WorldWideScience

Sample records for acid estolide formation

  1. Chemistry and physical properties of estolides

    International Nuclear Information System (INIS)

    Isbell, T.A.

    2011-01-01

    Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to -36 degrees centigrade but suffer poor oxidative stability with RPVOT times of 29 - 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of -36 to - 54 degrees centigrade. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point -5 to -39 degrees centigrade) and good oxidative stability. Estolides from meadow foam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties. (Author).

  2. Synthesis of Estolide 2-ethylhexyl Ester from Ricinus communis

    International Nuclear Information System (INIS)

    Nazrizawati Ahmad Tajuddin; Nor Habibah Rosli

    2013-01-01

    Estolide 2-ethylhexyl ester synthesized through condensation reaction between ricinoleic acid from castor oil (Ricinus communis) and lauric acid, and then capped with 2-ethylhexyl alcohol. The reaction was continuously conducted under vacuum for 24 hours. Product of 2-ethylhexyl ester was characterized by using Fourier Transform Infrared (FTIR) to determine functional group and Nuclear Magnetic Resonans (NMR) for structure's determination. The presence of ester group at 1738.23 cm -1 wavenumber indicates that the formation of estolide ester has occurred. The vibration peak of C-O at 1174.60 cm -1 and 1117.10 cm -1 support the formation of ester. The presence of CH 2 bending indicated the long-chain compound. The ester methine signal at 3.8669 ppm indicated the estolide linkage in the 1 H-NMR spectrum while the 13 C-NMR showed two carbonyl signals at 173.41 ppm for acid and 173.56 ppm for ester. (author)

  3. Chemistry and physical properties of estolides

    Directory of Open Access Journals (Sweden)

    Isbell, Terry A.

    2011-03-01

    Full Text Available Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to –36ºC but suffer poor oxidative stability with RPVOT times of 29 – 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of –36 to –54ºC. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point –5 to – 39ºC and good oxidative stability. Estolides from meadowfoam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties.

    Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las

  4. Estolides Synthesis Catalyzed by Immobilized Lipases

    Directory of Open Access Journals (Sweden)

    Erika C. G. Aguieiras

    2011-01-01

    Full Text Available Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil, using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C, viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C, and viscosity index (153.

  5. Derivatization of castor oil based estolide esters: Preparation of epoxides and cyclic carbonates

    Science.gov (United States)

    Estolides that are based on castor oil and oleic acid are versatile starting points for the production of industrial fluids with new properties. A variety of unsaturated estolides were derivatized by epoxidation with hydrogen peroxide. The epoxidized estolides were further modified using supercritic...

  6. Synthesis of Ricinoleic Acid Estolides by the Esterification of Ricinoleic Acids Using Functional Acid Ionic Liquids as Catalysts.

    Science.gov (United States)

    Wang, Gaoshang; Sun, Shangde

    2017-07-01

    Estolides of ricinoleic acid (RA) have been used as lubricants and pigment dispersant in many industries. In this paper, functional acid ionic liquids (ILs) were firstly used as catalysts to prepare RA estolides by the esterification of RAs in solvent-free system. Different ILs were used as catalysts for the esterification. Effect of reaction variables (IL amount, reaction temperature and reaction time) on the esterification were also investigated and optimized using response surface methodology (RSM). Among all tested ILs, [BSO 3 HMIM]TS showed the best performance for the esterification. Arrhenius equation for the esterification was lnV 0 =14.897-7558.7/T, and the activation energy (Ea) was 62.84 kJ/mol. A high degree of polymerization with an acid value of 48.0±2.5 mg KOH/g was achieved at the optimized conditions (IL load 12%, reaction temperature 140°C, and reaction time 12 h). The effect of reaction variables on the esterification decreased in the order of catalyst loading of IL > reaction temperature > reaction time.

  7. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  8. Quantification of the molecular species of acylglycerols containing hydroxy fatty acids in lesquerella oils using high-performance liquid chromatography and mass spectrometry

    Science.gov (United States)

    Ten molecular species of diacylglycerols (DAG), 54 of triacylglycerols (TAG) and 13 of tetraacylglycerols (tetraAG, triacylglycerol estolides) containing hydroxy fatty acids (FA) as well as 20 of TAG containing three normal FA (non-hydroxylated) in lesquerella oil were quantified by a newly improved...

  9. Performance of Different Acids on Sandstone Formations

    Directory of Open Access Journals (Sweden)

    M. A. Zaman

    2013-12-01

    Full Text Available Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Some of these reactions may result in formation damage. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. It is a mixture of hydrofluoric (HF and hydrochloric (HCl acids designed to dissolve clays and siliceous fines accumulated in the near-wellbore region. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50% to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric Acid – Hydrofluoric with Concentration (3% HF – 12% HCl. This paper presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results calculated are porosity, permeability, and FESEM Analysis and Strength tests. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  10. Structural characteristics of the molecular species of tetraacylglycerols in lesquerella (Physaria fendleri) oil elucidated by mass spectrometry

    Science.gov (United States)

    Tetraacylglycerols (triacylglycerol estolides) contain an acylacyl chain (one fatty acid attached to the hydroxyl group of another fatty acid attached to the glycerol backbone) and have different physical properties from those of triacylglycerols. Tetraacylglycerols can be used in industry such as t...

  11. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation.......Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...

  12. 15th International Sunflower Conference Synthesis of new derivatives from vegetable sunflower oil methyl esters via epoxydation and oxirane opening

    Directory of Open Access Journals (Sweden)

    Pages Xavier

    2001-03-01

    Full Text Available Recently, epoxides have received increased attention because they are of interest both as end-products and as chemical intermediates; epoxidized oils, mainly High Oleic Sunflower Oil, and their ester derivatives have thus found important applications as plasticizers and additives for polyvinyl chloride (PVC. Epoxidized esters have been produced classically from High Oleic Sunflower Methyl Esters (HOSME using H2O2 and formic acid. The epoxidation reaches 90% on pilot scale (5kg. Epoxidized esters produced from HOSME have respectively hydroxyl values of 0, oxirane values of 5.2/4.5 and iodine values of 1.7/1.5. Cleavage trials of the oxirane group of the epoxidized esters with different reactants have been undertaken in order to produce on pilot scale new derivatives to be characterized and tested in different fields of application (lubrication, detergency and as chemical intermediates. Reaction of Epoxy-HOSME with an excess of oleic acid was conducted under atmospheric pressure without any catalyst and solvent. The oxirane opening leads to complete estolide formation: after neutralization, analytical controls (chemical values, GC and HPLC analysis indicate that the estolides are composed of a mixture of C36 (oleate of methyl hydroxystearate and C54 (di-oleate of methyl dihydroxystearate. Oxirane opening with alcohols (ethanol and octanol was preferentially performed by acid catalysis at 100°C under atmospheric pressure. Analytical controls show the formation of different etheralcohols and secondary products resulting from dehydration, transesterification and dimerization side-reactions. Cleavage reaction of Epoxy-HOSME with a primary amine (butylamine was conducted under pressure, at high temperature (180/200°C. Both transesterification and opening of the oxirane group occur under these conditions. Reaction products are composed of amides formed by transesterification and a mixture of fatty amines/imines obtained by ring opening as established

  13. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2018-01-01

    The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model

  14. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  15. Formation of nitric acid hydrates - A chemical equilibrium approach

    Science.gov (United States)

    Smith, Roland H.

    1990-01-01

    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  16. Smectite Formation in Acid Sulfate Environments on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  17. Clofibric Acid Increases the Formation of Oleic Acid in Endoplasmic Reticulum of the Liver of Rats

    OpenAIRE

    広瀬, 明彦; 山崎, 研; 坂本, 武史; 須永, 克佳; 津田, 整; 光本, 篤史; 工藤, なをみ; 川嶋, 洋一

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [14C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellul...

  18. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  19. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  20. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  1. On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-10-01

    Full Text Available Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2 at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4], dimethylamine ([DMA] and trimethylamine ([TMA], temperature and relative humidity (RH. We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both had

  2. Amplification of acid formation from diphenyliodonium salt in γ-irradiated polymers

    International Nuclear Information System (INIS)

    Yamazaki, K.; Iino, K.; Koizumi, H.; Ichikawa, T.

    2006-01-01

    The G values of acid formation from diphenyliodonium salt in γ-irradiated polymers have been measured for developing chemically amplified radiation resists that have abilities of not only amplifying chemical reactions of polymers by the acid as a catalyst but also amplifying the formation of acid itself by a radiation-induced radical chain reaction. Addition of secondary alcohols as amplifiers for acid formation, to poly(alkyl methacrylates) results in the increase of the G value, though the increase is not so significant as that expected from a liquid-phase amplification reaction. The diffusion of free radicals and added molecules is difficult in the polymers due to cage effects by polymer molecules, which causes increases of the radical combination reaction and therefore decrease of the turnover number of the chain reaction. The G values of acid formation for poly(vinyl acetals) are much higher than those for poly(alkyl methacrylates) even the amplifiers are not added in the former polymers. Poly(vinyl acetals) are synthesized by acetalyzation of poly(vinyl alcohol), a polymer composed of secondary alcohol monomer unit, so that the secondary alcohol remaining in the polymer skeleton acts as an efficient amplifier for acid formation. The secondary alcohol acts as stepping-stones for the diffusion of free radical, so that the free radical can encounter a new iodonium salt molecule to continue the radical chain reaction. (authors)

  3. The radiolytic formation of nitric acid in argon/air/water systems

    International Nuclear Information System (INIS)

    May, R.; Stinchcombe, D.; White, H.P.

    1992-01-01

    The extent of nitric acid formation in the γ-radiolysis of argon/air/water mixtures has been assessed. The yields of nitric acid are found to increase as water vapour pressure is increased but are lower in the presence of a discrete water phase. G values for the formation of nitric acid from argon/air mixtures based on energy absorbed in the air are increased in the presence of argon but the yields in an atmosphere of argon containing small amounts of moist air are smaller than from an atmosphere of moist air alone. The G value for nitric acid formation from pure air in the presence of a distinct water phase is 2, based on energy absorbed in the air. (author)

  4. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    Science.gov (United States)

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  5. Complex formation of p-carboxybenzeneboronic acid with fructose

    International Nuclear Information System (INIS)

    Bulbul Islam, T.M.; Yoshino, K.

    2000-01-01

    To increase the solubility of p-caboxybenzeneboronic acid (PCBA) in physiological pH 7.4, the complex formation of PCBA with fructose has been studied by 11 B-NMR. PCBA formed complex with fructose and the complex increased the solubility of PCBA. The complex formation constant (log K) was obtained in pH 7.4 as 2.75 from the 11 B-NMR spectra. Based on this result the complex formation ability of PCBA with fructose has been discussed. (author)

  6. Experimental standard molar enthalpies of formation of some 4-alkoxybenzoic acids

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Lobo Ferreira, Ana I.M.C.; Maciel, Fabrice M.

    2010-01-01

    The present work is part of a research program on the energetics of the linear 4-n-alkoxybenzoic acids, aiming the study of the enthalpic effect of the introduction of an alkoxy chain in the position 4- of the benzoic acid ring. In this work, we present the results of the thermochemical research on 4-n-alkoxybenzoic acids with the alkoxy chain length n = 2, 4, and 8. The standard (p 0 =0.1MPa) molar enthalpy of formation of crystalline 4-ethoxybenzoic acid, 4-butoxybenzoic acid, and 4-(octyloxy)benzoic acid was measured, at T = 298.15 K, by static-bomb calorimetry. These values, combined with the values of standard molar enthalpies of sublimation, were used to derive the standard molar enthalpies of formation in the gaseous phase.

  7. Formation of aryl-chlorinated aromatic acids and precursors for chloroform in chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Galan, L.

    1985-01-01

    The formation of chloroform when humic substances are chlorinated is well known. Other chlorinated products that may be formed are chloral, di- and trichloroacetic acid, chlorinated C-4 diacids, and α-chlorinated aliphatic acids. Several of these compounds are formed in molar yields comparable

  8. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-11-10

    With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  9. Radiation-chemical formation of acids in polyvinyl butyral films with chlorinated additives

    International Nuclear Information System (INIS)

    Kriminiskaya, Z.K.

    1993-01-01

    Radiochromic indicators are commonly produced by reacting an indicator dye with an acid formed inside a polymer by irradiation. Halogenated and unhalogenated polymers were used, the latter containing halogenated organics. It was therefore of interest to study the formation of acid in polyvinyl butyral (PVD) with addition of a halogenated compound. Yields were measured of radiation-chemical acid formation in PVB films containing chloral hydrate and hexachloroethane. 5 refs., 1 fig., 2 tabs

  10. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans.

    Science.gov (United States)

    Shi, Dongmei; Zhao, Yaxin; Yan, Hongxia; Fu, Hongjun; Shen, Yongnian; Lu, Guixia; Mei, Huan; Qiu, Ying; Li, Dongmei; Liu, Weida

    2016-05-01

    Undecylenic acid can effectively control skin fungal infection, but the mechanism of its fungal inhibition is unclear. Hyphal growth of Candida albicans (C. albicans) and biofilm formation have been well recognized as important virulence factors for the initiation of skin infection and late development of disseminated infection. In this study, we seek to investigate antifungal mechanisms of undecylenic acid by evaluating the virulence factors of C. albicans during biofilm formation. We found that undecylenic acid inhibits biofilm formation of C. albicans effectively with optimal concentration above 3 mM. In the presence of this compound, the morphological transition from yeast to filamentous phase is abolished ultimately when the concentration of undecylenic acid is above 4 mM. Meanwhile, the cell surface is crumpled, and cells display an atrophic appearance under scanning electron microscopy even with low concentration of drug treatment. On the other hand, the drug treatment decreases the transcriptions of hydrolytic enzymes such as secreted aspartic protease, lipase, and phospholipase. Hyphal formation related genes, like HWP1, are significantly reduced in transcriptional level in drug-treated biofilm condition as well. The down-regulated profile of these genes leads to a poorly organized biofilm in undecylenic acid treated environment.

  11. complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wei Liansheng; Lin Zhangji

    1998-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am(III) with humic acid is studied with solvent extraction technique. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 mol/kg NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am(III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 = 6.56 +- 0.05, lgβ 2 = 10.77 +- 0.31 at pH 4.0. lgβ 1 = 7.94 +- 0.11, lgβ 2 = 11.80 +- 0.21 at pH = 5.0. lgβ 1 = 10.74 +- 0.28, lgβ 2 = 12.88 +- 0.49 at pH = 6.0. lgβ 1 = 12.85 +- 0.30, lgβ 2 = 14.80 +- 0.62 at pH = 7.0. lgβ 1 = 14.88 +- 0.48, lgβ 2 = 15.65 +- 0.69 at pH = 8.0, respectively. The dependence of the complex formation constant on pH is: lgβ 1 = 2.16 (+-0.98)pH-2.34(+-0.93),lgβ 2 1.28(+-1.04)pH+5.52(+-1.21), respectively

  12. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    Science.gov (United States)

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. [Significance of hydrocyanic acid formation during fires].

    Science.gov (United States)

    von Meyer, L; Drasch, G; Kauert, G

    1979-01-01

    Cyanide concentrations of blood samples from fire victims autopsied in the Institute of Legal Medicine, Munich, have been determined. In 25% of 48 analyzed cases cyanide concentrations from 0.52 microgram to 6.24 microgram Cyanide/ml blood have been detected. These results are compared to former studies and the higher mean level in our collective is emphasized. The importance of hydrocyanid acid in the toxicity of fire gases is evidently greater, than assumed. Hydrocyanic acid may be produced from nitrogen continaing polymers during combustion. The quote of these polymers in clothing, furniture, and also in equipment of cars is increasing. Therefore, it is necessary to take more notice of the formation of hydrocyanic acid during combustion, even though carbon monoxide is in general the main toxic agent in fire gases.

  14. Complex formation of americium (III) with humic acid

    International Nuclear Information System (INIS)

    Zhang Yingjie; Zhao Xin; Wen Liansheng; Lin Zhangji

    2004-01-01

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am (III) with humic acid is studied with solvent extraction technique in this paper. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 M NaClO 4 solution at ambient temperature. Experimental results show that the complex formation constants of Am (III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ 1 =6.56±0.05, lgβ 2 =10.77±0.31 at pH=4.0; lgβ 1 =7.94±0.11, lgβ 2 =11.80±0.21 at pH=5.0; lgβ 1 =10.74±0.28, lgβ 2 =12.88±0.49 at pH=6.0; lgβ 1 =12.85±0.30, lgβ 2 =14.80±0.62 at pH=7.0; lgβ 1 =14.88±0.48, lgβ 2 =15.65±0.69 at pH=8.0, respectively. The dependence of the complex of the complex formation constant on pH is: lgβ 1 =2.16(±0.98)pH-2.34(±1.03), lgβ 2 =1.28(±1.04)pH+5.52(±1.21), respectively. (author)

  15. Aminobutyric acid and formation of higher alcohols by Saccharomyces carlsbergenesis

    Energy Technology Data Exchange (ETDEWEB)

    Babaeva, S A; Veselov, I Ya; Gracheva, I M

    1966-01-01

    Aminobutyric acid (1) added before the start of fermentation increased the formation of propyl-, isobutyl-, and isoamyl alcohols. With addition of I after 24, 28, or 72 hours of fermentation, the formation of the alcohols gradually decreased. Addition of I after 3 days of fermentation did not affect formation of the higher alcohols. I was not the source of formation of the higher alcohols, but affected the metabolism of carbohydrates and N in the cells. Formation of hexyl alcohols and high amounts of aldehydes was observed only during aerobic fermentation.

  16. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  17. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  18. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    Science.gov (United States)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  19. Nitric acid adduct formation during crystallization of barium and strontium nitrates and their co-precipitation from nitric acid media

    International Nuclear Information System (INIS)

    Mishina, N.E.; Zilberman, B.Ya.; Lumpov, A.A.; Koltsova, T.I.; Puzikov, E.A.; Ryabkov, D.V.

    2015-01-01

    The molar solubilities of Ba, Sr and Pb nitrates in nitric acid as a function of total nitrate concentration is presented and described by the mass action law, indicating on formation of the adducts with nitric acid. Precipitates of Ba(NO 3 ) 2 and Sr(NO 3 ) 2 crystallized from nitric acid were studied by ISP OES and IR spectroscopy. The data obtained confirmed formation of metastable adducts with nitric acid. IR and X-ray diffraction studies of the mixed salt systems indicated conversion of the mixed salts into (Ba,Sr)(NO 3 ) 2 solid solution of discrete structure in range of total nitrate ion concentration ∼6 mol/L. (author)

  20. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    Science.gov (United States)

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  1. Arginine-vasopressin stimulates the formation of phosphatidic acid in rat Leydig cells

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10 M AVP [C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10-10 M). No change in labelling...

  2. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Directory of Open Access Journals (Sweden)

    Susana Guzman-Puyol

    Full Text Available Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic acid and tomato fruit cutin monomers (a mixture of mainly 9(10,16-dihydroxypalmitic acid (85%, w/w and 16-hydroxyhexadecanoic acid (7.5%, w/w with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  3. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Science.gov (United States)

    Guzman-Puyol, Susana; Benítez, José Jesús; Domínguez, Eva; Bayer, Ilker Sefik; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio; Heredia-Guerrero, José Alejandro

    2015-01-01

    Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  4. New particle formation and growth from methanesulfonic acid, trimethylamine and water.

    Science.gov (United States)

    Chen, Haihan; Ezell, Michael J; Arquero, Kristine D; Varner, Mychel E; Dawson, Matthew L; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-05-28

    New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

  5. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    Directory of Open Access Journals (Sweden)

    Felipe Eng

    Full Text Available Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl-cyclopentane-1-butanoic acid (OPC-4 and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  6. Quelques observations sur la formation d'acide acétique par les bactéries lactiques

    Directory of Open Access Journals (Sweden)

    Suzanne Lafon-Lafourcade

    1980-09-01

    The formation of volatile acidity during lactic acid fermentation of sugars is specifically linked to the physiological state of bacteria populations. It is low during the cellular multiplication, phase during which malic and citric acids are eventually decomposed. The presence of malic acid in wine tends to limit the formation of acetic acid. In addition, these microorganisms appear to be extremely sensitive to the medium's composition (activating effect of glycerol.

  7. Formation of organic acids from trace carbon in acidic oxidizing media

    International Nuclear Information System (INIS)

    Terrassier, C.

    2003-01-01

    Carbon 14 does not fully desorb as CO 2 during the hot concentrated nitric acid dissolution step of spent nuclear fuel reprocessing: a fraction is entrained in solution into the subsequent process steps as organic species. The work described in this dissertation was undertaken to identify the compounds arising from the dissolution in 3 N nitric acid of uranium carbides (selected as models of the chemical form of carbon 14 in spent fuel) and to understand their formation and dissolution mechanism. The compounds were present at traces in solution, and liquid-solid extraction on a specific stationary phase (porous graphite carbon) was selected to concentrate the monoaromatic poly-carboxylic acids including mellitic acid, which is mentioned in the literature but has not been formally identified. The retention of these species and of oxalic acid - also cited in the literature - was studied on this stationary phase as a function of the mobile phase pH, revealing an ion exchange retention mechanism similar to the one observed for benzyltrimethylammonium polystyrene resins. The desorption step was then optimized by varying the eluent pH and ionic strength. Mass spectrometry analysis of the extracts identified acetic acid, confirmed the presence of mellitic acid, and revealed compounds of high molecular weight (about 200 g/mol); the presence of oxalic acid was confirmed by combining gas chromatography and mass spectrometry. Investigating the dissolution of uranium and zirconium carbides in nitric acid provided considerable data on the reaction and suggested a reaction mechanism. The reaction is self-catalyzing via nitrous acid, and the reaction rate de pends on the acidity and nitrate ion concentration in solution. Two uranium carbide dissolution mechanisms are proposed: one involves uranium at oxidation state +IV in solution, coloring the dissolution solution dark green, and the other assumes that uranium monocarbide is converted to uranium oxide. The carboxylic acid

  8. Standard molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Amaral, Luisa M.P.F.; Boaventura, Cristina R.P.; Gomes, Jose R.B.

