WorldWideScience

Sample records for acid glycosaminoglycan mucopolysaccharide

  1. Acid mucopolysaccharides

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  2. Antiviral effects of Stichopus japonicus acid mucopolysaccharide on hepatitis B virus transgenic mice

    Science.gov (United States)

    Xin, Yongning; Li, Wei; Lu, Linlin; Zhou, Li; Victor, David W.; Xuan, Shiying

    2016-08-01

    Hepatitis B virus (HBV) is a significant global pathogen and efficient cure for HBV patients is still a challenging goal. We previously reported that acidic mucopolysaccharide from stichopus japonicus selenka (SJAMP) could inhibit HBsAg and HBeAg expression in vitro. However, the potential anti-HBV effects of SJAMP in vivo have not yet been explored. In this study, we show that SJAMP exhibits potent anti-HBV activity in HBV transgenic mice in a dose-dependent manner. Specifically, sixty HBV transgenic male BALB/c mice were randomly selected to receive the treatment of PBS, low dose SJAMP (30 mg kg-1), middle dose SJAMP (40 mg kg-1), high dose SJAMP (50 mg kg-1) and IFN (45 IU kg-1) for 30 d. SJAMP treatment suppressed serum HBV-DNA, and liver HBsAg and HBcAg levels in HBV-transgenic mice. The present study highlights the potential application of SJAMP in HBV therapy.

  3. Stiehopus japonieus acidic mucopolysaccharide inhibits the proliferation of pancreatic cancer SW1990 cells through Hippo-YAP pathway.

    Science.gov (United States)

    Li, Xiaoyu; Liu, Yi; Zhang, Cuiping; Niu, Qinghui; Wang, Hui; Che, Cong; Xie, Man; Zhou, Bin; Xu, Yonghong; Zhang, Qi; Wu, Jun; Tian, Zibin

    2017-03-07

    Previous studies have indicated that stiehopus japonieus acidic mucopolysaccharide (SJAMP) could inhibit the proliferation of pancreatic cancer cell SW1990. However, the mechanism remains unclear. In our study, YAP expression was identified by immunohistochemistry and quantitative Real-time PCR from 45 pairs of human pancreatic ductal adenocarcinoma (PDAC) tissues and their adjacent non-tumor samples. We found that the YAP expression was associated with the histological differentiation degree, and negatively correlated with pancreatic cancer patients' survival. More YAP localization in nuclear and enhanced expression of YAP mRNA in pancreatic cancer tissue was found in comparison with in the normal tissue. These results identify YAP acts as an amazing regulator in the pathogenesis of pancreatic cancer. After affected by SJAMP, YAP and TEAD1 were down regulated, while MST1 and pYAP were upregulated gradually with the prolong of effect time. SJAMP also improved YAP phosphorylation, nuclear-to-cytoplasmic translocation and inactivation. After successfully knocked-down by YAP siRNA, the inhibition of proliferation of SJAMP to cancer cells was attenuated. Interestingly, we indicated a down-regulation of that TEAD with SJAMP 4 mg/ml, 8 mg/ml for 24 h and with 8 mg/ml SJAMP for 24 h, 48 h even after YAP silencing. That might mean that the SJAMP has other targets, not only YAP, to downregulate TEAD. We proposed a hypothesis that Hippo-YAP pathway involved in carcinogenesis of pancreatic cancer and in the inhibition effect of SJAMP to the proliferation of pancreatic cancer cell, although maybe not the sole signaling pathway.

  4. Relationship between binding activity of sup 67 Ga and low sulfated acid glycosaminoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yasuhito; Tsukada, Fumitake; Kohno, Hiroyuki (Tohoku Coll. of Pharmacy, Sendai (Japan)); Kubodera, Akiko (Science Univ. of Tokyo (Japan). School of Pharmaceutical Sciences)

    1989-01-01

    Sulfate content of acid glycosaminoglycan (AGAG) extracted from granuloma which had been produced by turpentine oil was inversely proportional to the amount of {sub 67}Ga accumulation in the granuloma. Additionally, the lowest sulfation occurred in granuloma at a peak of inflammation when the uptake of {sub 67}Ga had reached a maximum. On the basis of electrophoretic pattern, sulfate content, and specific optical rotation, it was concluded that acid glycosaminoglycans obtained from granuloma are mainly composed of chondroitin sulfate-A, -B, and desulfated heparin, while haparan sulfate was a minor component. From in vitro assays, desulfated acid glycosaminoglycans, especially desulfated-heparin and desulfated-heparan sulfate, were found to have a high affinity to {sub 67}Ga. These results suggest that low- or de-sulfation of AGAG is related to the accumulation of {sub 67}Ga in inflammatory lesions such as granuloma. Moreover, these results suggest that {sub 67}Ga does not bind to glycosaminoglycans via sulfuric acid residues. (author).

  5. [Methylenebisphosphonic acid alters the pattern of pericellular glycosaminoglycans and binding properties of CD44 in human endothelial cells].

    Science.gov (United States)

    Ievdokymova, N Iu; Karlova, N P; Baranova, N S; Komisarenko, S V

    2006-01-01

    The effect of methylenebisphosphonic acid (MBPA) on glycosaminoglycan metabolism, adhesive and proliferative properties of human endothelial cells has been investigated. It was demonstrated that MBPA (100 microM) inhibited the synthesis of all studied groups of glycosaminoglycans, but promoted the accumulation of heparan sulphate in endothelial pericellular matrix. Simultaneously, the redistribution of hyaluronic acid from pericellular matrix to the conditioned medium was observed. The decreased adhesion of endothelial cells to immobilized hyaluronic acid was not mediated by the alterations of CD44 expression. It was also demonstrated that MBPA affected the proliferative properties of endothelial cells. The alterations of glycosaminoglycan metabolism are considered to be involved in antiangiogenic effects of MBPA.

  6. Hexuronic acid stereochemistry determination in chondroitin sulfate glycosaminoglycan oligosaccharides by electron detachment dissociation.

    Science.gov (United States)

    Leach, Franklin E; Ly, Mellisa; Laremore, Tatiana N; Wolff, Jeremy J; Perlow, Jacob; Linhardt, Robert J; Amster, I Jonathan

    2012-09-01

    Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated (0,2)X(3) and Y(3) ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.

  7. ELECTRON DETACHMENT DISSOCIATION OF SYNTHETIC HEPARAN SULFATE GLYCOSAMINOGLYCAN TETRASACCHARIDES VARYING IN DEGREE OF SULFATION AND HEXURONIC ACID STEREOCHEMISTRY.

    Science.gov (United States)

    Leach, Franklin E; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I Jonathan

    2012-12-15

    Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.

  8. The effect of saponification on the mucopolysaccharides of the ground substance of the human brain: the relation to focal edema and multiple sclerosis.

    Science.gov (United States)

    Feigin, I

    1981-03-01

    The acid mucopolysaccharides of brain tissues are disclosed by their metachromatic staining with toluidine blue following saponification with potassium hydroxide, presumably as a result of the liberation of acid groups previously esterified. Earlier histochemical studies had disclosed the presence of neutral mucopolysaccharides by staining with the periodic acid-Schiff technique, and such staining is intensified by prior saponification. Many biochemical studies have reported the presence of both acid and neutral mucopolysaccharides in brain tissues. Within the white matter following brain edema, the quantity of stained mucopolysaccharides is decreased in the plaques of multiple sclerosis and pontine myelinolysis, and in the lesions of diffuse sclerosis. All of these are characterized by myelin loss with relative preservation of axons. The known physiological effects of the mucopolysaccharides on the water content of normal tissues, and on the properties and diffusability of the increments of fluid that constitute edema, lead to the suggestion that edema may play a major role in the pathogenesis of the demyelinating diseases, including multiple sclerosis.

  9. Interstitial cystitis/bladder pain syndrome and glycosaminoglycans replacement therapy

    Science.gov (United States)

    2015-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease characterized by discomfort or recurrent abdominal and pelvic pains in the absence of urinary tract infections. Its symptomatology includes discomfort, increased bladder pressure, sensitivity and intense pain in the bladder and pelvic areas, increased voiding frequency and urgency, or a combination of these symptoms. For these reasons, this pathology has a very negative impact on quality of life. The etiology of IC/BPS is still not well understood and different hypotheses have been formulated, including autoimmune processes, allergic reactions, chronic bacterial infections, exposure to toxins or dietary elements, and psychosomatic factors. The finding of an effective and specific therapy for IC/BPS remains a challenge for the scientific community because of the lack of a consensus regarding the causes and the inherent difficulties in the diagnosis. The last recent hypothesis is that IC/BPS could be pathophysiologically related to a disruption of the bladder mucosa surface layer with consequent loss of glycosaminoglycans (GAGs). This class of mucopolysaccharides has hydrorepellent properties and their alteration expose the urothelium to many urinary toxic agents. It has been hypothesized that when these substances penetrate the bladder wall a chain is triggered in the submucosa. In order to improve the integrity and function of the bladder lining, GAG layer replenishment therapy is widely accepted as therapy for patients with IC/BPS who have poor or inadequate response to conventional therapy. Currently, Chondroitin sulfate (CS), heparin, hyaluronic acid (HA), and pentosan polysulphate (PPS), and combinations of two GAGs (CS and HA) are the available substances with different effectiveness rates in patients with IC/BPS. There are four different commercially available products for GAG replenishment including CS, heparin, HA and PPS. Each product has different concentrations and

  10. Chemical Synthesis of Glycosaminoglycans.

    Science.gov (United States)

    Mende, Marco; Bednarek, Christin; Wawryszyn, Mirella; Sauter, Paul; Biskup, Moritz B; Schepers, Ute; Bräse, Stefan

    2016-07-27

    Glycosaminoglycans (GAGs) as one major part of the glycocalyx are involved in many essential biological cell processes, as well as in many courses of diseases. Because of the potential therapeutic application of GAG polymers, fragments, and also derivatives toward different diseases (e.g., heparin derivatives against Alzheimer's disease), there is a continual growing demand for new chemical syntheses, which suffice the high claim to stereoselectivity and chemoselectivity. This Review summarizes the progress of chemical syntheses of GAGs over the last 10 years. For each class of the glycosaminoglycans-hyaluronan (HA), heparan sulfate/heparin (HS/HP), chondroitin/dermatan sulfate (CS/DS), and keratan sulfate (KS)-mainly novel glycosylation strategies, elongation sequences, and protecting group patterns are discussed, but also (semi)automated syntheses, enzymatic approaches, and functionalizations of synthesized or isolated GAGs are considered.

  11. Glycosaminoglycan Biosynthesis in Zebrafish

    OpenAIRE

    Filipek-Górniok, Beata

    2015-01-01

    Proteoglycans (PGs) are composed of highly sulfated glycosaminoglycans chains (GAGs) attached to specific core proteins. They are present in extracellular matrices, on the cell surface and in storage granules of hematopoietic cells. Heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) GAGs play indispensable roles in a wide range of biological processes, where they can serve as protein carriers, be involved in growth factor or morphogen gradient formation and act as co-receptors in s...

  12. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures

    NARCIS (Netherlands)

    Janse, Ingmar; Zwart, Gabriel; Maarel, Marc J.E.C. van der; Gottschal, Jan C.

    2000-01-01

    As described recently, mucopolysaccharides of the marine microalga Phaeocystis can be degraded in enrichment cultures. In this paper we report on the characterization of the microbial community in such enrichments. Denaturing gradient gel electrophoresis (DGGE) profiles that were obtained during

  13. Validation of Urinary Glycosaminoglycans in Iranian patients with Mucopolysaccharidase type I: The effect of urine sedimentation characteristics

    Directory of Open Access Journals (Sweden)

    Mohammad ABDI

    2014-12-01

    physiological processes. Physiological reviews. 1991 Apr;71(2:481-539.Ghaderi S. The biochemistry base of mucopolysaccharidoses and approach to. Genetics in the 3rd millennium. [Educational]. 2006;4(1:711-22.Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. The Journal of biological chemistry. 2013 Apr 19;288(16:10953-61.Salbach J, Rachner TD, Rauner M, Hempel U, Anderegg U, Franz S, et al. Regenerative potential of glycosaminoglycans for skin and bone. Journal of molecular medicine (Berlin, Germany. 2012 Jun;90(6:625-35.Coppa GV, Catassi C, Gabrielli O, Giorgi PL, Dall’Amico R, Naia S, et al. Clinical application of a new simple method for the identification of mucopolysaccharidoses. Helvetica paediatrica acta. 1987 Jun;42(5-6:419-23.Fuller M, Meikle PJ, Hopwood JJ. Glycosaminoglycan degradation fragments in mucopolysaccharidosis I. Glycobiology. 2004 May;14(5:443-50.Fuller M, Rozaklis T, Ramsay SL, Hopwood JJ, Meikle PJ. Disease-specific markers for the mucopolysaccharidoses. Pediatric research. 2004 Nov;56(5:733-8.Blau N, Duran M, Gibson K. Laboratory Guide to the Methods in Biochemical Genetics. First edition ed: Springer-Verlag Berlin Heidelberg; 2008. pp287-324.Dorfman A, Matalon R. The Hurler and Hunter syndromes. The American journal of medicine. 1969 Nov;47(5:691-707.Fratantoni JC, Hall CW, Neufeld EF. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science (New York, NY. 1968 Nov 1;162(3853:570-2.Fratantoni JC, Hall CW, Neufeld EF. The defect in Hurler and Hunter syndromes. II. Deficiency of specific factors involved in mucopolysaccharide degradation. Proceedings of the National Academy of Sciences of the United States of America. 1969 Sep;64(1:360-6.Fratantoni JC, Neufeld EF, Uhlendorf BW, Jacobson CB. Intrauterine diagnosis of the hurler and hunter syndromes. The New England journal of medicine. 1969 Mar 27

  14. Glycosaminoglycans and infection

    Science.gov (United States)

    Aquino, Rafael S.; Park, Pyong Woo

    2016-01-01

    Glycosaminoglycans (GAGs) are complex linear polysaccharides expressed in intracellular compartments, at the cell surface, and in the extracellular environment where they interact with various molecules to regulate many cellular processes implicated in health and disease. Subversion of GAGs is a pathogenic strategy shared by a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi. Pathogens use GAGs at virtually every major portals of entry to promote their attachment and invasion of host cells, movement from one cell to another, and to protect themselves from immune attack. Pathogens co-opt fundamental activities of GAGs to accomplish these tasks. This ingenious strategy to subvert essential activities of GAGs likely prevented host organisms from deleting or inactivating these mechanisms during their evolution. The goal of this review is to provide a mechanistic overview of our current understanding of how microbes subvert GAGs at major steps of pathogenesis, using select GAG-pathogen interactions as representative examples. PMID:27100505

  15. Mucopolysaccharidosis IVA and glycosaminoglycans

    Science.gov (United States)

    Khan, Shaukat; Alméciga-Díaz, Carlos J.; Sawamoto, Kazuki; Mackenzie, William G.; Theroux, Mary C; Pizarro, Christian; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2016-01-01

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA. PMID:27979613

  16. Glycosaminoglycans, hyperglycemia, and disease.

    Science.gov (United States)

    Hiebert, Linda M; Han, Juying; Mandal, Anil Kumar

    2014-09-01

    Diabetes is a widespread disease with many clinical pathologies. Despite numerous pharmaceutical strategies for treatment, the incidence of diabetes continues to increase. Hyperglycemia, observed in diabetes, causes endothelial injury resulting in microvascular and macrovascular complications such as nephropathy, retinopathy, neuropathy, and increased atherosclerosis. Proteoglycans are chemically diverse macromolecules consisting of a protein core with glycosaminoglycans (GAGs) attached. Heparan sulfate proteoglycans are important compounds found on the endothelial cell membrane and in the extracellular matrix, which play an important role in growth regulation and serve as a reservoir for cytokines and other bioactive molecules. Endothelial cells are altered in hyperglycemia by a reduction in heparan sulfate and upregulation and secretion of heparanase, an enzyme that degrades heparan sulfate GAGs on proteoglycans. Reactive oxygen species, increased in diabetes, also destroy GAGs. Preservation of heparan sulfate proteoglycans on endothelial cells may be a strategy to prevent angiopathy associated with diabetes. The use of GAGs and GAG-like compounds may increase endothelial heparan sulfate and prevent an increase in the heparanase enzyme. Elucidating the mechanisms of GAG depletion and its significance in endothelial health may help to further understand, prevent, and treat cardiovascular complications associated with diabetes. Further studies examining the role of GAGs and GAG-like compounds in maintaining endothelial health, including their effect on heparanase, will determine the feasibility of these compounds in diabetes treatment. Preservation of heparan sulfate by decreasing heparanase may have important implications not only in diabetes, but also in cardiovascular disease and tumor biology.

  17. Mucopolysaccharidosis IVA and glycosaminoglycans.

    Science.gov (United States)

    Khan, Shaukat; Alméciga-Díaz, Carlos J; Sawamoto, Kazuki; Mackenzie, William G; Theroux, Mary C; Pizarro, Christian; Mason, Robert W; Orii, Tadao; Tomatsu, Shunji

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures

    NARCIS (Netherlands)

    Janse, Ingmar; Zwart, Gabriel; Maarel, Marc J.E.C. van der; Gottschal, Jan C.

    2000-01-01

    As described recently, mucopolysaccharides of the marine microalga Phaeocystis can be degraded in enrichment cultures. In this paper we report on the characterization of the microbial community in such enrichments. Denaturing gradient gel electrophoresis (DGGE) profiles that were obtained during muc

  19. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures

    NARCIS (Netherlands)

    Janse, I.; Zwart, G.; Van der Maarel, M.J.E.C.; Gottschal, J.C.

    2000-01-01

    As described recently (Janse et al. 1999; Limnol Oceanogr 44(6):1447-1457), mucopolysaccharides of the marine microalga Phaeocystis can be degraded in enrichment cultures. In this paper we report on the characterization of the microbial community in such enrichments. Denaturing gradient gel

  20. Glycosaminoglycan-lipoprotein interaction.

    Science.gov (United States)

    Olsson, U; Ostergren-Lundén, G; Moses, J

    2001-10-01

    Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.

  1. 刺参酸性黏多糖对5-FU治疗小鼠肝癌的减毒增效作用%Attenuated and synergized action of stichopus japonicus acid mucopolysaccharide combined with 5-FU on hepatocarcinoma22-bearing mouse

    Institute of Scientific and Technical Information of China (English)

    代海华; 宋扬; 陈丹丹

    2015-01-01

    目的 探讨刺参酸性黏多糖(stichopus japonicus acid mucopolysaccharide,SJAMP)联合5-FU对肝癌小鼠肿瘤生长及免疫功能的影响,了解其对化疗药的减毒增效作用.方法 将60只小鼠随机分为正常对照组(生理盐水)、空白对照组(生理盐水)、5-FU组[5-FU 20 mg/(kg·d)]、SJAMP组[SLAMP 25 mg/(kg·d)]、SJAMP+低5-FU组[SLAMP 25 mg/(kg· d)和5-FU 10 mg/(kg·d)]和SJAMP+高5-FU组[SLAMP 25 mg/(kg·d)和5-FU20mg/(kg· d)].除正常对照组外其他各组均于右腋皮下接种H22 (Hepatocarcinoma22)细胞.接种后第2天开始给药,连续给药12 d后处死小鼠,计算抑瘤率、胸腺指数和脾脏指数,ELISA检测血清TNF-α和IL-2含量,中性红法检测腹腔巨嗜细胞吞噬功能,CCK-8法测定脾脏淋巴细胞增殖能力,MTT法测NK细胞杀伤功能,流式细胞术检测小鼠外周血T细胞亚群.结果 各干预组小鼠肿瘤生长明显受到抑制,SJAMP+高5-FU组抑瘤率(62.73%)高于5-FU组(55.53%),P=1.000.SJAMP组和SJAMP+低5-FU组小鼠脾脏指数显著高于其他组,P值均<0.05.SJAMP组和SJAMP+低5-FU组小鼠胸腺指数分别为(2.19±1.18)和(2.13±1.00) mg/g,高于5-FU组的(1.14±0.53)mg/g,P值分别为0.026和0.048;也高于SJAMP+高5-FU组的(1.07±0.49)mg/g,P值分别为0.011和0.020.各药物干预组TNF-α较空白对照组均降低,P值均<0.001.和空白对照组(33.27±6.13)相比,5-FU组(23.52±3.31)血清IL-2水平明显降低,P<0.001;SJAMP组(39.56±2.39)血清IL-2水平显著提高,P=0.001.与5-FU组相比,SJAMP组和联合用药组IL-2明显提高,P值均<0.001.SJAMP组和SJAMP+低5-FU组腹腔巨嗜细胞吞噬中性红能力显著高于正常对照组、空白对照组、5-FU组和SJAMP+高5-FU组,P值均<0.001;SJAMP+高5-FU组与5-FU组相比明显提高,P=0.012.SJAMP组和SJAMP+低5-FU组脾脏淋巴细胞增殖能力显著高于正常对照组(P值均<0.001)、空白对照组(P值均<0.001)、5-FU组(P值均<0.001)和SJAMP+高5-FU

  2. Regulation of sulfated glycosaminoglycan production by prostaglandin E2 in cultured lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Karlinsky, J.B.; Goldstein, R.H. (Boston Univ. School of Medicine, MA (USA))

    1989-08-01

    Prostaglandin E2 (PGE2) has been shown to increase the synthesis of hyaluronic acid in cultured fibroblasts by increasing the activity of hyaluronate synthetase, a group of plasma membrane-bound synthetic enzymes. We examined whether PGE2 also increased the activity of those enzyme systems involved in the synthesis of sulfated glycosaminoglycan in the human embryonic lung fibroblast. Exposure of cells to PGE2 resulted in dose-dependent increases in glucosamine incorporation into all sulfated glycosaminoglycan subtypes. PGE2 at 10(-7) mol/L increased total glycosaminoglycan per dish to 21.6 +/- 3.1 micrograms versus 12.0 +/- 2.5 micrograms in control untreated cultures. Stimulation of endogenous PGE2 production by bradykinin had a similar effect on glycosaminoglycan synthesis. To examine whether PGE2 affected sulfated glycosaminoglycan protein core production, cells were labeled with tritiated glucosamine in the presence of cycloheximide. Under these conditions, incorporation of radiolabel into all glycosaminoglycan subtypes was reduced. However, when exogenous sulfated glycosaminoglycan chain initiator (p-nitrophenyl beta-D-xyloside) was added, incorporation of tritiated glucosamine into sulfated glycosaminoglycan increased but not to levels found in control cultures. Application of PGE2 to cultures treated with cycloheximide alone, or to cultures treated with cycloheximide plus xyloside, increased tritiated glucosamine incorporation into chondroitin, dermatan sulfate, and to a lesser extent into heparan sulfate. We conclude that PGE2 stimulates synthesis of all sulfated glycosaminoglycan even in the absence of new protein core production, probably by increasing activities of sulfated glycosaminoglycan synthetase enzymes. PGE2 stimulation of heparan sulfate synthesis is partially dependent on the availability of heparan sulfate-specific protein core.

  3. Recent progress and applications in glycosaminoglycan and heparin research

    OpenAIRE

    Laremore, Tatiana N.; Zhang, Fuming; Dordick, Jonathan S.; LIU, Jian; Linhardt, Robert J.

    2009-01-01

    Heparin, the focus of this review, is a critically important anticoagulant drug produced from animal sources, which was contaminated last year leading to a number of adverse side effects, some resulting in death. Heparin is a highly acidic polysaccharide and a member of a family of biopolymers called glycosaminoglycans. The structure and activities of heparin are detailed along with recent advances in heparin structural analysis and biological evaluation. Current state-of-the-art chemical and...

  4. Proteinase activity regulation by glycosaminoglycans

    Directory of Open Access Journals (Sweden)

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  5. The effect of sex, height and time of day on the excretion of glycosaminoglycans and the consequences.

    Science.gov (United States)

    Poulsen, J H; Vaeth, M

    1982-02-01

    A diurnal rhythm in the excretion of glycosaminoglycan-derived uronic acid with an increased excretion during daytime has been found in adults. Due to this rhythm a 24-h excretion was established as the optimum measurement of glycosaminoglycan turnover in tissue. Neither the excretion of uronic acid nor the uronic acid/creatinine ratio in the morning urine could predict the 24-h excretion of glycosaminoglycans as estimated by a statistical model. This model may also be of general interest in similar clinical problems. Compared with males, females had a lower excretion of glycosaminoglycans. Part of this discrepancy reflected a sex-difference in height, which was shown to be positively correlated with the excretion. On the other hand, the uronic acid/creatinine ratio was not influenced by height or sex. Body mass, age and urine output did not influence the ratio or the excretion of uronic acid.

  6. GLYCOSAMINOGLYCANS AND PROTEOGLYCANS IN PALMAR FASCIA OF PATIENTS WITH DUPUYTREN.

    Science.gov (United States)

    Nascimento, Priscilla Carneiro Hirai; Kobayashi, Elsa Yoko; Lenzi, Luiz Guilherme de Saboya; Dos Santos, João Baptista Gomes; Nader, Helena Bonciani; Faloppa, Flávio

    2016-01-01

    : To evaluate and compare the behavior of glycosaminoglycans (GAGs) in Dupuytren disease (DD). : This is an experimental study with 23 patients diagnosed with DD. Tissue collected through fasciectomy with incision type Brunner or McCash were evaluated by electrophoresis for identification of GAGs. The quantification was carried out by immunofluorescence and dosage of proteins for different types of glycosaminoglycans. The results were expressed in percentage and statistically evaluated. : A significant increase was observed through eletrophoresis in GAGs, as compared to the control (pDupuytren's disease, mainly dermatan sulfate, was evident from our results, as well as a pronounced decrease of hyaluronic acid in the palmar aponeurosis from the same patients. Level of Evidence III, Case-Control Study.

  7. Glycosaminoglycan Storage Disorders: A Review

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2012-01-01

    Full Text Available Impaired degradation of glycosaminoglycans (GAGs with consequent intralysosomal accumulation of undegraded products causes a group of lysosomal storage disorders known as mucopolysaccharidoses (MPSs. Characteristically, MPSs are recognized by increased excretion in urine of partially degraded GAGs which ultimately result in progressive cell, tissue, and organ dysfunction. There are eleven different enzymes involved in the stepwise degradation of GAGs. Deficiencies in each of those enzymes result in seven different MPSs, all sharing a series of clinical features, though in variable degrees. Usually MPS are characterized by a chronic and progressive course, with different degrees of severity. Typical symptoms include organomegaly, dysostosis multiplex, and coarse facies. Central nervous system, hearing, vision, and cardiovascular function may also be affected. Here, we provide an overview of the molecular basis, enzymatic defects, clinical manifestations, and diagnosis of each MPS, focusing also on the available animal models and describing potential perspectives of therapy for each one.

  8. Electrostatic Interactions Between Glycosaminoglycan Molecules

    Institute of Scientific and Technical Information of China (English)

    SONG Fan; MOYNE Christian; BAI Yi-Long

    2005-01-01

    @@ The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG)molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

  9. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    Directory of Open Access Journals (Sweden)

    Yamakoshi Fumiko

    2011-02-01

    Full Text Available Abstract Background Dentin sialophosphoprotein (Dspp is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp, the N-terminal domain of dentin sialophosphoprotein (Dspp, is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were

  10. Determinants of Glycosaminoglycan (GAG Structure

    Directory of Open Access Journals (Sweden)

    Kristian Prydz

    2015-08-01

    Full Text Available Proteoglycans (PGs are glycosylated proteins of biological importance at cell surfaces, in the extracellular matrix, and in the circulation. PGs are produced and modified by glycosaminoglycan (GAG chains in the secretory pathway of animal cells. The most common GAG attachment site is a serine residue followed by a glycine (-ser-gly-, from which a linker tetrasaccharide extends and may continue as a heparan sulfate, a heparin, a chondroitin sulfate, or a dermatan sulfate GAG chain. Which type of GAG chain becomes attached to the linker tetrasaccharide is influenced by the structure of the protein core, modifications occurring to the linker tetrasaccharide itself, and the biochemical environment of the Golgi apparatus, where GAG polymerization and modification by sulfation and epimerization take place. The same cell type may produce different GAG chains that vary, depending on the extent of epimerization and sulfation. However, it is not known to what extent these differences are caused by compartmental segregation of protein cores en route through the secretory pathway or by differential recruitment of modifying enzymes during synthesis of different PGs. The topic of this review is how different aspects of protein structure, cellular biochemistry, and compartmentalization may influence GAG synthesis.

  11. Thin Layer Chromatography for the Analysis of Glycosaminoglycan Oligosaccharides

    OpenAIRE

    Zhang, Zhenqing; Xie, Jin; Zhang, Fuming; Linhardt, Robert J.

    2007-01-01

    Thin layer chromatography was used to analyze glycosaminoglycan oligosaccharides obtained through the use of polysaccharide lyases. This method allows for the rapid, semi-quantitative analysis of a wide variety of glycosaminoglycan oligosaccharides.

  12. Plasmodium vivax adherence to placental glycosaminoglycans.

    Directory of Open Access Journals (Sweden)

    Kesinee Chotivanich

    Full Text Available BACKGROUND: Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarias is less clear. METHODOLOGY: The adherence properties of P. vivax infected red blood cells (PvIRBC were evaluated under static and flow conditions. PRINCIPAL FINDINGS: P. vivax isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for P. falciparum vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA and hyaluronic acid (HA, the receptors for adhesion of P. falciparum in the placenta. PvIRBC also adhered to fresh placental cells (N = 5. Pre-incubation with chondroitinase prevented PvIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PvIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PvIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD shear stress reducing maximum attachment by 50% was 0.06 (0.02 Pa but, having adhered, the PvIRBC could then resist detachment by stresses up to 5 Pa. At 37 °C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39 °C adherence began earlier and peaked at 24 hours. SIGNIFICANCE: Adherence of P. vivax-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation.

  13. Study on the Fermentation Conditions of a Mucopolysaccharide-producing Bacterium LV-1%一株粘性多糖产生菌LV-1的发酵条件研究

    Institute of Scientific and Technical Information of China (English)

    梁玉丽; 郭继强; 陈晓艺; 刘志文; 李宪臻

    2009-01-01

    [Objective] The fermentation conditions of a mucopolysaccharide-producing bacterium LV-1 which isolated from soil sample were studied.[Method] The polysaccharide-producing bacterium was isolated by serial dilution method, the effects of carbon source, nitrogen source, the initial pH and temperature on producing polysaccharide by it were discussed to confirm the optimum fermentation conditions.[Result] The physicochemical properties showed that the polysaccharide was water-soluble, but insoluble in organic solvents including ethanol, butanol, and chloroform.It was neutral polysaccharide with negative charge and without reducing terminal. The pH of its solution was pH=7.5. There were no protein, fructose, uronic acid, sulphate and starch-like structure included in polysaccharide molecules. The optimum fermentation conditions for polysaccharide production were 3% mannitol as carbon source, 0.25% yeast extract as nitrogen source, culture temperature 28 ℃ and pH=7.5. [Conclusion] The research could provie basis for development and utilization of LV-1 and industrialized production of mucopolysaccharide.

  14. Molecular structure of basic oligomeric building units of heparan-sulfate glycosaminoglycans

    NARCIS (Netherlands)

    Remko, Milan; Van Duijnen, Piet Th.; Broer, Ria

    2010-01-01

    This study reports in detail the results of systematic large-scale theoretical investigations of the acidic dimeric structural units (D-E, E-F, F-G, and G-H) and pentamer D-E-F-G-H (fondaparinux) of the glycosaminoglycan heparin, and their anionic forms. The geometries and energies of these oligomer

  15. Sulfur compounds in therapy: Radiation-protective agents, amphetamines, and mucopolysaccharide sulfation

    Energy Technology Data Exchange (ETDEWEB)

    Foye, W.O. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston (United States))

    1992-09-01

    Sulfur-containing compounds have been used in the search for whole-body radiation-protective compounds, in the design of amphetamine derivatives that retain appetite-suppressive effects but lack most behavioral effects characteristic of amphetamines, and in the search for the cause of kidney stone formation in recurrently stoneforming patients. Organic synthetic procedures were used to prepare radiation-protective compounds having a variety of sulfur-containing functional groups, and to prepare amphetamine derivatives having electron-attracting sulfur functions. In the case of the kidney stone causation research, isolation of urinary mucopolysaccharides (MPS) from recurrently stoneforming patients was carried out and the extent of sulfation of the MPS was determined by electrophoresis. Whole-body radiation-protective agents with a high degree of protection against lethal doses of gamma-radiation in mice were found in a series of quinolinium and pyridinium bis(methylthio) and methylthio amino derivatives. Mechanism studies showed that the copper complexes of these agents mimicked the beneficial action of superoxide dismutase. Electron-attracting sulfur-containing functions on amphetamine nitrogen, as well as 4'-amino nitrogen provided amphetamine derivatives with good appetite-suppressant effects and few or no adverse behavioral effects. Higher than normal levels of sulfation of the urinary MPS of stone formers suggested a cause for recurrent kidney stone formation. A sulfation inhibitor was found to prevent recurrence of stone formation and inhibit growth of existing stones. The inclusion of various sulfur-containing functions in organic molecules yielded compounds having whole-body radiation protection from lethal doses of gamma-radiation in animals. The presence of electron-attracting sulfur functions in amphetamine gave derivatives that retained appetite-suppressant effects and eliminated most adverse behavioral effects.

  16. The Anticoagulation Effects of Glycosaminoglycan from Mactra veneriformis

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2015-07-01

    Full Text Available In this study, the anticoagulation effect of glycosaminoglycan from Mactra veneriformis was studied. The results showed that glycosaminoglycan mainly exerted anticoagulation via antithrombin III. Glycosaminoglycan could passivate the function of heparin cofactor II inhibiting thrombin activity. Glycosaminoglycan significantly reduced the activities of coagulation factor II, V, VII, X, VIII, IX, XI, XII as well as fibrinogen content in the plasma (p<0.05, p<0.01. Besides, glycosaminoglycan could extend blood recalcification time in rats by shielding Ca2+ in plasma and significantly reduced Ca2+ concentration in rats and mice serum (p<0.05, p<0.01. Glycosaminoglycan reduced the Ca2+ concentration in serum in a more intensive way than that of heparin sodium (p<0.05, p<0.01.

  17. Two-dimensional electrophoresis of urinary mucopolysaccharides on cellulose acetate after f-cetylpyridiniumchloride (CPC) precipitation: A method suitable for the routine laboratory

    NARCIS (Netherlands)

    Abeling, N.G.G.M.; Wadman, S.K.; Gennip, A.H. van

    1974-01-01

    A technique for two-dimensional electrophoresis of urinary mucopolysaccharides (MPS) is described. The method allows differentiation of a number of mucopolysaccharidoses and is suitable for application in the routine laboratory. This technique should be used to evaluate urines from patients who

  18. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-02-24

    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  19. Phage display-derived human antibodies against specific glycosaminoglycan epitopes.

    NARCIS (Netherlands)

    Smits, N.C.; Lensen, J.F.M.; Wijnhoven, T.J.M.; Dam, G.B. ten; Jenniskens, G.J.; Kuppevelt, A.H.M.S.M. van

    2006-01-01

    Glycosaminoglycans (GAGs) are long unbranched polysaccharides, most of which are linked to a core protein to form proteoglycans. Depending on the nature of their backbone, one can discern galactosaminoglycans (chondroitin sulfate [CS] and dermatan sulfate [DS]) and glucosaminoglycans (heparan sulfat

  20. Isolation and Quantification of Glycosaminoglycans from Human Hair Shaft

    Science.gov (United States)

    Bonovas, Stefanos; Sitaras, Nikolaos

    2016-01-01

    Background There is evidence that glycosaminoglycans (GAGs) are present in the hair shaft within the follicle but there are no studies regarding GAGs isolation and measurement in the human hair shaft over the scalp surface, it means, in the free hair shaft. Objective The purpose of our research was to isolate and measure the total GAGs from human free hair shaft. Methods Seventy-five healthy individuals participated in the study, 58 adults, men and women over the age of 50 and 17 children (aged 4~9). GAGs in hair samples, received from the parietal and the occipital areas, were isolated with 4 M guanidine HCl and measured by the uronic acid-carbazole reaction assay. Results GAGs concentration was significantly higher in the occipital area than in the parietal area, in all study groups. GAG levels from both areas were significantly higher in children than in adults. GAG levels were not associated with gender, hair color or type. Conclusion We report the presence of GAGs in the human free hair shaft and the correlation of hair GAG levels with the scalp area and participants' age. PMID:27746630

  1. Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection.

    Directory of Open Access Journals (Sweden)

    Laurent Gillet

    Full Text Available Glycosaminoglycans (GAGs commonly participate in herpesvirus entry. They are thought to provide a reversible attachment to cells that promotes subsequent receptor binding. Murine gamma-herpesvirus-68 (MHV-68 infection of fibroblasts and epithelial cells is highly GAG-dependent. This is a function of the viral gp150, in that gp150-deficient mutants are much less GAG-dependent than wild-type. Here we show that the major MHV-68 GAG-binding protein is not gp150 but gp70, a product of ORF4. Surprisingly, ORF4-deficient MHV-68 showed normal cell binding and was more sensitive than wild-type to inhibition by soluble heparin rather than less. Thus, the most obvious viral GAG interaction made little direct contribution to infection. Indeed, a large fraction of the virion gp70 had its GAG-binding domain removed by post-translational cleavage. ORF4 may therefore act mainly to absorb soluble GAGs and prevent them from engaging gp150 prematurely. In contrast to gp70, gp150 bound poorly to GAGs, implying that it provides little in the way of adhesion. We hypothesize that it acts instead as a GAG-sensitive switch that selectively activates MHV-68 entry at cell surfaces.

  2. Structure and anticoagulant properties of sulfated glycosaminoglycans from primitive Chordates

    Directory of Open Access Journals (Sweden)

    MAURO S. G. PAVÃO

    2002-03-01

    Full Text Available Dermatan sulfates and heparin, similar to the mammalian glycosaminoglycans, but with differences in the degree and position of sulfation were previously isolated from the body of the ascidian Styela plicata and Ascidia nigra. These differences produce profound effects on their anticoagulant properties. S. plicata dermatan sulfate composed by 2-O-sulfatedalpha-L-iduronic acid and 4-O-sulfated N-acetyl-beta-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. Surprisingly, it has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, A. nigra dermatan sulfate, also enriched in 2-O-sulfated alpha-L-iduronic acid, but in this case sulfated at O-6 of the N-acetyl-beta-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Ascidian heparin, composed by 2-O-sulfated alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (75% and alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (25% disaccharide units has an anticoagulant activity 10 times lower than the mammalian heparin, is about 20 times less potent in the inhibition of thrombin by antithrombin, but has the same heparin cofactor II activity as mammalian heparin.Dermatam sulfato e heparina semelhantes aos glicosaminoglicanos de mamíferos, mas apresentando diferenças no grau e posição de sulfatação foram previamente isolados do corpo das ascídias Styela plicata e Ascidia nigra. Estas diferenças produzem efeitos profundos nas suas propriedades anticoagulantes. O dermatam sulfato de S. plicata, composto por resíduos de ácido alfa-L-idurônico 2-O-sulfatados e N-acetilgalactosamina 4-O-sulfatados é um potente anticoagulante devido a sua alta atividade de cofator II da heparina. Surpreendentemente, este polímero possui uma

  3. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer.

    Directory of Open Access Journals (Sweden)

    Beth L Zimmer

    Full Text Available Black band disease (BBD of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs and for autoinducer-2 (AI-2 activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153 of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S-4,5-dihydroxy-2,3-pentanedione (DPD, the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.

  4. Anti-aging effect and gene expression profiling of dung beetle glycosaminoglycan in aged rats.

    Science.gov (United States)

    Ahn, Mi Young; Kim, Ban Ji; Kim, Ha Jeong; Hwang, Jae Sam; Jung, Yi-Sook; Park, Kun-Koo

    2017-01-01

    This study aimed to evaluate the anti-aging effect of a newly prepared insect-derived compound, dung beetle glycosaminoglycan (GAG), given intraperitoneally to old SD rats as part of their diet for 1 month. Insect GAG administration was found to be related to a reduction in oxidative damage, hepato-cellular biomarker levels, protein carbonyl content, and malondialdehyde concentration. The anti-aging-related molecular genetic mechanisms of dung beetle GAG are not yet fully elucidated. Catharsius molossus (a type of dung beetle) GAG (CaG) possessed anti-aging activities; it reduced the serum level of creatinine kinase, had aortic vasorelaxant activities and cardioprotective actions, and maintained a normal glucose level in treated rats. Microarray analysis was performed with a rat 30 K cDNA clone set array to identify the gene-expression profiles of 14-month-old SD rats treated with dung beetle glycosaminoglycan 5 mg/kg (CaG5) over a 1-month period, which was done to investigate its anti-aging effect as compared to that of either Bombus ignitus (a type of bumblebee) queen GAG 5 mg/kg (IQG5) or chondroitin sulfate 10 mg/kg. CaG5 and IQG5 had marked anti-inflammatory effects, bringing about inhibition of free fatty acid, uric acid, sGPT, IL-1 beta, and CK values. In addition, anticoagulant and antithrombotic effects were seen: the concentration of factor 1 (fibrinogen) was increased in CaG- treated rat plasma. The CaG5-treated rat group, compared to the control, displayed upregulation of 131 genes, including lipocalin 2 (Lbp) and a serine peptidase inhibitor, Kaszal type3 (Spink3), and 64 downregulated genes, including lysyl oxidase (Lox), serine dehydratase (sds), and retinol saturase (Retsat). Our data suggest that dung beetle glycosaminoglycan may be a helpful treatment for aged rats, which indicates its potential as a therapeutic biomaterial for aging.

  5. One-electron oxidation and reduction of glycosaminoglycan chloramides: a kinetic study.

    Science.gov (United States)

    Sibanda, S; Parsons, B J; Houee-Levin, C; Marignier, J-L; Paterson, A W J; Heyes, D J

    2013-10-01

    Hypochlorous acid and its acid-base counterpart, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. In this study, the fast reaction techniques of pulse radiolysis and nanosecond laser flash photolysis have been used to generate both oxidizing and reducing radicals to react with the chloramides of hyaluronan (HACl) and heparin (HepCl). The strong reducing formate radicals and hydrated electrons were found to react rapidly with both HACl and HepCl with rate constants of 1-1.7 × 10(8) and 0.7-1.2 × 10(8)M(-1)s(-1) for formate radicals and 2.2 × 10(9) and 7.2 × 10(8)M(-1)s(-1) for hydrated electrons, respectively. The spectral characteristics of the products of these reactions were identical and were consistent with initial attack at the N-Cl groups, followed by elimination of chloride ions to produce nitrogen-centered radicals, which rearrange subsequently and rapidly to produce C-2 radicals on the glucosamine moiety, supporting an earlier EPR study by M.D. Rees et al. (J. Am. Chem. Soc.125: 13719-13733; 2003). The oxidizing hydroxyl radicals also reacted rapidly with HACl and HepCl with rate constants of 2.2 × 10(8) and 1.6 × 10(8)M(-1)s(-1), with no evidence from these data for any degree of selective attack on the N-Cl group relative to the N-H groups and other sites of attack. The carbonate anion radicals were much slower with HACl and HepCl than hydroxyl radicals (1.0 × 10(5) and 8.0 × 10(4)M(-1)s(-1), respectively) but significantly faster than with the parent molecules (3.5 × 10(4) and 5.0 × 10(4)M(-1)s(-1

  6. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.

    Directory of Open Access Journals (Sweden)

    Victoria A Lawson

    Full Text Available BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS from the PrP(C substrate was found to specifically prevent PrP(res formation seeded by mouse derived PrP(Sc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res formation, while having no effect on PrP(res formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.

  7. Glycosaminoglycan Sulphation Affects the Seeded Misfolding of a Mutant Prion Protein

    Science.gov (United States)

    Lawson, Victoria A.; Lumicisi, Brooke; Welton, Jeremy; Machalek, Dorothy; Gouramanis, Katrina; Klemm, Helen M.; Stewart, James D.; Masters, Colin L.; Hoke, David E.; Collins, Steven J.; Hill, Andrew F.

    2010-01-01

    Background The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. Methodology/Principal Finding In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. Conclusions/Significance Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains. PMID:20808809

  8. A computational approach for deciphering the organization of glycosaminoglycans.

    Directory of Open Access Journals (Sweden)

    Jean L Spencer

    Full Text Available BACKGROUND: Increasing evidence has revealed important roles for complex glycans as mediators of normal and pathological processes. Glycosaminoglycans are a class of glycans that bind and regulate the function of a wide array of proteins at the cell-extracellular matrix interface. The specific sequence and chemical organization of these polymers likely define function; however, identification of the structure-function relationships of glycosaminoglycans has been met with challenges associated with the unique level of complexity and the nontemplate-driven biosynthesis of these biopolymers. METHODOLOGY/PRINCIPAL FINDINGS: To address these challenges, we have devised a computational approach to predict fine structure and patterns of domain organization of the specific glycosaminoglycan, heparan sulfate (HS. Using chemical composition data obtained after complete and partial digestion of mixtures of HS chains with specific degradative enzymes, the computational analysis produces populations of theoretical HS chains with structures that meet both biosynthesis and enzyme degradation rules. The model performs these operations through a modular format consisting of input/output sections and three routines called chainmaker, chainbreaker, and chainsorter. We applied this methodology to analyze HS preparations isolated from pulmonary fibroblasts and epithelial cells. Significant differences in the general organization of these two HS preparations were observed, with HS from epithelial cells having a greater frequency of highly sulfated domains. Epithelial HS also showed a higher density of specific HS domains that have been associated with inhibition of neutrophil elastase. Experimental analysis of elastase inhibition was consistent with the model predictions and demonstrated that HS from epithelial cells had greater inhibitory activity than HS from fibroblasts. CONCLUSIONS/SIGNIFICANCE: This model establishes the conceptual framework for a new class of

  9. Effects of glycosaminoglycan from scallop skirt on foam cell

    Institute of Scientific and Technical Information of China (English)

    Fu-shengSUN; SaiLIU

    2004-01-01

    AIM: To study effects of glycosaminoglycan from scallop skirt (SS-GAG) on NO production, antioxidative enzyme activity,and formation of macrophage-derived and smooth muscle cell-derived foam cell; to study the effects of SS-GAG on VEGF expression, intracellular Ca2~ level, and cytokines secretion of macrophage-derived foam cell. METHODS: Foam-like cells were generated by incubating the U937 cells or porcine artery smooth

  10. A computational approach for deciphering the organization of glycosaminoglycans.

    Science.gov (United States)

    Spencer, Jean L; Bernanke, Joel A; Buczek-Thomas, Jo Ann; Nugent, Matthew A

    2010-02-23

    Increasing evidence has revealed important roles for complex glycans as mediators of normal and pathological processes. Glycosaminoglycans are a class of glycans that bind and regulate the function of a wide array of proteins at the cell-extracellular matrix interface. The specific sequence and chemical organization of these polymers likely define function; however, identification of the structure-function relationships of glycosaminoglycans has been met with challenges associated with the unique level of complexity and the nontemplate-driven biosynthesis of these biopolymers. To address these challenges, we have devised a computational approach to predict fine structure and patterns of domain organization of the specific glycosaminoglycan, heparan sulfate (HS). Using chemical composition data obtained after complete and partial digestion of mixtures of HS chains with specific degradative enzymes, the computational analysis produces populations of theoretical HS chains with structures that meet both biosynthesis and enzyme degradation rules. The model performs these operations through a modular format consisting of input/output sections and three routines called chainmaker, chainbreaker, and chainsorter. We applied this methodology to analyze HS preparations isolated from pulmonary fibroblasts and epithelial cells. Significant differences in the general organization of these two HS preparations were observed, with HS from epithelial cells having a greater frequency of highly sulfated domains. Epithelial HS also showed a higher density of specific HS domains that have been associated with inhibition of neutrophil elastase. Experimental analysis of elastase inhibition was consistent with the model predictions and demonstrated that HS from epithelial cells had greater inhibitory activity than HS from fibroblasts. This model establishes the conceptual framework for a new class of computational tools to use to assess patterns of domain organization within

  11. Synthetic genistein derivatives as modulators of glycosaminoglycan storage

    OpenAIRE

    Kloska Anna; Narajczyk Magdalena; Jakóbkiewicz-Banecka Joanna; Grynkiewicz Grzegorz; Szeja Wiesław; Gabig-Cimińska Magdalena; Węgrzyn Grzegorz

    2012-01-01

    Abstract Background Mucopolysaccharidoses (MPS) are severe metabolic disorders caused by accumulation of undegraded glycosaminoglycans (GAGs) in lysosomes due to defects in certain lysosomal hydrolases. Substrate reduction therapy (SRT) has been proposed as one of potential treatment procedures of MPS. Importantly, small molecules used in such a therapy might potentially cross the blood–brain barrier (BBB) and improve neurological status of patients, as reported for a natural isoflavone, 5, 7...

  12. Not all lubricin isoforms are substituted with a glycosaminoglycan chain.

    Science.gov (United States)

    Lord, Megan S; Estrella, Ruby P; Chuang, Christine Y; Youssef, Peter; Karlsson, Niclas G; Flannery, Carl R; Whitelock, John M

    2012-01-01

    Lubricin, also referred to as superficial zone protein, has been reported to be a proteoglycan. However, the structure of its glycosaminoglycan chain has not been well characterized, and this study was undertaken to investigate the structure of the glycosaminoglycan chain that decorated lubricin in human synovial fluid to provide insight into its biological role. Lubricin was detected as a major band at approximately 360 kDa which co-migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a chondroitin sulfate (CS)-containing proteoglycan that was detected by both monoclonal antibodies (MAb) 2-B-6 and MAb 3-B-3 after chondroitinase ABC treatment and keratan sulfate (KS) that was detected by MAb 5-D-4. Further analysis of lubricin-containing fractions that eluted from an anion exchange column indicated that the major population of lubricin could be separated from the CS and KS stubs which indicated that this fraction of lubricin was not decorated with glycosaminoglycan chain and was the glycoprotein form of lubricin. Lubricin present in fractions that also contained CS was found to be decorated with CS structures which were reactive with MAb 3-B-3 after chondroitinase ABC digestion using a sandwich enzyme-linked immunosorbent assay approach. Aggrecan was not found to form complexes with lubricin in synovial fluid which confirmed that the MAb 3-B-3 CS and MAb 5-D-4 KS structures decorated lubricin. These data demonstrate that lubricin present in human synovial fluid was a heterogeneous population with both glycoprotein and proteoglycan forms.

  13. Human milk glycosaminoglycans: the state of the art and future perspectives

    Directory of Open Access Journals (Sweden)

    Coppa Giovanni Valentino

    2013-01-01

    Full Text Available Abstract Recently, a complete characterization and detailed evaluation of the glycosaminoglycans of human milk were performed. The total glycosaminoglycans content in milk from healthy mothers having delivered term or preterm newborns showed a constant pattern which was essentially composed of two main polysaccharides: chondroitin sulfate (60-70% and heparin (30-40%. Moreover, considerable variations of glycosaminoglycans concentration were found during the first month of lactation, the highest values being present in colostrum compared to mature milk. Metabolism and potential biological functions of human milk glycosaminoglycans are hypothesized and future studies are encouraged.

  14. Nonradioactive glycosyltransferase and sulfotransferase assay to study glycosaminoglycan biosynthesis.

    Science.gov (United States)

    Ethen, Cheryl M; Machacek, Miranda; Prather, Brittany; Tatge, Timothy; Yu, Haixiao; Wu, Zhengliang L

    2015-01-01

    Glycosaminoglycans (GAGs) are linear polysaccharides with repeating disaccharide units. GAGs include heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronan. All GAGs, except for hyaluronan, are usually sulfated. GAGs are polymerized by mono- or dual-specific glycosyltransferases and sulfated by various sulfotransferases. To further our understanding of GAG chain length regulation and synthesis of specific sulfation motifs on GAG chains, it is imperative to understand the kinetics of GAG synthetic enzymes. Here, nonradioactive colorimetric enzymatic assays are described for these glycosyltransferases and sulfotransferases. In both cases, the leaving nucleotides or nucleosides are hydrolyzed using specific phosphatases, and the released phosphate is subsequently detected using malachite reagents.

  15. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    Science.gov (United States)

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  16. Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of sulfated glycosaminoglycans isolated from the Norway lobster (Nephrops norvegicus) shell.

