, fetal growth restriction and low birthweight. Decreased first-trimester crown-rump length (CRL) in the general population has been inversely associated with the same adverse pregnancy outcomes. In a prospective periconception birth cohort study conducted in a tertiary centre, 146 singleton pregnancies with reliable pregnancy dating and nonmalformed live borns were investigated, comprised of 88 spontaneous and 58 IVF/ICSI pregnancies. Serial 3D ultrasound scans were performed from 6 to 12 weeks of gestation. As estimates of embryonic growth, CRL and embryonic volume (EV) were measured using the I-Space virtual reality system. General characteristics were obtained from self-administered questionnaires at enrolment. Fetal growth parameters at 20 weeks and birthweight were obtained from medical records. To assess associations between IVF/ICSI and embryonic growth trajectories, estimated fetal weight and birthweight, stepwise linear mixed model analyses and linear regression analyses were performed using square root transformed CRL and fourth root transformed EV. In 146 pregnancies, 934 ultrasound scans were performed of which 849 (90.9%) CRLs and 549 (58.8%) EVs could be measured. Embryonic growth trajectories were comparable between IVF/ICSI pregnancies and spontaneously conceived pregnancies (CRL: βIVF/ICSI = 0.10√mm; P = 0.10; EV: βIVF/ICSI = 0.03(4)√cm³; P = 0.13). Estimated fetal weight and birthweight were also comparable between both

  19. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    Directory of Open Access Journals (Sweden)

    Mengtao Li

    2016-03-01

    Full Text Available Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

  20. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

    Science.gov (United States)

    Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-10-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is

  1. Case Study: Organotypic human in vitro models of embryonic morphogenetic fusion

    Science.gov (United States)

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell...

  2. Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development

    Directory of Open Access Journals (Sweden)

    Hongjia Ouyang

    2017-05-01

    Full Text Available Embryonic growth and development of skeletal muscle is a major determinant of muscle mass, and has a significant effect on meat production in chicken. To assess the protein expression profiles during embryonic skeletal muscle development, we performed a proteomics analysis using isobaric tags for relative and absolute quantification (iTRAQ in leg muscle tissues of female Xinghua chicken at embryonic age (E 11, E16, and 1-day post hatch (D1. We identified 3,240 proteins in chicken embryonic muscle and 491 of them were differentially expressed (fold change ≥ 1.5 or ≤ 0.666 and p < 0.05. There were 19 up- and 32 down-regulated proteins in E11 vs. E16 group, 238 up- and 227 down-regulated proteins in E11 vs. D1 group, and 13 up- and 5 down-regulated proteins in E16 vs. D1 group. Protein interaction network analyses indicated that these differentially expressed proteins were mainly involved in the pathway of protein synthesis, muscle contraction, and oxidative phosphorylation. Integrative analysis of proteome and our previous transcriptome data found 189 differentially expressed proteins that correlated with their mRNA level. The interactions between these proteins were also involved in muscle contraction and oxidative phosphorylation pathways. The lncRNA-protein interaction network found four proteins DMD, MYL3, TNNI2, and TNNT3 that are all involved in muscle contraction and may be lncRNA regulated. These results provide several candidate genes for further investigation into the molecular mechanisms of chicken embryonic muscle development, and enable us to better understanding their regulation networks and biochemical pathways.

  3. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification

    NARCIS (Netherlands)

    Dartel, van D.A.M.; Schulpen, S.H.; Theunissen, P.T.; Bunschoten, A.; Piersma, A.H.; Keijer, J.

    2014-01-01

    Embryonic stem cells (ESC) are widely used to study embryonic development and to identify developmental toxicants. Particularly, the embryonic stem cell test (EST) is well known as in vitro model to identify developmental toxicants. Although it is clear that energy metabolism plays a crucial role in

  4. Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain

    Directory of Open Access Journals (Sweden)

    Maden Malcolm

    2007-12-01

    Full Text Available Abstract Background Human retinoic acid teratogenesis results in malformations of dorsally derived hindbrain structures such as the cerebellum, noradrenergic hindbrain neurons and the precerebellar system. These structures originate from the rhombic lip and adjacent dorsal precursor pools that border the fourth ventricle roofplate. While retinoic acid synthesis is known to occur in the meninges that blanket the hindbrain, the particular sensitivity of only dorsal structures to disruptions in retinoid signalling is puzzling. We therefore looked for evidence within the neural tube for more spatiotemporally specific signalling pathways using an in situ hybridisation screen of known retinoic acid pathway transcripts. Results We find that there are highly restricted domains of retinoic acid synthesis and breakdown within specific hindbrain nuclei as well as the ventricular layer and roofplate. Intriguingly, transcripts of cellular retinoic acid binding protein 1 are always found at the interface between dividing and post-mitotic cells. By contrast to earlier stages of development, domains of synthesis and breakdown in post-mitotic neurons are co-localised. At the rhombic lip, expression of the mRNA for retinoic acid synthesising and catabolising enzymes is spatially highly organised with respect to the Cath1-positive precursors of migratory precerebellar neurons. Conclusion The late developing hindbrain shows patterns of retinoic acid synthesis and use that are distinct from the well characterised phase of rostrocaudal patterning. Selected post-mitotic populations, such as the locus coeruleus, appear to both make and break down retinoic acid suggesting that a requirement for an autocrine, or at least a highly localised paracrine signalling network, might explain its acute sensitivity to retinoic acid disruption. At the rhombic lip, retinoic acid is likely to act as a dorsalising factor in parallel with other roofplate signalling pathways. While its

  5. Effect of gamma irradiation on the hatchability and embryonic development of quail eggs

    International Nuclear Information System (INIS)

    Oroszlany, P.; Sinkovicsne Hlubik, I.

    1979-01-01

    The effect of different doses of gamma irradiation on the embryonic development of quail and hen's eggs was examined. The goals of the examinations were to determine the LD 50 and LD 100 values, to establish the effect of single and multiple irradiation on embryonic development and to get some information on the embryonation of eggs produced by quails and their progeny grown from irradiated eggs. It was shown that 200 rad dose has significant stimulation effect of the hatching results of quail eggs. The LD 50 and LD 100 values were about 800 to 850 rad and 1600 rad, respectively. Repeated irradiation on the progeny-generations proved to be unambiguously deleterious on embryonation. High doses changed the rhythm of embryonal mortality, showing a peak under the irradiation and in the first three days of incubation, and significantly enhanced the number of teratological types. (author)

  6. All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Joshua R Mauney

    2010-07-01

    Full Text Available The urinary bladder and associated tract are lined by the urothelium, a transitional epithelium that acts as a specialized permeability barrier that protects the underlying tissue from urine via expression of a highly specific group of proteins known as the uroplakins (UP. To date, our understanding of the developmental processes responsible for urothelial differentiation has been hampered due to the lack of suitable models. In this study, we describe a novel in vitro cell culture system for derivation of urothelial cells from murine embryonic stem cells (ESCs following cultivation on collagen matrices in the presence all trans retinoic acid (RA. Upon stimulation with micromolar concentrations of RA, ESCs significantly downregulated the pluripotency factor OCT-4 but markedly upregulated UP1A, UP1B, UP2, UP3A, and UP3B mRNA levels in comparison to naïve ESCs and spontaneously differentiating controls. Pan-UP protein expression was associated with both p63- and cytokeratin 20-positive cells in discrete aggregating populations of ESCs following 9 and 14 days of RA stimulation. Analysis of endodermal transcription factors such as GATA4 and GATA6 revealed significant upregulation and nuclear enrichment in RA-treated UP2-GFP+ populations. GATA4-/- and GATA6-/- transgenic ESC lines revealed substantial attenuation of RA-mediated UP expression in comparison to wild type controls. In addition, EMSA analysis revealed that RA treatment induced formation of transcriptional complexes containing GATA4/6 on both UP1B and UP2 promoter fragments containing putative GATA factor binding sites. Collectively, these data suggest that RA mediates ESC specification toward a urothelial lineage via GATA4/6-dependent processes.

  7. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells

    Directory of Open Access Journals (Sweden)

    Sebastian Werneburg

    2015-05-01

    Full Text Available Oligodendrocyte precursor cells (OPCs are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  8. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro

    OpenAIRE

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-01-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic ...

  9. Do embryonic polar bodies commit suicide?

    Science.gov (United States)

    Fabian, Dušan; Čikoš, Štefan; Rehák, Pavol; Koppel, Juraj

    2014-02-01

    The extrusion and elimination of unnecessary gametic/embryonic material is one of the key events that determines the success of further development in all living organisms. Oocytes produce the first polar body to fulfill the maturation process just before ovulation, and release the second polar body immediately after fertilization. The aim of this study was to compile a physiological overview of elimination of polar bodies during early preimplantation development in mice. Our results show that three-quarters of the first polar bodies were lost even at the zygotic stage; the 4-cell stage embryos contained only one (second) polar body, and the elimination of second polar bodies proceeded continuously during later development. Both first and second polar bodies showed several typical features of apoptosis: phosphatidylserine redistribution (observed for the first time in the first polar body), specific DNA degradation, condensed nuclear morphology, and inability to exclude cationic dye from the nucleus during the terminal stage of the apoptotic process. Caspase-3 activity was recorded only in the second polar body. From the morphological point of view, mouse polar bodies acted very similarly to damaged embryonic cells which have lost contact with their neighboring blastomeres. In conclusion, polar bodies possess all the molecular equipment necessary for triggering and executing an active suicide process. Furthermore, similarly as in dying embryonic cells, stressing external conditions (culture in vitro) might accelerate and increase the incidence of apoptotic elimination of the polar bodies in embryos.

  10. Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.

    Science.gov (United States)

    Yin, DeLu Tyler; Jing, Qing; AlDajani, Waleed Wafa; Duncan, Shona; Tschirner, Ulrike; Schilling, Jonathan; Kazlauskas, Romas J

    2011-04-01

    Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  12. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  13. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  14. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    Science.gov (United States)

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  15. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Mariana eAcquarone

    2015-04-01

    Full Text Available Parkinson’s disease (PD is an incurable progressive neurodegenerative disorder. Clinical presentation of PD stems largely from the loss of dopaminergic neurons in the nigrostriatal dopaminergic pathway, motivating experimental strategies aimed at replacing dopaminergic innervation by cellular therapy. Transplantation of dopaminergic neurons derived from embryonic stem cells significantly improves motor functions in rodent and non-human primate models of PD. However, protocols to generate dopaminergic neurons from embryonic stem cells generally meet with low efficacy and high risk of teratoma development upon transplantation. To address these issues, we have pre-treated undifferentiated mouse embryonic stem cells (mESCs with the DNA alkylating agent mitomycin C (MMC before transplantation. MMC treatment of cultures prevented tumor formation in a 12-week follow-up after mESCs were injected in nude mice. In 6-OH-dopamine-lesioned mice, intrastriatal injection of MMC-treated mESCs markedly improved motor function without tumor formation for as long as 15 months. Furthermore, we show that halting mitotic activity of undifferentiated mESCs induces a four-fold increase in dopamine release following in vitro differentiation. Our findings indicate that treating mESCs with mitomycin C prior to intrastriatal transplant is an effective strategy that could be further investigated as a novel alternative for treatment of Parkinson's disease.

  16. Carcino-Embryonic Antigen

    International Nuclear Information System (INIS)

    Akute, O.

    1999-02-01

    Tumour marker analysis has increased our understanding of the presence of tumours in the body. Carcino-embryonic antigen, CEA, is one of the best studied tumour markers and has proved an ideal diagnostic adjuvant. It has helped in quantifying the amount of disease present in a patient and thence to make accurate prognosis on the various diagnosed ailments. At UCH, it is observed that there is an increase in cancer related ailments and therefore the need for early diagnosis is more compelling in our environment to mitigate future cost of managing advanced manifestation

  17. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering.

    Science.gov (United States)

    Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C

    2017-01-01

    Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO 2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO 2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.

  18. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds.

    Science.gov (United States)

    Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong

    2010-07-01

    Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  19. Low oxygen levels slow embryonic development of Limulus polyphemus

    DEFF Research Database (Denmark)

    Funch, Peter; Wang, Tobias; Pertoldi, Cino

    2016-01-01

    The American horseshoe crab Limulus polyphemus typically spawns in the upper intertidal zone, where the developing embryos are exposed to large variations in abiotic factors such as temperature, humidity, salinity, and oxygen, which affect the rate of development. It has been shown that embryonic...... pronounced hypoxia in later embryonic developmental stages, but also in earlier, previously unexplored, developmental stages....... development is slowed at both high and low salinities and temperatures, and that late embryos close to hatching tolerate periodic hypoxia. In this study we investigated the influence of hypoxia on both early and late embryonic development in L. polyphemus under controlled laboratory conditions. Embryos were...

  20. Differential proteome analysis of human embryonic kidney cell line (HEK-293 following mycophenolic acid treatment

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-09-01

    Full Text Available Abstract Background Mycophenolic acid (MPA is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293 after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. Results The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1 showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%, chromatin structure/dynamics (17% and energy production/conversion (17%. Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. Conclusion The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to

  1. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts

    International Nuclear Information System (INIS)

    Huang, L.-H.; Shiao, N.-H.; Hsuuw, Y.-D.; Chan, W.-H.

    2007-01-01

    Previous studies have established that ethanol induces apoptosis, but the precise molecular mechanisms are currently unclear. Here, we show that 0.3-1.0% (w/v) ethanol induces apoptosis in mouse blastocysts and that resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties, prevents ethanol-induced apoptosis and inhibition of cell proliferation. Moreover, ethanol-treated blastocysts show normal levels of implantation on culture dishes in vitro but a reduced ability to reach the later stages of embryonic development. Pretreatment with resveratrol prevented ethanol-induced disruption of embryonic development in vitro and in vivo. In an in vitro cell-based assay, we further found that ethanol increases the production of reactive oxygen species in ESC-B5 embryonic stem cells, leading to an increase in the intracellular concentrations of cytoplasmic free Ca 2+ and NO, loss of mitochondrial membrane potential, mitochondrial release of cytochrome c, activation of caspase-9 and -3, and apoptosis. These changes were blocked by pretreatment with resveratrol. Based on these results, we propose a model for the protective effect of resveratrol on ethanol-induced cell injury in blastocysts and ESC-B5 cells

  2. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves.

    Directory of Open Access Journals (Sweden)

    Yin Liu

    Full Text Available Nitric oxide synthase-3 (NOS3 has recently been shown to promote endothelial-to-mesenchymal transition (EndMT in the developing atrioventricular (AV canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT and NOS3(-/- mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3(-/- compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3(-/- mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1(+ cells in the AV cushion were decreased in NOS3(-/- compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ, bone morphogenetic protein (BMP2 and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3(-/- compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.

  3. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    Science.gov (United States)

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  4. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    Science.gov (United States)

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  5. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells.

    Science.gov (United States)

    West, Michael D; Labat, Ivan; Sternberg, Hal; Larocca, Dana; Nasonkin, Igor; Chapman, Karen B; Singh, Ratnesh; Makarev, Eugene; Aliper, Alex; Kazennov, Andrey; Alekseenko, Andrey; Shuvalov, Nikolai; Cheskidova, Evgenia; Alekseev, Aleksandr; Artemov, Artem; Putin, Evgeny; Mamoshina, Polina; Pryanichnikov, Nikita; Larocca, Jacob; Copeland, Karen; Izumchenko, Evgeny; Korzinkin, Mikhail; Zhavoronkov, Alex

    2018-01-30

    Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1 , encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro -derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.

  6. A method for high efficiency YAC lipofection into murine embryonic stem cells.

    Science.gov (United States)

    Lee, J T; Jaenisch, R

    1996-01-01

    We describe a modified protocol for introducing yeast artificial chromosomes (YACs) into murine embryonic stem (ES) cells by lipofection. With a decreased DNA:cell ratio, increased concentration of condensing agents and altered culture conditions, this protocol reduces the requirement for YAC DNA to a few micrograms, improves the recovery of neomycin-resistant ES colonies and increases the yield of clones containing both flanking vector markers and insert. These modifications enable generation of sufficient 'intact' transgenic clones for biological analysis with a single experiment. PMID:9016681

  7. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Science.gov (United States)

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  8. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing.

    Science.gov (United States)

    Sun, Xiaowen; Wu, Hefang; Zhao, Genhai; Li, Zhemin; Wu, Xihua; Liu, Hui; Zheng, Zhiming

    2018-04-02

    The mycelial morphology of Aspergillus niger, a major filamentous fungus used for citric acid production, is important for citric acid synthesis during submerged fermentation. To investigate the involvement of the chitin synthase gene, chsC, in morphogenesis and citric acid production in A. niger, an RNAi system was constructed to silence chsC and the morphological mutants were screened after transformation. The compactness of the mycelial pellets was obviously reduced in the morphological mutants, with lower proportion of dispersed mycelia. These morphological changes have caused a decrease in viscosity and subsequent improvement in oxygen and mass transfer efficiency, which may be conducive for citric acid accumulation. All the transformants exhibited improvements in citric acid production; in particular, chsC-3 showed 42.6% higher production than the original strain in the shake flask. Moreover, the high-yield strain chsC-3 exhibited excellent citric acid production potential in the scale-up process.The citric acid yield and the conversion rate of glucose of chsC-3 were both improved by 3.6%, when compared with that of the original strain in the stirred tank bioreactor.

  9. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  10. Imaging Findings of Embryonal Cell Carcinoma in Ovary:A Case Report

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Park, Cheol Min; Choi, Jae Woong; Seol, Hae Young; Kim, Kyeong Ah

    2004-01-01

    Embryonal cell carcinoma is one of the malignant germ cell tumors. This tumor is commonly encountered in the testis, however, it rarely occurs in the ovary. To the best of our knowledge, no imaging findings of ovarian embryonal cell carcinoma have previously been reported. We describe the US and MRI findings of such a case

  11. Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering

    Directory of Open Access Journals (Sweden)

    Consuelo Penella

    2017-09-01

    Full Text Available Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control of two cultivars (‘Scarletprince’ and ‘CaroTiger’. Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed ‘Scarletprince’ trees sprayed with ascorbic acid (one or two applications were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed ‘Scarletprince’ trees was improved to values similar to control trees. On the other hand, water-stressed ‘CaroTiger’ trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with ‘Scarletprince’ trees preferentially using proline as compatible solute and ‘CaroTiger’ trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.

  12. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    OpenAIRE

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 di...

  13. Periconception Maternal Folate Status and Human Embryonic Cerebellum Growth Trajectories: The Rotterdam Predict Study.