    2008-01-01

    The standard (p 0 = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are -(150.7 ± 2.0) kJ . mol -1 , -(153.6 ± 1.7) kJ . mol -1 and -(157.1 ± 1.4) kJ . mol -1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work

  9. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available Sulphidic mine tailings are among the largest mining wastes on Earth and are prone to produce acid mine drainage (AMD. The formation of AMD is a sequence of complex biogeochemical and mineral dissolution processes. It can be classified in three main steps occurring from the operational phase of a tailings impoundment until the final appearance of AMD after operations ceased: (1 During the operational phase of a tailings impoundment the pH-Eh regime is normally alkaline to neutral and reducing (water-saturated. Associated environmental problems include the presence of high sulphate concentrations due to dissolution of gypsum-anhydrite, and/or effluents enriched in elements such as Mo and As, which desorbed from primary ferric hydroxides during the alkaline flotation process. (2 Once mining-related operations of the tailings impoundment has ceased, sulphide oxidation starts, resulting in the formation of an acidic oxidation zone and a ferrous iron-rich plume below the oxidation front, that re-oxidises once it surfaces, producing the first visible sign of AMD, i.e., the precipitation of ferrihydrite and concomitant acidification. (3 Consumption of the (reactive neutralization potential of the gangue minerals and subsequent outflow of acidic, heavy metal-rich leachates from the tailings is the final step in the evolution of an AMD system. The formation of multi-colour efflorescent salts can be a visible sign of this stage.

  10. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Cheng

    2017-08-01

    Full Text Available The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM were studied using a single-particle aerosol mass spectrometer (SPAMS in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD region in China. Oxalic-acid-containing particles accounted for 2.5 and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carbon (EC, organic carbon (OC, elemental and organic carbon (ECOC, biomass burning (BB, heavy metal (HM, secondary (Sec, sodium-potassium (NaK, and dust. Oxalic acid was found predominantly mixing with sulfate and nitrate during the whole sampling period, likely due to aqueous-phase reactions. In summer, oxalic-acid-containing particle number and ozone concentration followed a very similar trend, which may reflect the significant contribution of photochemical reactions to oxalic acid formation. The HM particles were the most abundant oxalic acid particles in summer and the diurnal variations in peak area of iron and oxalic acid show opposite trends, which suggests a possible loss of oxalic acid through the photolysis of iron oxalato-complexes during the strong photochemical activity period. In wintertime, carbonaceous particles contained a substantial amount of oxalic acid as well as abundant carbon clusters and BB markers. The general existence of nitric acid in oxalic-acid-containing particles indicates an acidic environment during the formation process of oxalic acid. The peak areas of nitrate, sulfate and oxalic had similar temporal change in the carbonaceous type oxalic acid particles, and the organosulfate-containing oxalic acid particles correlated well with total oxalic acid particles during the haze episode, which suggests that the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.

  11. Influence of l-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride.

    Science.gov (United States)

    Velmourougane, K; Prasanna, R

    2017-10-01

    The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.

  12. New Parameterizations for Neutral and Ion-Induced Sulfuric Acid-Water Particle Formation in Nucleation and Kinetic Regimes

    Science.gov (United States)

    Määttänen, Anni; Merikanto, Joonas; Henschel, Henning; Duplissy, Jonathan; Makkonen, Risto; Ortega, Ismael K.; Vehkamäki, Hanna

    2018-01-01

    We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid-water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at European Organization for Nuclear Research (CERN). The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H2SO4-H2O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 104-1013 cm-3, and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 104-1016 cm-3, and relative humidities 10-5-100%. The new parameterizations are thus applicable for the full range of conditions in the Earth's atmosphere relevant for binary sulfuric acid-water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.

  13. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric ac......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  14. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.

    Science.gov (United States)

    Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd

    2017-12-01

    Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    Science.gov (United States)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  16. Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shaogang [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Li, Zhenlin [Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Dong, Huiyu [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Goodman, Bernard A. [College of Physical Science and Engineering, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 520004, Guangxi (China); Qiang, Zhimin, E-mail: qiangz@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China)

    2017-01-05

    This study investigated systematically the factors influencing the formation of iodinated disinfection by-products (I-DBPs) during chloramination of I{sup −}-containing waters, including reaction time, NH{sub 2}Cl dose, I{sup −} concentration, pH, natural organic matter (NOM) concentration, Br{sup −}/I{sup −} molar ratio, and water matrix. Among the I-DBPs detected, iodoform (CHI{sub 3}), iodoacetic acid (IAA), diiodoacetic acid (DIAA), triiodoacetic acid (TIAA), and diiodoacetamide (DIAcAm) were the major species produced from reactions between reactive iodine species (HOI/I{sub 2}) and NOM. A kinetic model involving the reactions of NH{sub 2}Cl auto-decomposition, iodine species transformation and NOM consumption was developed, which could well describe NH{sub 2}Cl decay and HOI/I{sub 2} evolution. Higher concentrations of CHI{sub 3}, IAA, DIAA, TIAA, and DIAcAm were observed in chloramination than in chlorination, whereas IO{sub 3}{sup −} was only formed significantly in chlorination. Maximum formation of I-DBPs occurred at pH 8.0, but acidic conditions favored the formation of iodinated haloacetic acids and DIAcAm. Increasing Br{sup −}/I{sup −} molar ratio from 1 to 10 did not increase the total amount of I-DBPs, but produced more bromine-substituting species. In addition, chloramination of 18 model compounds indicated that low-SUVA{sub 254} (specific ultraviolet absorbance at 254 nm) NOM generally favored the formation of I-DBPs compared to high-SUVA{sub 254} NOM. Finally, potential pathways for I-DBPs formation from chloramination of NOM were proposed.

  17. Analyses on the formation of atmospheric particles and stabilized sulphuric acid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Paasonen, P.

    2012-11-01

    Aerosol particles have various effects on our life. They affect the visibility and have diverse health effects, but are also applied in various applications, from drug inhalators to pesticides. Additionally, aerosol particles have manifold effects on the Earths' radiation budget and thus on the climate. The strength of the aerosol climate effect is one of the factors causing major uncertainties in the global climate models predicting the future climate change. Aerosol particles are emitted to atmosphere from various anthropogenic and biogenic sources, but they are also formed from precursor vapours in many parts of the world in a process called atmospheric new particle formation (NPF). The uncertainties in aerosol climate effect are partly due to the current lack of knowledge of the mechanisms governing the atmospheric NPF. It is known that gas phase sulphuric acid most certainly plays an important role in atmospheric NPF. However, also other vapours are needed in NPF, but the exact roles or even identities of these vapours are currently not exactly known. In this thesis I present some of the recent advancements in understanding of the atmospheric NPF in terms of the roles of the participating vapours and the meteorological conditions. Since direct measurements of new particle formation rate in the initial size scale of the formed particles (below 2 nm) are so far infrequent in both spatial and temporal scales, indirect methods are needed. The work presented on the following pages approaches the NPF from two directions: by analysing the observed formation rates of particles after they have grown to sizes measurable with widely applied instruments (2 nm or larger), and by measuring and modelling the initial sulphuric acid cluster formation. The obtained results can be summarized as follows. (1) The observed atmospheric new particle formation rates are typically connected with sulphuric acid concentration to the power close to two. (2) Also other compounds, most

  18. The role of humic acid on the formation of HAS (hydroxy-aluminosilicate) colloid-borne actinides

    Energy Technology Data Exchange (ETDEWEB)

    Priemyshev, A.; Kim, M.A. [Inst. fuer Radiochemie, Technische Universitaet Muenchen, D-85748 Garching (Germany); Breban, D.; Panak, P.J.; Yun, J.I.; Kim, J.I.; Fanghanel, Th. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Mansel, A. [Inst. fuer Interdisziplinaere Isotopenforschung, Georadiochemie, Leipzig, D-04318 Leipzig (Germany)

    2005-07-01

    Full text of publication follows: One of the major unknowns in the process of actinide migration is the formation of their colloid-borne species. Previous studies have been directed to the incorporation of actinides into HAS (hydroxy-aluminosilicate) colloids generated by the nucleation of Si and Al. The present work further pursues the behaviour of actinides at HAS colloid formation but in the presence of humic acid that is known to be an ubiquitous groundwater constituent. The formation and degree of stability of the aluminosilicate binding for the generation of HAS colloids are investigated at first in the absence of actinides. Free and complexed Al resulting from ligand competitions reactions for the complexation of Al with mono-silicic acid, poly-silicic acid and EDTA are monitored spectroscopically by colour reaction. The second part of the study concentrates on the formation and stability of humic colloids using {sup 14}C-labeled humic acid. The activity distribution is ascertained in the ionic, colloidal and precipitated fractions under different conditions of colloid formation, e.g. as a function of pH, time, humic acid and Al concentration. The third part follows the appraisal of appropriate conditions under which stable HAS and humic colloids are formed, and their interaction with actinides, either separately or in competition. Trace actinides of different oxidation states {sup 241}Am(III), {sup 234}Th(IV) and {sup 233}U(VI) are taken for the purpose. HAS colloids generated from poly-silicic acid at neutral pH show EDTA-resistance, whereas HAS colloids formed from mono-silicic acid become EDTA-resistant only by aging (> one month). Humic acid appears to stabilize HAS colloids, unless the loading capacity of humic acid for the Al ion is exceeded. The incorporation of actinides into the colloidal phase is generally enhanced in the presence of humic acid. Synergic effects produce chimeric HAS-humic colloids into which tri-, tetra- and hexavalent actinides

  19. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  1. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    Science.gov (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-08

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  2. Apparent formation constants of Pu(IV) and Th(IV) with humic acids determined by solvent extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Aoyama, S.; Yoshida, H.; Kobayashi, T.; Takagi, I. [Tokyo Univ. (Japan). Dept. of Nuclear Engineering; Kulyako, Y.; Samsonov, M.; Miyasoedov, B. [Russian Academy of Sciences, Moscow (Russian Federation). V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI); Moriyama, H. [Kyoto Univ. (Japan). Research Reactor Inst.

    2012-07-01

    Apparent formation constants of Pu(IV) and Th(IV) with two kinds of humic acids were determined in 0.1 M NaClO{sub 4} at 25 C using a solvent extraction method with thenoyltrifluoroacetone in xylene. The acid dissociation constants of humic acids were also measured by potentiometric titration and used as the degree of dissociation for calculating the formation constants. The effect of solution conditions, such as the pH, the initial metal and humic acid concentrations, and the ionic strength, on the formation constants was examined. The obtained data were compared with the ones in the literature. (orig.)

  3. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  4. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  5. Formation of sulphite, cysteic acid and taurine from sulphate by the egg embryo; Formation de sulfite, d'acide cysteique et de taurine a partir de sulfate par l'oeuf embryonne

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F; Fromageot, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    It is shown that the formation of taurine from sulphate by the chicken embryo involves the reduction of sulphate to sulphite (I), the synthesis of cysteic acid (II) and its decarboxylation (Ill). The reaction (I) takes place in the vitellin sac. The reaction (II) results from the condensation of the sulphite with a-amino-acrylic acid and is carried out by the yolk. The enzymes responsible for the decarboxylation (III) are distributed both in the embryo and in its appendages. (author) [French] On demontre que la formation de taurine a partir de sulfate par l'embryon de poulet implique la reduction du sulfate en sulfite (1), la synthese de l'acide cysteique (Il) et sa decarboxylation (III). La reaction (I) a lieu dans le sac vitellin. La reaction (II) resulte de la condensation du sulfite avec l'acide a-amino-acrylique et est realisee par le jaune. Les enzymes assurant la decarboxylation (III) sont repartis aussi bien dans l'embryon que dans ses annexes. (auteur)

  6. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    Science.gov (United States)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Moessbauer analysis coupled with future experiments are planned to verify if nontronite can be formed under mildly acidic and oxic conditions. Results of this work demonstrate that acidic conditions could have occurred on an early Mars, which allowed for smectite formation but inhibited carbonate formation.

  7. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans

    Science.gov (United States)

    Ahn, Ki Bum; Baik, Jung Eun; Park, Ok-Jin; Yun, Cheol-Heui

    2018-01-01

    Dental caries is a biofilm-dependent oral disease and Streptococcus mutans is the known primary etiologic agent of dental caries that initiates biofilm formation on tooth surfaces. Although some Lactobacillus strains inhibit biofilm formation of oral pathogenic bacteria, the molecular mechanisms by which lactobacilli inhibit bacterial biofilm formation are not clearly understood. In this study, we demonstrated that Lactobacillus plantarum lipoteichoic acid (Lp.LTA) inhibited the biofilm formation of S. mutans on polystyrene plates, hydroxyapatite discs, and dentin slices without affecting the bacterial growth. Lp.LTA interferes with sucrose decomposition of S. mutans required for the production of exopolysaccharide, which is a main component of biofilm. Lp.LTA also attenuated the biding of fluorescein isothiocyanate-conjugated dextran to S. mutans, which is known to have a high affinity to exopolysaccharide on S. mutans. Dealanylated Lp.LTA did not inhibit biofilm formation of S. mutans implying that D-alanine moieties in the Lp.LTA structure were crucial for inhibition. Collectively, these results suggest that Lp.LTA attenuates S. mutans biofilm formation and could be used to develop effective anticaries agents. PMID:29420616

  8. A nitrous acid biosynthetic pathway for diazo group formation in bacteria.

    Science.gov (United States)

    Sugai, Yoshinori; Katsuyama, Yohei; Ohnishi, Yasuo

    2016-02-01

    Although some diazo compounds have bioactivities of medicinal interest, little is known about diazo group formation in nature. Here we describe an unprecedented nitrous acid biosynthetic pathway responsible for the formation of a diazo group in the biosynthesis of the ortho-diazoquinone secondary metabolite cremeomycin in Streptomyces cremeus. This finding provides important insights into the biosynthetic pathways not only for diazo compounds but also for other naturally occurring compounds containing nitrogen-nitrogen bonds.

  9. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  10. Experimental evidence of nitrous acid formation in the electron beam treatment of flue gas

    International Nuclear Information System (INIS)

    Maetzing, H.; Namba, H.; Tokunaga, O.

    1994-01-01

    In the Electron Beam Dry Scrubbing (EBDS) process, flue gas from fossil fuel burning power plants is irradiated with accelerated (300-800 keV) electrons. Thereby, nitrogen oxide (NO x ) and sulfur dioxide (SO 2 ) traces are transformed into nitric and sulfuric acids, respectively, which are converted into particulate ammonium nitrate and sulfate upon the addition of ammonia. The powdery product can be filtered from the main gas stream and can be sold as agricultural fertilizer. A lot of experimental investigations have been performed on the EBDS process and computer models have been developed to interpret the experimental results and to predict economic improvements. According to the model calculations, substantial amounts of intermediate nitrous acid (HNO 2 ) are formed in the electron beam treatment of flue gas. The first experimental investigation about the formation of nitrous acid in an irradiated mixture of NO in synthetic air has been undertaken. Under these conditions, aerosol formation is avoided. UV spectra of the irradiated gas were recorded in the wavelength range λ = 345-375 nm. Both NO 2 and HNO 2 have characteristic absorption bands in this wavelength range. Calibration spectra of NO 2 were subtracted from the sample spectra. The remaining absorption bands can clearly be assigned to nitrous acid. The concentration of nitrous acid was determined by differential optical absorption. It was found lower than the model prediction. The importance of nitrous acid formation in the EBDS process needs to be clarified. (author)

  11. Complex formation of calcium with humic acid and polyacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kirishima, A.; Tanaka, K.; Niibori, Y.; Tochiyama, O. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku Univ., Sendai (Japan)

    2002-07-01

    In order to understand the migration behavior of radionuclides in the underground, it is also important to estimate the effect of the competing cations originally present in the groundwater. In this connection, the complexation of Ca(II) with Aldrich humic acid has been examined. For the study at trace concentrations ({proportional_to} 10{sup -10} M) of Ca(II), the solvent extraction of {sup 45}Ca with TTA and TOPO in cyclohexane has been used. At macro concentrations (10{sup -4} M) of Ca(II), the measurement of the free Ca{sup 2+} ion concentration with a calcium selective electrode has been conducted. To estimate the polyelectrolyte effect of humic acid separately from its heterogeneous composition effect, polyacrylic acid ([-CH{sub 2}CH(COOH)-]{sub n}) has been selected as a representative of the homogeneous polymeric weak acids and its complexation with Ca(II) has also been examined. The values of log {beta}{sub {alpha}} have been obtained at pH 5 {proportional_to} 7 in 0.1, 0.4 and 1.0 M NaCl, where {beta}{sub {alpha}} is the apparent formation constants defined by {beta}{sub {alpha}} = [ML]/([M][R]). In this definition, [ML] and [M] are the concentrations of bound and free Ca{sup 2+} respectively, [R] is the concentration of dissociated proton exchanging sites. log {beta}{sub {alpha}} of humate decreases from 2.19 {proportional_to} 2.92 (depending on pH and ionic strength 1.0 < I < 0.4) at pCa = 10 to 1.98 {proportional_to} 2.44 at pCa = 4, while the variation of pCa has no appreciable influence on the log {beta}{sub {alpha}} of polyacrylate (1.36 {proportional_to} 3.24 for I = 0.1 {proportional_to} 1.0). For both humate and polyacrylate, log {beta}{sub {alpha}} decreases linearly with log[Na{sup +}], where [Na{sup +}] is the bulk concentration of sodium ion. Their dependences of log {beta}{sub {alpha}} on ionic strength are stronger than those of log {beta} of monomeric carboxylates such as oxalate and EDTA, indicating the large electrostatic effect of

  12. Crystallite structure formation at the collapse pressure of fatty acid Langmuir films

    International Nuclear Information System (INIS)

    Valdes-Covarrubias, M A; Cadena-Nava, R D; Vasquez-MartInez, E; Valdez-Perez, D; Ruiz-GarcIa, J

    2004-01-01

    We report isotherm and atomic force microscopy studies of collapsed Langmuir monolayers of fatty acids. The Langmuir monolayers were overcompressed in the range 7-40 deg. C and transferred onto mica after the sharp pressure drop when the collapse pressure was reached. Collapsed material was observed by AFM, which revealed that the multilayers are indeed three-dimensional crystallites. We found that the shape of the crystallites depends on the collapse temperature, the phase from which the collapse occurs and/or the chain length. However, at higher temperatures the collapsed films no longer show a well defined crystallite formation, but rather a more heterogeneous melt-like pattern. We associated the crystallite formation with known bulk crystal phases of the fatty acids

  13. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats.

    Directory of Open Access Journals (Sweden)

    Jean A Hall

    Full Text Available The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA, but no eicosapentaenoic acid (EPA or docosahexaenoic acid (DHA. Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001 serum concentrations of EPA (173%, DHA (61%, and AA (35%; decreased urine specific gravity (P = 0.02; decreased urine calcium concentration (P = 0.06; decreased relative-super-saturation for struvite crystals (P = 0.03; and increased resistance to oxalate crystal formation (P = 0.06 compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01. These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA.

  14. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  15. Furan formation from fatty acids as a result of storage, gamma irradiation, UV-C and heat treatments

    Science.gov (United States)

    Furan is a possible human carcinogen that has been found in many thermally processed foods. The effects of thermal processing, gamma and UV-C irradiation on formation of furan from different fatty acids was studied. In addition, formation of furan from fatty acid emulsions during storage at 25C and...

  16. Acid-base equilibrium. A thermodynamic study of formation and stability of the Bi-2223 phase

    International Nuclear Information System (INIS)

    Xi, Z.; Zhou, L.

    1993-01-01

    A general acid-base equilibrium theory was proposed to explain the formation and stability of the Bi-2223 phase based on the Lewis acid base theory and principle of metallurgical physical chemistry. The acid-base nature of oxide was defined according to the electrostatic force between cation and oxygen anion. A series of experimental facts were systematically explained based on the theory: substitution of Bi for Ca in the Pb-free 2223 phase, and the effect of substitution of the high-valent cation for Bi 3+ ; oxygen-pressure atmosphere, and the heat-schocking technique on the formation and stability of the 2223 phase. 14 refs., 2 tabs

  17. Enzymatic formation of hexadecenoic acid from palmitic acid

    International Nuclear Information System (INIS)

    Nakano, Masao; Fujino, Yasuhiko

    1975-01-01

    Desaturation of palmitic acid was investigated in an enzyme system prepared from rat liver. 2-trans-Hexadecenoic acid as well as 9-cis-gexadecenoic acid (palmitoleic acid) were found to be formed as monoenoic acid in this system. (author)

  18. Changes in the level of [14C]indole-3-acetic acid and [14C]indoleacetylaspartic acid during root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.; Heuser, C.W.

    1988-01-01

    Changes in the levels of [ 14 C]indole-3-acetic acid (IAA) and [ 14 C]indoleacetylaspartic acid (IAAsp) were examined during adventitious root formation in mung bean (Vigna radiata [L.] R. Wilcz. Berken) stem cuttings. IAAsp was identified by GC-MS as the primary conjugate in IAA-treated cuttings. During root formation in IAA-treated cuttings, the level of [ 14 C]IAAsp increased rapidly the first day and then declined; [ 14 C]IAA was rapidly metabolized and not detected after 12 hours

  19. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    Science.gov (United States)

    Sutter, B.; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.