    Science.gov (United States)

    Sayari, Nadhem; Balti, Rafik; Ben Mansour, Mohamed; Ben Amor, Ikram; Graiet, Imen; Gargouri, Jalel; Bougatef, Ali

    2016-05-01

    Sulfated glycosaminoglycans (SGNL) were extracted for the first time from Norway lobster (Nephrops norvegicus) shell. The monosaccharide composition analysed by GC/MS revealed the presence of galacturonic acid, glucuronic acid, N-acetylgalactosamine and N-acetylglucosamine. The analysis of SGNL with acetate cellulose electrophoresis in Zn-acetate revealed the presence of heparan sulfate (HS) and dermatan sulfate (DS). SGNL were evaluated for their anticoagulant activities using activated partial thromboplastin time (aPTT), thrombin time (TT) and prothrombine time (PT) tests. After 21h incubation, HCT116 cell proliferation was inhibited (plobster glycosaminoglycans were probably related with the higher sulfate content. SGNL demonstrated promising antiproliferative and anticoagulant potential, which may be used as a novel, effective and promising antithrombotic agent.

  17. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts.

    Science.gov (United States)

    Belvedere, Raffaella; Bizzarro, Valentina; Parente, Luca; Petrella, Francesco; Petrella, Antonello

    2017-08-10

    Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.

  18. Dynamic Structure of Proteoglycans/Glycosaminoglycans in the Lungs of Mice with Chronic Granulomatous Inflammation.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2016-02-01

    Structure of proteoglycans in the lungs and total glycosaminoglycan content in blood serum were studied on mouse model of BCG-induced granulomatous inflammation in mice (without destructive processes in the lung parenchyma and granulomas). The maximum level of sulfated glycosaminoglycans in the lungs was detected on postinfection day 30 and was related to their involvement in initiation granulomogenesis and development of granulomas. The maximum level of total glycosaminoglycans in mouse serum on postinfection day 90 coincided with minimum level of sulfated glycosaminoglycans in the lungs. This blood/lungs ratio of glycosaminoglycans can be related to the prevalence of low-molecular-weight hyaluronan fragments promoting inflammation and fibrosis in the lungs observed at the end of the experiment (postinfection day 180).

  19. Evolutionary conservation of heavy chain protein transfer between glycosaminoglycans.

    Science.gov (United States)

    Sanggaard, Kristian W; Hansen, Lone; Scavenius, Carsten; Wisniewski, Hans-Georg; Kristensen, Torsten; Thøgersen, Ida B; Enghild, Jan J

    2010-04-01

    The bikunin proteins are composed of heavy chains (HCs) covalently linked to a chondroitin sulfate chain originating from Ser-10 of bikunin. Tumor necrosis factor stimulated gene-6 protein (TSG-6)/heavy chain 2 (HC2) cleaves this unique cross-link and transfers the HCs to hyaluronan and other glycosaminoglycans via a covalent HC*TSG-6 intermediate. In the present study, we have investigated if this reaction is evolutionary conserved based on the hypothesis that it is of fundamental importance. The results revealed that plasma/serum samples from mammal, bird, and reptile were able to form TSG-6 complexes suggesting the presence of proteins with the same function as the human bikunin proteins. To substantiate this, the complex forming protein from Gallus gallus (Gg) plasma was purified and identified as a Gg homolog of human HC2*bikunin. In addition, Gg pre-alpha-inhibitor and smaller amount of high molecular weight forms composed of bikunin and two HCs were purified. Like the human bikunin proteins, the purified Gg proteins were all stabilized by a protein-glycosaminoglycan-protein cross-link, i.e. the HCs were covalently attached to a chondroitin sulfate originating from bikunin. Furthermore, the complex formed between Gg HC2*bikunin and human TSG-6 appeared to be identical to that of the human proteins. Akin to human, Gg HC2 was further transferred to hyaluronan when present, and when incubated in vitro, Gg pre-alpha-inhibitor and TSG-6, failed to form the intermediate covalent complex, essential for HC transfer. Significantly, Gg HC2, analogous to human HC2, promoted complex formation between human HC3 and human TSG-6, substantiating the evolutionary conservation of these interactions. The present study demonstrates that the unique interactions between bikunin proteins, glycosaminoglycans, and TSG-6 are evolutionary conserved, emphasizing the physiological importance of the TSG-6/HC2-mediated HC-transfer reaction. In addition, the data show that the evolution of

  20. Behavioural phenotypes of the mucopolysaccharide disorders: a systematic literature review of cognitive, motor, social, linguistic and behavioural presentation in the MPS disorders.

    Science.gov (United States)

    Cross, E M; Hare, D J

    2013-03-01

    The mucopolysaccharide disorders (MPS) are a group of recessively inherited metabolic disorders resulting in progressive physical and cognitive decline. MEDLINE, PsycINFO and Embase databases were searched, alongside manual screening, to identify relevant literature. Papers were included in the review if they were published in a peer reviewed journal and conducted empirical research into cognitive, motor, social or linguistic development or behaviour in one or more MPS disorders. Twenty-five papers were reviewed. Two papers used methodology of a sufficiently high standard to demonstrate a behavioural phenotype; both found sleep disturbance to be part of the phenotype of MPS III. Fearfulness and sleep disturbance were frequently observed in people with MPS I and II. Cognitive and motor impairment and decline, and challenging behaviour were highly prevalent in the severe form of MPS II. Cognitive decline and severe behavioural problems relating to aggression, hyperactivity, orality, unusual affect and temper tantrums were seen in MPS III. Sleep disturbance is part of the behavioural phenotype of MPS III, and challenging behaviour is highly prevalent in MPS II and MPS III, therefore the efficacy of behavioural interventions for these populations should be investigated. Further research into the behaviour and adaptive skills of children with MPS III and MPS IV is required.

  1. Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues

    DEFF Research Database (Denmark)

    Couchman, J R; Caterson, B; Christner, J E

    1984-01-01

    Chondroitin sulphate proteoglycans are widespread connective tissue components and chemical analysis of cartilage and other proteoglycans has demonstrated molecular speciation involving the degree and position of sulphation of the carbohydrate chains. This may, in turn, affect the properties...... of the glycosaminoglycan (GAG), particularly with respect to self-association and interactions with other extracellular matrix components. Interactions with specific molecules from different connective tissue types, such as the collagens and their associated glycoproteins, could be favoured by particular charge...... and dermatan sulphate. These provide novel opportunities to study the in vivo distribution of chondroitin sulphate proteoglycans. We demonstrate that chondroitin sulphates exhibit remarkable connective tissue specificity and furthermore provide evidence that some proteoglycans may predominantly carry only one...

  2. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals

    Science.gov (United States)

    Pomin, Vitor H.

    2015-01-01

    Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limitations of the GAG-based therapies, SFs and SGs comprise new carbohydrate-based therapeutics available for clinical studies. Here, the principal structural features and the major mechanisms of action of the SFs and SGs in the above-mentioned pathophysiological systems are presented. Discussion is also given on the current challenges and the future perspectives in drug development of these marine glycans. PMID:26690451

  3. Chemokine cooperativity is caused by competitive glycosaminoglycan binding.

    Science.gov (United States)

    Verkaar, Folkert; van Offenbeek, Jody; van der Lee, Miranda M C; van Lith, Lambertus H C J; Watts, Anne O; Rops, Angelique L W M M; Aguilar, David C; Ziarek, Joshua J; van der Vlag, Johan; Handel, Tracy M; Volkman, Brian F; Proudfoot, Amanda E I; Vischer, Henry F; Zaman, Guido J R; Smit, Martine J

    2014-04-15

    Chemokines comprise a family of secreted proteins that activate G protein-coupled chemokine receptors and thereby control the migration of leukocytes during inflammation or immune surveillance. The positional information required for such migratory behavior is governed by the binding of chemokines to membrane-tethered glycosaminoglycans (GAGs), which establishes a chemokine concentration gradient. An often observed but incompletely understood behavior of chemokines is the ability of unrelated chemokines to enhance the potency with which another chemokine subtype can activate its cognate receptor. This phenomenon has been demonstrated to occur between many chemokine combinations and across several model systems and has been dubbed chemokine cooperativity. In this study, we have used GAG binding-deficient chemokine mutants and cell-based functional (migration) assays to demonstrate that chemokine cooperativity is caused by competitive binding of chemokines to GAGs. This mechanistic explanation of chemokine cooperativity provides insight into chemokine gradient formation in the context of inflammation, in which multiple chemokines are secreted simultaneously.

  4. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    Science.gov (United States)

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  5. [Glycosaminoglycans in subepithelial opacity after excimer laser keratectomy].

    Science.gov (United States)

    Nakayasu, K; Gotoh, T; Ishikawa, T; Kanai, A

    1996-05-01

    We evaluated histochemically the characteristics of glycosaminoglycans and proteoglycans in the corneal subepithelial opacity after excimer laser keratectomy on rabbit corneas. We also performed the same evaluations on the cornea after mechanical keratectomy. Twenty days after the operations, the area immediately subjacent to the epithelium showed strong staining with toluidine blue, alcian blue, and colloidal iron. However, after treatment with chondroitinase ABC or chondroitinase AC, alcian blue staining in this area decreased dramatically. Antilarge proteoglycan antibody also reacted strongly in this area. Histochemical and immunohistochemical examination of the cornea where mechanical keratectomy was done showed basically similar findings with the cornea of excimer laser keratectomy. These results suggest that large-molecula proteoglycans with chondroitine sulfate side chains become localized in the subepithelial area after two different kinds of keratectomies. We presume from histochemical and immunohistochemical observations that the subepithelial opacity observed after excimer laser keratectomy is not a special reaction to excimer laser but simply a corneal scar formed after stromal resection.

  6. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  7. Proteoglycans and glycosaminoglycans in misfolded proteins formation in Alzheimer's disease.

    Science.gov (United States)

    Wang, Peipei; Ding, Kan

    2014-01-01

    Misfolded protein amyloid-beta protein (Aβ) and tau protein are two high hallmarks of Alzheimer's disease (AD), representing significant targets in treating AD. Researches on mechanisms of the two proteins inducing neuron dysfunctions provide therapeutic strategies of AD, including inhibition of Aβ production and aggregation, acceleration of Aβ clearance as well as reduction of tau hyperphosphorylation. Proteoglycans (PGs) consist of a core protein and glycosaminoglycans (GAGs) chains, with enormous structural diversity due to variation in the core protein, the number of GAGs chains as well as extent and position of sulfation. Considerable evidences have indicated that PGs and GAGs play important roles in Aβ and tau processing. Numbers of GAGs and analogues have potential therapeutic function in AD. In this Review, we focus on the relationship of PGs and GAGs with misfolded proteins in AD and their potential therapeutic implications.

  8. Coarse-grained model of glycosaminoglycans in aqueous salt solutions. A field-theoretical approach.

    Science.gov (United States)

    Kolesnikov, Andrei L; Budkov, Yurij A; Nogovitsyn, Evgenij A

    2014-11-20

    We present results of self-consistent field calculations of thermodynamic and structural properties of glycosaminoglycans (chondroitin sulfate, hyaluronic acid, and heparin) in aqueous solutions with added monovalent and divalent salts. A semiphenomenological coarse-grained model for semiflexible polyelectrolyte chains in solution is proposed. The coarse-grained model permits one to focus on the essential features of these systems and provides significant computational advantages with respect to more detailed models. Our approach relies on the method of Gaussian equivalent representation for the calculation of the partition functions in the form of functional integrals. This method provides reliable thermodynamic information for polyelectrolyte solutions over wide ranges of monomer concentrations. In the present work, we use the comparison and fitting of the experimental osmotic pressure with a theoretical equation of state within the Gaussian equivalent representation. The degrees of ionization, radii of gyration, persistence lengths, and structure factors of chondroitin sulfate, hyaluronic acid, and heparin in aqueous solutions with added monovalent and divalent salts are calculated and discussed.

  9. Glycosaminoglycans are involved in pathogen adherence to corneal epithelial cells differently for Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Beatriz García

    2016-11-01

    Full Text Available The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies.

  10. A study on the relationship between radiologic classification and glycosaminoglycan analysis of cystic fluids in oral region

    Energy Technology Data Exchange (ETDEWEB)

    Park, In Woo; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1993-08-15

    This study was designed to evaluate the correlationship between radiologic classifications of cysts in oral region and glycosaminoglycan analysis of cystic fluids using cellulose acetate electrophoresis. The materials for this study consisted of 37 cases-8 periapical cysts, 10 dentigerous cysts, 10 primordial cysts, 2 residual cyst, 3 incisive canal cysts, 2 post-operative maxillary cysts, 1 mucocele on maxillary sinus, and 1 unicystic ameloblastoma-diagnosed as cystic lesions radiologically. The obtained results were as follows: 1. At the stepwise discriminant analysis, four variables-low mobility material, hiparin, hyaluronic acid, and dermatan sulfate- were used to define diagnostic model for the odontogenic cyst. The model produced a seventeenths of 100% and a specificity of 85%. 2. The intensities of heparin and chondroitin-4-sulfate were greater in dentigerous cyst than periapical cyst (p<0.05). 3. It showed no statistically significant difference in glycosaminoglycan of the cystic fluids between dentigerous cyst and primordial cyst (p<0.05). 4. On the fluids of the cysts originated from maxillary sinus, there were especially high intensities of heparin and dermatan sulfate, and low intensity of chondroitin-4-sulfate. 5. On the fluids of unicystic ameloblastoma, there were high intensity of dermatan sulfate and low intensity of chondroitin-4-sulfate.

  11. Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease

    NARCIS (Netherlands)

    Kingma, S.D.; Wagemans, T.; Ijlst, L.; Bronckers, A.L.J.J.; Kuppevelt, T.H. van; Everts, V.; Wijburg, F.A.; Vlies, N. van

    2016-01-01

    The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect

  12. Review on complement analysis method and the roles of glycosaminoglycans in the complement system.

    Science.gov (United States)

    Li, Lian; Li, Yan; Ijaz, Muhammad; Shahbaz, Muhammad; Lian, Qianqian; Wang, Fengshan

    2015-12-10

    Complement system is composed of over 30 proteins and it plays important roles in self-defence and inflammation. There are three activation pathways, including classical pathway, alternative pathway and lectin pathway, in complement system, and they are associated with many diseases such as osteoarthritis and age-related macular degeneration. Modulation of the complement system may be a promising strategy in the treatment of related diseases. Glycosaminoglycans are anionic linear polysaccharides without branches. They are one kind of multi-functional macromolecules which have great potential in regulating complement system. This review is organized around two aspects between the introduction of complement system and the interaction of glycosaminoglycans with complement system. Three complement activation pathways and the biological significance were introduced first. Then functional analysis methods were compared to provide a strategy for potential glycosaminoglycans screen. Finally, the roles of glycosaminoglycans played in the complement system were summed up.

  13. Surface glycosaminoglycans protect eukaryotic cells against membrane-driven peptide bacteriocins.

    Science.gov (United States)

    Martín, Rebeca; Escobedo, Susana; Martín, Carla; Crespo, Ainara; Quiros, Luis M; Suarez, Juan E

    2015-01-01

    Enzymatic elimination of surface glycosaminoglycans or inhibition of their sulfation provokes sensitizing of HT-29 and HeLa cells toward the peptide bacteriocins nisin A, plantaricin C, and pediocin PA-1/AcH. The effect can be partially reversed by heparin, which also lowers the susceptibility of Lactococcus lactis to nisin A. These data indicate that the negative charge of the glycosaminoglycan sulfate residues binds the positively charged bacteriocins, thus protecting eukaryotic cells from plasma membrane damage.

  14. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis.

    OpenAIRE

    Riley, G P; Harrall, R. L.; Constant, C R; Chard, M D; Cawston, T E; Hazleman, B L

    1994-01-01

    OBJECTIVES--To analyse the glycosaminoglycans of the adult human rotator cuff tendon matrix, to characterise changes in the glycosaminoglycan composition with age and in chronic rotator cuff tendinitis. METHODS--Rotator cuff (supraspinatus) tendons (n = 84) and common biceps tendons (n = 26) were obtained from cadavers with no history of tendon pathology (age range 11-95 years). Biopsies of rotator cuff tendons (supraspinatus and subscapularis tendons, n = 53) were obtained during open should...

  15. Extraction and quantification of sulfated glycosaminoglycan content in five different aquatic species of Malaysia

    Institute of Scientific and Technical Information of China (English)

    Ravi Lokwani; Ramandeep Singh; Gauree Kukreti

    2015-01-01

    Objective: To extract, characterize and quantify glycosaminoglycans (GAGs) from the body of cuttlefish, tennis-ball sea cucumber, shrimp, seabass and fresh water fish Nile tilapia. Methods: The extracted crude powder was evaluated for the content of GAGs. The qualitative analysis of sulfated pattern and other important functional groups related with GAGs were explained in the form of Fourier transform infra-red spectroscopy data. Proteins and nucleic acid in the crude extract were determined by the ultraviolet spectrophotometer, while the quantification of total sulfated GAGs and estimation of N-sulfated and O-sulfated GAGs in the crude mixture were performed by using Blyscan kit. Results: The sulfated pattern and other important functional groups related with GAGs were intercepted in Fourier transform infrared analysis. Blyscan quantification method reported that a rare variety of sea cucumber (tennis-ball sea cucumber) emerged as a rich source of GAGs with high values of both N-sulfated and O-sulfated GAGs in comparison to its other counterparts. Conclusions: Findings in this study point out the potential of tennis-ball sea cucumber, a rare variety of sea cucumber to act as an alternative source for GAG extraction for commercial purpose.

  16. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  17. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  18. Evaluation of the metabolism of glycosaminoglycans in patients with interstitial cystis

    Directory of Open Access Journals (Sweden)

    Marcos Lucon

    2014-01-01

    Full Text Available Introduction: Painful bladder syndrome/interstitial cystitis (PBS/IC pathogenesis is not fully known, but evidence shows that glycosaminoglycans (GAG of bladder urothelium can participate in its genesis. The loss of these compounds facilitates the contact of urine compounds with deeper portions of bladder wall triggering an inflammatory process. We investigated GAG in urine and tissue of PBS/IC and pure stress urinary incontinence (SUI patients to better understand its metabolism. Materials and Methods: Tissue and urine of 11 patients with PBS/IC according to NIDDK criteria were compared to 11 SUI patients. Tissue samples were analyzed by histological, immunohistochemistry and immunofluorescence methods. Statistical analysis were performed using t Student test and Anova, considering significant when p < 0.05. Results: PBS/IC patients had lower concentration of GAG in urine when compared to SUI (respectively 0.45 ± 0.11 x 0.62 ± 0.13 mg/mg creatinine, p < 0.05. However, there was no reduction of the content of GAG in the urothelium of both groups. Immunofluorescence showed that PBS/IC patients had a stronger staining of TGF-beta, decorin (a proteoglycan of chondroitin/dermatan sulfate, fibronectin and hyaluronic acid. Conclusion: the results suggest that GAG may be related to the ongoing process of inflammation and remodeling of the dysfunctional urothelium that is present in the PBS/IC.

  19. Extraction and quantification of sulfated glycosaminoglycan content in five different aquatic species of Malaysia

    Directory of Open Access Journals (Sweden)

    Ravi Lokwani

    2015-09-01

    Full Text Available Objective: To extract, characterize and quantify glycosaminoglycans (GAGs from the body of cuttlefish, tennis-ball sea cucumber, shrimp, seabass and fresh water fish Nile tilapia. Methods: The extracted crude powder was evaluated for the content of GAGs. The qualitative analysis of sulfated pattern and other important functional groups related with GAGs were explained in the form of Fourier transform infra-red spectroscopy data. Proteins and nucleic acid in the crude extract were determined by the ultraviolet spectrophotometer, while the quantification of total sulfated GAGs and estimation of N-sulfated and O-sulfated GAGs in the crude mixture were performed by using Blyscan kit. Results: The sulfated pattern and other important functional groups related with GAGs were intercepted in Fourier transform infrared analysis. Blyscan quantification method reported that a rare variety of sea cucumber (tennis-ball sea cucumber emerged as a rich source of GAGs with high values of both N-sulfated and O-sulfated GAGs in comparison to its other counterparts. Conclusions: Findings in this study point out the potential of tennis-ball sea cucumber, a rare variety of sea cucumber to act as an alternative source for GAG extraction for commercial purpose.

  20. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions.

    Science.gov (United States)

    Sawant, Kirti V; Poluri, Krishna Mohan; Dutta, Amit K; Sepuru, Krishna Mohan; Troshkina, Anna; Garofalo, Roberto P; Rajarathnam, Krishna

    2016-09-14

    The chemokine CXCL1/MGSA plays a pivotal role in the host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. CXCL1 exists reversibly as monomers and dimers, and mediates its function by binding glycosaminoglycans (GAG) and CXCR2 receptor. We recently showed that both monomers and dimers are potent CXCR2 agonists, the dimer is the high-affinity GAG ligand, lysine and arginine residues located in two non-overlapping domains mediate GAG interactions, and there is extensive overlap between GAG and receptor-binding domains. To understand how these structural properties influence in vivo function, we characterized peritoneal neutrophil recruitment of a trapped monomer and trapped dimer and a panel of WT lysine/arginine to alanine mutants. Monomers and dimers were active, but WT was more active indicating synergistic interactions promote recruitment. Mutants from both domains showed reduced GAG heparin binding affinities and reduced neutrophil recruitment, providing compelling evidence that both GAG-binding domains mediate in vivo trafficking. Further, mutant of a residue that is involved in both GAG binding and receptor signaling showed the highest reduction in recruitment. We conclude that GAG interactions and receptor activity of CXCL1 monomers and dimers are fine-tuned to regulate neutrophil trafficking for successful resolution of tissue injury.

  1. Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis

    Directory of Open Access Journals (Sweden)

    Shibnath Ghatak

    2015-01-01

    Full Text Available A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM production that leads to a dense and functionally abnormal connective tissue compartment (dermis. In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes, the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed.

  2. Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.

    Science.gov (United States)

    Kanungo, Biraja P; Silva, Emilio; Van Vliet, Krystyn; Gibson, Lorna J

    2008-05-01

    Mineralized collagen-glycosaminoglycan scaffolds designed for bone regeneration have been synthesized via triple co-precipitation in the absence of a titrant phase. Here, we characterize the microstructural and mechanical properties of these newly developed scaffolds with 50 and 75 wt.% mineral content. The 50 wt.% scaffold had an equiaxed pore structure with isotropic mechanical properties and a Ca-P-rich mineral phase comprised of brushite; the 75 wt.% scaffold had a bilayer structure with a pore size varying in the through-thickness direction and a mineral phase comprised of 67% brushite and 33 wt.% monetite. The compressive stress-strain response of the scaffolds was characteristic of low-density open-cell foams with distinct linear elastic, collapse plateau and densification regimes. The elastic modulus and strength of individual struts within the scaffolds were measured using an atomic force microscopy cantilevered beam-bending technique and compared with the composite response under indentation and unconfined compression. Cellular solids models, using the measured strut properties, overestimated the overall mechanical properties for the scaffolds; the discrepancy arises from defects such as disconnected pore walls within the scaffold. As the scaffold stiffness and strength decreased with increasing overall mineral content and were less than that of natural, mineralized collagen scaffolds, these microstructural/mechanical relations will be used to further improve scaffold design for bone regeneration applications.

  3. The Effect of Glycosaminoglycans (GAGs on Amyloid Aggregation and Toxicity

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2015-02-01

    Full Text Available Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  4. Metabolism of glycosaminoglycans in the course of juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Katarzyna Winsz-Szczotka

    2016-03-01

    Full Text Available Juvenile idiopathic arthritis (JIA is a non-homogeneous autoimmune children’s disease which, despite the applied therapy, has a progressive character with recurrences, leading to damage of joint structures. Progressive wearing of the joint cartilage in the course of JIA, which results from the imbalance between the biological strength of the cartilage, its function and exerted pressure forces, is linked to metabolic disorders of extracellular matrix (ECM components. Among the latter compounds, the proteoglycan (PG aggrecan plays a particular role in maintaining the mechanical-immunological properties of the cartilage. These functions are directly related to chains of glycosaminoglycans (GAGs, covalently linked to the core protein of PGs. Therefore, every change of GAGs metabolism linked to an increase of the rate of degradation or with a decrease of their biosynthesis may have pathological consequences. In this paper we aim to describe plausible mechanisms leading to observed disorders of aggrecan transformation in children, which are reflected in the profile of plasma GAGs. Therefore, we describe the plausible role of factors related to catabolism and synthesis of PGs/GAGs as well as the contribution of immunological processes to shaping the changes of extracellular matrix components in the course of JIA.

  5. GLYCOSAMINOGLYCAN ANALOGUES AS A NOVEL ANTI-INFLAMMATORY STRATEGY

    Directory of Open Access Journals (Sweden)

    Amanda E.I. Proudfoot

    2012-10-01

    Full Text Available Heparin, a glycosaminoglycan (GAG, has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anticoagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system.

  6. Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery.

    Science.gov (United States)

    Miller, Tobias; Goude, Melissa C; McDevitt, Todd C; Temenoff, Johnna S

    2014-04-01

    Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides that interact with a variety of positively charged growth factors. In this review article the effects of engineering GAG chemistry for molecular delivery applications in regenerative medicine are presented. Three major areas of focus at the structure-function-property interface are discussed: (1) macromolecular properties of GAGs; (2) effects of chemical modifications on protein binding; (3) degradation mechanisms of GAGs. GAG-protein interactions can be based on: (1) GAG sulfation pattern; (2) GAG carbohydrate conformation; (3) GAG polyelectrolyte behavior. Chemical modifications of GAGs, which are commonly performed to engineer molecular delivery systems, affect protein binding and are highly dependent on the site of modification on the GAG molecules. The rate and mode of degradation can determine the release of molecules as well as the length of GAG fragments to which the cargo is electrostatically coupled and eventually released from the delivery system. Overall, GAG-based polymers are a versatile biomaterial platform offering novel means to engineer molecular delivery systems with a high degree of control in order to better treat a range of degenerated or injured tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions.

    Science.gov (United States)

    Sepuru, Krishna Mohan; Nagarajan, Balaji; Desai, Umesh R; Rajarathnam, Krishna

    2016-09-23

    Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function.

  8. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow.

    Science.gov (United States)

    DeAngelis, Paul L

    2012-04-01

    Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen's sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.

  9. Synthetic genistein derivatives as modulators of glycosaminoglycan storage

    Directory of Open Access Journals (Sweden)

    Kloska Anna

    2012-07-01

    Full Text Available Abstract Background Mucopolysaccharidoses (MPS are severe metabolic disorders caused by accumulation of undegraded glycosaminoglycans (GAGs in lysosomes due to defects in certain lysosomal hydrolases. Substrate reduction therapy (SRT has been proposed as one of potential treatment procedures of MPS. Importantly, small molecules used in such a therapy might potentially cross the blood–brain barrier (BBB and improve neurological status of patients, as reported for a natural isoflavone, 5, 7-dihydroxy-3- (4-hydroxyphenyl-4 H-1-benzopyran-4-one, also known as genistein. Although genistein is able to cross BBB to some extent, its delivery to the central nervous system is still relatively poor (below 10% efficiency. Thus, we aimed to develop a set of synthetically modified genistein molecules and characterize physicochemical as well as biological properties of these compounds. Methods Following parameters were determined for the tested synthetic derivatives of genistein: cytotoxicity, effects on cell proliferation, kinetics of GAG synthesis, effects on epidermal growth factor (EGF receptor’s tyrosine kinase activity, effects on lysosomal storage, potential ability to cross BBB. Results We observed that some synthetic derivatives inhibited GAG synthesis similarly to, or more efficiently than, genistein and were able to reduce lysosomal storage in MPS III fibroblasts. The tested compounds were generally of low cytotoxicity and had minor effects on cell proliferation. Moreover, synthetic derivatives of genistein revealed higher lipophilicity (assessed in silico than the natural isoflavone. Conclusion Some compounds tested in this study might be promising candidates for further studies on therapeutic agents in MPS types with neurological symptoms.

  10. Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials.

    Science.gov (United States)

    Scharnweber, Dieter; Hübner, Linda; Rother, Sandra; Hempel, Ute; Anderegg, Ulf; Samsonov, Sergey A; Pisabarro, M Teresa; Hofbauer, Lorenz; Schnabelrauch, Matthias; Franz, Sandra; Simon, Jan; Hintze, Vera

    2015-09-01

    Numerous biological processes (tissue formation, remodelling and healing) are strongly influenced by the cellular microenvironment. Glycosaminoglycans (GAGs) are important components of the native extracellular matrix (ECM) able to interact with biological mediator proteins. They can be chemically functionalized and thereby modified in their interaction profiles. Thus, they are promising candidates for functional biomaterials to control healing processes in particular in health-compromised patients. Biophysical studies show that the interaction profiles between mediator proteins and GAGs are strongly influenced by (i) sulphation degree, (ii) sulphation pattern, and (iii) composition and structure of the carbohydrate backbone. Hyaluronan derivatives demonstrate a higher binding strength in their interaction with biological mediators than chondroitin sulphate for a comparable sulphation degree. Furthermore sulphated GAG derivatives alter the interaction profile of mediator proteins with their cell receptors or solute native interaction partners. These results are in line with biological effects on cells relevant for wound healing processes. This is valid for solute GAGs as well as those incorporated in collagen-based artificial ECM (aECMs). Prominent effects are (i) anti-inflammatory, immunomodulatory properties towards macrophages/dendritic cells, (ii) enhanced osteogenic differentiation of human mesenchymal stromal cells, (iii) altered differentiation of fibroblasts to myofibroblasts, (iv) reduced osteoclast activity and (v) improved osseointegration of dental implants in minipigs. The findings of our consortium Transregio 67 contribute to an improved understanding of structure-function relationships of GAG derivatives in their interaction with mediator proteins and cells. This will enable the design of bioinspired, functional biomaterials to selectively control and promote bone and skin regeneration.

  11. RNA Contaminates Glycosaminoglycans Extracted from Cells and Tissues

    Science.gov (United States)

    de Graaf, Mark J. J.; Berden, Jo H. M.; Rabelink, Ton J.; Smit, Cornelis H.

    2016-01-01

    Glycosaminoglycans (GAGs) are linear negatively charged polysaccharides and important components of extracellular matrices and cell surface glycan layers such as the endothelial glycocalyx. The GAG family includes sulfated heparin, heparan sulfate (HS), dermatan sulfate (DS), chondroitin sulfate (CS), keratan sulfate, and non-sulfated hyaluronan. Because relative expression of GAGs is dependent on cell-type and niche, isolating GAGs from cell cultures and tissues may provide insight into cell- and tissue-specific GAG structure and functions. In our objective to obtain structural information about the GAGs expressed on a specialized mouse glomerular endothelial cell culture (mGEnC-1) we adapted a recently published GAG isolation protocol, based on cell lysis, proteinase K and DNase I digestion. Analysis of the GAGs contributing to the mGEnC-1 glycocalyx indicated a large HS and a minor CS content on barium acetate gel. However, isolated GAGs appeared resistant to enzymatic digestion by heparinases. We found that these GAG extracts were heavily contaminated with RNA, which co-migrated with HS in barium acetate gel electrophoresis and interfered with 1,9-dimethylmethylene blue (DMMB) assays, resulting in an overestimation of GAG yields. We hypothesized that RNA may be contaminating GAG extracts from other cell cultures and possibly tissue, and therefore investigated potential RNA contaminations in GAG extracts from two additional cell lines, human umbilical vein endothelial cells and retinal pigmental epithelial cells, and mouse kidney, liver, spleen and heart tissue. GAG extracts from all examined cell lines and tissues contained varying amounts of contaminating RNA, which interfered with GAG quantification using DMMB assays and characterization of GAGs by barium acetate gel electrophoresis. We therefore recommend routinely evaluating the RNA content of GAG extracts and propose a robust protocol for GAG isolation that includes an RNA digestion step. PMID:27898729

  12. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    Science.gov (United States)

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions.

  13. Evaluation of glycosaminoglycans and heparanase in placentas of women with preeclampsia.

    Science.gov (United States)

    Famá, Eduardo Augusto Brosco; Souza, Renan Salvioni; Melo, Carina Mucciolo; Melo Pompei, Luciano; Pinhal, Maria Aparecida Silva

    2014-11-01

    Preeclampsia is a multisystem disorder whose etiology remains unclear. It is already known that circulation of soluble fms-like tyrosine kinase-1 (sFlt-1) is directly involved in pre-eclampsia development. However, the molecular mechanisms involved with sFlt-1 shedding are still unidentified. We identified, quantified glycosaminoglycans and determined the enzymatic activity of heparanase in placentas of women with preeclampsia, in order to possibly explain if these compounds could be related to cellular processes involved with preeclampsia. A total of 45 samples collected from placentas, 15 samples from placentas of preeclampsia women and 30 samples from non-affected women. Heparan sulfate and dermatan sulfate were identified and quantified by agarose gel electrophoresis, whilst hyaluronic acid was quantified by an ELISA like assay. Heparanase activity was determined using biotynilated heparan sulfate as substrate. The results showed that dermatan sulfate (P=0.019), heparan sulfate levels (P=0.015) and heparanase activity (P=0.006) in preeclampsia were significantly higher than in the control group. There was no significant difference between the groups for hyaluronic acid expression in placentas (P=0.110). The present study is the first to demonstrate directly the increase of heparan sulfate in human placentas from patients with preeclampsia, suggesting that endogenous heparan sulfate could be involved in the release of sFlt-1 from placenta, increasing the level of circulating sFlt-1. Alterations of extracellular matrix components in placentas with preeclampsia raise the possibility that heparan sulfate released by heparanase is involved in mechanisms of preeclampsia development. Published by Elsevier B.V.

  14. Glycosaminoglycan remodeling during diabetes and the role of dietary factors in their modulation

    Institute of Scientific and Technical Information of China (English)

    Vemana; Gowd; Abhignan; Gurukar; Nandini; D; Chilkunda

    2016-01-01

    Glycosaminoglycans(GAGs) play a significant role in various aspects of cell physiology.These are complex polymeric molecules characterized by disaccharides comprising of uronic acid and amino sugar.Compounded to the heterogeneity,these are variously sulfated and epimerized depending on the class of GAG.Among the various classes of GAG,namely,chondroitin/dermatan sulfate,heparin/heparan sulfate,keratan sulfate and hyaluronic acid(HA),only HA is non-sulfated.GAGs are known to undergo remodeling in various tissues during various pathophysiological conditions,diabetes mellitus being one among them.These changes will likely affect their structure thereby impinging on their functionality.Till date,diabetes has been shown to affect GAGs in organs such as kidney,liver,aorta,skin,erythrocytes,etc.to name a few,with deleterious consequences.One of the mainstays in the treatment of diabetes is though dietary means.Various dietary factors are known to play a significant role in regulating glucose homeostasis.Furthermore,in recent years,there has been a keen interest to decipher the role of dietary factors on GAG metabolism.This review focuses on the remodeling of GAGs in various organs during diabetes and their modulation by dietary factors.While effect of diabetes on GAG metabolism has been worked out quite a bit,studies on the role of dietary factors in their modulation has been few and far between.We have tried our best to give the latest reports available on this subject.

  15. Quantitative analysis of anions in glycosaminoglycans and application in heparin stability studies.

    Science.gov (United States)

    Liu, Li; Linhardt, Robert J; Zhang, Zhenqing

    2014-06-15

    The sulfo groups of glycosaminoglycans contribute to their high charge densities, and are critical for the role they play in various physiological and pathophysiological processes. Unfortunately, the sulfo groups can be hydrolyzed to inorganic sulfate. Thus, it is important to monitor the presence of these sulfo groups. In addition, free anions, including chloride, sulfate and acetate, are often present in glycosaminoglycans as a result of multiple purification steps, and their presence also needs to be monitored. In this report, ion chromatography with conductivity detection is used to analyze the anions present in glycosaminoglycans, including heparin, heparan sulfate, chondroitin sulfate and dermatan sulfate. This method allows quantitation over a wide range of concentrations, affording a limit of quantitation of 0.1 ppm and a limit of detection of 0.05 ppm for most anions of interest. The stability of heparin was also studied, providing data on the formation of both sulfate and acetate anions.

  16. Influence of glycosaminoglycan identity on vocal fold fibroblast behavior.

    Science.gov (United States)

    Jimenez-Vergara, Andrea Carolina; Munoz-Pinto, Dany J; Becerra-Bayona, Silvia; Wang, Bo; Iacob, Alexandra; Hahn, Mariah S

    2011-11-01

    Poly(ethylene glycol) (PEG) hydrogels have recently begun to be studied for the treatment of scarred vocal fold lamina propria due, in part, to their tunable mechanical properties, resistance to fibroblast-mediated contraction, and ability to be polymerized in situ. However, pure PEG gels lack intrinsic biochemical signals to guide cell behavior and generally fail to mimic the frequency-dependent viscoelastic response critical to normal superficial lamina propria function. Recent results suggest that incorporation of viscoelastic bioactive substances, such as glycosaminoglycans (GAGs), into PEG networks may allow these gels to more closely approach the mechanical responses of normal vocal fold lamina propria while also stimulating desired vocal fold fibroblast behaviors. Although a number of vocal fold studies have examined the influence of hyaluronan (HA) on implant mechanics and vocal fold fibroblast responses, the effects of other GAG types have been relatively unexplored. This is significant, since recent studies have suggested that chondroitin sulfate C (CSC) and heparan sulfate (HS) are substantially altered in scarred lamina propria. The present study was therefore designed to evaluate the effects of CSC and HS incorporation on the mechanical response of PEG gels and vocal fold fibroblast behavior relative to HA. As with PEG-HA, the viscoelasticity of PEG-CSC and PEG-HS gels more closely approached that of the normal vocal fold lamina propria than pure PEG hydrogels. In addition, collagen I deposition and fibronectin production were significantly higher in CSC than in HA gels, and levels of the myofibroblast marker smooth muscle α-actin (SM α-actin) were greater in CSC and HS gels than in HA gels. Since collagen I, fibronectin, and SM α-actin are generally elevated in scarred lamina propria these results suggest that CSC and HS may be undesirable for vocal fold implants relative to HA. Investigation of various signaling intermediates indicated that

  17. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Bourin, M.C.; Lundgren-Akerlund, E.; Lindahl, U. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    1990-09-15

    Previous studies on rabbit thrombomodulin (TM) revealed that certain anticoagulant activities expressed by TM depend on the presence of an acidic domain tentatively identified as a sulfated galactosaminoglycan. The glycan was released by alkaline beta-elimination, isolated by ion-exchange chromatography, and radiolabeled by partial N-deacetylation (hydrazinolysis) followed by re-N-(3H)acetylation. The labeled product behaved like standard chondroitin sulfate on ion-exchange chromatography, exhibited a Mr of 10-12 x 10(3) on gel chromatography, and was susceptible to degradation by chondroitinase and testicular hyaluronidase. The major labeled degradation products following digestion of the glycosaminoglycan with chondroitinase were identified, depending on the incubation conditions, either as 4/6-mono-O-sulfated, 4,5-unsaturated disaccharides (delta HexA-GalNAc)S and N-acetylgalactosamine 4,6-di-O-sulfate GalcNAc (diS), the latter component accounting for approximately 25% of the total label, or as a major fraction of labeled trisaccharide, with the predominant structure GalNAc(diS)-GlcA-GalNAc(diS). The terminal GalNAc(diS) unit (not substituted at C3) was shown to be more susceptible to N-deacetylation during hydrazinolysis than were the internal GalNAc units (substituted at C3), and thus was more extensively labeled, resulting in over-representation of this unit. It is concluded that rabbit TM is a chondroitin sulfate proteoglycan, which carries a single glycan side chain characterized by an unusual accumulation of sulfate groups at the nonreducing terminus. Metabolically 35S-labeled TM was isolated from cultured rabbit heart endothelial cells and characterized as a chondroitin sulfate proteoglycan which accounted for 1-2% of the total 35S-labeled cell-associated macromolecules.

  18. IL-8 dictates glycosaminoglycan binding and stability of IL-18 in cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2010-02-01

    Dysregulation of airway inflammation contributes to lung disease in cystic fibrosis (CF). Inflammation is mediated by inflammatory cytokines, including IL-8, which illustrates an increase in biological half-life and proinflammatory activity when bound to glycosaminoglycans (GAGs). The aim of this project was to compare IL-8 and IL-18 for their relative stability, activity, and interaction with GAGs, including chondroitin sulfate, hyaluronic acid, and heparan sulfate, present in high quantities in the lungs of patients with CF. Bronchoalveolar lavage fluid was collected from patients with CF (n = 28), non-CF controls (n = 14), and patients with chronic obstructive pulmonary disease (n = 12). Increased levels of IL-8 and reduced concentrations of IL-18 were detected in bronchial samples obtained from CF individuals. The low level of IL-18 was not a defect in IL-18 production, as the pro- and mature forms of the molecule were expressed and produced by CF epithelial cells and monocytes. There was, however, a marked competition between IL-8 and IL-18 for binding to GAGs. A pronounced loss of IL-18 binding capacity occurred in the presence of IL-8, which displaced IL-18 from these anionic-matrices, rendering the cytokine susceptible to proteolytic degradation by neutrophil elastase. As a biological consequence of IL-18 degradation, reduced levels of IL-2 were secreted by Jurkat T lymphocytes. In conclusion, a novel mechanism has been identified highlighting the potential of IL-8 to determine the fate of other inflammatory molecules, such as IL-18, within the inflammatory milieu of the CF lung.

  19. Changes in glycosaminoglycans and proteoglycans of normal breast and fibroadenoma during the menstrual cycle.

    Science.gov (United States)

    de Lima, Cilene Rebouças; de Arimatéa dos Santos Junior, José; Nazário, Afonso Celso Pinto; Michelacci, Yara M

    2012-07-01

    Fibroadenoma is the most common breast tumor in young women, and its growth and metabolism may be under hormonal control. In the present paper we described the proteoglycan (PG) composition and synthesis rate of normal breast and fibroadenoma during the menstrual cycle. Samples of fibroadenoma and adjacent normal breast tissue were obtained at surgery. PGs were characterized by agarose gel electrophoresis and enzymatic degradation with glycosaminoglycan (GAG) lyases, and immunolocalized by confocal microscopy. To assess the synthesis rate, PGs were metabolic labeled by 35S-sulfate. The concentration of PGs in normal breast was higher during the secretory phase. Fibroadenoma contained and synthesized more PGs than their paired controls, but the PG concentrations varied less with the menstrual cycle and, in contrast to normal tissue, peaked in the proliferative phase. The main mammary GAGs are heparan sulfate (HS, 71%-74%) and dermatan sulfate (DS, 26%-29%). The concentrations of both increased in fibroadenoma, but DS increased more, becoming 35%-37% of total. The DS chains contained more β-d-glucuronic acid (IdoUA/GlcUA ratios were >10 in normal breast and 2-7 in fibroadenoma). The 35S-sulfate incorporation rate revealed that the in vitro synthesis rate of DS was higher than HS. Decorin was present in both tissues, while versican was found only in fibroadenoma. In normal breast, the PG concentration varied with the menstrual cycle. It was increased in fibroadenoma, especially DS. PGs are increased in fibroadenoma, but their concentrations may be less sensitive to hormonal control. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Deckert, T.; Horowitz, I.M.; Kofoed-Enevoldsen, A.; Kjellen, L.; Deckert, M.; Lykkelund, C.; Burcharth, F. (Steno Memorial Hospital, Gentofte (Denmark))

    1991-06-01

    The hypothesis of genetic defects in glycosaminoglycan (GAG) regulation among patients with insulin-dependent diabetes mellitus (IDDM) and nephropathy was assessed by studies in tissue cultures of fibroblasts obtained from 7 patients with normal urinary albumin excretion, 11 patients with diabetic nephropathy, and 6 nondiabetic control subjects. The incorporation of (2H) glucosamine and (35S) sulfate into hyaluronic acid (HA), chondroitin sulfate and dermatan sulfate (CS + DS), and heparan sulfate (HS) was measured in cells, matrix, and medium and related to micrograms of tissue protein. Large interindividual variations were seen in all three groups, and the incorporation of (3H) glucosamine into HA, CS + DS, and HS and (35S) sulfate into CS + DS and HS were not significantly different between the three groups. However, the fractional incorporation of (3H)glucosamine into HS was significantly reduced in diabetic patients with nephropathy compared with control subjects. This was the case not only when related to the total amount of GAGs (P = 0.014) but also when related to HA (P = 0.014). No significant difference was seen between control subjects and normoalbuminuric diabetic patients. The degree of N-sulfation of HS was not significantly different between the experimental groups. The results suggest that patients with diabetic nephropathy may suffer from deficiencies of coordinate regulation in the biosynthesis of GAG in fibroblasts, which may lead to a reduced density of HS in the extracellular matrix. If these changes reflect alterations in the biosynthesis of GAG from endothelial, myomedial, and mesangial cells, this observation may be relevant for the pathogenesis of severe diabetic complications.

  1. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    Science.gov (United States)

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  2. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu; Chang, Hwan-You, E-mail: hychang@life.nthu.edu.tw

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellular spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.

  3. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera

    NARCIS (Netherlands)

    Clark, S. J.; Keenan, T.D.; Fielder, H.L.; Collinson, L.J.; Holley, R.J.; Merry, C.L.; Kuppevelt, A.H.M.S.M. van; Day, A.J.; Bishop, P.N.

    2011-01-01

    PURPOSE. To map the distribution of different classes of glycosaminoglycans (GAGs) in the healthy human retina, choroid, and sclera. METHODS. Frozen tissue sections were made from adult human donor eyes. The GAG chains of proteoglycans (PGs) were detected with antibodies directed against various GAG

  4. Oncofetal chondroitin sulfate glycosaminoglycans are key players in integrin signaling and tumor cell motility

    DEFF Research Database (Denmark)

    Clausen, Thomas Mandel; Bento Ayres Pereira, Marina Maria; Al Nakouzi, Nader

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2...

  5. Inhibition of glycosaminoglycan incorporation influences collagen network formation during cartilage matrix production

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Jansen, K.M.B.; Verhaar, J.A.N.; Groot, J. de; Vanosch, G.J.V.M.

    2009-01-01

    To understand cartilage degenerative diseases and improve repair procedures, we investigate the influence of glycosaminoglycans (GAGs) on cartilage matrix biochemistry and functionality. Bovine articular chondrocytes were cultured in alginate beads with(out) para-nitrophenyl-beta-d-xyloside (PNPX) t

  6. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    NARCIS (Netherlands)

    Dekker, E. den; Grefte, S.; Huijs, T.; Dam, G.B. ten; Versteeg, E.M.M.; Berk, L.C.J. van den; Bladergroen, B.A.; Kuppevelt, A.H.M.S.M. van; Figdor, C.G.; Torensma, R.

    2008-01-01

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expr

  7. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics.

    Science.gov (United States)

    Boxberger, John I; Orlansky, Amy S; Sen, Sounok; Elliott, Dawn M

    2009-08-25

    The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminoglycan content alters dynamic mechanics. We hypothesized that (1) dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) the disc would behave more elastically at higher frequencies, and finally, (3) dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress.

  8. Development and initial characterization of a chemically stabilized elastin-glycosaminoglycan-collagen composite shape-memory hydrogel for nucleus pulposus regeneration.

    Science.gov (United States)

    Mercuri, Jeremy; Addington, Caroline; Pascal, Richard; Gill, Sanjitpal; Simionescu, Dan

    2014-12-01

    Nucleus pulposus (NP) is a resilient and hydrophilic tissue which plays a significant role in the biomechanical function of the intervertebral disc (IVD). Destruction of the NP extracellular matrix (ECM) is observed during the early stages of IVD degeneration. Herein, we describe the development and initial characterization of a novel biomaterial which attempts to recreate the resilient and hydrophilic nature of the NP via the construction of a chemically stabilized elastin-glycosaminoglycan-collagen (EGC) composite hydrogel. Results demonstrated that a resilient, hydrophilic hydrogel which displays a unique "shape-memory" sponge characteristic could be formed from a blend of soluble elastin aggregates, chondroitin-6-sulfate, hyaluronic acid and collagen following freeze-drying, stabilization with a carbodiimide and penta-galloyl glucose-based fixative, and subsequent partial degradation with glycosaminoglycan degrading enzymes. The resultant material exhibited the ability to restore its original dimensions and water content following multi-cycle mechanical compression and illustrated resistance to accelerated enzymatic degradation. Preliminary in vitro studies utilizing human adipose derived stem cells (hADSCs) demonstrated that the material was cytocompatible and supported differentiation towards an NP cell-like phenotype. In vivo biocompatibility studies illustrated host cell infiltration and evidence of active remodeling following 4 weeks of implantation. Feasibility studies demonstrated that the EGC hydrogel could be delivered via minimally invasive methods.

  9. Histogenesis and possible mechanism of chondroid changes in mixed tumour of the skin: immunohistochemical evaluation of bone morphogenetic protein, glycosaminoglycans, keratin, vimentin and neuronal markers.

    Science.gov (United States)

    Mori, M; Shrestha, P; Sakamoto, F; Yang, L J; Qin, C; Tsujimura, T

    1994-01-01

    The distribution of immunoreactivity of bone morphogenetic protein (BMP), the glycosaminoglycans chondroitin 4-sulphate (C4SPG), chondroitin 6-sulphate (C6SPG), dermatan sulphate (DSPG) and keratan sulphate proteoglycans (KSPG), cytokeratin (K8.12), vimentin, glial fibrillary acidic protein (GFAP), actin, desmin, S-100 protein and neuron-specific enolase (NSE) in mixed tumour of the skin was investigated using immunohistochemical methods using monoclonal (MoAb) and polyclonal antibodies (PoAb). A strong BMP immunoreactivity was found characteristically in outer tumour cells of tubuloductal structures and modified myoepithelial cells. Modified myoepithelial cells and chondroidally changed cells showed positive immunoreactivity for C4SPG, C6SPG and DSPG; and KSPG was more pronounced in the modified myoepithelial cells. Vimentin, S-100 protein, GFAP and NSE, but not actin and desmin, were distribute in the outer tumour cells and modified myoepithelial cells in chondroidally changed tissue. Two factors show that chondrogenesis in mixed tumour of the skin is associated with the modified myoepithelial cells through the activity of BMP and biosynthesis of glycosaminoglycans as matrix substance. First, outer or basal tumour cells in mixed tumour of the skin is characterized by the presence of positive immunoreactivity for BMP, KSPG, vimentin, cytokeratin K8.12, S-100 protein, GFAP and NSE, and second, there is a matrix of chondroidally changed tissue containing the reaction products of C4SPG, C6SPG, DSPF and KSPG.

  10. Identification of phosphatase that dephosphorylates xylose in the glycosaminoglycan-protein linkage region of proteoglycans.

    Science.gov (United States)

    Koike, Toshiyasu; Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-03-07

    Recently, we demonstrated that FAM20B is a kinase that phosphorylates the xylose (Xyl) residue in the glycosaminoglycan-protein linkage region of proteoglycans. The phosphorylation of Xyl residues by FAM20B enhances the formation of the linkage region. Rapid dephosphorylation is probably induced just after synthesis of the linker and just before polymerization initiates. Indeed, in vitro chondroitin or heparan sulfate polymerization does not occur when the Xyl residue of the tetrasaccharide linkage region is phosphorylated. However, the enzyme responsible for the dephosphorylation of Xyl remains unknown. Here, we identified a novel protein that dephosphorylates the Xyl residue and designated it 2-phosphoxylose phosphatase. The phosphatase efficiently removed the phosphate from the phosphorylated trisaccharide, Galβ1-3Galβ1-4Xyl(2-O-phosphate), but not from phosphorylated tetrasaccharide, GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate). Additionally, RNA interference-mediated inhibition of 2-phosphoxylose phosphatase resulted in increased amounts of GlcNAcα1-4GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate), Galβ1-3Galβ1-4Xyl(2-O-phosphate), and Galβ1-4Xyl(2-O-phosphate) in the cells. Gel filtration analysis of the glycosaminoglycan chains synthesized in the knockdown cells revealed that these cells produced decreased amounts of glycosaminoglycan chains and that the chains had similar lengths to those in the mock-transfected cells. Transcripts encoding this phosphatase were ubiquitously, but differentially, expressed in human tissues. Moreover, the phosphatase localized to the Golgi and interacted with the glucuronyltransferase-I involved in the completion of the glycosaminoglycan-protein linkage region. Based on these findings, we conclude that transient phosphorylation of the Xyl residue in the glycosaminoglycan-protein linkage region controls the formation of glycosaminoglycan chains of proteoglycans.

  11. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods.

    Science.gov (United States)

    Parsons, B J

    2015-05-01

    Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.