    Directory of Open Access Journals (Sweden)

    Irene V Koning

    Full Text Available We aimed to investigate whether periconceptional maternal folate status affects human embryonic cerebellar size and growth trajectories. In a prospective periconceptional cohort participants filled out questionnaires and received weekly transvaginal 3D-ultrasounds between 7+0 and 12+6 weeks gestational age (GA. Viable non-malformed singleton pregnancies were selected for cerebellar measurements; transcerebellar diameter, (TCD, left and right cerebellar diameters (LCD, RCD. Linear mixed models were performed to estimate associations between questionnaire data on the timing of maternal folic acid supplement initiation and longitudinal cerebellar measurements as a function of crown-rump length (CRL and GA. Maternal red blood cell folate concentrations were analysed before 8 weeks GA to validate the associations. A total of 263 serial high quality three-dimensional ultrasound scans of 135 pregnancies were studied. Preconceptional compared to postconceptional initiation of folic acid use was associated with slightly larger cerebellar diameters per millimetre increase of CRL (TCD: β = 0.260mm, 95%CI = 0.023-0.491, p<0.05; LCD: β = 0.171mm, 95%CI = 0.038-0.305, p<0.05; RCD: β = 0.156mm, 95%CI = 0.032-0.280, p<0.05 and with proportional cerebellar growth (TCD/CRL:β = 0.015mm/mm, 95%CI = 0.005-0.024, p<0.01; LCD/CRL:β = 0.012mm/mm, 95%CI = 0.005-0.018, p<0.01; RCD/CRL:β = 0.011mm/mm, 95%CI = 0.005-0.017, p<0.01. Cerebellar growth was significantly highest in the third quartile of maternal red blood cell folate levels (1538-1813 nmol/L. These first findings show that periconceptional maternal folate status is associated with human embryonic cerebellar development. Implications of these small but significant variations for fetal cerebellar growth trajectories and the child's neurodevelopmental outcome are yet unknown and warrant further investigation.

  14. Characterization of glycolipid galactosyltransferases from embryonic chicken brain

    International Nuclear Information System (INIS)

    Kyle, J.W.

    1985-01-01

    Glycolipid galactosyltransferases (GalT-3 and GalT-4) were solubilized from a membrane fraction isolated from embryonic chicken brain. The profiles of specific activity and total units per brain of GalT-3 and GalT-4 varied with embryonic age. GalT-4 had the highest specific activity at 9 days of embryonic development and showed a steady decrease until hatching. GalT-3 showed a gradual increase in specific activity. Both GalT3 and GalT-4 showed a steady increase in total units per brain throughout embryonic development. The solubilized enzymes could be separated using gel filtration, ion exchange chromatography or affinity chromatography on α-lactalbumin-agarose. Data obtained in the study imply that GalT-4 is involved in both glycoprotein and glycolipid biosynthesis. Glycosphingolipid products from GalT-3 and GalT-4 catalyzed reactions labeled with [ 14 C]galactose comigrated with authentic GMI and nLcOse 4 Cer, when examined by thin layer chromatography and autoradiography. Studies with galactosidases revealed that all of the enzyme products formed by GalT-3 and GalT-4 contained a [ 14 C]-galactose in a β anomeric linkage. Periodate oxidation studies of Gal-[ 14 C]GlcNAc, formed by purified GalT-4 using [ 14 C]GlcNAc as the acceptor, demonstrated that approximately 70% of the linkage formed was Galβ1-4GlcNAc and 30% was Galβ1-3GlcNAc. Studies on the susceptibility of [ 14 C]Gal-GlcNAc to base catalyzed β-elimination also suggested the presence of approximately 30% Galβ1-3GlcNAc

  15. Transcriptome Landscapes of Mammalian Embryonic Cells

    NARCIS (Netherlands)

    Brinkhof, B.

    2015-01-01

    This thesis describes research on gene expression profiles from different embryonic stages and cell types to identify genes involved in pluripotency or differentiation in bovine and porcine cells. The results are compared with data from other mammals. RNA expression profiles of morula and blastocyst

  16. Improved Lignin Polyurethane Properties with Lewis Acid Treatment

    OpenAIRE

    Chung, Hoyong; Washburn, Newell R.

    2012-01-01

    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by ...

  17. The Evolutionary Economics of Embryonic-Sac Fluids in Squamate Reptiles.

    Science.gov (United States)

    Bonnet, Xavier; Naulleau, Guy; Shine, Richard

    2017-03-01

    The parchment-shelled eggs of squamate reptiles take up substantial water from the nest environment, enabling the conversion of yolk into neonatal tissue and buffering the embryo against the possibility of subsequent dry weather. During development, increasing amounts of water are stored in the embryonic sacs (i.e., membranes around the embryo: amnion, allantois, and chorion). The evolution of viviparity (prolonged uterine retention of developing embryos) means that embryonic-sac fluid storage now imposes a cost (increased maternal burdening), confers less benefit (because the mother buffers fetal water balance), and introduces a potential conflict among uterine siblings (for access to finite water supplies). Our data on nine species of squamate reptiles and published information on three species show that the embryonic-sac fluids comprise around 33% of neonatal mass in viviparous species versus 94% in full-term eggs of oviparous squamates. Data on parturition in 149 vipers (Vipera aspis, a viviparous species) show that larger offspring store more fluids in their fetal sacs and that an increase in litter size is associated with a decrease in fluid-sac mass per offspring. Overall, the evolutionary transition from oviparity to viviparity may have substantially altered selective forces on offspring packaging and created competition among offspring for access to water reserves during embryonic development.

  18. Meeting embryonic requirements of broilers throughout incubation: a review

    Directory of Open Access Journals (Sweden)

    R Molenaar

    2010-09-01

    Full Text Available During incubation of chicken embryos, environmental conditions, such as temperature, relative humidity, and CO2 concentration, must be controlled to meet embryonic requirements that change during the different phases of embryonic development. In the current review, the effects of embryo temperature, egg weight loss, and CO2 concentration on hatchability, hatchling quality, and subsequent performance are discussed from an embryonic point of view. In addition, new insights related to the incubation process are described. Several studies have shown that a constant eggshell temperature (EST of 37.5 to 38.0°C throughout incubation results in the highest hatchability, hatchling quality, and subsequent performance. Egg weight loss must be between 6.5 and 14.0% of the initial egg weight, to obtain an adequate air cell size before the embryo internally pips. An increased CO2 concentration during the developmental phase of incubation (first 10 days can accelerate embryonic development and hatchability, but the physiological mechanisms of this acceleration are not completely understood. Effects of ar increased CO2 concentration during late incubation also need further investigation. The preincubation warming profile, thermal manipulation, and in ovo feeding are new insights related to the incubation process and show that the optimal situation for the embryo during incubation highly depends on the conditions of the eggs before (storage duration and during incubation (environmental conditions and on the conditions of the chickens after hatching (environmental temperature.

  19. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  20. Guidelines for human embryonic stem cell research

    National Research Council Canada - National Science Library

    Committee on Guidelines for Human Embryonic Stem Cell Research, National Research Council

    2005-01-01

    Since 1998, the volume of research being conducted using human embryonic stem (hES) cells has expanded primarily using private funds because of restrictions on the use of federal funds for such research...

  1. Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor.

    Science.gov (United States)

    Wakayama, Sayaka; Wakayama, Teruhiko

    2010-01-01

    Nuclear transfer-derived ES (ntES) cell lines can be established from somatic cell nuclei with a relatively high success rate. Although ntES cells have been shown to be equivalent to ES cells, there are ethical objections concerning human cells, such as the use of fresh oocyte donation from young healthy woman. In contrast, the use of induced pluripotent stem (iPS) cells for cloning poses few ethical problems and is a relatively easy technique compared with nuclear transfer. Therefore, although there are several reports proposing the use of ntES cells as a model of regenerative medicine, the use of these cells in preliminary medical research is waning. However, in theory, 5 to 10 donor cells can establish one ntES cell line and, once established, these cells will propagate indefinitely. These cells can be used to generate cloned animals from ntES cell lines using a second round of NT. Even in infertile and "unclonable" strains of mice, we can generate offspring from somatic cells by combining cloning with ntES technology. Moreover, cloned offspring can be generated potentially even from the nuclei of dead bodies or freeze-dried cells via ntES cells, such as from an extinct frozen animal. Currently, only the ntES technology is available for this purpose, because all other techniques, including iPS cell derivation, require significant numbers of living donor cells. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.

  2. I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells.

    Science.gov (United States)

    Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques

    2012-01-01

    Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.

  3. Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression

    DEFF Research Database (Denmark)

    Laing, Adam F; Lowell, Sally; Brickman, Joshua M

    2015-01-01

    Gro/TLE proteins (TLE1-4) are a family of transcriptional corepressors acting downstream of multiple signalling pathways. Several TLEs are expressed in a dynamic manner throughout embryonic development and at high levels in embryonic stem cells (ESCs). Here we find that Gro/TLE is not required...

  4. DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions.

    Science.gov (United States)

    Tiedeken, Jessica A; Ramsdell, John S

    2009-01-01

    California sea lions have a large body burden of organochlorine pesticides, and over the last decade they have also been subject to domoic acid poisoning. Domoic acid poisoning, previously recognized in adult animals, is now viewed as a major cause of prenatal mortality. The appearance of a chronic juvenile domoic acid disease in the sea lions, characterized by behavioral abnormalities and epilepsy, is consistent with early life poisoning and may be potentiated by organochlorine burden. We investigated the interactive effect of DDT (dichlorodiphenyltrichloroethane) on neurodevelopment using a zebrafish (Danio rerio) model for seizure behavior to examine the susceptibility to domoic acid-induced seizures after completion of neurodevelopment. Embryos were exposed (6-30 hr postfertilization) to either o,p'-DDT or p,p'-DDE (dichlorodiphenyldichloroethylene) during neurodevelopment via a 0.1% dimethyl sulfoxide solution. These larval (7 days postfertilization) fish were then exposed to either the seizure-inducing drug pentylenetetrazol (PTZ) or domoic acid; resulting seizure behavior was monitored and analyzed for changes using cameras and behavioral tracking software. Embryonic exposure to DDTs enhanced PTZ seizures and caused distinct and increased seizure behaviors to domoic acid, most notably a type of head-shaking behavior. These studies demonstrate that embryonic exposure to DDTs leads to asymptomatic animals at completion of neurodevelopment with greater sensitivity to domoic acid-induced seizures. The body burden levels of p,p'-DDE are close to the range recently found in fetal California sea lions and suggest a potential interactive effect of p,p'-DDE embryonic poisoning and domoic acid toxicity.

  5. Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale.

    Science.gov (United States)

    Niu, R Q; Zhang, Y; Tong, Y; Liu, Z Y; Wang, Y H; Feng, H

    2015-04-27

    To improve embryogenesis in microspore cultures of kale (Brassica oleracea L. var. acephala DC.), 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), arabinogalactan (AG), p-chlorophenoxyisobutyric acid (PCIB), and activated charcoal (AC) were added to the medium using four varieties of kale. The results showed that the addition of AG (0.1-0.2 g/L), AC (0.1-0.2 g/L) or a combination of 6-BA (0.1-0.2 mg/L) and NAA (0.1-0.2 mg/L) promoted embryo-genesis. Adding 40 μM PCIB or a combination of 40 μM PCIB and 0.2 g/L AC to NLN-13 medium at pH 5.8 effectively enhanced embryogenesis. Treatment with a combination of 40 μM PCIB and 10 mg/L AG gave the highest rate of embryonic induction, especially in genotype "Y007," which showed a twelve-fold increase in yield.

  6. Improving the management of infertile acid soils in Southeast Asia: The approach of the IBSRAM Acid-Soils network

    International Nuclear Information System (INIS)

    Lefroy, R.D.B.

    2000-01-01

    The IBSRAM ASIALAND Management of Acid Soils network aims to improve the understanding of the broad range of biophysical and socio-economic production limitations on infertile acid soils of Southeast Asia, and to lead to development and implementation of sustainable land-management strategies for these important marginal areas. The main activities of the network are in Indonesia, Myanmar, Philippines, and Vietnam, with associated activity in Thailand, and minor involvement in Brunei, Cambodia, Laos, and Malaysia. The main experimental focus is through researcher-managed on-farm trials, to improve the management of phosphorus nutrition with inorganic and organic amendments. A generic design is used across the eight well characterised sites that form the core of the network. The results will be analysed across time and across sites. Improved methods for laboratory analyses, experimental management, socio-economic data collection, and data analysis and interpretation are critical components. Three important initiatives are associated with the core activities. These aim to establish a broader network on maintenance of quality laboratory analyses, to assess the potential for implementation of improved strategies through farmer-managed on-farm trials, and to improve our understanding of, and ways of estimating, nutrient budgets for diverse farming systems. (author)

  7. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles

    Science.gov (United States)

    Rafferty, Anthony R.; Reina, Richard D.

    2012-01-01

    Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid. PMID:22438503

  8. Embryonic vaccines against cancer: an early history.

    Science.gov (United States)

    Brewer, Bradley G; Mitchell, Robert A; Harandi, Amir; Eaton, John W

    2009-06-01

    Almost 100 years have passed since the seminal observations of Schöne showing that vaccination of animals with fetal tissue would prevent the growth of transplantable tumors. Many subsequent reports have affirmed the general idea that immunologic rejection of transplantable tumors, as well as prevention of carcinogenesis, may be affected by vaccination with embryonic/fetal material. Following a decade of intense research on this phenomenon during approximately 1964-1974, interest appears to have waned. This earlier experimental work may be particularly pertinent in view of the rising interest in so-called cancer stem cells. We believe that further work - perhaps involving the use of embryonic stem cells as immunogens - is warranted and that the results reviewed herein support the concept that vaccination against the appearance of cancers of all kinds is a real possibility.

  9. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    Science.gov (United States)

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of

  10. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  11. Enhancement techniques for improving 5-aminolevulinic acid delivery through the skin

    Directory of Open Access Journals (Sweden)

    Li-Wen Zhang

    2011-03-01

    Full Text Available Photodynamic therapy (PDT is a popular technique for skin cancer treatment. Protoporphyrin IX, which is a photosensitizing agent, converted enzymatically from the prodrug 5-aminolevulinic acid (ALA, is used as a photosensitizer in PDT for cancer. However, ALA penetrates with difficulty through intact skin; therefore, improving delivery systems for ALA in the skin will play an important role in ALA-PDT. Enhancement of ALA skin penetration can be achieved by physical methods, such as iontophoresis, laser, microneedles, ultrasound, and by adding chemical penetration enhancers, such as, dimethyl sulfoxide, oleic acid, and others, whereas some researches used lipophilic ALA derivatives and different vehicles to improve the transdermal delivery of ALA. This review introduces several enhancement techniques for increasing ALA permeation through the skin.

  12. ENVIRONMENTAL LEARNING APPROACHES IN IMPROVING LEARNING OUTCOMES IN ACID-BASE SUBJECT

    Directory of Open Access Journals (Sweden)

    Rachmat Sahputra

    2016-03-01

    Full Text Available Learning in the understanding of acid-base chemistry in schools needs to be improved so research to determine differences in learning outcomes between students taught using environmental approaches and methods lectures in class XI SMA on acid-base subject needs to be done. In this study, using a quasi-experimental method using a data collection tool achievement test essay form. The test statistic results of the post-test learning has been obtained Asymp value. Sig (2-tailed 0,026 that showed the differences between students' learning outcomes with a control experimental class with effect size of 0.63 or much influence difference with the percentage 23.57% which indicated that the learning environment approach can improve learning outcomes of high school students.

  13. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  14. Neuropeptidomic analysis of the embryonic Japanese quail diencephalon

    Directory of Open Access Journals (Sweden)

    Sköld Karl

    2010-03-01

    Full Text Available Abstract Background Endogenous peptides such as neuropeptides are involved in numerous biological processes in the fully developed brain but very little is known about their role in brain development. Japanese quail is a commonly used bird model for studying sexual dimorphic brain development, especially adult male copulatory behavior in relation to manipulations of the embryonic endocrine system. This study uses a label-free liquid chromatography mass spectrometry approach to analyze the influence of age (embryonic days 12 vs 17, sex and embryonic day 3 ethinylestradiol exposure on the expression of multiple endogenous peptides in the developing diencephalon. Results We identified a total of 65 peptides whereof 38 were sufficiently present in all groups for statistical analysis. Age was the most defining variable in the data and sex had the least impact. Most identified peptides were more highly expressed in embryonic day 17. The top candidates for EE2 exposure and sex effects were neuropeptide K (downregulated by EE2 in males and females, gastrin-releasing peptide (more highly expressed in control and EE2 exposed males and gonadotropin-inhibiting hormone related protein 2 (more highly expressed in control males and displaying interaction effects between age and sex. We also report a new potential secretogranin-2 derived neuropeptide and previously unknown phosphorylations in the C-terminal flanking protachykinin 1 neuropeptide. Conclusions This study is the first larger study on endogenous peptides in the developing brain and implies a previously unknown role for a number of neuropeptides in middle to late avian embryogenesis. It demonstrates the power of label-free liquid chromatography mass spectrometry to analyze the expression of multiple endogenous peptides and the potential to detect new putative peptide candidates in a developmental model.

  15. Case Study: Organotypic human in vitro models of embryonic ...

    Science.gov (United States)

    Morphogenetic fusion of tissues is a common event in embryonic development and disruption of fusion is associated with birth defects of the eye, heart, neural tube, phallus, palate, and other organ systems. Embryonic tissue fusion requires precise regulation of cell-cell and cell-matrix interactions that drive proliferation, differentiation, and morphogenesis. Chemical low-dose exposures can disrupt morphogenesis across space and time by interfering with key embryonic fusion events. The Morphogenetic Fusion Task uses computer and in vitro models to elucidate consequences of developmental exposures. The Morphogenetic Fusion Task integrates multiple approaches to model responses to chemicals that leaad to birth defects, including integrative mining on ToxCast DB, ToxRefDB, and chemical structures, advanced computer agent-based models, and human cell-based cultures that model disruption of cellular and molecular behaviors including mechanisms predicted from integrative data mining and agent-based models. The purpose of the poster is to indicate progress on the CSS 17.02 Virtual Tissue Models Morphogenesis Task 1 products for the Board of Scientific Counselors meeting on Nov 16-17.