  20. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  1. Formation of U(IV) Nanoparticles and Their Growth Mechanism in Mildly Acidic Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Kim, Sun Tae; Cho, Hye Ryun; Jung, Euo Chang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Previous studies suggest that U(IV) nanoparticle (NP) formation is one of key steps in mineralization or immobilization of uranium which can be mediated either by microbes or by abiotic geochemical reactions. Colloidal NPs in a groundwater system are potential carrier phases influencing RN migration in subsurface environment. However, the mechanism of U(IV) NP formation and the potential reaction intermediates during this solid phase formation process have not been elucidated in detail so far. In this study we attempted to examine the U(IV) nanoparticle formation reactions preceded by the hydrolysis of U{sup 4+} at different pHs, concentrations and temperatures. The kinetics of U(IV) NP formation from dissolved U(IV) species was monitored under mildly acidic conditions (pH 2 ∼ 3) mainly by using UV-Vis absorption spectrophotometry. Dynamic light scattering (DLS) analysis, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were used to characterize the NPs produced during the reactions. The results demonstrate that the U(IV) NP formation process is very sensitive toward temperature variation. The main outcome of this study is the discovery of the autocatalytic nature of U(IV) NP formation from the supersaturated U(OH){sup 3+} solution in a mildly acidic aqueous solution. The structure of reaction intermediates is proposed to contain oxide linkage. In the presentation the proposed mechanism of the U(IV) NP formation reaction and the properties of primary NPs and their clusters will be discussed in detail.

  2. Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation.

    Science.gov (United States)

    Cheng, J; Zhuang, W; Li, N N; Tang, C L; Ying, H J

    2017-01-01

    Normally, low d-ribose production was identified as responsible for plenty of acid formation by Bacillus subtilis due to its carbon overflow. An approach of co-feeding glucose and sodium citrate is developed here and had been proved to be useful in d-ribose production. This strategy is critical because it affects the cell concentration, the productivity of d-ribose and, especially, the formation of by-products such as acetoin, lactate and acetate. d-ribose production was increased by 59·6% from 71·06 to 113·41 g l -1 without acid formation by co-feeding 2·22 g l -1  h -1 glucose and 0·036 g l -1  h -1 sodium citrate to a 60 g l -1 glucose reaction system. Actually, the cell density was also enhanced from 11·51 to 13·84 g l -1 . These parameters revealed the importance of optimization and modelling of the d-ribose production process. Not only could zero acid formation was achieved over a wide range of co-feeding rate by reducing glycolytic flux drastically but also the cell density and d-ribose yield were elevated by increasing the hexose monophosphate pathway flux. Bacillus subtilis usually produce d-ribose accompanied by plenty of organic acids when glucose is used as a carbon source, which is considered to be a consequence of mismatched glycolytic and tricarboxylic acid cycle capacities. This is the first study to provide high-efficiency biosynthesis of d-ribose without organic acid formation in B. subtilis, which would be lower than the cost of separation and purification. The strain transketolase-deficient B. subtilis CGMCC 3720 can be potentially applied to the production of d-ribose in industry. © 2016 The Society for Applied Microbiology.

  3. Mechanism of magnetite formation in high temperature corrosion by model naphthenic acids

    International Nuclear Information System (INIS)

    Jin, Peng; Robbins, Winston; Bota, Gheorghe

    2016-01-01

    Highlights: • Magnetite scales were found in naphthenic acid (NAP) corrosion. • Magnetite scales were formed due to thermal decomposition of iron naphthenates. • Formation and protectiveness of magnetite scales depended on structure of NAP. • Carboxylic acids confirm corrosion observations for commercial NAP. - Abstract: Naphthenic acid (NAP) corrosion is a major concern for refineries. The complexity of NAP in crude oil and the sulfidation process hinder a fundamental knowledge of their corrosive behavior. Studies with model acids were performed to explore the corrosion mechanism and magnetite scales were found on carbon steel. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray diffraction methods detected differences in the quantity and quality of magnetite formed by model acids. These scales exhibited different resistance to higher severity NAP corrosion in a flow through apparatus. Magnetite is proposed to be formed by thermal decomposition of iron naphthenates.

  4. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    Science.gov (United States)

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (pfructose and amino acids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of Streptococcus mutans UA159 biofilms.

    Science.gov (United States)

    Cai, Jian-Na; Kim, Mi-A; Jung, Ji-Eun; Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2015-01-01

    Despite the widespread use of fluoride, dental caries, a biofilm-related disease, remains an important health problem. This study investigated whether oleic acid, a monounsaturated fatty acid, can enhance the effect of fluoride on extracellular polysaccharide (EPS) formation by Streptococcus mutans UA159 biofilms at sub-minimum inhibitory concentration levels, via microbiological and biochemical methods, confocal fluorescence microscopy, and real-time PCR. The combination of oleic acid with fluoride inhibited EPS formation more strongly than did fluoride or oleic acid alone. The superior inhibition of EPS formation was due to the combination of the inhibitory effects of oleic acid and fluoride against glucosyltransferases (GTFs) and GTF-related gene (gtfB, gtfC, and gtfD) expression, respectively. In addition, the combination of oleic acid with fluoride altered the bacterial biovolume of the biofilms without bactericidal activity. These results suggest that oleic acid may be useful for enhancing fluoride inhibition of EPS formation by S. mutans biofilms, without killing the bacterium.

  6. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    Science.gov (United States)

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  8. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  9. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    OpenAIRE

    M. Katayeva; R. Mangazbayeva; R. Abdykalykova

    2012-01-01

    The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  10. Effect of fat intake on cholesterol turnover and bile acid formation

    International Nuclear Information System (INIS)

    Iritani, Nobuko; Fukuda, Eiko; Ibamoto, Kazuko

    1977-01-01

    Three groups of male rats were maintained on diets containing different amounts of fat. After one week on such regimens, they were injected intraperitoneally with cholesterol- 3 H. During the following 28 days, the radioactivity and quantity of fecal cholesterol and its metabolites were determined. The coprostanol excretion was the about same in all groups and the bile acids excretion increased with increasing fat intake; however, compared to the fat-free group, the excretion of the injected cholesterol- 3 H was greater in the 3% fat group and less in the 10% fat group. Consequently, the specific radioactivity of bile acids was lower in the 10% group than in the others. The half-life of labelled cholesterol was 12.6, 16.0 and 22.2 days for the 3%, 10% fat and fat-free groups, respectively. Rather than a fat-free diet, a low-fat diet of 3% or so, would be of more advantage in eliminating cholesterol by increasing the formation of bile acids to emulsify the fat. In the 10% fat group, however, the enlarged pool size of bile acid probably delayed cholesterol metabolism to bile acids. (auth.)

  11. What is the enthalpy of formation of pyrazine-2-carboxylic acid?

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Duarte, Darío J.R.; Liebman, Joel F.

    2016-01-01

    There are two contemporary conflicting, indeed, incompatible determinations of measurements of the enthalpies of combustion and of formation of pyrazine-2-carboxylic acid in the literature, (−2268.0 ± 0.9 and −271.2 ± 1.1 kJ · mol −1 ) and (−2211.4 ± 0.9 and −327.8 ± 1.1 kJ · mol −1 ). The current paper discusses these two sets of values and from the use of a measurement of the enthalpy of sublimation, a newly evaluated enthalpy of formation of pyrazine itself, and of the quantum chemical calculations at the G3(MP2)//B3LYP level, the former results are accepted and the derived gas phase enthalpy of formation, −(167.6 ± 3.1) kJ · mol −1 , suggested.

  12. Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid.

    Science.gov (United States)

    Zhang, Ou; Zou, Xuan; Li, Qi-Hong; Sun, Zhi; Liu, Yong Dong; Zhong, Ru Gang

    2016-07-07

    N-nitrosodimethylamine (NDMA), as a representative of endogenously formed N-nitroso compounds (NOCs), has become the focus of considerable research interest due to its unusually high carcinogenicity. In this study, effects of ethanol and acetic acid on the formation of NDMA from dimethylamine (DMA) and nitrite in simulated gastric fluid (SGF) were investigated. Experimental results showed that ethanol in the concentrations of 1-8% (v/v) and acetic acid in the concentrations of 0.01-8% (v/v) exhibit inhibitory and promotion effects on the formation of NDMA, respectively. Moreover, they are both in a dose-dependent manner with the largest inhibition/promotion rate reaching ∼70%. Further experimental investigations indicate that ethanol and acetic acid are both able to scavenge nitrite in SGF. It implies that there are interactions of ethanol and acetic acid with nitrite or nitrite-related nitrosating agents rather than DMA. Theoretical calculations confirm the above experimental results and demonstrate that ethanol and acetic acid can both react with nitrite-related nitrosating agents to produce ethyl nitrite (EtONO) and acetyl nitrite (AcONO), respectively. Furthermore, the reactivities of ethyl nitrite, acetyl nitrite, and dinitrogen trioxide reacting with DMA were found in the order of AcONO > N2O3 ≫ EtONO. This is probably the main reason why there are completely different effects of ethanol and acetic acid on NDMA formation. On the basis of the above results, two requirements for a potential inhibitor of NOCs formation in SGF were provided. The results obtained in this study will be helpful in better understanding the inhibition/promotion mechanisms of compounds on NDMA formation in SGF and searching for protective substances to prevent carcinogenic NOCs formation.

  13. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation.

    Directory of Open Access Journals (Sweden)

    Laura M Pillay

    Full Text Available Hematopoietic stem cells (HSCs are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.

  14. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Katayeva

    2012-12-01

    Full Text Available The complex formation process of hydroxypropylcellulose (HPC with polymethacrylic acid (PMA have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  15. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, C.R.; Jokumsen, K.V.; Villadsen, John

    2002-01-01

    promoters in L. lactis MG1363 and in the PFL-deficient strain CRM40. Strains with five different PFL levels were obtained. Variation in the PFL level markedly affected the resulting end-product formation in these strains. During growth on galactose, the flux towards mixed-acid products was to a great extent...

  16. Formation of novel polymeric films derived from 4-hydroxybenzoic acid

    International Nuclear Information System (INIS)

    Ferreira, Lucas F.; Souza, Leticia M.; Franco, Diego L.; Castro, Ana C.H.; Oliveira, Alex A.; Boodts, Julien F.C.; Brito-Madurro, Ana G.; Madurro, Joao M.

    2011-01-01

    Highlights: → Graphite electrodes modified with poly(4-hydroxybenzoic acid) prepared in pH 0.5, 7.0 and 12.0. → Electron transport was higher in poly(4-hydroxybenzoic acid) prepared in acid medium. → Poly(4-HBA) prepared in pH 12.0 presents higher charge transfer resistance. → Polymers prepared in pH 0.5 and 7.0 present globular morphology and in pH 0.5 higher roughness. - Abstract: This work reports electrochemical and morphological studies of formation of poly(4-hydroxybenzoic acid), prepared in different pH, on the graphite surface. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), electrochemical quartz crystal microbalance (EQCM) and atomic force microscopy (AFM) have been carried out to study the modified electrodes formed. The electrodes modified with poly(4-HBA), prepared in pH 0.5 and 7.0, presented oxidation/reduction peaks, but no peak was detected to modified electrodes prepared in pH 12.0. Voltammetric studies showed decrease in oxidation/reduction currents and slower electron transport across the polymer for all pH values, however, the electron transport was higher when the polymer was prepared in acid medium. EIS analysis indicated that the charge transfer resistance for poly(4-HBA) electropolymerized at pH 12.0 was about 2 and 1.4 times higher when compared to pH 0.5 and 7.0, respectively. Studies through EQCM showed higher amount of polymer mass deposited in acid medium. Images by AFM indicated that the topography is affected by pH value, whereas films prepared in acidic pH conditions presented higher roughness.

  17. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Science.gov (United States)

    2010-07-01

    ... mature protein, with the number 1. When presented, the amino acids preceding the mature protein, e.g... acids. (1) The amino acids in a protein or peptide sequence shall be listed using the three-letter... data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data shall...

  18. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  19. Formation of sulphite, cysteic acid and taurine from sulphate by the egg embryo

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1959-01-01

    It is shown that the formation of taurine from sulphate by the chicken embryo involves the reduction of sulphate to sulphite (I), the synthesis of cysteic acid (II) and its decarboxylation (Ill). The reaction (I) takes place in the vitellin sac. The reaction (II) results from the condensation of the sulphite with a-amino-acrylic acid and is carried out by the yolk. The enzymes responsible for the decarboxylation (III) are distributed both in the embryo and in its appendages. (author) [fr

  20. Metabolism of 5,6-epoxyeicosatrienoic acid by the human platelet. Formation of novel thromboxane analogs.

    Science.gov (United States)

    Balazy, M

    1991-12-15

    Radiolabeled cis-(+-)-5,6-epoxyeicosatrienoic acid (5(6)-EpETrE) was incubated with a suspension of isolated human platelets in order to study its metabolic fate. The epoxide slowly disappeared from the suspension and was completely metabolized within 30 min. After extraction and analysis by reverse-phase high performance liquid chromatography, seven metabolites were found. Addition of either indomethacin (0.01 mM, cyclooxygenase inhibitor) or BW755C (0.1 mM, cyclooxygenase/lipoxygenase inhibitor) to the incubations blocked the formation of four and six metabolites, respectively, 1,2-Epoxy-3,3,3-trichloropropane (inhibitor of microsomal epoxide hydrolase) failed to inhibit the formation of 5,6-dihydroxyeicosatrienoic acid (5,6-DiHETrE), a hydrolysis product of the precursor 5(6)-EpETrE. The metabolites were characterized by UV spectroscopy, negative ion chemical ionization liquid chromatography/mass spectrometry, gas chromatography/mass spectrometry and, in one instance, coelution with synthetic standard. Three primary platelet metabolites were structurally determined to be 5,6-epoxy-12-hydroxyeicosatrienoic acid, 5,6-epoxy-12-hydroxyheptadecadienoic acid, and a unique bicyclic metabolite, 5-hydroxy-6,9-epoxy-thromboxane B1, which originated from intramolecular hydrolysis of 5,6-epoxythromboxane-B1. This thromboxane analog was partially separated into stereoisomers and coeluted with the racemic synthetic standard in gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Three other metabolites were characterized as 5,6,12-trihydroxyeicosatrienoic acid, 5,6,12-trihydroxyheptadecadienoic acid, and 5,6-dihydroxythromboxane-B1, and resulted from the hydrolysis of the corresponding epoxides rather than from the metabolism of 5,6-DiHETrE. The latter was not metabolized by platelet cyclooxygenase or lipoxygenase. The biosynthesis of two cyclooxygenase metabolites indicated the formation of unstable 5,6-epoxythromboxane-A1 as an intermediate

  1. Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid.

    Science.gov (United States)

    Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A

    2010-04-01

    Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.

  2. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    Science.gov (United States)

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  3. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    Science.gov (United States)

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Anna Murzyn

    Full Text Available Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and

  5. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    Science.gov (United States)

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID

  6. Formation of Mixed-Ligand Complexes of Metals(II) with Monoamine Complexones and Amino Acids in Solution

    Science.gov (United States)

    Pyreu, D. F.; Gridchin, S. N.

    2018-05-01

    The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.

  7. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    International Nuclear Information System (INIS)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-01-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag + and the reaction partners (X) including [Ag n X m − (n + 1)H] − (n = 1–4, m = 1–3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver–GSH interactions, even doubly charged oligomers occur generating [Ag (a+1) GSH a − (a + 3)H] 2− (a = 5–7) and [Ag b GSH b − (b + 2)H] 2− (b = 4–8) ions. 1 H NMR data of free GSH compared to that after treatment with Ag + confirm sulfur–metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver–GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation

  8. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Science.gov (United States)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe

    2013-09-01

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag+ and the reaction partners (X) including [Ag n X m - ( n + 1)H]- ( n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag( a + 1)GSH a - ( a + 3)H]2- ( a = 5-7) and [Ag b GSH b - ( b + 2)H]2- ( b = 4-8) ions. 1H NMR data of free GSH compared to that after treatment with Ag+ confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  9. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing

    Directory of Open Access Journals (Sweden)

    D. L. Yue

    2010-05-01

    Full Text Available Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1 show a linear correlation with the sulfuric acid concentrations (R2=0.85. Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.

  10. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation in the rat model

    Energy Technology Data Exchange (ETDEWEB)

    Urman, B.; Gomel, V.; Jetha, N. (Department of Obstetrics and Gynecology, University of British Columbia, Vancouver (Canada))

    1991-09-01

    The aim of this study was to determine the effectiveness of hyaluronic acid solution in preventing intraperitoneal (IP) adhesions. The study design was prospective, randomized and blinded and involved 83 rats. Measured serosal injury was inflicted using a CO2 laser on the right uterine horn of the rat. Animals randomized to groups 1 and 2 received either 0.4% hyaluronic acid or its diluent phosphate-buffered saline (PBS) intraperitoneally before and after the injury. In groups 3 and 4, the same solutions were used only after the injury. Postoperative adhesions were assessed at second-look laparotomy. Histologic assessment of the fresh laser injury was carried out on uteri pretreated with hyaluronic acid, PBS, or nothing. Pretreatment with hyaluronic acid was associated with a significant reduction in postoperative adhesions and a significantly decreased crater depth. Hyaluronic acid appears to reduce postoperative IP adhesion formation by coating the serosal surfaces and decreasing the extent of initial tissue injury.

  11. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  12. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Moed, D.H.; Verliefde, A.R.D.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  13. Energy-saving management modelling and optimization for lead-acid battery formation process

    Science.gov (United States)

    Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.

    2017-11-01

    In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.

  14. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  15. Response of humic acid formation to elevated nitrate during chicken manure composting.

    Science.gov (United States)

    Shi, Mingzi; Wei, Zimin; Wang, Liqin; Wu, Junqiu; Zhang, Duoying; Wei, Dan; Tang, Yu; Zhao, Yue

    2018-06-01

    Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Complexity in Acid–Base Titrations: Multimer Formation Between Phosphoric Acids and Imines

    Science.gov (United States)

    Malm, Christian; Kim, Heejae; Wagner, Manfred

    2017-01-01

    Abstract Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid–base aggregates challenging. Here, we track such acid–base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid–base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid‐base association constant is only around six times larger than that for the acid binding to an acid‐base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. PMID:28597513

  17. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

    Directory of Open Access Journals (Sweden)

    Angelica Aguilera-Gomez

    2017-07-01

    Full Text Available Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein.

  18. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  19. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe, E-mail: uk@uni-muenster.de [University of Muenster, Institute of Inorganic and Analytical Chemistry (Germany)

    2013-09-15

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag{sup +} and the reaction partners (X) including [Ag{sub n}X{sub m} - (n + 1)H]{sup -} (n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag{sub (a+1)}GSH{sub a} - (a + 3)H]{sup 2-} (a = 5-7) and [Ag{sub b}GSH{sub b} - (b + 2)H]{sup 2-} (b = 4-8) ions. {sup 1}H NMR data of free GSH compared to that after treatment with Ag{sup +} confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  20. Influence of fatty acid composition on the formation of polar glycerides and polar fatty acids in sunflower oils heated at frying temperatures.

    Directory of Open Access Journals (Sweden)

    Jorge, N.

    1997-02-01

    Full Text Available Conventional and high oleic sunflower oils as well as 50% mixture of both of them were heated at different temperatures under well-controlled conditions. Total polar compounds, the main groups of polar glycerides, total polar fatty acids, the main groups of polar fatty acids and the loss of initial fatty acids were quantitated. The most outstanding results demonstrated the primacy of the formation of glyceridic polymerization compounds during heating at high temperatures. After transesterification of the samples dimeric fatty acids was the most significant group of compounds obtained. As expected, linoleic acid was preferentially involved in the formation of polar fatty acids, although the participation of oleic acid became very important at low concentration of linoleic acid. Finally good statistical figures were obtained for the regression of polar fatty acids on polar compounds.

    Aceites de girasol convencional y alto oleico así como una mezcla al 50% de ambos fueron calentados a diferentes temperaturas bajo condiciones controladas. Se cuantificaron los compuestos polares totales, los grupos principales de glicéridos, ácidos grasos polares totales, los grupos principales de ácidos grasos polares y la pérdida de ácidos grasos iniciales. Los resultados más relevantes demostraron la primacía de la formación de compuestos de polimerización glicerídicos durante el calentamiento a altas temperaturas. Después de la transesterificación de las muestras, los ácidos diméricos constituyeron el grupo más significativo de compuestos obtenidos. Como era esperado, el ácido linoleico contribuyó preferentemente en la formación de los ácidos grasos polares, si bien la participación del ácido oleico fue muy importante a bajas concentraciones de ácido linoleico. Finalmente, se obtuvieron buenos resultados estadísticos para la regresión entre ácidos grasos polares y compuestos polares.

  1. Formation of hydroxyl radical (sm-bulletOH) in illuminated surface waters contaminated with acidic mine drainage

    International Nuclear Information System (INIS)

    Allen, J.M.; Lucas, S.; Allen, S.K.

    1996-01-01

    Formation rates and steady-state concentrations of hydroxyl radical ( sm-bullet OH) in illuminated surface water samples collected in west-central Indiana that receive acidic mine drainage runoff are reported. Formation rates for sm-bullet OH in samples were measured by the addition of 1 x 10 -3 M benzene prior to illuminate in order to effectively scavenge all of the sm-bullet OH formed, thereby yielding phenol. The sm-bullet OH formation rates were calculated from the measured phenol formation rates. Steady-state concentrations of sm-bullet OH were measured by the addition of 5 x 10 -7 M nitrobenzene to the samples prior to illumination. Estimated sunlight sm-bullet OH formation rates range from 16 microM h -1 to 265 microM h -1 . Estimated sunlight steady-state sm-bullet OH concentrations range from 6.7 x 10 -15 to 4.0 x 10 -12 M. Both the formation rates and steady-state concentrations for sm-bullet OH are thus two to three orders of magnitude higher than values reported in the literature for other sunlit surface water samples. Due to the very high rates of formation and steady-state concentrations for sm-bullet OH in these samples, the authors conclude that aqueous-phase reactions involving sm-bullet OH represent a significant pathway by which organic pollutants in illuminated surface waters receiving acidic mine drainage runoff may be consumed

  2. [Components of urinary crystallites in urine of uric acid stone formers and its relationship with formation of stones].