  12. Regulation of Non-Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan

    OpenAIRE

    Jiang, Dianhua; Liang, Jiurong; Noble, Paul W

    2010-01-01

    An important hallmark of tissue remodeling is the dynamic turnover of extracellular matrix (ECM). ECM performs a variety of functions in tissue repair including scaffold formation, modulation of fluid dynamics, and regulating cell behavior. During non-infectious tissue injury ECM degradation products are generated that acquire signaling functions not attributable to the native precursor molecules. Hyaluronan (HA) is a non-sulfated glycosaminoglycan which is produced in great abundance followi...

  13. Changes in glycosaminoglycans and proteoglycans of normal breast and fibroadenoma during the menstrual cycle

    OpenAIRE

    Lima, Cilene Reboucas de [UNIFESP; Santos Júnior, José de Arimatea [UNIFESP; Pinto Nazário, Afonso Celso; Michelacci, Yara Maria [UNIFESP

    2012-01-01

    Background: Fibroadenoma is the most common breast tumor in young women, and its growth and metabolism may be under hormonal control. in the present paper we described the proteoglycan (PG) composition and synthesis rate of normal breast and fibroadenoma during the menstrual cycle.Methods: Samples of fibroadenoma and adjacent normal breast tissue were obtained at surgery. PGs were characterized by agarose gel electrophoresis and enzymatic degradation with glycosaminoglycan (GAG) lyases, and i...

  14. Exogenous glycosaminoglycans coat damaged bladder surfaces in experimentally damaged mouse bladder

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2005-03-01

    Full Text Available Abstract Background Interstital cystitis is often treated with exogenous glycosaminoglycans such as heparin, chondroitin sulphate (Uracyst, hyaluronate (Cystistat or the semi-synthetic pentosan polysulphate (Elmiron. The mechanism of action is presumed to be due to a coating of the bladder surface to replace the normally present chondroitin sulphate and heparan sulphate lost as a result of the disease. This study used fluorescent labelled chondroitin sulphate to track the distribution of glycosaminoglycans administered intravesically to mouse bladder that had been damaged on the surface. Methods The surfaces of mouse bladders were damaged by 3 mechanisms – trypsin, 10 mM HCl, and protamine sulphate. Texas Red-labeled chondroitin sulphate was instilled into the bladders of animals with damaged bladders and controls instilled only with saline. Bladders were harvested, frozen, and sectioned for examination by fluorescence. Results The normal mouse bladder bound a very thin layer of the labelled chondroitin sulphate on the luminal surface. Trypsin- and HCl-damaged bladders bound the labelled chondroitin sulphate extensively on the surface with little penetration into the bladder muscle. Protamine produced less overt damage, and much less labelling was seen, presumably due to loss of the label as it complexed with the protamine intercalated into the bladder surface. Conclusion Glycosaminoglycan administered intravesically does bind to damaged bladder. Given that the changes seen following bladder damage resemble those seen naturally in interstitial cystitis, the mechanisms proposed for the action of these agents is consistent with a coating of damaged bladder.

  15. Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors

    Directory of Open Access Journals (Sweden)

    Gozzo A.J.

    2003-01-01

    Full Text Available Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates reduced (1.2 to 3.0 times the catalytic efficiency of kallikrein (in a nanomolar range on the hydrolysis of plasminogen (0.3 to 1.8 µM and increased (1.9 to 7.7 times the enzyme efficiency in factor XII (0.1 to 10 µM activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times kallikrein inhibition by antithrombin (1.4 µM, while chondroitin 4- and 6-sulfates reduced it (1.3 times. Heparin and heparan sulfate increased (1.4 times the enzyme inhibition by the C1-inhibitor (150 nM.

  16. Chiral resolution of basic drugs by capillary electrophoresis with new glycosaminoglycans.

    Science.gov (United States)

    Tsukamoto, T; Ushio, T; Haginaka, J

    1999-12-09

    New glycosaminoglycans, fucose-containing glycosaminoglycan (FGAG) and depolymerized holothurian glycosaminoglycan (DHG), were investigated as chiral additives for the separation of drug enantiomers by capillary electrophoresis. The average molecular masses of FGAG and DHG were estimated to be about 59,000 and 14,000, respectively. A variety of basic drug enantiomers were resolved using 10 mM phosphate buffer, pH 5.0, containing 3% FGAG or DHG. Since chiral recognition properties of FGAG and DHG are different, some drug enantiomers were only separated by using FGAG or DHG. With regard to comparison of chiral recognition abilities of FGAG and DHG with other chiral selectors, tolperisone and eperisone enantiomers were not separated with alpha- or beta-cyclodextrin, or heparin as the chiral additives, but were separated with FGAG and DHG. The results obtained reveal that FGAG and DHG are useful as the chiral selectors for separations of drug enantiomers by CE, and that they could be complementarily used with other chiral additives.

  17. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  18. Hyaluronidase-inhibitory activities of glycosaminoglycans from Liparis tessellatus eggs

    DEFF Research Database (Denmark)

    Ticar, Bernadeth F.; Rohmah, Zuliyati; Mussatto, Solange Ines;

    2017-01-01

    Polysaccharide fractions isolated from L. tessellatus eggs were purified and eluted using the DEAE-sepharose fast flow column. These were collected, tested and pooled based on their sugars content: F1, F2, and F3 which contain 26.8, 23.3, and 20.2% sulfated glycans; 34.5, 38.2, and 45.0% uronic...... the presence of uronic acids on F3, which could be a 0,2A2 fragment plus loss of methyl group which is very common among nonmethylated, sulfated disaccharides....

  19. Preparation and characterization of deuterium-labeled glycosaminoglycans.

    Science.gov (United States)

    Naggi, A; Casu, B; Crippa, B; Magnaghi, S; Silvestro, L; Torri, G

    1994-01-01

    Heparin, NAcHep, DS, and CS were labeled with deuterium by N-reacetylating, with the deuterated acetic anhydride (CD3CO)2O, GAGs previously N-deacetylated (by hydrazinolysis) to the desired extent. Degrees of deuteration of the present preparations, as determined by 2H- and 1H-NMR were 15%, 51%, 49%, and 79% for heparin, NAcHep, DS, and CS, respectively. The NMR analysis (including the 13C spectra) of the labeled products indicated that deuterium labeling did not involve any substantial modification of the GAG structures. Also NMR signals associated with specific sequences of heparin for antithrombin and of DS for heparin cofactor II were essentially the same in the unlabeled and in the deuterated GAGs. The substantial retention of the original structure was confirmed by data on the degree of sulfation (by conductimetry) and on the electrophoretic mobility in acid buffer. On the other hand, HPLC/SEC data indicated some depolymerization of heparin and DS in the N-deacetylation step of the labeling reactions. HPLC/MS spectrometry permitted a clear identification of disaccharide and tetrasaccharide fragments obtained from deuterated GAGs by enzymic (heparinase, chondroitinase ABC) or chemical depolymerization (deaminative cleavage, Smith degradation), opening new prospects for studies of human pharmacokinetics, with differentiation of exogenous from endogenous GAGs.

  20. Transcriptional regulation of proteoglycans and glycosaminoglycan chain-synthesizing glycosyltransferases by UV irradiation in cultured human dermal fibroblasts.

    Science.gov (United States)

    Shin, Jeong-Eun; Oh, Jang-Hee; Kim, Yeon Kyung; Jung, Ji-Yong; Chung, Jin Ho

    2011-03-01

    Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm(2) of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, β1,3-glucuronyltransferase-1, β1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of β1,3-galactosyltransferase-6, β1,4-galactosyltransferase-3, -7, β-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.

  1. Glycosaminoglycans in human retinoblastoma cells: Heparan sulfate, a modulator of the pigment epithelium-derived factor-receptor interactions

    Science.gov (United States)

    Alberdi, Elena M; Weldon, John E; Becerra, S Patricia

    2003-01-01

    Background Pigment epithelium-derived factor (PEDF) has binding affinity for cell-surface receptors in retinoblastoma cells and for glycosaminoglycans. We investigated the effects of glycosaminoglycans on PEDF-receptor interactions. Results 125I-PEDF formed complexes with protease-resistant components of medium conditioned by human retinoblastoma Y-79 cells. Using specific glycosaminoglycan degrading enzymes in spectrophotometric assays and PEDF-affinity chromatography, we detected heparin and heparan sulfate-like glycosaminoglycans in the Y-79 conditioned media, which had binding affinity for PEDF. The Y-79 conditioned media significantly enhanced the binding of 125I-PEDF to Y-79 cell-surface receptors. However, enzymatic and chemical depletion of sulfated glycosaminoglycans from the Y-79 cell cultures by heparitinase and chlorate treatments decreased the degree of 125I-PEDF binding to cell-surface receptors. Conclusions These data indicate that retinoblastoma cells secrete heparin/heparan sulfate with binding affinity for PEDF, which may be important in efficient cell-surface receptor binding. PMID:12625842

  2. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

    Science.gov (United States)

    Quinlan, Elaine; Partap, Sonia; Azevedo, Maria M; Jell, Gavin; Stevens, Molly M; O'Brien, Fergal J

    2015-06-01

    One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor (VEGF). Cobalt ions are known to mimic hypoxia by artificially stabilising the HIF-1α transcription factor. Here, resorbable bioactive glass particles (38 μm and 100 μm) with cobalt ions incorporated into the glass network were used to create bioactive glass/collagen-glycosaminoglycan scaffolds optimised for bone tissue engineering. Inclusion of the bioactive glass improved the compressive modulus of the resulting composite scaffolds while maintaining high degrees of porosity (>97%). Moreover, in vitro analysis demonstrated that the incorporation of cobalt bioactive glass with a mean particle size of 100 μm significantly enhanced the production and expression of VEGF in endothelial cells, and cobalt bioactive glass/collagen-glycosaminoglycan scaffold conditioned media also promoted enhanced tubule formation. Furthermore, our results prove the ability of these scaffolds to support osteoblast cell proliferation and osteogenesis in all bioactive glass/collagen-glycosaminoglycan scaffolds irrespective of the particle size. In summary, we have developed a hypoxia-mimicking tissue-engineered scaffold with pro-angiogenic and pro-osteogenic capabilities that may encourage bone tissue regeneration and overcome the problem of inadequate vascularisation of grafts commonly seen in the field of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Urinary Glycosaminoglycan Electrophoresis With Optimized Keratan Sulfate Separation Using Peltier System for the Screening of Mucopolysaccharidoses

    Directory of Open Access Journals (Sweden)

    Mihriban Tijen Tanyalcin MD, PhD

    2015-10-01

    Full Text Available The purpose of this communication is to indicate a simple and rapid method with a small volume of urine sample to detect urine glycosaminoglycan (GAG and serve as a screening procedure for mucopolysaccharidoses (MPSs. Total GAG measurement for patients with MPS disorders is considered to be the first step in diagnosis of those heterogeneous group of lysosomal storage disorders presenting clinical phenotype. In this study, modified 9-dimethylmethylene blue method is used for total GAG measurement. Following GAG quantitation, the procedure described here allows GAG isolation from a very a small volume of urine sample and subjected to high-resolution GAG electrophoresis, which can be easily performed in routine clinical diagnostic laboratories. Glycosaminoglycan precipitation is a modified method based on total GAG concentration in the urine. For optimized isolation of total GAG for electrophoresis, instead of considering the urine creatinine concentration, 300 μg/mL GAG containing urine is considered to be the target concentration for the best precipitation with 1000 μL cetylpyridinium chloride (CPC/citrate buffer. Glycosaminoglycan concentration-based precipitation of urine with CPC allows the laboratory to be able to work with a small volume of urine sample by keeping the precipitating ratio with CPC constant for samples that contain GAG less than 300 μg/mL. Based on the effect of cold buffer using low voltage, GAGs high-resolution electrophoresis banding patterns described here enable a clear separation of keratan sulfate from chondroitin sulfate as well as dermatan sulfate (DS1 and DS2 and heparan sulfate. By this procedure, GAG patterns are more clear, easily identified, and provide a guide for the enzyme analysis deficient in the MPS disorders.

  4. Cell-based semiquantitative assay for sulfated glycosaminoglycans facilitating the identification of chondrogenesis.

    Science.gov (United States)

    Yen, Ching-Yu; Wu, Yu-Wei; Hsiung, Chao-Nan; Yeh, Min-I; Lin, Yi-Ming; Lee, Sheng-Yang

    2015-10-01

    Glycosaminoglycans (GAGs), in particular chondroitin sulfate, are an accepted marker of chondrogenic cells. In this study, a cell-based sulfated GAG assay for identifying the chondrogenesis of mesenchymal stem cells was developed. Based on fluorescent staining using safranin O and 4',6-diamidino-2-phenylindole (DAPI), this method was highly sensitive. The results were both qualitative and quantitative. The method is suitable for identifying the chondrogenic process and also for screening compounds. The method may be helpful for discovering novel bioactive compounds for cartilage regeneration.

  5. Metabolism of a Glycosaminoglycan during Metamorphosis in the Japanese Conger eel, Conger myriaster

    Directory of Open Access Journals (Sweden)

    Yutaka Kawakami

    2009-01-01

    Full Text Available Hyaluronan (HA is a linear polysaccharide of high molecular weight that exists as a component of the extracellular matrix. The larvae (leptocephali of the Japanese conger eel (Anguilliformes: Conger myriaster have high levels of hyaluronan (HA which is thought to help control body water content. We isolated glycosaminoglycans (GAGs from Japanese conger eel leptocephali and measured the changes in tissue HA content during metamorphosis. HA content decreased during metamorphosis. In contrast, neutral sugar content increased during metamorphosis. We hypothesize that the leptocephali utilize a metabolic pathway that converts HA to glucose during metamorphosis. Glucose may then be metabolized to glycogen and stored in the juvenile life-history stage.

  6. Polyvinyl Alcohol-Collagen Composite with Glycosaminoglycan as Scaffolds for Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    LI Qin-hua; MO Xiao-hui; CHEN Jian-su

    2008-01-01

    The aim of this study is to prepare a PVA-GAG-COL composite material by polyvinyl alcohol (PVA), glycosaminoglycan (GAG) and collagen (COL),and to inves-tigate the feasibility of serving as a scaffold for tissue engineering. PVA was blended with various amounts of GAG and COL. Different proportional scaffolds could be obtained with different molecular weight and alcoholysis degree of PVA and different amounts of GAG, which exhibited high water content (60%-95%) and showed different inner configura-tion with swelling ratio (120%-620%). SEM proved that different composite materials had different porous structures.

  7. Using Isothermal Titration Calorimetry to Determine Thermodynamic Parameters of Protein–Glycosaminoglycan Interactions

    Science.gov (United States)

    Dutta, Amit K.; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein–glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters—enthalpy, entropy, free energy (binding constant), and stoichiometry—from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein–GAG interactions. PMID:25325962

  8. Glycosaminoglycans: how much do we know about their role in the bladder?

    Science.gov (United States)

    Klingler, Christoph H

    2016-06-25

    The urothelium is a unique lining in the body providing a protective barrier against the penetration of toxic agents, urine, and bacteria. The glycosaminoglycan (GAG) layer consists of a thick mucus layer of glycoproteins and proteoglycans on the surface of the urothelial cells. Damage to the GAG layer disrupts its protective barrier function giving rise to increased permeability into the deep layers of the urothelium and bladder, causing inflammation and pain. Replenishment of the GAG layer appears to restore normal permeability allowing for urothelial layer recovery.

  9. Using isothermal titration calorimetry to determine thermodynamic parameters of protein-glycosaminoglycan interactions.

    Science.gov (United States)

    Dutta, Amit K; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein-glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters-enthalpy, entropy, free energy (binding constant), and stoichiometry-from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein-GAG interactions.

  10. Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced air pouch granuloma

    Energy Technology Data Exchange (ETDEWEB)

    Begum, V.H.; Sadique, J.

    1987-12-01

    The effect of W. somnifera on glycosaminoglycan synthesis in the granulation tissue of carrageenin-induced air pouch granuloma was studied. W. somnifera was shown to exert significant inhibitory effect on incorporation of /sup 35/S into the granulation tissue. The uncoupling effect on oxidative phosphorylation (ADP/O ratio reduction) was also observed in the mitochondria of granulation tissue. Further, Mg/sup 2 +/ dependent ATPase activity was found to be influenced by W. somnifera. W. somnifera also reduced the succinate dehydrogenase enzyme activity in the mitochondria of granulation tissue.

  11. Chemoenzymatic Synthesis of 4-Fluoro-N-Acetylhexosamine Uridine Diphosphate Donors: Chain Terminators in Glycosaminoglycan Synthesis.

    Science.gov (United States)

    Schultz, Victor L; Zhang, Xing; Linkens, Kathryn; Rimel, Jenna; Green, Dixy E; DeAngelis, Paul L; Linhardt, Robert J

    2017-02-17

    Unnatural uridine diphosphate (UDP)-sugar donors, UDP-4-deoxy-4-fluoro-N-acetylglucosamine (4FGlcNAc) and UDP-4-deoxy-4-fluoro-N-acetylgalactosamine (4FGalNAc), were prepared using both chemical and chemoenzymatic syntheses relying on N-acetylglucosamine-1-phosphate uridylyltransferase (GlmU). The resulting unnatural UDP-sugar donors were then tested as substrates in glycosaminoglycan synthesis catalyzed by various synthases. UDP-4FGlcNAc was transferred onto an acceptor by Pastuerella multocida heparosan synthase 1 and subsequently served as a chain terminator.

  12. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    Science.gov (United States)

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine.

  13. Synergistic Effects of a Mixture of Glycosaminoglycans to Inhibit Adipogenesis and Enhance Chondrocyte Features in Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Petar D. Petrov

    2015-11-01

    Full Text Available Background/Aims: Multipotent mesenchymal stem cells affect homeostasis of adipose and joint tissues. Factors influencing their differentiation fate are of interest for both obesity and joint problems. We studied the impact of a mixture of glycosaminoglycans (GAGs (hyaluronic acid: dermatan sulfate 1:0.25, w/w used in an oral supplement for joint discomfort (Oralvisc™ on the differentiation fate of multipotent cells. Methods: Primary mouse embryo fibroblasts (MEFs were used as a model system. Post-confluent monolayer MEF cultures non-stimulated or hormonally stimulated to adipogenesis were chronically exposed to the GAGs mixture, its individual components or vehicle. The appearance of lipid laden cells, lipid accumulation and expression of selected genes at the mRNA and protein level was assessed. Results: Exposure to the GAGs mixture synergistically suppressed spontaneous adipogenesis and induced the expression of cartilage extracellular matrix proteins, aggrecan core protein, decorin and cartilage oligomeric matrix protein. Hormonally-induced adipogenesis in the presence of the GAGs mixture resulted in decreased adipogenic differentiation, down-regulation of adipogenic/lipogenic factors and genes for insulin resistance-related adipokines (resistin and retinol binding protein 4, and up-regulation of oxidative metabolism-related genes. Adipogenesis in the presence of dermatan sulfate, the minor component of the mixture, was not impaired but resulted in smaller lipid droplets and the induction of a more complete brown adipocyte-related transcriptional program in the cells in the adipose state. Conclusions: The Oralvisc™ GAGs mixture can tip the adipogenic/chondrogenic fate balance of multipotent cells away from adipogenesis while favoring chondrocyte related gene expression. The mixture and its dermatan sulfate component also have modulatory effects of interest on hormonally-induced adipogenesis and on metabolic and secretory capabilities of

  14. Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode.

    Directory of Open Access Journals (Sweden)

    Eric Chabrol

    Full Text Available Langerin is a C-type lectin specifically expressed in Langerhans cells. As recently shown for HIV, Langerin is thought to capture pathogens and mediate their internalisation into Birbeck Granules for elimination. However, the precise functions of Langerin remain elusive, mostly because of the lack of information on its binding properties and physiological ligands. Based on recent reports that Langerin binds to sulfated sugars, we conducted here a comparative analysis of Langerin interaction with mannose-rich HIV glycoprotein gp120 and glycosaminoglycan (GAGs, a family of sulfated polysaccharides expressed at the surface of most mammalian cells. Our results first revealed that Langerin bound to these different glycans through very distinct mechanisms and led to the identification of a novel, GAG-specific binding mode within Langerin. In contrast to the canonical lectin domain, this new binding site showed no Ca(2+-dependency, and could only be detected in entire, trimeric extracellular domains of Langerin. Interestingly binding to GAGs, did not simply rely on a net charge effect, but rather on more discrete saccharide features, such as 6-O-sulfation, or iduronic acid content. Using molecular modelling simulations, we proposed a model of Langerin/heparin complex, which located the GAG binding site at the interface of two of the three Carbohydrate-recognition domains of the protein, at the edge of the a-helix coiled-coil. To our knowledge, the binding properties that we have highlighted here for Langerin, have never been reported for C-type lectins before. These findings provide new insights towards the understanding of Langerin biological functions.

  15. The Immunosuppressant FTY720 (Fingolimod enhances Glycosaminoglycan depletion in articular cartilage

    Directory of Open Access Journals (Sweden)

    Stradner Martin H

    2011-12-01

    Full Text Available Abstract Background FTY720 (Fingolimod is a novel immunosuppressive drug investigated in clinical trials for organ transplantation and multiple sclerosis. It acts as a functional sphingosine-1-phosphate (S1P receptor antagonist, thereby inhibiting the egress of lymphocytes from secondary lymphoid organs. As S1P is able to prevent IL-1beta induced cartilage degradation, we examined the direct impact of FTY720 on cytokine induced cartilage destruction. Methods Bovine chondrocytes were treated with the bioactive phosphorylated form of FTY720 (FTY720-P in combination with IL-1beta or TNF-alpha. Expression of MMP-1,-3.-13, iNOS and ADAMTS-4,-5 and COX-2 was evaluated using quantitative real-time PCR and western blot. Glycosaminoglycan depletion from cartilage explants was determined using a 1,9-dimethylene blue assay and safranin O staining. Results FTY720-P significantly reduced IL-1beta and TNF-alpha induced expression of iNOS. In contrast FTY720-P increased MMP-3 and ADAMTS-5 mRNA expression. Furthermore depletion of glycosaminoglycan from cartilage explants by IL-1beta and TNF-alpha was significantly enhanced by FTY720-P in an MMP-3 dependent manner. Conclusions Our results suggest that FTY720 may enhance cartilage degradation in pro-inflammatory environment.

  16. Characterization of glycosaminoglycans during tooth development and mineralization in the axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Wistuba, J; Völker, W; Ehmcke, J; Clemen, G

    2003-10-01

    Glycosaminoglycans (GAGs) involved in the formation of the teeth of Ambystoma mexicanum were located and characterized with the cuprolinic blue (CB) staining method and transmission electron microscopy (TEM). Glycosaminoglycan-cuprolinic blue precipitates (GAGCB) were found in different compartments of the mineralizing tissue. Various populations of elongated GAGCB could be discriminated both according to their size and their preferential distribution in the extracellular matrix (ECM). GAGCB populations that differ in their composition could be attributed not only to the compartments of the ECM but also to different zones and to different tooth types (early-larval and transformed). Larger precipitates were only observed within the dentine matrix of the shaft of the early-larval tooth. The composition of the populations differed significantly between the regions of the transformed tooth: pedicel, shaft and dividing zone. In later stages of tooth formation, small-sized GAGCBs were seen as intracellular deposits in the ameloblasts. It is concluded that the composition of GAGCB populations seems to play a role in the mineralization processes during tooth development in A. mexicanum and influence qualitative characteristics of the mineral in different tooth types and zones, and it is suggested that GAGs might be resorbed by the enamel epithelium during the late phase of enamel formation.

  17. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury

    Science.gov (United States)

    Chaaban, Hala; Keshari, Ravi S.; Silasi-Mansat, Robert; Popescu, Narcis I.; Mehta-D’Souza, Padmaja; Lim, Yow-Pin

    2015-01-01

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma. PMID:25631771

  18. Efficiencies of fragmentation of glycosaminoglycan chloramides of the extracellular matrix by oxidizing and reducing radicals: potential site-specific targets in inflammation?

    Science.gov (United States)

    Sibanda, Sambulelwe; Akeel, Almabrok; Martin, Stephen W; Paterson, Andrew W J; Edge, Ruth; Al-Assaf, Saphwan; Parsons, Barry J

    2013-12-01

    Hypochlorous acid and its conjugate base, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. To investigate the effect of the N-Cl group, we used ionizing radiation to produce quantifiable concentrations of the reducing radicals, hydrated electron and superoxide radical, and also of the oxidizing radicals, hydroxyl, carbonate, and nitrogen dioxide, all of which were reacted with hyaluronan and heparin and their chloramides in this study. PAGE gels calibrated for molecular weight allowed the consequent fragmentation efficiencies of these radicals to be calculated. Hydrated electrons were shown to produce fragmentation efficiencies of 100 and 25% for hyaluronan chloramide (HACl) and heparin chloramide (HepCl), respectively. The role of the sulfate group in heparin in the reduction of fragmentation can be rationalized using mechanisms proposed by M.D. Rees et al. (J. Am. Chem. Soc.125:13719-13733; 2003), in which the initial formation of an amidyl radical leads rapidly to a C-2 radical on the glucosamine moiety. This is 100% efficient at causing glycosidic bond breakage in HACl but only 25% efficient in HepCl, the role of the sulfate group being to favor the nonfragmentary routes for the C-2 radical. The weaker reducing agent, the superoxide radical, did not cause fragmentation of either HACl or HepCl although kinetic reactivity had been demonstrated in earlier studies. Experiments using the oxidizing radicals, hydroxyl and carbonate, both potential in vivo species, showed significant increases in fragmentation efficiencies for

  19. Therapeutic effects of Semecarpus anacardium Linn. nut milk extract on the changes associated with collagen and glycosaminoglycan metabolism in adjuvant arthritic Wistar rats.

    Science.gov (United States)

    Ramprasath, Vanu Ramkumar; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2006-07-25

    The effect of milk extract of Semecarpus anacardium Linn. nut milk extract (SA) was studied to gain some insight into this intriguing disease with reference to collagen metabolism. Arthritis was induced in rats by injecting Freund's complete adjuvant containing 10mg of heat killed mycobacterium tuberculosis in 1 ml paraffin oil (0.1 ml) into the left hind paw of the rat intradermally. After 14 days of induction, SA (150 mg/kg body weight/day) was administered orally by gastric intubations for 14 days. Decreased levels of collagen and glycosaminoglycans (GAGS) components (chondroitin sulphate, heparan sulphate, hyaluronic acid) and increase in the levels of connective tissue degrading lysosomal glycohydrolases such as acid phosphatase, beta-glucuronidase, beta-N-acetyl glucosaminidase and cathepsin-D observed in arthritic animals were reverted back to near normal levels upon treatment with SA. The drug effectively regulated the uriniray markers of collagen metabolism namely hexosamine, hexuronic acid, hydroxyproline and total GAGS. Electron microscopic studies also revealed the protective effect of SA. Hence, it can be suggested that SA very effectively regulate the collagen metabolism that derange during arthritic condition.

  20. Alterations of overused supraspinatus tendon: a possible role of glycosaminoglycans and HARP/pleiotrophin in early tendon pathology.

    NARCIS (Netherlands)

    Attia, M.; Scott, A.; Duchesnay, A.; Carpentier, G.; Soslowsky, L.J.; Huynh, M.B.; Kuppevelt, T. van; Gossard, C.; Courty, J.; Tassoni, M.C.; Martelly, I.

    2012-01-01

    Supraspinatus tendon overuse injuries lead to significant pain and disability in athletes and workers. Despite the prevalence and high social cost of these injuries, the early pathological events are not well known. We analyzed the potential relation between glycosaminoglycan (GAG) composition and

  1. Purified glycosaminoglycans from cooked haddock may enhance Fe uptake via endocytosis in a Caco-2 cell culture model

    Science.gov (United States)

    This study aims to understand the enhancing effect of glycosaminoglycans (GAGs), such as chondroitin/dermatan structures, on Fe uptake to Caco-2 cells. High sulfated GAGs were selectively purified from cooked haddock. An in vitro digestion/Caco-2 cell culture model was used to evaluate Fe uptake (ce...

  2. Diabetes-impaired wound healing is improved by matrix therapy with heparan sulfate glycosaminoglycan mimetic OTR4120 in rats

    NARCIS (Netherlands)

    M. Tong (Miao); B. Tuk (Bastiaan); P. Shang (Peng); J.M. Hekking-Weijma (Ineke); E.M.G. Fijneman (Esther ); M. Guijt (Marnix); S.E.R. Hovius (Steven); J.W. van Neck (Han)

    2012-01-01

    textabstractWound healing in diabetes is frequently impaired, and its treatment remains a challenge. We tested a therapeutic strategy of potentiating intrinsic tissue regeneration by restoring the wound cellular environment using a heparan sulfate glycosaminoglycan mimetic, OTR4120. The effect of

  3. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    OpenAIRE

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    In this investigation, we describe differential spatiotemporal expression patterns of glycosaminoglycans KS, DS, and CSA/C during developmental stages of cornea innervation. We show that purified GAGs have divergent effects on trigeminal neuron behavior using in vitro neuronal explant cultures.

  4. Molecular Mass Characterization of Glycosaminoglycans with Different Degrees of Sulfation in Bioengineered Heparin Process by Size Exclusion Chromatography

    OpenAIRE

    Wang, Zhenyu; Zhang, Fuming; Dordick, Jonathan S.; Robert J Linhardt

    2012-01-01

    Different degrees of glycosaminoglycan sulfation result in their different charge densities. The charge density differences impact their migration behavior in polyacrylamide gel electrophoresis and size exclusion chromatography, two of the most common methods for determining relative molecular masses of polysaccharides. In this study, we investigated the feasibility of using commercially available heparin oligosaccharides as calibrants for measuring the relative molecular masses of intermedia...

  5. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline.

    LENUS (Irish Health Repository)

    Bergsson, Gudmundur

    2009-07-01

    There is an abundance of antimicrobial peptides in cystic fibrosis (CF) lungs. Despite this, individuals with CF are susceptible to microbial colonization and infection. In this study, we investigated the antimicrobial response within the CF lung, focusing on the human cathelicidin LL-37. We demonstrate the presence of the LL-37 precursor, human cathelicidin precursor protein designated 18-kDa cationic antimicrobial protein, in the CF lung along with evidence that it is processed to active LL-37 by proteinase-3. We demonstrate that despite supranormal levels of LL-37, the lung fluid from CF patients exhibits no demonstrable antimicrobial activity. Furthermore Pseudomonas killing by physiological concentrations of exogenous LL-37 is inhibited by CF bronchoalveolar lavage (BAL) fluid due to proteolytic degradation of LL-37 by neutrophil elastase and cathepsin D. The endogenous LL-37 in CF BAL fluid is protected from this proteolysis by interactions with glycosaminoglycans, but while this protects LL-37 from proteolysis it results in inactivation of LL-37 antimicrobial activity. By digesting glycosaminoglycans in CF BAL fluid, endogenous LL-37 is liberated and the antimicrobial properties of CF BAL fluid restored. High sodium concentrations also liberate LL-37 in CF BAL fluid in vitro. This is also seen in vivo in CF sputum where LL-37 is complexed to glycosaminoglycans but is liberated following nebulized hypertonic saline resulting in increased antimicrobial effect. These data suggest glycosaminoglycan-LL-37 complexes to be potential therapeutic targets. Factors that disrupt glycosaminoglycan-LL-37 aggregates promote the antimicrobial effects of LL-37 with the caveat that concomitant administration of antiproteases may be needed to protect the now liberated LL-37 from proteolytic cleavage.

  6. Electrospray ionization Fourier transform mass spectrometric analysis of intact bikunin glycosaminoglycan from normal human plasma.

    Science.gov (United States)

    Laremore, Tatiana N; Leach, Franklin E; Amster, I Jonathan; Linhardt, Robert J

    2011-08-15

    A mixture of glycosaminoglycan (GAG) chains from a plasma proteoglycan bikunin was fractionated using native, continuous-elution polyacrylamide gel electrophoresis, and the resulting fractions were analyzed by electrospray ionization Fourier transform mass spectrometry (ESI FTMS). Molecular mass analysis of the intact GAG afforded information about the length and composition of GAG chains in the mixture. Ambiguity in the interpretation of the intact GAG mass spectra was eliminated by conducting an additional experiment in which the GAG chains of known molecular mass were treated with a GAG-degrading enzyme, chondroitinase ABC, and the digestion products were analyzed by ESI FTMS. The plasma bikunin GAG chains consisted predominantly of odd number of saccharides, although few chains consisting of even number of saccharides were also detected. Majority of the analyzed chains were tetrasulfated or pentasulfated and comprised by 29 to 41 monosaccharides.

  7. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye;

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  8. The involvement of glycosaminoglycans in airway disease associated with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    Individuals with cystic fibrosis (CF) present with severe airway destruction and extensive bronchiectasis. It has been assumed that these structural airway changes have occurred secondary to infection and inflammation, but recent studies suggest that glycosaminoglycan (GAG) remodelling may be an important independent parallel process. Evidence is accumulating that not only the concentration, but also sulphation of GAGs is markedly increased in CF bronchial cells and tissues. Increased expression of GAGs and, in particular, heparan sulphate, has been linked to a sustained inflammatory response and neutrophil recruitment to the CF airways. This present review discusses the biological role of GAGs in the lung, as well as their involvement in CF respiratory disease, and their potential as therapeutic targets.

  9. Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems.

    Science.gov (United States)

    Samsonov, Sergey A; Gehrcke, Jan-Philip; Pisabarro, M Teresa

    2014-02-24

    We present Dynamic Molecular Docking (DMD), a novel targeted molecular dynamics-based protocol developed to address ligand and receptor flexibility as well as the inclusion of explicit solvent in local molecular docking. A class of ligands for which docking performance especially benefits from overcoming these challenges is the glycosaminoglycans (GAGs). GAGs are periodic, highly flexible, and negatively charged polysaccharides playing an important role in the extracellular matrix via interaction with proteins such as growth factors and chemokines. The goal of our work has been to develop a proof of concept for an MD-based docking approach and to analyze its applicability for protein-GAG systems. DMD exploits the electrostatics-driven attraction of a ligand to its receptor, treats both as entirely flexible, and considers solvent explicitly. We show that DMD has high predictive significance for systems dominated by electrostatic attraction and demonstrate its capability to reliably identify the receptor residues contributing most to binding.

  10. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Science.gov (United States)

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  11. The diagnostic role of glycosaminoglycans in pleural effusions: A pilot study

    Science.gov (United States)

    Vavetsi, Rozina; Bonovas, Stefanos; Polizou, Paraskevi; Papanastasopoulou, Chrysanthi; Dougekou, Georgia; Sitaras, Nikolaos M

    2009-01-01

    Background Pleural effusions are classified into transudates and exudates. Various criteria have been used with Light's et al being the most accepted ones. Glycosaminoglycans (GAGs) have been detected during pleural fluids (PF) analysis in various causes. In this pilot study, we investigated: (a) the usefulness of GAGs in the assessment of pleural effusions, and (b) whether and in what way GAGs correlate with established criteria used to indicate an exudate. Methods LDH, total protein, cholesterol and GAG levels were measured in pleural fluid and serum from 50 patients with pleural effusion. GAG levels were defined by the photometric method of Hata. The discriminative properties of pleural GAGs (pGAG), pleural fluid/serum GAG ratio (GAGR), serum GAGs (sGAG) and serum LDH (sLDH) were explored with ROC analysis. Results According to ROC analysis, pGAG and GAGR exhibited satisfactory discriminative properties in the separation of pleural effusions. For GAGR, at a 1.1 cut off point, sensitivity and specificity reached 75.6%; 95%CI: 60.5–87.1 and 100%; 95%CI: 47.8–100, respectively. For pGAG at a cut off value of 8.4 μg/ml, these percentages changed to 86.7%; 95%CI: 73.2–94.9 and 100%; 95%CI: 47.8–100. The study also revealed the differential role of sGAG between malignancies and benign cases, scoring 68.8%; 95%CI: 50.0–83.9 for sensitivity, and 84.6%; 95%CI: 54.5–97.6 for specificity at a 7.8 μg/ml cut off. Conclusion Our results suggest that glycosaminoglycan measurement of both serum and pleural effusions could be useful for simultaneous differentiation of exudates from transudates, and of malignant from benign exudates. PMID:19226451

  12. The diagnostic role of glycosaminoglycans in pleural effusions: A pilot study

    Directory of Open Access Journals (Sweden)

    Dougekou Georgia

    2009-02-01

    Full Text Available Abstract Background Pleural effusions are classified into transudates and exudates. Various criteria have been used with Light's et al being the most accepted ones. Glycosaminoglycans (GAGs have been detected during pleural fluids (PF analysis in various causes. In this pilot study, we investigated: (a the usefulness of GAGs in the assessment of pleural effusions, and (b whether and in what way GAGs correlate with established criteria used to indicate an exudate. Methods LDH, total protein, cholesterol and GAG levels were measured in pleural fluid and serum from 50 patients with pleural effusion. GAG levels were defined by the photometric method of Hata. The discriminative properties of pleural GAGs (pGAG, pleural fluid/serum GAG ratio (GAGR, serum GAGs (sGAG and serum LDH (sLDH were explored with ROC analysis. Results According to ROC analysis, pGAG and GAGR exhibited satisfactory discriminative properties in the separation of pleural effusions. For GAGR, at a 1.1 cut off point, sensitivity and specificity reached 75.6%; 95%CI: 60.5–87.1 and 100%; 95%CI: 47.8–100, respectively. For pGAG at a cut off value of 8.4 μg/ml, these percentages changed to 86.7%; 95%CI: 73.2–94.9 and 100%; 95%CI: 47.8–100. The study also revealed the differential role of sGAG between malignancies and benign cases, scoring 68.8%; 95%CI: 50.0–83.9 for sensitivity, and 84.6%; 95%CI: 54.5–97.6 for specificity at a 7.8 μg/ml cut off. Conclusion Our results suggest that glycosaminoglycan measurement of both serum and pleural effusions could be useful for simultaneous differentiation of exudates from transudates, and of malignant from benign exudates.

  13. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles.

    Science.gov (United States)

    Udompataikul, M; Sripiroj, P; Palungwachira, P

    2009-12-01

    Various nutraceuticals (dietary supplements) are claimed to have cutaneous antiageing properties, however, there are a limited number of research studies supporting these claims. The objective of this research was to study the effectiveness of an oral nutraceutical containing antioxidants, minerals and glycosaminoglycans on cutaneous ageing. In this double-blind, placebo-controlled trial, 60 women aged 35-60 years were randomized to receive oral dietary supplement (n = 30) or placebo (n = 30), once daily for 12 weeks. The depth of skin roughness and fine wrinkles were measured using surface evaluation of skin parameters for living skin (Visioscan) at baseline, and at the 4, 8 and 12 weeks of treatment. Surface evaluation using a replica film (Visiometer) at baseline and at the 12th week of treatment was also carried out. Statistical differences in objective skin improvement were assessed by the independent t-test. The volunteers' satisfaction was tested using the chi-squared test. The baseline depth of skin roughness and fine wrinkles in the treatment group and the placebo group were 100.5 and 100 mum, respectively. At the end of the study, the depth of skin roughness and fine wrinkles in the treatment group showed a 21.2% improvement, whereas improvement in the control group was 1.7%. This difference was statistically significant (P skin colour, however, a statistically significant reduction in pore size and depth of skin roughness and fine wrinkles were observed (P antioxidants, minerals and glycosaminoglycans improved skin roughness and fine wrinkles but did not affect skin colour change in female volunteers.

  14. Glycosaminoglycans in Hydra magnipapillata (Hydrozoa, Cnidaria): demonstration of chondroitin in the developing nematocyst, the sting organelle, and structural characterization of glycosaminoglycans.

    Science.gov (United States)

    Yamada, Shuhei; Morimoto, Hideto; Fujisawa, Toshitaka; Sugahara, Kazuyuki

    2007-08-01

    The hydrozoan is the simplest organism whose movements are governed by the neuromuscular system, and its de novo morphogenesis can be easily induced by the removal of body parts. These features make the hydrozoan an excellent model for studying the regeneration of tissues in vivo, especially in the nervous system. Although glycosaminoglycans (GAGs) and proteoglycans (PGs) have been implicated in the signaling functions of various growth factors and play critical roles in the development of the central nervous system, the isolation and characterization of GAGs from hydrozoans have never been reported. Here, we characterized GAGs of Hydra magnipapillata. Immunostaining using anti-GAG antibodies showed chondroitin or chondroitin sulfate (CS) in the developing nematocyst, which is a sting organelle specific to cnidarians. The CS-PGs might furnish an environment for assembling nematocyst components, and might themselves be components of nematocysts. Therefore, GAGs were isolated from Hydra and their structural features were examined. A considerable amount of CS, three orders of magnitude less heparan sulfate (HS), but no hyaluronan were found, as in Caenorhabditis elegans. Analysis of the disaccharide composition of HS revealed glucosamine 2-N-sulfation, glucosamine 6-O-sulfation, and uronate 2-O-sulfation. CS contains not only nonsulfated and 4-O-sulfated N-acetylgalactosamine (GalNAc) but also 6-O-sulfated GalNAc. The average molecular size of CS and HS was 110 and 10 kDa, respectively. It has also been established here that CS chains are synthesized on the core protein through the ubiquitous linkage region tetrasaccharide, suggesting that indispensable functions of the linkage region in the synthesis of GAGs have been conserved during evolution.

  15. Glioma Cell Invasion is Significantly Enhanced in Composite Hydrogel Matrices Composed of Chondroitin 4- and 4,6-Sulfated Glycosaminoglycans.

    Science.gov (United States)

    Logun, Meghan T; Bisel, Nicole S; Tanasse, Emily A; Zhao, Wujun; Gunasekera, Bhagya; Mao, Leidong; Karumbaiah, Lohitash

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive form of astrocytoma accounting for a majority of primary malignant brain tumors in the United States. Chondroitin sulfate proteoglycans (CSPGs) and their glycosaminoglycan (GAG) side chains are key constituents of the brain extracellular matrix (ECM) implicated in promoting tumor invasion. However, the mechanisms by which sulfated CS-GAGs promote brain tumor invasion are currently unknown. We hypothesize that glioma cell invasion is triggered by the altered sulfation of CS-GAGs in the tumor extracellular environment, and that this is potentially mediated by independent mechanisms involving CXCL12/CXCR4 and LAR signaling respectively. This was tested in vitro by encapsulating the human glioma cell line U87MG-EGFP into monosulfated (4-sulfated; CS-A), composite (4 and 4,6-sulfated; CS-A/E), unsulfated hyaluronic acid (HA), and unsulfated agarose (AG; polysaccharide) hydrogels within microfluidics-based choice assays. Our results demonstrated the enhanced preferential cell invasion into composite hydrogels, when compared to other hydrogel matrices (p<0.05). Haptotaxis assays demonstrated the significantly (p<0.05) faster migration of U87MG-EGFP cells in CXCL12 containing CS-GAG hydrogels when compared to other hydrogel matrices containing the same chemokine concentration. This is likely due to the significantly (p<0.05) greater affinity of composite CS-GAGs to CXCL12 over other hydrogel matrices. Results from qRT-PCR assays further demonstrated the significant (p<0.05) upregulation of the chemokine receptor CXCR4, and the CSPG receptor LAR in glioma cells within CS-GAG hydrogels compared to control hydrogels. Western blot analysis of cell lysates derived from glioma cells encapsulated in different hydrogel matrices further corroborate qRT-PCR results, and indicate the presence of a potential variant of LAR that is selectively expressed only in glioma cells encapsulated in CS-GAG hydrogels. These results suggest that

  16. Glucuronic acid and phosphoserine act as mineralization mediators of collagen I based biomimetic substrates.

    NARCIS (Netherlands)

    Tejero, R.; Bierbaum, S.; Douglas, T.E.L.; Reinstorf, A.; Worch, H.; Scharnweber, D.

    2010-01-01

    Glucuronic acid (GlcA) and phosphoserine (pS) carrying acidic functional groups were used as model molecules for glycosaminoglycans and phosphoproteins, respectively to mimic effects of native biomolecules and influence the mineralization behaviour of collagen I. Collagen substrates modified with Gl

  17. Molecular Mass Characterization of Glycosaminoglycans with Different Degrees of Sulfation in Bioengineered Heparin Process by Size Exclusion Chromatography.

    Science.gov (United States)

    Wang, Zhenyu; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2012-10-01

    Different degrees of glycosaminoglycan sulfation result in their different charge densities. The charge density differences impact their migration behavior in polyacrylamide gel electrophoresis and size exclusion chromatography, two of the most common methods for determining relative molecular masses of polysaccharides. In this study, we investigated the feasibility of using commercially available heparin oligosaccharides as calibrants for measuring the relative molecular masses of intermediates in a bioengineered heparin process that have different levels of sulfation. A size exclusion chromatography method was established that eliminates this charge density effect and allows the determination of relative molecular mass using a single calibration curve with heparin oligosaccharides calibrants. This is accomplished by overcoming the electrostatic interaction between the glycosaminoglycans and size exclusion chromatography stationary phase using high ionic strength mobile phase.

  18. Age-dependent changes in glycosaminoglycan content in the skin of fasted rats. A possible mechanism.

    Science.gov (United States)

    Cechowska-Pasko, M; Pałka, J

    2000-05-01

    It is well recognized that during fasting or aging of animals there is a decreased content of several extracellular matrix components in the skin, including glycosaminoglycans (GAGs) and decrease in biosynthesis of these macromolecules. The mechanism for the phenomena is not known. We considered skin and blood lactate as a potential candidate to control GAG metabolism in tissues. Energetic metabolism, reflected by NAD/NADH and lactate/pyruvate ratios is changed during aging or fasting and lactate inhibits at least some GAGs biosynthesis. Therefore we have compared the level of lactate and the ratios of lactate to pyruvate in the blood and skin of fasted young and fasted adult rats and correlated them with the content of skin glycosaminoglycans. It has been found that the skin of adult rats contains about 60% of GAGs found in the skin of young animals. Fasting of both groups of animals resulted in further decrease in skin GAG content. GAG content in the skin of fasted young animals was decreased by 30% while in fasted adult rats no significant differences were observed, compared to fed animals. Lactate concentration was found to be increased over 2-fold in the skin of young fasted rats, compared to young controls. The lactate concentration in adult animals was not changed during fasting, although in both cases the lactate levels were almost 3-fold higher than in young control rats. In blood, lactate concentration increased by 40% during fasting of young animals while it decreased by about 40% during fasting of adult rats. Although no differences were found in blood lactate level between young and adult rats, the ratio of lactate/pyruvate was decreased by over 2 fold in adult rats. The relative differences in mean GAG content in the skin of all experimental groups of animals were related to the similar differences in blood glucose and lactate/pyruvate ratio. Therefore not only skin lactate but also blood lactate concentrations may reflect the extent of skin GAG

  19. Comparison of Engineered Peptide-Glycosaminoglycan Microfibrous Hybrid Scaffolds for Potential Applications in Cartilage Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Steven M. Romanelli

    2015-07-01

    Full Text Available Advances in tissue engineering have enabled the ability to design and fabricate biomaterials at the nanoscale that can actively mimic the natural cellular environment of host tissue. Of all tissues, cartilage remains difficult to regenerate due to its avascular nature. Herein we have developed two new hybrid polypeptide-glycosaminoglycan microfibrous scaffold constructs and compared their abilities to stimulate cell adhesion, proliferation, sulfated proteoglycan synthesis and soluble collagen synthesis when seeded with chondrocytes. Both constructs were designed utilizing self-assembled Fmoc-protected valyl cetylamide nanofibrous templates. The peptide components of the constructs were varied. For Construct I a short segment of dentin sialophosphoprotein followed by Type I collagen were attached to the templates using the layer-by-layer approach. For Construct II, a short peptide segment derived from the integrin subunit of Type II collagen binding protein expressed by chondrocytes was attached to the templates followed by Type II collagen. To both constructs, we then attached the natural polymer N-acetyl glucosamine, chitosan. Subsequently, the glycosaminoglycan chondroitin sulfate was then attached as the final layer. The scaffolds were characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, atomic force microscopy and scanning electron microscopy. In vitro culture studies were carried out in the presence of chondrocyte cells for both scaffolds and growth morphology was determined through optical microscopy and scanning electron microscopy taken at different magnifications at various days of culture. Cell proliferation studies indicated that while both constructs were biocompatible and supported the growth and adhesion of chondrocytes, Construct II stimulated cell adhesion at higher rates and resulted in the formation of three dimensional cell-scaffold matrices within 24 h. Proteoglycan

  20. Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection.

    Directory of Open Access Journals (Sweden)

    Erbin Dai

    Full Text Available BACKGROUND: Binding of chemokines to glycosaminoglycans (GAGs is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of GAG or CC chemokine receptor 2 (CCR2 deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs in mouse aortic allograft transplants (n = 239 mice. Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1(f/fTekCre(+ heparan sulfate (GAG-deficient (Ndst1(-/-, p<0.044 and CCR2-deficient (Ccr2(-/-, p<0.04 donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT (Ccr2(+/+, p< or =0.003 and Ccr2(-/-, p

  1. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  2. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  3. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marolla, Ana Paula Cleto [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Waisberg, Jaques [Hospital do Servidor Público Estadual, São Paulo, SP (Brazil); Faculdade de Medicina do ABC, Santo André, SP (Brazil); Saba, Gabriela Tognini [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Waisberg, Daniel Reis [Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva [Faculdade de Medicina do ABC, Santo André, SP (Brazil)

    2015-07-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  4. INCREASE OF GLYCOSAMINOGLYCANS AND METALLOPROTEINASES 2 AND 9 IN LIVER EXTRACELLULAR MATRIX ON EARLY STAGES OF EXTRAHEPATIC CHOLESTASIS

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Rodrigues GUEDES

    2014-12-01

    Full Text Available Context Cholestasis produces hepatocellular injury, leukocyte infiltration, ductular cells proliferation and fibrosis of liver parenchyma by extracellular matrix replacement. Objective Analyze bile duct ligation effect upon glycosaminoglycans content and matrix metalloproteinase (MMPs activities. Methods Animals (6-8 weeks; n = 40 were euthanized 2, 7 or 14 days after bile duct ligation or Sham-surgery. Disease evolution was analyzed by body and liver weight, seric direct bilirubin, globulins, gamma glutamyl transpeptidase (GGT, alkaline phosphatase (Alk-P, alanine and aspartate aminotransferases (ALT and AST, tissue myeloperoxidase and MMP-9, pro MMP-2 and MMP-2 activities, histopathology and glycosaminoglycans content. Results Cholestasis caused cellular damage with elevation of globulins, GGT, Alk-P, ALT, AST. There was neutrophil infiltration observed by the increasing of myeloperoxidase activity on 7 (P = 0.0064 and 14 (P = 0.0002 groups which leads to the magnification of tissue injuries. Bile duct ligation increased pro-MMP-2 (P = 0.0667, MMP-2 (P = 0.0003 and MMP-9 (P<0.0001 activities on 14 days indicating matrix remodeling and establishment of inflammatory process. Bile duct ligation animals showed an increasing on dermatan sulfate and/or heparan sulfate content reflecting extracellular matrix production and growing mitosis due to parenchyma depletion. Conclusions Cholestasis led to many changes on rats’ liver parenchyma, as so as on its extracellular matrix, with major alterations on MMPs activities and glycosaminoglycans content.

  5. Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves.

    Science.gov (United States)

    Tripi, Daniel R; Vyavahare, Naren R

    2014-01-01

    Glutaraldehyde cross-linked bioprosthetic heart valves fail within 12-15 years of implantation due to limited durability. Glutaraldehyde does not adequately stabilize extracellular matrix components such as glycosaminoglycans and elastin, and loss of these components could be a major cause of degeneration of valve after implantation. We have shown earlier that neomycin-based cross-linking stabilizes glycosaminoglycans in the tissue but fails to stabilize elastin component. Here, we report a new treatment where neomycin and pentagalloyl glucose (PGG) were incorporated into glutaraldehyde cross-linking neomycin-PGG-Glutaraldehyde (NPG) to stabilize both glycosaminoglycans and elastin in porcine aortic valves. In vitro studies demonstrated a marked increase in extracellular matrix stability against enzymatic degradation after cross-linking and 10 month storage in NPG group when compared to glutaraldehyde controls. Tensile properties showed increased lower elastic modulus in both radial and circumferential directions in NPG group as compared to glutaraldehyde, probably due to increased elastin stabilization with no changes in upper elastic modulus and extensibility. The enhanced extracellular matrix stability was further maintained in NPG-treated tissues after rat subdermal implantation for three weeks. NPG group also showed reduced calcification when compared to glutaraldehyde controls. We conclude that NPG cross-linking would be an excellent alternative to glutaraldehyde cross-linking of bioprosthetic heart valves to improve its durability.