  16. MRI diagnosis of embryonal tumors in the spinal canal

    International Nuclear Information System (INIS)

    Sun Jilin; Zhang Xinchuan; Zhang Huaning; Liu Lianxiang; Wu Yujin

    1997-01-01

    To evaluate MRI diagnostic value of the embryonal tumors in the spinal canal. Materials and methods: The MRI appearances of 15 cases of histologically confirmed embryonal tumors in the spinal canal were analyzed. (1) Lipoma (3 cases) had characteristic MRI appearance, demonstrating high signal intensity on T 1 WI, and moderately high signal on T 2 WI. High signal intensity of the lipoma was turned into low signal intensity by fat suppression technique. (2) Dermoids (2 cases) and epidermoid (7 cases) exhibiting low or iso-low signal on T 1 WI and high or iso-high signal on T 2 WI. All had an iso-intense capsule on T 1 WI. However, the two tumors could not be distinguished from each other. (3) Teratoma (3 cases) appeared as a mass of inhomo-generous signals in the spinal canal including soft tissue, fatty tissue and calcification within the same tumor. The diagnosis of embryonal tumors in the spinal canal mainly depend on their MRI appearances, specific tumor location and patient's age

  17. Ultrasonographic appearance of early embryonic mortality in buffalo (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Giuseppe Catone

    2010-01-01

    Full Text Available Embryonic mortality is one of the main causes responsible of the decline in fertility that occurs in buffaloes during periods of increasing daylight length (out sexual breeding season. Transrectal ultrasonography for pregnancy diagnosis offers some advantages over palpation per rectum: earlier diagnosis of pregnancy/non-pregnancy, determination of embryo/fetus viability, reduction of misdiagnosis, and reduction of .potential. iatrogenic embryo/fetal attrition. Non pregnant buffaloes on Day 25 after AI showed higher Resistive Index (RI (P<0.05 and Pulsatility Index (P=0.07 values, registered on CL on Days 10 after AI, compared to pregnant buffaloes. RI values were significantly higher (P=0.02 in non pregnant buffaloes also on Day 45 after AI. Colour Doppler sonography could be used to gain specific information relating to the ovarian blood flow in predicting early embryonic loss and to describe the ultrasonographic features of early embryonic death in buffaloes.

  18. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    Science.gov (United States)

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-02

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  19. Embryonic miRNA profiles of normal and ectopic pregnancies.

    Directory of Open Access Journals (Sweden)

    Francisco Dominguez

    Full Text Available Our objective was to investigate the miRNA profile of embryonic tissues in ectopic pregnancies (EPs and controlled abortions (voluntary termination of pregnancy; VTOP. Twenty-three patients suffering from tubal EP and twenty-nine patients with a normal ongoing pregnancy scheduled for a VTOP were recruited. Embryonic tissue samples were analyzed by miRNA microarray and further validated by real time PCR. Microarray studies showed that four miRNAs were differentially downregulated (hsa-mir-196b, hsa-mir-30a, hsa-mir-873, and hsa-mir-337-3p and three upregulated (hsa-mir-1288, hsa-mir-451, and hsa-mir-223 in EP compared to control tissue samples. Hsa-miR-196, hsa-miR-223, and hsa-miR-451 were further validated by real time PCR in a wider population of EP and control samples. We also performed a computational analysis to identify the gene targets and pathways which might be modulated by these three differentially expressed miRNAs. The most significant pathways found were the mucin type O-glycan biosynthesis and the ECM-receptor-interaction pathways. We also checked that the dysregulation of these three miRNAs was able to alter the expression of the gene targets in the embryonic tissues included in these pathways such as GALNT13 and ITGA2 genes. In conclusion, analysis of miRNAs in ectopic and eutopic embryonic tissues shows different expression patterns that could modify pathways which are critical for correct implantation, providing new insights into the understanding of ectopic implantation in humans.

  20. A Novel Concept of Amino Acid Supplementation to Improve the Growth of Young Malnourished Male Rats.

    Science.gov (United States)

    Furuta, Chie; Murakami, Hitoshi

    2018-01-01

    This study was aimed at understanding the relationship between plasma amino acids and protein malnutrition and at determining whether amino acid supplementation associated with malnutrition and growth improves linear growth in growing rats. Body length and plasma amino acids were measured in young male rats that were fed the following diet for 3 weeks, mimicking a low and imbalanced protein diets based on maize, a major staple consumed in developing countries: a 70% calorically restricted cornmeal-based diet (C), C + micronutrients (CM), CM + casein (CMC), CM + soy protein (CMS) or CMS + 0.3% lysine. A correlation analysis of linear growth and plasma amino acids indicated that lysine, tryptophan, branched-chain amino acids, methionine, and phenylalanine significantly correlated with body length. Supplementation with these 5 amino acids (AA1) significantly improved the body length in rats compared to CMC treatment whereas, nitrogen-balanced amino acid supplemented controls (AA2) did not (CM +1.2 ± 0.2, CMC +2.7 ± 0.3, CMS +2.1 ± 0.3, AA1 +2.8 ± 0.2, and AA2 +2.5 ± 0.3 cm). With securing proper amino acid balance, supplementing growth-related amino acids is more effective in improving linear growth in malnourished growing male rats. Analysis of the correlation between plasma amino acids and growth represents a powerful tool to determine candidate amino acids for supplementation to prevent malnutrition. This technology is adaptable to children in developing countries. © 2018 S. Karger AG, Basel.

  1. High glucose suppresses embryonic stem cell differentiation into neural lineage cells

    OpenAIRE

    Yang, Penghua; Shen, Wei-bin; Reece, E. Albert; Chen, Xi; Yang, Peixin

    2016-01-01

    Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model ...

  2. Embryonic chirality and the evolution of spiralian left–right asymmetries

    Science.gov (United States)

    2016-01-01

    The group Spiralia includes species with one of the most significant cases of left–right asymmetries in animals: the coiling of the shell of gastropod molluscs (snails). In this animal group, an early event of embryonic chirality controlled by cytoskeleton dynamics and the subsequent differential activation of the genes nodal and Pitx determine the left–right axis of snails, and thus the direction of coiling of the shell. Despite progressive advances in our understanding of left–right axis specification in molluscs, little is known about left–right development in other spiralian taxa. Here, we identify and characterize the expression of nodal and Pitx orthologues in three different spiralian animals—the brachiopod Novocrania anomala, the annelid Owenia fusiformis and the nemertean Lineus ruber—and demonstrate embryonic chirality in the biradial-cleaving spiralian embryo of the bryozoan Membranipora membranacea. We show asymmetric expression of nodal and Pitx in the brachiopod and annelid, respectively, and symmetric expression of Pitx in the nemertean. Our findings indicate that early embryonic chirality is widespread and independent of the cleavage programme in the Spiralia. Additionally, our study illuminates the evolution of nodal and Pitx signalling by demonstrating embryonic asymmetric expression in lineages without obvious adult left–right asymmetries. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821523

  3. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  4. Contested embryonic culture in Japan--public discussion, and human embryonic stem cell research in an aging welfare society.

    Science.gov (United States)

    Sleeboom-Faulkner, Margaret

    2010-01-01

    This article explores the reasons for the lack of a broad discussion on bioethical regulation of human embryonic stem cell research (hESR) in Japan and asks why scientists experience difficulties accessing resources for hESR despite the acclaimed indifference of dominant Japanese culture to embryo research. The article shows how various social actors express their views on the embryo and oocyte donation in terms of dominant Japanese culture, foiled against what is regarded as Western culture. Second, it shows how the lack of concern with hESR should be understood in the context of public health policies and communications and bioethics decision making in Japan. Finally, it interprets the meaning of the embryo in the context of Japan as an aging modern welfare society, explaining how policymakers have come to emphasize the urgency of infertility problems over issues around abortion and embryonic life.

  5. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  6. Fish oil supplementation improves docosahexaenoic acid status of malnourished infants

    NARCIS (Netherlands)

    Smit, EN; Oelen, EA; Seerat, E; Boersma, ER; Muskiet, FAJ

    Aim-To investigate whether the low docosahexaenoic acid (DHA) status of malnourished, mostly breast fed, Pakistani children can be improved by fish oil (FO) supplementation. Methods-Ten malnourished children (aged 8-30 months) received 500 mg FO daily for nine weeks. The supplement contained 62.8

  7. Protection by free oxygen radical scavenging enzymes against salicylate-induced embryonic malformations in vitro.

    Science.gov (United States)

    Karabulut, A K; Ulger, H; Pratten, M K

    2000-08-01

    Salicylates are among the oldest and most widely used drugs and are known to lead to foetal death, growth retardation and congenital abnormalities in experimental animals. In this study, the effects of acetyl salicylic acid (ASA), salicylic acid (SAL) and sodium salicylate (NaSAL) on early organogenesis and the interaction of these molecules with free radicals has been investigated. Postimplantation rat embryos were cultured in vitro from day 9.5 of gestation for 48 hr. ASA, SAL and NaSAL were added to whole rat serum at concentrations between 0.1 and 0.6 mg/ml. Also, the lowest effective concentration of ASA for all parameters (0.3 mg/ml) and the same concentration of NaSAL and SAL was added to the culture media in the presence of superoxide dismutase (SOD) (30 U/ml) or glutathione (0.5 micromol/ml). The growth and development of embryos was compared and each embryo was evaluated for the presence of any malformations. When compared to growth of control embryos, the salicylates decreased all growth and developmental parameters in a concentration-responsive manner. There was also a concentration-related increase in overall dysmorphology, including the incidence of haematoma in the yolk sac and neural system, open neural tube, abnormal tail torsion and the absence of fore limb bud. When SOD was added in the presence of ASA, growth and developmental parameters were improved and there was a significant decrease in the incidence of malformations. Addition of SOD also decreased the incidence of malformations in the presence of SAL, but did not effect the growth and developmental parameters of SAL and NaSAL. There was no significant difference between the embryos grown in the presence of these three molecules on the addition of glutathione. The effects of salicylates might involve free oxygen radicals by the non-enzymatic production of the highly teratogenic metabolites 2,3- and 2,5-dihydroxybenzoic acid. An enhanced production of these metabolites in embryonic tissues

  8. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-01-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  9. A complex RARE is required for the majority of Nedd9 embryonic expression.

    Science.gov (United States)

    Knutson, Danielle C; Clagett-Dame, Margaret

    2015-02-01

    Neural precursor cell expressed, developmentally down-regulated 9 (Nedd9, Casl, Hef1, p105cas, Ef1) is a scaffolding protein that assembles complexes involved in regulating cell adhesion, migration, division, and survival. Nedd9 is found very early in the developing embryonic nervous system. A highly conserved complex retinoic acid response element (RARE) is located 485 base pairs (bp) upstream of exon 2B in the promoter of the Nedd9 gene. Mice transgenic for a 5.2 kilobase (kb) region of the 2B Nedd9 promoter containing the RARE upstream of a lacZ reporter gene [Nedd9(RARE)-lacZ] show a large subset of the normal endogenous Nedd9 expression including that in the caudal hindbrain neuroepithelium, spinal cord, dorsal root ganglia (drg) and migrating neural crest (ncc). However, the transgenic mice do not recapitulate the native Nedd9 expression pattern in presumptive rhombomeres (pr) 3 and 5 of the early hindbrain, the base of the neuroepithelium in the midbrain, nor the forebrain telencephalon. Thus, the 5.2 kb region containing the intact RARE drives a large subset of Nedd9 expression, with additional sequences outside of this region needed to define the full complement of expression. When the 5.2 kb construct is modified (eight point mutations) to eliminate responsiveness of the RARE to all-trans retinoic acid (atRA) [Nedd9(mutRARE)-lacZ], virtually all β-galactosidase (β-gal, lacZ) expression is lost. Exposure of Nedd9(RARE)-lacZ transgenic embryos to excess atRA at embryonic day 8.0 (E8.0) leads to rostral ectopic transgene expression within 6 h whereas the Nedd9(mutRARE)-lacZ mutant does not show this effect. Thus the RARE upstream of the Nedd9 2B promoter is necessary for much of the endogenous gene expression during early development as well as ectopic expression in response to atRA.

  10. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Devkanya Dutta

    Full Text Available A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.

  11. Time--temperature relation of embryonic development in the northwestern salamander, Ambystoma gracile

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H A

    1976-04-01

    A field and laboratory study on temperature-related embryonic development of Ambystoma gracile was made on a population from northwestern Washington. Natural spawning began in the beaver pond during early March, and the duration of embryonic development (stages 1 to 46) was about 62 days. Average water temperature in the pond during embryonic development was 8.5/sup 0/C (range, 4.4 to 14.3/sup 0/C). The laboratory data of embryonic development at constant temperatures show that the limits of temperature tolerance are about 5 to 22.5/sup 0/C. Rate of development was measured by determining time required to develop from first cleavage (stage 2) to gill circulation (stage 37); representative rates are 12.7 days at 20/sup 0/C, 27 days at 12/sup 0/C, and 89 days at 7/sup 0/C. Embryos of A. gracile have the slowest rate of development when compared with embryos of four other species of Ambystoma (maculatum, mexicanum, tigrinum, and jeffersonianum) and with embryos of three Pacific Northwest frogs (Ascaphus truei, Rana aurora, and Hyla regilla).

  12. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  13. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  14. The role of RNA-polymerase II transcription in embryonic nucleologenesis by bovine embryos

    DEFF Research Database (Denmark)

    Kovalská, Mária; Petrovicová, Ida; Strejcek, Frantisek

    2010-01-01

    The early stages of embryonic development are maternally driven. As development proceeds, maternally inherited informational molecules decay, and embryogenesis becomes dependent on de novo synthesized RNAs of embryonic genome. The aim of the present study is to investigate the role of de novo tra...

  15. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism

    NARCIS (Netherlands)

    Silva, G.; Le Bé, J.-V.; Riachi, I.; Rinaldi, T.; Markram, K.; Markram, H.

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and

  16. Cell surface carbohydrate changes during embryonic and fetal skin development

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Holbrook, K; Clausen, H

    1986-01-01

    Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N-acetyllac......Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N...

  17. Improvement of CNT dispersion in HDPE by acid and octadecylamine functionalizations

    International Nuclear Information System (INIS)

    Menezes, Beatriz Rossi Canuto de; Ferreira, Filipe Vargas; Franceschi, Wesley; Brito, Felipe Sales; Nunes, Evelyn Alves; Rodrigues, Karla Faquine; Cividanes, Luciana de Simone; Thim, Gilmar Patrocínio; Rosa, Cintia

    2016-01-01

    Full text: Since their discovery in 1991, carbon nanotubes (CNTs) have attracted great attention due to their extraordinary structure and exceptional mechanical properties that make them a suitable candidate for polymer-based nanocomposites reinforcement [1]. However, CNTs full potential can only be achieved with a proper dispersion in the matrix, that depends of Van der Waals interactions among CNTs due to the large surface area and the small size. These interactions decrease the CNT dispersion due to the formation of agglomerates. In order to overcome this limitation, surface functionalization with acid and alkyl groups has been used to increase the CNTs dispersion and compatibility with polymer matrix [2]. Therefore, the focus of the present work is to improve the dispersion of CNTs in high density polyethylene (HDPE) matrix through their functionalization with acid (H 2 SO 4 +HNO 3 ) and octadecylamine (ODA:CH 3 (CH 2 ) 17 NH 2 ). The CNT/HDPE nanocomposites (0.8%wt of CNTs) were prepared by mechanical agitation of the melted mixture of CNTs and HDPE and subsequent compression molding. Three nanocomposites were prepared: (1) HDPE + pristine CNTs, (2) HDPE + acid functionalized CNTs, and (3) HDPE + ODA functionalized CNTs. In order to confirm the surface treatment, CNTs was characterized by FT-IR, XPS, Raman, and TEM. The improvement in CNTs dispersion and compatibility with HDPE was verified by tensile test, microhardness, SEM-FEG. The results showed an improvement in the CNTs dispersion for HDPE with acid and ODA functionalized CNTs. The Young's modulus and Vickers microhardness increased significantly for HDPE with treated CNTs when compared with pristine CNTs. References: [1] S Iijima, Nature 354, 56-58 (1991). [2] R Ansari, S Ajori, S Rouhi, Appl Surf Sci 332, 640-647 (2015). (author)

  18. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells.

    Science.gov (United States)

    Pandolfini, Luca; Luzi, Ettore; Bressan, Dario; Ucciferri, Nadia; Bertacchi, Michele; Brandi, Rossella; Rocchiccioli, Silvia; D'Onofrio, Mara; Cremisi, Federico

    2016-05-06

    Embryonic stem cells are intrinsically unstable and differentiate spontaneously if they are not shielded from external stimuli. Although the nature of such instability is still controversial, growing evidence suggests that protein translation control may play a crucial role. We performed an integrated analysis of RNA and proteins at the transition between naïve embryonic stem cells and cells primed to differentiate. During this transition, mRNAs coding for chromatin regulators are specifically released from translational inhibition mediated by RNA-induced silencing complex (RISC). This suggests that, prior to differentiation, the propensity of embryonic stem cells to change their epigenetic status is hampered by RNA interference. The expression of these chromatin regulators is reinstated following acute inactivation of RISC and it correlates with loss of stemness markers and activation of early cell differentiation markers in treated embryonic stem cells. We propose that RISC-mediated inhibition of specific sets of chromatin regulators is a primary mechanism for preserving embryonic stem cell pluripotency while inhibiting the onset of embryonic developmental programs.

  19. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas

    2014-01-01

    Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared...... the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly...

  20. Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells.

    Science.gov (United States)

    Shinde, Vaibhav; Perumal Srinivasan, Sureshkumar; Henry, Margit; Rotshteyn, Tamara; Hescheler, Jürgen; Rahnenführer, Jörg; Grinberg, Marianna; Meisig, Johannes; Blüthgen, Nils; Waldmann, Tanja; Leist, Marcel; Hengstler, Jan Georg; Sachinidis, Agapios

    2016-12-30

    Human embryonic stem cells (hESCs) partially recapitulate early embryonic three germ layer development, allowing testing of potential teratogenic hazards. Because use of hESCs is ethically debated, we investigated the potential for human induced pluripotent stem cells (hiPSCs) to replace hESCs in such tests. Three cell lines, comprising hiPSCs (foreskin and IMR90) and hESCs (H9) were differentiated for 14 days. Their transcriptome profiles were obtained on day 0 and day 14 and analyzed by comprehensive bioinformatics tools. The transcriptomes on day 14 showed that more than 70% of the "developmental genes" (regulated genes with > 2-fold change on day 14 compared to day 0) exhibited variability among cell lines. The developmental genes belonging to all three cell lines captured biological processes and KEGG pathways related to all three germ layer embryonic development. In addition, transcriptome profiles were obtained after 14 days of exposure to teratogenic valproic acid (VPA) during differentiation. Although the differentially regulated genes between treated and untreated samples showed more than 90% variability among cell lines, VPA clearly antagonized the expression of developmental genes in all cell lines: suppressing upregulated developmental genes, while inducing downregulated ones. To quantify VPA-disturbed development based on developmental genes, we estimated the "developmental potency" (D p ) and "developmental index" (D i ). Despite differences in genes deregulated by VPA, uniform D i values were obtained for all three cell lines. Given that the D i values for VPA were similar for hESCs and hiPSCs, D i can be used for robust hazard identification, irrespective of whether hESCs or hiPSCs are used in the test systems.

  1. Gene expression response to EWS–FLI1 in mouse embryonic cartilage

    Directory of Open Access Journals (Sweden)

    Miwa Tanaka

    2014-12-01

    Full Text Available Ewing's sarcoma is a rare bone tumor that affects children and adolescents. We have recently succeeded to induce Ewing's sarcoma-like small round cell tumor in mice by expression of EWS–ETS fusion genes in murine embryonic osteochondrogenic progenitors. The Ewing's sarcoma precursors are enriched in embryonic superficial zone (eSZ cells of long bone. To get insights into the mechanisms of Ewing's sarcoma development, gene expression profiles between EWS–FLI1-sensitive eSZ cells and EWS–FLI1-resistant embryonic growth plate (eGP cells were compared using DNA microarrays. Gene expression of eSZ and eGP cells (total, 30 samples was evaluated with or without EWS–FLI1 expression 0, 8 or 48 h after gene transduction. Our data provide useful information for gene expression responses to fusion oncogenes in human sarcoma.