    Science.gov (United States)

    Huang, Zhi-jie; Tan, Jin; Ouyang, Jian-ming

    2010-09-01

    The components, zeta potential, morphology of nanocrystallites in urines of 10 uric acid stone formers as well as their relationship with the formation of uric acid stones were comparatively studied using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nanoparticle size analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The urine pH of uric acid stone formers was relatively low within the range of 4.8 to 5.7. The main constituent of urinary crystallites was uric acid. Their particle size distribution was highly uneven, ranging from several nanometers to several tens of micrometers, and obvious aggregation was observed. The zeta potential of urinary crystallites in ten lithogenic patients was -6.02 mV, which was higher than that in ten normal subjects (-10.1 mV). After drug therapies (potassium citrate was taken), the urine pH value of the uric acid stone formers increased to 6.5 or so, and at this pH value most of the uric acid had changed to urate. Since the solubility of urate increased greatly than uric acid, the risk of the formation of uric acid stone reduced. The results in this paper showed that there was a close relationship among stone components, urinary crystallites composition and urine pH.

  3. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  4. Standard enthalpy of formation of Sm6UO12 acid dissolution calorimetry

    International Nuclear Information System (INIS)

    Venkata Krishnan, R.; Jogeswararao, G.; Ananthasivan, K.

    2016-01-01

    The standard molar enthalpies of formation of Δ f (298 K) of Sm 6 UO 12 have been determined by using an indigenously developed isoperibol acid solution calorimeter. The water equivalent of this calorimeter was determined by electrical calibration. The accuracy of measurement were determined by using standard materials KCl and tris(hydroxyl methyl) amino-methane (TRIS) and was found to be within ±2%. The enthalpies of solution at 298 K of Sm 2 O 3 , UO 3 and Sm 6 UO 12 were measured by using this calorimeter. From these experimental results the enthalpies of formation of Sm 6 UO 12 at 298 K were computed by using Hess's law of summation. (author)

  5. [Spectral Analysis about the Pharmaceutical Cocrystal Formation of Piracetam and 3-Hydroxybenzoic Acid].

    Science.gov (United States)

    Zhang, Hui-li; Xia, Yi; Hong, Zhi; Du, Yong

    2015-07-01

    Pharmaceutical cocrystal can improve physical and chemical properties of active pharmaceutical ingredient (API), meanwhile this feature has shown great potential in improving the pharmaceutical's properties and characteristics. In this study, cocrystal formation between piracetam and 3-hydroxybenzoic acid (3HBA) using grinding method has been characterized by Fourier transform infrared (FTIR), Raman and terahertz (THz) spectroscopical techniques. The vibrational modes of different motions are obtained by the assignment of the peaks in the spectra of the starting materials and the cocrystal components. FTIR, Raman and THz spectroscopical results show that the vibrational modes of the cocrystal are different from those of the starting materials. In addition, the dynamic process of the above cocrystal formation is investigated in-depth with Raman and THz spec- tra. Piracetam-3HBA cocrystal is formed pretty fast in first several minutes, and then the formation rate becomes slow. After 35 minutes, such formation process has been completed. The results offer the theoretical benchmark and unique means for real-time monitoring pharmaceutical cocrystal formation and also the corresponding quantitative analysis in the pharmaceutical field.

  6. Mechanisms for formation of organic acids in gas-phase reactions of ozone and hydroxyl radical with dialkenes and unsaturated carbonyls

    Science.gov (United States)

    Chien, Chao-Jung

    2001-07-01

    Carboxylic acids are ubiquitous throughout the troposphere and may contribute significant fractions of the free acidity in some remote areas. One of the important sources of these carboxylic acids is thought to be photochemical transformation of biogenic hydrocarbons such as isoprene. For the work reported here, atmospheric samples from University of North Carolina dual outdoor environmental chamber under simulated urban atmospheric conditions were analyzed for carboxylic acids. Both OH radicals and O3 initiated photooxidation reaction experiments were performed for isoprene, along with its structural analogs, 1,3-butadiene and 2,3-dimethyl-1,3-butadiene, and their primary photooxidation products, methacrolein, acrolein, and methyl vinyl ketone. Among the detected carboxylic acids were formic, acetic, and several multifunctional carboxylic acids, including methacrylic, acrylic, glyoxylic, and glycolic acids. Quantification of most carboxylic acid products was also established. Formation yields of carboxylic acids from the reactions of O3 with studied compounds were determined, and time-concentration series of the reactants and carboxylic acid products were measured to facilitate mechanism formulation. While the reaction mechanisms of Criegee biradicals arising from decomposition of primary ozonides are proposed to account for the observed carboxylic acid products in the ozonolysis of unsaturated hydrocarbons, reactions of peroxy acyl radicals with HO2 and/or other peroxy radicals are thought to be responsible for the formation of carboxylic acids during the OH-initiated reactions in the presence of NOx. In this study, smog chamber simulations have also been performed for selected compounds using Morpho, a photochemical kinetic simulation software package. Explicit photochemical mechanisms with O 3 and OH radicals that lead to formation of carboxylic acids were elaborated and implemented, and the simulation results were compared with those from other chemical

  7. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    Science.gov (United States)

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our

  8. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccaride Sensing-Interface

    Directory of Open Access Journals (Sweden)

    Kwangnak Koh

    2007-08-01

    Full Text Available We designed and synthesized phenylboronic acid as a molecular recognitionmodel system for saccharide detection. The phenylboronic acid derivatives that haveboronic acid moiety are well known to interact with saccharides in aqueous solution; thus,they can be applied to a functional interface of saccharide sensing through the formation ofself-assembled monolayer (SAM. In this study, self-assembled phenylboronic acidderivative monolayers were formed on Au surface and carefully characterized by atomicforce microscopy (AFM, Fourier transform infrared reflection absorption spectroscopy(FTIR-RAS, surface enhanced Raman spectroscopy (SERS, and surface electrochemicalmeasurements. The saccharide sensing application was investigated using surface plasmonresonance (SPR spectroscopy. The phenylboronic acid monolayers showed goodsensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10-12 M.The SPR angle shift derived from interaction between phenylboronic acid andmonosaccharide was increased with increasing the alkyl spacer length of synthesizedphenylboronic acid derivatives.

  9. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation.

    Science.gov (United States)

    Aguilera-Gomez, Angelica; Zacharogianni, Margarita; van Oorschot, Marinke M; Genau, Heide; Grond, Rianne; Veenendaal, Tineke; Sinsimer, Kristina S; Gavis, Elizabeth R; Behrends, Christian; Rabouille, Catherine

    2017-07-25

    Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Potentiometric and spectral studies of complex formation of La(3), Pr(3) and Lu(3) with aspartic acid and asparagine

    International Nuclear Information System (INIS)

    Wojciechowska, A.; Lomozik, L.; Zielinski, S.

    1987-01-01

    The composition and stability of La 3+ , Pr 3+ and Lu 3+ complexes with aspartic acid and asparagine were analysed. The formation of complexes of the type ML and MHL was determined for La 3+ and Pr 3+ with aspartic acid, and of the type MHL for Lu 3+ with aspartic acid. For La 3+ , Pr 3+ and Lu 3+ with asparagine the formation of ML(OH) complexes was observed. By means of 1 HNMR and 13 CNMR studies the participation in the coordination of both -COOH groups was determined for aspartic acid, whereas for asparagine the participation of the -COOH group was determined in complexes with La 3+ , Pr 3+ , and of the -COOH and the -NH 2 groups in the complex with Lu 3+ . (Author)

  11. Metabolic alterations by clofibric acid in the formation of molecular species of phosphatidylcholine in rat liver.

    Science.gov (United States)

    Mizuguchi, H; Kudo, N; Kawashima, Y

    2001-10-01

    The mechanism by which p-chlorophenoxyisobutyric acid (clofibric acid) induces striking changes in the proportion of the molecular species of phosphatidylcholine (PC) in rat liver was studied. Treatment of rats with clofibric acid strikingly increased the content of 1-palmitoyl-2-oleoyl (16:0-18:1) PC, but decreased the contents of 1-palmitoyl-2-docosahexaenoyl (16:0-22:6), 1-stearoyl-2-arachidonoyl (18:0-20:4), and 1-stearoyl-2-linoleoyl (18:0-18:2) PC; the drug did not change the content of 1-palmitoyl-2-arachidonoyl (16:0-20:4) PC. The mechanism underlying these changes has been investigated with regard to the in vivo formation of the molecular species of PC by: (i) de novo synthesis, (ii) reacylation, and (iii) methylation of phosphatidylethanolamine (PE). We found that (i) the incorporation of [3H]glycerol, which was injected intravenously, into 16:0-18:1 diacylglycerol (DG) and 16:0-18:1 PC was increased markedly by clofibric acid feeding without changing the substrate specificity of CDP-choline:DG cholinephosphotransferase, (ii) the in vivo formation of 16:0-18:1 and 16:0-20:4 PC from 1-16:0-[3H]glycerophosphocholine (GPC), which was injected intraportally, was increased markedly by clofibric acid feeding, and (iii) the incorporation of [14C]ethanolamine, which was injected intravenously into 16:0-22:6, 18:0-22:6, and 18:0-20:4 PC, was decreased by clofibric acid feeding; the extent of the decrease in 16:0-20:4 PC was less than that of 18:0-20:4 PC. It was concluded, therefore, that (i) clofibric acid selectively increased the content and proportion of 16:0-18:1 PC by enhancing both the CDP-choline pathway and the remodeling of the pre-existing PC molecule, and (ii) the drug kept the content of 16:0-20:4 PC unchanged by stimulating the remodeling of the pre-existing PC molecule, whereas the formation of other more long chain, polyunsaturated molecular species, such as 16:0-22:6, 18:0-22:6, and 18:0-20:4, was decreased owing to the suppression of PE

  12. Formation of binary and ternary complexes of mercaptobenzimidazoles with lanthanides in presence of aminopolycarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Seshi Reddy, P; Manwal, D D; Chandra Pal, A V [Osmania Univ., Hyderabad (India). Dept. of Chemistry

    1994-05-01

    The formation constants of 1:1 and 1:2 binary Ln (III)-2-mercaptomethylbenzimidazole (MMB), Ln (III)-2-mercapto-ethylbenzimidazole (MEB) and 1:1:1 ternary [Ln (III)-A-MMB], [Ln (III)-A-MEB] chelates [where Ln(III) = Pr, Nd, Gd, Dy and Y; A = iminodiacetic acid (IMDA), hydroxyethyliminodiacetic acid (HIMDA) and nitrilotriacetic acid (NTA)] have been determined pH-metrically in 50% (v/v) aqueous ethanol medium at 30 degC and I = 0.1 M (NaClO{sub 4}). The ligands MMB and MEB coordinates as secondary ligands in presence of IMDA, HIMDA and NTA with metal ions. (author). 11 refs., 2 figs., 2 tabs.

  13. Formation of Methylamine and Ethylamine in Extraterrestrial Ices and Their Role as Fundamental Building Blocks of Proteinogenic α -amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Förstel, Marko; Bergantini, Alexandre; Maksyutenko, Pavlo; Góbi, Sándor; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI, 96822 (United States)

    2017-08-10

    The –CH–NH{sub 2} moiety represents the fundamental building block of all proteinogenic amino acids, with the cyclic amino acid proline being a special case (–CH–NH– in proline). Exploiting a chemical retrosynthesis, we reveal that methylamine (CH{sub 3}NH{sub 2}) and/or ethylamine (CH{sub 3}CH{sub 2}NH{sub 2}) are essential precursors in the formation of each proteinogenic amino acid. In the present study we elucidate the abiotic formation of methylamine and ethylamine from ammonia (NH{sub 3}) and methane (CH{sub 4}) ices exposed to secondary electrons generated by energetic cosmic radiation in cometary and interstellar model ices. Our experiments show that methylamine and ethylamine are crucial reaction products in irradiated ices composed of ammonia and methane. Using isotopic substitution studies we further obtain valuable information on the specific reaction pathways toward methylamine. The very recent identification of methylamine and ethylamine together with glycine in the coma of 67P/Churyumov–Gerasimenko underlines their potential to the extraterrestrial formation of amino acids.

  14. Deracemization of Axially Chiral Nicotinamides by Dynamic Salt Formation with Enantiopure Dibenzoyltartaric Acid (DBTA

    Directory of Open Access Journals (Sweden)

    Fumitoshi Yagishita

    2013-11-01

    Full Text Available Dynamic atroposelective resolution of chiral salts derived from oily racemic nicotinamides and enantiopure dibenzoyltartaric acid (DBTA was achieved by crystallization. The absolute structures of the axial chiral nicotinamides were determined by X-ray structural analysis. The chirality could be controlled by the selection of enantiopure DBTA as a chiral auxiliary. The axial chirality generated by dynamic salt formation was retained for a long period after dissolving the chiral salt in solution even after removal of the chiral acid. The rate of racemization of nicotinamides could be controlled based on the temperature and solvent properties, and that of the salts was prolonged compared to free nicotinamides, as the molecular structure of the pyridinium ion in the salts was different from that of acid-free nicotinamides.

  15. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    Science.gov (United States)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  16. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  17. Thermodynamic study on salt effects on complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Chibunova, E.S.; Kumeev, R.S.; Terekhova, I.V.

    2015-01-01

    Highlights: • Thermodynamic study on salt effects in CD/pABA complex formation was performed. • Effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant and nonspecific. • Specific influence of KBr is caused by the ability of Br − to penetrate into CD cavity. • Coexistence of two complexation equilibria is accompanied by solvent reorganization. - Abstract: The aim of this work was to gain a deeper understanding of salt effects in the inclusion complex formation of cyclodextrins. For this purpose, thermodynamic study of complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid was carried out in water and solutions of KCl, KBr, KH 2 PO 4 and K 2 SO 4 (0.2 mol/kg). Stability constants were calculated from the binding isotherms obtained on the basis of 1 H NMR measurements. Enthalpy and entropy of complex formation were estimated from the van’t Hoff plots. It was found that effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant, while the influence of KBr on complex formation of cyclodextrins with p-aminobenzoic acid is more pronounced and results in a decrease of the stability constants. Specific action of Br − is caused by the ability of these anions to penetrate into macrocyclic cavity. Coexistence of two complexation equilibria in KBr solution is accompanied by significant solvent reorganization originated from more intensive dehydration of the interacting species. This results in an increase of the enthalpy and entropy of complex formation. Manifestation of Br − effect was found to be the same in the binding of p-aminobenzoic acid with α-, β- and γ-cyclodextrins.

  18. Potential origin and formation for molecular components of humic acids in soils

    Science.gov (United States)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  19. Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate

    Science.gov (United States)

    Suzuki, Chizuka; Furukawa, Yoshihiro; Kobayashi, Takamichi; Sekine, Toshimori; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2015-07-01

    The emergence of life's building blocks, such as amino acids and nucleobases, on the prebiotic Earth was a critical step for the beginning of life. Reduced species with low mass, such as ammonia, amines, or carboxylic acids, are potential precursors for these building blocks of life. These precursors may have been provided to the prebiotic ocean by carbonaceous chondrites and chemical reactions related to meteorite impacts on the early Earth. The impact of extraterrestrial objects on Earth occurred more frequently during this period than at present. Such impacts generated shock waves in the ocean, which have the potential to progress chemical reactions to form the building blocks of life from reduced species. To simulate shock-induced reactions in the prebiotic ocean, we conducted shock-recovery experiments on ammonium bicarbonate solution and ammonium formate solution at impact velocities ranging from 0.51 to 0.92 km/s. In the products from the ammonium formate solution, several amino acids (glycine, alanine, ß-alanine, and sarcosine) and aliphatic amines (methylamine, ethylamine, propylamine, and butylamine) were detected, although yields were less than 0.1 mol % of the formic acid reactant. From the ammonium bicarbonate solution, smaller amounts of glycine, methylamine, ethylamine, and propylamine were formed. The impact velocities used in this study represent minimum cases because natural meteorite impacts typically have higher velocities and longer durations. Our results therefore suggest that shock waves could have been involved in forming life's building blocks in the ocean of prebiotic Earth, and potentially in aquifers of other planets, satellites, and asteroids.

  20. Biochemical and dietary factors of uric acid stone formation.

    Science.gov (United States)

    Trinchieri, Alberto; Montanari, Emanuele

    2018-04-01

    The aim of this study was to compare the clinical characteristics of "pure" uric acid renal stone formers (UA-RSFs) with that of mixed uric acid/calcium oxalate stone formers (UC-RSFs) and to identify which urinary and dietary risk factors predispose to their formation. A total of 136 UA-RSFs and 115 UC-RSFs were extracted from our database of renal stone formers. A control group of 60 subjects without history of renal stones was considered for comparison. Data from serum chemistries, 24-h urine collections and 24-h dietary recalls were considered. UA-RSFs had a significantly (p = 0.001) higher body mass index (26.3 ± 3.6 kg/m 2 ) than UC-RSFs, whereas body mass index of UA-RSFs was higher but not significantly than in controls (24.6 ± 4.7) (p = 0.108). The mean urinary pH was significantly lower in UA-RSFs (5.57 ± 0.58) and UC-RSFs (5.71 ± 0.56) compared with controls (5.83 ± 0.29) (p = 0.007). No difference of daily urinary uric acid excretion was observed in the three groups (p = 0.902). Daily urinary calcium excretion was significantly (p = 0.018) higher in UC-RSFs (224 ± 149 mg/day) than UA-RSFs (179 ± 115) whereas no significant difference was observed with controls (181 ± 89). UA-RSFs tend to have a lower uric acid fractional excretion (0.083 ± 0.045% vs 0.107+/-0.165; p = 0.120) and had significantly higher serum uric acid (5.33 ± 1.66 vs 4.78 ± 1.44 mg/dl; p = 0.007) than UC-RSFs. The mean energy, carbohydrate and vitamin C intakes were higher in UA-SFs (1987 ± 683 kcal, 272 ± 91 g, 112 ± 72 mg) and UC-SFs (1836 ± 74 kcal, 265 ± 117, 140 ± 118) with respect to controls (1474 ± 601, 188 ± 84, 76 ± 53) (p = 0.000). UA-RSFs should be differentiated from UC-RSFs as they present lower urinary pH, lower uric acid fractional excretion and higher serum uric acid. On the contrary, patients with UC-RSFs show urinary risk factors

  1. Hydroxyl Radical Formation from HULIS and Fe(II) Interactions: Fulvic Acid-Fe(II) Complexes in Simulated and Human Lung Fluids

    Science.gov (United States)

    Gonzalez, D.

    2017-12-01

    Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins

  2. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  3. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    Science.gov (United States)

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.

  4. Acidizing reservoirs while chelating iron with sulfosalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W A; Berkshire, D C

    1980-09-30

    A well treating process is described in which an aqueous solution of a strong acid capable of dissolving solids in a manner increasing the permeability of a subterranean earth formation is injected into a subterranean reservoir that contains an asphaltenic oil. At least the first injected portion of the aqueous acid and a solution or homogeneous dispersion of at least enough 5-sulfosalicylic acid to chelate with and prevent the formation of iron-asphaltene solids are included with substantially all of the ferric ions that become dissolved within the strong acid solution that enters the earth formation. 10 claims.

  5. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395

    DEFF Research Database (Denmark)

    Prol García, María Jesús; D'Alvise, Paul; Rygaard, Anita Mac

    2014-01-01

    Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multice......Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth...... as multicellular aggregates or biofilms at the air–liquid interface and is induced on single cell level upon attachment. Methods and Results A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white...... that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Conclusions Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. Significance and Impact of the Study...

  6. N-nitrosamine formation by monochloramine, free chlorine, and peracetic acid disinfection with presence of amine precursors in drinking water system.

    Science.gov (United States)

    West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin

    2016-06-01

    In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Photo-induced formation of nitrous acid (HONO) on protein surfaces

    Science.gov (United States)

    Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang

    2014-05-01

    The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated

  8. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    Science.gov (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-08

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  9. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    Science.gov (United States)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  10. Formation of C21 bile acids from plant sterols in the rat

    International Nuclear Information System (INIS)

    Boberg, K.M.; Lund, E.; Olund, J.; Bjoerkhem, I.

    1990-01-01

    Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved

  11. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture

    Directory of Open Access Journals (Sweden)

    Kazancioglu HO

    2015-12-01

    Full Text Available Hakki Oguz Kazancioglu,1 Sertac Aksakalli,2 Seref Ezirganli,1 Muhammet Birlik,2 Mukaddes Esrefoglu,3 Ahmet Hüseyin Acar1 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, Faculty of Dentistry, 3Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey Background: Narrow maxilla is a common problem in orthodontics and dentofacial orthopedics. To solve this problem, a procedure called rapid maxillary expansion (RME has been used. However, relapse tendency is a major problem of RME. Although relapse tendency is not clearly understood, various treatment procedures and new application has been investigated. The present study aimed to investigate the possible effectiveness of caffeic acid phenethyl ester (CAPE on new bone formation in rat midpalatal suture after RME.Materials and methods: Twenty male Sprague Dawley rats were used in this study. The animals were randomly divided into two groups as control and CAPE group. In CAPE group, CAPE was administered systemically via intraperitoneal injection. RME procedure was performed on all animals. For this purpose, the springs were placed on the maxillary incisors of rats and activated for 5 days. After then, the springs were removed and replaced with short lengths of rectangular retaining wire for consolidation period of 15 days. At the end of the study, histomorphometric analysis was carried out to assess of new bone formation.Results: New bone formation was significantly greater in CAPE group than the control group (P<0.05. CAPE enhances new bone formation in midpalatal suture after RME.Conclusion: These results show that CAPE may decrease the time needed for retention. Keywords: rapid maxillary expansion, bone formation, caffeic acid phenethyl ester, midpalatal suture, histopathology

  12. Protoporphyrin IX formation after topical application of methyl aminolaevulinate and BF-200 aminolaevulinic acid declines with age

    DEFF Research Database (Denmark)

    Nissen, C V; Philipsen, P A; Wulf, H C

    2015-01-01

    BACKGROUND: Topical photodynamic therapy (PDT) is a popular treatment modality in dermatology. The effect of PDT in epidermal cells depends on formation of protoporphyrin IX (PpIX) from 5-aminolevulinic acid (ALA). A variety of physiological changes in epidermal function occur with increasing age...... assessed. Treatment efficacy in relation to age was evaluated in 100 basal cell carcinomas (BCCs) treated with MAL-PDT. RESULTS: Both photosensitizers induced significantly more PpIX formation in the younger group. Linear regression revealed a significant age-related decline in PpIX formation after...