  6. Increase of glycosaminoglycans and metalloproteinases 2 and 9 in liver extracellular matrix on early stages of extrahepatic cholestasis.

    Science.gov (United States)

    Guedes, Pedro Luiz Rodrigues; Castañon, Maria Christina Marques Nogueira; Nagaoka, Márcia Regina; Aguiar, Jair Adriano Kopke de

    2014-01-01

    Cholestasis produces hepatocellular injury, leukocyte infiltration, ductular cells proliferation and fibrosis of liver parenchyma by extracellular matrix replacement. Analyze bile duct ligation effect upon glycosaminoglycans content and matrix metalloproteinase (MMPs) activities. Animals (6-8 weeks; n = 40) were euthanized 2, 7 or 14 days after bile duct ligation or Sham-surgery. Disease evolution was analyzed by body and liver weight, seric direct bilirubin, globulins, gamma glutamyl transpeptidase (GGT), alkaline phosphatase (Alk-P), alanine and aspartate aminotransferases (ALT and AST), tissue myeloperoxidase and MMP-9, pro MMP-2 and MMP-2 activities, histopathology and glycosaminoglycans content. Cholestasis caused cellular damage with elevation of globulins, GGT, Alk-P, ALT, AST. There was neutrophil infiltration observed by the increasing of myeloperoxidase activity on 7 (P = 0.0064) and 14 (P = 0.0002) groups which leads to the magnification of tissue injuries. Bile duct ligation increased pro-MMP-2 (P = 0.0667), MMP-2 (P = 0.0003) and MMP-9 (P<0.0001) activities on 14 days indicating matrix remodeling and establishment of inflammatory process. Bile duct ligation animals showed an increasing on dermatan sulfate and/or heparan sulfate content reflecting extracellular matrix production and growing mitosis due to parenchyma depletion. Cholestasis led to many changes on rats' liver parenchyma, as so as on its extracellular matrix, with major alterations on MMPs activities and glycosaminoglycans content.

  7. Nonsteroidal anti-inflammatory drugs modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways

    Science.gov (United States)

    Mozolewski, Paweł; Moskot, Marta; Jakóbkiewicz-Banecka, Joanna; Węgrzyn, Grzegorz; Bocheńska, Katarzyna; Banecki, Bogdan; Gabig-Cimińska, Magdalena

    2017-01-01

    In this report, selected non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin and nimesulide, and analgesics acetaminophen, alone, as well as in combination with isoflavone genistein as potential glycosaminoglycan (GAG) metabolism modulators were considered for the treatment of mucopolysaccharidoses (MPSs) with neurological symptoms due to the effective blood-brain barrier (BBB) penetration properties of these compounds. We found that indomethacin and nimesulide, but not acetaminophen, inhibited GAG synthesis in fibroblasts significantly, while the most pronounced impairment of glycosaminoglycan production was observed after exposure to the mixture of nimesulide and genistein. Phosphorylation of the EGF receptor (EGFR) was inhibited even more effective in the presence of indomethacin and nimesulide than in the presence of genistein. When examined the activity of phosphatidylinositol-3-kinase (PI3K) production, we observed its most significant decrease in the case of fibroblast exposition to nimesulide, and afterwards to indomethacin and genistein mix, rather than indomethacin used alone. Some effects on expression of individual GAG metabolism-related and lysosomal function genes, and significant activity modulation of a number of genes involved in intracellular signal transduction pathways and metabolism of DNA and proteins were detected. This study documents that NSAIDs, and their mixtures with genistein modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways. PMID:28240227

  8. In vitro effects of genistein on the synthesis and distribution of glycosaminoglycans/proteoglycans by estrogen receptor-positive and -negative human breast cancer epithelial cells.

    Science.gov (United States)

    Mitropoulou, Theoni N; Tzanakakis, George N; Nikitovic, Dragana; Tsatsakis, Aristidis; Karamanos, Nikos K

    2002-01-01

    Genistein, a soy isoflavone, affects the proliferation of both estrogen receptor (ER)-positive and ER-negative cancer cells. Glycosaminoglycans (GAGs)/proteoglycans (PGs) are considered to be of great importance in the treatment of cancer. The synthesis of GAGs by two human breast cancer epithelial cell lines, the ER-positive MCF-7 and the ER-negative BT-20, was studied under the effects of genistein, and their distribution in the culture medium and the cell membranes was determined. The results obtained show that both cell lines synthesize extracellular hyaluronic acid (HA) and both extracellular and cell-associated galactosaminoglycans (GalAGs) and heparan sulphate (HS). The MCF-7 cell line synthesizes HA, GalAGs and HS at considerably lower rates than the BT-20 cell line. The effect of genistein on the synthesis of extracellularly secreted GAGs/PGs by ER-positive MCF-7 cells is dose-dependent and follows two mechanisms; one at low concentrations (BT-20 cells is mediated by a PTK mechanism. It is concluded that genistein affects the synthesis of GAGs/PGs, by breast cancer epithelial cells depending on the presence or absence of estrogen receptor and the localisation of PGs.

  9. A heparin-like glycosaminoglycan from shrimp containing high levels of 3-O-sulfated D-glucosamine groups in an unusual trisaccharide sequence.

    Science.gov (United States)

    Chavante, Suely F; Brito, Adriana S; Lima, Marcelo; Yates, Edwin; Nader, Helena; Guerrini, Marco; Torri, Giangiacomo; Bisio, Antonella

    2014-05-22

    The detailed characterization of a novel heparin-like glycosaminoglycan purified from the viscera (heads) of the shrimp Litopenaeus vannamei is reported. Structural analysis performed by mono- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy revealed it to be rich in both glucuronic acid and N,6-sulfated glucosamine residues. The key peculiarities were its high 3-O-sulfated glucosamine content compared to mammalian heparins; a residue which is usually associated with the antithrombin (AT) binding site, and the location of these residues within 2-O-sulfated iduronate and glucuronate-containing sequences (I2S-A(∗)-G), a situation not found in mammalian heparin. It also exhibited higher molecular weight (∼36kDa) than conventional heparin (∼16kDa) but, negligible anticoagulant activity (∼5IU/mg compared to heparin ∼190IU/mg) and stabilization of AT, which has been linked directly to anticoagulation activity. A high affinity fraction, eluting at a similar salt concentration (0.75-1.5M NaCl) from an antithrombin affinity column, to the high affinity fraction of heparin, also showed only weak thermal stabilization of AT (+∼2°C). These structural peculiarities may help elucidate more clearly the relationship between structure and function of sulfated polysaccharides, and provide useful model compounds with which to better understand interactions of biological significance.

  10. Studies on molluscan glycosaminoglycans (GAG) from backwater clam Donax cuneatus (Linnaeus)

    Institute of Scientific and Technical Information of China (English)

    P Vijayabaskar; ST Somasundaram

    2012-01-01

    Objective: To investigate the potent and specific anticoagulant activity of molluscan glycosaminoglycans (GAGs) isolated from whole clam tissue Donax cuneatus (D. cuneatus). Methods: Purification of few milligram quantities of GAGs from this tissue sample permitted a thorough examination of its anticoagulant activity characterization, which was partially purified by fractionation by anion exchange chromatography using DEAE cellulose column. The isolated crude and partially purified fractionated sample was showing metachromatic shift while using azure-A. The sample also exhibited prominent of biological and anti-fXa anticoagulant activity assays. Mobility was analyzed by two different buffer systems using agarose gel electrophoresis.Results:The fractionated molluscan GAG was also found to have similar peaks as that of standard heparin when assessed by the FT-IR spectrum. Finally molecular weight was determined by the gradient PAGE for crude and fractionated-II GAG, which were found to be 65 000 Da and 50 000 Da, respectively. Conclusions: The bivalve GAG was subjected to fractionation for further purification and its chemical components were analyzed. The fractionated clam heparin also showed substantial in vitro anticoagulant activity than that of commercial heparins.

  11. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  12. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Sonia Lehri-Boufala

    Full Text Available The causes of Parkinson disease (PD remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD, the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

  13. The evaluation of endometrial sulfate glycosaminoglycans in women with polycystic ovary syndrome.

    Science.gov (United States)

    Giordano, Mario Vicente; Giordano, Luiz Augusto; Gomes, Regina Célia Teixeira; Simões, Ricardo Santos; Nader, Helena Bonciani; Giordano, Mario Gáspare; Baracat, Edmund Chada; Soares Júnior, José Maria

    2015-04-01

    The aim of this study was to quantify the sulfated glycosaminoglycans in the endometria of women with polycystic ovary syndrome (PCOS). Of the 18 patients recruited for this study, 10 patients with PCOS comprised the PCOS group (PCOSG), and eight patients with regular and ovulatory menstrual cycles comprised the control group (CG). The clinical, biochemical, morphological and endometrial data from both groups were analyzed. Biopsies were performed during the proliferative phase of the menstrual cycle for the CG and during the persistent proliferative phase for the PCOSG (all women were amenorrheic). In the PCOSG, there was a significant increase in the endometrial concentration levels of heparan sulfate (p = 0.03), but no difference in the concentrations of chondroitin sulfate was determined between the two groups (p = 0.77). Period of time without menstruation (p = 0.001) and body mass index (BMI) (p = 0.04) correlated directly and positively with heparan sulfate concentration. There was no association between heparan sulfate levels and basal insulin values (p = 0.08). High levels of endometrial heparan sulfate in women with PCOS indicate an interference with maternal-fetal recognition, which contributes to infertility; thus, endometrial heparan sulfate may be a predictive marker of future neoplasia risk.

  14. BODIPY-Conjugated Xyloside Primes Fluorescent Glycosaminoglycans in the Inner Ear of Opsanus tau.

    Science.gov (United States)

    Holman, Holly A; Tran, Vy M; Kalita, Mausam; Nguyen, Lynn N; Arungundram, Sailaja; Kuberan, Balagurunathan; Rabbitt, Richard D

    2016-12-01

    We report on a new xyloside conjugated to BODIPY, BX and its utility to prime fluorescent glycosaminoglycans (BX-GAGs) within the inner ear in vivo. When BX is administered directly into the endolymphatic space of the oyster toadfish (Opsanus tau) inner ear, fluorescent BX-GAGs are primed and become visible in the sensory epithelia of the semicircular canals, utricle, and saccule. Confocal and 2-photon microscopy of vestibular organs fixed 4 h following BX treatment, reveal BX-GAGs constituting glycocalyces that envelop hair cell kinocilium, nerve fibers, and capillaries. In the presence of GAG-specific enzymes, the BX-GAG signals are diminished, suggesting that chondroitin sulfates are the primary GAGs primed by BX. Results are consistent with similar click-xylosides in CHO cell lines, where the xyloside enters the Golgi and preferentially initiates chondroitin sulfate B production. Introduction of BX produces a temporary block of hair cell mechanoelectrical transduction (MET) currents in the crista, reduction in background discharge rate of afferent neurons, and a reduction in sensitivity to physiological stimulation. A six-degree-of-freedom pharmacokinetic mathematical model has been applied to interpret the time course and spatial distribution of BX and BX-GAGs. Results demonstrate a new optical approach to study GAG biology in the inner ear, for tracking synthesis and localization in real time.

  15. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan.

    Science.gov (United States)

    Gao, Zhenxing; Zhang, Huixia; Hu, Fei; Yang, Liheng; Yang, Xiaowen; Zhu, Ying; Sy, Man-Sun; Li, Chaoyang

    2016-06-01

    Whether the two N-linked glycans are important in prion, PrP, biology is unresolved. In Chinese hamster ovary (CHO) cells, the two glycans are clearly not important in the cell surface expression of transfected human PrP. Compared to fully-glycosylated PrP, glycan-deficient PrP preferentially partitions to lipid raft. In CHO cells glycan-deficient PrP also interacts with glycosaminoglycan (GAG) and vascular endothelial growth factor receptor 2 (VEGFR2), resulting in VEGFR2 activation and enhanced Akt phosphorylation. Accordingly, CHO cells expressing glycan-deficient PrP lacking the GAG binding motif or cells treated with heparinase to remove GAG show diminished Akt signaling. Being in lipid raft is critical, chimeric glycan-deficient PrP with CD4 transmembrane and cytoplasmic domains is absent in lipid raft and does not activate Akt signaling. CHO cells bearing glycan-deficient PrP also exhibit enhanced cellular adhesion and migration. Based on these findings, we propose a model in which glycan-deficient PrP, GAG, and VEGFR2 interact, activating VEGFR2 and resulting in changes in cellular behavior.

  16. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes.

    Science.gov (United States)

    Pae, Janely; Liivamägi, Laura; Lubenets, Dmitri; Arukuusk, Piret; Langel, Ülo; Pooga, Margus

    2016-08-01

    Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides.

  17. New Roles of Glycosaminoglycans in α-Synuclein Aggregation in a Cellular Model of Parkinson Disease

    Science.gov (United States)

    Lehri-Boufala, Sonia; Ouidja, Mohand-Ouidir; Barbier-Chassefière, Véronique; Hénault, Emilie; Raisman-Vozari, Rita; Garrigue-Antar, Laure; Papy-Garcia, Dulce; Morin, Christophe

    2015-01-01

    The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology. PMID:25617759

  18. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    Science.gov (United States)

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-10-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  19. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Holly A.; Nguyen, Lynn Y. [Bioengineering, University of Utah, Salt Lake City, Utah (United States); Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam [Medicinal Chemistry, University of Utah, Salt Lake City, Utah (United States); Kuberan, Balagurunathan [Medicinal Chemistry, University of Utah, Salt Lake City, Utah (United States); Neuroscience Program, University of Utah, Salt Lake City, Utah (United States); Rabbitt, Richard D. [Bioengineering, University of Utah, Salt Lake City, Utah (United States); Neuroscience Program, University of Utah, Salt Lake City, Utah (United States); Otolaryngology, University of Utah, Salt Lake City, Utah (United States); Marine Biological Laboratory, Woods Hole, Massachusetts (United States)

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  20. Optimization of papain hydrolysis conditions for release of glycosaminoglycans from the chicken keel cartilage

    Science.gov (United States)

    Le Vien, Nguyen Thi; Nguyen, Pham Bao; Cuong, Lam Duc; An, Trinh Thi Thua; Dao, Dong Thi Anh

    2017-09-01

    Glycosaminoglycans (GAGs) are natural biocompounds which join to construct cartilage tissuses, it can be extracted from cartilage of sharks, pigs, cows, chickens, etc. GAGs contain a Chondroitin sulfate (CS) content which is a supplement of functional food used for preventing and supporting treatment of arthritis and eye diseases. Therefore, the GAGs extraction from byproducts of the industry of cattle and poultry slaughter to identify the CS content by papain enzyme is necessary. In this study, the optimal hydrolysis conditions were obtained by response surface methodology (RSM). The independent variables were coded as: pH (x1), enzyme concentration (x2), incubation temperature (x3) and hydrolysis time (x4). The results of the analysis of variance (ANOVA) shown that the variables actively affected GAGs content. The optimal conditions of hydrolysis were derived at pH of 7.1, ratio of enzyme per substances of 0.62% w/wpo, temperature of 65°C and hydrolysis time of 230 minutes, GAGs content reached 14.3% of the dry matter of raw material. Analyzes by HPLC revealed that 56.17% of the dry preparations of GAGs were CS compound, were equivalent to 8.11% of the dry matter of chicken keel cartilage. Molecular weight of the dry preparations GAGs was 259.6 kDa. The dry preparations included the contents of moisture 12.2%, protein 8.42%, lipid 0%, ash 10.03% and extracted GAGs 69.35%.

  1. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin.

    Science.gov (United States)

    Werth, Benjamin Boegel; Bashir, Muhammad; Chang, Laura; Werth, Victoria P

    2011-01-01

    Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

  2. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin Boegel Werth

    Full Text Available Ultraviolet (UV light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS, but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S and 6-sulfated (C6S isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

  3. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Negroni, Elisa; Henault, Emilie; Chevalier, Fabien; Gilbert-Sirieix, Marie; Van Kuppevelt, Toin H; Papy-Garcia, Dulce; Uzan, Georges; Albanese, Patricia

    2014-08-01

    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and excessive accumulation of extracellular matrix (ECM). Sulfated glycosaminoglycans (GAGs) are components of the ECM and are increasingly implicated in the regulation of biologic processes, but their possible role in the progression of DMD pathology is not understood. In the present study, we performed immunohistochemical and biochemical analyses of endogenous GAGs in skeletal muscle biopsies of 10 DMD patients and 11 healthy individuals (controls). Immunostaining targeted to specific GAG species showed greater deposition of chondroitin sulfate (CS)/dermatan (DS) sulfate in DMD patient biopsies versus control biopsies. The selective accumulation of CS/DS in DMD biopsies was confirmed by biochemical quantification assay. In addition, high-performance liquid chromatography analysis demonstrated a modification of the sulfation pattern of CS/DS disaccharide units in DMD muscles. In conclusion, our data open up a new path of investigation and suggest that GAGs could represent a new and original therapeutic target for improving the success of gene or cell therapy for the treatment of muscular dystrophies.

  4. Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies.

    Science.gov (United States)

    Chevalier, Fabien; Lavergne, Mélanie; Negroni, Elisa; Ferratge, Ségolène; Carpentier, Gilles; Gilbert-Sirieix, Marie; Siñeriz, Fernando; Uzan, Georges; Albanese, Patricia

    2014-05-01

    Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.

  5. Platelet-derived growth factor-BB-mediated glycosaminoglycan synthesis is transduced through Akt.

    Science.gov (United States)

    Cartel, Nicholas J; Wang, Jinxia; Post, Martin

    2002-04-01

    Previously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation. The PI-3K inhibitor wortmannin blocked PDGF-BB-induced Akt activity as well as significantly diminishing PDGF-BB-mediated GAG synthesis. Expression of dominant-negative PI-3K also abrogated Akt activity and GAG synthesis. Furthermore, expression of dominant-negative Akt abrogated endogenous Akt activity, Rab3D phosphorylation and GAG synthesis, whereas expression of constitutively activated Akt stimulated Rab3D phosphorylation and GAG synthesis in the absence of PDGF-BB. Over-expression of wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) inhibited Akt activity and concomitantly attenuated GAG synthesis in fibroblasts stimulated with PDGF-BB. These data suggest that Akt is an integral protein involved in PDGF-BB-mediated GAG regulation in fetal lung fibroblasts.

  6. Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM-negative cell lines.

    Science.gov (United States)

    Terao-Muto, Yuri; Yoneda, Misako; Seki, Takahiro; Watanabe, Akira; Tsukiyama-Kohara, Kyoko; Fujita, Kentaro; Kai, Chieko

    2008-12-01

    The wide tissue tropism of the measles virus (MV) suggests that it involves ubiquitously expressed molecules. We have constructed a recombinant MV expressing the enhanced green fluorescent protein (EGFP) (rMV-EGFP) and demonstrated that the rMV-EGFP infected several cell types (HEK-293, HepG2, Hep3B, Huh7, and WRL68 cells) that do not express the human signalling lymphocyte activation molecule (SLAM), which is known as a cellular receptor for morbilliviruses. MV infection of HEK-293 and HepG2 cells was not inhibited in an infectivity-inhibition assay using an anti-SLAM monoclonal antibody, indicating that MV could infect cells without using SLAM. Soluble heparin (HP) inhibited the rMV-EGFP infectivity in SLAM-negative cell lines in a dose-dependent manner. Direct interaction between purified virions and HP was detected in a surface plasmon resonance assay. We also demonstrated that the hemagglutinin (H) protein, but not the fusion (F) protein is responsible for the interaction between the virions and HP. Taken together, our results suggest that HP-like glycosaminoglycans bind to the H protein of MV and play a key role in the infection of SLAM-negative cells.

  7. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    Directory of Open Access Journals (Sweden)

    Christine eDELBARRE-LADRAT

    2014-10-01

    Full Text Available Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity.Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs.On the other hand, microorganisms producing exopolysaccharides (EPS are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts.EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  8. Glycosaminoglycans analogues from marine invertebrates: structure, biological effects and potential as new therapeutics.

    Directory of Open Access Journals (Sweden)

    Mauro Sergio Pavao

    2014-09-01

    Full Text Available In this review, several glycosaminoglycan analogs obtained from different marine invertebrate are reported. The structure, biological activity and mechanism of action of these unique molecules are detailed reviewed and exemplified by experiments in vitro and in vivo. Among the glycans studied are low-sulfated heparin-like polymers from ascidians, containing significant anticoagulant activity and no bleeding effect; dermatan sulfates with significant neurite outgrowth promoting activity and anti-P-selectin from ascidians, and a unique fucosylated chondroitin sulfate from sea cucumbers, possessing anticoagulant activity after oral administration and high anti P- and L-selectin activities. The therapeutic value and safety of these invertebrate glycans have been extensively proved by several experimental animal models of diseases, including thrombosis, inflammation and metastasis. These invertebrate glycans can be obtained in high concentrations from marine organisms that have been used as a food source for decades, and usually obtained from marine farms in sufficient quantities to be used as starting material for new therapeutics.

  9. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Hannesson, Kirsten O; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; Bæverfjord, Grete; Pedersen, Mona E

    2015-08-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.

  10. Applications of capillary electrophoresis electrospray ionization mass spectrometry in glycosaminoglycan analysis.

    Science.gov (United States)

    Zamfir, Alina D

    2016-04-01

    Proteoglycans (PGs) represent a class of heavily glycosylated proteins distributed in the extracellular matrix, connective tissues, and on the surface of many cell types where, as functional molecules, regulate important biological processes. Structurally, PGs consist of a core protein linked to glycosaminoglycan (GAG) chains, which basically determine the properties and activities of PGs. In view of the structural complexity of GAGs and the existing correlation between this structure and PG functions, systematic efforts are invested into development of analytical methods for GAG characterization. Although less popular and of higher technical difficulty than liquid-based chromatographic methods, CE coupled with ESI MS contributed lately an important progress to glycosaminoglycomics field. In this review article, the most significant CE ESI MS and MS/MS applications in GAG research are highlighted and critically assessed. The advantages and the limitations of each concept as well as the possible further methodological refinements are also concisely discussed. Finally, the review presents the perspectives of CE ESI MS in GAG analysis along with the objectives, which still need to be reached in the near future.

  11. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    Science.gov (United States)

    Holman, Holly A.; Tran, Vy M.; Nguyen, Lynn Y.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-01

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  12. Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber Stichopus hermanni and Stichopus vastus.

    Science.gov (United States)

    Masre, Siti Fathiah; Yip, George W; Sirajudeen, K N S; Ghazali, Farid Che

    2012-01-01

    Stichopus hermanni and Stichopus vastus are sea cucumber species from the Stichopodidae family within the coastal waters of Malaysia. The integument of these invertebrates is hypothesised to contain abundant glycosaminoglycans (GAGs). GAGs are divided into non-sulphated and sulphated GAGs. Sulphated GAGs have various chemico-biological functions that are beneficial to humans. This study quantitatively analysed N-, O-sulphated and total sulphated GAG content from three different anatomical regions (integument, internal organs and coelomic fluid) of S. hermanni and S. vastus. The integument revealed the highest content of total, O- and N-sulphated GAGs, followed by the internal organs and the coelomic fluid for both species of sea cucumbers. The percentage division of O- and N-sulphated GAGs suggested that anatomical parts of both species showed higher levels of O-sulphated GAGs compared to N-sulphated GAGs. In conclusion, these findings indicate that the integument body wall of S. hermanni and S. vastus is a rich source of sulphated GAGs.

  13. Clinical efficacy observation of benzoyl peroxide combining with mucopolysaccharide polysulfate in the treatment of vulgaris acne%过氧化苯甲酰联合多磺酸黏多糖治疗寻常痤疮疗效观察

    Institute of Scientific and Technical Information of China (English)

    王颖

    2015-01-01

    Objective:To observe the therapeutic effects of benzoyl peroxide combining with mucopolysaccharide polysulfate on vulgaris acne.Methods:126 patients with mild to moderate acne were randomized divided into two groups.The group A was treated with benzoyl peroxide gel combined mucopolysaccharide polysulfate cream.The group B was only treated with benzoyl peroxide gel,the treatment course was 8 weeks,and the therapeutic effects of the two groups were comared.Results:The total effective rate of the group A was 80.95% and that of the group B was 63.49%.The remains of erythema or nodule or scar in group A were less than that of the group B.There were differences of the total effective rate and the prognosis between the two groups(P<0.05). Conclusion:Benzoyl peroxide gel combined with mucopolysaccharide polysulfate cream in the treatment of vulgaris acne was more effective and made better prognosis.%目的:观察过氧化苯甲酰联合多磺酸黏多糖治疗寻常痤疮的临床疗效。方法:2011年1月-2014年3月收治寻常痤疮患者126例,随机分为两组。A组采用多磺酸黏多糖乳膏联合过氧化苯甲酰凝胶治疗,B组采用过氧化苯甲酰凝胶,疗程均8周,比较两组的治疗效果。结果:A组总有效率80.95%,B组总有效率63.49%。A组褐红斑、结节及瘢痕的遗留少于B组。两组患者治疗的总有效率及预后比较,差异均有统计学意义(P<0.05)。结论:过氧化苯甲酰凝胶联合多磺酸黏多糖乳膏治疗寻常痤疮效果较好,并能有效改善预后。

  14. 刺参黏多糖对Hela细胞增殖分化的影响%EFFECT OF STICHOPUS JAPONICUS ACIDIC MUCOPOLYSACCHARIDE ON PROLIFERATION AND DIFFERENTIATION OF Hela CELLS

    Institute of Scientific and Technical Information of China (English)

    彭玲; 于壮; 宋扬

    2008-01-01

    目的 了解刺参酸性黏多糖(SJAMP)对Hela细胞增殖、分化的影响及其机制.方法 体外培养Hela细胞,通过MTT法观察SJAMP对Hela细胞增殖的作用,电镜观察SJAMP作用下Hela细胞超微结构的变化,RT-PCR法检测Hela细胞CyclinD1、CDK4、C-myc的mRNA的表达.结果 SJAMP能够有效抑制Hela细胞的增殖,并且具有剂量和时间依赖关系.透射电镜观察显示,SJAMP可诱导细胞向成熟细胞分化;SJAMP可以明显降低CyclinD1、CDK4、C-myc的mRNA表达.结论 SJAMP可能是通过抑制细胞周期因子CyclinD1和CDK4的表达而抑制细胞增殖,通过抑制癌基因C-myc的表达来诱导Hela细胞分化.

  15. Prognostic value of plasma and urine glycosaminoglycan scores in clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Francesco Gatto

    2016-11-01

    Full Text Available The prognosis of metastatic clear cell renal cell carcinoma (ccRCC vastly improved since the introduction of antiangiogenic targeted therapy. However, it is still unclear which biological processes underlie ccRCC aggressiveness and affect prognosis. Here, we checked whether a recently discovered systems biomarker based on plasmatic or urinary measurements of glycosaminoglycans aggregated into diagnostic scores correlated with ccRCC prognosis.Thirty-one patients with a diagnosis of ccRCC (23 metastatic were prospectively enrolled and their urine and plasma biomarker scores were correlated to progression-free survival (PFS and overall survival (OS as either a dichotomous (Low vs. High or a continuous variable in a multivariate survival analysis.The survival difference between High vs. Low-scored patients was significant in the case of urine scores (2-year PFS rate = 53.3% vs. 100%, p = 310-4 and 2-year OS rate = 73.3% vs. 100%, p = 0.0078 and in the case of OS for plasma scores (2-year PFS rate = 60% vs. 84%, p = 0.0591 and 2-year OS rate = 66.7% vs. 90%, p = 0.0206. In multivariate analysis, the urine biomarker score was an independent predictor of PFS (HR: 4.62, 95% CI: 1.66 to 12.83, p = 0.003 and OS (HR: 10.13, 95% CI: 1.80 to 57.04, p = 0.009.This is the first report on an association between plasma or urine GAG scores and the prognosis of ccRCC patients. Prospective trials validating the prognostic and predictive role of this novel systems biomarker are warranted.

  16. Safranin O reduces loss of glycosaminoglycans from bovine articular cartilage during histological specimen preparation.

    Science.gov (United States)

    Király, K; Lammi, M; Arokoski, J; Lapveteläinen, T; Tammi, M; Helminen, H; Kiviranta, I

    1996-02-01

    The ability of Safranin O, added to fixation and decalcification solutions, to prevent the escape of glycosaminoglycans (GAGs) from small cartilage tissue blocks during histological processing of cartilage has been studied. GAGs in the fixatives and decalcifying solutions used and those remaining in the 1 mm3 cubes of cartilage were assayed biochemically. The quantity of GAGs remaining in the cartilage cubes were determined from Safranin O-stained sections using videomicroscopy or microspectrophotometry. A quantity (10.6%) of GAGs were lost during a conventional 4% buffered formaldehyde fixation (48 h) and a subsequent decalcification in 10% EDTA (12 days) at 4 degrees C. Roughly one-quarter of the total GAG loss occurred during the 48 h fixation, and three-quarters during the 12 days of decalcification. Inclusion of 4% formaldehyde in the decalcification fluid decreased the loss of GAGs to 6.2%. The presence of 0.5% Safranin O in the fixative reduced this loss to 3.4%. When 0.5% Safranin O was included in the fixative and 4% formaldehyde in the decalcification solution, Safranin O staining of the histological sections increased on average by 13.5%. After fixation in the presence of 0.5% Safranin O, there was no difference in the staining intensities when decalcification was carried out in the presence of either Safranin O or formaldehyde, or both. It took 24 h for Safranin O to penetrate into the deep zone of articular cartilage, warranting a fixation period of at least this long. In conclusion, the addition of Safranin O to the fixative and either Safranin O or formaldehyde in the following decalcification fluid, markedly reduces the loss of GAGs from small articular cartilage explants during histological processing. However, for immunohistochemical studies, Safranin O cannot be included in the processing solutions, because it may interfere.

  17. Sulphated glycosaminoglycans (S-GAGs) and syndecans in the bovine oviduct.

    Science.gov (United States)

    Bergqvist, Ann-Sofi; Rodríguez-Martínez, Heriberto

    2006-06-01

    In vivo, bull sperm capacitation seems to occur mainly in the oviduct. Capacitation of bull spermatozoa can be triggered in vitro by exposure to heparin, a heavily sulphated glycosaminoglycan (S-GAG). We determined the concentration of S-GAGs in oviductal fluid from dairy heifers, collected over the course of several oestrous cycles via surgically implanted intraluminal catheters. We also investigated the presence of syndecans, i.e. heparan sulphate proteoglycans, in the bovine oviductal epithelium of Swedish dairy cattle during standing oestrus and the luteal phase of the oestrous cycle, using immunohistochemistry for three different polyclonal antibodies raised against human syndecan-2 and rat syndecan-1 and syndecan-2, respectively. The concentration of S-GAGs in oviductal fluid obtained from the ampullar segment of the oviduct was significantly higher (P=0.0026) than it was in fluid from the isthmic segment during the functional period, i.e. from prooestrus to metaoestrus (73.5+/-10.49 mg/L in ampullar ODF, compared to 43.2+/-10.74 mg/L in isthmic ODF); least square mean (L.S.M.)+/-standard error of the mean (S.E.M.). There was also a significantly higher concentration of S-GAGs in the fluid from the oviduct ipsilateral to the ovulation side 73.5+/-10.54 mg/L on the ovulation side, compared to 43.1+/-10.71 mg/L in the oviduct on the contralateral side (L.S.M.+/-S.E.M., P=0.0026) during this period. Both syndecan-1 and syndecan-2 were present in the epithelial cells lining all studied segments of the bovine oviduct, i.e. the UTJ, isthmus and ampulla, during both standing oestrus and dioestrus. The syndecans and S-GAGs found may influence the gametes, while they reside in the oviduct; the amounts of S-GAGs found in the bovine oviduct seem sufficient to act as capacitating factors in vivo.

  18. The composition of hydrogels for cartilage tissue engineering can influence glycosaminoglycan profile

    Directory of Open Access Journals (Sweden)

    QG Wang

    2010-02-01

    Full Text Available The injectable and hydrophilic nature of hydrogels makes them suitable candidates for cartilage tissue engineering. To date, a wide range of hydrogels have been proposed for articular cartilage regeneration but few studies have quantitatively compared chondrocyte behaviour and extracellular matrix (ECM synthesis within the hydrogels. Herein we have examined the nature of ECM synthesis by chondrocytes seeded into four hydrogels formed by either temperature change, self-assembly or chemical cross-linking. Bovine articular cartilage chondrocytes were cultured for 14 days in Extracel®, Pluronic F127 blended with Type II collagen, Puramatrix® and Matrixhyal®. The discriminatory and sensitive technique of fluorophore-assisted carbohydrate electrophoresis (FACE was used to determine the fine detail of the glycosaminoglycans (GAG; hyaluronan and chondroitin sulphate. FACE analysis for chondroitin sulphate and hyaluronan profiles in Puramatrix® closely matched that of native cartilage. For each hydrogel, DNA content, viability and morphology were assessed. Total collagen and total sulphated GAG production were measured and normalised to DNA content. Significant differences were found in total collagen synthesis. By day 14, Extracel® and Puramatrix® had significantly more total collagen than Matrixhyal® (1.77±0.26 µg and 1.97±0.26 µg vs. 0.60±0.26 µg; p<0.05. sGAG synthesis occurred in all hydrogels but a significantly higher amount of sGAG was retained within Extracel® at days 7 and 14 (p<0.05. In summary, we have shown that the biochemical and biophysical characteristics of each hydrogel directly or indirectly influenced ECM formation. A detailed understanding of the ECM in the development of engineered constructs is an important step in monitoring the success of cartilage regeneration strategies.

  19. Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others.

    Science.gov (United States)

    Caterson, Bruce

    2012-02-01

    This review emphasizes the importance of glycobiology in nature and aims to highlight, simplify and summarize the multiple functions and structural complexities of the different oligosaccharide combinatorial domains that are found in chondroitin sulphate/dermatan sulphate (CS/DS) glycosaminoglycan (GAG) chains. For example, there are 1008 different pentasaccharide sequences possible within CS, DS or CS/DS hybrid GAG chains. These combinatorial possibilities provide numerous potential ligand-binding domains that are important for cell and extracellular matrix interactions as well as specific associations with cytokines, chemokines, morphogens and growth factors that regulate cellular differentiation and proliferation during tissue development, for example, morphogen gradient establishment. The review provides some details of the large and diverse number of different enzymes that are involved in CS/DS biosynthesis and attempts to explain how differences in their expression patterns in different cell types can lead to subtle but important differences in the GAG metabolism that influence cellular proliferation and differentiation in development as well as regeneration and repair in disease. Our laboratory was the first to generate and characterize monoclonal antibodies (mAb) that very specifically recognize different ‘native’ sulphation motif/epitopes in CS/DS GAG chains. These monoclonal antibodies have been used to identify very specific spatio-temporal expression patterns of CS/DS sulphation motifs that occur during tissue and organ development (in particular their association with stem/progenitor cell niches) and also their recapitulated expression in adult tissues with the onset of degenerative joint diseases. In summary, diversity in CS/DS sulphation motif expression is a very important necessity for animal life as we know it.

  20. Capillary electrophoresis of heparin and other glycosaminoglycans using a polyamine running electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Loegel, Thomas N.; Trombley, John D.; Taylor, Richard T. [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States); Danielson, Neil D., E-mail: danielnd@muohio.edu [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Ethylenediamine is likely acting as an ion-pairing agent. Black-Right-Pointing-Pointer Oversulfated chondroitin sulfate is last peak instead of first peak. Black-Right-Pointing-Pointer There is about a factor of five improved detectability with a 12.5 min analysis time. Black-Right-Pointing-Pointer Use of a 50 {mu}m ID capillary is possible. - Abstract: This study involves the use of polyamines as potential resolving agents for the capillary electrophoresis (CE) of glycosaminoglycans (GAGs), specifically heparin, dermatan sulfate, chondroitin sulfate, over-sulfated chondroitin sulfate (OSCS), and hyaluronan. All of the compounds can be separated from each other with the exception of chondroitin sulfate and hyaluronan. Using optimization software, the final run conditions are found to be 200 mM ethylenediamine and 45.5 mM phosphate as the electrolyte with -14 V applied across a 50 {mu}m ID Multiplication-Sign 24.5 cm fused silica capillary at 15 Degree-Sign C. The ion migration order, with OSCS as the last instead of the first peak, is in contrast to previous reports using either a high molarity TRIS or lithium phosphate run buffer with narrower bore capillaries. Total analysis time is 12. 5 min and the relative standard deviation of the heparin migration time is about 2.5% (n = 5). The interaction mechanism between selected polyamines and heparin is explored using conductivity measurements in addition to CE experiments to show that an ion-pairing mechanism is likely.

  1. Xylosyltransferase-I regulates glycosaminoglycan synthesis during the pathogenic process of human osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Narayanan Venkatesan

    Full Text Available Loss of glycosaminoglycan (GAG chains of proteoglycans (PGs is an early event of osteoarthritis (OA resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as "normal", "late-stage" or adjacent to "late-stage". The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically "normal" unaffected regions, while decreased in "late-stage" OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage "next to lesion" while a decrease in the "late-stage" OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1β and up-regulated by TGF-β1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1β receptor (IL-1R1 was down-regulated whereas that of TGF-β1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA.

  2. Xylosyltransferase-I regulates glycosaminoglycan synthesis during the pathogenic process of human osteoarthritis.

    Science.gov (United States)

    Venkatesan, Narayanan; Barré, Lydia; Bourhim, Mustapha; Magdalou, Jacques; Mainard, Didier; Netter, Patrick; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2012-01-01

    Loss of glycosaminoglycan (GAG) chains of proteoglycans (PGs) is an early event of osteoarthritis (OA) resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I) that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as "normal", "late-stage" or adjacent to "late-stage". The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically "normal" unaffected regions, while decreased in "late-stage" OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage "next to lesion" while a decrease in the "late-stage" OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1β and up-regulated by TGF-β1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1β receptor (IL-1R1) was down-regulated whereas that of TGF-β1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA.

  3. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity.

    Directory of Open Access Journals (Sweden)

    Dhiraj Acharya

    Full Text Available Chikungunya virus (CHIKV is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal or C6/36 cells (mosquito through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKV mos has slower replication than mammalian cell-derived CHIKV (CHIKV vero, when tested in both human and murine cell lines. Consistent with this, CHIKV mos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKV mos produces a lower level of viremia and less severe footpad swelling when compared with CHIKV vero. Interestingly, CHIKV mos has impaired ability to bind to glycosaminoglycan (GAG receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKV mos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKV vero after a single passage in mammalian cells. Furthermore, CHIKV vero and CHIKV mos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells.

  4. TAT-mediated intracellular protein delivery to primary brain cells is dependent on glycosaminoglycan expression.

    Science.gov (United States)

    Simon, Melissa J; Gao, Shan; Kang, Woo Hyeun; Banta, Scott; Morrison, Barclay

    2009-09-01

    Although some studies have shown that the cell penetrating peptide (CPP) TAT can enter a variety of cell lines with high efficiency, others have observed little or no transduction in vivo or in vitro under conditions mimicking the in vivo environment. The mechanisms underlying TAT-mediated transduction have been investigated in cell lines, but not in primary brain cells. In this study we demonstrate that transduction of a green fluorescent protein (GFP)-TAT fusion protein is dependent on glycosaminoglycan (GAG) expression in both the PC12 cell line and primary astrocytes. GFP-TAT transduced PC12 cells and did so with even higher efficiency following NGF differentiation. In cultures of primary brain cells, TAT significantly enhanced GFP delivery into astrocytes grown under different conditions: (1) monocultures grown in serum-containing medium; (2) monocultures grown in serum-free medium; (3) cocultures with neurons in serum-free medium. The efficiency of GFP-TAT transduction was significantly higher in the monocultures than in the cocultures. The GFP-TAT construct did not significantly enter neurons. Experimental modulation of GAG content correlated with alterations in TAT transduction in PC12 cells and astrocyte monocultures grown in the presence of serum. In addition, this correlation was predictive of TAT-mediated transduction in astrocyte monocultures grown in serum free medium and in coculture. We conclude that culture conditions affect cellular GAG expression, which in turn dictates TAT-mediated transduction efficiency, extending previous results from cell lines to primary cells. These results highlight the cell-type and phenotype-dependence of TAT-mediated transduction, and underscore the necessity of controlling the phenotype of the target cell in future protein engineering efforts aimed at creating more efficacious CPPs.

  5. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    Science.gov (United States)

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  6. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: An in vitro study.

    Science.gov (United States)

    Mohan, Neethu; Wilson, Jijo; Joseph, Dexy; Vaikkath, Dhanesh; Nair, Prabha D

    2015-12-01

    The study investigated the potential of electrospun fiber assembled hydrogel, with physical gradients of chondroitin sulfate (CS) and sol-gel-derived bioactive glass (BG), to engineer hyaline and mineralized cartilage in a single 3D system. Electrospun poly(caprolactone) (PCL) fibers incorporated with 0.1% w/w of CS (CSL) and 0.5% w/w of CS (CSH), 2.4% w/w of BG (BGL) and 12.5% w/w of BG (BGH) were fabricated. The CS showed a sustained release up to 3 days from CSL and 14 days from CSH fibers. Chondrocytes secreted hyaline like matrix with higher sulfated glycosaminoglycans (sGAG), collagen type II and aggrecan on CSL and CSH fibers. Mineralization was observed on BGL and BGH fibers when incubated in simulated body fluid for 14 days. Chondrocytes cultured on these fibers secreted a mineralized matrix that consisted of sGAG, hypertrophic proteins, collagen type X, and osteocalcin. The CS and BG incorporated PCL fiber mats were assembled in an agarose-gelatin hydrogel to generate a 3D hybrid scaffold. The signals in the fibers diffused and generated continuous opposing gradients of CS (chondrogenic signal) and BG (mineralization) in the hydrogel. The chondrocytes were encapsulated in hybrid scaffolds; live dead assay at 48 h showed viable cells. Cells maintained their phenotype and secreted specific extracellular matrix (ECM) in response to signals within the hydrogel. Continuous opposing gradients of sGAG enriched and mineralized ECM were observed surrounding each cell clusters on gradient hydrogel after 14 days of culture in response to the physical gradients of raw materials CS and BG. A construct with gradient mineralization might accelerate integration to subchondral bone during in vivo regeneration.

  7. Sulfated glycosaminoglycans from crown-of-thorns Acanthaster planci - extraction and quantification analysis.

    Science.gov (United States)

    Bahrom, Nur Afiqah; Sirajudeen, Kns; Yip, George W; Latiff, Aishah A; Ghazali, Farid Che

    2013-01-01

    In this article, the novel inventive steps for the extraction and quantification of sulfated glycosaminoglycan (GAG) from Acanthaster planci starfish, generally known as crown-of-thorns (COT), are reported. Starfish have been implicated with collagenous distributions within their body anatomy, thus making it a prima facie fact searching for the possibility that GAGs can be isolated from COT. In this study, total-, N-, and O-sulfated GAGs were extracted from three anatomical regions of the COT (integument, internal tissue, and coelomic fluid) and comparison was made. The result showed that body region of COT seemed to contain higher amount of sulfated GAGs as opposed to the arm region (55.79 ± 0.65 μg/mg was the highest amount in the body extracted from its coelomic fluid and 32.28 ± 3.14 μg/mg was the highest amount in the arm extracted from its internal tissue). COT's integument and coelomic fluid from its body region possessed the highest total of sulfated GAGs content with no significant difference (P < 0.05) between the two. All GAGs from COT comprised a higher percentage of N-sulfated GAGs than its counterpart, the O-sulfated GAGs. When compared with a similar previous study that used sea cucumbers as the sulfated GAGs source, COT possessed more total sulfated GAGs content per milligram as compared with the sea cucumber generally. This result seems to unveil this marine species' advantage per se pertaining to GAGs extraction biomass applicability. Thus, COT could now be the better alternative source for production technology of total-, N-, and O-sulfated GAGs.

  8. Turnover of sulfated glycosaminoglycans in fibroblasts derived from patients with Werner's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, E.A.; Brauker, J.H.; Anderson, R.L.

    1987-02-01

    Fibroblasts derived from patients with Werner's syndrome (WS) were incubated with radioactive sulfate to study the incorporation of 35S into glycosaminoglycans (GAGs). The accumulation of cell-associated 35S radioactivity in the GAGs of WS fibroblasts was consistently higher than parallel accumulation in normal human fibroblasts, but was substantially less than in fibroblasts derived from patients with Hurler's syndrome (HS). However, when fibroblasts were labeled with 35SO4(2-), trypsinized to remove extracellular and pericellular radioactive GAGs, replated, and chased to follow the fate of the intracellular radioactivity, both WS and normal cells showed a rapid release of the intracellular 35S, while HS cells showed little or no loss of intracellular radioactivity. The radioactivity released from WS and normal cells was of low molecular weight (LMW), eluting from gel filtration columns at the same position as free sulfate. These results establish that WS cells degrade intracellular sulfated GAGs and argue against the hypothesis that a defect in GAG degradation pathways is the basis for the increased level of cell-associated GAGs. Other possible explanations for the increased cell-associated (35S)GAGs in WS cells as compared with normal cells were also considered: increased GAG sulfation; an increase in GAG chain length; an increased rate of GAG synthesis; and a decreased rate of shedding of cell surface proteoglycan into the medium. No difference between normal and WS fibroblasts in any of the above parameters was observed. These results strongly imply that the primary biochemical defect in WS fibroblasts does not involve sulfated GAG metabolism.

  9. Negative Electron Transfer Dissociation Sequencing of Increasingly Sulfated Glycosaminoglycan Oligosaccharides on an Orbitrap Mass Spectrometer

    Science.gov (United States)

    Leach, Franklin E.; Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.; Amster, I. Jonathan

    2017-09-01

    The structural characterization of sulfated glycosaminoglycan (GAG) carbohydrates remains an important target for analytical chemists attributable to challenges introduced by the natural complexity of these mixtures and the defined need for molecular-level details to elucidate biological structure-function relationships. Tandem mass spectrometry has proven to be the most powerful technique for this purpose. Previously, electron detachment dissociation (EDD), in comparison to other methods of ion activation, has been shown to provide the largest number of useful cleavages for de novo sequencing of GAG oligosaccharides, but such experiments are restricted to Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS). Negative electron transfer dissociation (NETD) provides similar fragmentation results, and can be achieved on any mass spectrometry platform that is designed to accommodate ion-ion reactions. Here, we examine for the first time the effectiveness of NETD-Orbitrap mass spectrometry for the structural analysis of GAG oligosaccharides. Compounds ranging in size from tetrasaccharides to decasaccharides were dissociated by NETD, producing both glycosidic and cross-ring cleavages that enabled the location of sulfate modifications. The highly-sulfated, heparin-like synthetic GAG, ArixtraTM, was also successfully sequenced by NETD. In comparison to other efforts to sequence GAG chains without fully ionized sulfate constituents, the occurrence of sulfate loss peaks is minimized by judicious precursor ion selection. The results compare quite favorably to prior results with electron detachment dissociation (EDD). Significantly, the duty cycle of the NETD experiment is sufficiently short to make it an effective tool for on-line separations, presenting a straightforward path for selective, high-throughput analysis of GAG mixtures. [Figure not available: see fulltext.

  10. Identification of the Glycosaminoglycan Binding Site of Interleukin-10 by NMR Spectroscopy.

    Science.gov (United States)

    Künze, Georg; Köhling, Sebastian; Vogel, Alexander; Rademann, Jörg; Huster, Daniel

    2016-02-05

    The biological function of interleukin-10 (IL-10), a pleiotropic cytokine with an essential role in inflammatory processes, is known to be affected by glycosaminoglycans (GAGs). GAGs are highly negatively charged polysaccharides and integral components of the extracellular matrix with important functions in the biology of many growth factors and cytokines. The molecular mechanism of the IL-10/GAG interaction is unclear. In particular, experimental evidence about IL-10/GAG binding sites is lacking, despite its importance for understanding the biological role of the interaction. Here, we report the experimental determination of a GAG binding site of IL-10. Although no co-crystal structure of the IL-10·GAG complex could be obtained, its structural characterization was possible by NMR spectroscopy. Chemical shift perturbations of IL-10 induced by GAG binding were used to narrow down the location of the binding site and to assess the affinity for different GAG molecules. Subsequent observation of NMR pseudocontact shifts of IL-10 and its heparin ligand, as induced by a protein-attached lanthanide spin label, provided structural restraints for the protein·ligand complex. Using these restraints, pseudocontact shift-based rigid body docking together with molecular dynamics simulations yielded a GAG binding model. The heparin binding site is located at the C-terminal end of helix D and the adjacent DE loop and coincides with a patch of positively charged residues involving arginines 102, 104, 106, and 107 and lysines 117 and 119. This study represents the first experimental characterization of the IL-10·GAG complex structure and provides the starting point for revealing the biological significance of the interaction of IL-10 with GAGs.

  11. Identification and characterization of a glycosaminoglycan binding site on interleukin-10 via molecular simulation methods.

    Science.gov (United States)

    Gehrcke, Jan-Philip; Pisabarro, M Teresa

    2015-11-01

    The biological function of the pleiotropic cytokine interleukin-10 (IL-10), which has an essential role in inflammatory processes, is known to be affected by glycosaminoglycans (GAGs). GAGs are essential constituents of the extracellular matrix with an important role in modulating the biological function of many proteins. The molecular mechanisms governing the IL-10-GAG interaction, though, are unclear so far. In particular, detailed knowledge about GAG binding sites and recognition mode on IL-10 is lacking, despite of its imminent importance for understanding the functional consequences of IL-10-GAG interaction. In the present work, we report a GAG binding site on IL-10 identified by applying computational methods based on Coulomb potential calculations and specialized molecular dynamics simulations. The identified GAG binding site is constituted of several positively charged residues, which are conserved among species. Exhaustive conformational space sampling of a series of GAG ligands binding to IL-10 led to the observation of two GAG binding modes in the predicted binding site, and to the identification of IL-10 residues R104, R106, R107, and K119 as being most important for molecular GAG recognition. In silico mutation as well as single-residue energy decomposition and detailed analysis of hydrogen-bonding behavior led to the conclusion that R107 is most essential and assumes a unique role in IL-10-GAG interaction. This structural and dynamic characterization of GAG-binding to IL-10 represents an important step for further understanding the modulation of the biological function of IL-10.

  12. Assignment of hexuronic acid stereochemistry in synthetic heparan sulfate tetrasaccharides with 2-O-sulfo uronic acids using electron detachment dissociation

    NARCIS (Netherlands)

    Agyekum, Isaac; Patel, Anish B.; Zong, Chengli; Boons, Geert Jan; Amster, I. Jonathan

    2015-01-01

    The present work focuses on the assignment of uronic acid stereochemistry in heparan sulfate (HS) oligomers. The structural elucidation of HS glycosaminoglycans is the subject of considerable importance due to the biological and biomedical significance of this class of carbohydrates. They are highly

  13. Structural Characteristics and Immunological Activity of Glycosaminoglycan RG-1 from Ruditapes Philippinarum%菲律宾蛤仔糖胺聚糖RG-1的结构特征及免疫活性研究

    Institute of Scientific and Technical Information of China (English)

    范秀萍; 王瑞芳; 吴红棉; 王娅楠; 胡雪琼; 雷晓凌

    2012-01-01

    目的:对菲律宾蛤仔糖胺聚糖RG-1的一级结构特征及细胞免疫调节活性进行研究.方法:采用高效液相色谱法测定相对分子质量和单糖组成,通过红外光谱、高碘酸氧化和Smith降解等研究其糖链主要结构特征;用MTT法分析对小鼠脾淋巴细胞的影响.结果:RG-1主要由葡萄糖、氨基半乳糖和半乳糖通过1→6、1→4或1→4,6键连接构成主链,在主链中还含有大量的半乳糖醛酸,重均相对分子质量为9.94×105.RG-1具有显著增强小鼠腹腔巨噬细胞吞噬中性红的作用和脾淋巴细胞的增殖作用(p<0.01).结论:菲律宾蛤仔糖胺聚糖可通过增强细胞免疫活性而起到抗肿瘤作用.%Objective: To investigate the structural characterstics and cells immunomodulatory activity of the gly-Cosaminoglycan RG-1 from Ruditapes philippinarum. Methods: The morlicular weight and monosaccharide composition of the glycosaminoglycan RG-1 was analysed by HPGPC, its main structure characterstics was studied by IR, periodate oxidation and Smith degradation. Effects of RG-1 on proliferation of KM mouse spleen lymphocytes were detected by MTT. Results; RG-1 was composed of Glc-GalNAc-Gal by 1→6,1→4 or 1→4,6 in main chain backbone which contained much galacturonic acid with Mr 9.94×105. RG-1 significantly simulated the phagocytic activity of mice peritoneal macrophages and proliferation of KM mouse spleen lymphocytes in vitro (p<0.01). Conclusion:N Glycosaminoglycan RG-1 can inhibit the cancer by enhance cell immunological activity.