  2. Embryonic Stem Cells and their Genetic Modification

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 2. Embryonic Stem Cells and their Genetic Modification - The Nobel Prize in Physiology or Medicine 2007. Mitradas M Panicker. General Article Volume 13 Issue 2 February 2008 pp 172-180 ...

  3. Effects of in ovo feeding of cationic amino acids on hatchability, hatch weights, and organ developments in domestic pigeon squabs (Columba livia).

    Science.gov (United States)

    Zhang, X Y; Li, L L; Miao, L P; Zhang, N N; Zou, X T

    2018-01-01

    This study was conducted to evaluate the effect of in ovo feeding of cationic amino acids on hatchability, hatch weights, and organ developments in pigeon squabs. Two experiments were conducted in this study. Eggs in Exp. 1 were subjected to modification of in ovo feeding in pigeons. Optimal time was determined by checking amniotic fluid volume, and suitable length was confirmed through ink injection. Results showed that the optimum time of in ovo feeding was on d 13 of embryonic development, and the suitable injected length was 20 mm to reach the amniotic cavity of the embryo. Eggs in Exp. 2 were transferred to access in ovo feeding of cationic amino acids. A total of 75 fertile pigeon eggs was randomly distributed into 5 treatments of 15 replicate eggs. Treatments in Exp. 2 consisted of non-injected controls (Control), a sterile buffered solution (0.75% saline), or a cationic amino acid mixture (> 98.5% purity crystalline L-arginine, > 98% purity crystalline L-lysine, and > 98.5% purity L-histidine) containing 0.1, 1, or 10% concentration (Conc.), which were relative to their total content in the eggs, respectively. The crystalline amino acids were dissolved in 200 μL buffered solution prior to in ovo feeding. After hatching, hatch weight (HW) and organ weight (OW) of the squabs were measured immediately. In ovo feeding of cationic amino acids increased the proportions of yolk-free hatch weight to hatch weight (YFHW/HW) (quadratic P = 0.01), and those of OW to YFHW including the heart (quadratic P = 0.01), kidney (quadratic P < 0.01), and liver (quadratic P = 0.02) compared to the control group, and the levels of those ratios were maximized in the 1% Conc group. Also, a proportion of small intestine weight to YFHW improved (linear P = 0.02, quadratic P = 0.05) after in ovo feeding. The organ weight of the head, leg, heart, lung, kidney, proventriculus, pancreas, liver, and small intestine correlated with YFHW positively (0.4 < correlation coefficient < 0

  4. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus*

    Science.gov (United States)

    Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin S.; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil G.; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.

    2015-01-01

    Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses (“pseudoimplantation”) that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. PMID:25931120

  5. [Regulation of in vitro and in vivo differentiation of mouse embryonic stem cells, embryonic germ cells, and teratocarcinoma cells by TGFb family signaling factors].

    Science.gov (United States)

    Gordeeva, O F; Nikonova, T M; Lifantseva, N V

    2009-01-01

    The activity of specific signaling and transcription factors determines the cell fate in normal development and in tumor transformation. The transcriptional profiles of gene-components of different branches of TGFbeta family signaling pathways were studied in experimental models of initial stages of three-dimensional in vitro differentiation of embryonic stem cells, embryonic germ cells and teratocarcinoma cells and in teratomas and teratocarcinomas developed after their transplantation into immunodeficient Nude mice. Gene profile analysis of studied cell systems have revealed that expression patterns of ActivinA, Nodal, Lefty1, Lefty2, TGF TGFbeta1, BMP4, and GDF were identical in pluripotent stem cells whereas the mRNAs of all examined genes with the exception of Inhibin betaA/ActivinA were detected in the teratocarcinoma cells. These results indicate that differential activity of signaling pathways of the TGFbeta family factors regulates pluripotent state maintenance and pluripotent stem cell differentiation into the progenitors of three germ layers and extraembryonic structures and that normal expression pattern of TGFbeta family factors is rearranged in embryonic teratocarcinoma cells during tumor growth in vitro and in vivo.

  6. Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Schooten, Frederik J. van; Piersma, Aldert H.

    2010-01-01

    The embryonic stem cell test (EST) predicts developmental toxicity based on the inhibition of cardiomyocyte differentiation of embryonic stem cells (ESC). The subjective endpoint, the long culture duration together with the undefined applicability domain and related predictivity need further improvement to facilitate implementation of the EST into regulatory strategies. These aspects may be improved by studying gene expression changes in the ESC differentiation cultures and their modulation by compound exposure using transcriptomics. Here, we tested the developmental toxicants monobutyl phthalate and 6-aminonicotinamide. ESC were allowed to differentiated, and cardiomyocyte differentiation was assessed after 10 days of culture. RNA of solvent controls was collected after 0, 24, 48, 72 and 96 h of exposure, and RNA of developmental-toxicant-exposed cultures was collected after 24 and 96 h. Samples were hybridized to DNA microarrays, and 1355 genes were found differentially expressed among the unexposed experimental groups. These regulated genes were involved in differentiation-related processes, and Principal Component Analysis (PCA) based on these genes showed that the unexposed experimental groups appeared in chronological order in the PCA, which can therefore be regarded as a continuous representation of the differentiation track. The developmental-toxicant-exposed cultures appeared to deviate significantly from this differentiation track, which confirms the compound-modulating effects on the differentiation process. The incorporation of transcriptomics in the EST is expected to provide a more informative and improved endpoint in the EST as compared with morphology, allowing early detection of differentiation modulation. Furthermore, this approach may improve the definition of the applicability domain and predictivity of the EST.

  7. Neural tube defects – disorders of neurulation and related embryonic processes

    Science.gov (United States)

    Copp, Andrew J.; Greene, Nicholas D. E.

    2014-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. ‘Open’ NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida) and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. ‘Closed’ NTDs are skin-covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. ‘Herniation’ NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorised through a pathological opening in the skull or vertebral column (e.g. encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signalling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the BMP and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid, when taken as a peri-conceptional supplement, can prevent many cases. Not all NTDs respond to folic acid, however, and adjunct therapies are required for prevention of this folic acid-resistant category. PMID:24009034

  8. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  9. Laminin binding protein, 34/67 laminin receptor, carries stage-specific embryonic antigen-4 epitope defined by monoclonal antibody Raft.2

    International Nuclear Information System (INIS)

    Katagiri, Yohko U.; Kiyokawa, Nobutaka; Nakamura, Kyoko; Takenouchi, Hisami; Taguchi, Tomoko; Okita, Hajime; Umezawa, Akihiro; Fujimoto, Junichiro

    2005-01-01

    We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [ 14 C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP

  10. the production of mouse embryonic stem cells

    Indian Academy of Sciences (India)

    MADU

    What history tells us VII. Twenty-five years ago: the production of mouse embryonic stem cells ... cells into the cavity of the blastocyst, it will be possible to test the effect of .... to the use of efficient immunosuppressive drugs like cyclosporin – was ...

  11. Testicular Embryonic Rhabdomyosarcoma, Case report with brief ...

    African Journals Online (AJOL)

    Testicular Embryonic Rhabdomyosarcoma, Case report with brief literature review. AM Adam, MMAM Ibnouf, IAF Allah. Abstract. Background: Rhabdomyosarcoma (RMS) is a malignant solid tumour arising from mesenchymal tissues which normally differentiate to form striated muscle. It can occur in a wide variety of sites.

  12. Improvement of exhaustion and fixation of chrome tan by hydroxy organic acids

    International Nuclear Information System (INIS)

    Nashy, E.H.A.; Khedr, M.H.; EL-Sayed, N.H.

    2005-01-01

    Chrome tan is the most important tanning agent in the tanning industry, but it causes extreme pollution due to the incomplete exhaustion of the serious chrome cations in tanning bath. The exhaustion and fixation of chrome tan were improved in this study through treatment of delimed hide with three carboxylic acids named citric, malic and tartaric acids before exposure to tanning process. The process was optimized taking into the account the shaking rate, chrome concentration (%), initial ph, acids concentration, and temperature and contact time. The optimum conditions for exhaustion, fixation, shrinkage temperature as well as skin quality showed that agitation rate of 150 rpm, chrome concentration of 16%, initial ph of 8.5, acid concentration of 3% tartaric acid, temperature of 35 degree C and contact time of 24 hr.The best results obtained are 88% exhaustion, 88.32% fixation and 106 degree C shrinkage temperature in aqueous medium

  13. Changes of Protein and Lipid Contents, Amino Acid and Fatty Acid Compositions in Eggs and Yolk-Sac Larvae of American Shad ( Alosa sapidissima)

    Science.gov (United States)

    Liu, Zhifeng; Gao, Xiaoqiang; Yu, Jiuxiang; Wang, Yaohui; Guo, Zhenglong; Huang, Bin; Liu, Baoliang; Hong, Lei

    2018-04-01

    To investigate the changes of the biochemical composition of American shad ( Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching ( P acids after hatching except for glycine ( P fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA ( P acids.

  14. How does blastomere removal affect embryonic development? : A time-lapse analysis

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    of the 6-10 cell embryo. It has been argued that blastomere removal does not affect embryonic development, but few studies have focussed on safety of the procedure. Recently, time-lapse studies on mice have suggested that blastomere removal affects embryonic development. The present study was conducted...... to evaluate the effect of blastomere biopsy on early human embryonic development using time-lapse analysis. Materials and methods: Couples undergoing IVF treatment or PGD were requested permission to include embryos in the project. The diagnosis healthy/diseased was made by analysis of a single blastomere....... For PGD 56 human embryos were biopsied 68 hours after fertilisation, the majority at the eight cell stage. As controls 43 non-biopsied embryos at the 6-8 cell stage were selected. All embryos were cultured until 5 days after fertilisation in a time-lapse incubator (EmbryoScope™). Key events such as time...

  15. Growth trajectories of the human embryonic head and periconceptional maternal conditions.

    Science.gov (United States)

    Koning, I V; Baken, L; Groenenberg, I A L; Husen, S C; Dudink, J; Willemsen, S P; Gijtenbeek, M; Koning, A H J; Reiss, I K M; Steegers, E A P; Steegers-Theunissen, R P M

    2016-05-01

    Can growth trajectories of the human embryonic head be created using 3D ultrasound (3D-US) and virtual reality (VR) technology, and be associated with second trimester fetal head size and periconceptional maternal conditions? Serial first trimester head circumference (HC) and head volume (HV) measurements were used to create reliable growth trajectories of the embryonic head, which were significantly associated with fetal head size and periconceptional maternal smoking, age and ITALIC! in vitro fertilization (IVF)/intra-cytoplasmic sperm injection (ICSI) treatment. Fetal growth is influenced by periconceptional maternal conditions. We selected 149 singleton pregnancies with a live born non-malformed fetus from the Rotterdam periconception cohort. Bi-parietal diameter and occipital frontal diameter to calculate HC, HV and crown-rump length (CRL) were measured weekly between 9 + 0 and 12 + 6 weeks gestational age (GA) using 3D-US and VR. Fetal HC was obtained from second trimester structural anomaly scans. Growth trajectories of the embryonic head were created with general additive models and linear mixed models were used to estimate associations with maternal periconceptional conditions as a function of GA and CRL, respectively. A total of 303 3D-US images of 149 pregnancies were eligible for embryonic head measurements (intra-class correlation coefficients >0.99). Associations were found between embryonic HC and fetal HC ( ITALIC! ρ = 0.617, ITALIC! P head measured by HC and HV (All ITALIC! P head may be of benefit in future early antenatal care. This study was funded by the Department of Obstetrics and Gynaecology, Erasmus MC University Medical Centre and Sophia Foundation for Medical Research, Rotterdam, The Netherlands (SSWO grant number 644). No competing interests are declared. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email

  16. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    Science.gov (United States)

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  17. Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.

    Science.gov (United States)

    Jaskoll, T; Luo, W; Snead, M L

    1998-01-01

    It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.

  18. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Tsuji-Takayama, Kazue; Inoue, Toshiya; Ijiri, Yoshihiro; Otani, Takeshi; Motoda, Ryuichi; Nakamura, Shuji; Orita, Kunzo

    2004-01-01

    The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes

  19. Hydrophilicity improvement of polyethersulfone membranes by grafting methacrylic acid with γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Jing; Hou Zhengchi; Xie Leidong; Zhang Fengying; Deng Bo

    2005-01-01

    Grafting methyacrylic acid onto poly(ether sulfone) membranes was realized by means of simultaneous irradiation in liquids. The modified membranes with different grafting ratios were obtained by changing the concentration of methyacrylic acid. It was shown that the grafting ratio increased lineally as the monomer concentration was less than 10% and hydrophilicity of the membranes was improved with increasing grafting ratios. (authors)

  20. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    Science.gov (United States)

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  1. Detection of bluetongue virus by using bovine endothelial cells and embryonated chicken eggs.

    OpenAIRE

    Wechsler, S J; Luedke, A J

    1991-01-01

    Two systems, inoculation of bovine endothelial cells and of embryonated chicken eggs, were compared for detection of bluetongue virus (BTV) in blood specimens from experimentally inoculated sheep. For all BTV serotypes tested, embryonated chicken eggs detected longer periods of viremia than did bovine endothelial cells, primarily by detecting BTV in samples containing lower virus concentrations.

  2. Increased Erythrocyte Eicosapentaenoic Acid and Docosahexaenoic Acid Are Associated With Improved Attention and Behavior in Children With ADHD in a Randomized Controlled Three-Way Crossover Trial.

    Science.gov (United States)

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2015-11-01

    To investigate effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on attention, literacy, and behavior in children with ADHD. Ninety children were randomized to consume supplements high in EPA, DHA, or linoleic acid (control) for 4 months each in a crossover design. Erythrocyte fatty acids, attention, cognition, literacy, and Conners' Parent Rating Scales (CPRS) were measured at 0, 4, 8, 12 months. Fifty-three children completed the treatment. Outcome measures showed no significant differences between the three treatments. However, in children with blood samples (n = 76-46), increased erythrocyte EPA + DHA was associated with improved spelling (r = .365, p attention (r = -.540, p improve behavior, attention, and literacy in children with ADHD. © The Author(s) 2013.

  3. Linking incomplete reprogramming to the improved pluripotency of murine embryonal carcinoma cell-derived pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Gang Chang

    Full Text Available Somatic cell nuclear transfer (SCNT has been proved capable of reprogramming various differentiated somatic cells into pluripotent stem cells. Recently, induced pluripotent stem cells (iPS have been successfully derived from mouse and human somatic cells by the over-expression of a combination of transcription factors. However, the molecular mechanisms underlying the reprogramming mediated by either the SCNT or iPS approach are poorly understood. Increasing evidence indicates that many tumor pathways play roles in the derivation of iPS cells. Embryonal carcinoma (EC cells have the characteristics of both stem cells and cancer cells and thus they might be the better candidates for elucidating the details of the reprogramming process. Although previous studies indicate that EC cells cannot be reprogrammed into real pluripotent stem cells, the reasons for this remain unclear. Here, nuclei from mouse EC cells (P19 were transplanted into enucleated oocytes and pluripotent stem cells (P19 NTES cells were subsequently established. Interestingly, P19 NTES cells prolonged the development of tetraploid aggregated embryos compared to EC cells alone. More importantly, we found that the expression recovery of the imprinted H19 gene was dependent on the methylation state in the differential methylation region (DMR. The induction of Nanog expression, however, was independent of the promoter region DNA methylation state in P19 NTES cells. A whole-genome transcriptome analysis further demonstrated that P19 NTES cells were indeed the intermediates between P19 cells and ES cells and many interesting genes were uncovered that may be responsible for the failed reprogramming of P19 cells. To our knowledge, for the first time, we linked incomplete reprogramming to the improved pluripotency of EC cell-derived pluripotent stem cells. The candidate genes we discovered may be useful not only for understanding the mechanisms of reprogramming, but also for deciphering the

  4. Comparison between dot-immunoblotting assay and clinical sign determination method for quantifying avian infectious bronchitis virus vaccine by titration in embryonated eggs.

    Science.gov (United States)

    Yuk, Seong-Su; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Gwon, Gyeong-Bin; Jeong, Jei-Hyun; Jeong, Sol; Youn, Ha-Na; Heo, Yong-Hwan; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-04-01

    A sensitive and specific method for measuring the vaccine titer of infectious bronchitis virus (IBV) is important to commercial manufacturers for improving vaccine quality. Typically, IBV is titrated in embryonated chicken eggs, and the infectivity of the virus dilutions is determined by assessing clinical signs in the embryos as evidence of viral propagation. In this study, we used a dot-immunoblotting assay (DIA) to measure the titers of IBV vaccines that originated from different pathogenic strains or attenuation methods in embryonated eggs, and we compared this assay to the currently used method, clinical sign evaluation. To compare the two methods, we used real-time reverse transcription-PCR, which had the lowest limit of detection for propagated IBV. As a clinical sign of infection, dwarfism of the embryo was quantified using the embryo: egg (EE) index. The DIA showed 9.41% higher sensitivity and 15.5% higher specificity than the clinical sign determination method. The DIA was particularly useful for measuring the titer of IBV vaccine that did not cause apparent stunting but propagated in embryonated chicken eggs such as a heat-adapted vaccine strain. The results of this study indicate that the DIA is a rapid, sensitive, reliable method for determining IBV vaccine titer in embryonated eggs at a relatively low cost. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... In this study, the differentiation potential of chicken ES cells was investigated ... Key words: Chicken embryonic stem cells, in vitro, directional differentiation, .... synthesized by using the Revert Aid first strand cDNA synthesis kit.

  6. Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Manolis Gialitakis

    2017-11-01

    Full Text Available The transcriptional program of early embryonic development is tightly regulated by a set of well-defined transcription factors that suppress premature expression of differentiation genes and sustain the pluripotent identity. It is generally accepted that this program can be perturbed by environmental factors such as chemical pollutants; however, the precise molecular mechanisms remain unknown. The aryl hydrocarbon receptor (AHR is a widely expressed nuclear receptor that senses environmental stimuli and modulates target gene expression. Here, we have investigated the AHR interactome in embryonic stem cells by mass spectrometry and show that ectopic activation of AHR during early differentiation disrupts the differentiation program via the chromatin remodeling complex NuRD (nucleosome remodeling and deacetylation. The activated AHR/NuRD complex altered the expression of differentiation-specific genes that control the first two developmental decisions without affecting the pluripotency program. These findings identify a mechanism that allows environmental stimuli to disrupt embryonic development through AHR signaling.