  13. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  14. Inhibitory effect of glutamic acid on the scale formation process using electrochemical methods.

    Science.gov (United States)

    Karar, A; Naamoune, F; Kahoul, A; Belattar, N

    2016-08-01

    The formation of calcium carbonate CaCO3 in water has some important implications in geoscience researches, ocean chemistry studies, CO2 emission issues and biology. In industry, the scaling phenomenon may cause technical problems, such as reduction in heat transfer efficiency in cooling systems and obstruction of pipes. This paper focuses on the study of the glutamic acid (GA) for reducing CaCO3 scale formation on metallic surfaces in the water of Bir Aissa region. The anti-scaling properties of glutamic acid (GA), used as a complexing agent of Ca(2+) ions, have been evaluated by the chronoamperometry and electrochemical impedance spectroscopy methods in conjunction with a microscopic examination. Chemical and electrochemical study of this water shows a high calcium concentration. The characterization using X-ray diffraction reveals that while the CaCO3 scale formed chemically is a mixture of calcite, aragonite and vaterite, the one deposited electrochemically is a pure calcite. The effect of temperature on the efficiency of the inhibitor was investigated. At 30 and 40°C, a complete scaling inhibition was obtained at a GA concentration of 18 mg/L with 90.2% efficiency rate. However, the efficiency of GA decreased at 50 and 60°C.

  15. Effects of irradiation on trans fatty acids formation in ground beef

    International Nuclear Information System (INIS)

    Brito, M.S.; Villavicencio, A.L.C.H.; Mancini-filho, Jorge

    2002-01-01

    In order to give the consumer the assurance that meat processed by irradiation is a safe product, a great deal of research has been developed in the world. The effect of irradiation on the hygienic quality of meat and meat products is considered as related to the control of meat-borne parasites of humans; elimination of pathogens from fresh meat and poultry; and elimination of pathogens from processed meat. Lipid oxidation and associated changes are the major causes of the quality deterioration of meat during storage. Irradiation of lipids induces the production of free radicals, which react with oxygen, leading to the formation of carbonyls, responsible for alterations in food nutritional and sensorial characteristics. Trans fatty acids are present in ground beef and can also be formed during its processing. Interestingly, the trans fatty acids, due to their chemical and physical characteristics, show more resistance to the oxidizing process. This property motivated us to investigate the level of the trans fatty acids, as well as the level of oxidation in irradiated ground beef. Irradiation of ground beef was performed by gamma rays from a 60 Co source. The applied radiation doses were 0; 1.0; 2.0; 3.0; 4.0; 5.0; 6.0; 7.0 and 8.0 kGy. Lipid peroxidation in terms of TBA number and carbonyl content was monitored during storage. The sample characteristics and trans fatty acids composition were measured, following irradiation and after 60 and 90 days of storage at -10 deg. C

  16. Molecular interaction of pinic acid with sulfuric acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurtén, Theo; Bilde, Merete

    2014-01-01

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...... cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures...

  17. (±)-2-Chloropropionic acid elevates reactive oxygen species formation in human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Aam, B.B.; Fonnum, F.

    2006-01-01

    (±)-2-Chloropropionic acid (2-CPA) is a neurotoxic compound which kills cerebellar granule cells in vivo, and makes cerebellar granule cells in vitro produce reactive oxygen species (ROS). We have studied the effect of 2-CPA on ROS formation in human neutrophil granulocytes in vitro. We found an increased formation of ROS after 2-CPA exposure using three different methods; the fluorescent probe DCFH-DA and the chemiluminescent probes lucigenin and luminol. Four different inhibitors of ROS formation were tested on the cells in combination with 2-CPA to characterize the signalling pathways. The spin-trap s-PBN, the ERK1/2 inhibitor U0126 and the antioxidant Vitamin E inhibited the 2-CPA-induced ROS formation completely, while the mitochondrial transition permeability pore blocker cyclosporine A inhibited the ROS formation partly. We also found that 2-CPA induced an increased nitric oxide production in the cells by using the Griess reagent. The level of reduced glutathione, measured with the DTNB assay, was decreased after exposure to high concentrations of 2-CPA. Western blotting analysis showed that 2-CPA exposure led to an elevated phosphorylation of ERK MAP kinase. This phosphorylation was inhibited by U0126. Based on these experiments it seems like the mechanisms for 2-CPA induced toxicity involves ROS formation and is similar in neutrophil granulocytes as earlier shown in cerebellar granule cells. This also implies that 2-CPA may be immunotoxic

  18. [Effect of indolylacetic acid on formation of bacteroid forms of Rhizobium leguminosarum].

    Science.gov (United States)

    Lobanok, E V; Bakanchikova, T I

    1979-01-01

    The purpose of this work was to study the effect of indolylacetic acid (IAA) on the strains of Rhizobium leguminosarum, effective and noneffective with respect to symbiotic nitrogen fixation (L4 and 245a, and 14--73, respectively). IAA at a concentration of 50 mcg/ml and higher inhibited the growth of the bacterium, temporarily delayed celular division, and induced intensive formation of elongated bacteroid-like cells, predominantly Y-shaped or having a clavate shape. Many bacteroid-like cells were capable of division after a certain delay.

  19. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    Science.gov (United States)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  20. Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa.

    Science.gov (United States)

    Yang, Xinmei; Matsui, Takashi; Kodama, Takeshi; Mori, Takahiro; Zhou, Xiaoxi; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2016-03-01

    In polyketide biosynthesis, ring formation is one of the key diversification steps. Olivetolic acid cyclase (OAC) from Cannabis sativa, involved in cannabinoid biosynthesis, is the only known plant polyketide cyclase. In addition, it is the only functionally characterized plant α+β barrel (DABB) protein that catalyzes the C2-C7 aldol cyclization of the linear pentyl tetra-β-ketide CoA as the substrate, to generate olivetolic acid (OA). Herein, we solved the OAC apo and OAC-OA complex binary crystal structures at 1.32 and 1.70 Å resolutions, respectively. The crystal structures revealed that the enzyme indeed belongs to the DABB superfamily, as previously proposed, and possesses a unique active-site cavity containing the pentyl-binding hydrophobic pocket and the polyketide binding site, which have never been observed among the functionally and structurally characterized bacterial polyketide cyclases. Furthermore, site-directed mutagenesis studies indicated that Tyr72 and His78 function as acid/base catalysts at the catalytic center. Structural and/or functional studies of OAC suggested that the enzyme lacks thioesterase and aromatase activities. These observations demonstrated that OAC employs unique catalytic machinery utilizing acid/base catalytic chemistry for the formation of the precursor of OA. The structural and functional insights obtained in this work thus provide the foundation for analyses of the plant polyketide cyclases that will be discovered in the future. Structural data reported in this paper are available in the Protein Data Bank under the accession numbers 5B08 for the OAC apo, 5B09 for the OAC-OA binary complex and 5B0A, 5B0B, 5B0C, 5B0D, 5B0E, 5B0F and 5B0G for the OAC His5Q, Ile7F, Tyr27F, Tyr27W, Val59M, Tyr72F and His78S mutant enzymes, respectively. © 2016 Federation of European Biochemical Societies.

  1. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  2. Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India

    Science.gov (United States)

    Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh

    2017-11-01

    Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.

  3. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    International Nuclear Information System (INIS)

    Fang Qingming; Nair, Jagadeesan; Sun Xin; Hadjiolov, Dimiter; Bartsch, Helmut

    2007-01-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary ω-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N 6 -ethenodeoxyadenosine (εdA) and 3, N 4 -ethenodeoxycytidine (εdC) by immunoaffinity/ 32 P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in ω-6 PUFA induced colon carcinogenesis

  4. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.

    Science.gov (United States)

    Xu, Wenlong; Zhang, Heng; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Zhu, Xionglu; Hao, Jingcheng

    2015-08-20

    In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do.

  5. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  6. Complex formation in the system uranium(VI) - alpha-substituted carboxylic acids studied by TRLFS. Pt. III. Alpha-aminoisobutyric acid at pH 4

    International Nuclear Information System (INIS)

    Moll, H.; Geipel, G.; Bernhard, G.; Fanghaenel, Th.; Grenthe, I.

    2002-01-01

    At higher ligand concentrations a 1:2 complex between UO 2 2+ and α-aminoisobutyric acid was observed at pH 4. Fluorescence lifetimes and spectra were obtained for UO 2 [NH 3 C(CH 3 ) 2 COO] 2 2+ . The complex formation constant was found to be log β 1:2 = 2.07±0.25. (orig.)

  7. Amino acid regulation of autophagosome formation

    NARCIS (Netherlands)

    Meijer, Alfred J.

    2008-01-01

    Amino acids are not only substrates for various metabolic pathways, but can also serve as signaling molecules controlling signal transduction pathways. One of these signaling pathways is mTOR-dependent and is activated by amino acids (leucine in particular) in synergy with insulin. Activation of

  8. Collapsed state of polyglutamic acid results in amyloid spherulite formation.

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly.

  9. Collapsed state of polyglutamic acid results in amyloid spherulite formation

    Science.gov (United States)

    Stehli, Daniel; Mulaj, Mentor; Miti, Tatiana; Traina, Joshua; Foley, Joseph; Muschol, Martin

    2015-01-01

    Self-assembly of proteins and peptides into amyloid fibrils involves multiple distinct intermediates and late-stage fibrillar polymorphs. Understanding the conditions and mechanisms that promote the formation of one type of intermediate and polymorph over the other represents a fundamental challenge. Answers to this question are also of immediate biomedical relevance since different amyloid aggregate species have been shown to have distinct pathogenic potencies. One amyloid polymorph that has received comparatively little attention are amyloid spherulites. Here we report that self-assembly of the intrinsically disordered polymer poly(L-glutamic) acid (PLE) can generate amyloid spherulites. We characterize spherulite growth kinetics, as well as the morphological, optical and tinctorial features of this amyloid polymorph previously unreported for PLE. We find that PLE spherulites share both tinctorial and structural characteristics with their amyloid fibril counterparts. Differences in PLE's molecular weight, polydispersity or chemistry could not explain the selective propensity toward either fibril or spherulite formation. Instead, we provide evidence that PLE polymers can exist in either a collapsed globule or an extended random coil conformation. The collapsed globule consistently produces spherulites while the extended coil assembles into disordered fibril bundles. This results suggests that these 2 PLE conformers directly affect the morphology of the resulting macroscopic amyloid assembly. PMID:28232889

  10. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    Science.gov (United States)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  11. Complexity in Acid?Base Titrations: Multimer Formation Between Phosphoric Acids and Imines

    OpenAIRE

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-01-01

    Abstract Solutions of Br?nsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Br?nsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid?base aggregates challenging. Here, we track such acid?base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by u...

  12. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    Science.gov (United States)

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  13. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    Science.gov (United States)

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  14. Etheno-DNA adduct formation in rats gavaged with linoleic acid, oleic acid and coconut oil is organ- and gender specific

    Energy Technology Data Exchange (ETDEWEB)

    Fang Qingming [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Nair, Jagadeesan [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)], E-mail: j.nair@dkfz.de; Sun Xin [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany); Hadjiolov, Dimiter [National Oncological Centre, Sofia (Bulgaria); Bartsch, Helmut [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120 Heidelberg (Germany)

    2007-11-01

    Intake of linoleic acid (LA) increased etheno-DNA adducts induced by lipid peroxidation (LPO) in white blood cells (WBC) of female but not of male volunteers [J. Nair, C.E. Vaca, I. Velic, M. Mutanen, L.M. Valsta, H. Bartsch, High dietary {omega}-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA adducts in white blood cells of female subjects, Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601]. Etheno-adducts were measured in rats gavaged with LA, oleic acid (OA) and saturated fatty acid rich coconut oil for 30 days. DNA from organs and total WBC was analyzed for 1, N{sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3, N{sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabeling. Colon was the most affected target with LA-treatment, where etheno-adducts were significantly elevated in both sexes. In WBC both adducts were elevated only in LA-treated females. Unexpectedly, OA treatment enhanced etheno-adduct levels in prostate 3-9 fold. Our results in rodents confirm the gender-specific increase of etheno-adducts in WBC-DNA, likely due to LPO induced by redox-cycling of 4-hydroxyestradiol. Colon was a target for LPO-derived DNA-adducts in both LA-treated male and female rats, supporting their role in {omega}-6 PUFA induced colon carcinogenesis.

  15. Formation of 1,2-diaminomaleodinitrile crystals in radiolyzed solid hydrocyanic acid

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Aliev, Z.G.; Kiryukhin, D.P.; Atovmyan, L.O.; Barkalov, I.M.

    1994-01-01

    Hydrocyanic molecules, HCN, are widely found in various extraterrestrial objects and have come to be regarded as the building blocks of chemical evolution, because they convert directly to more complex organic compounds, such as amino acids, nucleotides, and proteins. While observing the low-temperature conversion of radiolyzed solid HCN, the authors noted the formation of an amorphous polymer and the nucleation and growth of needle shaped crystals. The crystals were studied by X-ray diffraction methods and believed to be formed by 1,2-diaminomaleodinitrile, a tetramer of HCN, arising by recombination of aminocyanocarbene diradicals. Cobalt 60 was used as the radiation source, preirradiating with a 800 kGy dose a solid HCN sample at 77K

  16. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Directory of Open Access Journals (Sweden)

    Angel Catalá

    2013-01-01

    Full Text Available I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.

  17. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    Science.gov (United States)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  18. The effect of ionizing radiation on the fatty acid composition of natural fats and on lipid peroxide formation

    International Nuclear Information System (INIS)

    Hammer, C.T.; Wills, E.D.

    1979-01-01

    The effects of irradiation doses of 200 to 1000 krad on the fatty acid composition of saturated and unsaturated natural food fats have been studied. Lard, coconut oil, corn oil, methyl linoleate and herring oil have been analysed before and after irradiation for lipid peroxide content and fatty acid composition. The effects of storage under varied conditions after irradiation have also been investigated. Irradiation doses of 200 to 1000 krad had little effect on the fatty acid compositions of saturated fats (lard and coconut oil) or of fats with a high antioxidant content (corn oil) but caused destruction of 98 per cent of the highly unsaturated acids (18:4, 20:5, 22:6) and 46 per cent of the diene acids (18:2) in herring oil. The destruction of the polyunsaturated fatty acids increased with increasing storage temperature and storage time. The destruction of polyunsaturated fatty acids was accompanied by an increase in lipid peroxide formation. It is considered that changes in fatty acid composition in natural foods after irradiation are important in consideration of the use of irradiation of food preservation. (author)

  19. Effect of Type of Food on the Trans Fatty Acids Formation and Characteristic of Oil during Frying Process

    International Nuclear Information System (INIS)

    Atta, N.M.M.; Esmail, A.E.; Shams El Din, N.M.M.

    2010-01-01

    This study was carried out to investigate the physical and chemical changes which take place in blended oil (sunflower oil: soy bean oil 75: 25 w/w), therefore frying different types of food, such as fresh foods (potatoes, falafel, fish, meat and chicken) and semi-fried Foods (chicken bites koki (nuggets), shish pan koki and farm frites potato) during frying process for 20, 40 and 60 minutes at (180±5 degree C), also studying the effect of different types of food on the oil uptake and formation of trans fatty acids in oils during frying process. The obtained results as follows: the color (red unit), viscosity, acidity and peroxide value of investigated oils were increased during frying all foods (fresh and semi-fried foods), but the increase was more pronounced in case of frying semi-fried foods, while the refractive index of frying oil of semi-fried foods was decreased compared with control oil and frying oils of fresh food. The results indicated that a considerable range of oil uptake quantities during frying as a result of variation type of foods, among all food, finger potato extensive absorption of the frying oil during frying process compared with the other fresh foods, as a results the semi-fried foods will contain a higher percent of oil included the oil of its formation, that during its frying, it was absorbed a few amount of oil. These results indicated that, the percentage of formation trans fatty acid (eliadic acid) in frying oils after 20 and 60 minutes during frying semi-fried foods was more that than frying fresh foods. Also, the results observed that, the percentage of eliadic acid in frying oil of fresh potato was lower than the other frying oils of fresh food, additionally the quality of frying oil of fresh potato finger was the best compared to frying oil of the other food material

  20. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  1. Aldehydic acids in frying oils: formation, toxicological significance and analysis

    Directory of Open Access Journals (Sweden)

    Kamal-Eldin, Afaf

    1996-10-01

    Full Text Available Aldehydic acids are generated in oxidized lipids as a result of decomposition of hydroperoxides by (β-scission reactions. Aldehydes are known to interact with proteins and DNA and to impair enzymatic functions. Aldehydic esters from oxidized lipids were reabsorbed to a significant extent in rats. This paper reviews the mechanism of formation of esterified aldehydic acids in frying oils and their physiological/toxicological effects. The paper also gives an overview of relevant basic analytical techniques that needs to be improved to establish reliable quantitative method (s.

    Ácidos aldehídicos son producidos en lípidos oxidados como resultado de la descomposición de hidroperóxidos por reacciones de (β-escición. Es conocido que los aldehídos interaccionan con las proteínas y el ADN y debilitan las funciones enzimáticas. Los esteres aldehídicos de lípidos oxidados fueron reabsorbidos en una cantidad significativa en ratas. Este artículo revisa los mecanismos de formación de ácidos aldehídicos esterificados en aceites de fritura y sus efectos fisiológicos/toxicológicos. El artículo también ofrece una visión de conjunto de las técnicas analíticas básicas que necesitan ser mejoradas para establecer métodos cuantitativos fiables.

  2. Role in Cheese Flavour Formation of Heterofermentative Lactic Acid Bacteria from Mesophilic Starter Cultures

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bæk

    -starters including strains from our culture collection were used throughout the project. Initially selected strains were screened for enzyme activities involved in cheese flavour formation after growth in a cheese based medium (CBM) and in a nutrient rich growth medium (MRS). The Leuconostoc strains had low....... A cheese trial was performed with selected strains to investigate how the heterofermentative strains influenced the ripening in semi-hard cheese. The cheeses were made using a Lactococcus starter including citrate positive Lactoccus and with the addition of one strain of heterofermentative bacteria...... with plant isolates, the ability to ferment citrate and lacked several genes involved in the fermentation of complex carbohydrates. The presented research in this thesis has gained insight in to the role of heterofermentative lactic acid bacteria in cheese flavour formation. The traditional DL...

  3. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2011-01-01

    has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling

  4. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  5. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  6. Hydration of the sulfuric acid-methylamine complex and implications for aerosol formation.

    Science.gov (United States)

    Bustos, Danielle J; Temelso, Berhane; Shields, George C

    2014-09-04

    The binary H2SO4-H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0-6. Because it is a strong acid-base system, H2SO4-NH2CH3 quickly forms a tightly bound HSO4(-)-NH3CH3(+) complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4-NH2CH3 is -21.8 kcal mol(-1) compared with -16.8 kcal mol(-1) for H2SO4-NH3 and -12.8 kcal mol(-1) for H2SO4-H2O. Adding one to two water molecules to the H2SO4-NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4-NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.

  7. Comparative study of the efficiency of complex formation and extraction of thorium by solutions of certain alkylaromatic α-hydroxy acids in heptanol

    International Nuclear Information System (INIS)

    Charykov, A.K.; Aleksandrova, E.A.; Vasil'eva, O.N.

    1986-01-01

    The constants for the extraction of thorium by solutions of alkylaromatic α-hydroxy acids in heptanol occur in the order log K/sub ex/ (hydroxydiphenylacetic acid) > log K/sub ex/ (phenoxyacetic acid) > log K/sub ex/ (hydroxyphenylacetic acid). For the example of extraction equilibria involving the participation of thorium carboxylate complexes an extraction efficiency parameter is introduced which enables the efficiency of extraction to be predicted on the basis of information on the formation constants of the neutral complexes and the dissociation constants of the extractant acids in the aqueous phase

  8. Formation of iso-ursodeoxycholic acid during administration of ursodeoxycholic acid in man

    NARCIS (Netherlands)

    Beuers, U.; Fischer, S.; Spengler, U.; Paumgartner, G.

    1991-01-01

    The appearance of iso-ursodeoxycholic acid (isoUDCA; 3 beta,7 beta-dihydroxy-5 beta-cholan-24-oic acid) in serum of patients with chronic cholestatic liver disease and of healthy subjects during administration of ursodeoxycholic acid (UDCA) is reported. Comparison of the mass spectrum of the newly

  9. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  10. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo.