  14. Calcium-dependent and -independent binding of the pentraxin serum amyloid P component to glycosaminoglycans and amyloid proteins

    DEFF Research Database (Denmark)

    Danielsen, B; Sørensen, I J; Nybo, Mads

    1997-01-01

    Serum amyloid P component (SAP), a member of the pentraxin family of proteins, binds calcium-dependently to several ligands including glycosaminoglycans (GAG's). We have investigated the influence of pH on the Ca2(+)-dependent binding of SAP to solid phase GAG's and amyloid fibril proteins (AA...... and beta2M) by ELISA. An increase in the dose-dependent binding of SAP to heparan sulfate, AA-protein and beta2M was observed as the pH decreased from 8.0 to 5.0. Furthermore, a lower, but significant Ca2(+)-independent binding of SAP to heparan sulfate, dermatan sulfate, AA protein and the amyloid...

  15. Post-translational allosteric activation of the P2X7 receptor through glycosaminoglycan chains of CD44 proteoglycans

    OpenAIRE

    Moura, GEDD; Lucena, SV; Lima, MA; Nascimento, FD; Gesteira, TF; Nader, HB; Paredes-Gamero, EJ; Tersariol, ILS

    2015-01-01

    Here, we present evidence for the positive allosteric modulation of the P2X7 receptor through glycosaminoglycans (GAGs) in CHO (cell line derived from the ovary of the Chinese hamster) cells. The marked potentiation of P2X7 activity through GAGs in the presence of non-saturating agonists concentrations was evident with the endogenous expression of the receptor in CHO cells. The presence of GAGs on the surface of CHO cells greatly increased the sensitivity to adenosine 5′-triphosphate and chan...

  16. CXCL9-Derived Peptides Differentially Inhibit Neutrophil Migration In Vivo through Interference with Glycosaminoglycan Interactions

    Directory of Open Access Journals (Sweden)

    Vincent Vanheule

    2017-05-01

    Full Text Available Several acute and chronic inflammatory diseases are driven by accumulation of activated leukocytes due to enhanced chemokine expression. In addition to specific G protein-coupled receptor-dependent signaling, chemokine–glycosaminoglycan (GAG interactions are important for chemokine activity in vivo. Therefore, the GAG–chemokine interaction has been explored as target for inhibition of chemokine activity. It was demonstrated that CXCL9(74-103 binds with high affinity to GAGs, competed with active chemokines for GAG binding and thereby inhibited CXCL8- and monosodium urate (MSU crystal-induced neutrophil migration to joints. To evaluate the affinity and specificity of the COOH-terminal part of CXCL9 toward different GAGs in detail, we chemically synthesized several COOH-terminal CXCL9 peptides including the shorter CXCL9(74-93. Compared to CXCL9(74-103, CXCL9(74-93 showed equally high affinity for heparin and heparan sulfate (HS, but lower affinity for binding to chondroitin sulfate (CS and cellular GAGs. Correspondingly, both peptides competed with equal efficiency for CXCL8 binding to heparin and HS but not to cellular GAGs. In addition, differences in anti-inflammatory activity between both peptides were detected in vivo. CXCL8-induced neutrophil migration to the peritoneal cavity and to the knee joint were inhibited with similar potency by intravenous or intraperitoneal injection of CXCL9(74-103 or CXCL9(74-93, but not by CXCL9(86-103. In contrast, neutrophil extravasation in the MSU crystal-induced gout model, in which multiple chemoattractants are induced, was not affected by CXCL9(74-93. This could be explained by (1 the lower affinity of CXCL9(74-93 for CS, the most abundant GAG in joints, and (2 by reduced competition with GAG binding of CXCL1, the most abundant ELR+ CXC chemokine in this gout model. Mechanistically we showed by intravital microscopy that fluorescent CXCL9(74-103 coats the vessel wall in vivo and that CXCL9

  17. The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera.

    Science.gov (United States)

    Murienne, Barbara J; Jefferys, Joan L; Quigley, Harry A; Nguyen, Thao D

    2015-01-01

    Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6-9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional

  18. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    Directory of Open Access Journals (Sweden)

    Lamichhane SP

    2015-01-01

    Full Text Available Surya P Lamichhane,1 Neha Arya,1,2 Nirdesh Ojha,3 Esther Kohler,1 V Prasad Shastri1,2,41Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, 2Helmholtz Virtual Institute on “Multifunctional Biomaterials for Medicine”, 3Laboratory for Process Technology, Department of Microsystems Engineering, University of Freiburg, Freiburg, 4Centre for Biological Signaling Studies (BIOSS, University of Freiburg, Freiburg, GermanyAbstract: The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG production is altered in many diseases (or pathologies, NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549 cells, human pulmonary microvascular endothelial cells (HPMEC, and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 µg/mL by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of

  19. A small molecule glycosaminoglycan mimetic blocks Plasmodium invasion of the mosquito midgut.

    Directory of Open Access Journals (Sweden)

    Derrick K Mathias

    Full Text Available Malaria transmission-blocking (T-B interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001 in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA domain: (i circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP and (ii vWA domain-related protein (WARP. By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when

  20. Extraction and Biochemical Characterization of Sulphated Glycosaminoglycans from Chicken Keel Cartilage

    Directory of Open Access Journals (Sweden)

    Humaira Majeed Khan1, Muhammad Ashraf2, Abu Saeed Hashmi3, Mansur-ud-Din Ahmad4 and Aftab Ahmad Anjum5

    2013-11-01

    Full Text Available The present study was conducted to explore the potential and cheaper source of major and abundantly found sulphated glycosaminoglycans (GAGs in chicken keel cartilage. Chicken is comparatively readily accessible to all the communities of Pakistan and its cartilages are the rich source of sulphated GAGs. The GAGs were extracted from prewashed and ground keel cartilages (n=3 of chicken using 3 M MgCl2, dialyzed, digested with papain, precipitated with three volumes of ethanol, and finally lyophilized to dry powder. The dry products were used for proximate analysis (carbohydrates 65.49±0.10, crude protein 12.82±0.26, ash 11.12±.56, moisture 9.88±0.32 and fat 0.69±0.14%. Dimethylmethylene blue binding (DMMB assay was performed to determine the quantity of total GAGs in each group of product and protein contents were estimated by Bradford method. Identification of extracted samples of GAGs was performed with FTIR spectrometer using KBr disc and purity of the samples was determined by SDS-PAGE. Quantity of total GAGs in extracted samples was 70.77±2.27% and estimated amount of protein was 4.64±0.29%. FTIR spectra of standard and samples of CS showed identical and characteristic peaks in finger print region. Finger print region revealed the presence of C-O-S, S=O, -COO, -C-C, R-SO2–R, -CONH2 and R-SO2-NH2 molecules. SDS-PAGE analysis revealed the presence of 77.8 and 50.5 kDa proteins in all extracted samples of GAGs. It can be concluded that chicken keel cartilage is the potential and cheap source of GAGs. Analysis by SDS-PAGE revealed that most of the non-collagen protein can be removed by three volumes of solvent extraction and FTIR is an advance technique for identification of GAGs in mid infrared region (400-4000 cm-1.

  1. Fact versus artifact: Avoiding erroneous estimates of sulfated glycosaminoglycan content using the dimethylmethylene blue colorimetric assay for tissue-engineered constructs

    Directory of Open Access Journals (Sweden)

    CH Zheng

    2015-04-01

    Full Text Available The 1,9-dimethylmethylene blue (DMMB assay is widely used to quantify sulfated glycosaminoglycan (sGAG contents of engineered tissues, culture media, tissue samples and bodily fluids, but the assay is subject to interference from polyanions such as hyaluronic acid (HA, DNA and RNA. We examined whether specific combinations of dye pH and absorbance wavelength could minimize non-sGAG artifacts without compromising DMMB assay sensitivity. HA and DNA solutions generated substantial signal at pH 3 but not at pH 1.5. Reducing dye pH did not significantly alter sGAG measurements for normal cartilage and meniscus tissues, but eliminated anomalously high apparent sGAG contents for enzymatically isolated chondrocytes, adipose-derived stem cell (ADSC-agarose constructs and ADSC pellets. In a cartilage tissue-engineering case study, pH 3 dye indicated high apparent sGAG readings throughout culture in both basal and chondrogenic media, with a marked decline between day 14 and 21 for chondrogenic constructs. The pH 1.5 dye, however, indicated minimal sGAG accumulation in basal medium and stable sGAG content throughout culture in chondrogenic medium. As it is often difficult to know a priori whether all groups in a study will have sGAG contents high enough to overwhelm artifacts, we recommend modifying the standard DMMB assay to reduce the risk of spurious findings in tissue engineering and clinical research. Specifically, we recommend shifting to a pH 1.5 DMMB dye and basing quantification on the absorbance difference between 525 nm (µ peak and 595 nm (β peak to compensate for the moderate loss of sensitivity associated with reducing the dye pH.

  2. Identification of key functional residues in the active site of human {beta}1,4-galactosyltransferase 7: a major enzyme in the glycosaminoglycan synthesis pathway.

    Science.gov (United States)

    Talhaoui, Ibtissam; Bui, Catherine; Oriol, Rafael; Mulliert, Guillermo; Gulberti, Sandrine; Netter, Patrick; Coughtrie, Michael W H; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie

    2010-11-26

    Glycosaminoglycans (GAGs) play a central role in many pathophysiological events, and exogenous xyloside substrates of β1,4-galactosyltransferase 7 (β4GalT7), a major enzyme of GAG biosynthesis, have interesting biomedical applications. To predict functional peptide regions important for substrate binding and activity of human β4GalT7, we conducted a phylogenetic analysis of the β1,4-galactosyltransferase family and generated a molecular model using the x-ray structure of Drosophila β4GalT7-UDP as template. Two evolutionary conserved motifs, (163)DVD(165) and (221)FWGWGREDDE(230), are central in the organization of the enzyme active site. This model was challenged by systematic engineering of point mutations, combined with in vitro and ex vivo functional assays. Investigation of the kinetic properties of purified recombinant wild-type β4GalT7 and selected mutants identified Trp(224) as a key residue governing both donor and acceptor substrate binding. Our results also suggested the involvement of the canonical carboxylate residue Asp(228) acting as general base in the reaction catalyzed by human β4GalT7. Importantly, ex vivo functional tests demonstrated that regulation of GAG synthesis is highly responsive to modification of these key active site amino acids. Interestingly, engineering mutants at position 224 allowed us to modify the affinity and to modulate the specificity of human β4GalT7 toward UDP-sugars and xyloside acceptors. Furthermore, the W224H mutant was able to sustain decorin GAG chain substitution but not GAG synthesis from exogenously added xyloside. Altogether, this study provides novel insight into human β4GalT7 active site functional domains, allowing manipulation of this enzyme critical for the regulation of GAG synthesis. A better understanding of the mechanism underlying GAG assembly paves the way toward GAG-based therapeutics.

  3. Glucose concentration and medium volume influence cell viability and glycosaminoglycan synthesis in chondrocyte-seeded alginate constructs.

    Science.gov (United States)

    Heywood, Hannah K; Bader, Dan L; Lee, David A

    2006-12-01

    Increasing the thickness of tissue-engineered cartilage is associated with loss of chondrocyte viability and biosynthetic activity at the tissue center. Exceptionally high volumes of culture medium, however, can maintain cellularity and glycosaminoglycan synthesis throughout 4-mm-thick constructs. We hypothesized that glucose supplementation could replicate the augmentation of tissue formation achieved by medium volume. Chondrocyte-alginate constructs (40x10(6) cells/mL) were cultured for 14 days in 0.4-6.4 mL/10(-6) cells of either low- (5.1 mM) or high- (20.4 mM) glucose medium. Glucose was critical to chondrocyte viability, and glucose uptake increased significantly (P cells of low-glucose medium had a mass of 172 +/- 6.1 mg and glycosaminoglycan (GAG) content of 0.32 +/- 0.03 mg (mean +/- standard deviation). A 4-fold increase in medium volume increased the final construct mass by 44% and GAG content by 207%. An equivalent increase in glucose supply in the absence of volume change increased these parameters by just 10% and 73%, respectively. A similar trend was observed from 0.8 to 3.2 mL/10(-6) cells, when maximal values of construct GAG content and mass were obtained. Therefore, medium volume remains an important consideration for the optimal culture of tissue-engineered cartilage.

  4. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  5. Interference with glycosaminoglycan-chemokine interactions with a probe to alter leukocyte recruitment and inflammation in vivo.

    Directory of Open Access Journals (Sweden)

    Sandra Li

    Full Text Available In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo.

  6. Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues.

    Science.gov (United States)

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-04-23

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  7. Evaluation of early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffold. An experimental study in Wistar rats.

    LENUS (Irish Health Repository)

    Alhag, Mohamed

    2011-03-01

    Tissue engineering using cell-seeded biodegradable scaffolds offers a new bone regenerative approach that might circumvent many of the limitations of current therapeutic modalities. The aim of this experiment was to study the early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffolds.

  8. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content : correlation with ex-vivo reference standards

    NARCIS (Netherlands)

    van Tiel, J; Siebelt, M; Reijman, M; Bos, P.K.; Waarsing, J H; Zuurmond, A-M; Nasserinejad, K; van Osch, G J V M; Verhaar, J A N; Krestin, G P; Weinans, H; Oei, E H G

    OBJECTIVE: Recently, computed tomography arthrography (CTa) was introduced as quantitative imaging biomarker to estimate cartilage sulphated glycosaminoglycan (sGAG) content in human cadaveric knees. Our aim was to assess the correlation between in vivo CTa in human osteoarthritis (OA) knees and ex

  9. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards

    NARCIS (Netherlands)

    Tiel, J. van; Siebelt, M.; Reijman, M.; Bos, P.K.; Waarsing, J.H.; Zuurmond, A.M.; Nasserinejad, K.; Osch, G.J.V.M. van; Verhaar, J.A.N.; Krestin, G.P.; Weinans, H.; Oei, E.H.G.

    2016-01-01

    Objective. Recently, computed tomography arthrography (CTa) was introduced as quantitative imaging biomarker to estimate cartilage sulphated glycosaminoglycan (sGAG) content in human cadaveric knees. Our aim was to assess the correlation between in vivo CTa in human osteoarthritis (OA) knees and ex

  10. The distribution and function of chondroitin sulfate and other sulfated glycosaminoglycans in the human bladder and their contribution to the protective bladder barrier

    NARCIS (Netherlands)

    Janssen, D.A.W.; Wijk, X.M. van; Jansen, K.C.; Kuppevelt, A.H.M.S.M. van; Heesakkers, J.P.F.A.; Schalken, J.A.

    2013-01-01

    PURPOSE: Glycosaminoglycan replenishment therapies are commonly applied to treat bladder inflammatory conditions such as bladder pain syndrome/interstitial cystitis. Although there is evidence that these therapies are clinically effective, much is still unknown about the location and function of dif

  11. Age-related changes in rat myocardium involve altered capacities of glycosaminoglycans to potentiate growth factor functions and heparan sulfate-altered sulfation.

    NARCIS (Netherlands)

    Huynh, M.B.; Morin, C.; Carpentier, G.; Garcia-Filipe, S.; Talhas-Perret, S.; Barbier-Chassefiere, V.; Kuppevelt, T. van; Martelly, I.; Albanese, P.; Papy-Garcia, D.

    2012-01-01

    Glycosaminoglycans (GAGs) are essential components of the extracellular matrix, the natural environment from which cell behavior is regulated by a number or tissue homeostasis guarantors including growth factors. Because most heparin-binding growth factor activities are regulated by GAGs, structural

  12. Enzyme Replacement Therapy With Elosulfase Alfa Decreases Storage of Glycosaminoglycan in White Blood Cells of Patients With Morquio A Syndrome

    Directory of Open Access Journals (Sweden)

    Guilherme Baldo PhD

    2015-02-01

    Full Text Available Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome is a lysosomal storage disorder caused by a deficient N-acetylgalactosamine-6-sulfate sulfatase activity, leading to cellular storage of undegraded keratan sulfate. Recently enzyme replacement therapy (ERT was approved for MPS IVA, but some of ERT effects are still unknown. In the present study, we aimed to evaluate the efficacy of elosulfase alfa upon glycosaminoglycan (GAG storage in peripheral blood white blood cells of patients with MPS IVA treated for 6 months, comparing samples from patients who received weekly infusions of enzyme (ERT-W versus infusions every other week (ERT-EOW versus placebo. A significant reduction in GAG storage was observed in both ERT-treated groups, with weekly ERT showing slightly better performance than ERT-EOW.

  13. A molecular dynamics-based algorithm for evaluating the glycosaminoglycan mimicking potential of synthetic, homogenous, sulfated small molecules

    Science.gov (United States)

    Nagarajan, Balaji; Sankaranarayanan, Nehru Viji; Patel, Bhaumik B.

    2017-01-01

    Glycosaminoglycans (GAGs) are key natural biopolymers that exhibit a range of biological functions including growth and differentiation. Despite this multiplicity of function, natural GAG sequences have not yielded drugs because of problems of heterogeneity and synthesis. Recently, several homogenous non-saccharide glycosaminoglycan mimetics (NSGMs) have been reported as agents displaying major therapeutic promise. Yet, it remains unclear whether sulfated NSGMs structurally mimic sulfated GAGs. To address this, we developed a three-step molecular dynamics (MD)-based algorithm to compare sulfated NSGMs with GAGs. In the first step of this algorithm, parameters related to the range of conformations sampled by the two highly sulfated molecules as free entities in water were compared. The second step compared identity of binding site geometries and the final step evaluated comparable dynamics and interactions in the protein-bound state. Using a test case of interactions with fibroblast growth factor-related proteins, we show that this three-step algorithm effectively predicts the GAG structure mimicking property of NSGMs. Specifically, we show that two unique dimeric NSGMs mimic hexameric GAG sequences in the protein-bound state. In contrast, closely related monomeric and trimeric NSGMs do not mimic GAG in either the free or bound states. These results correspond well with the functional properties of NSGMs. The results show for the first time that appropriately designed sulfated NSGMs can be good structural mimetics of GAGs and the incorporation of a MD-based strategy at the NSGM library screening stage can identify promising mimetics of targeted GAG sequences. PMID:28182755

  14. Biosensor analysis of the molecular interactions of pentosan polysulfate and of sulfated glycosaminoglycans with immobilized elastase, hyaluronidase and lysozyme using surface plasmon resonance (SPR) technology.

    Science.gov (United States)

    Shen, Bojiang; Shimmon, Susan; Smith, Margaret M; Ghosh, Peter

    2003-02-01

    Pentosan polysulfate (NaPPS) and chondroitin sulfates (ChSs) have recently been shown to exhibit both symptom and disease modifying activities in osteoarthritis (OA), but their respective mechanisms of action are still the subject of conjecture. Excessive catabolism of joint articular cartilage is considered to be responsible for the initiation and progression of OA but the abilities of these drugs to mitigate this process has received only limited attention. Human neutrophil elastase (HNE) is a proteinase, which can degrade the collagens and proteoglycans (PGs) of the cartilage directly or indirectly by activating latent matrix metalloproteinases. Hyaluronidase (HAase) is an endoglycosidase, which degrades glycosaminoglycans including hyaluronan, which provides the aggregating component of the PG aggrecan complex. In the present study the molecular interactions between the NaPPS, ChSs and some other sulfated polysaccharides with immobilized HNE, HAase or lysozyme (a cationic protein implicated in PG metabolism) were studied using a SPR biosensor device-BIAcore2000. The above three enzymes were covalently immobilized to a biosensor chip CM5 separately using amine coupling. The binding affinity of each sulfated polysaccharide and the kinetics of NaPPS over the concentration range of 0.3-5.0 microg/ml were determined. The inhibition of HNE by the sulfated polysaccharides as determined using the synthetic substrate succinyl-Ala-Ala-Val-nitroanilide (SAAVNA) in a functional assay was compared with their respective binding affinities for this proteinase using the BIAcore system. The results obtained with the two independent techniques showed good correlation and indicated that the degree and ring positions of oligosaccharide sulfation were major determinants of enzyme inhibitory activity. The observed difference in order of binding affinities of the drugs to the immobilized HNE, HAase and lysozyme suggests a conformational relationship, in addition to the charge

  15. Glycosaminoglycan-depolymerizing enzymes produced by anaerobic bacteria isolated from the human mouth.

    Science.gov (United States)

    Tipler, L S; Embery, G

    1985-01-01

    A number of obligately anaerobic bacteria, some implicated in periodontal disease, were screened for their ability to produce enzymes capable of degrading hyaluronic acid and chondroitin-4-sulphate. Two screening methods were used following anaerobic incubation at 37 degrees C for 7 days. One involved incorporating the respective substrates and bovine-serum albumin into agar plates and, after incubation, flooding the plates with 2 M acetic acid. Clear zones were produced around colonies which produced enzymes capable of depolymerizing the substrates. The second was a sensitive spectrophotometric procedure based on the ability of certain bacteria to produce eliminase enzymes, which degrade the substrates to unsaturated products having a characteristic u.v. absorption at 232 nm. Strains of Bacteroides gingivalis and Bacteroides melaninogenicus degraded both substrates whereas Bacteroides asaccharolyticus degraded neither substrate by either method. Some bacteria gave negative results with the plate method whereas the more sensitive spectrophotometric assay proved positive. The number of anaerobic bacteria capable of degrading hyaluronic acid and chondroitin-4-sulphate in vitro may therefore have been underestimated in previous studies.

  16. Updating on in-vivo and in-vitro effects of heparin and other glycosaminoglycans (mesoglycan) on arterial endothelium: a morphometrical study.

    Science.gov (United States)

    Tanganelli, P; Bianciardi, G; Carducci, A; Palummo, N; Simoes, C; Tarabochia, B; Weber, G; Verzuri, M S; Auteri, A

    1992-01-01

    Glycosaminoglycans, which include heparin, heparansulfate and dermatansulfate, are substances that exhibit many significant biological activities. In-vitro and in-vivo experiments for studying the effects of heparin and an association of heparan-like glycosaminoglycan and dermatansolfate (mesoglycan) on aortic arterial endothelium were performed. The studies were developed by means of computerized morphometric techniques. The in-vitro tests, performed on bovine aortic endothelial cells, have revealed an increase in survival rate, enhancement of cell density at confluence, and increase of nucleus/cytoplasm ratio, after "in-vitro" administration of heparin or mesoglycan. The in-vivo tests have revealed a minor development of aortic intimal lipid deposition in mesoglycan-treated hypercholesterolaemic rabbits. Our morphometrical results confirmed by statistical tests strongly support the data collected in the literature over many years on the protective effects of mesoglycan and heparin on endothelium.

  17. Levels of glycosaminoglycans in the cerebrospinal fluid of healthy young adults, surrogate-normal children, and Hunter syndrome patients with and without cognitive impairment

    Directory of Open Access Journals (Sweden)

    Christian J. Hendriksz

    2015-12-01

    Full Text Available In mucopolysaccharidoses (MPS, glycosaminoglycans (GAG accumulate in tissues. In MPS II, approximately two-thirds of patients are cognitively impaired. We investigated levels of GAG in cerebrospinal fluid (CSF in different populations from four clinical studies (including NCT00920647 and NCT01449240. Data indicate that MPS II patients with cognitive impairment have elevated levels of CSF GAG, whereas those with the attenuated phenotype typically have levels falling between those of the cognitively affected patients and healthy controls.

  18. The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding.

    Science.gov (United States)

    Tan, Kemin; Duquette, Mark; Joachimiak, Andrzej; Lawler, Jack

    2009-08-01

    Cartilage oligomeric matrix protein (COMP), or thrombospondin-5 (TSP-5), is a secreted glycoprotein that is important for growth plate organization and function. Mutations in COMP cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). In this study, we determined the structure of a recombinant protein that contains the last epidermal growth factor repeat, the type 3 repeats and the C-terminal domain (CTD) of COMP to 3.15-A resolution limit by X-ray crystallography. The CTD is a beta-sandwich that is composed of 15 antiparallel beta-strands, and the type 3 repeats are a contiguous series of calcium binding sites that associate with the CTD at multiple points. The crystal packing reveals an exposed potential metal-ion-dependent adhesion site (MIDAS) on one edge of the beta-sandwich that is common to all TSPs and may serve as a binding site for collagens and other ligands. Disease-causing mutations in COMP disrupt calcium binding, disulfide bond formation, intramolecular interactions, or sites for potential ligand binding. The structure presented here and its unique molecular packing in the crystal identify potential interactive sites for glycosaminoglycans, integrins, and collagens, which are key to cartilage structure and function.

  19. Using glycosaminoglycan/chemokine interactions for the long-term delivery of 5P12-RANTES in HIV prevention.

    Science.gov (United States)

    Wang, Nick X; Sieg, Scott F; Lederman, Michael M; Offord, Robin E; Hartley, Oliver; von Recum, Horst A

    2013-10-07

    5P12-RANTES is a recently developed chemokine analogue that has shown high level protection from SHIV infection in macaques. However, the feasibility of using 5P12-RANTES as a long-term HIV prevention agent has not been explored partially due to the lack of available delivery devices that can easily be modified for long-term release profiles. Glycosaminoglycans (GAGs) have been known for their affinity for various cytokines and chemokines, including native RANTES, or CCL5. In this work, we investigated used of GAGs in generating a chemokine drug delivery device. Initial studies used surface plasmon resonance analysis to characterize and compare the affinities of different GAGs to 5P12-RANTES. These different GAGs were then incorporated into drug delivery polymeric hydrogels to engineer sustained release of the chemokines. In vitro release studies of 5P12-RANTES from the resulting polymers were performed, and we found that 5P12-RANTES release from these polymers can be controlled by the amount and type of GAG incorporated. Polymer disks containing GAGs with stronger affinity to 5P12-RANTES resulted in more sustained and longer term release than did polymer disks containing GAGs with weaker 5P12-RANTES affinity. Similar trends were observed by varying the amount of GAGs incorporated into the delivery system. 5P12-RANTES released from these polymers demonstrated good levels of CCR5 blocking, retaining activity even after 30 days of incubation.

  20. LC-MS and LC-MS/MS studies of incorporation of 34SO3 into glycosaminoglycan chains by sulfotransferases.

    Science.gov (United States)

    Shi, Xiaofeng; Shao, Chun; Mao, Yang; Huang, Yu; Wu, Zhengliang L; Zaia, Joseph

    2013-08-01

    The specificities of glycosaminoglycan (GAG) modification enzymes, particularly sulfotransferases, and the locations and concentrations of these enzymes in the Golgi apparatus give rise to the mature GAG polysaccharides that bind protein ligands. We studied the substrate specificities of sulfotransferases with a stable isotopically labeled donor substrate, 3'-phosphoadenosine-5'-phosphosulfate. The sulfate incorporated by in vitro sulfation using recombinant sulfotransferases was easily distinguished from those previously present on the GAG chains using mass spectrometry. The enrichment of the [M + 2] isotopic peak caused by (34)S incorporation, and the [M + 2]/[M + 1] ratio, provided reliable and sensitive measures of the degree of in vitro sulfation. It was found that both CHST3 and CHST15 have higher activities at the non-reducing end (NRE) units of chondroitin sulfate, particularly those terminating with a GalNAc monosaccharide. In contrast, both NDST1 and HS6ST1 showed lower activities at the NRE of heparan sulfate (HS) chains than at the interior of the chain. Contrary to the traditional view of HS biosynthesis processes, NDST1 also showed activity on O-sulfated GlcNAc residues.

  1. Glycosaminoglycan-mediated loss of cathepsin K collagenolytic activity in MPS I contributes to osteoclast and growth plate abnormalities.

    Science.gov (United States)

    Wilson, Susan; Hashamiyan, Saadat; Clarke, Lorne; Saftig, Paul; Mort, John; Dejica, Valeria M; Brömme, Dieter

    2009-11-01

    Mucopolysaccharidoses are a group of lysosomal storage diseases characterized by the build-up of glycosaminoglycans (GAGs) and severe skeletal abnormalities. As GAGs can regulate the collagenolytic activity of the major osteoclastic protease cathepsin K, we investigated the presence and activity of cathepsin K and its co-localization with GAGs in mucopolysaccharidosis (MPS) type I bone. The most dramatic difference between MPS I and wild-type mice was an increase in the amount of cartilage in the growth plates in MPS I bones. Though the number of cathepsin K-expressing osteoclasts was increased in MPS I mice, these mice revealed a significant reduction in cathepsin K-mediated cartilage degradation. As excess heparan and dermatan sulfates inhibit type II collagen degradation by cathepsin K and the spatial overlap between cathepsin K and heparan sulfate strongly increased in MPS I mice, the build up of subepiphyseal cartilage is speculated to be a direct consequence of cathepsin K inhibition by MPS I-associated GAGs. Moreover, isolated MPS I and Ctsk(-/-) osteoclasts displayed fewer actin rings and formed fewer resorption pits on dentine disks, as compared with wild-type cells. These results suggest that the accumulation of GAGs in murine MPS I bone has an inhibitory effect on cathepsin K activity, resulting in impaired osteoclast activity and decreased cartilage resorption, which may contribute to the bone pathology seen in MPS diseases.

  2. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  3. Inflammation-induced brain endothelial activation leads to uptake of electrostatically stabilized iron oxide nanoparticles via sulfated glycosaminoglycans.

    Science.gov (United States)

    Berndt, Dominique; Millward, Jason M; Schnorr, Jörg; Taupitz, Matthias; Stangl, Verena; Paul, Friedemann; Wagner, Susanne; Wuerfel, Jens T; Sack, Ingolf; Ludwig, Antje; Infante-Duarte, Carmen

    2017-05-01

    Based on our previous data on the presence of very small superparamagnetic iron oxide nanoparticles (VSOP) on brain endothelial structures during experimental autoimmune encephalomyelitis (EAE), we investigated the mechanisms of VSOP binding on inflamed brain endothelial cells in vivo and in vitro. After intravenous application, VSOP were detected in brain endothelial cells of EAE animals at peak disease and prior to clinical onset. In vitro, inflammatory stimuli increased VSOP uptake by brain endothelial bEnd.3 cells, which we confirmed in primary endothelial cells and in bEnd.3 cells cultured under shear stress. Transmission electron microscopy and blocking experiments revealed that during inflammation VSOP were endocytosed by bEnd.3. Modified sulfated glycosaminoglycans (GAG) on inflamed brain endothelial cells were the primary binding site for VSOP, as GAG degradation and inhibition of GAG sulfation reduced VSOP uptake. Thus, VSOP-based MRI is sensitive to visualize early neuroinflammatory processes such as GAG modifications on brain endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans.

    Science.gov (United States)

    Ludwig, Antje; Poller, Wolfram C; Westphal, Kera; Minkwitz, Susann; Lättig-Tünnemann, Gisela; Metzkow, Susanne; Stangl, Karl; Baumann, Gert; Taupitz, Matthias; Wagner, Susanne; Schnorr, Jörg; Stangl, Verena

    2013-03-01

    Magnetic resonance imaging (MRI) with contrast agents that target specific inflammatory components of atherosclerotic lesions has the potential to emerge as promising diagnostic modality for detecting unstable plaques. Since a high content of macrophages and alterations of the extracellular matrix are hallmarks of plaque instability, these structures represent attractive targets for new imaging modalities. In this study, we compared in vitro uptake and binding of electrostatically stabilized citrate-coated very small superparamagnetic iron oxide particles (VSOP) to THP-1 cells with sterically stabilized carboxydextran-coated Resovist(®). Uptake of VSOP in both THP-1 monocytic cells and THP-derived macrophages (THP-MΦ) was more efficient compared to Resovist(®) without inducing cytotoxicity or modifying normal cellular functions (no changes in levels of reactive oxygen species, caspase-3 activity, proliferation, cytokine production). Importantly, VSOP bound with high affinity to the cell surface and to apoptotic membrane vesicles. Inhibition of glycosaminoglycan (GAG) synthesis by glucose deprivation in THP-MΦ was associated with a significant reduction of VSOP attachment suggesting that the strong interaction of VSOP with the membranes of cells and apoptotic vesicles occurs via binding to negatively charged GAGs. These in vitro experiments show that VSOP-enhanced MRI may represent a new imaging approach for visualizing high-risk plaques on the basis of targeting pathologically increased GAGs or apoptotic membrane vesicles in atherosclerotic lesions. VSOP should be investigated further in appropriate in vivo experiments to characterize accumulation in unstable plaque.

  5. Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion.

    Science.gov (United States)

    Bechara, Chérine; Pallerla, Manjula; Burlina, Fabienne; Illien, Françoise; Cribier, Sophie; Sagan, Sandrine

    2015-02-01

    Among non-invasive cell delivery strategies, cell-penetrating peptide (CPP) vectors represent interesting new tools. To get fundamental knowledge about the still debated internalisation mechanisms of these peptides, we modified the membrane content of cells, typically by hydrolysis of sphingomyelin or depletion of cholesterol from the membrane outer leaflet. We quantified and visualised the effect of these viable cell surface treatments on the internalisation efficiency of different CPPs, among which the most studied Tat, R9, penetratin and analogues, that all carry the N-terminal biotin-Gly4 tag cargo. Under these cell membrane treatments, only penetratin and R6W3 underwent a massive glycosaminoglycan (GAG)-dependent entry in cells. Internalisation of the other peptides was only slightly increased, similarly in the absence or the presence of GAGs for R9, and only in the presence of GAGs for Tat and R6L3. Ceramide formation (or cholesterol depletion) is known to lead to the reorganisation of membrane lipid domains into larger platforms, which can serve as a trap and cluster receptors. These results show that GAG clustering, enhanced by formation of ceramide, is efficiently exploited by penetratin and R6W3, which contains Trp residues in their sequence but not Tat, R9 and R6L3. Hence, these data shed new lights on the differences in the internalisation mechanism and pathway of these peptides that are widely used in delivery of cargo molecules.

  6. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells.

    Science.gov (United States)

    Yue, Zhiqiang; Wang, Aiyun; Zhu, Zhijie; Tao, Li; Li, Yao; Zhou, Liang; Chen, Wenxing; Lu, Yin

    2015-12-01

    P-selectin-mediated tumor cell adhesion to platelets is a well-established stage in the process of tumor metastasis. Through computerized structural analysis, we found a marine-derived polysaccharide, holothurian glycosaminoglycan (hGAG), behaved as a ligand-competitive inhibitor of P-selectin, indicating its potential to disrupt the binding of P-selectin to cell surface receptor and activation of downstream regulators of tumor cell migration. Our experimental data demonstrated that hGAG significantly inhibited P-selectin-mediated adhesion of tumor cells to platelets and tumor cell migration in vitro and reduced subsequent pulmonary metastasis in vivo. Furthermore, abrogation of the P-selectin-mediated adhesion of tumor cells led to down-regulation of protein levels of integrins, FAK and MMP-2/9 in B16F10 cells, which is a crucial molecular mechanism of hGAG to inhibit tumor metastasis. In conclusion, hGAG has emerged as a novel anti-cancer agent via blocking P-selectin-mediated malignant events of tumor metastasis.

  7. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin

    Directory of Open Access Journals (Sweden)

    Aaron J. Brown

    2017-02-01

    Full Text Available CXCL7, a chemokine highly expressed in platelets, orchestrates neutrophil recruitment during thrombosis and related pathophysiological processes by interacting with CXCR2 receptor and sulfated glycosaminoglycans (GAG. CXCL7 exists as monomers and dimers, and dimerization (~50 μM and CXCR2 binding (~10 nM constants indicate that CXCL7 is a potent agonist as a monomer. Currently, nothing is known regarding the structural basis by which receptor and GAG interactions mediate CXCL7 function. Using solution nuclear magnetic resonance (NMR spectroscopy, we characterized the binding of CXCL7 monomer to the CXCR2 N-terminal domain (CXCR2Nd that constitutes a critical docking site and to GAG heparin. We found that CXCR2Nd binds a hydrophobic groove and that ionic interactions also play a role in mediating binding. Heparin binds a set of contiguous basic residues indicating a prominent role for ionic interactions. Modeling studies reveal that the binding interface is dynamic and that GAG adopts different binding geometries. Most importantly, several residues involved in GAG binding are also involved in receptor interactions, suggesting that GAG-bound monomer cannot activate the receptor. Further, this is the first study that describes the structural basis of receptor and GAG interactions of a native monomer of the neutrophil-activating chemokine family.

  8. Effect of castration on renal glycosaminoglycans and their urinary excretion in male and female rats with chronic renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, C.C.S. [Disciplina de Nefrologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Tovar, A.M.F. [Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Guimarães, M.A.M. [Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Bregman, R. [Disciplina de Nefrologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-08-10

    Glycosaminoglycans (GAGs) participate in a variety of processes in the kidney, and evidence suggests that gender-related hormones participate in renal function. The aim of this study was to analyze the relationship of GAGs, gender, and proteinuria in male and female rats with chronic renal failure (CRF). GAGs were analyzed in total kidney tissue and 24-h urine of castrated (c), male (M), and female (F) Wistar control (C) rats (CM, CMc, CF, CFc) and after 30 days of CRF induced by 5/6 nephrectomy (CRFM, CRFMc, CRFF, CRFFc). Total GAG quantification and composition were determined using agarose and polyacrylamide gel electrophoresis, respectively. Renal GAGs were higher in CF compared to CM. CRFM presented an increase in renal GAGs, heparan sulfate (HS), and proteinuria, while castration reduced these parameters. However, CRFF and CRFFc groups showed a decrease in renal GAGs concomitant with an increase in proteinuria. Our results suggest that, in CRFM, sex hormones quantitatively alter GAGs, mainly HS, and possibly the glomerular filtration barrier, leading to proteinuria. The lack of this response in CRFMc, where HS did not increase, corroborates this theory. This pattern was not observed in females. Further studies of CRF are needed to clarify gender-dependent differences in HS synthesis.

  9. The use of the radius of gyration in a WLC polymer model of cancer cell adhesion to glycosaminoglycans substrates

    Science.gov (United States)

    Peramo, Antonio; Matthews, Garrett

    2009-03-01

    Glycosaminoglycans (GAG) are a group of polysaccharides involved in several biological functions, including cell adhesion. Most of their biological properties are derived from the interactions of the chains with their environment, hence the interest in developing physical models that could describe their interactions with whole cells. As linear biopolymers with low polydispersity, GAG can be described using polymer models of Gaussian chain distributions, like the WLC (worm-like chain) model. We found that the adhesion of whole cancer cells to glass substrates coated with GAG appear to be dependent on the charge per dimer and degree of sulfation of the GAG chain. We have hypothesized that the adhesion of whole cancer cells to GAG substrates can be described as a function of polysaccharide radius of gyration and used the WLC model describing the global structure of the GAGs to analyze this relationship. We will show that the adhesion of the cancer cells has a linear response with the radius of gyration and is essentially controlled by the charge per dimer. This dominating mechanism is not eliminated when the cells are resuspended in media with heparin. We then propose how these physical properties could be used to predict the preferred molecular structures of compounds for use as anti-metastatic or anti-inflammatory agents.

  10. Substrate Deprivation Therapy to Reduce Glycosaminoglycan Synthesis Improves Aspects of Neurological and Skeletal Pathology in MPS I Mice

    Directory of Open Access Journals (Sweden)

    Ainslie L. K. Derrick-Roberts

    2017-02-01

    Full Text Available Mucopolysaccharidosis type I (MPS I is the most common form of the MPS group of genetic diseases. MPS I results from a deficiency in the lysosomal enzyme α-l-iduronidase, leading to accumulation of undegraded heparan and dermatan sulphate glycosaminoglycan (GAG chains in patient cells. MPS children suffer from multiple organ failure and die in their teens to early twenties. In particular, MPS I children also suffer from profound mental retardation and skeletal disease that restricts growth and movement. Neither brain nor skeletal disease is adequately treated by current therapy approaches. To overcome these barriers to effective therapy we have developed and tested a treatment called substrate deprivation therapy (SDT. MPS I knockout mice were treated with weekly intravenous injections of 1 mg/kg rhodamine B for six months to assess the efficacy of SDT. Mice were assessed using biochemistry, micro-CT and a battery of behaviour tests to determine the outcome of treatment. A reduction in female bodyweight gain was observed with the treatment as well as a decrease in lung GAG. Behavioural studies showed slight improvements in inverted grid and significant improvements in learning ability for female MPS I mice treated with rhodamine B. Skeletal disease also improved with a reduction in bone mineral volume observed. Overall, rhodamine B is safe to administer to MPS I knockout mice where it had an effect on improving aspects of neurological and skeletal disease symptoms and may therefore provide a potential therapy or adjunct therapy for MPS I patients.

  11. Extraction of Glycosaminoglycans Containing Glucosamine and Chondroitin Sulfate from Chicken Claw Cartilage

    Directory of Open Access Journals (Sweden)

    Tri Dewanti Widyaningsih

    2017-12-01

    Full Text Available Chicken cartilage (claw is a waste of chicken cuts which are widely available in Indonesia. Cartilage part of chicken claw becomes a potential source of chondroitin sulfate (CS and glucosamine (GS. This study aims to determine the most optimal extraction methods of CS and GS from cartilage of chicken claw. Various types of extraction methods used in this study are taken from the extraction by using boiling water (2 and 2.5 hours, acetic acid (7 and 17 hours, as well as proteolysis by papain (24 and 48 hours. Parameters observed include chemical characteristics of powdered cartilage of chicken claw as well as CS and GS levels in powdered cartilage of chicken claw extract. The results of this research show that the levels of CS and GS of chicken claw cartilage powder were 2.17% and 13%. Meanwhile, the highest GS level was obtained from the extraction with water treatment for 2.5 hours which was 8.1%. The treatment and duration of extraction will significantly affect the number of GS which was produced. The highest content of CS was obtained from the extraction with the enzyme treatment for 48 hours which was 2.47%. The best treatment is the extraction with water treatment for 2.5 hours which were the extracts with GS levels of 8.1% and 2.03% CS was selected through the analysis of multiple attribute.

  12. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans

    Science.gov (United States)

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-01-01

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans. PMID:27694851

  13. Increased deposition of chondroitin/dermatan sulfate glycosaminoglycan and upregulation of β1,3-glucuronosyltransferase I in pulmonary fibrosis.

    Science.gov (United States)

    Venkatesan, Narayanan; Ouzzine, Mohamed; Kolb, Martin; Netter, Patrick; Ludwig, Mara S

    2011-02-01

    Pulmonary fibrosis (PF) is characterized by increased deposition of proteoglycans (PGs), in particular core proteins. Glycosaminoglycans (GAGs) are key players in tissue repair and fibrosis, and we investigated whether PF is associated with changes in the expression and structure of GAGs as well as in the expression of β1,3-glucuronosyltransferase I (GlcAT-I), a rate-limiting enzyme in GAG synthesis. Lung biopsies from idiopathic pulmonary fibrosis (IPF) patients and lung tissue from a rat model of bleomycin (BLM)-induced PF were immunostained for chondroitin sulfated-GAGs and GlcAT-I expression. Alterations in disaccharide composition and sulfation of chondroitin/dermatan sulfate (CS/DS) were evaluated by fluorophore-assisted carbohydrate electrophoresis (FACE) in BLM rats. Lung fibroblasts isolated from control (saline-instilled) or BLM rat lungs were assessed for GAG structure and GlcAT-I expression. Disaccharide analysis showed that 4- and 6-sulfated disaccharides were increased in the lungs and lung fibroblasts obtained from fibrotic rats compared with controls. Fibrotic lung fibroblasts and transforming growth factor-β(1) (TGF-β(1))-treated normal lung fibroblasts expressed increased amounts of hyaluronan and 4- and 6-sulfated chondroitin, and neutralizing anti-TGF-β(1) antibody diminished the same. TGF-β(1) upregulated GlcAT-I and versican expression in lung fibroblasts, and signaling through TGF-β type I receptor/p38 MAPK was required for TGF-β(1)-mediated GlcAT-I and CS-GAG expression in fibroblasts. Our data show for the first time increased expression of CS-GAGs and GlcAT-I in IPF, fibrotic rat lungs, and fibrotic lung fibroblasts. These data suggest that alterations of sulfation isomers of CS/DS and upregulation of GlcAT-I contribute to the pathological PG-GAG accumulation in PF.

  14. Interaction between cadmium and zinc in the production and sulfation of glycosaminoglycans in cultured bovine vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawara, Susumu; Kaji, Toshiyuki; Yamamoto, Chika [Hokuriku Univ., Kanazawa (Japan)] [and others

    1996-02-09

    Previously, we showed that cadmium stimulates the production of glycosaminoglycans (GAGs) but inhibits their sulfation in cultured bovine aortic endothelial cells. The effect of zinc on such alterations of GAGs induced by cadmium was investigated in the present study. The incorporation of [{sup 3}H]glucosamine and [{sup 35}S]sulfate into GAGs was determined by the cetylpyridinium chloride precipitation method as a marker of GAG production and GAG sulfation, respectively. The incorporation of both [{sup 3}H]glucosamine and [{sup 35}S]sulfate was not changed in GAGs accumulated in the endothelial cell layer and the conditioned medium after exposure to zinc at 20 {mu}M or less alone. A simultaneous exposure of the endothelial cell layer to zinc at 20 {mu}M or less and cadmium at 2{mu}M resulted in prevention of the cadmium-induced decrease in [{sup 35}S]sulfate incorporation; however, the cadmium-induced increase in [{sup 3}H]glucosamine incorporation was not affected by zinc. Characterization of GAGs in the cell layer revealed that such an interaction between zinc and cadmium occurred in both heparan sulfate and the other GAGs. Zinc significantly prevented the inhibition of either [{sup 3}H]thymidine or [{sup 3}H]leucine incorporation caused by cadmium with cadmium and protected endothelial cells from cadmium-induced inhibition of DNA and protein synthesis. The present data showed that a simultaneous exposure to cadmium and zinc resulted in an increase in heparan sulfate without a reduction of sulfation in the endothelial cell layer. The alteration may potentiate the antithrombogenic property of vascular endothelium. 30 refs., 2 figs., 3 tabs.

  15. A computational approach for identifying the chemical factors involved in the glycosaminoglycans-mediated acceleration of amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Elodie Monsellier

    Full Text Available BACKGROUND: Amyloid fibril formation is the hallmark of many human diseases, including Alzheimer's disease, type II diabetes and amyloidosis. Amyloid fibrils deposit in the extracellular space and generally co-localize with the glycosaminoglycans (GAGs of the basement membrane. GAGs have been shown to accelerate the formation of amyloid fibrils in vitro for a number of protein systems. The high number of data accumulated so far has created the grounds for the construction of a database on the effects of a number of GAGs on different proteins. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have constructed such a database and have used a computational approach that uses a combination of single parameter and multivariate analyses to identify the main chemical factors that determine the GAG-induced acceleration of amyloid formation. We show that the GAG accelerating effect is mainly governed by three parameters that account for three-fourths of the observed experimental variability: the GAG sulfation state, the solute molarity, and the ratio of protein and GAG molar concentrations. We then combined these three parameters into a single equation that predicts, with reasonable accuracy, the acceleration provided by a given GAG in a given condition. CONCLUSIONS/SIGNIFICANCE: In addition to shedding light on the chemical determinants of the protein:GAG interaction and to providing a novel mathematical predictive tool, our findings highlight the possibility that GAGs may not have such an accelerating effect on protein aggregation under the conditions existing in the basement membrane, given the values of salt molarity and protein:GAG molar ratio existing under such conditions.

  16. Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves.

    Science.gov (United States)

    Lacerda, Carla M R; Kisiday, John; Johnson, Brennan; Orton, E Christopher

    2012-05-15

    This study addressed the following questions: 1) Does cyclic tensile strain induce protein expression patterns consistent with myxomatous degeneration in mitral valves? 2) Does cyclic strain induce local serotonin synthesis in mitral valves? 3) Are cyclic strain-induced myxomatous protein expression patterns in mitral valves dependent on local serotonin? Cultured sheep mitral valve leaflets were subjected to 0, 10, 20, and 30% cyclic strain for 24 and 72 h. Protein levels of activated myofibroblast phenotype markers, α-smooth muscle actin (α-SMA) and nonmuscle embryonic myosin (SMemb); matrix catabolic enzymes, matrix metalloprotease (MMP) 1 and 13, and cathepsin K; and sulfated glycosaminoglycan (GAG) content in mitral valves increased with increased cyclic strain. Serotonin was present in the serum-free media of cultured mitral valves and concentrations increased with cyclic strain. Expression of the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1) increased in strained mitral valves. Pharmacologic inhibition of the serotonin 2B/2C receptor or TPH1 diminished expression of phenotype markers (α-SMA and SMemb) and matrix catabolic enzyme (MMP1, MMP13, and cathepsin K) expression in 10- and 30%-strained mitral valves. These results provide first evidence that mitral valves synthesize serotonin locally. The results further demonstrate that tensile loading modulates local serotonin synthesis, expression of effector proteins associated with mitral valve degeneration, and GAG synthesis. Inhibition of serotonin diminishes strain-mediated protein expression patterns. These findings implicate serotonin and tensile loading in mitral degeneration, functionally link the pathogeneses of serotoninergic (carcinoid, drug-induced) and degenerative mitral valve disease, and have therapeutic implications.

  17. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase.

    Science.gov (United States)

    Ulmer, Jonathan E; Vilén, Eric Morssing; Namburi, Ramesh Babu; Benjdia, Alhosna; Beneteau, Julie; Malleron, Annie; Bonnaffé, David; Driguez, Pierre-Alexandre; Descroix, Karine; Lassalle, Gilbert; Le Narvor, Christine; Sandström, Corine; Spillmann, Dorothe; Berteau, Olivier

    2014-08-29

    Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973-25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Mueller-Lutz, Anja; Zimmermann, Lisa; Boos, Johannes; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf (Germany); Schmitt, Benjamin [Siemens Ltd. Australia, Healthcare Sector, Macquarie Park, NSW (Australia)

    2016-01-15

    To evaluate glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging at 3T in the assessment of the GAG content of cervical IVDs in healthy volunteers. Forty-two cervical intervertebral discs of seven healthy volunteers (four females, three males; mean age: 21.4 ± 1.4 years; range: 19-24 years) were examined at a 3T MRI scanner in this prospective study. The MRI protocol comprised standard morphological, sagittal T2 weighted (T2w) images to assess the magnetic resonance imaging (MRI) based grading system for cervical intervertebral disc degeneration (IVD) and biochemical imaging with gagCEST to calculate a region-of-interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF). GagCEST of cervical IVDs was technically successful at 3T with significant higher gagCEST values in NP compared to AF (1.17 % ± 1.03 % vs. 0.79 % ± 1.75 %; p = 0.005). We found topological differences of gagCEST values of the cervical spine with significant higher gagCEST effects in lower IVDs (r = 1; p = 0). We could demonstrate a significant, negative correlation between gagCEST values and cervical disc degeneration of NP (r = -0.360; p = 0.019). Non-degenerated IVDs had significantly higher gagCEST effects compared to degenerated IVDs in NP (1.76 % ± 0.92 % vs. 0.52 % ± 1.17 %; p < 0.001). Biochemical imaging of cervical IVDs is feasible at 3T. GagCEST analysis demonstrated a topological GAG distribution of the cervical spine. The depletion of GAG in the NP with increasing level of morphological degeneration can be assessed using gagCEST imaging. (orig.)

  19. Complement factor H and age-related macular degeneration: the role of glycosaminoglycan recognition in disease pathology.

    Science.gov (United States)

    Clark, Simon J; Bishop, Paul N; Day, Anthony J

    2010-10-01

    AMD (age-related macular degeneration) is the major cause of blindness in the western world, associated with the formation of extracellular deposits called drusen in the macula, i.e. the central region of the retina. These drusen contain cellular debris and proteins, including components of the complement system such as the regulator CFH (complement factor H); dysregulation of complement is thought to play a major role in the development of AMD. CFH acts through its capacity to recognize polyanionic structures [e.g. sulfated GAGs (glycosaminoglycans)] found on host tissues, and thereby inactivates any C3b that becomes deposited. Importantly, a common polymorphism in CFH (Y402H) has been strongly associated with an increased risk of AMD. This polymorphism, which causes a tyrosine to histidine coding change, has been shown to alter the binding of CFH to sulfated GAGs, as well as to other ligands including C-reactive protein, necrotic cells and bacterial coat proteins. Of these, the change in the GAG-recognition properties of CFH is likely to be of most significance to AMD. Recent research has revealed that the disease-associated 402H allotype interacts less well (compared with 402Y) with binding sites within the macula (e.g. Bruch's membrane), where the GAGs heparan sulfate and dermatan sulfate play a major role in mediating the interaction with CFH. Reduced binding of the 402H allotype could result in impaired regulation of complement leading to chronic local inflammation that may contribute to the accumulation of drusen and thus the initiation, development and progression of AMD.