  7. Patently controversial: markets, morals, and the President's proposal for embryonic stem cell research.

    Science.gov (United States)

    Fins, Joseph J; Schachter, Madeleine

    2002-09-01

    This essay considers the implications of President George W. Bush's proposal for human embryonic stem cell research. Through the perspective of patent law, privacy, and informed consent, we elucidate the ongoing controversy about the moral standing of human embryonic stem cells and their derivatives and consider how the inconsistencies in the president's proposal will affect clinical practice and research.

  8. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  9. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  10. Virtual reality imaging techniques in the study of embryonic and early placental health.

    Science.gov (United States)

    Rousian, Melek; Koster, Maria P H; Mulders, Annemarie G M G J; Koning, Anton H J; Steegers-Theunissen, Régine P M; Steegers, Eric A P

    2018-04-01

    Embryonic and placental growth and development in the first trimester of pregnancy have impact on the health of the fetus, newborn, child and even the adult. This emphasizes the importance of this often neglected period in life. The development of three-dimensional transvaginal ultrasonography in combination with virtual reality (VR) opens the possibility of accurate and reliable visualization of embryonic and placental structures with real depth perception. These techniques enable new biometry and volumetry measurements that contribute to the knowledge of the (patho)physiology of embryonic and early placental health. Examples of such measurements are the length of complex structures like the umbilical cord, vitelline duct, limbs and cerebellum or the volume of the whole embryo and brain cavities. Moreover, for the first time, embryos can now be staged in vivo (Carnegie stages) and vasculature volumes of both the embryo and the early placenta can be measured when VR is combined with power Doppler signals. These innovative developments have already been used to study associations between periconceptional maternal factors, such as age, smoking, alcohol use, diet and vitamin status, and embryonic and early placental growth and development. Future studies will also focus on the identification of abnormal embryonic and early placental development already in the earliest weeks of pregnancy, which provides opportunities for early prevention of pregnancy complications. Copyright © 2018 IFPA, Elsevier Ltd. Published by Elsevier Ltd.. All rights reserved.

  11. A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors

    Directory of Open Access Journals (Sweden)

    Huixuan Liang

    2012-09-01

    Nestin-cre transgenic mice have been widely used to direct recombination to neural stem cells (NSCs and intermediate neural progenitor cells (NPCs. Here we report that a readily utilized, and the only commercially available, Nestin-cre line is insufficient for directing recombination in early embryonic NSCs and NPCs. Analysis of recombination efficiency in multiple cre-dependent reporters and a genetic mosaic line revealed consistent temporal and spatial patterns of recombination in NSCs and NPCs. For comparison we utilized a knock-in Emx1cre line and found robust recombination in NSCs and NPCs in ventricular and subventricular zones of the cerebral cortices as early as embryonic day 12.5. In addition we found that the rate of Nestin-cre driven recombination only reaches sufficiently high levels in NSCs and NPCs during late embryonic and early postnatal periods. These findings are important when commercially available cre lines are considered for directing recombination to embryonic NSCs and NPCs.

  12. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    Science.gov (United States)

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  13. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus.

    Science.gov (United States)

    Cha, Jeeyeon; Burnum-Johnson, Kristin E; Bartos, Amanda; Li, Yingju; Baker, Erin S; Tilton, Susan C; Webb-Robertson, Bobbie-Jo M; Piehowski, Paul D; Monroe, Matthew E; Jegga, Anil G; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K

    2015-06-12

    Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Paternal identity impacts embryonic development for two species of freshwater fish.

    Science.gov (United States)

    Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Pitcher, Trevor E; Politis, Sebastian Nikitas; Butts, Ian Anthony Ernest

    2017-05-01

    Paternal, compared to maternal, contributions were believed to have only a limited influence on embryonic development and larval fitness traits in fishes. Therefore, the perspective of male influence on early life history traits has come under scrutiny. This study was conducted to determine parental effects on the rate of eyed embryos of Ide Leuciscus idus and Northern pike Esox lucius. Five sires and five dams from each species were crossed using a quantitative genetic breeding design and the resulting 25 sib groups of each species were reared to the embryonic eyed stage. We then partition variation in embryonic phenotypic performance to maternal, paternal, and parental interactions using the Restricted Maximum Likelihood (REML) model. Results showed that paternal, maternal, and the paternal×maternal interaction terms were highly significant for both species; clearly demonstrating that certain family combinations were more compatible than others. Paternal effects explained 20.24% of the total variance, which was 2-fold higher than the maternal effects (10.73%) in Ide, while paternal effects explained 18.9% of the total variance, which was 15-fold higher than the maternal effects (1.3%) in Northern pike. Together, these results indicate that male effects are of major importance during embryonic development for these species. Furthermore, this study demonstrates that genetic compatibility between sires and dams plays an important role and needs to be taken into consideration for reproduction of these and likely other economically important fish species. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Improvement in cardiac function and free fatty acid metabolism in a case of dilated cardiomyopathy with CD36 deficiency.

    Science.gov (United States)

    Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K

    2000-09-01

    A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.

  16. Optimisation of lactic acid fermentation for improved vinegar flavour during rosy vinegar brewing.

    Science.gov (United States)

    Jiang, Yujian; Guo, Jianna; Li, Yudong; Lin, Sen; Wang, Li; Li, Jianrong

    2010-06-01

    Rosy vinegar is a well-known traditional Chinese product whose flavour is affected by its lactic acid content. In this study, Lactobacillus bacteria were employed to increase the content of lactic acid during the ethanol fermentation stage. The optimised fermentation parameters were determined as an inoculation amount of 3% (v/v), a temperature of 30 degrees C and an initial pH value of 4.0. Fermentation under these optimal conditions resulted in an alcohol degree of 6.2% (v/v), a total acidity of 49.5 g L(-1) and a lactic acid content of 4.14 g L(-1). The content of lactic acid (4.14 g L(-1)), which approached the level achieved by solid state fermentation, was 3.56-fold higher than that in vinegar fermented without lactic acid bacteria (1.16 g L(-1)). The results indicate that mixed fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae strains greatly increases the lactic acid content and improves the flavour of rosy vinegar. Copyright (c) 2010 Society of Chemical Industry.

  17. A new role for muscle segment homeobox genes in mammalian embryonic diapause

    Science.gov (United States)

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D.; Renfree, Marilyn B.; Dey, Sudhansu K.

    2013-01-01

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice—it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness. PMID:23615030

  18. A new role for muscle segment homeobox genes in mammalian embryonic diapause.

    Science.gov (United States)

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D; Renfree, Marilyn B; Dey, Sudhansu K

    2013-04-24

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice-it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness.

  19. The effect of temperature on the embryonic development of barramundi, the Australian strain of Lates calcarifer (Bloch using current hatchery practices

    Directory of Open Access Journals (Sweden)

    Valentin Thépot

    2015-11-01

    Full Text Available Lates calcarifer (barramundi or Asian seabass has been farmed since the 1970s, yet despite its widespread culture little has been documented on the species’ embryonic development and particularly how development relates to temperature. This is particularly the case for the Australian L. calcarifer genetic strain. Accordingly, embryonic development of fertilised barramundi eggs incubated at 26, 28, 30, 32, 34 and 36 °C were followed from the time of incubation until hatching and the timing to reach key developmental stages and temperature-induced hatching success established. Eggs incubated at 26 and 36 °C did not survive past the first two hours post-fertilisation. Development of the Australian strain of L. calcarifer was observed to proceed similarly to those documented from Asia, however, differences were observed in the timing of major embryonic events among the two strains. Incubation trials showed that eggs maintained at 30 °C had the highest hatch rate (86.7%. The findings of this study are discussed and put in a commercial context with potential future research to further improve practices at the hatchery level.

  20. Radiotherapy improves serum fatty acids and lipid profile in breast cancer.

    Science.gov (United States)

    Shaikh, Sana; Channa, Naseem Aslam; Talpur, Farha Naz; Younis, Muhammad; Tabassum, Naila

    2017-05-18

    Breast cancer is a disease with diverse clinical symptoms, molecular profiles, and its nature to response its therapeutic treatments. Radiotherapy (RT), along with surgery and chemotherapy is a part of treatment in breast cancer. The aim of present study was to investigate pre and post treatment effects of radiotherapy in serum fatty acids and its lipids profile in patients with breast cancer. In this comparative as well as follow up study, Serum fatty acids were performed by gas chromatography to investigate fatty acids and Microlab for analysis of lipid profile. Among serum free and total fatty acids the major saturated fatty acids (SFAs) in serum lipids of breast cancer patients (pre and post treated) were stearic acid (18:0) and palmitic acid (16:0). These fatty acids contributed about 35-50% of total fatty acids. The decreased concentrations of linoleic acid (C18:2) and arachidonic acid (C20:4) with a lower ratio of C18:2/C18:1 was found in pretreated breast cancer patients as compared to controls. The n-3/n-6 ratio of breast cancer patients was decreased before treatment but it was 35% increased after treatment. In addition, plasma activity of D6 desaturase was increased in the breast cancer patients, while the activity of D5 desaturase was decreased. Increased levels of SFAs, monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) levels in breast cancer patients (pre and post treated) as compared to controls. Serum total cholesterol (TC) (224.4 mg/dL) and low density lipoprotein cholesterol (LDL-C) (142.9 mg/dL) were significantly increased in pretreated breast cancer patients but after the radiotherapy treatment, the TC (150.2 mg/dL) and LDL-C (89.8 mg/dL) were decreased. It seems that RT would have played a potential role in the treatment of BC. After RT the serum levels of PUFAs, TC, and LDL-C are improved. Our study reinforces the important role of RT in the management of BC. The level of PUFAs, TC, and LDL-C can be

  1. Laser Surface Alloying of Aluminum for Improving Acid Corrosion Resistance

    Science.gov (United States)

    Jiru, Woldetinsay Gutu; Sankar, Mamilla Ravi; Dixit, Uday Shanker

    2018-04-01

    In the present study, laser surface alloying of aluminum with magnesium, manganese, titanium and zinc, respectively, was carried out to improve acid corrosion resistance. Laser surface alloying was conducted using 1600 and 1800 W power source using CO2 laser. Acid corrosion resistance was tested by dipping the samples in a solution of 2.5% H2SO4 for 200 h. The weight loss due to acid corrosion was reduced by 55% for AlTi, 41% for AlMg alloy, 36% for AlZn and 22% for AlMn alloy. Laser surface alloyed samples offered greater corrosion resistance than the aluminum substrate. It was observed that localized pitting corrosion was the major factor to damage the surface when exposed for a long time. The hardness after laser surface alloying was increased by a factor of 8.7, 3.4, 2.7 and 2 by alloying with Mn, Mg, Ti and Zn, respectively. After corrosion test, hardness was reduced by 51% for AlTi sample, 40% for AlMg sample, 41.4% for AlMn sample and 33% for AlZn sample.

  2. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Science.gov (United States)

    Rajanahalli Krishnamurthy, Pavan

    successfully manipulated by ectopic expression of defined factors. We demonstrate that mouse fibroblasts can be converted into sphere cells by detaching fibroblast cells by proteases and then using AlbuMAX I-containing culture medium without genetic alteration. AlbuMAX I is a lipid-rich albumin. Albumin-associated lipids arachidonic acid (AA) and pluronic F-68 were responsible for this effect. The converted colonies were positive for both alkaline phosphatase and stage specific embryonic antigen-1 (SSEA-1) staining. Global gene expression analysis indicated that the sphere cells were in an intermediate state compared with MES cells and MEF cells. The sphere cells were able to differentiate into tissues representing all three embryonic germ layers following retinoic acid treatment, and also differentiated into smooth muscle cells following treatment with vascular endothelial growth factor (VEGF). The study presented a potential novel approach to transdifferentiate mouse fibroblast cells into other cell lineages mediated by AlbuMAX I-containing culture medium.

  3. 78 FR 13688 - Proposed Collection; 60-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be...

    Science.gov (United States)

    2013-02-28

    ... Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH Funded Research... Embryonic Stem Cell Line to be Approved for Use in NIH Funded Research. OMB No. 0925-0601-- Expiration Date... and Use of Information Collection: The form is used by applicants to request that human embryonic stem...

  4. Growth and morphogenesis of embryonic mouse organs on non-coated and extracellular matrix-coated Biopore membrane

    Science.gov (United States)

    Hardman, P.; Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.

  5. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Silberberg, Gilad; Markram, Henry

    2008-01-01

    Exposure to valproic acid (VPA) during embryogenesis can cause several teratogenic effects, including developmental delays and in particular autism in humans if exposure occurs during the third week of gestation. We examined the postnatal effects of embryonic exposure to VPA on microcircuit...... properties of juvenile rat neocortex using in vitro electrophysiology. We found that a single prenatal injection of VPA on embryonic day 11.5 causes a significant enhancement of the local recurrent connectivity formed by neocortical pyramidal neurons. The study of the biophysical properties...... of these connections revealed weaker excitatory synaptic responses. A marked decrease of the intrinsic excitability of pyramidal neurons was also observed. Furthermore, we demonstrate a diminished number of putative synaptic contacts in connection between layer 5 pyramidal neurons. Local hyperconnectivity may render...

  6. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  8. Role of leptin in delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, A; Meenakumari, K J; Krishna, A

    2010-08-01

    An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  10. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages.

    Science.gov (United States)

    Xie, Jingwei; Willerth, Stephanie M; Li, Xiaoran; Macewan, Matthew R; Rader, Allison; Sakiyama-Elbert, Shelly E; Xia, Younan

    2009-01-01

    Due to advances in stem cell biology, embryonic stem (ES) cells can be induced to differentiate into a particular mature cell lineage when cultured as embryoid bodies. Although transplantation of ES cells-derived neural progenitor cells has been demonstrated with some success for either spinal cord injury repair in small animal model, control of ES cell differentiation into complex, viable, higher ordered tissues is still challenging. Mouse ES cells have been induced to become neural progenitors by adding retinoic acid to embryoid body cultures for 4 days. In this study, we examine the use of electrospun biodegradable polymers as scaffolds not only for enhancing the differentiation of mouse ES cells into neural lineages but also for promoting and guiding the neurite outgrowth. A combination of electrospun fiber scaffolds and ES cells-derived neural progenitor cells could lead to the development of a better strategy for nerve injury repair.

  11. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    International Nuclear Information System (INIS)

    Sui, Lina; Mfopou, Josué K.; Geens, Mieke; Sermon, Karen; Bouwens, Luc

    2012-01-01

    Highlights: ► Deep study the FGF signaling role during DE specification in the context of hESCs. ► DE differentiation from hESCs has an early dependence on FGF signaling. ► A serum-free DE protocol is developed based on the findings. ► The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  12. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  13. Affect of Bioglass {sup trademark} repeat dosage on mineralisation of embryonic bone 'in vitro'

    Energy Technology Data Exchange (ETDEWEB)

    Maroothynaden, J. [Imperial Coll. of Medicine, London (United Kingdom). Microgravity Tissue Engineering Lab.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    Utilising 45S5 Bioglass {sup trademark} extracts, as described previously, 16-day gestation embryonic mouse long-bones were cultured for 4-days while exposed to the same Bioglass{sup circledR} soluble extract solution for two different exposure times. In the first culture, all embryonic femurs were exposed to fresh 45S5 Bioglass {sup trademark} extract every 98 hours. In the second, the long-bones were exposed to fresh 45S5 Bioglass {sup trademark} extract solution every 48 hours. A simultaneous control culture was performed. All embryonic long-bone cultures mineralised after 4-days culture. Increasing the frequency of 45S5 Bioglass {sup trademark} exposure, from one exposure every 96 hrs to fresh exposures every 48 hrs, significantly increased the length and mineral content of the embryonic long-bones. (orig.)

  14. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

    Science.gov (United States)

    de Souza, Camila O; Teixeira, Alexandre A S; Biondo, Luana A; Lima Junior, Edson A; Batatinha, Helena A P; Rosa Neto, Jose C

    2017-08-01

    Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Alterations to embryonic serotonin change aggression and fearfulness

    Science.gov (United States)

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  16. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  17. Maternal Residential Proximity to Major Roadways and Pediatric Embryonal Tumors in Offspring

    Directory of Open Access Journals (Sweden)

    Shwetha V. Kumar

    2018-03-01

    Full Text Available The environmental determinants of pediatric embryonal tumors remain unclear. Because of the growing concern over the impact of exposures to traffic-related air pollution on pediatric cancer, we conducted a population-based study evaluating the impact of maternal residential proximity to major roadways on the risk of pediatric embryonal tumors in offspring. We identified children diagnosed with neuroblastoma, Wilms tumor, retinoblastoma, or hepatoblastoma at <5 years of age from the Texas Cancer Registry and selected unaffected controls from birth certificates. Two residential proximity measures were used: (1 distance to the nearest major roadway, and (2 within 500 m of a major roadway. Logistic regression was used to estimate the adjusted odds ratio (aOR and 95% confidence interval (CI for each proximity measure on pediatric embryonal tumors. The odds of an embryonal tumor were increased in children born to mothers living within 500 m of a major roadway (aOR = 1.24, 95% CI: 1.00, 1.54. This was consistent for most tumor subtypes, with the strongest associations observed for unilateral retinoblastoma (aOR = 2.57, 95% CI: 1.28, 5.15, for every kilometer closer the mother lived to the nearest major roadway. These findings contribute to the growing evidence that traffic-related air pollution may increase risk for certain pediatric tumors.

  18. Embryonic stem cells as an ectodermal cellular model of human p63-related dysplasia syndromes.

    NARCIS (Netherlands)

    Rostagno, P.; Wolchinsky, Z.; Vigano, A.M.; Shivtiel, S.; Zhou, Huiqing; Bokhoven, J.H.L.M. van; Ferone, G.; Missero, C.; Mantovani, R.; Aberdam, D.; Virolle, T.

    2010-01-01

    Heterozygous mutations in the TP63 transcription factor underlie the molecular basis of several similar autosomal dominant ectodermal dysplasia (ED) syndromes. Here we provide a novel cellular model derived from embryonic stem (ES) cells that recapitulates in vitro the main steps of embryonic skin

  19. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first-trimeste......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...... confounders such as alcohol and coffee consumption (P = 0.002). The number of germ cells in embryonic gonads, irrespective of gender, was also significantly reduced by 41% (95% CI 58-19%, P = 0.001) in exposed versus non-exposed embryonic gonads. CONCLUSIONS: Prenatal exposure to maternal cigarette smoke...