    Science.gov (United States)

    Aliwarga, Theresa; Raccor, Brianne S; Lemaitre, Rozenn N; Sotoodehnia, Nona; Gharib, Sina A; Xu, Libin; Totah, Rheem A

    2017-11-01

    Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid (AA) oxidation that have important cardioprotective and signaling properties. AA is an ω-6 polyunsaturated fatty acid (PUFA) that is prone to autoxidation. Although hydroperoxides and isoprostanes are major autoxidation products of AA, EETs are also formed from the largely overlooked peroxyl radical addition mechanism. While autoxidation yields both cis- and trans-EETs, cytochrome P450 (CYP) epoxygenases have been shown to exclusively catalyze the formation of all regioisomer cis-EETs, on each of the double bonds. In plasma and red blood cell (RBC) membranes, cis- and trans-EETs have been observed, and both have multiple physiological functions. We developed a sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay that separates cis- and trans- isomers of EETs and applied it to determine the relative distribution of cis- vs. trans-EETs in reaction mixtures of AA subjected to free radical oxidation in benzene and liposomes in vitro. We also determined the in vivo distribution of EETs in several tissues, including human and mouse heart, and RBC membranes. We then measured EET levels in heart and RBC of young mice compared to old. Formation of EETs in free radical reactions of AA in benzene and in liposomes exhibited time- and AA concentration-dependent increase and trans-EET levels were higher than cis-EETs under both conditions. In contrast, cis-EET levels were overall higher in biological samples. In general, trans-EETs increased with mouse age more than cis-EETs. We propose a mechanism for the non-enzymatic formation of cis- and trans-EETs involving addition of the peroxyl radical to one of AA's double bonds followed by bond rotation and intramolecular homolytic substitution (S H i). Enzymatic formation of cis-EETs by cytochrome P450 most likely occurs via a one-step concerted mechanism that does not allow bond rotation. The ability to accurately measure

  11. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Baochang, E-mail: sunbc@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Shao, Lei, E-mail: shaol@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  12. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid

    Science.gov (United States)

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-01

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.

  13. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.

    Science.gov (United States)

    Chen, Hengye; Virk, Muhammad Safiullah; Chen, Fusheng

    2016-06-01

    The concentration of advanced glycation end products (AGEs) in foods, which are formed by Maillard reaction, has demonstrated as risk factors associated with many chronic diseases. The AGEs inhibitory activities of five common phenolic acids (protocatechuic acid, dihydroferulic acid, p-coumaric acid, p-hydroxybenzoic acid and salicylic acid) with different chemical properties had been investigated in two food simulation systems (glucose-bovine serum albumin (BSA) and oleic acid-BSA). The results substantiated that the AGEs inhibitory abilities of phenolic acids in the oleic acid BSA system were much better than the glucose-BSA system for their strong reducing powers and structures. Among them, dihydrogenferulic acid showed strong inhibition of AGEs formation in oleic acid-BSA system at 0.01 mg/mL compared to nonsignificant AGEs inhibitory effect in oleic acid-BSA system at 10-fold higher concentration (0.1 mg/mL). This study suggests that edible plants rich in phenolic acids may be used as AGEs inhibitor during high-fat cooking.

  14. Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

    Science.gov (United States)

    Yamamoto, A; Kawashima, Y

    1997-01-01

    The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver. PMID:9230124

  15. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    Science.gov (United States)

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  16. Formation of trans fatty acids during the frying of chicken fillet in corn oil.

    Science.gov (United States)

    Yang, Meiyan; Yang, Ying; Nie, Shaoping; Xie, Mingyong; Chen, Feng; Luo, Pengju George

    2014-05-01

    To assess effects of heated edible oils on intake of trans fatty acids (TFAs); the formation of TFAs in cooking conditions was investigated by a frying system model, in which chicken fillet was fried in a commercial corn oil at 170 °C, for 12 frying cycles. The main TFAs detected in chicken fillet were trans C18:2 fatty acids (FAs) and trans C18:3 FAs, which exhibited no significant differences among the frying cycles. Besides, the content of trans C18:1 FAs were very low in all samples on different frying cycles. The intake of TFAs was estimated to be 0.06 g/100 g when chicken fillet fried in this process was consumed. These results suggest that an ordinary frying process upon a commercial corn oil has little impact on the daily TFAs intake.

  17. Temperature controlled formation of lead/acid batteries

    Science.gov (United States)

    Bungardt, M.

    At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.

  18. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation.

    Science.gov (United States)

    Halford, Nigel G; Muttucumaru, Nira; Powers, Stephen J; Gillatt, Peter N; Hartley, Lee; Elmore, J Stephen; Mottram, Donald S

    2012-12-05

    Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.

  19. Long Chain Saturated and Unsaturated Carboxylic Acids: Filling a Large Gap of Knowledge in Their Enthalpies of Formation.

    Science.gov (United States)

    Rogers, Donald W; Zavitsas, Andreas A

    2017-01-06

    Despite their abundance in nature and their importance in biology, medicine, nutrition, and in industry, gas phase enthalpies of formation of many long chain saturated and unsaturated fatty acids and of dicarboxylic acids are either unavailable or have been estimated with large uncertainties. Available experimental values for stearic acid show a spread of 68 kJ mol -1 . This work fills the knowledge gap by obtaining reliable values by quantum theoretical calculations using G4 model chemistry. Compounds with up to 20 carbon atoms are treated. The theoretical results are in excellent agreement with well established experimental values when such values exist, and they provide a large number of previously unavailable values.

  20. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables.

    Science.gov (United States)

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-10-01

    Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  2. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  3. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    International Nuclear Information System (INIS)

    Pyreu, Dmitrii; Gruzdev, Matvey; Kumeev, Roman; Gridchin, Sergei

    2014-01-01

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH 2 , CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH 2 , N − or NH2, N − , COO-coordination modes of GlyGly in the complex ZnNtaGGH −1 . - Abstract: The isothermal calorimetry, pH-potentiometric titration and 1 H and 13 C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn 2+ –Nta 3– –L − (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO 3 ). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed

  4. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  5. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    Science.gov (United States)

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  6. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  7. Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins

    Science.gov (United States)

    Neish, Catherine; Somogyi, Á.; Smith, M. A.

    2009-09-01

    Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.

  8. Formation of Broensted acids sites in the reaction of cyclohexanol on NaCeY zeolites

    International Nuclear Information System (INIS)

    Vogt, O.; Nattich, M.; Datka, J.; Gil, B.

    2002-01-01

    This study was undertaken to elucidate why the catalytic activity of NaCeY in cyclohexanol reactions carried out in a pulse reactor increases with the pulse number. We studied therefore the effect of cyclohexanol and also of ethanol and water on catalytic activity NaCeY (of exchange degrees 36 and 72%) in cyclohexanol reactions: isomerization and disproportionation. We also studied the reaction of cyclohexanol and water with NaCeY zeolite by IR spectroscopy. Our results evidenced that new Broensted acid sites were formed by the reaction of cyclohexanol and water. This was shown by IR spectroscopy: the increase of Si-O 1 H-Al band 3638 cm -1 and in increase of ammonium ions band (upon ammonia adsorption). The new sites were formed by hydrolysis of Ce 3+ ions with water introduced in a pulse, or produced by dehydration of cyclohexanol catalyzed by acid sites. Formation of new Broensted acid sites resulted in an increase of catalytic activity of NaCeY in cyclohexane reaction as observed in this study and also in cyclohexanol reactions. (author)

  9. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  10. Ursodeoxycholic Acid in the Prevention of Gallstone Formation After Bariatric Surgery: an Updated Systematic Review and Meta-analysis.

    Science.gov (United States)

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Svokos, Alexis A; Svokos, Konstantina A; Chatedaki, Christina; Sioka, Eleni; Zacharoulis, Dimitris

    2017-11-01

    We aim to review the available literature on obese patients treated with ursodeoxycholic acid (UDCA) in order to prevent gallstone formation after bariatric surgery. A systematic literature search was performed in PubMed, Cochrane library, and Scopus databases, in accordance with the PRISMA guidelines. Eight studies met the inclusion criteria incorporating 1355 patients. Random-effects meta-analysis showed a lower incidence of gallstone formation in patients taking UDCA. Subgroup analysis reported fewer cases of gallstone disease in the UDCA group in relation to different bariatric procedures, doses of administered UDCA, and time from bariatric surgery. Adverse events were similar in both groups. Fewer patients required cholecystectomy in UDCA group. No deaths were reported. The administration of UDCA after bariatric surgery seems to prevent gallstone formation.

  11. The effects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys

    DEFF Research Database (Denmark)

    Damsgaard, C. T.; Mølgaard, C.; Gyldenløve, S. N.

    2012-01-01

    NTRODUCTION: Animal studies indicate that n-3 long-chain polyunsaturated fatty acids (LCPUFAs) increase bone formation. To our knowledge, no studies have examined this in growing humans. This study investigated whether bone mass and markers of bone formation and growth were (i) associated...... with docosahexaenoic acid (DHA) status and (ii) affected by fish oil supplementation, in adolescent boys. METHODS: Seventy-eight healthy, slightly overweight 13- to 15-y-old boys were randomly assigned to breads with DHA-rich fish oil (1.1 g/d n-3 LCPUFA) or control for 16 wk. Whole-body bone mineral content (BMC......), bone area (BA), bone mineral density (BMD), plasma osteocalcin, and growth factors were measured at wk 0 and wk 16, as well as diet, physical activity, and n-3 LCPUFA status in erythrocytes. RESULTS: Fish oil strongly increased DHA status (P = 0.0001). No associations were found between DHA status...

  12. Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation.

    Science.gov (United States)

    Dusane, Devendra H; O'May, Che; Tufenkji, Nathalie

    2015-07-01

    Chromobacterium violaceum is an opportunistic pathogen that causes infections that are difficult to treat. The goal of this research was to evaluate the effect of selected tannins (tannic acid (TA) and gallic acid (GA)) on bacterial growth, motility, antibiotic (carbenicillin, tetracycline) susceptibility, and biofilm formation. Both tannins, particularly TA, impaired bacterial growth levels and swimming motilities at sub-minimum inhibitory concentrations (sub-MICs). In combination with tannins, antibiotics showed increased MICs, suggesting that tannins interfered with antibacterial activity. Sub-MICs of tetracycline or TA alone enhanced biofilm formation of C. violaceum; however, in combination, these compounds inhibited biofilm formation. In contrast, carbenicillin at sub-MICs was effective in inhibiting C. violaceum biofilm formation; however, in combination with lower concentrations of TA or GA, biofilms were enhanced. These results provide insights into the effects of tannins on C. violaceum growth and their varying interaction with antibiotics used to target C. violaceum infections.

  13. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira [Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Takano, Yoshinori, E-mail: oba@lowtem.hokudai.ac.jp [Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061 (Japan)

    2016-08-10

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH{sub 2}DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  14. DEUTERIUM FRACTIONATION DURING AMINO ACID FORMATION BY PHOTOLYSIS OF INTERSTELLAR ICE ANALOGS CONTAINING DEUTERATED METHANOL

    International Nuclear Information System (INIS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira; Takano, Yoshinori

    2016-01-01

    Deuterium (D) atoms in interstellar deuterated methanol might be distributed into complex organic molecules through molecular evolution by photochemical reactions in interstellar grains. In this study, we use a state-of-the-art high-resolution mass spectrometer coupled with a high-performance liquid chromatography system to quantitatively analyze amino acids and their deuterated isotopologues formed by the photolysis of interstellar ice analogs containing singly deuterated methanol CH 2 DOH at 10 K. Five amino acids (glycine, α -alanine, β -alanine, sarcosine, and serine) and their deuterated isotopologues whose D atoms are bound to carbon atoms are detected in organic residues formed by photolysis followed by warming up to room temperature. The abundances of singly deuterated amino acids are in the range of 0.3–1.1 relative to each nondeuterated counterpart, and the relative abundances of doubly and triply deuterated species decrease with an increasing number of D atoms in a molecule. The abundances of amino acids increase by a factor of more than five upon the hydrolysis of the organic residues, leading to decreases in the relative abundances of deuterated species for α -alanine and β -alanine. On the other hand, the relative abundances of the deuterated isotopologues of the other three amino acids did not decrease upon hydrolysis, indicating different formation mechanisms of these two groups upon hydrolysis. The present study facilitates both qualitative and quantitative evaluations of D fractionation during molecular evolution in the interstellar medium.

  15. Rate of Pu(IV) polymer formation in nitric acid solutions. A parametric study

    Energy Technology Data Exchange (ETDEWEB)

    Toth, L.M.; Osborne, M.M.

    1984-07-01

    The kinetics of Pu(IV) polymer formation has been examined with the intent of developing a simple mathematical equation that would predict the appearance of polymer. The fundamental polymerization rate has been found to be dependent on [Pu(IV)]{sup 1} {sup 2} and [HNO{sub 3}]{sup -6}. The activation energy for polymer formation is real temperature dependent, varying from 66.9 kJ/mol (16 kcal/mol) at 25{sup 0}C to 150.5 kJ/mol (36 kcal/mol) at 105{sup 0}C. These relationships have guided the developement of an empirical model that gives time to form 2% polymer in hours, t = [Pu/sub T/]/sup a/[HNO{sub 3}]/sup b/ Ae/sup c/T/, where a = -1.6, b = 4.6, c = 12.300 K, and A = 7.66 x 10{sup -16} h M{sup -3}; [Pu/sub T/] is the total plutonium concentration, mol/L; and [HNO{sub 3}] is the makeup nitric acid concentration, mol/L. 11 references, 26 figures, 1 table.

  16. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben; Hamid, Mohamed Ali

    2015-01-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H 3 PO 4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid. (paper)

  17. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    Science.gov (United States)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  18. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  19. The formation mechanism of lactones in Gouda cheese

    NARCIS (Netherlands)

    Alewijn, M.; Smit, B.; Sliwinski, E.L.; Wouters, J.T.M.

    2007-01-01

    Lactones are fat-derived aroma compounds, but the formation mechanism of these compounds during ripening of Gouda cheese is unknown. Both enzymatic and chemical formation pathways were investigated in this study. Lactone formation from milk triglycerides or free fatty acids by lactic acid bacteria

  20. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.

    Science.gov (United States)

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrP(C) in prion formation was examined using a cell painting technique. PrP(Sc) formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrP(C). In contrast, PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc). Furthermore, the presence of desialylated PrP(C) inhibited the production of PrP(Sc) within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrP(C) contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrP(C). Desialylated PrP(C) was less sensitive to cholesterol depletion than PrP(C) and was not released from cells by treatment with glimepiride. The presence of desialylated PrP(C) in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters.

    Science.gov (United States)

    Zhang, Xiaowei; Gao, Boyan; Qin, Fang; Shi, Haiming; Jiang, Yuangrong; Xu, Xuebing; Yu, Liangli Lucy

    2013-03-13

    The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety.

  2. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  3. Induction of Biofilm Formation in the Betaproteobacterium Burkholderia unamae CK43B Exposed to Exogenous Indole and Gallic Acid

    Science.gov (United States)

    Kim, Dongyeop; Sitepu, Irnayuli R.

    2013-01-01

    Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments. PMID:23747701

  4. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    Science.gov (United States)

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  5. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  6. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2009-01-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y...

  7. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  8. Reuse of sewage sludge as a catalyst in ozonation – Efficiency for the removal of oxalic acid and the control of bromate formation

    International Nuclear Information System (INIS)

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-01-01

    Highlights: ► Sewage sludge was converted into catalyst (SBC) and characterized. ► SBC can enhance oxalic acid degradation in ozonation. ► Surface reaction mechanism is responsible for enhancement of ozonation by SBC. ► SBC can control the formation of bromate in ozonation. ► Several combined reasons for the control of bromate formation are proposed. - Abstract: Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl 2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO 3 − ) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO 3 − formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO 3 − formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO 3 − formation was demonstrated and the reason for its control in the process of O 3 /SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase.

  9. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    Science.gov (United States)

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  10. Dietary preferences of weaned piglets offered diets containing organic acids

    Directory of Open Access Journals (Sweden)

    K. PARTANEN

    2008-12-01

    Full Text Available A preference test and a performance trial were carried out to examine weaned piglets’ feed intake response to diets containing either lactic acid,formic acid,calcium formate,or sodium benzoate (8 g kg-1 feed.In Experiment 1, throughout a 21-d post-weaning period,30 entire litters (306 piglets weaned at the age of 30 d were allowed to choose between two organic-acid-supplemented diets. All of the four different organic-acid-supplemented diets were tested in pairs against each other,and the six possible combinations were lactic acid +formic acid,lactic acid +calcium formate,lactic acid + sodium benzoate,formic acid +calcium formate,formic acid +sodium benzoate,and calcium for-mate +sodium benzoate.Piglets preferred diets supplemented with sodium benzoate to ones supplemented with formic acid or calcium formate.The acceptability of diets supplemented with lactic acid,formic acid,or calcium formate was similar.In Experiment 2,until the age of 58 d,60 piglets from 10 litters weaned at the age of 28 or 38 d were fed non-acidified diets or ones supplemented with lactic acid,formic acid,calcium formate,or sodium benzoate.Feed consumption did not differ between piglets fed non-acidified and those fed organic-acid-supplemented diets. Growth performance was reduced by dietary calcium formate supplementation, while the performance of piglets fed other organic-acid-supplemented diets did not differ significantly from those fed the non-acidified control diet.The frequency of post-weaning diarrhoea was highest in piglets fed diets supplemented with calcium formate and lowest in piglets fed diets supplemented with formic acid.;

  11. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    Science.gov (United States)

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Investigations of foam formation and its stabilization in the extraction systems: TBP in kerosene-nitric acid solutions

    International Nuclear Information System (INIS)

    Zielinski, A.

    1980-01-01

    The paper is devoted to studies of foam formation and its stabilization in TBP - kerosene - nitric acid solutions extracting systems. It was experimentally found, that TBP acts as a stabilizator of thin, liquid foam films as well as an emulgator in forming dispersions. The stabilizing effect of fine emulsions w/o on formed foams column was observed. Relevant references on the subject are also reviewed. (author)

  13. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi

    International Nuclear Information System (INIS)

    Werner, I.; Bacher, A.; Eisenreich, W.

    1997-01-01

    The biosynthesis of gallic acid was studied in cultures of the fungus Phycomyces blakesleeanus and in leaves of the tree Rhus typhina. Fungal cultures were grown with [1-13C]glucose or with a mixture of unlabeled glucose and [U-13C6]glucose. Young leaves of R. typhina were kept in an incubation chamber and were supplied with a solution containing a mixture of unlabeled glucose and [U-13C6]glucose via the leaf stem. Isotope distributions in isolated gallic acid and aromatic amino acids were analyzed by one-dimensional 1H and 13C NMR spectroscopy. A quantitative analysis of the complex isotopomer composition of metabolites was obtained by deconvolution of the 13C13C coupling multiplets using numerical simulation methods. This approach required the accurate analysis of heavy isotope chemical shift effects in a variety of different isotopomers and the analysis of long range 13C13C coupling constants. The resulting isotopomer patterns were interpreted using a retrobiosynthetic approach based on a comparison between the isotopomer patterns of gallic acid and tyrosine. The data show that both in the fungus and in the plant all carbon atoms of gallic acid are biosynthetically equivalent to carbon atoms of shikimate. Notably, the carboxylic group of gallic acid is derived from the carboxylic group of an early intermediate of the shikimate pathway and not from the side chain of phenylalanine or tyrosine. It follows that the committed precursor of gallic acid is an intermediate of the shikimate pathway prior to prephenate or arogenate, most probably 5-dehydroshikimate. A formation of gallic acid via phenylalanine, the lignin precursor, caffeic acid, or 3,4, 5-trihydroxycinnamic acid can be ruled out as major pathways in the fungus and in young leaves of R. typhina. The incorporation of uniformly 13C-labeled glucose followed by quantitative NMR analysis of isotopomer patterns is suggested as a general method for biosynthetic studies. As shown by the plant experiment, this

  14. Formation of amino acid precursors in the Solar System small bodies using Aluminium-26 as an energy source

    Science.gov (United States)

    Kebukawa, Yoko; Kobayashi, Kensei; Kawai, Jun; Mita, Hajime; Tachibana, Shogo; Yoda, Isao; Misawa, Shusuke

    2016-07-01

    Carbonaceous chondrites contain various organic matter including amino acids that may have played an important role for origin of life on the early Earth. The parent bodies of the chondritic meteorites likely formed from silicate dust grains containing some water ice and organic compounds. These planetesimals are known to contain short-lived radio isotopes such as ^{26}Al, and the heat generated from the decay of ^{26}Al was considered to be used for melting ice. The liquid water, for example, changed anhydrous silicates into hydrous silicates, i.e., aqueous alteration. The liquid water would act also as an ideal reaction medium for various organic chemistry. Cody et al. [1] proposed IOM formation via formose reaction starting with formaldehyde and glycolaldehyde during aqueous activity in the small bodies. Additional hydrothermal experiments showed that ammonia enhanced the yields of IOM like organic solids [2]. Formaldehyde and ammonia are ubiquitous in the Solar System and beyond, e.g., comets contain H _{2}CO : NH _{3} : H _{2}O = 0.4-4 : 0.5-1.5 : 100 [3]. Thus these molecules can be expected to have existed in some Solar System small bodies. We study the liquid phase chemistry of the formaldehyde and ammonia, including formations of amino acid precursor molecules, via hydrothermal experiments at isothermal temperatures of 90 °C to 200 °C. We also evaluate the effects of gamma-ray which is released from the decay of ^{26}Al with gamma-ray irradiation experiments using a ^{60}Co gamma-ray source at Tokyo Institute of Technology. Amino acids were detected mostly after acid hydrolysis of heated or irradiated solutions, indicating that most of the amino acids in the products exist as precursors. Some samples contained 'free' amino acids that were detected without acid hydrolysis, but much lower abundance than after acid hydrolysis. Kendrick mass defect (KMD) analyses of High resolution mass spectra obtained using ESI-MS revealed that various CHO and CHNO

  15. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    Science.gov (United States)

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-03

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] acid concentrations.

  16. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    Science.gov (United States)

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  17. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  18. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

    OpenAIRE

    Aguilera-Gomez, Angelica; Zacharogianni, Margarita; van Oorschot, Marinke M; Genau, Heide; Grond, Rianne; Veenendaal, Tineke; Sinsimer, Kristina S; Gavis, Elizabeth R; Behrends, Christian; Rabouille, Catherine

    2017-01-01

    Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and sta...