  20. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    Science.gov (United States)

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  1. Effect of Aloe vera application on the content and molecular arrangement of glycosaminoglycans during calcaneal tendon healing.

    Science.gov (United States)

    Aro, Andrea Aparecida de; Esquisatto, Marcelo Augusto Marretto; Nishan, Umar; Perez, Mylena Oliveira; Rodrigues, Rodney Alexandre Ferreira; Foglio, Mary Ann; Carvalho, João Ernesto de; Gomes, Laurecir; Vidal, Benedicto De Campos; Pimentel, Edson Rosa

    2014-12-01

    Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re-rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7(th) , 14(th) , or 21(st) day post-surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera-treated group on the 14(th) day compared with the control. Also at 14 days post-surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera-treated tendons compared with the control. No differences were observed in the chondroitin-6-sulfate and TGF-β1 levels between the groups, and higher amount of non-collagenous proteins was detected in the A. vera-treated group on the 21(st) day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non-collagenous proteins.

  2. Structure shows that a glycosaminoglycan and protein recognition site in factor H is perturbed by age-related macular degeneration-linked single nucleotide polymorphism.

    Science.gov (United States)

    Herbert, Andrew P; Deakin, Jon A; Schmidt, Christoph Q; Blaum, Bärbel S; Egan, Claire; Ferreira, Viviana P; Pangburn, Michael K; Lyon, Malcolm; Uhrín, Dusan; Barlow, Paul N

    2007-06-29

    A common single nucleotide polymorphism in the factor H gene predisposes to age-related macular degeneration. Factor H blocks the alternative pathway of complement on self-surfaces bearing specific polyanions, including the glycosaminoglycan chains of proteoglycans. Factor H also binds C-reactive protein, potentially contributing to noninflammatory apoptotic processes. The at risk sequence contains His (rather than Tyr) at position 402 (384 in the mature protein), in the seventh of the 20 complement control protein (CCP) modules (CCP7) of factor H. We expressed both His(402) and Tyr(402) variants of CCP7, CCP7,8, and CCP6-8. We determined structures of His(402) and Tyr(402) CCP7 and showed them to be nearly identical. The side chains of His/Tyr(402) have similar, solvent-exposed orientations far from interfaces with CCP6 and -8. Tyr(402) CCP7 bound significantly more tightly than His(402) CCP7 to a heparin affinity column as well as to defined-length sulfated heparin oligosaccharides employed in gel mobility shift assays. This observation is consistent with the position of the 402 side chain on the edge of one of two glycosaminoglycan-binding surface patches on CCP7 that we inferred on the basis of chemical shift perturbation studies with a sulfated heparin tetrasaccharide. According to surface plasmon resonance measurements, Tyr(402) CCP6-8 binds significantly more tightly than His(402) CCP6-8 to immobilized C-reactive protein. The data support a causal link between H402Y and age-related macular degeneration in which variation at position 402 modulates the response of factor H to age-related changes in the glycosaminoglycan composition and apoptotic activity of the macula.

  3. Assessment of lumbar intervertebral disc glycosaminoglycan content by gadolinium-enhanced MRI before and after 21-days of head-down-tilt bedrest.

    Directory of Open Access Journals (Sweden)

    Timmo Koy

    Full Text Available During spaceflight, it has been shown that intervertebral discs (IVDs increase in height, causing elongation of the spine up to several centimeters. Astronauts frequently report dull lower back pain that is most likely of discogenic origin and may result from IVD expansion. It is unknown whether disc volume solely increases by water influx, or if the content of glycosaminoglycans also changes in microgravity. Aim of this pilot study was to investigate effects of the spaceflight analog of bedrest on the glycosaminoglycan content of human lumbar IVDs. Five healthy, non-smoking, male human subjects of European descent were immobilized in 6° head-down-tilt bedrest for 21 days. Subjects remained in bed 24 h a day with at least one shoulder on the mattress. Magnetic Resonance Imaging (MRI scans were taken according to the delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC protocol before and after bedrest. The outcome measures were T1 and ΔT1. Scans were performed before and after administration of the contrast agent Gd-DOTA, and differences between T1-values of both scans (ΔT1 were computed. ΔT1 is the longitudinal relaxation time in the tissue and inversely related to the glycosaminoglycan-content. For data analysis, IVDs L1/2 to L4/5 were semi-automatically segmented. Zones were defined and analyzed separately. Results show a highly significant decrease in ΔT1 (p<0.001 after bedrest in all IVDs, and in all areas of the IVDs. The ΔT1-decrease was most prominent in the nucleus pulposus and in L4/5, and was expressed slightly more in the posterior than anterior IVD. Unexpected negative ΔT1-values were found in Pfirrmann-grade 2-discs after bedrest. Significantly lower T1 before contrast agent application was found after bedrest compared to before bedrest. According to the dGEMRIC-literature, the decrease in ΔT1 may be interpreted as an increase in glycosaminoglycans in healthy IVDs during bedrest. This interpretation seems

  4. Immortalisation with hTERT Impacts on Sulphated Glycosaminoglycan Secretion and Immunophenotype in a Variable and Cell Specific Manner.

    Directory of Open Access Journals (Sweden)

    Tina P Dale

    Full Text Available Limited options for the treatment of cartilage damage have driven the development of tissue engineered or cell therapy alternatives reliant on ex vivo cell expansion. The study of chondrogenesis in primary cells is difficult due to progressive cellular aging and senescence. Immortalisation via the reintroduction of the catalytic component of telomerase, hTERT, could allow repeated, longitudinal studies to be performed while bypassing senescent phenotypes.Three human cell types: bone marrow-derived stromal cells (BMA13, embryonic stem cell-derived (1C6 and chondrocytes (OK3 were transduced with hTERT (BMA13H, 1C6H and OK3H and proliferation, surface marker expression and tri-lineage differentiation capacity determined. The sulphated glycosaminoglycan (sGAG content of the monolayer and spent media was quantified in maintenance media (MM and pro-chondrogenic media (PChM and normalised to DNA.hTERT expression was confirmed in transduced cells with proliferation enhancement in 1C6H and OK3H cells but not BMA13H. All cells were negative for leukocyte markers (CD19, CD34, CD45 and CD73 positive. CD14 was expressed at low levels on OK3 and OK3H and HLA-DR on BMA13 (84.8%. CD90 was high for BMA13 (84.9% and OK3 (97.3% and moderate for 1C6 (56.7%, expression was reduced in BMA13H (33.7% and 1C6H (1.6%. CD105 levels varied (BMA13 87.7%, 1C6 8.2%, OK3 43.3% and underwent reduction in OK3H (25.1%. 1C6 and BMA13 demonstrated osteogenic and adipogenic differentiation but mineralised matrix and lipid accumulation appeared reduced post hTERT transduction. Chondrogenic differentiation resulted in increased monolayer-associated sGAG in all primary cells and 1C6H (p<0.001, and BMA13H (p<0.05. In contrast OK3H demonstrated reduced monolayer-associated sGAG in PChM (p<0.001. Media-associated sGAG accounted for ≥55% (PChM-1C6 and ≥74% (MM-1C6H.In conclusion, hTERT transduction could, but did not always, prevent senescence and cell phenotype, including

  5. Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments.

    Science.gov (United States)

    Fessel, Gion; Snedeker, Jess G

    2011-01-07

    The glycosaminoglycan (GAG) side-chains of small leucine-rich proteoglycans have been postulated to mechanically cross-link adjacent collagen fibrils and contribute to tendon mechanics. Enzymatic depletion of tendon GAGs (chondroitin and dermatan sulfate) has emerged as a preferred method to experimentally assess this role. However, GAG removal is typically incomplete and the possibility remains that extant GAGs may remain mechanically functional. The current study specifically investigated the potential mechanical effect of the remaining GAGs after partial enzymatic digestion. A three-dimensional finite element model of tendon was created based upon the concept of proteoglycan mediated inter-fibril load sharing. Approximately 250 interacting, discontinuous collagen fibrils were modeled as having a length of 400 μm, being composed of rod elements of length 67 nm and E-modulus 1 GPa connected in series. Spatial distribution and diameters of these idealized fibrils were derived from a representative cross-sectional electron micrograph of tendon. Rod element lengths corresponded to the collagen fibril D-Period, widely accepted to act as a binding site for decorin and biglycan, the most abundant proteoglycans in tendon. Each element node was connected to nodes of any neighboring fibrils within a radius of 100 nm, the slack length of unstretched chondroitin sulfate. These GAG cross-links were the sole mechanism for lateral load sharing among the discontinuous fibrils, and were modeled as bilinear spring elements. Simulation of tensile testing of tendon with complete cross-linking closely reproduced corresponding experiments on rat tail tendons. Random reduction of 80% of GAG cross-links (matched to a conservative estimate of enzymatic depletion efficacy) predicted a drop of 14% in tendon modulus. Corresponding mechanical properties derived from experiments on rat tail tendons treated in buffer with and without chondroitinase ABC were apparently unaffected, regardless

  6. The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74-103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice.

    Science.gov (United States)

    Vanheule, Vincent; Janssens, Rik; Boff, Daiane; Kitic, Nikola; Berghmans, Nele; Ronsse, Isabelle; Kungl, Andreas J; Amaral, Flavio Almeida; Teixeira, Mauro Martins; Van Damme, Jo; Proost, Paul; Mortier, Anneleen

    2015-08-28

    The ELR(-)CXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74-103)) being the most potent. The COOH-terminal peptide CXCL9(74-103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74-103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74-103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74-103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.

  7. Glycosaminoglycan-mediated coacervation of tropoelastin abolishes the critical concentration, accelerates coacervate formation, and facilitates spherule fusion: implications for tropoelastin microassembly.

    Science.gov (United States)

    Tu, Yidong; Weiss, Anthony S

    2008-07-01

    Elastogenesis and elastin repair depend on the secretion of tropoelastin from the cell, yet cellular production is low in the many biological systems that have been studied. To address the apparent paradox of a paucity of tropoelastin for cell surface microassembly, we examined the effects of the glycosaminoglycans heparin, heparan sulfate, and chondroitin sulfate B, on tropoelastin aggregate formation through coacervation. We found a significant effect, particularly of heparin, on the minimum or critical concentration of tropoelastin, which was required for microassembly, lowering critical concentration to a point that it was no longer detectable. The assemblies resulted in protein droplet formation that was visually indistinguishable from the spherules that typify coacervation. The spherules readily coalesced in the presence of heparin and higher concentrations of tropoelastin, resulting in an almost continuous layer of coacervated tropoelastin. Four stages of droplet behavior were observed: early droplet formation, approximately 6 mum droplet formation, and fusion of droplets followed by the formation of a coalesced layer. We conclude that glycosaminoglycans in the extracellular matrix have the capacity to promote coacervation at low concentrations of tropoelastin.

  8. Effect of a synthetic folic acid analogue, 9-methyl-pteroylglutamic acid, on fetal chondrogenesis: ultrastructural observations.

    Science.gov (United States)

    Schmidt, R R; Slobodian, S A; Chepenik, K P; Cotler, J M

    1983-01-01

    Maternally administered folic acid antagonists (x-methyl-PGA and 9-methyl-PGA) are known to produce various skeletal malformations in the neonate. These defects are thought to be due in part to abnormal metabolism and/or deposition of various extracellular matrix components, i.e., collagen and glycosaminoglycans. Experimental reduction of glycosaminoglycan biosynthesis in vitro has been shown previously to alter the spatial orientation and normal pattern of collagen fibrillogenesis. Furthermore, dietary withdrawal of folic acid concomitant with maternal administration of 9-methyl-PGA has been shown to result in abnormal collagen, uronic acid, and hexosamine metabolism by fetal limbs. In the present study pregnant rats were exposed to a transitory folic acid deficiency from day 11 to 14 of gestation and fetal tibias (mid-diaphyseal region) were examined with the electron microscope on day 18 of gestation. Although we were unable to ascertain any aberrant patterns of fibrillogenesis and orientation with respect to collagen, this particular teratogenic regimen resulted in an altered pattern of chondrocyte development when observed at the ultrastructural level.

  9. Avaliação dos glicosaminoglicanos do tecido periuretral de pacientes com e sem prolapso genital Evaluation of glycosaminoglycans of periurethral tissue in patients with and without pelvic organ prolapse

    Directory of Open Access Journals (Sweden)

    Paulo Cezar Feldner Jr

    2008-04-01

    tissue during surgery and assessed by biochemical methods. The GAGs were obtained by proteolysis and precipitated by trichloroacetic acid. The relative concentration of sulfated GAGs was determined by densitometry of toluidine blue stained gel using a spectrophotometer with a 525 nm wavelength. Data were compared using analysis of variance (ANOVA. RESULTS: In the two groups dermatan sulphate (DS was the predominant glycosaminoglycan (85%, followed by chondroitin sulphate (CS and heparan sulphate (HS. Women with pelvic organ prolapse had significantly more total GAGs, DS and HS. Differences in CS were not observed. CONCLUSIONS: This study showed altered biochemical characteristics in the extracellular matrix of periurethral tissue and also accumulation of GAGs, DS and CS, in women with pelvic organ prolapse.

  10. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H

    2016-12-01

    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  11. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells

    Directory of Open Access Journals (Sweden)

    Didsbury Alicia

    2011-12-01

    Full Text Available Abstract Background Nonstructural glycoprotein 4 (NSP4 encoded by rotavirus is the only viral protein currently believed to function as an enterotoxin. NSP4 is synthesized as an intracellular transmembrane glycoprotein and as such is essential for virus assembly. Infection of polarized Caco-2 cells with rotavirus also results in the secretion of glycosylated NSP4 apparently in a soluble form despite retention of its transmembrane domain. We have examined the structure, solubility and cell-binding properties of this secreted form of NSP4 to further understand the biochemical basis for its enterotoxic function. We show here that NSP4 is secreted as discrete detergent-sensitive oligomers in a complex with phospholipids and demonstrate that this secreted form of NSP4 can bind to glycosaminoglycans present on the surface of a range of different cell types. Methods NSP4 was purified from the medium of infected cells after ultracentrifugation and ultrafiltration by successive lectin-affinity and ion exchange chromatography. Oligomerisation of NSP4 was examined by density gradient centrifugation and chemical crosslinking and the lipid content was assessed by analytical thin layer chromatography and flame ionization detection. Binding of NSP4 to various cell lines was measured using a flow cytometric-based assay. Results Secreted NSP4 formed oligomers that contained phospholipid but dissociated to a dimeric species in the presence of non-ionic detergent. The purified glycoprotein binds to the surface of various non-infected cells of distinct lineage. Binding of NSP4 to HT-29, a cell line of intestinal origin, is saturable and independent of divalent cations. Complementary biochemical approaches reveal that NSP4 binds to sulfated glycosaminoglycans on the plasma membrane. Conclusion Our study is the first to analyze an authentic (i.e. non-recombinant form of NSP4 that is secreted from virus-infected cells. Despite retention of the transmembrane domain

  12. Uric acid urolithiasis and crystallization inhibitors.

    Science.gov (United States)

    Grases, F; Ramis, M; Villacampa, A I; Costa-Bauzá, A

    1999-01-01

    An in vitro study of the inhibitory effects that some substances occasionally present in urine can provoke on the crystallization of uric acid has been performed. The most remarkable crystallization inhibitory effects were produced by mucine at concentrations of >0.5 mg/l. Pentosan polysulfate and chondroitin sulfate also clearly increased the uric acid crystallization times at concentrations of >100 mg/l. Saponins, such as escin and glycyrrhizic acid, also produced a notable delay in uric acid crystallization times at concentrations of >10 mg/l. Similar effects were observed in the presence of a surfactant substance, lauryl sulfate. N-Acetyl-L-cysteine caused crystallization perturbations only when it was present at concentrations of >50 mg/l. Citric acid and phytic acid caused no effects on uric acid crystallization even at the highest concentrations assayed (1,000 and 5 mg/l, respectively). From the results obtained it can be deduced that mainly glycoproteins, glycosaminoglycans and surfactant substances can exert protective effects against uric acid crystallization.

  13. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.

    Science.gov (United States)

    Naik, Rangeetha J; Chatterjee, Anindo; Ganguli, Munia

    2013-06-01

    The role of cell surface and exogenous glycosaminoglycans (GAGs) in DNA delivery by cationic peptides is controlled to a large extent by the peptide chemistry and the nature of its complex with DNA. We have previously shown that complexes formed by arginine homopeptides with DNA adopt a GAG-independent cellular internalization mechanism and show enhanced gene delivery in presence of exogenous GAGs. In contrast, lysine complexes gain cellular entry primarily by a GAG-dependent pathway and are destabilized by exogenous GAGs. The aim of the current study was to elucidate the factors governing the role of cell surface and soluble glycosaminoglycans in DNA delivery by sequences of arginine-rich peptides with altered arginine distributions (compared to homopeptide). Using peptides with clustered arginines which constitute known heparin-binding motifs and a control peptide with arginines alternating with alanines, we show that complexes formed by these peptides do not require cell surface GAGs for cellular uptake and DNA delivery. However, the charge distribution and the spacing of arginine residues affects DNA delivery efficiency of these peptides in presence of soluble GAGs, since these peptides show only a marginal increase in transfection in presence of exogenous GAGs unlike that observed with arginine homopeptides. Our results indicate that presence of arginine by itself drives these peptides to a cell surface GAG-independent route of entry to efficiently deliver functional DNA into cells in vitro. However, the inherent stability of the complexes differ when the distribution of arginines in the peptides is altered, thereby modulating its interaction with exogenous GAGs.

  14. PSEUDOSCLERODERMAL SYNDROME IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    T. A. Nevskaya

    2001-01-01

    Full Text Available Skin thicking simulating scleroderma is not rare in diabetes mellitus (about 2% among patients with diabetes mellitus, however it is not well known to rheumatologists and endocrinologists. The basis of the syndrome are the abnormalities of collagen and glycosaminoglycans metabolism accompanying by the acid mucopolysaccharides accumulation in the deep part of the reticular dermis. Three cases of pseudosclerodrma in patients with long-standing complicated insulin-dependent diabetes mellitus are presented. The main clinical manifestations of pseudoscleroderma were marked cutaneous induration of the neck, body and proximal parts of extremities liked that of scleredema of Buschke ( 2 patients, and primary paraarticular induration leaded to the flexion contractures liked that of paraneoplastic scleroderma ( I patient. Possible mechanisms of development, clinical and morphological peculiarities and treatment for this syndrome are discussed.

  15. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at

  16. Effects of adeno-associated virus (AAV) of transforming growth factors β1 and β3 (TGFβ1,3) on promoting synthesis of glycosaminoglycan and collagen type Ⅱ of dedifferentiated nucleus pulposus (NP) cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of AAV-TGFβ1 and AAV-TGFβ3 on promoting synthesis of glycosaminoglycan and collagen type Ⅱ of dedifferentiated rabbit lumbar disc NP cells were studied in this work. The rabbit lumbar disc NP cells were isolated and cultured. The earlier and later dedifferentiated NP cells were established by subculture. The AAV transfection efficiency to dedifferentiated NP cells was analyzed with AAV-EGFP in vitro. After dedifferentiated NP cells were transfected by AAV-TGFβ1 or AAV-TGFβ3, their biological effects on promoting synthesis of glycosaminoglycan or collagen type Ⅱ were detected and compared by the methods of 35S incorporation or immunoblotting. The experimental results showed that AAV could transfect efficiently the earlier dedifferentiated NP cells, but its transfection rate was shown to be at a low level to the later dedifferentiated NP cells. Both AAV-TGFβ1 and AAV-TGFβ3 could promote the earlier dedifferentiated NP cells to synthesize glycosaminoglycan and collagen type Ⅱ, and the effect of AAV-TGFβ1 was better than that of AAV-TGFβ3. For the later dedifferentiated NP cells, the AAV-TGFβ3 could promote their synthesis, but AAV-TGFβ1 could slightly inhibit their synthesis. Therefore, AAV-TGFβ1 and AAV-TGFβ3 could be used for the earlier dedifferentiated NP cells, and the TGFβ3 could be used as the objective gene for the later dedifferentiated NP cells.

  17. The effects of mechanical loading and gadolinium concentration on the change of T1 and quantification of glycosaminoglycans in articular cartilage by microscopic MRI.

    Science.gov (United States)

    Wang, Nian; Chopin, Edith; Xia, Yang

    2013-07-01

    Microscopic MRI (µMRI) T1 experiments were carried out to investigate the strain dependence of the T1 change and glycosaminoglycans (GAG) quantification in articular cartilage at a spatial resolution of 17.6 µm. Both native and trypsin-degraded specimens were immersed in various concentrations of gadolinium (Gd) (up to 1 mM) and imaged at different strains (up to 50% strains). Adjacent specimens were treated identically and analyzed biochemically by an inductively coupled plasma optical emission spectrometer. The T1 profile in the native tissue was found to be both strain-dependent and depth-dependent, while there was no obvious depth-dependence in the degraded tissue. For the native tissue, compression reduced the tissue T1 when Gd in the solution was low (less than 0.4 mM) and increased the tissue T1 when Gd in the solution was high. A set of critical points, where the tissue T1 showed no change at a certain Gd concentration between two different loadings, was observed for the first time in the native tissue. It is concluded that the GAG quantification by MRI was accurate as long as the Gd concentration in the solution reached at least 0.2 mM (tissue not loaded) or 0.4 mM (tissue loaded).

  18. Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Mieke Metzemaekers

    2017-07-01

    Full Text Available CXC chemokine ligand (CXCL9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.

  19. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3).

    Science.gov (United States)

    van Wijk, Xander M; Lawrence, Roger; Thijssen, Victor L; van den Broek, Sebastiaan A; Troost, Ran; van Scherpenzeel, Monique; Naidu, Natasha; Oosterhof, Arie; Griffioen, Arjan W; Lefeber, Dirk J; van Delft, Floris L; van Kuppevelt, Toin H

    2015-07-01

    Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50-60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5'-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.

  20. Synthesis and distribution of glycosaminoglycans in human leukemic B- and T-cells and monocytes studied using specific enzymic treatments and high-performance liquid chromatography.

    Science.gov (United States)

    Makatsori, E; Karamanos, N K; Papadogiannakis, N; Hjerpe, A; Anastassiou, E D; Tsegenidis, T

    2001-10-01

    Identification of glycosaminoglycans (GAGs) synthesized by three human leukaemic cell lines-Jurkat (T-cell leukaemia), Daudi (Burkitt's lymphoma, B-cell leukaemia) and THP-1 (acute monocytic leukemia)-and normal peripheral blood mononuclear cells (PBMC) and their distribution among cell membrane and culture medium were studied. GAGs were isolated using ion-exchange chromatography on DEAE-Sephacel and their composition and fine chemical structure were studied using high-performance liquid chromatography with radiochemical detection. All cell lines synthesize chondroitin sulphate (CS) and heparan sulphate (HS) in both cell membrane and culture medium. No hyaluronan was detected using treatment with specific lyases and highly sensitive HPLC methodology. CS is the major secreted GAG in all cell lines tested and the major cell retained GAG in Jurkat and Daudi. HS is the major GAG in the cell membrane of THP-1. The amounts of distinct GAGs synthesized by all cancer cell lines differ from those produced by normal PBML indicating a major role of GAGs in malignant transformation of human lymphocytes and monocytes. Copyright 2001 John Wiley & Sons, Ltd.

  1. The Augmentation of a Collagen/Glycosaminoglycan Biphasic Osteochondral Scaffold with Platelet-Rich Plasma and Concentrated Bone Marrow Aspirate for Osteochondral Defect Repair in Sheep

    Science.gov (United States)

    Henson, Frances; Skelton, Carrie; Herrera, Emilio; Brooks, Roger; Fortier, Lisa A.; Rushton, Neil

    2012-01-01

    Objective: This study investigates the combination of platelet-rich plasma (PRP) or concentrated bone marrow aspirate (CBMA) with a biphasic collagen/glycosaminoglycan (GAG) osteochondral scaffold for the treatment of osteochondral defects in sheep. Design: Acute osteochondral defects were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of 24 sheep (n = 6). Defects were left empty or filled with a 6 × 6-mm scaffold, either on its own or in combination with PRP or CBMA. Outcome measures at 6 months included mechanical testing, International Cartilage Repair Society (ICRS) repair score, modified O’Driscoll histology score, qualitative histology, and immunohistochemistry for type I, II, and VI collagen. Results: No differences in mechanical properties, ICRS repair score, or modified O’Driscoll score were detected between the 4 groups. However, qualitative assessments of the histological architecture, Safranin O content, and collagen immunohistochemistry indicated that in the PRP/scaffold groups, there was a more hyaline cartilage–like tissue repair. In addition, the addition of CBMA and PRP to the scaffold reduced cyst formation in the subchondral bone of healed lesions. Conclusion: There was more hyaline cartilage–like tissue formed in the PRP/scaffold group and less subchondral cystic lesion formation in the CBMA and PRP/scaffold groups, although there were no quantitative differences in the repair tissue formed. PMID:26069645

  2. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Aki, Kenzo; Tohyama, Yumi; Harano, Yuichi; Kawakami, Toru; Saito, Hiroyuki; Okamura, Emiko

    2017-04-15

    Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of (19)F-labeled R8 ((19)F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. (19)F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.

  3. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    Science.gov (United States)

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.

  4. Ring-Mesh Model of Proteoglycan Glycosaminoglycan Chains in Tendon based on Three-dimensional Reconstruction by Focused Ion Beam Scanning Electron Microscopy.

    Science.gov (United States)

    Watanabe, Takafumi; Kametani, Kiyokazu; Koyama, Yoh-Ichi; Suzuki, Daisuke; Imamura, Yasutada; Takehana, Kazushige; Hiramatsu, Kohzy

    2016-11-04

    Tendons are composed of collagen fibrils and proteoglycan predominantly consisting of decorin. Decorin is located on the d-band of collagen fibrils, and its glycosaminoglycan (GAG) chains have been observed between collagen fibrils with transmission electron microscopy. GAG chains have been proposed to interact with each other or with collagen fibrils, but its three-dimensional organization remains unclear. In this report, we used focused ion beam scanning electron microscopy to examine the three-dimensional organization of the GAG chain in the Achilles tendon of mature rats embedded in epoxy resin after staining with Cupromeronic blue, which specifically stains GAG chains. We used 250 serial back-scattered electron images of longitudinal sections with a 10-nm interval for reconstruction. Three-dimensional images revealed that GAG chains form a ring mesh-like structure with each ring surrounding a collagen fibril at the d-band and fusing with adjacent rings to form the planar network. This ring mesh model of GAG chains suggests that more than two GAG chains may interact with each other around collagen fibrils, which could provide new insights into the roles of GAG chains.

  5. Type of carbohydrate in feed affects the expression of small leucine-rich proteoglycans (SLRPs), glycosaminoglycans (GAGs) and interleukins in skeletal muscle of Atlantic cod (Gadus morhua L.).

    Science.gov (United States)

    Tingbø, M G; Pedersen, M E; Grøndahl, F; Kolset, S O; Veiseth-Kent, E; Enersen, G; Hannesson, K O

    2012-09-01

    Aquaculture requires feed that ensures rapid growth and healthy fish. Higher inclusion of plant ingredients is desirable, as marine resources are limited. In this study we investigated the effects of higher starch inclusion in feed on muscular extracellular matrix and interleukin expression in farmed cod. Starch was replaced by complex fibers in the low-starch diet to keep total carbohydrate inclusion similar. Blood glucose and fructosamine levels were elevated in the high-starch group. The group fed a high-starch diet showed up-regulation on mRNA level of proteoglycans biglycan and decorin. ELISA confirmed the real-time PCR results on protein level for biglycan and also showed increase of lumican. For decorin the protein levels were decreased in the high-starch group, in contrast to real-time PCR results. Disaccharide analyses using HPLC showed reduction of glycosaminoglycans. Further, there was up-regulation of interleukin-1β and -10 on mRNA level in muscle. This study shows that the muscular extracellular matrix composition is affected by diet, and that a high-starch diet results in increased expression of pro-inflammatory genes similar to diabetes in humans.

  6. Assessment of quantitative and qualitative changes of proteoglycans and glycosaminoglycans in normal breast tissue during the follicular and luteal phases of the menstrual cycle.

    Science.gov (United States)

    Júnior, J A Dos Santos; de Lima, C R; Michelacci, Y M C da Silva; Nazário, A C Pinto

    2015-01-01

    The effect of sex hormones on extracellular matrix compounds, such as proteoglycans (PGs) and glycosaminoglycans (GAGs), in mammary tissue remains poorly understood. The elucidation of extracellular matrix component functions could clarify pathophysiological conditions, such as cyclical mastalgia (breast pain). The authors examined the quantitative and qualitative changes of PGs and GAGs in normal breast tissue during the follicular and luteal phases of the menstrual cycle. Twenty-eight eumenorrheic patients with benign breast nodules were divided into groups: Group A included 15 follicular patients and Group B included 13 luteal phase patients. Breast tissue adjacent to the nodules was biochemically analyzed to evaluate the types and concentrations of PGS and GAGs. The distribution of proteoglycans during the menstrual cycle was analyzed with immunofluorescence. PG concentrations were elevated (p < 0.01) during the luteal phase compared with the follicular phase, whereas the concentrations of GAGs did not differ significantly. Immunofluorescence revealed that decorin was mainly found in the intralobular stroma. PG concentrations were elevated during the luteal phase, likely due to the influence of sex hormones on macromolecular synthesis. The PG decorin was observed in normal breast tissue in the intralobular stroma. Although the concentration of GAGs, including dermatan and heparan sulfate, varied cyclically, the differences were not significant.

  7. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway.

    Directory of Open Access Journals (Sweden)

    Roman Gangl

    Full Text Available In animals, the main precursor for glycosaminoglycan and furthermore proteoglycan biosynthesis, like hyaluronic acid, is UDP-glucuronic acid, which is synthesized via the nucleotide sugar oxidation pathway. Mutations in this pathway cause severe developmental defects (deficiency in the initiation of heart valve formation. In plants, UDP-glucuronic acid is synthesized via two independent pathways. Beside the nucleotide sugar oxidation pathway, a second minor route to UDP-glucuronic acid exist termed the myo-inositol oxygenation pathway. Within this myo-inositol is ring cleaved into glucuronic acid, which is subsequently converted to UDP-glucuronic acid by glucuronokinase and UDP-sugar pyrophosphorylase. Here we report on a similar, but bifunctional enzyme from zebrafish (Danio rerio which has glucuronokinase/putative pyrophosphorylase activity. The enzyme can convert glucuronic acid into UDP-glucuronic acid, required for completion of the alternative pathway to UDP-glucuronic acid via myo-inositol and thus establishes a so far unknown second route to UDP-glucuronic acid in animals. Glucuronokinase from zebrafish is a member of the GHMP-kinase superfamily having unique substrate specificity for glucuronic acid with a Km of 31 ± 8 µM and accepting ATP as the only phosphate donor (Km: 59 ± 9 µM. UDP-glucuronic acid pyrophosphorylase from zebrafish has homology to bacterial nucleotidyltransferases and requires UTP as nucleosid diphosphate donor. Genes for bifunctional glucuronokinase and putative UDP-glucuronic acid pyrophosphorylase are conserved among some groups of lower animals, including fishes, frogs, tunicates, and polychaeta, but are absent from mammals. The existence of a second pathway for UDP-glucuronic acid biosynthesis in zebrafish likely explains some previous contradictory finding in jekyll/ugdh zebrafish developmental mutants, which showed residual glycosaminoglycans and proteoglycans in knockout mutants of UDP

  8. Extraction of Glycosaminoglycan from the Whole Viscera of Sanguinolaria acut%尖紫蛤全脏器中糖胺聚糖提取工艺的研究

    Institute of Scientific and Technical Information of China (English)

    李孟婕; 范秀萍; 吴红棉; 胡雪琼

    2011-01-01

    The extraction of glycosaminoglycan from the whole viscera of the Sanguinolaria acuta was studied by single factor experiment.And the extracts was preliminarily purified and identified by electrophoresis. The optimal conditions for the enzymatic extraction of glycosaminoglycan from Sanguinolaria acuta were determined as follows: papain dosage 0.6%, subtilisin dosage 0.79%, the ratio of purified water to material 1.0:6, enzymolysis temperature 58 ℃, and enzymolysis time 4 h. Crude glycosaminoghycan (SAG-0) was achieved with the yield of 2.58%. After enzymatic extraction, deproteinization by centrifugation, ethanol precipitation, washing and drying, SAG-0 was achieved with the glycosaminoglycan content of 26.7%. Then SAG-0 was purified by decoloration, isoelectric precipitation, hyperfiltration, ethylalcohol precipitation, washing and drying, giving glycosaminoglycan superfine products (SAG-1) with the yield rate and glycosaminoglycan content being of 1.48% and 40. 1%, respectively.%采用单因素实验,研究尖紫蛤全脏器中糖胺聚糖的分离提取工艺条件并进行初步纯化,同时进行电泳鉴定.尖紫蛤全脏器中糖胺聚糖的最佳分离提取条件为:木瓜蛋白酶和枯草杆菌中性蛋白酶用量分别为0.6%和0.79%,水料比为1∶1,酶解温度为58℃,酶解时间为4h,经酶解、离心去蛋白、醇沉、洗涤、干燥,得糖胺聚糖粗制品(SAG-0),得率为2.58%,糖胺聚糖含量为26.7%.粗制品经脱色、等电点沉淀、超滤、醇沉、洗涤、干燥,得糖胺聚糖精制品(SAG-1),得率为1.48%,糖胺聚糖含量为40.1%.

  9. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.

    Science.gov (United States)

    Joseph, Prem Raj B; Mosier, Philip D; Desai, Umesh R; Rajarathnam, Krishna

    2015-11-15

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function.

  10. A Simple Method for Discovering Druggable, Specific Glycosaminoglycan-Protein Systems. Elucidation of Key Principles from Heparin/Heparan Sulfate-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Aurijit Sarkar

    Full Text Available Glycosaminoglycans (GAGs affect human physiology and pathology by modulating more than 500 proteins. GAG-protein interactions are generally assumed to be ionic and nonspecific, but specific interactions do exist. Here, we present a simple method to identify the GAG-binding site (GBS on proteins that in turn helps predict high specific GAG-protein systems. Contrary to contemporary thinking, we found that the electrostatic potential at basic arginine and lysine residues neither identifies the GBS consistently, nor its specificity. GBSs are better identified by considering the potential at neutral hydrogen bond donors such as asparagine or glutamine sidechains. Our studies also reveal that an unusual constellation of ionic and non-ionic residues in the binding site leads to specificity. Nature engineers the local environment of Asn45 of antithrombin, Gln255 of 3-O-sulfotransferase 3, Gln163 and Asn167 of 3-O-sulfotransferase 1 and Asn27 of basic fibroblast growth factor in the respective GBSs to induce specificity. Such residues are distinct from other uncharged residues on the same protein structure in possessing a significantly higher electrostatic potential, resultant from the local topology. In contrast, uncharged residues on nonspecific GBSs such as thrombin and serum albumin possess a diffuse spread of electrostatic potential. Our findings also contradict the paradigm that GAG-binding sites are simply a collection of contiguous Arg/Lys residues. Our work demonstrates the basis for discovering specifically interacting and druggable GAG-protein systems based on the structure of protein alone, without requiring access to any structure-function relationship data.

  11. The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse.

    Science.gov (United States)

    Wang, Dan; Belakhov, Valery; Kandasamy, Jeyakumar; Baasov, Timor; Li, Su-Chen; Li, Yu-Teh; Bedwell, David M; Keeling, Kim M

    2012-01-01

    Suppression therapy utilizes compounds that suppress translation termination at in-frame premature termination codons (PTCs) to restore full-length, functional protein. This approach may provide a treatment for diseases caused by nonsense mutations such as mucopolysaccharidosis type I-Hurler (MPS I-H). MPS I-H is a lysosomal storage disease caused by severe α-L-iduronidase deficiency and subsequent lysosomal glycosaminoglycan (GAG) accumulation. MPS I-H represents a good target for suppression therapy because the majority of MPS I-H patients carry nonsense mutations, and restoration of even a small amount of functional α-L-iduronidase may attenuate the MPS I-H phenotype. In this study, we investigated the efficiency of suppression therapy agents to suppress the Idua-W392X nonsense mutation in an MPS I-H mouse model. The drugs tested included the conventional aminoglycosides gentamicin, G418, amikacin, and paromomycin. In addition, the designer aminoglycosides NB54 and NB84, two compounds previously designed to mediate efficient PTC suppression with reduced toxicity, were also examined. Overall, NB84 suppressed the Idua-W392X nonsense mutation much more efficiently than any of the other compounds tested. NB84 treatment restored enough functional α-L-iduronidase activity to partially reverse abnormal GAG accumulation and lysosomal abundance in mouse embryonic fibroblasts derived from the Idua-W392X mouse. Finally, in vivo administration of NB84 to Idua-W392X mice significantly reduced urine GAG excretion and tissue GAG storage. Together, these results suggest that NB84-mediated suppression therapy has the potential to attenuate the MPS I-H disease phenotype. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B0 Field Inhomogeneity corrections with gradient echo method.

    Science.gov (United States)

    Wei, Wenbo; Jia, Guang; Flanigan, David; Zhou, Jinyuan; Knopp, Michael V

    2014-01-01

    Glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) is an important molecular MRI methodology developed to assess changes in cartilage GAG concentrations. The correction for B0 field inhomogeneity is technically crucial in gagCEST imaging. This study evaluates the accuracy of the B0 estimation determined by the dual gradient echo method and the effect on gagCEST measurements. The results were compared with those from the commonly used z-spectrum method. Eleven knee patients and three healthy volunteers were scanned. Dual gradient echo B0 maps with different ∆TE values (1, 2, 4, 8, and 10 ms) were acquired. The asymmetry of the magnetization transfer ratio at 1 ppm offset referred to the bulk water frequency, MTRasym(1 ppm), was used to quantify cartilage GAG levels. The B0 shifts for all knee patients using the z-spectrum and dual gradient echo methods are strongly correlated for all ∆TE values used (r = 0.997 to 0.786, corresponding to ∆TE = 10 to 1 ms). The corrected MTRasym(1 ppm) values using the z-spectrum method (1.34% ± 0.74%) highly agree only with those using the dual gradient echo methods with ∆TE = 10 ms (1.72% ± 0.80%; r = 0.924) and 8 ms (1.50% ± 0.82%; r = 0.712). The dual gradient echo method with longer ∆TE values (more than 8 ms) has an excellent correlation with the z-spectrum method for gagCEST imaging at 3T.

  13. Mycoplasma hyopneumoniae Surface proteins Mhp385 and Mhp384 bind host cilia and glycosaminoglycans and are endoproteolytically processed by proteases that recognize different cleavage motifs.

    Science.gov (United States)

    Deutscher, Ania T; Tacchi, Jessica L; Minion, F Chris; Padula, Matthew P; Crossett, Ben; Bogema, Daniel R; Jenkins, Cheryl; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P

    2012-03-02

    P97 and P102 paralogues occur as endoproteolytic cleavage fragments on the surface of Mycoplasma hyopneumoniae that bind glycosaminoglycans, plasminogen, and fibronectin and perform essential roles in colonization of ciliated epithelia. We show that the P102 paralogue Mhp384 is efficiently cleaved at an S/T-X-F↓X-D/E-like site, creating P60(384) and P50(384). The P97 paralogue Mhp385 is inefficiently cleaved, with tryptic peptides from a 115 kDa protein (P115(385)) and 88 kDa (P88(385)) and 27 kDa (P27(385)) cleavage fragments identified by LC-MS/MS. This is the first time a preprotein belonging to the P97 and P102 paralogue families has been identified by mass spectrometry. The semitryptic peptide (752)IQFELEPISLNV(763) denotes the C-terminus of P88(385) and defines the novel cleavage site (761)L-N-V↓A-V-S(766) in Mhp385. P115(385), P88(385), P27(385), P60(384), and P50(384) were shown to reside extracellularly, though it is unknown how the fragments remain attached to the cell surface. Heparin- and cilium-binding sites were identified within P60(384), P50(384), and P88(385). No primary function was attributed to P27(385); however, this molecule contains four tandem R1 repeats with similarity to porcine collagen type VI (α3 chain). P97 and P102 paralogue families are adhesins targeted by several proteases with different cleavage efficiencies, and this process generates combinatorial complexity on the surface of M. hyopneumoniae.

  14. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-β in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans.

    Science.gov (United States)

    Cuellar, Araceli; Reddi, A Hari

    2015-07-01

    Superficial zone protein (SZP), also known as lubricin and proteoglycan 4 (PRG4), plays an important role in the boundary lubrication of articular cartilage and is regulated by transforming growth factor (TGF)-β. Here, we evaluate the role of cell surface glycosaminoglycans (GAGs) during TGF-β1 stimulation of SZP/lubricin/PRG4 in superficial zone articular chondrocytes. We utilized primary monolayer superficial zone articular chondrocyte cultures and treated them with various concentrations of TGF-β1, in the presence or absence of heparan sulfate (HS), heparin, and chondroitin sulfate (CS). The cell surface GAGs were removed by pretreatment with either heparinase I or chondroitinase-ABC before TGF-β1 stimulation. Accumulation of SZP/lubricin/PRG4 in the culture medium in response to stimulation with TGF-β1 and various exogenous GAGs was demonstrated by immunoblotting and quantitated by enzyme-linked immunosorbent assay. We show that TGF-β1 and exogenous HS enhanced SZP accumulation of superficial zone chondrocytes in the presence of surface GAGs. At the dose of 1 ng/mL of TGF-β1, the presence of exogenous heparin inhibited SZP accumulation whereas the presence of exogenous CS stimulated SZP accumulation in the culture medium. Enzymatic depletion of GAGs on the surface of superficial zone chondrocytes enhanced the ability of TGF-β1 to stimulate SZP accumulation in the presence of both exogenous heparin and CS. Collectively, these results suggest that GAGs at the surface of superficial zone articular chondrocytes influence the response to TGF-β1 and exogenous GAGs to stimulate SZP accumulation. Cell surface GAGs modulate superficial zone chondrocytes' response to TGF-β1 and exogenous HS.

  15. Histidine-proline-rich glycoprotein as a plasma pH sensor. Modulation of its interaction with glycosaminoglycans by ph and metals.

    Science.gov (United States)

    Borza, D B; Morgan, W T

    1998-03-06

    The middle domain of plasma histidine-proline-rich glycoprotein (HPRG) contains unusual tandem pentapeptide repeats (consensus G(H/P)(H/P)PH) and binds heparin and transition metals. Unlike other proteins that interact with heparin via lysine or arginine residues, HPRG relies exclusively on histidine residues for this interaction. To assess the consequences of this unusual requirement, we have studied the interaction between human plasma HPRG and immobilized glycosaminoglycans (GAGs) using resonant mirror biosensor techniques. HPRG binding to immobilized heparin was strikingly pH-sensitive, producing a titration curve with a midpoint at pH 6.8. There was little binding of HPRG to heparin at physiological pH in the absence of metals, but the interaction was promoted by nanomolar concentrations of free zinc and copper, and its pH dependence was shifted toward alkaline pH by zinc. The affinity of HPRG for various GAGs measured in a competition assay decreased in the following order: heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate A. Binding of HPRG to immobilized dermatan sulfate had a midpoint at pH 6.5, was less influenced by zinc, and exhibited cooperativity. Importantly, plasminogen interacted specifically with GAG-bound HPRG. We propose that HPRG is a physiological pH sensor, interacting with negatively charged GAGs on cell surfaces only when it acquires a net positive charge by protonation and/or metal binding. This provides a mechanism to regulate the function of HPRG (the local pH) and rationalizes the role of its unique, conserved histidine-proline-rich domain. Thus, under conditions of local acidosis (e.g. ischemia or hypoxia), HPRG can co-immobilize plasminogen at the cell surface as well as compete for heparin with other proteins such as antithrombin.

  16. Effects on platelets and on the clotting system of four glycosaminoglycans extracted from hog mucosa and one extracted from aortic intima of the calf.

    Science.gov (United States)

    Cella, G; Scattolo, N; Luzzatto, G; Stevanato, F; Vio, C; Girolami, A

    1986-01-01

    A commercial heparin preparation, a heparin fraction with a molecular weight of 12,000 Daltons, heparan sulfate, dermatan sulfate obtained from hog mucosa, and mesoglycan, an heparinoid obtained from calf aortic intima were investigated. Commercial mucous heparin had a stimulatory effect on platelet aggregation induced by ADP, while the others failed to do so. Dermatan sulfate had a dose dependent inhibition and commercial mucosal heparin, a dose dependent stimulation, on serotonin release induced by ADP. Both the commercial mucosal heparin and dermatan sulfate showed an inhibition and the other glycosaminoglycans (GAGs) a negligible effect on collagen induced platelet aggregation. The collagen induced serotonin release was clearly reduced by all GAGs; heparan sulfate had this activity only at the highest doses used. Commercial mucosal heparin produced the highest activity on clotting systems as measured by activated partial thromboplastin time, while mesoglycan had the strongest anti-factor Xa specific activity as measured by a clotting assay. Dermatan sulfate was the weakest on both assays. When we injected intravenously an equivalent amount (about 60 mg) of heparin fraction, heparan sulfate, dermatan sulfate and mesoglycan in three different volunteers with an interval of 20 days after each injection, we had an immediate platelet factor 4 (PF4) release only with heparin fraction, heparan sulfate and mesoglycan. Heparin fraction and mesoglycan, in spite of having a wide discrepancy in anticoagulant effect, caused almost the same PF4 release. GAGs which can neutralize PF4 and which can also have specific anti-factor Xa activity could represent a great advantage in thrombosis prophylaxis.

  17. Overexpression of Galnt3 in chondrocytes resulted in dwarfism due to the increase of mucin-type O-glycans and reduction of glycosaminoglycans.

    Science.gov (United States)

    Yoshida, Carolina Andrea; Kawane, Tetsuya; Moriishi, Takeshi; Purushothaman, Anurag; Miyazaki, Toshihiro; Komori, Hisato; Mori, Masako; Qin, Xin; Hashimoto, Ayako; Sugahara, Kazuyuki; Yamana, Kei; Takada, Kenji; Komori, Toshihisa

    2014-09-19

    Galnt3, UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, transfers N-acetyl-D-galactosamine to serine and threonine residues, initiating mucin type O-glycosylation of proteins. We searched the target genes of Runx2, which is an essential transcription factor for chondrocyte maturation, in chondrocytes and found that Galnt3 expression was up-regulated by Runx2 and severely reduced in Runx2(-/-) cartilaginous skeletons. To investigate the function of Galnt3 in chondrocytes, we generated Galnt3(-/-) mice and chondrocyte-specific Galnt3 transgenic mice under the control of the Col2a1 promoter-enhancer. Galnt3(-/-) mice showed a delay in endochondral ossification and shortened limbs at embryonic day 16.5, suggesting that Galnt3 is involved in chondrocyte maturation. Galnt3 transgenic mice presented dwarfism, the chondrocyte maturation was retarded, the cell cycle in chondrocytes was accelerated, premature chondrocyte apoptosis occurred, and the growth plates were disorganized. The binding of Vicia villosa agglutinin, which recognizes the Tn antigen (GalNAc-O-Ser/Thr), was drastically increased in chondrocytes, and aggrecan (Acan) was highly enriched with Tn antigen. However, safranin O staining, which recognizes glycosaminoglycans (GAGs), and Acan were severely reduced. Chondroitin sulfate was reduced in amount, but the elongation of chondroitin sulfate chains had not been severely disturbed in the isolated GAGs. These findings indicate that overexpression of Galnt3 in chondrocytes caused dwarfism due to the increase of mucin-type O-glycans and the reduction of GAGs, probably through competition with xylosyltransferases, which initiate GAG chains by attaching O-linked xylose to serine residues, suggesting a negative effect of Galnt family proteins on Acan deposition in addition to the positive effect of Galnt3 on chondrocyte maturation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A Simple Method for Discovering Druggable, Specific Glycosaminoglycan-Protein Systems. Elucidation of Key Principles from Heparin/Heparan Sulfate-Binding Proteins.

    Science.gov (United States)

    Sarkar, Aurijit; Desai, Umesh R

    2015-01-01

    Glycosaminoglycans (GAGs) affect human physiology and pathology by modulating more than 500 proteins. GAG-protein interactions are generally assumed to be ionic and nonspecific, but specific interactions do exist. Here, we present a simple method to identify the GAG-binding site (GBS) on proteins that in turn helps predict high specific GAG-protein systems. Contrary to contemporary thinking, we found that the electrostatic potential at basic arginine and lysine residues neither identifies the GBS consistently, nor its specificity. GBSs are better identified by considering the potential at neutral hydrogen bond donors such as asparagine or glutamine sidechains. Our studies also reveal that an unusual constellation of ionic and non-ionic residues in the binding site leads to specificity. Nature engineers the local environment of Asn45 of antithrombin, Gln255 of 3-O-sulfotransferase 3, Gln163 and Asn167 of 3-O-sulfotransferase 1 and Asn27 of basic fibroblast growth factor in the respective GBSs to induce specificity. Such residues are distinct from other uncharged residues on the same protein structure in possessing a significantly higher electrostatic potential, resultant from the local topology. In contrast, uncharged residues on nonspecific GBSs such as thrombin and serum albumin possess a diffuse spread of electrostatic potential. Our findings also contradict the paradigm that GAG-binding sites are simply a collection of contiguous Arg/Lys residues. Our work demonstrates the basis for discovering specifically interacting and druggable GAG-protein systems based on the structure of protein alone, without requiring access to any structure-function relationship data.

  19. Collagen and glycosaminoglycan profiles in the canine cervix during different stages of the estrous cycle and in open- and closed-cervix pyometra.

    Science.gov (United States)

    Linharattanaruksa, Pichanun; Srisuwatanasagul, Sayamon; Ponglowhapan, Suppawiwat; Khalid, Muhammad; Chatdarong, Kaywalee

    2014-03-01

    The extracellular matrix of the cervix that comprises collagen, elastin, proteoglycans and glycosaminoglycans (GAGs) is thought to have an essential role in cervical relaxation. This study investigated the proportion of collagen and smooth muscle as well as the GAGs in cervices obtained from healthy bitches at different stages of the estrous cycle and bitches with open- and closed-cervix pyometra. Cervices were collected after ovariohysterectomy. The proportion of collagen to smooth muscle was determined using Masson's trichrome staining. Alcian blue staining was used to evaluate the relative distribution of cervical GAGs. The proportion of cervical collagen relative to smooth muscle was higher at estrus compared to anestrus (P≤0.05). It was also higher (P≤0.05) in bitches with open- compared to those with closed-cervix pyometra. Overall, hyaluronan (HA) was the predominant GAG in the canine cervix. In the luminal epithelium, the staining intensity for HA was stronger in estrus than in anestrus (P≤0.05), but not in diestrus (P>0.05). On the contrary, the intensity for the combined keratan sulfate (KS) and heparan sulfate (HS) was stronger in anestrus than in estrus and diestrus (P≤0.05). In bitches with pyometra, the staining intensity of the stroma for KS and HS was weaker in open- compared to closed-cervix pyometra (P≤0.05). Collectively, the different profiles of collagen and GAG suggest that the metabolism of both collagen and GAGs in the canine cervix is associated with hormonal statuses during the estrous cycle and cervical patency of bitches with pathological uterine conditions, such as pyometra.

  20. Assessment of bone dysplasia by micro-CT and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I, IIIA, IVA, and VII

    Science.gov (United States)

    Rowan, Daniel J.; Tomatsu, Shunji; Grubb, Jeffrey H.; Montaño, Adriana M.; Sly, William S.