  20. Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs

    International Nuclear Information System (INIS)

    Mochalova, Larisa; Gambaryan, Alexandra; Romanova, Julia; Tuzikov, Alexander; Chinarev, Alexander; Katinger, Dietmar; Katinger, Herman; Egorov, Andrej; Bovin, Nicolai

    2003-01-01

    To study the receptor specificity of modern human influenza H1N1 and H3N2 viruses, the analogs of natural receptors, namely sialyloligosaccharides conjugated with high molecular weight (about 1500 kDa) polyacrylamide as biotinylated and label-free probes, have been used. Viruses isolated from clinical specimens were grown in African green monkey kidney (Vero) or Madin-Darby canine kidney (MDCK) cells and chicken embryonated eggs. All Vero-derived viruses had hemagglutinin (HA) sequences indistinguishable from original viruses present in clinical samples, but HAs of three of seven tested MDCK-derived isolates had one or two amino acid substitutions. Despite these host-dependent mutations and differences in the structure of HA molecules of individual strains, all studied Vero- and MDCK-isolated viruses bound to Neu5Ac α2-6Galβ1-4GlcNAc (6'SLN) essentially stronger than to Neu5Acα2-6Galβ1-4Glc (6'SL). Such receptor-binding specificity has been typical for earlier isolated H1N1 human influenza viruses, but there is a new property of H3N2 viruses that has been circulating in the human population during recent years. Propagation of human viruses in chicken embryonated eggs resulted in a selection of variants with amino acid substitutions near the HA receptor-binding site, namely Gln226Arg or Asp225Gly for H1N1 viruses and Leu194Ile and Arg220Ser for H3N2 viruses. These HA mutations disturb the observed strict 6'SLN specificity of recent human influenza viruses

  1. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    Science.gov (United States)

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  2. [Undifferentiated (embryonal) liver sarcoma: reviaew of 6 cases in National Cancer Institute, Lima, Peru. Review of the literature].

    Science.gov (United States)

    Dueñas, Daniela; Huanca, Lourdes; Cordero, Mónica; Webb, Patricia; Ruiz, Eloy

    2016-01-01

    Undifferentiated (embryonal) liver sarcoma is a rare tumor about 2% of all malignant liver tumors with a poor prognosis and usually occurs in children, this review aims to assess cases of primary embryonal sarcoma of the liver presented at our institution the past 8 years and improve recognition of its variants and evaluate immunohistochemical characteristics that help differentiated it from other tumors. Six cases of undifferentiated liver sarcoma were histologically evaluated and investigated by immunohistochemistry with a panel of antibodies using the equipment “Autostainer Link 48”. Usually masses were on average more than 20 cm, with solid, cystic, mucinous areas. The microscopic features include cells of spindle cell appearance, oval, starry, epithelioid and multinucleated cells densely arranged in a myxoid matrix. Trapped bile ducts and hepatic cords often present in the periphery of tumors. Intracellular and extracellular PAS positive hyaline globules. Immunohistochemistry showed very divergent differentiation.

  3. Molecular fingerprinting of TGFbeta-treated embryonic maxillary mesenchymal cells.

    Science.gov (United States)

    Pisano, M M; Mukhopadhyay, P; Greene, R M

    2003-11-01

    The transforming growth factor-beta (TGF(beta)) family represents a class of signaling molecules that plays a central role in normal embryonic development, specifically in development of the craniofacial region. Members of this family are vital to development of the secondary palate where they regulate maxillary and palate mesenchymal cell proliferation and extracellular matrix synthesis. The function of this growth factor family is particularly critical in that perturbation of either process results in a cleft of the palate. While the cellular and phenotypic effects of TGF(beta) on embryonic craniofacial tissue have been extensively cataloged, the specific genes that function as downstream mediators of TGF(beta) in maxillary/palatal development are poorly defined. Gene expression arrays offer the ability to conduct a rapid, simultaneous assessment of hundreds to thousands of differentially expressed genes in a single study. Inasmuch as the downstream sequelae of TGF(beta) action are only partially defined, a complementary DNA (cDNA) expression array technology (Clontech's Atlas Mouse cDNA Expression Arrays), was utilized to delineate a profile of differentially expressed genes from TGF(beta)-treated primary cultures of murine embryonic maxillary mesenchymal cells. Hybridization of a membrane-based cDNA array (1178 genes) was performed with 32P-labeled cDNA probes synthesized from RNA isolated from either TGF(beta)-treated or vehicle-treated embryonic maxillary mesenchymal cells. Resultant phosphorimages were subject to AtlasImage analysis in order to determine differences in gene expression between control and TGF(beta)-treated maxillary mesenchymal cells. Of the 1178 arrayed genes, 552 (47%) demonstrated detectable levels of expression. Steady state levels of 22 genes were up-regulated, while those of 8 other genes were down-regulated, by a factor of twofold or greater in response to TGF(beta). Affected genes could be grouped into three general functional

  4. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Evan Manuel

    2014-01-01

    The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells (1). The whole embryonic organ can be cultured at multiple stages...... expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how...... cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess...

  5. Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies

    Directory of Open Access Journals (Sweden)

    Langlang Ma

    2018-04-01

    Full Text Available The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR, callus differentiating rate (CDR, callus plantlet number (CPN, callus rooting rate (CRR, and callus browning rate (CBR. To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (WOX2 was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.

  6. Rat embryonic palatal shelves respond to TCDD in organ culture

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1990-01-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specific TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in [3H]TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves

  7. Gallic acid improves the memory and pain in diabetic rats

    Directory of Open Access Journals (Sweden)

    maryam Rafieirad

    2013-08-01

    Full Text Available Background: Complications of diabetes can be caused by the production of free radicals, which lead to memory problems and increase the risk of dementia. Diabetics are at risk of nervous pains. Gallic acid has antioxidant properties and activity against free radicals. In this study the effect of oral administration of Gallic acid, were examined on passive‌ avoidance ‌memory and pain in diabetic rats. Materials and Methods: Rats were divided into control, diabetes with STZ (60mg/kg, 3-groups of control and 3‌groups of diabetic rats and received Gallic ‌‌acid (10, 50&100 mg/kg oral, for two weeks. Blood glucose levels were measured from tail. Results: Results showed a significant reduction in memory (delayed coming down from the podium in the diabetic group all days except day of learning (P≤0.01. Dose of 50 mg/kg Gallic‌ acid caused a significant increase in non-diabetic rats on the first day of memory (P≤0.01, third and seventh (P≤0.05 and dose of 10 mg/kg on the first day (P≤0.05. Compared with diabetic group a significant increase was observed in the first day (P≤0.01, third and seventh (P≤0.05 in diabetics receiving doses of 50 and 10mg/kg Gallic‌ acid. The reflex for tail pulling away from the center of pain was significantly lower (P≤0.01 in the diabetic group. And only the dose of 50 caused a significant increase in the diabetic group (P≤0.01. Conclusion: Probably Gallic‌ acid with strong antioxidant effect led to scavenge free radicals and reduced the complications of diabetes, including pain and may have effects on neural pathways in specific brain regions and has led to improved memory in normal rats and diabetic.

  8. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Science.gov (United States)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  9. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  10. Combined sequencing of mRNA and DNA from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Florian Mertes

    2016-06-01

    Full Text Available Combined transcriptome and whole genome sequencing of the same ultra-low input sample down to single cells is a rapidly evolving approach for the analysis of rare cells. Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating tumor cells and cells from early embryonic development are under investigation. Herein we describe a universal method applicable for the analysis of minute amounts of sample material (150 to 200 cells derived from sub-colony structures from human embryonic stem cells. The protocol comprises the combined isolation and separate amplification of poly(A mRNA and whole genome DNA followed by next generation sequencing. Here we present a detailed description of the method developed and an overview of the results obtained for RNA and whole genome sequencing of human embryonic stem cells, sequencing data is available in the Gene Expression Omnibus (GEO database under accession number GSE69471.

  11. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    Science.gov (United States)

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  12. Relationship between delayed embryonic development and metabolic factors and fat deposition in fruit bat Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, Arnab; Meenakumari, K J; Krishna, Amitabh

    2007-01-01

    The present study was undertaken in the fruit bat Cynopterus sphinx, which breeds twice in quick succession at Varanasi, India. Its gestation period varies significantly in the two successive pregnancies of the year owing to delayed embryonic development during the first (winter) pregnancy. The primary aim of the present study was to determine the role of metabolic factors in delayed embryonic development in the fruit bat C. sphinx. Variation in bodyweight, fat deposition, oxygen (O(2)) consumption rate, basal metabolic rate (BMR), body temperature (Tb) and hepatic succinate dehydrogenase (SDH) activity, along with circulating levels of thyroid hormones (tri-iodothyronine and thyroxine), were examined as metabolic factors during the two successive pregnancies in C. sphinx. The increase in bodyweight observed in November was due to accumulation of white adipose tissue in the posterior abdominal region. A significant decline in O(2) consumption rate, BMR, Tb and SDH activity was found in early winter in November-December, which coincides closely with the period of fat accumulation and with the period of delayed embryonic development in C. sphinx. A significantly higher O(2) consumption rate, BMR, Tb and SDH activity was noted during the second pregnancy in, when embryonic development was relatively faster. Thyroid hormone levels were high during the period of embryonic delay compared with levels during the remaining months. The results of the present study suggest that the delayed embryonic development in C. sphinx during early winter may be due to a low O(2) consumption rate, BMR, Tb and SDH activity in November-December. The energy saved by suppressing embryonic development in this species may be advantageous for fat accumulation. Increased thyroid hormone levels during the early winter period might facilitate fat accumulation in C. sphinx.

  13. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    Science.gov (United States)

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  15. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.

    Science.gov (United States)

    Van Herck, Stijn L J; Geysens, Stijn; Bald, Edward; Chwatko, Grazyna; Delezie, Evelyne; Dianati, Elham; Ahmed, R G; Darras, Veerle M

    2013-07-01

    Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.

  16. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  17. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  18. Quantitation of two endogenous lactose-inhibitable lectins in embryonic and adult chicken tissues

    International Nuclear Information System (INIS)

    Beyer, E.C.; Barondes, S.H.

    1982-01-01

    Two lactose-binding lectins from chicken tissues, chicken-lactose-lectin-I (CLL-I) and chicken-lactose-lectin-II (CLL-II) were quantified with a radioimmunoassay in extracts of a number of developing and adult chicken tissues. Both lectins could be measured in the same extract without separation, because they showed no significant immunological cross- reactivity. Many embryonic and adult tissues, including brain, heart, intestine, kidney, liver, lung, muscle, pancreas, and spleen, contained one or both lectins, although their concentrations differed markedly. For example, embryonic muscle, the richest source of CLL-I contained only traces of CLL-II whereas embryonic kidney, a very rich source of CLL-II contained substantial CLL-I. In both muscle and kidney, lectin levels in adulthood were much lower than in the embryonic state. In contrast, CLL-I in liver and CLL-II in intestine were 10-fold to 30-fold more concentrated in the adult than in the 15-d embryo. CLL-I and CLL-II from several tissues were purified by affinity chromatography and their identity in the various tissues was confirmed by polyacrylamide gel electrophoresis, isoelectric focusing, and peptide mapping. The results suggest that these lectins might have different functions in the many developing and adult tissues in which they are found

  19. Simultaneous cell death and desquamation of the embryonic diffusion barrier during epidermal development

    International Nuclear Information System (INIS)

    Saathoff, Manuela; Blum, Barbara; Quast, Thomas; Kirfel, Gregor; Herzog, Volker

    2004-01-01

    The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier

  20. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    Science.gov (United States)

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers.

    Science.gov (United States)

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2015-08-30

    Formulation development of poorly water-soluble compounds can be challenging because of incomplete dissolution that causes low and variable bioavailability. Enhancing compound solubility is important and many techniques have been investigated to that end, but they require specific materials and machinery. This study investigates the incorporation of a pH-modifier as a method to increase compound solubility and uses ketoconazole (KZ), which is weakly basic (pKa: 6.5), as a model compound. Organic acids are effective pH-modifiers and are generally used in pharmaceutical industries. We successfully obtained granules containing variable organic acids (KZ/acid granule) using a high-shear mixer. Dissolution tests of the KZ/acid granule resulted in highly enhanced solubility under non-sink conditions. Adding water-soluble acids, such as citric acid (CA) and tartaric acid, resulted in more than 8-fold higher dissolution at pH 6.0 compared to that of KZ only. The granules containing citric acid (KZ/CA granule) improved the dissolution of KZ after oral administration to rats under low gastric acid conditions, where the bioavailability of the KZ/CA granules at elevated gastric pH was comparable with that of KZ only at gastric acidic pH. The incorporation of organic acids would result in effective therapeutic outcomes independent of gastric pH in patients. In addition, higher bioavailability of KZ was observed after oral administration of KZ/CA granules under gastric acidic pH conditions than that of KZ alone. Thus, CA improved the dissolution and absorption rate of KZ after oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    Science.gov (United States)

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Ultrastructure, development, and homology of insect embryonic cuticles

    Czech Academy of Sciences Publication Activity Database

    Konopová, Barbora; Zrzavý, Jan

    2005-01-01

    Roč. 264, č. 3 (2005), s. 339-362 ISSN 0362-2525 R&D Projects: GA ČR(CZ) GD206/03/H034 Institutional research plan: CEZ:AV0Z50070508 Keywords : embryonic development * cuticle * metamorphosis Subject RIV: EA - Cell Biology Impact factor: 1.421, year: 2005

  4. Development of an improved two-cycle process for recovering uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Chen, H.M.; Chen, H.J.; Tsai, Y.M.; Lee, T.W.; Ting, G.

    1987-01-01

    An improved two-cycle separation process for the recovery of uranium from wet-process phosphoric acid by extraction with bis(2-ethylhexyl)phosphoric acid (D2EHPA) plus dibutyl butylphosphonate (DBBP) in kerosene has been developed and demonstrated successfully in bench-scale, continuous mixer-settler tests. The sulfuric acid and water scrubbing steps for the recycled extraction in the second cycle solve the problems of the contamination and dilution of the phosphoric acid by the ammonium ion and water and also avoid the formation of undesirable phosphatic precipitates during the subsequent extraction of uranium by recycled organic extractant

  5. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  6. 78 FR 25091 - Submission for OMB Review; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To...

    Science.gov (United States)

    2013-04-29

    ...; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH... Embryonic Stem Cell Line to be Approved for Use in NIH-Funded Research, 0925-0601, Expiration Date 04/30... Information Collection: The form is used by applicants to request that human embryonic stem cell lines be...

  7. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  8. Improvement of acid and base resistance of nickel phosphate pigment by the addition of lanthanum cation

    International Nuclear Information System (INIS)

    Onoda, Hiroaki; Matsui, Hironori; Tanaka, Isao

    2007-01-01

    Transition metal phosphates are used as inorganic pigments, however these materials had a weak point for acid and base resistance. Because lanthanum phosphate is insoluble in acidic and basic solution, the addition of lanthanum cation was tried for the improvement of the acid and base resistance of nickel phosphate pigment. The lanthanum-doped nickel phosphates were prepared from phosphoric acid, nickel nitrate, and lanthanum nitrate solution. The additional effects of lanthanum cation were studied on the chemical composition, particle shape and size distribution, specific surface area, color, acid and base resistance of the precipitations and their thermal products

  9. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  10. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Chicken embryonic stem (ES) cells are useful for producing transgenic chickens and preserving genetic material in avian species. In this study, the differentiation potential of chicken ES cells was investigated in vitro. Chicken ES cells were differentiated into osteoblasts cultured for 15 to 21 days in the induction media ...

  11. Embryonal rhabdomyosarcoma in an immature Baird's tapir (Tapirus bairdii).

    Science.gov (United States)

    Bonar, Christopher J; Lewandowski, Albert H; Skowronek, Anthony J

    2007-03-01

    An immature Baird's tapir (Tapirus bairdii) with a history of seizure-like episodes developed signs of respiratory disease. The initial clinical diagnosis was pneumonia, and antibiotic therapy was started. The animal failed to improve after 14 days of therapy and developed unilateral, bloody nasal discharge. Endoscopic examination and radiography revealed a soft tissue mass in the nasopharynx depressing the soft palate. The tapir died 32 days after initial presentation. Histologic examination of the mass demonstrated a mesenchymal tumor composed of spindle cells with elongate nuclei forming densely packed fascicles. The neoplastic spindle cells showed prominent cross-striations. Immunohistochemistry revealed the cells to be positive for desmin and myoglobin, but negative for smooth muscle actin, confirming diagnosis of rhabdomyosarcoma. Embryonal rhabdomyosarcoma is the most common nasopharyngeal soft tissue tumor of humans, and it has been reported infrequently in dogs, horses, and pigs. Neoplasia should be a differential diagnosis in cases of unilateral nasal discharge and inspiratory stridor, even in young animals.

  12. Patterns of Interspecific Variation in the Heart Rates of Embryonic Reptiles

    Science.gov (United States)

    Du, Wei-Guo; Ye, Hua; Zhao, Bo; Pizzatto, Ligia; Ji, Xiang; Shine, Richard

    2011-01-01

    New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying. PMID:22174948

  13. Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    叶英辉; 徐晨明; 金帆; 钱羽力

    2004-01-01

    Objective: Embryonic chromosomal abnormality is one of the main reasons for in vitro fertilization (IVF) failure. This study aimed at evaluating the value of Fluorescence in-situ Hybridization (FISH)-based Preimplantation Genetic Diagnosis (PGD) in screening for embryonic chromosomal abnormality to increase the successful rate of IVF. Method: Ten couples, four with high risk of chromosomal abnormality and six infertile couples, underwent FISH-based PGD during IVF procedure. At day 3, one or two blastomeres were aspirated from each embryo. Biopsied blastomeres were examined using FISH analysis to screen out embryos with chromosomal abnormalities. At day 4, embryos without detectable chromosomal abnormality were transferred to the mother bodies as in regular IVF. Results: Among 54 embryos screened using FISH-based PGD, 30 embryos were detected to have chromosomal abnormalities. The 24 healthy embryos were implanted, resulting in four clinical pregnancies, two of which led to successful normal birth of two healthy babies; one to ongoing pregnancy during the writing of this article; and one to ectopic pregnancy. Conclusion: FISH-based PGD is an effective method for detecting embryonic chromosomal abnormality, which is one of the common causes of spontaneous miscarriages and chromosomally unbalanced offsprings.

  14. Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    叶英辉; 徐晨明; 金帆; 钱羽力

    2004-01-01

    Objective: Embryonic chromosomal abnormality is one of the main reasons for in vitro fertilization (IVF)failure. This study aimed at evaluating the value of Fluorescence in-situ Hybridization (FISH)-based Preimplantation Genetic Diagnosis (PGD) in screening for embryonic chromosomal abnormality to increase the successful rate of IVF. Method:Ten couples, four with high risk of chromosomal abnormality and six infertile couples, underwent FISH-based PGD during IVF procedure. At day 3, one or two blastomeres were aspirated from each embryo. Biopsied blastomeres were examined using FISH analysis to screen out embryos with chromosomal abnormalities. At day 4, embryos without detectable chromosomal abnormality were transferred to the mother bodies as in regular IVF. Results: Among 54 embryos screened using FISH-based PGD, 30 embryos were detected to have chromosomal abnormalities. The 24 healthy embryos were implanted,resulting in four clinical pregnancies, two of which led to successful normal birth of two healthy babies; one to ongoing pregnancy during the writing of this article; and one to ectopic pregnancy. Conclusion: FISH-based PGD is an effective method for detecting embryonic chromosomal abnormality, which is one of the common causes of spontaneous miscarriages and chromosomally unbalanced offsprings.