  19. Decomposition of peracetic acid catalyzed by vanadium complexes

    International Nuclear Information System (INIS)

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-01-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0 2 and small amounts of CO 2 , the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO 2 is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V 5+ ions and peracetic acid and the slow conversion of this complex into the observed products

  20. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate

    Directory of Open Access Journals (Sweden)

    Xinxu Yuan

    2018-06-01

    Full Text Available Short chain fatty acids (SCFAs, a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate on the activation of Nod-like receptor pyrin domain 3 (Nlrp3 inflammasome in endothelial cells (ECs and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA mouse model fed with the Western diet (WD, we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc+/+, which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc-/-. Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc+/+, but not Asc-/- mice. In cultured ECs (EOMA cells, butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket or cholesterol crystals (CHC, while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2•- upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation. Keywords: Arterial endothelium, Short chain fatty acids, Inflammation, Neointima, Atherosclerosis

  1. Acid rain. Les pluies acides

    Energy Technology Data Exchange (ETDEWEB)

    Curren, T

    1979-11-28

    This report was produced for the use of Members of Parliament and House of Commons committees. The document describes the formation of acid rain, emissions of acidifying pollutants in North America, the growth of the problem and its environmental effects on aquatic and terrestrial ecosystems, human health and man-made structures. Areas of Canada which are most susceptible are identified. Actions taken by Parliament are given, including the formation of a sub-committee on acid rain and the passing of Bill C-51 in 1980 to amend the Clean Air Act, bringing it closer to a similar law in the U.S. A chronology of government responses to acid rain at the international, national and provincial level, is given. The most recent government actions included the passing of the US Clean Air Act by the Senate, the amending of the act into law, and commencement of negotiations to develop a Canada-US Air Quality Accord. 10 refs.

  2. Fabrication and formation mechanism of poly (L-lactic acid ultrafine multi-porous hollow fiber by electrospinning

    Directory of Open Access Journals (Sweden)

    Q. Z. Yu

    2013-01-01

    Full Text Available Poly(L-lactic acid (PLLA ultrafine multi-porous hollow fibers are fabricated by electrospinning with methylene dichloride as solvent. The Kirkendall effect has been widely applied for the fabrication of hollow structure in metals and inorganic materials. In this study, a conceptual extension is proposed for the formation mechanism: the development of porous hollow fiber undergoes three stages. The initial stage is the generation of small voids or pits on the surface of the fiber via surface diffusion and phase separation; the second stage is the formation of multi-pores penetrating the core of the fiber through the interaction of Kirkendall effect, surface diffusion and phase separation; the third stage is dominated by surface diffusion of the core material along the pore surface. To explore the formation conditions, the factors including ambient temperature, relativity humidity (R. H., molecular weight and fiber diameter are studied. The longitudinal and cross sectional morphologies of these fibers are examined by scanning electron micrograph (SEM. The results show that the prerequisite for the formation of uniform porous hollow PLLA fibers include moderate ambient temperature (10~20°C and appropriate molecular weight for the PLLA, as well as the diameter of the fiber in the range of several micrometers to about 100 nanometers.

  3. Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth--an advanced green biorefining approach.

    Science.gov (United States)

    Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans

    2015-02-01

    A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  5. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets

    International Nuclear Information System (INIS)

    Arisawa, Kotoko; Mitsudome, Haruka; Yoshida, Konomi; Sugimoto, Shizuka; Ishikawa, Tomoko; Fujiwara, Yoko; Ichi, Ikuyo

    2016-01-01

    The degree of saturation of fatty acid chains in the bilayer membrane structure is known to control membrane fluidity and packing density. However, the significance of fatty acid composition in the monolayers of lipid droplets (LDs) has not been elucidated. In this study, we noted a relationship between the size of LDs and the fatty acid composition of the monolayer. To obtain large LDs, we generated NIH3T3 cells overexpressing fat-specific protein 27 (FSP27). This induced the fusion of LDs, resulting in larger LDs in FSP27-overexpressing cells compared with LDs in control cells. Moreover, the lipid extracts of LDs from FSP27-overexpressing cells reconstituted large-droplet emulsions in vitro, implying that the lipid properties of LDs might affect the size of LDs. FSP27-overexpressing cells had more saturated fatty acids in the phospholipid monolayer of the LDs compared with control cells. To further investigate the effects of the degree of phospholipid unsaturation on the size of LDs, we synthesized artificial emulsions of a lipid mixed with distearoylphosphatidylcholine (DSPC, diC18:0-PC) and with dioleoylphosphatidylcholine (DOPC, diC18:1n-9-PC) and compared the sizes of the resulting LDs. The emulsions prepared from saturated PC had larger droplets than those prepared from unsaturated PC. Our results suggest that saturated fatty acid chains in phospholipid monolayers might establish the form and/or stability of large LDs. - Highlights: • The lipid extracts of larger LDs from FSP27 cells reconstructed large-droplet emulsions. • Isolated LDs from FSP27 cells had more saturated fatty acids in the phospholipid monolayer compared with the control. • Saturated fatty acids in the phospholipid monolayer are a factor in the formation of large emulsions.

  6. Amide-conjugated indole-3-acetic acid and adventitious root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.

    1986-01-01

    The purpose of this research was to investigate further the relationship between amide-conjugated auxin and adventitious root formation. Indoleacetylaspartic acid (IAA-aspartate) was positively identified as the predominant conjugate isolated from mung bean cuttings after the cuttings has been treated with 10 -3 M IAA. In cuttings treated with [1- 14 C]IAA immediately after excision (0 hr), the percent of extractable 14 C in IAA-aspartate in the hypocotyl sharply increased until 36 hr, then steadily declined. [ 14 C]IAA was completely metabolized between 12 and 24 hr. The rooting activities of IAA-L-aspartate, IAA-L-alanine, and IAA-glycine were determined at various stages of root formation; some cuttings were pretreated with 10 -3 M IAA at 0 hr. Pretreated cuttings that were treated with IAA-glycine at 12, 24, 36 hr exhibited the greatest consistency between replications, the greatest number of long roots, and the longest roots. The conjugates did not stimulate rooting as effectively as IAA, yet like IAA, generally enhanced rooting the greatest when applied before the first cell division (24 hr)

  7. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    Science.gov (United States)

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (beer aroma.

  8. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  9. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    Science.gov (United States)

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Complex formation between glutamic acid and molybdenum (VI)

    International Nuclear Information System (INIS)

    Gharib, Farrokh; Khorrami, S.A.; Sharifi, Sasan

    1997-01-01

    Equilibria of the reaction of molybdenum (VI) with L-glutamic acid have been studied in aqueous solution in the pH range 2.5 to 9.5, using spectrophotometric and optical rotation methods at constant ionic strength (0.15 mol dm -3 sodium perchlorate) and temperature 25 ± 0.1 degC. Our studies have shown that glutamic acid forms a mononuclear complex with Mo(VI) of the type MoO 3 L 2- at pH 5.5. The stability constant of this complexation and the dissociation constants of L-glutamic acid have been determined. (author). 17 refs., 2 figs., 4 tabs

  11. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon.

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-11-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90-100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon.

  12. On the formation of C2H5O2+ ions having the structure of hydroxy-protonated acetic acid

    NARCIS (Netherlands)

    Terlouw, J.K.; Koster, C.G. de; Levsen, K.

    1984-01-01

    Experiments are reported which are best explained in terms of the formation of the long-sought hydroxy-protonated acetic acid, CH3C(O)OH2- This C2 H5O2+ species, generated upon dissociative ionization of 2,4-dihydroxy-2-methylpentane (consecutive losses of CH3. and C3H6), is characterized by a

  13. Ozone Sensitivity in Hybrid Poplar Correlates with Insensitivity to Both Salicylic Acid and Jasmonic Acid. The Role of Programmed Cell Death in Lesion Formation1

    Science.gov (United States)

    Koch, Jennifer Riehl; Creelman, Robert A.; Eshita, Steven M.; Seskar, Mirjana; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response. PMID:10859179

  14. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis.

    Science.gov (United States)

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2014-06-12

    The hydrolysis of glyoxal involving one to three water molecules and also in the presence of a water molecule and formic acid has been investigated. Our results show that glyoxal-diol is the major product of the hydrolysis and that formic acid, through its ability to facilitate intermolecular hydrogen atom transfer, is considerably more efficient than water as a catalyst in the hydrolysis process. Additionally, once the glyoxal-diol is formed, the barrier for further hydrolysis to form the glyoxal-tetrol is effectively reduced to zero in the presence of a single water and formic acid molecule. There are two important implications arising from these findings. First, the results suggest that under the catalytic influence of formic acid, glyoxal hydrolysis can impact the growth of atmospheric aerosols. As a result of enhanced hydrogen bonding, mediated through their polar OH functional groups, the diol and tetrol products are expected to have significantly lower vapor pressure than the parent glyoxal molecule; hence they can more readily partition into the particle phase and contribute to the growth of secondary organic aerosols. In addition, our findings provide insight into how glyoxal-diol and glyoxal-tetrol might be formed under atmospheric conditions associated with water-restricted environments and strongly suggest that the formation of these precursors for secondary organic aerosol growth is not likely restricted solely to the bulk aqueous phase as is currently assumed.

  15. Destruction of C2H4O2 isomers in ice-phase by X-rays: Implication on the abundance of acetic acid and methyl formate in the interstellar medium

    Science.gov (United States)

    Rachid, Marina G.; Faquine, Karla; Pilling, S.

    2017-12-01

    The C2H4O2 isomers methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO) have been detected in molecular clouds in the interstellar medium, as well as, hot cores, hot corinos and around protostellar objects. However, their abundances are very different, being methyl formate more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12 K) were monitored throughout the experiment using infrared vibrational spectroscopy (FTIR). The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species such as CO, CO2, H2O, CH4 and H2CO (only for methyl formate) and the hydrocarbons C2H6 and C5H10 (only for acetic acid). The half-lives of molecules at ices toward young stellar objects (YSOs) and inside molecular clouds (e.g. Sgr B2 and W51) due to the presence of incoming soft X-rays were estimated. We determined the effective formation rate and the branching ratios for assigned daughter species after the establishment of a chemical equilibrium. The main product from photodissociation of both methyl formate and acetic acid is CO, that can be formed by recombination of ions, formed during the photodissociation, in the ice surface. The relative abundance between methyl formate and acetic acid (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated. Our results suggest that such radiation field can be one of the factors that

  16. Raman and Terahertz Spectroscopic Investigation of Cocrystal Formation Involving Antibiotic Nitrofurantoin Drug and Coformer 4-aminobenzoic Acid

    Directory of Open Access Journals (Sweden)

    Yong Du

    2016-12-01

    Full Text Available Cocrystallization could improve most physicochemical properties of specific active pharmaceutical ingredients, which has great potential in pharmaceutical development. In this study, the cocrystal of nitrofurantoin and 4-aminobenzoic acid was prepared with solid-state (solvent-free or green-chemistry grinding approach, and the above cocrystal has been characterized by Raman and terahertz vibrational spectroscopic techniques. Spectral results show that the vibrational modes of the cocrystal within the whole spectral region are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman spectra. These results offer us unique means for characterizing the cocrystal conformation from the molecule-level, and provides us with rich information about the reaction dynamic of cocrystal formation within pharmaceutical fields.

  17. Formation of unimer nanoparticles by controlling the self-association of hydrophobically modified poly(amino acid)s.

    Science.gov (United States)

    Akagi, Takami; Piyapakorn, Phassamon; Akashi, Mitsuru

    2012-03-20

    Amphiphilic block or graft copolymers have been demonstrated to form a variety of self-assembled nano/microstructures in selective solvents. In this study, the self-association behavior of biodegradable graft copolymers composed of poly(γ-glutamic acid) (γ-PGA) as the hydrophilic segment and L-phenylalanine (Phe) as the hydrophobic segment in aqueous solution was investigated. The association behavior and unimer nanoparticle formation of these γ-PGA-graft-Phe (γ-PGA-Phe) copolymers in aqueous solution were characterized with a focus on the effect of the Phe grafting degree on the intra- and interpolymer association of γ-PGA-Phe. The particle size and number of polymer aggregates (N(agg)) in one particle of the γ-PGA-Phe depended on the Phe grafting degree. The size of γ-PGA-Phe with 12, 27, 35, or 42% Phe grafting (γ-PGA-Phe-12, -27, -35, or -42) was about 8-14 nm and the N(agg) was about 1, supporting the presence of a unimolecular graft copolymer in PBS. The pyrene fluorescence data indicated that γ-PGA-Phe-35 and -42 have hydrophobic domains formed by the intrapolymer association of Phe attached to γ-PGA. These results suggest that the Phe grafting degree is critical to the association behavior of γ-PGA-Phe and that γ-PGA-Phe-35 and -42 could form unimer nanoparticles. Moreover, when γ-PGA-Phe-42 dissolved in DMSO was added to various concentrations of NaCl solution, the particle size and N(agg) could be easily controlled by changing the NaCl concentration during the formation of the particles. These results suggest that biodegradable γ-PGA-Phe is useful for the fabrication of very small nanoparticles. It is expected that γ-PGA-Phe nanoparticles, including unimer particles, will have great potential as multifunctional carriers for pharmaceutical and biomedical applications, such as drug and vaccine delivery systems.

  18. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  19. Third phase formation in organic solutions in the extraction of mono-acids by tertiary trialcoyl-amines diluted in very slightly polar organic solvents

    International Nuclear Information System (INIS)

    Robaglia, Michele

    1973-01-01

    The phenomena of third phase formation which can occur during the extraction of an acid with a tertiary amine diluted in a low polarity diluent are studied. In the first part a system including water (TnOA - C 6 H 12 - HCl - H 2 O) is compared with an anhydrous system (TnOA - C 6 H 12 - HCl - N 2 ). There are two kinds of gaps. One during amine salification, another one during the extraction of excess acid. The important part of the water content of the organic phase is demonstrated. The presence of water enhances the gaps. The polar water molecules are dissolved inside the tri-octylamine salt micelles. The heavy phase is formed by aggregates, the light phase represents the solubility of the non soluble species in the medium. In the second part are studied the influence of some parameters (like nature of diluent, acid, amine and temperature) on the gaps formation and on the extraction of excess acid and water. In every cases the part played by water remains the same. Finally some comparisons are made between tertiary systems and binary systems which formed them. The binary systems were studied by the mean of crystallization curves. (author) [fr

  20. Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Saisudha Koka

    2017-10-01

    Full Text Available The NLRP3 inflammasome has been reported to be activated by atherogenic factors, whereby endothelial injury and consequent atherosclerotic lesions are triggered in the arterial wall. However, the mechanisms activating and regulating NLRP3 inflammasomes remain poorly understood. The present study tested whether acid sphingomyelinase (ASM and ceramide associated membrane raft (MR signaling platforms contribute to the activation of NLRP3 inflammasomes and atherosclerotic lesions during hypercholesterolemia. We found that 7-ketocholesterol (7-Keto or cholesterol crystal (ChC markedly increased the formation and activation of NLRP3 inflammasomes in mouse carotid arterial endothelial cells (CAECs, as shown by increased colocalization of NLRP3 with ASC or caspase-1, enhanced caspase-1 activity and elevated IL-1β levels, which were markedly attenuated by mouse Asm siRNA, ASM inhibitor- amitriptyline, and deletion of mouse Asm gene. In CAECs with NLRP3 inflammasome formation, membrane raft (MR clustering with NADPH oxidase subunits was found remarkably increased as shown by CTXB (MR marker and gp91phox aggregation indicating the formation of MR redox signaling platforms. This MR clustering was blocked by MR disruptor (MCD, ROS scavenger (Tempol and TXNIP inhibitor (verapamil, accompanied by attenuation of 7-Keto or ChC-induced increase in caspase-1 activity. In animal experiments, Western diet fed mice with partially ligated left carotid artery (PLCA were found to have significantly increased neointimal formation, which was associated with increased NLRP3 inflammasome formation and IL-1β production in the intima of Asm+/+ mice but not in Asm-/- mice. These results suggest that Asm gene and ceramide associated MR clustering are essential to endothelial inflammasome activation and dysfunction in the carotid arteries, ultimately determining the extent of atherosclerotic lesions.

  1. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  2. Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory

    CERN Document Server

    Duplissy, J.; Franchin, A.; Tsagkogeorgas, G.; Kangasluoma, J.; Wimmer, D.; Vuollekoski, H.; Schobesberger, S.; Lehtipalo, K.; Flagan, R. C.; Brus, D.; Donahue, N. M.; Vehkamäki, H.; Almeida, J.; Amorim, A.; Barmet, P.; Bianchi, F.; Breitenlechner, M.; Dunne, E. M.; Guida, R.; Henschel, H.; Junninen, H.; Kirkby, J.; Kürten, A.; Kupc, A.; Määttänen, A.; Makhmutov, V.; Mathot, S.; Nieminen, T.; Onnela, A.; Praplan, A. P.; Riccobono, F.; Rondo, L.; Steiner, G.; Tome, A.; Walther, H.; Baltensperger, U.; Carslaw, K. S.; Dommen, J.; Hansel, A.; Petäjä, T.; Sipilä, M.; Stratmann, F.; Vrtala, A.; Wagner, P. E.; Worsnop, D. R.; Curtius, J.; Kulmala, M.

    2015-09-04

    We report comprehensive, demonstrably contaminant‐free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion‐induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface‐time of flight‐mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (105 to 109 mol cm−3), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm−3). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC‐normalized CNT), which is described in a companion pape...

  3. Some features of formation and dissolution of a series of Pu(IV) and Zr alkyl and butyl alkyl phosphates in the system TBP -n-dodecane - nitric acid - water

    International Nuclear Information System (INIS)

    Markov, G.S.; Moshkov, M.M.; Kokina, S.A.

    1990-01-01

    The formation and composition of salts produced on interaction of a series of alkyl- and butylalkylphosphoric acids having alkyl radical chain lengths from C 4 to C 1 0 with Pu(IV) and Zr in organic and aqueous phases of the system TBP - n-dodecane -nitric acid - water were studied. The composition of compounds was found to depend on the conditions of their formation, defined first of all by the HNO 3 concentration in aqueous and organic phases. (author) 12 refs.; 4 figs.; 1 tab

  4. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  5. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry

    International Nuclear Information System (INIS)

    Buschmann, H.-J.; Schollmeyer, E.; Mutihac, L.

    2003-01-01

    The complex stabilities and the thermodynamic data for the complexation of α-cyclodextrin and cucurbit[6]uril with some amino acids (glycine, L-alanine, L-valine, L-phenylalanine, 6-amino hexanoic acid, 8-amino octanoic acid, 11-amino undecanoic acid) and dipeptides (glycyl-glycine, glycyl-L-valine, glycyl-L-leucine and glycyl-L-phenylalanine) have been determined in aqueous solution by calorimetric titrations. The complex formation with α-cyclodextrin is mainly favoured by entropic contributions due to the release of water molecules from the cavity of the ligand. The values of the reaction enthalpies are small with the exception of 11-amino undecanoic acid. In case of the ligand cucurbit[6]uril, ion-dipole interactions between the protonated amino groups of the amino acids and the carbonyl groups take place. By steric reasons these interactions are lowered for native amino acids because the polar carboxylic groups are always located outside the hydrophobic cavity of cucurbit[6]uril. The complexes of both ligands with dipeptides in water are characterised by hydrophobic interactions and in case of cucurbit[6]uril by additional ion-dipole interactions

  6. Correlation and prediction of ion exchange equilibria on weak-acid resins by means of the surface complex formation model

    International Nuclear Information System (INIS)

    Horst, J.

    1988-11-01

    The present work summarizes investigations of the equilibrium of the exchange of protons, copper, zinc, calcium, magnesium and sodium ions on two weak-acid exchange resins in hydrochloric and carbonic acid bearing solutions at 25 0 C. The description of the state of equilibrium between resin and solution is based on the individual chemical equilibria which have to be adjusted simultaneously. The equilibrium in the liquid phase is described by the mass action law and the condition of electroneutrality using activity coefficients calculated according to the theory of Debye and Hueckel. The exchange equilibria are described by means of a surface complex formation model, which was developed by Davis, James and Leckie for activated aluminia and which has been applied to weak-acid resins. The model concept assumes the resin as a plane surface in which the functional groups are distributed uniformly. (orig./RB) [de

  7. Uric acid nephrolithiasis: An update.

    Science.gov (United States)

    Cicerello, Elisa

    2018-04-01

    Uric acid nephrolithiasis appears to increase in prevalence. While a relationship between uric acid stones and low urinary pH has been for long known, additional association with various metabolic conditions and pathophysiological basis has recently been elucidated. Some conditions such as diabetes and metabolic syndrome disease, excessive dietary intake, and increased endogenous uric acid production and/or defect in ammoniagenesis are associated with low urinary pH. In addition, the phenomenon of global warming could result in an increase in areas with greater climate risk for uric acid stone formation. There are three therapeutic steps to be taken for management of uric acid stones: identification of urinary pH profiles, assessment of urinary volume status, and identification of disorders leading to excessive uric acid production. However, the most important factor for uric acid stone formation is acid urinary pH, which is a prerequisite for uric acid precipitation. This article reviews recent insights into the pathophysiology of uric acid stones and their management.