    2012-01-01

    Summary Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by mutations in lysosomal enzymes involved in degradation of glycosaminoglycans (GAGs). Patients with MPS grow poorly and become physically disabled due to systemic bone disease. While many of the major skeletal effects in mouse models for MPS have been described, no detailed analysis that compares GAGs levels and characteristics of bone by micro-CT has been done. The aims of this study were to assess severity of bone dysplasia among four MPS mouse models (MPS I, IIIA, IVA and VII), to determine the relationship between severity of bone dysplasia and serum keratan sulfate (KS) and heparan sulfate (HS) levels in those models, and to explore the mechanism of KS elevation in MPS I, IIIA, and VII mouse models. Clinically, MPS VII mice had the most severe bone pathology; however, MPS I and IVA mice also showed skeletal pathology. MPS I and VII mice showed severe bone dysplasia, higher bone mineral density, narrowed spinal canal, and shorter sclerotic bones by micro-CT and radiographs. Serum KS and HS levels were elevated in MPS I, IIIA, and VII mice. Severity of skeletal disease displayed by micro-CT, radiographs and histopathology correlated with the level of KS elevation. We showed that elevated HS levels in MPS mouse models could inhibit N-acetylgalactosamine-6-sulfate sulfatase enzyme. These studies suggest that KS could be released from chondrocytes affected by accumulation of other GAGs and that KS could be useful as a biomarker for severity of bone dysplasia in MPS disorders. PMID:22971960

  1. Age-related changes in rat myocardium involve altered capacities of glycosaminoglycans to potentiate growth factor functions and heparan sulfate-altered sulfation.

    Science.gov (United States)

    Huynh, Minh Bao; Morin, Christophe; Carpentier, Gilles; Garcia-Filipe, Stephanie; Talhas-Perret, Sofia; Barbier-Chassefière, Véronique; van Kuppevelt, Toin H; Martelly, Isabelle; Albanese, Patricia; Papy-Garcia, Dulce

    2012-03-30

    Glycosaminoglycans (GAGs) are essential components of the extracellular matrix, the natural environment from which cell behavior is regulated by a number or tissue homeostasis guarantors including growth factors. Because most heparin-binding growth factor activities are regulated by GAGs, structural and functional alterations of these polysaccharides may consequently affect the integrity of tissues during critical physiological and pathological processes. Here, we investigated whether the aging process can induce changes in the myocardial GAG composition in rats and whether these changes can affect the activities of particular heparin-binding growth factors known to sustain cardiac tissue integrity. Our results showed an age-dependent increase of GAG levels in the left ventricle. Biochemical and immunohistological studies pointed out heparan sulfates (HS) as the GAG species that increased with age. ELISA-based competition assays showed altered capacities of the aged myocardial GAGs to bind FGF-1, FGF-2, and VEGF but not HB EGF. Mitogenic assays in cultured cells showed an age-dependent decrease of the elderly GAG capacities to potentiate FGF-2 whereas the potentiating effect on VEGF(165) was increased, as confirmed by augmented angiogenic cell proliferation in Matrigel plugs. Moreover, HS disaccharide analysis showed considerably altered 6-O-sulfation with modest changes in N- and 2-O-sulfations. Together, these findings suggest a physiological significance of HS structural and functional alterations during aging. This can be associated with an age-dependent decline of the extracellular matrix capacity to efficiently modulate not only the activity of resident or therapeutic growth factors but also the homing of resident or therapeutic cells.

  2. A Sulfated Glycosaminoglycan Linkage Region is a Novel Type of Human Natural Killer-1 (HNK-1 Epitope Expressed on Aggrecan in Perineuronal Nets.

    Directory of Open Access Journals (Sweden)

    Keiko Yabuno

    Full Text Available Human natural killer-1 (HNK-1 carbohydrate (HSO3-3GlcAβ1-3Galβ1-4GlcNAc-R is highly expressed in the brain and required for learning and neural plasticity. We previously demonstrated that expression of the HNK-1 epitope is mostly abolished in knockout mice for GlcAT-P (B3gat1, a major glucuronyltransferase required for HNK-1 biosynthesis, but remained in specific regions such as perineuronal nets (PNNs in these mutant mice. Considering PNNs are mainly composed of chondroitin sulfate proteoglycans (CSPGs and regulate neural plasticity, GlcAT-P-independent expression of HNK-1 in PNNs is suggested to play a role in neural plasticity. However, the function, structure, carrier glycoprotein and biosynthetic pathway for GlcAT-P-irrelevant HNK-1 epitope remain unclear. In this study, we identified a unique HNK-1 structure on aggrecan in PNNs. To determine the biosynthetic pathway for the novel HNK-1, we generated knockout mice for GlcAT-S (B3gat2, the other glucuronyltransferase required for HNK-1 biosynthesis. However, GlcAT-P and GlcAT-S double-knockout mice did not exhibit reduced HNK-1 expression compared with single GlcAT-P-knockout mice, indicating an unusual biosynthetic pathway for the HNK-1 epitope in PNNs. Aggrecan was purified from cultured cells in which GlcAT-P and -S are not expressed and we determined the structure of the novel HNK-1 epitope using liquid chromatography/mass spectrometry (LC/MS as a sulfated linkage region of glycosaminoglycans (GAGs, HSO3-GlcA-Gal-Gal-Xyl-R. Taken together, we propose a hypothetical model where GlcAT-I, the sole glucuronyltransferase required for synthesis of the GAG linkage, is also responsible for biosynthesis of the novel HNK-1 on aggrecan. These results could lead to discovery of new roles of the HNK-1 epitope in neural plasticity.

  3. Dose-Dependent Induction of an Idiotypic Cascade by Anti-Glycosaminoglycan Monoclonal Antibody in apoE−/− Mice: Association with Atheroprotection

    Science.gov (United States)

    Sarduy, Roger; Brito, Victor; Castillo, Adriana; Soto, Yosdel; Griñán, Tania; Marleau, Sylvie; Vázquez, Ana María

    2017-01-01

    Atherosclerosis, the underlying pathology of most cardiovascular diseases, is triggered by the retention of apolipoprotein B (apoB)-containing lipoproteins in the arterial wall through electrostatic interactions with glycosaminoglycan (GAG) side chains of proteoglycans. Previously, we reported the antiatherogenic properties of the chimeric monoclonal antibody (mAb) chP3R99-LALA, which binds sulfated GAGs, inhibits low-density lipoprotein (LDL)–chondroitin sulfate (CS) association, and abrogates LDL oxidation and foam cell formation. In preventive and therapeutic settings, apoE-deficient (apoE−/−) mice immunized with 50 μg of this mAb showed reduced atherosclerotic lesions related with the induction of autologous anti-GAG antibodies. Knowing that age and sex are major non-modifiable risk factors in the development of atherosclerosis, the present study aimed to assess the influence of these variables on the capacity of chP3R99-LALA mAb to generate an anti-CS antibody response. Also, we aimed at defining the impact of the dose of chP3R99-LALA on the anti-CS antibody induction and the atheroprotective effect of this mAb in apoE−/− mice. Neither age nor sex had an impact in the IgG anti-CS antibody response induced by s.c. immunization with this mAb. Moreover, chP3R99-LALA mAb reduced atherosclerotic lesions to a similar extent in both young male and female apoE−/− mice fed a hypercholesterolemic diet and, in middle-aged female apoE−/− mice, with spontaneous lesions. On the other hand, increasing the dose of chP3R99-LALA (200 vs. 50 μg) elicited an anti-idiotype antibody cascade characterized by higher levels of anti-idiotype (Ab2), anti-anti-idiotype (Ab3), and anti-CS antibody responses. Moreover, this dose increment resulted in a striking reduction of aortic atherosclerotic lesions in immunized mice. PMID:28316603

  4. Complementing the sugar code: role of GAGs and sialic acid in complement regulation

    Directory of Open Access Journals (Sweden)

    Alex eLangford-Smith

    2015-02-01

    Full Text Available Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence and modulate host immunity and inflammatory responses. The complement cascade, as part of a host’s innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney and eye. This review will cover recent studies that have provided important new insights into the role of glycosaminoglycans and sialic acid in complement regulation and how sugar recognition may be compromised in disease

  5. Acidic deposition ("acid rain")

    Science.gov (United States)

    Schreiber, R. Kent; LaRoe, Edward T.; Farris, Gaye S.; Puckett, Catherine E.; Doran, Peter D.; Mac, Michael J.

    1995-01-01

    Acidic deposition, or "acid rain," describes any form of precipitation, including rain, snow, and fog, with a pH of 5.5 or below (Note: pH values below 7 are acidic; vinegar has a pH of 3). It often results when the acidity of normal precipitation is increased by sulfates and nitrates that are emitted into the atmosphere from burning fossil fuels. This form of airborne contamination is considered harmful, both directly and indirectly, to a host of plant and animal species.Although acid rain can fall virtually anywhere, ecological damages in environmentally sensitive areas downwind of industrial and urban emissions are a major concern. This includes areas that have a reduced capacity to neutralize acid inputs because of low alkalinity soils and areas that contain species with a low tolerance to acid conditions. To determine the distribution of acidic deposition and evaluate its biological effects, research and monitoring are being conducted by the federal government with support from states, universities, and private industry.            The national extent of the acid rain problem has been estimated by sampling water from 3,000 lakes and 500 streams (Irving 1991), representing more than 28,000 lakes and 56,000 stream reaches with a total of 200,000 km (125,000 mi). Some particularly sensitive areas, such as the Adirondack Mountain region, have been more intensively sampled and the biota examined in detail for effects from acidity.         To identify trends in aquatic ecosystems, present and historical survey data on water chemistry and associated biota are compared. In lakes, the chemical and biological history and pH trends may be inferred or reconstructed in some cases by examining assemblages of fossil diatoms and aquatic invertebrates in the sediment layers. In terrestrial ecosystems, vegetation damage is surveyed and effects of acidic deposition to plants and animals are determined from laboratory and field exposure experiments. Natural

  6. The clinical value of hyaluronic acid filler in maxillofacial cosmetology%注射用透明质酸在颌面注射美容中的应用

    Institute of Scientific and Technical Information of China (English)

    涂敏松; 李逸松; 代晓明

    2015-01-01

    Hyaluronic acid is a kind of extracellular macromolecules acidic mucopolysaccharide.It has been listed for no more than 6 years in China, but has been widely used as a dermal filler in the maxillofacial cosmetology for soft tissue augmentation.This paper presents a review of the studies conducted so far into the use of hyaluronic acid in the filed of facial wrinkles, nose &chin re -shaping and scar repair treatment.%透明质酸是一种细胞外大分子酸性粘多糖,在我国上市时间不到6年,已被作为组织容量填充剂广泛应用于颌面部美容。文章对近年来注射用透明质酸在面部除皱、隆鼻颏、瘢痕修复中的应用作一综述。

  7. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis.

    Science.gov (United States)

    Tsepilov, R N; Beloded, A V

    2015-09-01

    Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.

  8. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review.

    Science.gov (United States)

    Vázquez, José Antonio; Rodríguez-Amado, Isabel; Montemayor, María Ignacia; Fraguas, Javier; González, María Del Pilar; Murado, Miguel Anxo

    2013-03-11

    In the last decade, an increasing number of glycosaminoglycans (GAGs), chitin and chitosan applications have been reported. Their commercial demands have been extended to different markets, such as cosmetics, medicine, biotechnology, food and textiles. Marine wastes from fisheries and aquaculture are susceptible sources for polymers but optimized processes for their recovery and production must be developed to satisfy such necessities. In the present work, we have reviewed different alternatives reported in the literature to produce and purify chondroitin sulfate (CS), hyaluronic acid (HA) and chitin/chitosan (CH/CHs) with the aim of proposing environmentally friendly processes by combination of various microbial, chemical, enzymatic and membranes strategies and technologies.

  9. Chondroitin Sulfate, Hyaluronic Acid and Chitin/Chitosan Production Using Marine Waste Sources: Characteristics, Applications and Eco-Friendly Processes: A Review

    Directory of Open Access Journals (Sweden)

    Miguel Anxo Murado

    2013-03-01

    Full Text Available In the last decade, an increasing number of glycosaminoglycans (GAGs, chitin and chitosan applications have been reported. Their commercial demands have been extended to different markets, such as cosmetics, medicine, biotechnology, food and textiles. Marine wastes from fisheries and aquaculture are susceptible sources for polymers but optimized processes for their recovery and production must be developed to satisfy such necessities. In the present work, we have reviewed different alternatives reported in the literature to produce and purify chondroitin sulfate (CS, hyaluronic acid (HA and chitin/chitosan (CH/CHs with the aim of proposing environmentally friendly processes by combination of various microbial, chemical, enzymatic and membranes strategies and technologies.

  10. Lipid class and fatty acid content of the leptocephalus larva of tropical eels.

    Science.gov (United States)

    Deibel, D; Parrish, C C; Grønkjær, P; Munk, P; Nielsen, T Gissel

    2012-06-01

    The leptocephalus larva of eels distinguishes the elopomorph fishes from all other bony fishes. The leptocephalus is long lived and increases in size primarily through the synthesis and deposition of glycosaminoglycans. Energy stored during the larval stage, in the form of glycosaminoglycan and lipids, is required to fuel migration, metamorphosis and metabolism of the subsequent glass eel stage. Despite the importance of energy storage by leptocephali for survival and recruitment, their diet, condition and lipid content and composition is essentially unknown. To gain further insight into energy storage and condition of leptocephali, we determined the lipid class and fatty acid concentration of larvae collected on a cross-shelf transect off Broome, northwestern Australia. The total lipid concentration of two families and four sub-families of leptocephali ranged from 2.7 to 7.0 mg g wet weight(-1), at the low end of the few published values. Phospholipid and triacylglycerol made up ca. 63 % of the total lipid pool. The triacylglycerol:sterol ratio, an index of nutritional condition, ranged from 0.9 to 3.7, indicating that the leptocephali were in good condition. The predominant fatty acids were 16:0 (23 mol%), 22:6n-3 (docosahexaenoic acid, DHA, 16 mol%), 18:0 (8.2 mol%), 20:5n-3 (eicosapentaenoic acid, EPA, 6.7 mol%), 18:1n-9 (6.4 mol%) and 16:1n-7 (6.3 mol%). The DHA:EPA ratio ranged from 2.4 to 2.9, sufficient for normal growth and development of fish larvae generally. The leptocephali had proportions of bacterial markers >4.4 %, consistent with the possibility that they consume appendicularian houses or other marine snow that is bacteria rich.

  11. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    Science.gov (United States)

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC.

  12. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: effect on urinary albumin excretion.

    Science.gov (United States)

    McAuliffe, A V; Brooks, B A; Fisher, E J; Molyneaux, L M; Yue, D K

    1998-11-01

    The important role of ascorbic acid (AA) as an anti-oxidant is particularly relevant in diabetes mellitus where plasma concentrations of AA are reduced. This study was conducted to evaluate the effects of treatment with AA or an aldose reductase inhibitor, tolrestat, on AA metabolism and urinary albumin excretion in diabetes. Blood and urine samples were collected at 0, 3, 6, 9, and 12 months from 20 diabetic subjects who were randomized into two groups to receive either oral AA 500 mg twice daily or placebo. Systolic and diastolic blood pressures, HbA1c, plasma lipids, urinary albumin, and total glycosaminoglycan excretion were measured at all time points, and heparan sulphate (glycosaminoglycan) was measured at 0 and 12 months. The same parameters, as well as urinary AA excretion, were determined at 0 and 3 months for 16 diabetes subjects receiving 200 mg tolrestat/day. AA treatment increased plasma AA (ANOVA, F ratio = 12.1, p = 0.004) and reduced albumin excretion rate (AER) after 9 months (ANOVA, F ratio = 3.2, p = 0.03), but did not change the other parameters measured. Tolrestat lowered plasma AA (Wilcoxon's signed-rank test, p benefits in attenuating the progression of diabetic complications.

  13. Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Silvia Arpicco

    2014-03-01

    Full Text Available Hyaluronic acid (HA is a naturally-occurring glycosaminoglycan and a major component of the extracellular matrix. Low levels of the hyaluronic acid receptor CD44 are found on the surface of epithelial, hematopoietic, and neuronal cells; it is overexpressed in many cancer cells, and in particular in tumor-initiating cells. HA has recently attracted considerable interest in the field of developing drug delivery systems, having been used, as such or encapsulated in different types of nanoassembly, as ligand to prepare nano-platforms for actively targeting drugs, genes, and diagnostic agents. This review describes recent progress made with the several chemical strategies adopted to synthesize conjugates and prepare novel delivery systems with improved behaviors.

  14. Mucopolysaccharidoses type IV A (Morquio syndrome: A case series of three siblings

    Directory of Open Access Journals (Sweden)

    P Rekka

    2012-01-01

    Full Text Available Mucopolysaccharidoses (MPS are a family of inherited metabolic diseases that results from the deficiency of lysosomal enzymes involved in the degradation of the glycosaminoglycans (mucopolysaccharides. Despite the well-documented oral and dental findings of MPS type IV, there is not much literature documented about the incidence of this disorder among siblings in the same family. This report outlines the clinical and radiographic findings found in three siblings with Morquio syndrome.

  15. Multivariate analysis of electron detachment dissociation and infrared multiphoton dissociation mass spectra of heparan sulfate tetrasaccharides differing only in hexuronic acid stereochemistry.

    Science.gov (United States)

    Oh, Han Bin; Leach, Franklin E; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I Jonathan

    2011-03-01

    The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.

  16. Valproic Acid

    Science.gov (United States)

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  17. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  18. Obeticholic Acid

    Science.gov (United States)

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  19. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  20. Mefenamic Acid

    Science.gov (United States)

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  1. Ethacrynic Acid

    Science.gov (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  2. Aminocaproic Acid

    Science.gov (United States)

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  3. Aspartic acid

    Science.gov (United States)

    ... body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of aspartic acid include: ...

  4. Hyaluronic acid is increased in the skin and urine in patients with amyotrophic lateral sclerosis

    Science.gov (United States)

    Ono, S.; Imai, T.; Yamauchi, M.; Nagao, K.

    1996-01-01

    We performed morphological studies of skin and measured glycosaminoglycans in the urine from patients with sporadic amyotrophic lateral sclerosis (ALS) and control subjects. The wide spaces separating collagen bundles reacted strongly with alcian blue stain in ALS patients and stained more markedly as ALS progressed. Staining with alcian blue was virtually eliminated by Streptomyces hyaluronidase. The urinary excretion of hyaluronic acid (HA) (mg/day) was significantly increased (P < 0.01) in ALS patients compared with that of control subjects, and there was a significant positive correlation between the excreted amount of HA and the duration of illness in advanced ALS patients with a duration of more than 2 years from clinical onset (r = 0.72, P < 0.02). We suggest that sporadic ALS includes a metabolic disorder of HA in which an accumulation of HA in the skin is linked to an increased urinary excretion of HA.

  5. Anesthetic management of a child with Hunter′s syndrome

    Directory of Open Access Journals (Sweden)

    Jasmeet Kaur

    2012-01-01

    Full Text Available Hunter′s syndrome is a member of a group of recessively inherited metabolic disorders termed mucopolysaccharidoses, caused by deficiency of lysosomal enzymes required for degradation of mucopolysaccharides or glycosaminoglycans, leading to accumulation of partially degraded glycosaminoglycans in various tissues. This leads to various anatomical abnormalities and systemic involvement, posing a challenge to an anesthetist. We present the anesthetic management of a 4-year old child with Hunter′s disease with anticipated difficult airway, who presented for adenotonsillectomy and repair of umbilical and inguinal hernia.

  6. Composition of glycosaminoglycans in elasmobranchs including several deep-sea sharks: identification of chondroitin/dermatan sulfate from the dried fins of Isurus oxyrinchus and Prionace glauca.

    Science.gov (United States)

    Higashi, Kyohei; Takeuchi, Yoshiki; Mukuno, Ann; Tomitori, Hideyuki; Miya, Masaki; Linhardt, Robert J; Toida, Toshihiko

    2015-01-01

    Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the

  7. Composition of glycosaminoglycans in elasmobranchs including several deep-sea sharks: identification of chondroitin/dermatan sulfate from the dried fins of Isurus oxyrinchus and Prionace glauca.

    Directory of Open Access Journals (Sweden)

    Kyohei Higashi

    Full Text Available Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs, acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS and hyaluronic acid (HA were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS was found in the dried fin (without skin and cartilage of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA and iduronic acid (IdoA in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus, 36.1% and 63.9% (Prionace glauca, respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located

  8. Residual glycosaminoglycan accumulation in mitral and aortic valves of a patient with attenuated MPS I (Scheie syndrome after 6 years of enzyme replacement therapy: Implications for early diagnosis and therapy

    Directory of Open Access Journals (Sweden)

    Yohei Sato

    2015-12-01

    Full Text Available Mucopolysaccharidosis (MPS is an inherited metabolic disease caused by deficiency of the enzymes needed for glycosaminoglycan (GAG degradation. MPS type I is caused by the deficiency of the lysosomal enzyme alpha-l-iduronidase and is classified into Hurler syndrome, Scheie syndrome, and Hurler–Scheie syndrome based on disease severity and onset. Cardiac complications such as left ventricular hypertrophy, cardiac valve disease, and coronary artery disease are often observed in MPS type I. Enzyme replacement therapy (ERT has been available for MPS type I, but the efficacy of this treatment for cardiac valve disease is unknown. We report on a 56-year-old female patient with attenuated MPS I (Scheie syndrome who developed aortic and mitral stenosis and coronary artery narrowing. The cardiac valve disease progressed despite ERT and she finally underwent double valve replacement and coronary artery bypass grafting. The pathology of the cardiac valves revealed GAG accumulation and lysosomal enlargement in both the mitral and aortic valves. Zebra body formation was also confirmed using electron microscopy. Our results suggest that ERT had limited efficacy in previously established cardiac valve disease. Early diagnosis and initiation of ERT is crucial to avoid further cardiac complications in MPS type I.

  9. Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth families.

    Directory of Open Access Journals (Sweden)

    Angelika Böttger

    Full Text Available The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.

  10. Fatty acids - trans fatty acids

    Science.gov (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  11. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4.

    Directory of Open Access Journals (Sweden)

    Cédric Laguri

    Full Text Available BACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4 and heparan sulfate (HS. The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60% of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM, and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS

  12. Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula).

    Science.gov (United States)

    Akasaka, K; Terayama, H

    1983-06-01

    Light microscopical observations of the Alcian blue-stained gastrulae of Hemicentrotus pulcherrimus together with the scanning electron microscopical observations of the embryos revealed the presence of highly acidic glycans in the invaginating archenteron (inside surface), the surrounding of secondary mesenchyme cells (pseudopodial protrusions and filamentous structures) and the hyaline layer. In the embryos grown in sulfate-free sea water and thus with arrested gastrulation it was found that the dye stainability in the above regions was markedly reduced. The glycosaminoglycan fraction prepared from the whole embryos (mid-gastrulae) was found to contain various kinds of acidic glycans as analysed by chromatography on DEAE-cellulose. Among these glycan components, the "F" component was mainly recovered in the EDTA extract of the embryos, and was shown to be specifically deleted in the embryos grown in sulfate-free sea water, suggesting that the "F" component may be related to the Alcian blue-stainable material in Hemicentrotus embryos. The component "F" was found to consist of sulfated fucan and acid mucopolysaccharide (unidentified) chains, which are probably linked to a common peptide core, forming macromolecules with larger than 10(6) molecular weights.

  13. A clinical study of topical mucopolysaccharides & polydeoxyribonucleoprotein (Foltene) therapy in alopecia.

    OpenAIRE

    K.S. Lee; Myung, K. B.; Kook, H. I.

    1987-01-01

    We performed clinical trials to evaluate the therapeutic effects of Foltene in patients of the several types of hair fallings. Thirty patients with male pattern baldness, alopecia areata and seborrheic alopecia were included in this study. Foltene was applied every other day for 40 days, and followed by maintenance therapy of twice application a week. The duration of whole therapy was 6 months. We conclude that Foltene is an effective and agent for male pattern baldness, alopecia areata and s...

  14. Contenido de glicosaminoglicanos del líquido sinovial de la articulación metacarpofalángica de caballos castrados y yeguas de diferentes edades Synovial fluid glycosaminoglycan concentration in metacarpophalangeal joint of castrated horses and mares of different ages

    Directory of Open Access Journals (Sweden)

    H. ADARMES

    2003-01-01

    Full Text Available Se midió la concentración de glicosaminoglicanos (GAGs del líquido sinovial en su valor total (GAGsT y de una fracción de éstos, que corresponde a los GAGs diferentes del ácido hialurónico o GAGs sulfatados (GAGsS, entre los que se describen condroitin sulfato y queratán sulfato. Las muestras de líquido sinovial se obtuvieron por artrocéntesis aséptica desde articulaciones metacarpofalángicas normales de equinos mestizos en matadero, después del beneficio de los animales. El exámen post mortem de las articulaciones permitió descartar articulaciones con evidencias de osteoartritis u otras patologías articulares. La normalidad del líquido sinovial se evaluó por de su aspecto y por las pruebas del coágulo de mucina y de concentración de proteínas (Total concentration of synovial fluid glycosaminoglycan (GAGs and a fraction of it (GAGsT which correspond to different GAGs from hyaluronic acid or sulfated GAGs (GAGsS that mainly consist of chondroitin sulfate and keratan sulfate, were measured. Samples of synovial fluid were taken from normal metacarpophalangeal joints of crossbred equines immediatelly after slaughter by aseptic needle aspiration. Post mortem joints examination showed that there was no gross evidence of osteoarthritis or other joint disease, based on the appearance of synovial membrane and articular cartilage. Synovial fluid samples were evaluated by its external appearance, protein concentration and mucin clot test. Samples were alloted in four age groups by teeth examination and divided in mares (m and castrated horses (c.h. as follows: 1.5 - 2 years (n = 23: 12 m. and 11 c.h.; 4 - 5 years (n = 15: 9 m. and 6 c.h.; 6 - 8 years (n = 23: 13 m. and 10 c.h. and over 10 years old (n = 17: 12 m. and 5 c.h.. A colorimetric method with Alcian Blue using different electrolyte concentrations was used to quantify these GAGs. There were no significant differences of GAGsT concentration between mares and castrated horses

  15. Folic Acid

    Science.gov (United States)

    ... damage. 10 Do I need folic acid after menopause? Yes. Women who have gone through menopause still need 400 micrograms of folic acid every ... United States: 2003–2006 . American Journal of Clinical Nutrition; 91(1): 231–237. Hamner, H.C., Cogswell, ...

  16. Efeitos dos glicosaminoglicanos e sulfato de condroitina A sobre a cartilagem articular normal e com doença articular degenerativa em cães Glycosaminoglycans and chondroitin sulphate "A" effects on normal and osteoarthritic articular cartilage in dogs

    Directory of Open Access Journals (Sweden)

    N.T. Vieira

    2010-10-01

    Full Text Available Avaliaram-se os efeitos dos precursores dos glicosaminoglicanos (GAG e do sulfato de condroitina A (SC sobre a histomorfometria da cartilagem articular normal ou de cartilagem de cães com doença articular degenerativa (DAD experimental. Os grupos experimentais constituíram-se de animais com articulação direita normal, que não foi submetida a procedimento cirúrgico, e com articulação esquerda osteoartrótica e que foi submetida à intervenção cirúrgica. Os grupos foram subdivididos em animais com articulação não tratada e tratada, portanto: normais (N (n=5, NGAG (n=5 e NSC (n=4; e osteoartróticos (O (n=5, OGAG (n=5 e OSC (n=4. Secções de cartilagens do fêmur, da tíbia e da patela foram utilizadas neste estudo. Nos normais (N, NGAG e NSC, não se encontraram lesões que caracterizassem a DAD, embora tenha havido diminuição na celularidade nos de NGAG e NSC, em relação a N. Foram observadas alterações em graus variáveis entre os grupos osteoartróticos. Houve redução acentuada dos condrócitos no grupo O em comparação aos normais enquanto os grupos osteoartróticos tratados apresentaram celularidade semelhante aos normais tratados. Estes resultados foram confirmados pela análise do índice de proporção (IP, que se mostrou elevado em O, indicando menor síntese de proteoglicanos. Não houve diferença significativa entre os IPs dos grupos osteoartróticos tratados (OGAG, OSC apesar do comportamento distinto do OSC ao assemelhar-se aos grupos N e NSC. Estes resultados sugeriram que o SC agiu na cartilagem osteoartrótica de maneira mais eficaz, reduzindo a perda de proteoglicanos e estimulando a viabilidade celular e a atividade metabólica.The effects of precursors of glycosaminoglycans (GAG and chondroitin sulphate A (CS on the histomorphometry of normal articular cartilage and with experimental degenerative joint disease (DJD in dogs were evaluated. The groups were constituted as follows: normal joints were not

  17. The use of fibrin and poly(lactic-co-glycolic acid hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis

    Directory of Open Access Journals (Sweden)

    S Munirah

    2008-02-01

    Full Text Available Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid (PLGA hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes were used as a control. Resulting constructs were implanted subcutaneously, at the dorsum of nude mice, for 4 weeks. Macroscopic observation, histological evaluation, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 4 weeks post-implantation. Cartilaginous tissue formation in fibrin/PLGA hybrid construct was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs was confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene encoded cartilage-specific markers, collagen type II and aggrecan core protein. The sGAG production in fibrin/PLGA hybrid constructs was higher than in the PLGA group. In conclusion, fibrin/PLGA hybrid scaffold promotes cartilaginous tissue formation in vivo and may serve as a potential cell delivery vehicle and a structural basis for articular cartilage tissue-engineering.

  18. Regulating Chondrogenesis of Human Mesenchymal Stromal Cells with a Retinoic Acid Receptor-Beta Inhibitor: Differential Sensitivity of Chondral Versus Osteochondral Development

    Directory of Open Access Journals (Sweden)

    Solvig Diederichs

    2014-05-01

    Full Text Available Aim: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs or improve differentiation by suppressing hypertrophic chondrocyte development. Methods: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP, indian hedghehog (IHH and matrix metalloproteinase (MMP-13 were assessed. Results: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. Conclusion: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.

  19. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy.

    Science.gov (United States)

    Kaderli, S; Boulocher, C; Pillet, E; Watrelot-Virieux, D; Rougemont, A L; Roger, T; Viguier, E; Gurny, R; Scapozza, L; Jordan, O

    2015-04-10

    A conventional therapy for the treatment of osteoarthrosis is intra-articular injection of hyaluronic acid, which requires repeated, frequent injections. To extend the viscosupplementation effect of hyaluronic acid, we propose to associate it with another biopolymer in the form of a hybrid hydrogel. Chitosan was chosen because of its structural similarity to synovial glycosaminoglycans, its anti-inflammatory effects and its ability to promote cartilage growth. To avoid polyelectrolyte aggregation and obtain transparent, homogeneous gels, chitosan was reacetylated to a 50% degree, and different salts and formulation buffers were investigated. The biocompatibility of the hybrid gels was tested in vitro on human arthrosic synoviocytes, and in vivo assessments were made 1 week after subcutaneous injection in rats and 1 month after intra-articular injection in rabbits. Hyaluronic acid-chitosan polyelectrolyte complexes were prevented by cationic complexation of the negative charges of hyaluronic acid. The different salts tested were found to alter the viscosity and thermal degradation of the gels. Good biocompatibility was observed in rats, although the calcium-containing formulation induced calcium deposits after 1 week. The sodium chloride formulation was further tested in rabbits and did not show acute clinical signs of pain or inflammation. Hybrid HA-Cs hydrogels may be a valuable alternative viscosupplementation agent.

  20. A Hexasaccharide Containing Rare 2‐O‐Sulfate‐Glucuronic Acid Residues Selectively Activates Heparin Cofactor II

    Science.gov (United States)

    Sankarayanarayanan, Nehru Viji; Strebel, Tamara R.; Boothello, Rio S.; Sheerin, Kevin; Raghuraman, Arjun; Sallas, Florence; Mosier, Philip D.; Watermeyer, Nicholas D.

    2017-01-01

    Abstract Glycosaminoglycan (GAG) sequences that selectively target heparin cofactor II (HCII), a key serpin present in human plasma, remain unknown. Using a computational strategy on a library of 46 656 heparan sulfate hexasaccharides we identified a rare sequence consisting of consecutive glucuronic acid 2‐O‐sulfate residues as selectively targeting HCII. This and four other unique hexasaccharides were chemically synthesized. The designed sequence was found to activate HCII ca. 250‐fold, while leaving aside antithrombin, a closely related serpin, essentially unactivated. This group of rare designed hexasaccharides will help understand HCII function. More importantly, our results show for the first time that rigorous use of computational techniques can lead to discovery of unique GAG sequences that can selectively target GAG‐binding protein(s), which may lead to chemical biology or drug discovery tools. PMID:28124818

  1. Occurrence of L-iduronic acid and putative D-glucuronyl C5-epimerases in prokaryotes

    NARCIS (Netherlands)

    Raedts, J.G.J.; Kengen, S.W.M.; Oost, van der J.

    2011-01-01

    Glycosaminoglycans (GAGs) are polysaccharides that are typically present in a wide diversity of animal tissue. Most common GAGs are well-characterized and pharmaceutical applications exist for many of these compounds, e.g. heparin and hyaluronan. In addition, also bacterial glycosaminoglycan-like st

  2. Folic acid

    Science.gov (United States)

    ... taking a specific nutritional supplement, containing vitamin B3 (nicotinamide), a compound isolated from grains (azelaic acid), zinc, ... lung cancer in most people. A type of skin cancer called melanoma. Limited research suggests that taking ...

  3. Folic Acid

    Science.gov (United States)

    ... B-complex vitamin needed by the body to manufacture red blood cells. A deficiency of this vitamin ... prepared from dried yeast, fruit, and fresh leafy green vegetables to increase the folic acid in your ...

  4. Polymeric microcapsules poduction from sodium alginic acid for cell therapy

    Directory of Open Access Journals (Sweden)

    Ana Carolina Vale Campos Lisboa

    2007-12-01

    Full Text Available Development of polymeric materials has been increasingly emphasized in Biomedicine. Here, we evaluate the use of microcapsules made of Biodritin®, a biocompatible polymer compound which contains sodium alginic acid, a natural polymer extracted from algae, and Cis-Chondroitin sulfate, a glycosaminoglycan from the extracellular matrix. Gelation of this polymer into microcapsules is achieved by dropping the compound into BaCl2 or CaCl2 gelling solutions. A functional microcapsule is dependent on its permeability, mechanical stability, immunoisolation capacity and biocompatibility. The mechanical stability of Biodritin-barium and Biodritin-calcium microcapsules was investigated after rotational stress upon in vitro culture and in vivo implantation. Viability studies of encapsulated cells were also performed to assess other functional parameters of the microcapsules. When subject to rotational stress, Biodritin-barium microcapsules exhibited breaks, whereas the Biodritin-calcium microcapsules did not. Both kinds of Biodritin® microcapsules proved to be mechanically resistant in in vitro and in vivo studies. However, the Biodritin-calcium material was found to be more elastic while the Biodritin-barium microcapsules displayed a more plastic behavior. These properties seem to be determinant for viability of the encapsulated cell’s, since the Biodritin-calcium microcapsules presented more viable cells than the Biodritin-barium microcapsules.

  5. Serum fluoride and sialic acid levels in osteosarcoma.

    Science.gov (United States)

    Sandhu, R; Lal, H; Kundu, Z S; Kharb, S

    2011-12-01

    Osteosarcoma is a rare malignant bone tumor most commonly occurring in children and young adults presenting with painful swelling. Various etiological factors for osteosarcoma are ionizing radiation, family history of bone disorders and cancer, chemicals (fluoride, beryllium, and vinyl chloride), and viruses. Status of fluoride levels in serum of osteosarcoma is still not clear. Recent reports have indicated that there is a link between fluoride exposure and osteosarcoma. Glycoproteins and glycosaminoglycans are an integral part of bone and prolonged exposure to fluoride for long duration has been shown to cause degradation of collagen and ground substance in bones. The present study was planned to analyze serum fluoride, sialic acid, calcium, phosphorus, and alkaline phosphatase levels in 25 patients of osteosarcoma and age- and sex-matched subjects with bone-forming tumours other than osteosarcoma and musculo-skeletal pain (controls, 25 each). Fluoride levels were analyzed by ISE and sialic acid was analyzed by Warren's method. Mean serum fluoride concentration was found to be significantly higher in patients with osteosarcoma as compared to the other two groups. The mean value of flouride in patients with other bone-forming tumors was approximately 50% of the group of osteosarcoma; however, it was significantly higher when compared with patients of group I. Serum sialic acid concentration was found to be significantly raised in patients with osteosarcoma as well as in the group with other bone-forming tumors as compared to the group of controls. There was, however, no significant difference in the group of patients of osteosarcoma when compared with group of patients with other bone-forming tumors. These results showing higher level of fluoride with osteosarcoma compared to others suggesting a role of fluoride in the disease.

  6. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid....... These studies demonstrate how subtle differences in chemical structures can result in profound differences in pharmacological activity....

  7. Quick characterization of uronic acid-containing polysaccharides in 5 shellfishes by oligosaccharide analysis upon acid hydrolysis.

    Science.gov (United States)

    Liu, Bin; Lu, Jiaojiao; Ai, Chunqing; Zhang, Bao; Guo, Li; Song, Shuang; Zhu, Beiwei

    2016-11-29

    Uronic acid-containing polysaccharides (UACPs) including well-known glycosaminoglycans (GAGs) and some non-GAGs exist widely in animal kingdom. Although numerous methods have been established to analyze GAGs, few methods are available for non-GAG UACPs. In the present study, a protocol to identify all kinds of UACPs with repeating disaccharide units of hexosamine and uronic acid was demonstrated, and UACP components in five shellfishes, namely Turritella fortilirata Sowerby (GTF), Batillaria zonalis (GBZ), Nassarius variciferus (GNV), Monodonta labio Linnaeus (GML), and Argopecten irradians Lamarck (BAI) were primarily revealed. After a simple isolation procedure, crude polysaccharides were depolymerized by controlled acid hydrolysis, and then the resulting oligosaccharides were detected by HPLC coupled with mass spectrometer after 1-phenyl-3-methyl-5-pyrazolone (PMP) labeling. According to chromatograms using the triple quadrupole mass spectrometer in the multiple reaction monitoring (MRM) mode, chondroitin sulfate (CS) was found in GNV and GML, a non-GAG named abalone gonad sulfated polysaccharide (AGSP) with a backbone of →4)-β-GlcA-(1 → 2)-α-Man-(1→ repeating units in GBZ, and both of AGSP and CS in BAI and GTF. Further characterization of tetrasaccharides and sulfated/acetylated disaccharides by HPLC combined with an ion trap mass spectrometer confirmed the structural identification of CS and AGSP, and indicated CS in GTF and BAI was Type C. These results suggest the 5 mollusks as potential resources for CS and AGSP. And the analysis protocol presented in this study was powerful and effective for quick characterization of UACPs including GAGs as well as non-GAGs in complicated matrix.

  8. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  9. Evaluation and biological characterization of bilayer gelatin/chondroitin-6-sulphate/hyaluronic acid membrane.

    Science.gov (United States)

    Wang, Tzu-Wei; Sun, Jui-Sheng; Wu, Hsi-Chin; Huang, Yi-Chau; Lin, Feng-Huei

    2007-08-01

    A biodegradable polymer scaffold was developed using gelatin, chondroitin-6-sulphate, and hyaluronic acid in the form of bilayer network. The bilayer porous structure of gelatin-chondroitin-6-sulphate-hyaluronic acid (G-C6S-HA) membrane was fabricated using different freezing temperatures followed by lyophilization. 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide was used as crosslinking agent to improve the biological stability of the scaffold. The morphology, physical-chemical properties, and biocompatibility of bilayer G-C6S-HA membrane were evaluated in this study. The functional groups change in crosslinked G-C6S-HA scaffold was characterized by fourier transform infrared spectroscopy. The retention of glycosaminoglycan contents and matrix degradation rate were also examined by p-dimethylamino benzaldehyde and 2,4,6-trinitrobenzene sulphonic acid, respectively. Water absorption capacity was carried out to study G-C6S-HA membrane water containing characteristics. The morphology of the bilayer G-C6S-HA membrane was investigated under scanning electron microscope and light microscopy. In vitro biocompatibility was conducted with MTT test, LDH assay, as well as histological analysis. The results showed that the morphology of bilayer G-C6S-HA membrane was well reserved. The physical-chemical properties were also adequate. With good biocompatibility, this bilayer G-C6S-HA membrane would be suitable as a matrix in the application of tissue engineering.

  10. Molecular level interaction of the human acidic fibroblast growth factor with the antiangiogenic agent, inositol hexaphosphate .

    Science.gov (United States)

    Kumar, Sriramoju M; Wang, Han-Min; Mohan, Sepuru K; Chou, Ruey-Hwang; Yu, Chin

    2010-12-21

    Acidic fibroblast growth factor (FGF1) regulates a wide array of important biological phenomena such as angiogenesis, cell differentiation, tumor growth, and neurogenesis. Generally, FGFs are known for their strong affinity for the glycosaminoglycan heparin, as a prerequisite for recognition of a specific tyrosine kinase on the cell surface and are responsible for the cell signal transduction cascade. Inositol hexaphosphate (IP6) is a natural antioxidant and is known for its antiangiogenic role, in addition to its ability to control tumor growth. In the present study, we investigated the interaction of IP6 with the acidic fibroblast growth factor (FGF1) using various biophysical techniques including isothermal calorimetry, circular dichroism, and multidimensional NMR spectroscopy. Herein, we have reported the three-dimensional solution structure of the FGF1-IP6 complex. These data show that IP6 binds FGF1 and enhances its thermal stability. In addition, we also demonstrate that IP6 acts as an antagonist to acidic fibroblast growth factor by inhibiting its receptor binding and subsequently decreasing the mitogenic activity. The inhibition likely results in the ability of IP6 to antagonize the angiogenic and mitogenic activity of FGF1.

  11. Properties of acid polysaccharides and their chemical modification; Sansei tato no seijo to kagaku shushoku

    Energy Technology Data Exchange (ETDEWEB)

    Kogamo, A. [Kitasato Univ., Tokyo (Japan)

    1997-03-25

    Polysaccharides are in presence throughout the kingdoms of animals, vegetables, and microbes, participating in biotic activities. It has been disclosed of late that they are closely related to biotic functions, and complex saccharides, such as glycosaminoglycan (CAG), which constitute the sugar chain are attracting attention above all. This report centers on CAG and discusses the properties of acid polysaccharides, their chemical modification, and applications. CAG in organisms combines with proteins such as collagen for the formation of connective tissues, and also combines in quantities in covalent bond with proteins that constitute thin and long high-molecular cores for the formation of gigantic molecules called proteoglycan. It is an acid sugar chain in which uronic acid and amino sugar having amino groups intertwine each other. The basic reactions to be utilized for the production of highly active saccharides on the basis of this structure are the lowering of molecular weight and sulfation. Activity against HIV (Human Immunodeficiency Virus) is observed in marine alga saccharide carageenan, and studies are under way for variously modifying it for development into medicine. 6 refs., 6 figs.

  12. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  13. Contenido de glicosaminoglicanos, aldehídos y proteínas en el líquido sinovial de la articulación metacarpofalángica equina normal y alterada Concentration of glycosaminoglycan, aldehydes and protein in synovial fluid from normal and damaged equine metacarpophalangeal joints

    Directory of Open Access Journals (Sweden)

    H Adarmes

    2006-01-01

    . The concentration of glycosaminoglycans (GAGs in sinovial liquid was also determined, both the total amount (GAGsT and the fractions corresponding to the GAGs other than hyaluronic acid or sulfated GAGs (GAGsG, that consist mostly of chondroitin and keratin sulfate. The hyaluronic acid content of the synovial fluid was calculated as the difference between the concentrations of GAGsT and GAGsS. Samples of synovial fluid were collected from metacarpophalangeal joints of crossbred equines immediatelly after slaughter, by aseptic needle aspiration and then, following post mortem joint examination, were divided into four groups: a normal group as control (n = 17 and three alterated groups, obtained from joints with different degrees damage (+ = 15 ; ++ = 12 and +++ = 18 samples. The synovial fluid aldehyde concentrations were determined by a colorimetric reaction between aliphatic aldehydes and N-Methyl Benzothiazolidon Hydrazone. A colorimetric method with Alcian Blue using different MgCl2 concentrations, was used to quantify GAGsT and GAGsS. These results showed an increase of total protein concentration in the more alterated group (+++ (P <0,05. The collagen degradation product concentration increased in the group less altered (+ compared whith the more alterated group (+++ and collagen protein concentration showed an increase in both less alterated groups (+ and ++ compared with the more alterated group (+++ (P <0,05. The GAGsT, GAGsS and hyaluronic acid concentrations did not show statisticant differences between groups. GAGsT and hyaluronic acid concentrations showed a tendency to decrease in the more damaged samples. These results indicate that collagen degradation product concentration in synovial fluid could be used as a marker of initial changes in the osteoarthritis process.

  14. Perfluorooctanoic acid

    NARCIS (Netherlands)

    de Voogt, P.; Wexler, P.

    2014-01-01

    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  15. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc.

    Science.gov (United States)

    Antunes, Joana C; Pereira, Catarina Leite; Teixeira, Graciosa Q; Silva, Ricardo V; Caldeira, Joana; Grad, Sibylle; Gonçalves, Raquel M; Barbosa, Mário A

    2017-01-01

    Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.

  16. High levels of serum hyaluronic acid in adults with dermatomyositis

    Directory of Open Access Journals (Sweden)

    Alana Ausciutti Victorino

    2015-04-01

    Full Text Available Background / objectives. Hyaluronic acid (HA is rarely described in dermatomyositis (DM. Thus, we determined any clinical association of serum levels of hyaluronic acid (HA in patients with dermatomyositis (DM. Materials and Methods. This cross-sectional single-center analysis 75 DM and 75 healthy individuals, during the period from January 2012 to July 2013. An anti-HA antibody assay was performed using specific ELISA/EIA kits, according to the manufacturer’s protocol. Results. The patients with DM and control subjects had comparable demographic distributions (p>0.05. The median time duration between disease diagnosis and initial symptoms was 6.0 [3.0-12.0] months, with a median DM disease duration of 4.0 [1.0-7.0] years. The median level of serum HA was significantly increased in patients with DM compared to the control group [329.0 (80.0-958.0 vs. 133.0 (30.0-262.0 ng/mL, respectively; p0.05. Serum HA also did not correlate with gender, ethnicity, auto-antibodies or drug use (p>0.05, but did correlate with cutaneous features, such as photosensitivity (p=0.001, “shawl” sign (p=0.018, “V-neck” sign (p=0.005 and cuticular hypertrophy (p=0.014. Conclusions. A high level of serum AH was observed in DM compared to healthy individuals. In DM, HA did not correlate to demographic, auto-antibodies and therapy parameters. However, HA correlated specifically with some cutaneous features, suggesting that this glycosaminoglycan could be involved in modulating cutaneous inflammation in this population. More studies are necessary to understand the correlation between AH and patients with DM.

  17. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    Science.gov (United States)

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4.

  18. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  19. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Hemshekhar, Mahadevappa; Thushara, Ram M; Chandranayaka, Siddaiah; Sherman, Larry S; Kemparaju, Kempaiah; Girish, Kesturu S

    2016-05-01

    Hyaluronic acid (HA), is a glycosaminoglycan comprised of repeating disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. HA is synthesized by hyaluronan synthases and reaches sizes in excess of 2MDa. It plays numerous roles in normal tissues but also has been implicated in inflammatory processes, multiple drug resistance, angiogenesis, tumorigenesis, water homeostasis, and altered viscoelasticity of extracellular matrix. The physicochemical properties of HA including its solubility and the availability of reactive functional groups facilitate chemical modifications on HA, which makes it a biocompatible material for use in tissue regeneration. HA-based biomaterials and bioscaffolds do not trigger allergies or inflammation and are hydrophilic which make them popular as injectable dermal and soft tissue fillers. They are manufactured in different forms including hydrogels, tubes, sheets and meshes. Here, we review the pathophysiological and pharmacological properties and the clinical uses of native and modified HA. The review highlights the therapeutic applications of HA-based bioscaffolds in organ-specific tissue engineering and regenerative medicine.

  20. Application of glycolic acid in dermatology%果酸在皮肤科的应用

    Institute of Scientific and Technical Information of China (English)

    赵珏敏; 项蕾红

    2016-01-01

    果酸是一种天然无毒的酸,可以降低角质形成细胞的黏着性,加速表皮细胞脱落与更新,同时刺激真皮胶原合成、黏多糖增加及弹力纤维的修复,对抗光老化,改善皮肤干燥,修复屏障功能,已被广泛应用于美容护肤领域。本文就果酸的历史发展、化学种类、作用机制、临床应用、不良反应进行综述。%Glycolic acid is one organic hydroxyacid which can diminish cohesion of keratinocyte, accelerate desquamation and renewal of the stratum corneum, as well as increase the synthesis of collagen, elastic fiber and glycosaminoglycans. Glycolic acids also play a role in the prevention of photoaging, improvement of dry skin condition and repair of skin barrier function, which has been used widely in dermatology. The history of glycolic, species, mechanisms of action, clinical application and adverse reaction were reviewed in this pa ̄per.

  1. Hydrofluoric acid poisoning

    Science.gov (United States)

    Fluorhydric acid ... stomach, or intestine have holes (perforations) from the acid. ... Hydrofluoric acid is especially dangerous. The most common accidents involving hydrofluoric acid cause severe burns on the skin ...

  2. Histochemical studies on the body wall of nematodes: Haemonchus contortus (Rud., 1803) and Xiphinema insigne Loos, 1949.

    Science.gov (United States)

    Sood, M L; Kalra, S

    1977-04-15

    Histochemical studies on the body wall of Haemonchus contortus (Rud.) and Xiphinema insigne Loos have been made. In H. contortus, the cuticle is mainly proteinous in nature. The lipids and PAS-postive materials are only present in cortical layers. In addition, haemoglobin and acid phosphatase are also present. The hypodermis shows the presence of glycogen, lipids, RNA, acid and alkaline phosphatases. The oval dense body is composed of keratinous and collagenous proteins associated with acid mucopolysaccharides. Muscles carry a greater concentration of glycogen granules and phospholipids. In X. insigne, the cuticle is rich in sudanophilic lipids. The cuticle also consists of weakly acidic mucopolysaccharides. Hypodermis and muscles contain lipids and glycogen. In addition, hypodermis also consists of acidic mucopolysaccharides. The functional significance of these components has been fully discussed.

  3. Dehydroabietic acid

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  4. Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest.

    Science.gov (United States)

    Cimini, Donatella; Iacono, Ileana Dello; Carlino, Elisabetta; Finamore, Rosario; Restaino, Odile F; Diana, Paola; Bedini, Emiliano; Schiraldi, Chiara

    2017-12-01

    Glycosaminoglycans, such as hyaluronic acid and chondroitin sulphate, are not only more and more required as main ingredients in cosmeceutical and nutraceutical preparations, but also as active principles in medical devices and pharmaceutical products. However, while biotechnological production of hyaluronic acid is industrially established through fermentation of Streptococcus spp. and recently Bacillus subtilis, biotechnological chondroitin is not yet on the market. A non-hemolytic and hyaluronidase negative S. equi subsp. zooepidemicus mutant strain was engineered in this work by the addition of two E. coli K4 genes, namely kfoA and kfoC, involved in the biosynthesis of chondroitin-like polysaccharide. Chondroitin is the precursor of chondroitin sulphate, a nutraceutical present on the market as anti-arthritic drug, that is lately being studied for its intrinsic bioactivity. In small scale bioreactor batch experiments the production of about 1.46 ± 0.38 g/L hyaluronic acid and 300 ± 28 mg/L of chondroitin with an average molecular weight of 1750 and 25 kDa, respectively, was demonstrated, providing an approach to the concurrent production of both biopolymers in a single fermentation.

  5. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    to the coastal sedimentary humic acids implying higher association of amino acids with the carbonaceous and fine grained sedimentary humic acids. Both the humic and fulvic acids are composed of neutral, acidic, basic, aromatic and sulphur containing amino acids....

  6. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  7. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  8. Uric acid test (image)

    Science.gov (United States)

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  9. POLYELEOSTEARIC ACID VESICLES

    Institute of Scientific and Technical Information of China (English)

    LI Zichen; XIE Ximng; FAN Qinghua; FANG Yifei

    1992-01-01

    α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solutionofeleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.