  15. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    Directory of Open Access Journals (Sweden)

    Rolletschek Alexandra

    2009-06-01

    Full Text Available Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. Conclusion In embryonic stem cells where (anti-proliferative p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  16. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease

    OpenAIRE

    Shroff, Geeta

    2016-01-01

    Case series Patient: Male, 42 ? Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue ? weakness in limbs Medication: ? Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause dela...

  17. L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells

    OpenAIRE

    Wong, Raymond Ching-Bong; Ibrahim, Abel; Fong, Helen; Thompson, Noelle; Lock, Leslie F.; Donovan, Peter J.

    2011-01-01

    Background Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream ...

  18. Detection of infectious bronchitis virus with the use of real-time quantitative reverse transcriptase-PCR and correlation with virus detection in embryonated eggs.

    Science.gov (United States)

    Roh, Ha-Jung; Hilt, Deborah A; Jackwood, Mark W

    2014-09-01

    Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays have been used to detect the presence of challenge virus when the efficacy of infectious bronchitis virus (IBV) vaccine against field viruses is being experimentally evaluated. However, federal guidelines for licensing IBV vaccines indicate that challenge-virus detection following vaccination is to be conducted in embryonated eggs. In this study, we examined qRT-PCR data with the use of universal and type-specific primers and probe sets for IBV detection and compared those data with challenge-virus detection in embryonated eggs to determine if the two methods of evaluating vaccine efficacy are comparable. In addition, we tested the qRT-PCR assays on thermocyclers from two different manufacturers. We found the universal IBV primers and probe set to be comparable to challenge-virus detection in embryonated eggs. However, for some IBV types (Mass41 and Conn on the SmartCycler II and Ark, Mass41, Conn, and GA98 on the ABI 7500) the qRT-PCR assay was more sensitive than virus detection in embryonated eggs. This may simply be due to the universal IBV qRT-PCR assay being more sensitive than virus detection in eggs or to the assay detecting nucleic acid from nonviable virus. This finding is important and needs to be considered when evaluating challenge-virus detection for vaccination and challenge studies, because qRT-PCR could potentially identify positive birds that would otherwise be negative by virus detection in embryonated eggs; thus it could lead to a more stringent measure of vaccine efficacy. We also found that the IBV type-specific primers and probe sets designed in this study were in general less sensitive than the universal IBV primers and probe set. Only the Ark-DPI-spedcific assay on the SmartCycler II and the Ark-DPI-, Mass41-, and DE072/GA98- (for detection of GA98 virus only) specific assays on the ABI 7500 were comparable in sensitivity to virus detection in eggs. We

  19. Ear embryonic rabdomiosarcoma. A case report

    International Nuclear Information System (INIS)

    Cueto, L.; Canabal, A.; Blanco, A.; Sabate, J.

    2002-01-01

    A case of embryonic rabdomiosarcoma in the ear of a 5-year-old girl who initially shows clinical symptoms of otitis media. The CT reveals a dense lesion of soft tissue which shows up slightly in the right external auditory channel. Also of interest were osteolytic areas in the petrous, clivus and zygomatic arch. A hypointensive lesion with marked enhancement after Gd-DPTA injection is observed. Discussed are the imaging methods used in the diagnosis of this tumor. (Author) 10 refs

  20. The Use of Embryonic Stem Cells

    OpenAIRE

    Corkery, Padraig

    2002-01-01

    Over the past year there has been great interest, optimism and anxiety in many societies about developments in the use of embryonic stem cells (ES cells). Within the scientific community there has been debate for some time on the merits and ethical implications of using ES cells. The discussion entered the public domain inthe decisive way during the past year when there were significant changes in legislation governing the use of such cells in Britain and the United States. These changes c...

  1. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Lina, E-mail: linasui@vub.ac.be [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Mfopou, Josue K. [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Geens, Mieke; Sermon, Karen [Department of Embryology and Genetics, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Bouwens, Luc [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  2. Comparison of Teratoma Formation between Embryonic Stem Cells and Parthenogenetic Embryonic Stem Cells by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Hongyan Tao

    2018-01-01

    Full Text Available With their properties of self-renewal and differentiation, embryonic stem (ES cells hold great promises for regenerative therapy. However, teratoma formation and ethical concerns of ES cells may restrict their potential clinical applications. Currently, parthenogenetic embryonic stem (pES cells have attracted the interest of researchers for its self-renewing and pluripotent differentiation while eliciting less ethic concerns. In this study, we established a model with ES and pES cells both stably transfected with a double-fusion reporter gene containing renilla luciferase (Rluc and red fluorescent protein (RFP to analyze the mechanisms of teratoma formation. Transgenic Vegfr2-luc mouse, which expresses firefly luciferase (Fluc under the promoter of vascular endothelial growth factor receptor 2 (Vegfr2-luc, was used to trace the growth of new blood vessel recruited by transplanted cells. Bioluminescence imaging (BLI of Rluc/Fluc provides an effective tool in estimating the growth and angiogenesis of teratoma in vivo. We found that the tumorigenesis and angiogenesis capacity of ES cells were higher than those of pES cells, in which VEGF/VEGFR2 signal pathway plays an important role. In conclusion, pES cells have the decreased potential of teratoma formation but meanwhile have similar differentiating capacity compared with ES cells. These data demonstrate that pES cells provide an alternative source for ES cells with the risk reduction of teratoma formation and without ethical controversy.

  3. Enhanced Long-Term Microcircuit Plasticity in the Valproic Acid Animal Model of Autism

    OpenAIRE

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad; Rinaldi, Tania; Markram, Kamila; Markram, Henry

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (

  4. Innovative virtual reality measurements for embryonic growth and development

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); W.C.J. Hop (Wim); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2010-01-01

    textabstractBackground Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. Methods In a longitudinal study, three-dimensional

  5. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2005-01-01

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  6. Large-scale identification of microRNA targets in murine Dgcr8-deficient embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew P A Davis

    Full Text Available Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3' UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation.

  7. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine.

    Science.gov (United States)

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. We demonstrate the effectiveness of the small bioactive molecule "acetylcholine" on accumulation of biomass, total lipids, and alpha-linolenic acid in Chlorella sorokiniana. The effectiveness exists in different species of Chlorella. Moreover, the precursor and analogs of acetylcholine display increased effectiveness at higher applied doses, with maximal increases by 126, 80, and 60% over controls for biomass, total lipids, and alpha-linolenic acid, respectively. Production of calculated biodiesel was also improved by the precursor and analogs of acetylcholine. The biodiesel quality affected by changes in microalgal fatty acid composition was addressed. The chemical approach described here could improve the lipid yield and biodiesel production of photoautotrophic microalgae if combined with current genetic approaches.

  8. The role of the pupal determinant broad during embryonic development of a direct-developing insect

    Science.gov (United States)

    Rynerson, Melody R.; Truman, James W.; Riddiford, Lynn M.

    2010-01-01

    Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects. PMID:20127251

  9. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  10. Identification of mechanosensitive genes during embryonic bone formation.

    Directory of Open Access Journals (Sweden)

    Niamh C Nowlan

    2008-12-01

    Full Text Available Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by "mechanosensitive" genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX and Indian hedgehog (Ihh, were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the

  11. Performance of winter-rapeseed lines with an improved fatty acid composition

    International Nuclear Information System (INIS)

    Kraeling, K.

    1990-01-01

    Full text: High levels of linoleic (C18:2) and low content of linolenic acid (C18:3) are desired traits for rapeseed. Induced mutants with an improved fatty acid composition derived from the spring-rapeseed variety Oro were crossed with a winter-rapeseed line exhibiting an increased C18:2 content and backcrossed two times with several high yielding cultivars of winter-rapeseed. After each cross the F 2 was screened by gaschromatography for the mutant-type. After the second backcross from each of 118 lines (BC 2 -F 3 ) an observation plot (9.4 m 2 ) was sown. Results show that through backcrossing it was possible to develop lines with a high proportion of C18:2 and a reduced level of C18:3, whereas C18:1 remained unchanged, demonstrating new combinations different from the usual positive correlation between C18:2 and C18:3. Yield increased continuously with decreasing portion of the mutant genome. Relatively low genotype x location interaction for fatty acids was found. (author)

  12. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    Science.gov (United States)

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  13. Improving the environmental profile of wood panels via co-production of ethanol and acetic acid.

    Science.gov (United States)

    Earles, J Mason; Halog, Anthony; Shaler, Stephen

    2011-11-15

    The oriented strand board (OSB) biorefinery is an emerging technology that could improve the building, transportation, and chemical sectors' environmental profiles. By adding a hot water extraction stage to conventional OSB panel manufacturing, hemicellulose polysaccharides can be extracted from wood strands and converted to renewably sourced ethanol and acetic acid. Replacing fossil-based gasoline and acetic acid has the potential to reduce greenhouse gas (GHG) emissions, among other possible impacts. At the same time, hemicellulose extraction could improve the environmental profile of OSB panels by reducing the level of volatile organic compounds (VOCs) emitted during manufacturing. In this study, the life cycle significance of such GHG, VOC, and other emission reductions was investigated. A process model was developed based on a mix of laboratory and industrial-level mass and energy flow data. Using these data a life cycle assessment (LCA) model was built. Sensitive process parameters were identified and used to develop a target production scenario for the OSB biorefinery. The findings suggest that the OSB biorefinery's deployment could substantially improve human and ecosystem health via reduction of select VOCs compared to conventionally produced OSB, gasoline, and acetic acid. Technological advancements are needed, however, to achieve desirable GHG reductions.

  14. Geographic variation in avian incubation periods and parental influences on embryonic temperature.

    Science.gov (United States)

    Martin, Thomas E; Auer, Sonya K; Bassar, Ronald D; Niklison, Alina M; Lloyd, Penn

    2007-11-01

    Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized.

  15. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    International Nuclear Information System (INIS)

    Malkinson, Mertyn; Winocour, Ernest

    2005-01-01

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host

  16. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    International Nuclear Information System (INIS)

    Chhabra, Hemlata; Gupta, Priyanka; Verma, Paul J.; Jadhav, Sameer; Bellare, Jayesh R.

    2014-01-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold

  17. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  18. Self-organization of spatial patterning in human embryonic stem cells

    Science.gov (United States)

    Deglincerti, Alessia; Etoc, Fred; Ozair, M. Zeeshan; Brivanlou, Ali H.

    2017-01-01

    The developing embryo is a remarkable example of self-organization, where functional units are created in a complex spatio-temporal choreography. Recently, human embryonic stem cells (ESCs) have been used to recapitulate in vitro the self-organization programs that are executed in the embryo in vivo. This represents a unique opportunity to address self-organization in humans that is otherwise not addressable with current technologies. In this essay, we review the recent literature on self-organization of human ESCs, with a particular focus on two examples: formation of embryonic germ layers and neural rosettes. Intriguingly, both activation and elimination of TGFβ signaling can initiate self-organization, albeit with different molecular underpinnings. We discuss the mechanisms underlying the formation of these structures in vitro and explore future challenges in the field. PMID:26970615

  19. Imaging features of undifferentiated embryonal sarcoma of the liver: a series of 15 children

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, Flaviu; Franchi-Abella, Stephanie; Pariente, Daniele [Bicetre Hospital, Department of Pediatric Radiology, Le Kremlin-Bicetre (France); Merli, Laura [Bambino Gesu Children' s Hospital, Unit of Hepato-Biliary and Transplant Surgery, Department of Surgery and Transplantation Centre, Rome (Italy); Adamsbaum, Catherine [Bicetre Hospital, Department of Pediatric Radiology, Le Kremlin-Bicetre (France); Paris Sud University, Faculty of Medicine, Le Kremlin-Bicetre (France); Universite Paris-Saclay, LTCI, CNRS, Telecom Paris Tech, Paris (France)

    2016-11-15

    Undifferentiated embryonal sarcoma of the liver is a rare malignant mesenchymal tumour occurring mostly in children ages 6-10 years. The discrepancy between its solid appearance on US and cystic-like appearance on CT has been described. To study the imaging particularities and similarities among our cases of undifferentiated embryonal sarcoma and to report the errors in initial diagnoses. We conducted a retrospective study of 15 children with undifferentiated embryonal sarcoma diagnosed or referred to our hospital during 1997-2015 and analysed the clinical, biological and imaging data. We identified eight boys and seven girls ages 9 months to 14 years. Ten children presented with abdominal pain. Alpha-fetoprotein was slightly increased in one. Initial US and CT had been performed for all, while additional MRI had been done in two children. Initial CT demonstrated a hypoattenuated mass in all. Rupture was seen in five and intratumoural bleeding in seven children. Tumour volumes reduced during neoadjuvant chemotherapy in 10 children. Undifferentiated embryonal sarcoma might be suggested in a non-secreting unifocal tumour with well-defined borders, fluid-filled spaces on US, hypoattenuation and serpiginous vessels on CT, and if there are signs of internal bleeding or rupture on CT or MRI. (orig.)

  20. Imaging features of undifferentiated embryonal sarcoma of the liver: a series of 15 children

    International Nuclear Information System (INIS)

    Gabor, Flaviu; Franchi-Abella, Stephanie; Pariente, Daniele; Merli, Laura; Adamsbaum, Catherine

    2016-01-01

    Undifferentiated embryonal sarcoma of the liver is a rare malignant mesenchymal tumour occurring mostly in children ages 6-10 years. The discrepancy between its solid appearance on US and cystic-like appearance on CT has been described. To study the imaging particularities and similarities among our cases of undifferentiated embryonal sarcoma and to report the errors in initial diagnoses. We conducted a retrospective study of 15 children with undifferentiated embryonal sarcoma diagnosed or referred to our hospital during 1997-2015 and analysed the clinical, biological and imaging data. We identified eight boys and seven girls ages 9 months to 14 years. Ten children presented with abdominal pain. Alpha-fetoprotein was slightly increased in one. Initial US and CT had been performed for all, while additional MRI had been done in two children. Initial CT demonstrated a hypoattenuated mass in all. Rupture was seen in five and intratumoural bleeding in seven children. Tumour volumes reduced during neoadjuvant chemotherapy in 10 children. Undifferentiated embryonal sarcoma might be suggested in a non-secreting unifocal tumour with well-defined borders, fluid-filled spaces on US, hypoattenuation and serpiginous vessels on CT, and if there are signs of internal bleeding or rupture on CT or MRI. (orig.)

  1. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Science.gov (United States)

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  2. Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial.

    Science.gov (United States)

    Frye, R E; Slattery, J; Delhey, L; Furgerson, B; Strickland, T; Tippett, M; Sailey, A; Wynne, R; Rose, S; Melnyk, S; Jill James, S; Sequeira, J M; Quadros, E V

    2018-02-01

    We sought to determine whether high-dose folinic acid improves verbal communication in children with non-syndromic autism spectrum disorder (ASD) and language impairment in a double-blind placebo control setting. Forty-eight children (mean age 7 years 4  months; 82% male) with ASD and language impairment were randomized to receive 12 weeks of high-dose folinic acid (2 mg kg -1 per day, maximum 50 mg per day; n=23) or placebo (n=25). Children were subtyped by glutathione and folate receptor-α autoantibody (FRAA) status. Improvement in verbal communication, as measured by a ability-appropriate standardized instrument, was significantly greater in participants receiving folinic acid as compared with those receiving placebo, resulting in an effect of 5.7 (1.0,10.4) standardized points with a medium-to-large effect size (Cohen's d=0.70). FRAA status was predictive of response to treatment. For FRAA-positive participants, improvement in verbal communication was significantly greater in those receiving folinic acid as compared with those receiving placebo, resulting in an effect of 7.3 (1.4,13.2) standardized points with a large effect size (Cohen's d=0.91), indicating that folinic acid treatment may be more efficacious in children with ASD who are FRAA positive. Improvements in subscales of the Vineland Adaptive Behavior Scale, the Aberrant Behavior Checklist, the Autism Symptom Questionnaire and the Behavioral Assessment System for Children were significantly greater in the folinic acid group as compared with the placebo group. There was no significant difference in adverse effects between treatment groups. Thus, in this small trial of children with non-syndromic ASD and language impairment, treatment with high-dose folinic acid for 12 weeks resulted in improvement in verbal communication as compared with placebo, particularly in those participants who were positive for FRAAs.

  3. Disruption of murine mp29/Syf2/Ntc31 gene results in embryonic lethality with aberrant checkpoint response.

    Directory of Open Access Journals (Sweden)

    Chia-Hsin Chen

    Full Text Available Human p29 is a putative component of spliceosomes, but its role in pre-mRNA is elusive. By siRNA knockdown and stable overexpression, we demonstrated that human p29 is involved in DNA damage response and Fanconi anemia pathway in cultured cells. In this study, we generated p29 knockout mice (mp29(GT/GT using the mp29 gene trap embryonic stem cells to study the role of mp29 in DNA damage response in vivo. Interruption of mp29 at both alleles resulted in embryonic lethality. Embryonic abnormality occurred as early as E6.5 in mp29(GT/GT mice accompanied with decreased mRNA levels of α-tubulin and Chk1. The reduction of α-tubulin and Chk1 mRNAs is likely due to an impaired post-transcriptional event. An aberrant G2/M checkpoint was found in mp29 gene trap embryos when exposed to aphidicolin and UV light. This embryonic lethality was rescued by crossing with mp29 transgenic mice. Additionally, the knockdown of zfp29 in zebrafish resulted in embryonic death at 72 hours of development postfertilization (hpf. A lower level of acetylated α-tubulin was also observed in zfp29 morphants. Together, these results illustrate an indispensable role of mp29 in DNA checkpoint response during embryonic development.

  4. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    OpenAIRE

    Ch’ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixt...

  5. Demonstration of β-adrenergic receptors and catecholamine-mediated effects on cell proliferation in embryonic palatal tissue

    International Nuclear Information System (INIS)

    Pisano, M.M.

    1986-01-01

    The ability of catecholamines to modulate cell proliferation, differentiation and morphogenesis in other systems, and modulate adenylate cyclase activity in the developing palate during the period of cellular differentiation, made it of interest to determine their involvement in palatal ontogenesis. Catecholamines exert their physiologic effects via interaction with distinct membrane-bound receptors, one class being the B-adrenergic receptors which are coupled to stimulation of adenylate cyclase and the generation of cAMP. A direct radioligand binding technique utilizing the B-adrenergic antagonist [ 3 H]-dihydroalprenolol ([ 3 H]-DHA) was employed in the identification of B-adrenergic receptors in the developing murine secondary palate. Specific binding of [ 3 H]-DHA in embryonic (day 13) palatal tissue homogenates was saturable and of high affinity. The functionality of B-adrenergic receptor binding sites was assessed from the ability of embryonic palate mesenchmyal cells in vitro to respond to catecholamines with elevations of cAMP. Embryonic palate mesenchymal cells responded to various B-adrenergic catecholamine agonists with significant, dose-dependent accumulations of intracellular cAMP. Embryonic (day 13) maxillary tissue homogenates were analyzed for the presence of catecholamines by high performance liquid chromatography and radioenzymatic assay. Since normal palatal and craniofacial morphogenesis depends on proper temporal and spatial patterns of growth, the effect of B-adrenergic catecholamines on embryonic palate mesenchymal cell proliferation was investigated

  6. Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function.