  10. Purification and characterization of hyaluronic acid from chicken combs Purificação e caracterização do ácido hialurônico obtido da crista de frango

    Directory of Open Access Journals (Sweden)

    Claudia Severo da Rosa

    2012-09-01

    Full Text Available Hyaluronic acid (HA is an important macromolecule in medical and pharmaceutical fields. The umbilical cord and the chicken comb are some of the tissues richest in this polysaccharide. The profit from obtaining HA from the combs of slaughtered animals is particularly attractive. This work aimed to extract, purify, and characterize HA. The glycosaminoglycan concentration in the chicken comb was found to be about 15µg of hexuronic acid mg-1 of dry tissue. Fractionation using ion exchange chromatography and subsequent identification of the fractions by agarose gel electrophoresis showed that HA corresponded to 90% of the total amount of extracted glycosaminoglycans.O ácido hialurônico (AH é uma importante macromolécula nas áreas médica e farmacêutica. O cordão umbilical e a crista de frango constituem uns dos tecidos mais ricos nesse polissacarídeo. O aproveitamento das cristas dos animais abatidos para a obtenção de HA é particularmente atraente. O presente trabalho teve como objetivo a extração, purificação e caracterização do AH. A concentração de glicosaminoglicanos encontrada na crista de frango foi ao redor de 15µg de ácido hexurônico mg-1 de peso seco. O fracionamento por cromatografia de troca iônica e a subsequente identificação das frações por eletroforese de gel de agarose mostrou que o AH corresponde a 90% do total de glicosaminoglicanos extraídos.

  11. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    Science.gov (United States)

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  12. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  13. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.

    Science.gov (United States)

    Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt

    2017-07-01

    Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures.

    Science.gov (United States)

    Panico, A M; Cardile, V; Garufi, F; Puglia, C; Bonina, F; Ronsisvalle, S

    2007-05-04

    Conventional medications in articular disease are often effective for symptom relief, but they can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective as non-steroidal anti-inflammatory drugs at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favourable influence on the course of the disease. In this study, we assay the anti-inflammatory/chondroprotective effect of some lyophilised extracts obtained from Opuntia ficus indica (L.) cladodes and of hyaluronic acid (HA) on the production of key molecules released during chronic inflammatory events such as nitric oxide (NO), glycosaminoglycans (GAGs), prostaglandins (PGE(2)) and reactive oxygen species (ROS) in human chondrocyte culture, stimulated with proinflammatory cytokine interleukin-1 beta (IL-1 beta). Further the antioxidant effect of these extracts was evaluated in vitro employing the bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH test). All the extracts tested in this study showed an interesting profile in active compounds. Particularly some of these extracts were characterized by polyphenolic and polysaccharidic species. In vitro results pointed out that the extracts of Opuntia ficus indica cladodes were able to contrast the harmful effects of IL-1 beta. Our data showed the protective effect of the extracts of Opuntia ficus indica cladodes in cartilage alteration, which appears greater than that elicited by hyaluronic acid (HA) commonly employed as visco-supplementation in the treatment of joint diseases.

  15. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shaya, D.; Hahn, Bum-Soo; Bjerkan, Tonje Marita; Kim, Wan Seok; Park, Nam Young; Sim, Joon-Soo; Kim, Yeong-Shik; Cygler, M. (Catholic Univ of Korea); (NUST); (McGill); (Nat); (Natural Products Res Inst, Korea)

    2008-03-19

    Enzymes have evolved as catalysts with high degrees of stereospecificity. When both enantiomers are biologically important, enzymes with two different folds usually catalyze reactions with the individual enantiomers. In rare cases a single enzyme can process both enantiomers efficiently, but no molecular basis for such catalysis has been established. The family of bacterial chondroitin lyases ABC comprises such enzymes. They can degrade both chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans at the nonreducing end of either glucuronic acid (CS) or its epimer iduronic acid (DS) by a {beta}-elimination mechanism, which commences with the removal of the C-5 proton from the uronic acid. Two other structural folds evolved to perform these reactions in an epimer-specific fashion: ({alpha}/{alpha}){sub 5} for CS (chondroitin lyases AC) and {beta}-helix for DS (chondroitin lyases B); their catalytic mechanisms have been established at the molecular level. The structure of chondroitinase ABC from Proteus vulgaris showed surprising similarity to chondroitinase AC, including the presence of a Tyr-His-Glu-Arg catalytic tetrad, which provided a possible mechanism for CS degradation but not for DS degradation. We determined the structure of a distantly related Bacteroides thetaiotaomicron chondroitinase ABC to identify additional structurally conserved residues potentially involved in catalysis. We found a conserved cluster located {approx}12 {angstrom} from the catalytic tetrad. We demonstrate that a histidine in this cluster is essential for catalysis of DS but not CS. The enzyme utilizes a single substrate-binding site while having two partially overlapping active sites catalyzing the respective reactions. The spatial separation of the two sets of residues suggests a substrate-induced conformational change that brings all catalytically essential residues close together.

  16. Hunter′s syndrome: A case report

    Directory of Open Access Journals (Sweden)

    N S Savitha

    2015-01-01

    Full Text Available Hunter′s syndrome or mucopolysaccharidosis (MPS type II is an X-linked recessive mucopolysaccharide disorder caused by a defect in the metabolism of glycosaminoglycans (GAGs characterized by involvement of nervous, cardiovascular, respiratory, and mucoskeletal systems along with numerous oral manifestations. This is a case report of a 13-year-old boy referred to the Department of Pediatric Dentistry with a chief complaint of irregularly placed teeth from a general physician. Here we highlight the pivotal role of pediatric dentists in diagnosis and treatment planning for patients diagnosed with such systemic conditions and the provision of advanced dental care in the management of the same.

  17. Symptoms of Autism Spectrum Disorder (ASD) in Individuals with Mucopolysaccharide Disease Type III (Sanfilippo Syndrome): A Systematic Review.

    Science.gov (United States)

    Wolfenden, C; Wittkowski, A; Hare, D J

    2017-08-30

    The prevalence of autism spectrum disorder (ASD) in many genetic disorders is well documented but not as yet in Mucopolysaccharidosis type III (MPS III). MPS III is a recessively inherited metabolic disorder and evidence suggests that symptoms of ASD present in MPS III. This systematic review examined the extant literature on the symptoms of ASD in MPS III and quality assessed a total of 16 studies. Results indicated that difficulties within speech, language and communication consistent with ASD were present in MPS III, whilst repetitive and restricted behaviours and interests were less widely reported. The presence of ASD-like symptoms can result in late diagnosis or misdiagnosis of MPS III and prevent opportunities for genetic counselling and the provision of treatments.

  18. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  19. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  20. Toxicity of adipic acid.

    Science.gov (United States)

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  1. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  2. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  3. 骨髓源性肥大细胞对软骨细胞表达Ⅱ型胶原及糖胺多糖的影响%Effects of bone marrow- derived mast cells on expressions of type II collagen and glycosaminoglycan in co-cultured chondrocytes

    Institute of Scientific and Technical Information of China (English)

    欧阳晴晴; 赵进军; 杨敏

    2014-01-01

    Objective To investigate the influence of the bone marrow-derived mast cells (BMMCs) on the expression of type II collagen and glycosaminoglycan (GAG) in chondrocytes co-cultured with BMMCs. Methods Primarily cultured mouse BMMCs at 4 weeks and the second passage of chondrocytes were plated in a Transwell co-cultured system at a ratio of 1∶10 in the presence or absence of sodium cromoglycate (DSCG) or compound 48/80 (C48/80). The chondrocytes were harvested and lysed for detecting type II collagen expression with ELISA and Western blotting and GAG expression using 1,9 dimethylmethylene blue (DBM). Results After a 24-hour culture, the chondrocytes co-cultured with BMMCs showed similar expression levels of type II collagen and GAG to the control group regardless of the presence of DSCG (P>0.05). Compared with chondrocytes cultured alone or with BMMCs, the co- cultured chondrocytes in the presence of C48/80 showed significantly lower expressions of type II collagen and GAG (P0.05),C48/80组Ⅱ型胶原与GAG含量相对于对照组和BMMCs组显著降低(P0.05)。结论C48/80激活的BMMCs可降低软骨细胞Ⅱ型胶原以及GAG表达。

  4. The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues.

    Science.gov (United States)

    Ouzzine, Mohamed; Gulberti, Sandrine; Levoin, Nicolas; Netter, Patrick; Magdalou, Jacques; Fournel-Gigleux, Sylvie

    2002-07-12

    The human beta1,3-glucuronosyltransferase I (GlcAT-I) plays a key role in proteoglycan biosynthesis by catalyzing the transfer of glucuronic acid onto the trisaccharide-protein linkage structure Galbeta1,3Galbeta1,4Xylbeta-O-Ser, a prerequisite step for polymerization of glycosaminoglycan chains. In this study, we identified His(308) and Arg(277) residues as essential determinants for the donor substrate (UDP-glucuronic acid) selectivity of the human GlcAT-I. Analysis of the UDP-glucuronic acid-binding site by computational modeling in conjunction with site-directed mutagenesis indicated that both residues interact with glucuronic acid. Substitution of His(308) by arginine induced major changes in the donor substrate specificity of GlcAT-I. Interestingly, the H308R mutant was able to efficiently utilize nucleotide sugars UDP-glucose, UDP-mannose, and UDP-N-acetylglucosamine, which are not naturally accepted by the wild-type enzyme, as co-substrate in the transfer reaction. To gain insight into the role of Arg(277), site-directed mutagenesis in combination with chemical modification was carried out. Substitution of Arg(277) with alanine abrogated the activity of GlcAT-I. Furthermore, the arginine-directed reagent 2,3-butanedione irreversibly inhibited GlcAT-I, which was effectively protected against inactivation by UDP-glucuronic acid but not by UDP-glucose. It is noteworthy that the activity of the H308R mutant toward UDP-glucose was unaffected by the arginine-directed reagent. Our results are consistent with crucial interactions between the His(308) and Arg(277) residues and the glucuronic acid moiety that governs the specificity of GlcAT-I toward the nucleotide sugar donor substrate.

  5. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.

    Science.gov (United States)

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah

    2015-08-01

    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.

  6. Property changes of urinary nanocrystallites and urine of uric acid stone formers after taking potassium citrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang-Na; Ouyang, Jian-Ming, E-mail: toyjm@jnu.edu.cn; Xue, Jun-Fa; Shang, Yun-Feng

    2013-10-15

    The property changes of urinary nanocrystallites in 20 cases of uric acid (UA) stone formers after 1 week of potassium citrate (K{sub 3}cit) intake were comparatively studied by X-ray diffraction analysis, Fourier transform infrared spectroscopy, nanoparticle size analysis, and transmission electron microscopy. Before K{sub 3}cit intake, the urinary crystallites mainly contained UA and calcium oxalate. After K{sub 3}cit intake, the components changed to urate and UA; the qualities, species, and amounts of aggregated crystallites decreased; urine pH, citrate, and glycosaminoglycan excretions increased; and UA excretion, Zeta potential, and crystallite size decreased. The stability of crystallites followed the order: controls > patients after taking K{sub 3}cit > patients before taking K{sub 3}cit. Therefore, the components of urinary stones were closely related to the components of urinary crystallites. - Graphical abstract: The relationships among stone components, urinary crystallite components, and urine pH were established. The crystallites stability order was: controls > patients after taking K{sub 3}cit > patients before taking K{sub 3}cit. Highlights: • Urine crystallite property of uric acid stone former after K{sub 3}cit intake was studied. • The components of crystallites in urine are closely related to type of stones. • After K{sub 3}cit intake the qualities and species of crystallites decreased. • After K{sub 3}cit intake the amount of aggregated crystallites decreased. • The stability of urinary crystallites of UA patients increased after taking K{sub 3}cit.

  7. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  8. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant ...

  9. Lactic acid test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  10. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  11. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  12. Facts about Folic Acid

    Science.gov (United States)

    ... Partners About Us Information For… Media Policy Makers Facts About Folic Acid Language: English (US) Español ( ... a woman needs 400 micrograms (mcg) every day. Facts About Folic Acid Download and print this fact ...

  13. Azelaic Acid Topical

    Science.gov (United States)

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  14. Folic Acid Quiz

    Science.gov (United States)

    ... About Us Information For… Media Policy Makers Folic Acid Quiz Language: English (US) Español (Spanish) Recommend ... button beside the question. Good Luck! 1. Folic acid is: A a B vitamin B a form ...

  15. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  16. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  17. Stomach acid test

    Science.gov (United States)

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour (mEq/ ...

  18. Acid Lipase Disease

    Science.gov (United States)

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  19. Acid Rain Study Guide.

    Science.gov (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  20. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  1. Hurler syndrome: a case report of a 5-year follow-up of dental findings after bone marrow transplantation.

    Science.gov (United States)

    Wadenya, Rose O; Stout, Angela M; Gupta, Avin; Monge, Janet

    2010-01-01

    Hurler syndrome is a rare autosomal recessive disorder of mucopolysaccharide metabolism. It results from a deficiency in lysosomal enzymes responsible for the breakdown of glycosaminoglycans. Affected individuals may show progressive physical and mental deterioration as glycosaminoglycans are deposited in the organs of the body. Bone marrow transplantation (BMT) is effective in improving some of the clinical manifestations of Hurler syndrome. Death is caused by cardiorespiratory failure and usually occurs before the second decade of life. In this case report, the course of dental development was followed over 5 years, from the primary dentition into the permanent dentition, of a child who was successfully treated with a bone marrow transplant in infancy. The timing of bone marrow therapy has significant and variable effect on the stages of tooth development with implications for the long-term maintenance of the dentition.

  2. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering.

    Science.gov (United States)

    Li, Zhengqiang; Liu, Peng; Yang, Ting; Sun, Ying; You, Qi; Li, Jiale; Wang, Zilin; Han, Bing

    2016-05-01

    Nanofibrous materials produced by electrospinning have attracted considerable attention from researchers in regenerative medicine. A combination of nanofibrous scaffold and chondrocytes is considered promising for repair of cartilage defect or damage. In the present study, we fabricated a poly(l-lactic-acid) (PLLA)/silk fibroin (SF) nanofibrous scaffold by electrospinning and evaluated its chondrogenic potential. The PLLA/SF nanofibers were characterized for diameter, surface wettability, swelling ratio, and tensile strength. Throughin vitroexperiments, PLLA/SF scaffold-chondrocyte interactions were investigated relative to the unmodified PLLA scaffold with regard to cellular adhesion, spreading, and proliferation by scanning electron microscopy and confocal laser scanning microscopy, and through analyses of DNA, sulfated glycosaminoglycan, and collagen. In addition, hematoxylin-eosin and Alcian blue-nuclear fast red staining were used to observe growth of chondrocytes, and secretion and distribution of cartilage-specific extracellular matrices in the scaffolds. Expressions of cartilage-related genes (collagen II, aggrecan, sox9, collagen I, and collagen X) were detected by real-time quantitative PCR. The PLLA/SF scaffold had better hydrophilicity, and could support chondrocytes adhesion and spreading more effectively than the unmodified PLLA scaffold. Chondrocytes secreted more cartilage-specific extracellular matrices and maintained their phenotype on the PLLA/SF scaffold. So it is concluded that the PLLA/SF scaffold is more conducive toin vitroformation of cartilage-like new tissues than the unmodified PLLA scaffold, and may be a promising material in cartilage tissue engineering.

  3. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  4. Generating selective saccharide binding affinity of phenyl boronic acids by using single-walled carbon nanotube corona phases.

    Science.gov (United States)

    Mu, Bin; Ahn, Jiyoung; McNicholas, Thomas P; Strano, Michael S

    2015-03-16

    Saccharides recognition is challenging due to their low affinity for substrates, yet this recognition is critical for human immunity and glycobiology. Herein, we demonstrate that a polymer or surfactant corona phase surrounding a single-walled carbon nanotube can substantially modify the selectivity of pre-adsorbed phenyl-boronic acids (PBA) for mono-, di-, and poly-saccharides. A library of 17 PBAs including carboxy, nitro, and amino PBA with ortho-, meta-, or para- substitutions are used to generate 144 distinct corona phases. Six in particular demonstrate significantly increased selectivity to specific saccharides including ribose (0.42 mol per total mol), arabinose (0.36), and glucose (0.25), but unusually diminished binding to fructose (0.02). Recognition proceeds by saccharide adsorption into the corona, followed by PBA reaction in a consecutive second order reaction. The results extend to larger saccharides, such as glycosaminoglycans, suggesting promise for protein glycosylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Demospongic Acids Revisited

    Directory of Open Access Journals (Sweden)

    Gilles Barnathan

    2010-10-01

    Full Text Available The well-known fatty acids with a D5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32 and from some terrestrial plants with short acyl chains (C18–C19. Finally, the D5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs. This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between D5,9 fatty acids and other NMI FAs.

  6. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  7. [Biosynthesis of adipic acid].

    Science.gov (United States)

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  8. Boric acid and boronic acids inhibition of pigeonpea urease.

    Science.gov (United States)

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  9. Highly acidic glycans from sea cucumbers. Isolation and fractionation of fucose-rich sulfated polysaccharides from the body wall of Ludwigothurea grisea.

    Science.gov (United States)

    Mourão, P A; Bastos, I G

    1987-08-03

    The body wall of the sea cucumber contains high amounts of sulfated glycans, which differ in structure from glycosaminoglycans of animal tissues and also from the fucose-rich sulfated polysaccharides isolated from marine algae and from the jelly coat of sea urchin eggs. In Ludwigothurea grisea, glycans can be separated into three fractions which differ in molecular mass and chemical composition. The fraction containing a high-molecular-mass component has a high proportion of fucose and small amounts of amino sugars, whereas another fraction contains primarily a sulfated fucan. The third fraction, which represents the major portion of the sea cucumber polysaccharides, contains besides fucose, approximately equimolar proportions of glucuronic acid and amino sugars, and has a sulfate content higher than that in the other two fractions. Both D and L-isomers of fucose are found in these polysaccharides, and the sulfate is linked to the O-3 position of the fucose residues. The attachment position of the sulfate groups to the glucuronic acid units and amino sugars is still undetermined. It is possible that these compounds are involved in maintaining the integrity of the sea cucumber's body wall, in analogy with the role of other macromolecules in the vertebrate connective tissue.

  10. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  11. Comparison of polysaccharides of Haliotis discus hannai and Volutharpa ampullacea perryi by PMP-HPLC-MS(n) analysis upon acid hydrolysis.

    Science.gov (United States)

    Wang, Hongxu; Zhao, Jun; Li, Dongmei; Wen, Chengrong; Liu, Haiman; Song, Shuang; Zhu, Beiwei

    2015-10-13

    Haliotis discus hannai Ino (Haliotis) is a highly valued marine shellfish, and it is sometimes replaced by another cheaper Gastropoda mollusk, Volutharpa ampullacea perryi (Volutharpa). Polysaccharides from pleopods, viscera and gonads of these two gastropods were compared by analyzing the mono- and di-saccharides in their acid hydrolysates using high performance liquid chromatography-mass spectrometry (HPLC-MS(n)) after 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Disaccharide analysis revealed the distribution of uronic acid-containing polysaccharides (UACPs) in the biological samples. GlcA-(1 → 2)-Man, GlcA-(1 → 3)-GalN, and another disaccharide consisting of a hexuronic acid linked to a hexose were found in the hydrolysates, which indicated the existence of AGSP (abalone gonad sulfated polysaccharide) with the backbone composed of → 2)-α-Man(1 → 4)-β-GlcA(1 → repeating unit, AAP (abalone glycosaminoglycan-like polysaccharide) with the backbone of → 3)-GalNAc-(1 → 2)-GlcA-(1 → 3)-GalNAc-(1 → 4)-GlcA-(1 → repeating unit, and unidentified DS1P containing a hexuronic acid linked to a hexose unit, respectively. As shown by extracted ion chromatograms (XICs), AAP was the only UACP found in pleopods of the two gastropods; gonads and viscera of Haliotis contained DS1P and AGSP, while those of Volutharpa contained DS1P, AGSP as well as AAP. Monosaccharides in the acid hydrolysates were demonstrated in XICs by extracting their corresponding PMP derivative quasi-molecular ions one by one, and the results indicated the similar conclusion to the disaccharide analysis. Therefore, it could be concluded that polysaccharides from pleopods of the two gastropods are very similar, while those from their viscera and gonads differ greatly.

  12. Acid-Base Homeostasis.

    Science.gov (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-07

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  13. Glycolic Acid 15% Plus Salicylic Acid 2%

    Science.gov (United States)

    Sánchez-Blanco, Elena

    2011-01-01

    Background: Facial flat warts are a contagious viral disease that can cause disturbing cosmetic problems. Topical glycolic acid has been reported to be effective in dermatological treatment depending on the exfoliant capacity, but has not often been reported to be effective in the treatment of facial flat warts. Objective: The aim of this paper was to evaluate the efficacy and safety of glycolic acid 15% topical gel plus salicylic acid 2% in the treatment of recalcitrant facial flat warts. Methods: A total of 20 consecutive patients 7 to 16 years of age with recalcitrant facial flat warts were enrolled in this study. Patients having warts by the eye and lip regions were excluded from the study. A fine layer of face gel was applied to the treatment area once daily. Most of the participants had tried different treatments with no success. Assessments for the response and the occurrence of side effects were performed every two weeks at Weeks 2, 4, 6, and 8. Results: All the patients were clinically cured within eight weeks. Seven patients cleared in four weeks, and 13 patients cleared in eight weeks. No noticeable adverse events were related to the skin. Conclusion: Topical gel of glycolic acid 15% plus salicylic acid 2% is safe and effective when applied to facial flat warts once daily until clearance and may be considered as first-line treatment. PMID:21938272

  14. Nitrogen Lewis Acids.

    Science.gov (United States)

    Pogoreltsev, Alla; Tulchinsky, Yuri; Fridman, Natalia; Gandelman, Mark

    2017-03-22

    Being a major conception of chemistry, Lewis acids have found countless applications throughout chemical enterprise. Although many chemical elements can serve as the central atom of Lewis acids, nitrogen is usually associated with Lewis bases. Here, we report on the first example of robust and modifiable Lewis acids centered on the nitrogen atom, which provide stable and well-characterized adducts with various Lewis bases. On the basis of the reactivity of nitrogen Lewis acids, we prepared, for the first time, cyclic triazanes, a class of cyclic organic compounds sequentially bearing three all-saturated nitrogen atoms (N-N-N motif). Reactivity abilities of these N-Lewis acids were explained by theoretical calculations. Properties and future applications of nitrogen Lewis acids are intriguing.

  15. Citric Acid Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  16. Levels of glycosaminoglycans in gingival crevicular fluid of patients with periodontal degree II furcation involvement before and after guided tissue regeneration.%Ⅱ°根分叉病变患者引导组织再生治疗术前术后龈沟液中糖氨多糖水平的变化

    Institute of Scientific and Technical Information of China (English)

    闫福华; 郑瑜谦; 等

    2002-01-01

    目的观察Ⅱ°根分叉病变患者引导组织再生治疗术(guided tissue regeneration, GTR)前后龈沟液(gingival crevicular fluid, GCF)中糖氨多糖(glycosaminoglycans, GAG) 水平变化的同时,探讨GCF中GAG能否作为判断GTR术后组织成熟的指标.方法对6例Ⅱ°根分叉病变的患牙采用GTR治疗,并于手术前,手术后1、2、3、4、5、6周收集GCF.用0.1%阿尔辛兰(Alcian blue)染色,分光光度法测定GCF中总的硫酸化GAG及硫酸软骨素(chondroitin sulfate, CS)的水平.结果 GTR术后1~2周,GCF 中CS 明显降低(P<0.05),然后逐渐升高,第6周恢复到基线水平.而GCF中总的硫酸化GAG则在术后1周明显升高(P<0.05),然后下降,到第6周升高并超过基线水平.结论 GCF中总的硫酸化GAG,尤其是CS 可用作监测牙周伤口愈合和组织再生的一个潜在指标,但是否可以用作GTR术后组织成熟的指标,还需加大样本并结合病理进行进一步的纵向观察.

  17. USGS Tracks Acid Rain

    Science.gov (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  18. Parenteral Nutrition: Amino Acids

    Science.gov (United States)

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  19. Parenteral Nutrition: Amino Acids.

    Science.gov (United States)

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  20. Alterações histoquímicas das glicosaminoglicanas na cérvice uterina no final da prenhez da rata albina após ministração local de hialuronidase Histochemical changes of the glycosaminoglycans in the uterine cervix of pregnant rats after local injection of hyaluronidase

    Directory of Open Access Journals (Sweden)

    Viviane Almeida de Alcântara Lopes

    2008-07-01

    Full Text Available OBJETIVO: estudar as alterações histoquímicas relacionadas às glicosaminoglicanas da cérvice uterina da rata albina, após ministração local de hialuronidase no final da prenhez. MÉTODOS: dez ratas com teste de prenhez positivo foram distribuídas aleatoriamente em dois grupos, numericamente iguais. O Grupo Controle (Gc foi constituído pelas ratas que receberam 1 mL de água destilada, dose única, no 18º dia da prenhez, sob anestesia, ministrado na cérvice uterina. O Grupo Experimental (Gex constou de ratas que receberam, sob as mesmas condições do Gc, 0,02 mL de hialuronidase, diluído em 0,98 mL de água destilada (total de 1 mL. No 20º dia de prenhez, as ratas foram novamente anestesiadas e submetidas à dissecção, preparando-se a cérvice uterina para estudo histoquímico com coloração de alcian blue e seus bloqueios (pH=0,5, pH=2,5, metilação e saponificação. RESULTADOS: verificou-se na lâmina própria no Gc, reação fortemente positiva (+3 e, no Gex, reação negativa, na coloração de alcian blue no pH=0,5. Em pH=2,5 a coloração também se apresentou fortemente positiva (+4 no Gc e fracamente positiva (+1 no Gex. Após metilação, tanto o Gc quanto o Gex mostraram reação negativa após coloração de alcian blue no pH=2,5. Com a reação de metilação seguida de saponificação e na digestão enzimática em lâmina, a coloração da lâmina própria se mostrou negativa em ambos os grupos. CONCLUSÕES: há uma nítida predominância de glicosaminoglicanas sulfatadas no Gc em relação ao Gex e uma tênue quantidade de glicosaminoglicanas carboxiladas identificadas no Gex. As modificações evidenciadas na matriz extracelular sugerem que a hialuronidase injetada localmente na cérvix uterina promoveu alterações bioquímicas compatíveis com maturação cervical.PURPOSE: to study the histochemical changes related to the uterine cervix glycosaminoglycan of the albino female rat, after local ministration of

  1. Diterpenoid acids from Grindelia nana.

    Science.gov (United States)

    Mahmoud, A A; Ahmed, A A; Tanaka, T; Iinuma, M

    2000-03-01

    Two new norditerpenoid acids of the labdane-type (norgrindelic acids), 4,5-dehydro-6-oxo-18-norgrindelic acid (1) and 4beta-hydroxy-6-oxo-19-norgrindelic acid (2), as well as a new grindelic acid derivative, 18-hydroxy-6-oxogrindelic acid (3), were isolated from the aerial parts of Grindelia nana. In addition, the known compounds, 6-oxogrindelic acid, grindelic acid, methyl grindeloate, 7alpha,8alpha-epoxygrindelic acid, and 4alpha-carboxygrindelic acid were also isolated. The structures of the new compounds were characterized on the basis of spectroscopic analysis.

  2. Nucleic Acid Immunity.

    Science.gov (United States)

    Hartmann, G

    2017-01-01

    Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to

  3. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  4. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  7. Carbolic acid poisoning

    Science.gov (United States)

    ... you to. If the person swallowed the carbolic acid, give them water or milk right away, if a provider tells ... well someone does depends on how much carbolic acid they swallowed and how quickly they receive treatment. The faster medical help is given, the better ...

  8. Uric acid - blood

    Science.gov (United States)

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  9. Neurotoxicity of Folic Acid

    NARCIS (Netherlands)

    Amsterdam van JGC; Jansen EHJM; A Opperhuizen; TOX

    2004-01-01

    The present review summarises the neurotoxicological effects of folic acid. Some studies in animals have shown that folic acid is neurotoxic and epileptogenic when applied directly to the brain. One poorly controlled and not further reproduced study from 1970 reported neurotoxic symptoms like

  10. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  11. Fats and fatty acids

    Science.gov (United States)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  12. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Chlorogenic acid and caffeic acid are absorbed in humans

    OpenAIRE

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the absorption of chlorogenic acid and caffeic acid in humans are lacking. We determined the absorption of chlorogenic acid and caffeic acid in a cross-over study with 4 female and 3 male healthy ileo...

  14. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  15. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  16. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  17. Phenolic acids enzymatic lipophilization.

    Science.gov (United States)

    Figueroa-Espinoza, Maria-Cruz; Villeneuve, Pierre

    2005-04-20

    Lipophilization is the esterification of a lipophilic moiety (fatty acid or fatty alcohol) on different substrates (phenolic acid, sugar, protein, ...), resulting in new molecules with modified hydrophilic/lipophilic balance. This reaction can be obtained chemically or enzymatically using different enzymes. Phenolic acids possess interesting biological properties (antioxidant, chelator, free radical scavenger, UV filter, antimicrobial, ...), but because of their relatively low solubility in aprotic media, their application in oil-based products is limited. Therefore, the esterification of their carboxylic acid function with a fatty alcohol enhances their hydrophobicity and results in a multifunctional amphiphilic molecule. Enzymatic lipophilization of phenolic acids is nowadays studied for potential industrial applications. Different systems have been proposed to perform the reaction yield [free or immobilized enzymes (lipase, feruloyl esterase, tannase, etc.), free or added organic solvent, addition of surfactant, microemulsion system, etc.]. Some of the functional properties of these esters have been demonstrated. This review presents a panorama of the advances in this field.

  18. 2-Methylaspartic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2013-12-01

    Full Text Available The title compound, C5H9NO4·H2O, is an isomer of the α-amino acid glutamic acid that crystallizes from water in its zwitterionic form as a monohydrate. It is not one of the 20 proteinogenic α-amino acids that are used in living systems and differs from the natural amino acids in that it has an α-methyl group rather than an α-H atom. In the crystal, an O—H...O hydrogen bond is present between the acid and water molecules while extensive N—H...O and O—H...O hydrogen bonds link the components into a three-dimensional array.

  19. Composition of amino acids, fatty acids and dietary fibre monomers ...

    African Journals Online (AJOL)

    Composition of amino acids, fatty acids and dietary fibre monomers in kernels of ... Nuts are rich in protein and essential amino acids, and have a high energy value ... of protein, especially when combined with foods with high lysine content.

  20. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)

    SAM

    2014-07-09

    Jul 9, 2014 ... of the three LAB strains to utilize amino acids for growth and lactic acid production were employed to ... Lactic acid bacteria (LAB), which are used for the ..... and characterization of potential probiotic lactobacilli from pig feces.

  1. Trans Fatty Acids

    Science.gov (United States)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  2. Gluconic acid production.

    Science.gov (United States)

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  3. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  4. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Science.gov (United States)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  5. Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels.

    Science.gov (United States)

    Yang, Ya-li; Sun, Charles; Wilhelm, Matthew E; Fox, Laura J; Zhu, Jieling; Kaufman, Laura J

    2011-11-01

    To mimic the extracellular matrix surrounding high grade gliomas, composite matrices composed of either acid-solubilized (AS) or pepsin-treated (PT) collagen and the glycosaminoglycans chondroitin sulfate (CS) and hyaluronic acid (HA) are prepared and characterized. The structure and mechanical properties of collagen/CS and collagen/HA gels are studied via confocal reflectance microscopy (CRM) and rheology. CRM reveals that CS induces fibril bundling and increased mesh size in AS collagen but not PT collagen networks. The presence of CS also induces more substantial changes in the storage and loss moduli of AS gels than of PT gels, in accordance with expectation based on network structural parameters. The presence of HA significantly reduces mesh size in AS collagen but has a smaller effect on PT collagen networks. However, both AS and PT collagen network viscoelasticity is strongly affected by the presence of HA. The effects of CS and HA on glioma invasion is then studied in collagen/GAG matrices with network structure both similar to (PT collagen-based gels) and disparate from (AS collagen-based gels) those of the corresponding pure collagen matrices. It is shown that CS inhibits and HA has no significant effect on glioma invasion in 1.0 mg/ml collagen matrices over 3 days. The inhibitory effect of CS on glioma invasion is more apparent in AS than in PT collagen gels, suggesting invasive behavior in these environments is affected by both biochemical and network morphological changes induced by GAGs. This study is among the few efforts to differentiate structural, mechanical and biochemical effects of changes to matrix composition on cell motility in 3D.

  6. Fusidic acid in dermatology

    DEFF Research Database (Denmark)

    Schöfer, Helmut; Simonsen, Lene

    1995-01-01

    efficacy and tolerability. Similarly, plain fusidic acid cream or ointment used two or three times daily in SSTIs such as impetigo are clinically and bacteriologically effective, with minimal adverse events. Combination formulations of fusidic acid with 1% hydrocortisone or 0.1% betamethasone achieve...... excellent results in infected eczema by addressing both inflammation and infection. A new lipid-rich combination formulation provides an extra moisturizing effect. Development of resistance to fusidic acid has remained generally low or short-lived and can be minimized by restricting therapy to no more than...

  7. Acid rain: An overview

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the effects of acid rain and related processes, sources, issues, corrective actions, research, current law, potential solutions, political solutions,...

  8. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  9. Synthesis of aminoaldonic acids

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea

    With the aim of synthesising aminoaldonic acids, two 2-acetamido-2-deoxyaldonolactones with D-galacto (6) and D-arabino (11) configuration were prepared from acetylated sugar formazans in analogy with a known procedure. Empolying the same procedure to acetylated sugar phenylhydrazones gave mixtures....... The aziridino amides 43 and 51 were reductively cleaved with hydrazine to give 3-amino-2,3-dideoxyhexonhydrazides 83 and 85, which were easily converted into the corresponding lactone 84 and acid 86. The aziridine ring of 43 and 51 was also opened with acetic acid to give the 3-amino-3-deoxyhexonic acids 79...... and 82, respectively. The aminolactone 84 was converted into the corresponding amino sugar 89.With the aim of synthesising substrates for the Pictet-Spengler reaction three 4-aldehydo acetamidodideoxytetronolactones 92, 97 and 103 were prepared by periodate cleavage of the corresponding hexonolactones...

  10. [Hydrofluoric acid burns].

    Science.gov (United States)

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  11. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...... beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution...

  12. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  13. Folic acid - test

    Science.gov (United States)

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who are ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider how ...

  14. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  15. Ethylenediaminetetraacetic acid in endodontics

    OpenAIRE

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for...

  16. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid an......-lowering effect in patients with type 2 diabetes remain unclear. This article offers a review of the mechanisms behind the glucose-lowering effect of BASs, and the efficacy of BASs in the treatment of type 2 diabetes....... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...

  17. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  18. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  19. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering.

    Science.gov (United States)

    Mathews, Smitha; Bhonde, Ramesh; Gupta, Pawan Kumar; Totey, Satish

    2014-11-01

    Human bone marrow-derived mesenchymal stem cells (hMSCs) are an ideal osteogenic cell source for bone tissue engineering (BTE). A scaffold, in the context of BTE, is the extracellular matrix (ECM) that provides the unique microenvironment and play significant role in regulating cell behavior, differentiation, and development in an in vitro culture system. In this study, we have developed novel biomimetic tripolymer scaffolds for BTE using an ECM protein, collagen type 1; an ECM glycosaminoglycan, hyaluronic acid; and a natural osteoconductive polymer, chitosan. The scaffolds were characterized by scanning electron microscopy (SEM) and swelling ratio. The scaffolds were seeded with hMSCs and tested for cytocompatibility and osteogenic potential. The scaffolds supported cell adhesion, enhanced cell proliferation, promoted cell migration, showed good cell viability, and osteogenic potential. The cells were able to migrate out from the scaffolds in favorable conditions. SEM, alkaline phosphatase assay, and immunofluorescent staining confirmed the differentiation of hMSCs to osteogenic lineage in the scaffolds. In conclusion, we have successfully developed biomimetic scaffolds that supported the proliferation and differentiation of hMSCs. These scaffolds hold great promise as a cell-delivery vehicle for regenerative therapies and as a support system for enhancing bone regeneration. © 2014 Wiley Periodicals, Inc.

  20. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  1. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses.

    Science.gov (United States)

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Visser, Nico; Rieder, Elizabeth A

    2010-10-01

    Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures.

  2. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.

    Science.gov (United States)

    Hendrikson, Wilhelmus J; Zeng, Xiangqiong; Rouwkema, Jeroen; van Blitterswijk, Clemens A; van der Heide, Emile; Moroni, Lorenzo

    2016-01-21

    Additive manufactured scaffolds are fabricated from three commonly used biomaterials, polycaprolactone (PCL), poly (L\\DL) lactic acid (P(L\\DL)LA), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT). Scaffolds are compared biologically and tribologically. Cell-seeded PEOT/PBT scaffolds cultured in osteogenic and chondrogenic differentiation media show statistical significantly higher alkaline phosphatase (ALP) activity/DNA and glycosaminoglycans (GAG)/DNA ratios, followed by PCL and P(L\\DL)LA scaffolds, respectively. The tribological performance is assessed by determining the friction coefficients of the scaffolds at different loads and sliding velocities. With increasing load or decreasing sliding velocity, the friction coefficient value decreases. PEOT/PBT show to have the lowest friction coefficient value, followed by PCL and P(L\\DL)LA. The influence of the scaffold architecture is further determined with PEOT/PBT. Reducing of the fiber spacing results in a lower friction coefficient value. The best and the worst performing scaffold architecture are chosen to investigate the effect of cell culture on the friction coefficient. Matrix deposition is low in the cell-seeded scaffolds and the effect is, therefore, undetermined. Taken together, our studies show that PEOT/PBT scaffolds support better skeletal differentiation of seeded stromal cells and lower friction coefficient compared to PCL and P(L/DL)A scaffolds.

  3. Performance Comparison of New Combinations of Acids with Mud Acid in Sandstone Acidizing

    Directory of Open Access Journals (Sweden)

    Mian Umer Shafiq

    2014-01-01

    Full Text Available The aim of this research is to find the best suitable acid to acidize undamaged low permeable sandstone formation Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50 to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric Acid- Hydrofluoric with Concentration (3% HF-12% HCl. This study presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results analyzed are porosity, permeability, strength, color change and FESEM Analysis. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  4. Acidification and Acid Rain

    Science.gov (United States)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  5. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Wan, Wei; Wang, Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2008-12-15

    The inhibitory effect of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35 C and initial pH 7.0, during the fermentative hydrogen production, the substrate degradation efficiency, hydrogen production potential, hydrogen yield and hydrogen production rate all trended to decrease with increasing added ethanol, acetic acid, propionic acid and butyric acid concentration from 0 to 300 mmol/L. The inhibitory effect of added ethanol on fermentative hydrogen production was smaller than those of added acetic acid, propionic acid and butyric acid. The modified Han-Levenspiel model could describe the inhibitory effects of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production rate in this study successfully. The modified Logistic model could describe the progress of cumulative hydrogen production. (author)

  6. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  7. The Effects of Supplemental Intra-Articular Lubricin and Hyaluronic Acid on the Progression of Post-Traumatic Arthritis in the Anterior Cruciate Ligament Deficient Rat Knee

    Science.gov (United States)

    Teeple, Erin; Elsaid, Khaled A.; Jay, Gregory D.; Zhang, Ling; Badger, Gary J.; Akelman, Matthew; Bliss, Thomas F.; Fleming, Braden C.

    2010-01-01

    Background Lubricin and hyaluronic acid lubricate articular cartilage and prevent wear. Because lubricin loss occurs following ACL injury, intra-articular lubricin injections may reduce cartilage damage in the ACL deficient knee. Purpose To determine if lubricin and/or hyaluronic acid supplementation will reduce cartilage damage in the ACL deficient knee. Study Design Controlled laboratory study Methods 36 male rats, 3 months old, underwent unilateral ACL transection. They were randomized to four treatments: 1) saline (PBS), 2) hyaluronic acid (HA), 3) purified human lubricin (LUB), and 4) LUB and HA (LUB+HA). Intra-articular injections were given twice weekly for four weeks starting one week after surgery. Knees were harvested one week following final injection. Radiographs of each limb and synovial fluid lavages were obtained at harvest. Histology was performed to assess cartilage damage using Safranin O/Fast green staining. Radiographs were scored for the severity of joint degeneration using the modified Kellgren-Lawrence scale. Synovial fluid levels of sulfated glycosaminoglycan, collagen II breakdown, IL-1β, TNF-α and lubricin were measured using ELISA. Results Treatment with LUB or LUB+HA significantly decreased radiographic and histologic scores of cartilage damage (p=0.039, p=0.015, respectively) when compared to the PBS and HA conditions. There was no evidence of an effect of HA nor was the LUB effect HA dependent suggesting that the addition of HA did not further reduce damage. The synovial fluid of knees treated with LUB had significantly more lubricin in the synovial fluid at euthanasia, though there were no differences in the other cartilage metabolism biomarkers. Conclusions Supplemental intra-articular LUB reduced cartilage damage in the ACL transected rat knee 6 weeks after injury, while treatment with HA did not. Clinical Relevance Although longer-term studies are needed, intra-articular supplementation (tribosupplementation) with lubricin

  8. EFFECT OF ACIDITY ON ACID-SENSITIVE UV CURING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Qi-dao Chen; Bing Wu; Xiao-yin Hong

    1999-01-01

    By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required.However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.

  9. Determination of Sialic Acids by Acidic Ninhydrin Reaction

    Directory of Open Access Journals (Sweden)

    Yao,Kenzabroh

    1987-12-01

    Full Text Available A new acidic ninhydrin method for determining free sialic acids is described. The method is based on the reaction of sialic acids with Gaitonde's acid ninhydrin reagent 2 which yields a stable color with an absorption maximum at 470 nm. The standard curve is linear in the range of 5 to 500 nmol of N-acetylneuraminic acid per 0.9 ml of reaction mixture. The reaction was specific only for sialic acids among the various sugars and sugar derivatives examined. Some interference of this method by cysteine, cystine and tryptophan was noted, although their absorption maxima differed from that of sialic acids. The interference by these amino acids was eliminated with the use of a small column of cation-exchange resin. The acidic ninhydrin method provides a simple and rapid method for the determination of free sialic acids in biological materials.

  10. Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions

    OpenAIRE

    Conrad, Abigail H.; Zhang, Yuntao; Tasheva, Elena S.; Conrad, Gary W.

    2010-01-01

    Corneal glycosaminoglycans KS, CSA, and HA bind many intracellular and extracellular proteins and thus may influence the conformation or availability of these proteins to participate in other biological interactions. KS binds SLIT2 and may convert it from a neurorepellant to a neuroattractant.

  11. Domoic Acid Epileptic Disease

    Directory of Open Access Journals (Sweden)

    John S. Ramsdell

    2014-03-01

    Full Text Available Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis.

  12. 鲐鱼软骨糖胺聚糖的硫酸软骨素的结构及其与生长因子的相互作用%Chondroitin Sulfate in the Preparation of Glycosaminoglycan from Mackerel (Pneumatophorus japonicus Houttuyn) Nasal Cartilage and Its Interaction with Growth Factors

    Institute of Scientific and Technical Information of China (English)

    周跃钢

    2012-01-01

    为了开发具有药用价值的硫酸软骨素(chondroitin sulfate,CS)的新资源,从鲐鱼(Pneumatop horus japonicus Houttuyn)软骨蛋白聚糖(proteoglycan,PG)制备了糖胺聚糖(glycosaminoglycan,GAG),用酶降解和阴离子交换HPLC法测定了GAG的CS的组成及其含量,用凝胶层析法测定了GAG的分子量,用表面等离子体谐振(surface plasmon resonance,SPR)法测定了其与多效生长因子(PTN)、中期因子(MK)和肝细胞生长因子(HGF)相互作用的动力学参数结合速率常数(ka)、解离速率常数(kd)和平衡解离常数(KD).结果显示,鲐鱼软骨GAG含量约为651 μg/mg PG或1.09 μmol/mg PG(按照二糖单位计算),主要含CS (1.03μmol/mg PG,按照二糖单位计算),CS酶解产生的主要二糖单位是ΔDi-6S(38.8%)和ΔDi-4S(46.3%),有少量的ΔDi-0S(8.4%)和ΔDi-diSD(6.5%).GAG (CS)的分子量为78 kD.GAG(CS)与生长因子的相互作用的动力学参数ka((mol/L)-1·S-1)、kd(s-1)和KD (nmol/L)分别为(2.77±0.17) x105、(7.74±1.56) ×105和(0.28 ±0.06) (MK),(1.05 ±0.22)×104、(4.16±0.80)x 10-3和(417±131.3)(PTN),(7.04±0.94)×105、(7.84±2.82)× 10-3和(1 1.1±3.80)(HGF).该GAG同MK、HGF和PTN有高的或较高的亲和性,暗示鲐鱼软骨GAG的CS有可能通过调节生长因子的信号转导途径而对某些疾病发挥治疗作用,具有潜在进一步药用开发价值.%To search for new resource of chondroitin sulfate (CS) for therapeutics, glycosaminoglycan (GAG) was isolated from nasal proteoglycan (PG) of mackerel (Pneumatophorus japonicus Houttuyn). The disaccharide composition of CS in the GAG preparation was determined by anion-exchange HPLC after digestion with chondroitinase. The molecular size of GAG was determined by gel filtration, and the interaction of GAG with growth factors was analyzed to determine the kinetic parameter ^(association rate constant) ^ kd (dissociation rate constant) and KD (equilibrium dissociation constant) through surface plasmon resonance

  13. Preliminary Study of Mesenchymal Stem Cells-Seeded Type Ⅰ Collagen-Glycosaminoglycan Matrices for Cartilage Repair%骨髓间充质干细胞种植Ⅰ型胶原支架材料修复关节软骨缺损的初步研究

    Institute of Scientific and Technical Information of China (English)

    项舟; 胡炜; 孔清泉; 周海涛; 张喜海

    2006-01-01

    Objecttive To investigate the possibility of repairing articular cartilage defects with the mesenchymal stem cells (MSCs)- seeded type Ⅰ collagen-glycosaminoglycan(CG) matrices after being cultured with the chondrogenic differentiation medium.Methods The adherent population of MSCs from bone marrow of 10 adult dogs were expanded in number to the 3rd passage. MSCs were seeded into the dehydrothennal treatment (DHT) cross-linked CG matrices; 2 × 106 cells per 9-mm diameter samples were taken.Chondrogenic differentiation was achieved by the induction media for 3 weeks. Cell contractility was evaluated by the measuement of the cell-mediated contraction of the CG matrices with time in culture. The in vitro formation of the cartilage was assessed by an assay employing immunohistochemical identification of type Ⅱ collagen and by immunohistochemistry to demonstrate smooth muscle actin (SMA).The cells seededing CGs were implanted into cartilage defects of canine knee joints. Twelve weeks after surgery, the dogs were sacrificed and results were observed. Results There was significant contraction of the MSCs-seeded DHT cross-linked CG scaffolds cultured in the cartilage induction medium. After 21 days, the MSC-seeded DHT cross-linked matrices were contracted to 64.4% ± 0.3%; histologically, the pores were fotmd to be compressed and the contraction coupled with the newly synthesized matrix, transforming the MSCsseeded CG matrix into a solid tissue in most areas. The type Ⅱ collagen staining was positive. The SMA staining was positive when these MSCs were seeded and the contracted CGs were implanted into the cartilage defects of the canine knee joints to repair the cartilage defects. The function of the knee joints recovered and the solid cartilaginous tissue filled the cartilage defects. Conclusion The results demonstrates that MSCs grown in the CG matrices can produce a solid cartilaginous tissue containing type Ⅱ collagen after being cultured with the chondrogenic

  14. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  15. Release of sequestered malaria parasites upon injection of a glycosaminoglycan.

    Directory of Open Access Journals (Sweden)

    Anna M Vogt

    2006-09-01

    Full Text Available Severe human malaria is attributable to an excessive sequestration of Plasmodium falciparum-infected and uninfected erythrocytes in vital organs. Strains of P. falciparum that form rosettes and employ heparan sulfate as a host receptor are associated with development of severe forms of malaria. Heparin, which is similar to heparan sulfate in that it is composed of the same building blocks, was previously used in the treatment of severe malaria, but it was discontinued due to the occurrence of serious side effects such as intracranial bleedings. Here we report to have depolymerized heparin by periodate treatment to generate novel glycans (dGAG that lack anticoagulant-activity. The dGAGs disrupt rosettes, inhibit merozoite invasion of erythrocytes and endothelial binding of P. falciparum-infected erythrocytes in vitro, and reduce sequestration in in vivo models of severe malaria. An intravenous injection of dGAGs blocks up to 80% of infected erythrocytes from binding in the micro-vasculature of the rat and releases already sequestered parasites into circulation. P. falciparum-infected human erythrocytes that sequester in the non-human primate Macaca fascicularis were similarly found to be released in to the circulation upon a single injection of 500 mug of dGAG. We suggest dGAGs to be promising candidates for adjunct therapy in severe malaria.

  16. Not all lubricin isoforms are substituted with a glycosaminoglycan chain

    DEFF Research Database (Denmark)

    Lord, Megan S; Estrella, Ruby P; Chuang, Christine Y;

    2012-01-01

    in human synovial fluid to provide insight into its biological role. Lubricin was detected as a major band at approximately 360 kDa which co-migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a chondroitin sulfate (CS)-containing proteoglycan that was detected by both monoclonal...

  17. Hydrogen production by fermentation using acetic acid and lactic acid.

    Science.gov (United States)

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  18. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  19. Calorimetry of Nucleic Acids.

    Science.gov (United States)

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  20. Whither acid rain?

    Science.gov (United States)

    Brimblecombe, P

    2001-04-04

    Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  1. Ethylenediaminetetraacetic acid in endodontics.

    Science.gov (United States)

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented.

  2. Locked nucleic acid

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Sørensen, Mads D; Wengel, Jesper

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic...... physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics...

  3. Whither Acid Rain?

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2000-01-01

    Full Text Available Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  4. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  5. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  6. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  7. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid

    NARCIS (Netherlands)

    Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This

  8. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    Science.gov (United States)

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  9. Aminolevulinic Acid Topical

    Science.gov (United States)

    ... on or under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated skin to direct sunlight or bright ...

  10. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2017-07-01

    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  11. Lactic acid and lactates

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.

    2010-01-01

    This review aims to integrate the present state of knowledge on lactate metabolism in human and mammalian physiology as far as it could be subject to nutritional interventions. An integrated view on the nutritional, metabolic and physiological aspects of lactic acid and lactates might open a perspec

  12. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  13. Uric acid and evolution

    National Research Council Canada - National Science Library

    Álvarez-Lario, Bonifacio; Macarrón-Vicente, Jesús

    2010-01-01

    Uric acid (UA) is the end product of purine metabolism in humans due to the loss of uricase activity by various mutations of its gene during the Miocene epoch, which led to humans having higher UA levels than other mammals. Furthermore, 90...

  14. Acid Rain Investigations.

    Science.gov (United States)

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  15. The Acid Rain Game.

    Science.gov (United States)

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  16. Acid Rain Classroom Projects.

    Science.gov (United States)

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  17. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis S; Kirkby, Nikolai S; Bestle, Morten H

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  18. Koetjapic acid chloroform hemisolvate

    Directory of Open Access Journals (Sweden)

    Z. D. Nassar

    2010-06-01

    Full Text Available The asymmetric unit of the title compound, C30H46O4·0.5CHCl3, consists of one koetjapic acid [systematic name: (3R,4aR,4bS,7S,8S,10bS,12aS-7-(2-carboxyethyl-3,4b,7,10b,12a-pentamethyl-8-(prop-1-en-2-yl-1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexadecahydrochrysene-3-carboxylic acid] molecule and one half-molecule of chloroform solvent, which is disordered about a twofold rotation axis. The symmetry-independent component is further disordered over two sites, with occupancies of 0.30 and 0.20. The koetjapic acid contains a fused four-ring system, A/B/C/D. The A/B, B/C and C/D junctions adopt E/trans/cis configurations, respectively. The conformation of ring A is intermediate between envelope and half-chair and ring B adopts an envelope conformation whereas rings C and D adopt chair conformations. A weak intramolecular C—H...O hydrogen bond is observed. The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O—H...O hydrogen bonds. The dimers are stacked along the c axis.

  19. Phenylpyruvic acid in urine

    NARCIS (Netherlands)

    Meulemans, O.; Vergeer, E.G.

    1960-01-01

    The method of The, Fleury And Vink for the determination of phenylpyruvic acid (PPA) in urine is modified by measuring the extinction after the green colour with ferric chloride has faded, and subtracting this extinction from that found initially. More accurate values are obtained and low PPA values

  20. Acid Rain Classroom Projects.

    Science.gov (United States)

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)