    Science.gov (United States)

    Correia, Marcelo; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Sousa, Maria I; Ramalho-Santos, João

    2016-01-01

    Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influence of radiation (Co60) in pre-implant rabbit embryos: effect on mitotic index and embryonic pole malformations

    International Nuclear Information System (INIS)

    Approbato, M.S.; Moura, K.K.V.O.; Florencio, R.S.; Cunha Junior, C.; Garcia, R.; Faria, R.S.; Benedetti, L.N.; Goulart, F.B.

    1995-01-01

    We studied the effect of ionizing irradiation on 12 New Zealand rabbits (65 embryos), at three different times: at match time (zero hour), two days after and four days after, with two different irradiation doses: five c Gy and ten c Gy. Six rabbits (36 blastocysts) were used as controls. the matching instant was the zero hour. Exactly six days after (± 60 minutes) the embryos of each rabbit was picked up by flushing the uterus with culture media. the embryos were fixed in methanol for 48 hours, and colored with acid Mayer hematoxylin. The following embryo parameters were studied: mitotic index; embryonic pole malformations. There were no gross abnormalities of embryo pole. The mitotic index were altered both by the time and doses. (author)

  8. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  9. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    International Nuclear Information System (INIS)

    Gallyamov, Marat O.; Chaschin, Ivan S.; Khokhlova, Marina A.; Grigorev, Timofey E.; Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E.; Badun, Gennadii A.; Chernysheva, Maria G.; Khokhlov, Alexei R.

    2014-01-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H 2 O and CO 2 . Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA-stabilised bovine

  10. Mouse Rad9b is essential for embryonic development and promotes resistance to DNA damage

    Science.gov (United States)

    Leloup, Corinne; Hopkins, Kevin M.; Wang, Xiangyuan; Zhu, Aiping; Wolgemuth, Debra J.; Lieberman, Howard B.

    2010-01-01

    RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b−/− embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b+/− embryos exhibit abnormal neural tube closure. Mrad9b−/− mouse embryonic fibroblasts are not viable. Mrad9b−/− ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b+/+ controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b−/− cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents. PMID:20842695

  11. Early gene regulation of osteogenesis in embryonic stem cells

    KAUST Repository

    Kirkham, Glen R.

    2012-01-01

    The early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex, and the underlying regulatory associations can be difficult to map accurately. In this study, the expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFβ1. Candidate GRNs of early osteogenesis were constructed based on published experimental findings and simulation results of Boolean and ordinary differential equation models were compared with our experimental data in order to test the validity of these models. Three gene regulatory networks were found to be consistent with the data, one of these networks exhibited sustained oscillation, a behaviour which is consistent with the general view of embryonic stem cell plasticity. The work cycle presented in this paper illustrates how mathematical modelling can be used to elucidate from gene expression profiles GRNs that are consistent with experimental data. © 2012 The Royal Society of Chemistry.

  12. Establishing the Embryonic Axes: Prime Time for Teratogenic Insults

    Directory of Open Access Journals (Sweden)

    Thomas W. Sadler

    2017-09-01

    Full Text Available A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development.

  13. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Gao, Xiugong; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-01-01

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds

  14. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  15. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and ...... and hyperplastic due to over-expression of NMDA receptors. These changes were restricted to the dimensions of a minicolumn (...

  16. Hedgehog Signalling in the Embryonic Mouse Thymus

    Directory of Open Access Journals (Sweden)

    Alessandro Barbarulo

    2016-07-01

    Full Text Available T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC development, and thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation.

  17. Adiposity associated changes in serum glucose and adiponectin levels modulate ovarian steroidogenesis during delayed embryonic development in the fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Anuradha; Krishna, Amitabh

    2018-06-01

    The aim of the present study was to evaluate the mechanism by which embryonic development in Cynopterus sphinx is impaired during the period of increased accumulation of white adipose tissue during winter scarcity of food. The change in the mass of white adipose tissue during adipogenesis showed significant positive correlation with the circulating glucose level. But increase in circulating glucose level during the adipogenesis showed negative correlation with circulating progesterone and adiponectin levels. The in vivo study showed increased glucose uptake by the adipose tissue during adipogenesis due to increased expression of insulin receptor (IR) and glucose transporter (GLUT) 4 proteins. This study showed decline in the adiponectin level during fat accumulation. In the in vitro study, ovary treated with high doses of glucose showed impaired progesterone synthesis. This is due to decreased glucose uptake mediated decrease in the expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein, IR, GLUT4 and AdipoR1 proteins. But the ovary treated with adiponectin either alone or with higher concentration of glucose showed improvement in progesterone synthesis due to increased expression of IR, GLUT4 and AdipoR1 mediated increased glucose uptake. In conclusion, increased circulating glucose level prior to winter dormancy preferably transported to white adipose tissue for fat accumulation diverting glucose away from the ovary. Consequently the decreased availability of adiponectin and glucose to the ovary and utero-embryonic unit may be responsible for impaired progesterone synthesis and delayed embryonic development. The delayed embryonic development in Cynopterus sphinx may have evolved, in part, as a mechanism to prevent pregnancy loss during the period of decreased energy availability. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Loss of ATM kinase activity leads to embryonic lethality in mice.

    Science.gov (United States)

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  19. Preparation, Cell Compatibility and Degradability of Collagen-Modified Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Miaomiao Cui

    2015-01-01

    Full Text Available Poly(lactic acid (PLA was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3 was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.

  20. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  1. Chronic administration of ellagic acid improved the cognition in middle-aged overweight men.

    Science.gov (United States)

    Liu, Ying; Yu, Shuyi; Wang, Fen; Yu, Haitao; Li, Xueli; Dong, Wanru; Lin, Ruichao; Liu, Qingshan

    2018-03-01

    This study aimed to investigate if ellagic acid has beneficial effects on cognitive deficits in middle-aged overweight individuals and to propose a possible mechanism. A total of 150 middle-aged male participants, including 76 normal-weight and 74 overweight men, aged between 45 to 55 years, were recruited for this study. Both normal-weight and overweight participants were administered either 50 mg ellagic acid or placebo cellulose daily for 12 weeks. Blood lipids, peripheral brain-derived neurotrophic factor (BDNF), and saliva cortisol were assessed on the last day of the procedure to investigate the effects induced by ellagic acid. The results revealed that ellagic acid treatment improved the levels of blood lipid metabolism with a 4.7% decline in total cholesterol, 7.3% decline in triglycerides, 26.5% increase in high-density lipoprotein, and 6.5% decline in low-density lipoprotein. Additionally, ellagic acid increased plasma BDNF by 21.2% in the overweight group and showed no effects on normal-weight participants. Moreover, the increased saliva cortisol level in overweight individuals was inhibited by 22.7% in a 12-week ellagic acid treatment. Also, compared with placebo, overweight individuals who consumed ellagic acid showed enhanced cognitive function as measured by the Wechsler Adult Intelligence Scale-Revised and the Montreal Cognitive Assessment. To the best of our knowledge, this is the first report showing that ellagic acid prevents cognitive deficits through normalization of lipid metabolism, increase in plasma BDNF level, and reduction of saliva cortisol concentration. These results indicate that ellagic acid has a potential to restore cognitive performance related to mild age-related declines.

  2. The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers.

    Directory of Open Access Journals (Sweden)

    Nil Emre

    Full Text Available BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types

  3. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  4. Geographic variation in avian incubation periods and parental influences on embryonic temperature

    Science.gov (United States)

    Martin, T.E.; Auer, S.K.; Bassar, R.D.; Niklison, Alina M.; Lloyd, P.

    2007-01-01

    Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized. ?? 2007 The Author(s).

  5. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  6. Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice

    Directory of Open Access Journals (Sweden)

    Palle Serup

    2012-11-01

    Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements.

  7. Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice

    Science.gov (United States)

    Serup, Palle; Gustavsen, Carsten; Klein, Tino; Potter, Leah A.; Lin, Robert; Mullapudi, Nandita; Wandzioch, Ewa; Hines, Angela; Davis, Ashley; Bruun, Christine; Engberg, Nina; Petersen, Dorthe R.; Peterslund, Janny M. L.; MacDonald, Raymond J.; Grapin-Botton, Anne; Magnuson, Mark A.; Zaret, Kenneth S.

    2012-01-01

    SUMMARY Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements. PMID:22888097

  8. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    Science.gov (United States)

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  9. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    Science.gov (United States)

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  10. La protection réelle de l’embryon The real protection of the embryo

    Directory of Open Access Journals (Sweden)

    Cosimo Marco Mazzoni

    2009-04-01

    Full Text Available Tutelle réelle de l’embryon signifie protection effective sur la base du droit positif en vigueur. L’étude cherche à affirmer que l’embryon humain est un objet sous tutelle, établi par l’ordre juridique. Elle conteste que l’embryon soit titulaire de droits subjectifs et donc qu’il puisse acquérir la qualification juridique de personne. La signification du terme de vie est conceptuellement différente au sens biologique et au sens juridique. Les Codes civils européens assignent la capacité juridique au fœtus qui est né vivant. Avant cet instant, le système juridique est en mesure d’accorder une protection à l’embryon toutefois différente de la norme qui protège la vie humaine de la personne déjà née. Bref, la protection de l’embryon est indépendante de sa qualification comme sujet.Real protection means effective protection through existing positive law. The article attempts to demonstrate that the embryo is an object entitled to a safeguards attributed by the law to human life as such. It denies that the embryo has subjective rights and therefore can acquire the legal qualification of subject of law or a person. The meaning of the concept of life is different, be it from the biological or legal point of view. European civil codes give legal capacity to the foetus who was born alive. Before this moment, the legal system has the possibility to give protection to the embryo but this protection is different from the norm protecting human life of an already born person. Consequently the protection of the embryo is independent from the qualification of the embryo as a subject.

  11. Mathematical Modeling of Flow Characteristics in the Embryonic Chick Heart

    DEFF Research Database (Denmark)

    Heebøll-Christensen, Jesper

    This ph.d. thesis contains the mathematical modeling of fluid dynamical phenomena in the tubular embryonic chick heart at HH-stages 10, 12, 14, and 16. The models are constructed by application of energy bond technique and involve the elasticity of heart walls with elliptic cross-section, Womersley...... modified inertia, and resistance due to friction and curvature of the multilayered tubular heart. Through the modeling, flow conditions in the embryonic heart are characterized. The models suggest that eccentric rather than concentric deformation of the beating heart is optimal for mean flows induced...... the models are not conclusive on this point. In addition the Liebau effect is investigated in a simpler system containing two elastic tubes joined to form a liquid filled ring, with a compression pump at an asymmetric location. Through comparison to other reports the system validates model construction...

  12. Self-Organization of Spatial Patterning in Human Embryonic Stem Cells.

    Science.gov (United States)

    Deglincerti, Alessia; Etoc, Fred; Ozair, M Zeeshan; Brivanlou, Ali H

    2016-01-01

    The developing embryo is a remarkable example of self-organization, where functional units are created in a complex spatiotemporal choreography. Recently, human embryonic stem cells (ESCs) have been used to recapitulate in vitro the self-organization programs that are executed in the embryo in vivo. This represents an unique opportunity to address self-organization in humans that is otherwise not addressable with current technologies. In this chapter, we review the recent literature on self-organization of human ESCs, with a particular focus on two examples: formation of embryonic germ layers and neural rosettes. Intriguingly, both activation and elimination of TGFβ signaling can initiate self-organization, albeit with different molecular underpinnings. We discuss the mechanisms underlying the formation of these structures in vitro and explore future challenges in the field. © 2016 Elsevier Inc. All rights reserved.

  13. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Gergo Kovacs

    2016-01-01

    Full Text Available Rybp (Ring1 and Yy1 Binding Protein is a transcriptional regulator and member of the noncanonical polycomb repressive complex 1 with essential role in early embryonic development. We have previously described that alteration of Rybp dosage in mouse models induced striking neural tube defects (NTDs, exencephaly, and disorganized neurocortex. In this study we further investigated the role of Rybp in neural differentiation by utilising wild type (rybp+/+ and rybp null mutant (rybp-/- embryonic stem cells (ESCs and tried to uncover underlying molecular events that are responsible for the observed phenotypic changes. We found that rybp null mutant ESCs formed less matured neurons, astrocytes, and oligodendrocytes from existing progenitors than wild type cells. Furthermore, lack of rybp coincided with altered gene expression of key neural markers including Pax6 and Plagl1 pinpointing a possible transcriptional circuit among these genes.

  14. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  15. Endocrine control of embryonic diapause in the Australian sharpnose shark Rhizoprionodon taylori.

    Directory of Open Access Journals (Sweden)

    Daniela Waltrick

    Full Text Available The reproductive cycle of the Australian sharpnose shark, Rhizoprionodon taylori, includes a temporary suspension of development at the commencement of embryogenesis termed embryonic diapause. This study investigated levels of 17β-estradiol (E2, testosterone (T and progesterone (P4 in plasma samples of mature wild female R. taylori captured throughout the reproductive cycle and correlated them with internal morphological changes. Levels of T were elevated through most of the embryonic diapause period, suggesting a role of this hormone in the maintenance of this condition. Increasing plasma T concentrations from late diapause to early active development were associated with a possible role of androgens in the termination of embryonic diapause. As in other elasmobranchs, a concomitant increase of E2 with ovarian follicle size indicated a direct role of this hormone in regulating vitellogenesis, while a peak in P4 suggested this hormone is associated with preovulation and ovulation. Additionally, significant correlations between photoperiod or water temperature and maximum follicular diameter and hepatosomatic index suggest that these abiotic factors may also play a role triggering and regulating the synchrony and timing of reproductive events.

  16. Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson’s Disease Mouse Model

    Directory of Open Access Journals (Sweden)

    Samuela Cataldi

    2018-02-01

    Full Text Available It has long been proven that neurogenesis continues in the adult brains of mammals in the dentatus gyrus of the hippocampus due to the presence of neural stem cells. Although a large number of studies have been carried out to highlight the localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor in neurogenic dentatus gyrus of hippocampus in Parkinson’s disease (PD and the molecular mechanisms triggered by vitamin D underlying the production of differentiated neurons from embryonic cells remain unknown. Thus, we performed a preclinical in vivo study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic protein (GFAP and vitamin D receptor in the dentatus gyrus of hippocampus. Then, we performed an in vitro study by inducing embryonic hippocampal cell differentiation with vitamin D. Interestingly, vitamin D stimulates the expression of its receptor. Vitamin D receptor is a transcription factor that probably is responsible for the upregulation of microtubule associated protein 2 and neurofilament heavy polypeptide genes. The latter increases heavy neurofilament protein expression, essential for neurofilament growth. Notably N-cadherin, implicated in activity for dendritic outgrowth, is upregulated by vitamin D.

  17. Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test.

    Science.gov (United States)

    Riebeling, Christian; Schlechter, Katharina; Buesen, Roland; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-06-01

    The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Does the oviparity-viviparity transition alter the partitioning of yolk in embryonic snakes?

    Science.gov (United States)

    Wu, Yan-Qing; Qu, Yan-Fu; Wang, Xue-Ji; Gao, Jian-Fang; Ji, Xiang

    2017-11-29

    The oviparity-viviparity transition is a major evolutionary event, likely altering the reproductive process of the organisms involved. Residual yolk, a portion of yolk remaining unutilized at hatching or birth as parental investment in care, has been investigated in many oviparous amniotes but remained largely unknown in viviparous species. Here, we used data from 20 (12 oviparous and 8 viviparous) species of snakes to see if the oviparity-viviparity transition alters the partitioning of yolk in embryonic snakes. We used ANCOVA to test whether offspring size, mass and components at hatching or birth differed between the sexes in each species. We used both ordinary least squares and phylogenetic generalized least squares regressions to test whether relationships between selected pairs of offspring components were significant. We used phylogenetic ANOVA to test whether offspring components differed between oviparous and viviparous species and, more specifically, the hypothesis that viviparous snakes invest more in the yolk as parental investment in embryogenesis to produce more well developed offspring that are larger in linear size. In none of the 20 species was sex a significant source of variation in any offspring component examined. Newborn viviparous snakes on average contained proportionally more water and, after accounting for body dry mass, had larger carcasses but smaller residual yolks than did newly hatched oviparous snakes. The rates at which carcass dry mass (CDM) and fat body dry mass (FDM) increased with residual yolk dry mass (YDM) did not differ between newborn oviparous and viviparous snakes. Neither CDM nor FDM differed between newborn oviparous and viviparous snakes after accounting for YDM. Our results are not consistent with the hypothesis that the partitioning of yolk between embryonic and post-embryonic stages differs between snakes that differ in parity mode, but instead show that the partitioning of yolk in embryonic snakes is species

  19. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.

    Directory of Open Access Journals (Sweden)

    James W Boyd

    Full Text Available BACKGROUND: Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days and provide high-quality color photographs of each identified developmental stage. METHODOLOGY/PRINCIPAL FINDINGS: Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0 degrees C (range; 3.9-11.7 degrees C during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9-11.7 degrees C (mean=8 degrees C to those from several other studies rearing embryos in constant 8 degrees C water temperature. CONCLUSIONS/SIGNIFICANCE: The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index

  20. Application of 10% Ascorbic Acid Improves Resin Shear Bond Stregth in Bleached Dentin

    Directory of Open Access Journals (Sweden)

    Kamizar Kamizar

    2014-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Restoration of the teeth immediately after bleaching with H2O2 35% is contraindicated due to the remnants of free radical that will stay inside dentin for 2-3 weeks which will compromise the adhesiveness of composite resin. Objective: The aim of this study was to evaluate the influence of 10% ascorbic acid on shear bond strength of composite placed on bleached dentin. Methods:Twenty seven samples were divided equally into three groups. Group 1: dentin was etched with 35% phosphoric acid; Group 2: dentin was bleached with 35% H2O2 followed by etching with 35% phosphoric acid; Group 3: dentin was bleached with 35% H2O2, followed by application of 10% ascorbic acid and etched with 35% phosphoric acid. All samples were then stored at 370C for 24 hours. The Universal Testing Machine was used to measure shear bond strength and the results were analyzed with Kruskal Wallis and Mann Whitney test. Results: After nine independent experiments, 10% ascorbic acid application on bleached dentin resulted in highest increased in bond stregth (56.04±11.06MPa compared to Group 2 (29.09±7.63MPa and Group 1 (25.55±2.22MPa and the difference was statistically significant (p<0.05. Conclusion: Application of 10% ascorbic acid to the bleached dentin improved the shear bond strength of resin composite.