  8. Extraction of some acids using aliphatic amines; Extraction de quelques acides par des amines aliphatiques

    Energy Technology Data Exchange (ETDEWEB)

    Matutano, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    Hydrochloric, nitric, sulphuric, perchloric, phosphoric, acetic and formic acids in aqueous solution (0.05 to 10 M) are extracted by amberlite LA2 and trilaurylamine in solution, 5 per cent by volume, in kerosene and xylene respectively. The extraction process consists of: neutralization of the amine salt; a 'molecular extraction', i.e. an extraction using an excess of acid with respect to the stoichiometry of the amine salt. According to the behaviour of the acid during the extraction, three groups may be distinguished: completely dissociated acids, carboxylic acids, phosphoric acid. This classification is also valid for the extraction of the water which occurs simultaneously with that of the acid. An extraction mechanism is put forward for formic acid and the formation constant of its amine salt is calculated. (author) [French] Les acides chlorhydrique, nitrique, sulfurique, perchlorique, phosphorique, acetique et formique, en solution aqueuse - 0,05 a 10 M - sont extraits par l'amberlite LA2 et la trilaurylamine en solution, a 5 pour cent en volume, dans le kerosene et le xylene respectivement. L'extraction comprend: une neutralisation de l'amine par l'acide avec formation d'un sel d'amine; une 'extraction moleculaire', c'est-a-dire une extraction d'acide en exces par rapport a la stoechiometrie du sel d'amine. Suivant le comportement des acides au cours de l'extraction nous distinguons trois groupes: acides entierement dissocies, acides carboxyliques, acide phosphorique. Cette classification est egalement valable pour l'extraction de l'eau qui est simultanee a celle de l'acide. Un mecanisme d'extraction pour l'acide formique est propose et nous calculons la constante de formation de son sel d'amine. (auteur)

  9. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  10. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian

    2015-10-02

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  11. The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid

    KAUST Repository

    Crespo, Julian; Ló pez-De-Luzuriaga, José M.; Monge, Miguel; Elena Olmos, M.; Rodrí guez-Castillo, Marí a; Cormary, Benoî t; Soulantica, Katerina; Sestu, Matteo; Falqui, Andrea

    2015-01-01

    Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [AuAg(CF)(OEt)] in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

  12. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: Catalytic disproportionation of hypobromous acid

    KAUST Repository

    Liu, Chao

    2012-10-16

    Bromate (BrO3 -) in drinking water is traditionally seen as an ozonation byproduct from the oxidation of bromide (Br-), and its formation during chlorination is usually not significant. This study shows enhanced bromate formation during chlorination of bromide-containing waters in the presence of cupric oxide (CuO). CuO was effective to catalyze hypochlorous acid (HOCl) or hypobromous acid (HOBr) decay (e.g., at least 104 times enhancement for HOBr at pH 8.6 by 0.2 g L-1 CuO). Significant halate concentrations were formed from a CuO-catalyzed hypohalite disproportionation pathway. For example, the chlorate concentration was 2.7 ± 0.2 μM (225.5 ± 16.7 μg L-1) after 90 min for HOCl (Co = 37 μM, 2.6 mg L-1 Cl2) in the presence of 0.2 g L-1 CuO at pH 7.6, and the bromate concentration was 6.6 ± 0.5 μM (844.8 ± 64 μg L -1) after 180 min for HOBr (Co = 35 μM) in the presence of 0.2 g L-1 CuO at pH 8.6. The maximum halate formation was at pHs 7.6 and 8.6 for HOCl or HOBr, respectively, which are close to their corresponding pKa values. In a HOCl-Br--CuO system, BrO3 - formation increases with increasing CuO doses and initial HOCl and Br- concentrations. A molar conversion (Br - to BrO3 -) of up to (90 ± 1)% could be achieved in the HOCl-Br--CuO system because of recycling of Br - to HOBr by HOCl, whereas the maximum BrO3 - yield in HOBr-CuO is only 26%. Bromate formation is initiated by the formation of a complex between CuO and HOBr/OBr-, which then reacts with HOBr to generate bromite. Bromite is further oxidized to BrO3 - by a second CuO-catalyzed process. These novel findings may have implications for bromate formation during chlorination of bromide-containing drinking waters in copper pipes. © 2012 American Chemical Society.

  13. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  14. Complexing of zirconium and hafnium with ortho-aminobenzoic acid and paraaminobenzoic acid

    International Nuclear Information System (INIS)

    Alekseeva, I.I.; Nemzer, I.I.; Yuranova, L.I.; Borisova, V.V.; Prozorovskaya, Z.N.

    1977-01-01

    Formation of complexes between zirconium and hafnium and ortho- and para-aminobenzoic acids has been studied by the kinetic method. It has been found that at pH=1.3-2.0 and concentrations of metals 10 -5 -10 -6 mole complex compounds are formed with composition Me:L=1:2 and 1:1 (Me=Zr, Hf; L=ortho- or para-aminobenzoic acids). Stepwise constants and overall effective constants of complex formation have been calculated

  15. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor.

    Science.gov (United States)

    Du, Hai; Song, Zhewei; Xu, Yan

    2018-01-10

    This study aimed to identify specific microorganisms related to the formation of precursors of EC (ethyl carbamate) in the solid-state fermentation of Chinese Moutai-flavor liquor. The EC content was significantly correlated with the urea content during the fermentation process (R 2 = 0.772, P solid-state fermentation can be controlled using lactic acid bacteria and nonconventional yeasts.

  16. Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin.

    Science.gov (United States)

    Lang, Alexander E; Neumeyer, Tobias; Sun, Jianjun; Collier, R John; Benz, Roland; Aktories, Klaus

    2008-08-12

    The actin-ADP-ribosylating Clostridium botulinum C2 toxin consists of the enzymatic component C2I and the binding component C2II. C2II forms heptameric channels involved in translocation of the enzymatic component into the target cell. On the basis of the heptameric toxin channel, we studied functional consequences of mutagenesis of amino acid residues probably lining the lumen of the toxin channel. Substitution of glutamate-399 of C2II with alanine blocked channel formation and cytotoxicity of the holotoxin. Although cytotoxicity and rounding up of cells by C2I were completely blocked by exchange of phenylalanine-428 with alanine, the mutation increased potassium conductance caused by C2II in artificial membranes by about 2-3-fold over that of wild-type toxin. In contrast to its effects on single-channel potassium conductance in artificial membranes, the F428A mutation delayed the kinetics of pore formation in lipid vesicles and inhibited the activity of C2II in promoting (86)Rb (+) release from preloaded intact cells after pH shift of the medium. Moreover, F428A C2II exhibited delayed and diminished formation of C2II aggregates at low pH, indicating major changes of the biophysical properties of the toxin. The data indicate that phenylalanine-428 of C2II plays a major role in conformational changes occurring during pore formation of the binding component of C2II.

  17. Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer.

    Science.gov (United States)

    Schäffner, F; Merten, D; Pollok, K; Wagner, S; Knoblauch, S; Langenhorst, F; Büchel, G

    2015-12-01

    Extensive uranium mining in the former German Democratic Republic (GDR) in eastern Thuringia and Saxony took place during the period of 1946-1990. During mining activities, pelitic sediments rich in organic carbon and uranium were processed and exposed to oxygen. Subsequent pyrite oxidation and acidic leaching lead to partial contamination of the area with heavy metals and acid mine drainage (AMD) even few years after completion of remediation. One of those areas is the former heap Gessen (Ronneburg, Germany) were the residual contamination can be found 10 m under the base of the former heap containing partly permeable drainage channels. Actually, in such a system, a rapid but locally restricted mineralization of Mn oxides takes place under acidic conditions. This formation can be classified as a natural attenuation process as certain heavy metals, e.g., Cd (up to 6 μg/g), Ni (up to 311 μg/g), Co (up to 133 μg/g), and Zn (up to 104 μg/g) are bound to this phases. The secondary minerals occur as colored layers close to the shallow aquifer in glacial sediments and could be identified as birnessite and todorokite as Mn phase. The thermodynamic model shows that even small changes in the system are sufficient to shift either the pH or the Eh in the direction of stable Mn oxide phases in this acidic system. As a consequence of 9-15-year-long formation process (or even less), the supergene mineralization provides a cost-efficient contribution for remediation (natural attenuation) strategies of residual with heavy metals (e.g., Cd, Co, Ni, Zn) contaminated substrates.

  18. Investigation of the formation process of two piracetam cocrystals during grinding

    DEFF Research Database (Denmark)

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e.,piracetam-citric acid and piracetam......-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than...... for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form...

  19. Nitrous acid formation in a snow-free wintertime polluted rural area

    Science.gov (United States)

    Tsai, Catalina; Spolaor, Max; Fedele Colosimo, Santo; Pikelnaya, Olga; Cheung, Ross; Williams, Eric; Gilman, Jessica B.; Lerner, Brian M.; Zamora, Robert J.; Warneke, Carsten; Roberts, James M.; Ahmadov, Ravan; de Gouw, Joost; Bates, Timothy; Quinn, Patricia K.; Stutz, Jochen

    2018-02-01

    Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget and additionally provides a pathway to recycle NOx. Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO2, and O3 on three absorption paths that cover altitude intervals from 2 to 31, 45, and 68 m above ground level (a.g.l.) during the UBWOS 2012 experiment in the Uintah Basin, Utah, USA. Daytime HONO mixing ratios in the 2-31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO2 mixing ratios of 1-2 ppb. HONO surface fluxes at 19 m a.g.l., calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9 ± 0.2) × 1010 molec. cm-2 s-1 at noontime. A photostationary state analysis of the HONO budget shows that the surface flux closes the HONO budget, accounting for 63 ± 32 % of the unidentified HONO daytime source throughout the day and 90 ± 30 % near noontime. This is also supported by 1-D chemistry and transport model calculations that include the measured surface flux, thus clearly identifying chemistry at the

  20. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  1. Microbial Formation of Ethane in Anoxic Estuarine Sediments

    OpenAIRE

    Oremland, Ronald S.

    1981-01-01

    Estuarine sediment slurries produced methane and traces of ethane when incubated under hydrogen. Formation of methane occurred over a broad temperature range with an optimum above 65°C. Ethane formation had a temperature optimum at 40°C. Formation of these two gases was inhibited by air, autoclaving, incubation at 4 and 80°C, and by the methanogenic inhibitor, 2-bromoethanesulfonic acid. Ethane production was stimulated by addition of ethylthioethanesulfonic acid, and production from ethylthi...

  2. The PDZ domain of the guanine nucleotide exchange factor PDZGEF directs binding to phosphatidic acid during brush border formation.

    Directory of Open Access Journals (Sweden)

    Sarah V Consonni

    Full Text Available PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid.

  3. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    Science.gov (United States)

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  4. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    Science.gov (United States)

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained. PMID:24309304

  5. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.

    Science.gov (United States)

    Luna-Munguía, Hiram; Meneses, Alfredo; Peña-Ortega, Fernando; Gaona, Andres; Rocha, Luisa

    2012-01-01

    Hippocampal high frequency electrical stimulation (HFS) at 130 Hz has been proposed as a therapeutical strategy to control neurological disorders such as intractable temporal lobe epilepsy (TLE). This study was carried out to determine the effects of hippocampal HFS on the memory process and the probable involvement of amino acids. Using the autoshaping task, we found that animals receiving hippocampal HFS showed augmented short-term, but not long-term memory formation, an effect blocked by bicuculline pretreatment and associated with enhanced tissue levels of amino acids in hippocampus. In addition, microdialysis experiments revealed high extracellular levels of glutamate, aspartate, glycine, taurine, and alanine during the application of hippocampal HFS. In contrast, GABA release augmented during HFS and remained elevated for more than 1 h after the stimulation was ended. HFS had minimal effects on glutamine release. The present results suggest that HFS has an activating effect on specific amino acids in normal hippocampus that may be involved in the enhanced short-term memory formation. These data further provide experimental support for the concept that hippocampus may be a promising target for focal stimulation to treat intractable seizures in humans. Copyright © 2010 Wiley Periodicals, Inc., Inc.

  6. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implication for seasonal formation mechanism of Secondary Organic Aerosol (SOA)

    OpenAIRE

    Cheng, Chunlei; Li, Mei; Chan, Chak K.; Tong, Haijie; Chen, Changhong; Chen, Duohong; Wu, Dui; Li, Lei; Cheng, Peng; Gao, Wei; Huang, Zhengxu; Li, Xue; Fu, Zhong; Bi, Yanru; Zhou, Zhen

    2016-01-01

    The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM) were studied using a single particle aerosol mass spectrometer (SPAMS) in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD) region in China. Oxalic acid-containing particles accounted for 2.5 % and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carb...

  7. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon[S

    Science.gov (United States)

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-01-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502

  8. The browning kinetics of the non-enzymatic browning reaction in L-ascorbic acid/basic amino acid systems

    Directory of Open Access Journals (Sweden)

    Ai-Nong YU

    Full Text Available Abstract Under the conditions of weak basis and the reaction temperature range of 110-150 °C, lysine, arginine and histidine were reacted with L-ascorbic acid at equal amount for 30-150 min, respectively and the formation of browning products was monitored with UV–vis spectrometry. The kinetic characteristics of their non-enzymatic browning reaction were investigated. The study results indicated that the non-enzymatic browning reaction of these three amino acids with L-ascorbic acid to form browning products was zero-order reaction. The apparent activation energies for the formation of browning products from L-ascorbic acid/lysine, L-ascorbic acid/arginine and L-ascorbic acid/histidine systems were 54.94, 50.08 and 35.31kJ/mol. The activation energy data indicated the degree of effects of reaction temperature on non-enzymatic browning reaction. Within the temperature range of 110-150 °C, the reaction rate of L-ascorbic acid/lysine system was the fastest one, followed by that of the L-ascorbic acid/arginine system. The reaction rate of L-ascorbic acid/histidine system was the slowest one. Based on the observed kinetic data, the formation mechanisms of browning products were proposed.

  9. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    Science.gov (United States)

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  10. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    Science.gov (United States)

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  11. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    Energy Technology Data Exchange (ETDEWEB)

    Braatz, A.D.; Nilsson, M. [Department of Chemical Engineering and Materials Science, 916 Engineering Tower, University of California-Irvine, Irvine, CA 92697-2575 (United States); Ellis, R.; Antonio, M. [Chemical Science and Engineering Division, Argonne National Laboratory, Building 200 9700 South Cass Ave, Argonne, IL 60439-4831 (United States)

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  12. A green non-acid-catalyzed process for direct N=N-C group formation: comprehensive study, modeling, and optimization.

    Science.gov (United States)

    Khakyzadeh, Vahid; Zolfigol, Mohammad Ali; Derakhshan-Panah, Fatemeh; Jafarian, Majid; Miri, Mir Vahid; Gilandoust, Maryam

    2018-01-04

    The aim of this work is to introduce, model, and optimize a new non-acid-catalyzed system for a direct N[Formula: see text]N-C bond formation. By reacting naphthols or phenol with anilines in the presence of the sodium nitrite as nitrosonium ([Formula: see text] source and triethylammonium acetate (TEAA), a N[Formula: see text]N-C group can be formed in non-acid media. Modeling and optimization of the reaction conditions were investigated by response surface method. Sodium nitrite, TEAA, and water were chosen as variables, and reaction yield was also monitored. Analysis of variance indicates that a second-order polynomial model with F value of 35.7, a P value of 0.0001, and regression coefficient of 0.93 is able to predict the response. Based on the model, the optimum process conditions were introduced as 2.2 mmol sodium nitrite, 2.2 mL of TEAA, and 0.5 mL [Formula: see text] at room temperature. A quadratic (second-order) polynomial model, by analysis of variance, was able to predict the response for a direct N=N-C group formation. Predicted response values were in good agreement with the experimental values. Electrochemistry studies were done to introduce new Michael acceptor moieties. Broad scope, high yields, short reaction time, and mild conditions are some advantages of the presented method.

  13. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    International Nuclear Information System (INIS)

    Kleyböcker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Würdemann, H.

    2012-01-01

    Highlights: ► Mechanism of process recovery with calcium oxide. ► Formation of insoluble calcium salts with long chain fatty acids and phosphate. ► Adsorption of VFAs by the precipitates resulting in the formation of aggregates. ► Acid uptake and phosphate release by the phosphate-accumulating organisms. ► Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance

  14. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    Directory of Open Access Journals (Sweden)

    Keith Gordon

    2011-10-01

    Full Text Available Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e.,piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained.

  15. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Schor, D. S.; Jansen, G. A.; Jakobs, C.

    1997-01-01

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied.

  16. Interfacial (o/w) properties of naphthetic acids and metal naphthenates, naphtenic acid characterization and metal naphthenate inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brandal, Oeystein

    2005-07-01

    Deposition of metal naphthenates in process facilities is becoming a huge problem for petroleum companies producing highly acidic crudes. In this thesis, the main focus has been towards the oil-water (o/w) interfacial properties of naphthenic acids and their ability to react with different divalent cations across the interface to form metal naphthenates. The pendant drop technique was utilized to determine dynamic interfacial tensions (IFT) between model oil containing naphthenic acid, synthetic as well as indigenous acid mixtures, and pH adjusted water upon addition of different divalent cations. Changes in IFT caused by the divalent cations were correlated to reaction mechanisms by considering two reaction steps with subsequent binding of acid monomers to the divalent cation. The results were discussed in light of degree of cation hydration and naphthenic acid conformation, which affect the interfacial conditions and thus the rate of formation of 2:1 complexes of acid and cations. Moreover, addition of non-ionic oil-soluble surfactants used as basis compounds in naphthenate inhibitors was found to hinder a completion of the reaction through interfacial dilution of the acid monomers. Formation and stability of metal naphthenate films at o/w interfaces were studied by means of Langmuir technique with a trough designed for liquid-liquid systems. The effects of different naphthenic acids, divalent cations, and pH of the subphase were investigated. The results were correlated to acid structure, cation hydration, and degree of dissociation, which all affect the film stability against compression. Naphthenic acids acquired from a metal naphthenate deposit were characterized by different spectroscopic techniques. The sample was found to consist of a narrow family of 4-protic naphthenic acids with molecular weights around 1230 g/mol. These acids were found to be very o/w interfacially active compared to normal crude acids, and to form Langmuir monolayers with stability

  17. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  18. Aquatic chemistry of acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stumm, W; Sigg, L; Schnoor, J L

    1987-01-01

    The occurrence of acid precipitation in many regions of the Northern hemisphere is a consequnece of human interference in the cycles that unite land, water and atmosphere. The oxidation of carbon, sulfur and nitrogen, resulting mostly from fossil fuel burning, rivals oxidation processes induced by photosynthesis and respiration and disturbs redox conditions in the atmosphere. The paper discusses oxidation-reduction reactions, particularly those involving atmospheric pollutants that are important in the formation of acid precipitation. Topics covered are: a stoichiometric model of acid rain formation; sulfur dioxide and ammonia adsorption; acid neutralizing capacity. The paper concludes that explanations of simple chemical equilibria between gases and water aid our understanding of how acidifying gases become dissolved in cloud water, in droplets of falling rain, or in fog. Rigorous definitions of base- or acid-neutralizing capacities are prerequisites to measuring and interpreting residual acidity in dry and wet deposition and for assessing the disturbance caused by the transfer of acid to terrestrial and aquatic ecosystems. 20 references.

  19. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction

    Science.gov (United States)

    de Barros Bouchet, Maria Isabel; Martin, Jean Michel; Avila, José; Kano, Makoto; Yoshida, Kentaro; Tsuruda, Takeshi; Bai, Shandan; Higuchi, Yuji; Ozawa, Nobuki; Kubo, Momoji; Asensio, Maria C.

    2017-04-01

    The achievement of the superlubricity regime, with a friction coefficient below 0.01, is the Holy Grail of many tribological applications, with the potential to have a remarkable impact on economic and environmental issues. Based on a combined high-resolution photoemission and soft X-ray absorption study, we report that superlubricity can be realized for engineering applications in bearing steel coated with ultra-smooth tetrahedral amorphous carbon (ta-C) under oleic acid lubrication. The results show that tribochemical reactions promoted by the oil lubrication generate strong structural changes in the carbon hybridization of the ta-C hydrogen-free carbon, with initially high sp3 content. Interestingly, the macroscopic superlow friction regime of moving mechanical assemblies coated with ta-C can be attributed to a few partially oxidized graphene-like sheets, with a thickness of not more than 1 nm, formed at the surface inside the wear scar. The sp2 planar carbon and oxygen-derived species are the hallmark of these mesoscopic surface structures created on top of colliding asperities as a result of the tribochemical reactions induced by the oleic acid lubrication. Atomistic simulations elucidate the tribo-formation of such graphene-like structures, providing the link between the overall atomistic mechanism and the macroscopic experimental observations of green superlubricity in the investigated ta-C/oleic acid tribological systems.

  20. Reduction of Inflammatory Responses and Enhancement of Extracellular Matrix Formation by Vanillin-Incorporated Poly(Lactic-co-Glycolic Acid) Scaffolds

    OpenAIRE

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-01-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting i...

  1. Acrylamide formation in plantain (Musa paradisiaca) chips influenced by different ripening stages: A correlation study with respect to reducing sugars, amino acids and phenolic content.

    Science.gov (United States)

    Shamla, L; Nisha, P

    2017-05-01

    The effect of ripening on the formation of acrylamide in deep fried plantain chips made from Nendran variety (Musa paradisiaca) was investigated. The precursors of acrylamide formation, reducing sugars (glucose and fructose) and ten major amino acids, were quantified during different stages of ripening using HPLC and correlated with acrylamide formation. The total phenolic content and total flavonoid content were also estimated and correlated with acrylamide formation. Both glucose and fructose increased during ripening and demonstrated a positive correlation on formation of acrylamide (correlation coefficient of r=0.95 and 0.94 respectively (p0.05). The decreased levels of phenolic content during ripening of plantain were negatively correlated with acrylamide formation in the deep fried chips prepared. Thus the selection of proper ripening stage renders reduced formation of acrylamide in plantain chips to a reasonable extend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  3. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    Science.gov (United States)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    Science.gov (United States)

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.

  5. Specific role of taurine in the 8-brominated-2'-deoxyguanosine formation.

    Science.gov (United States)

    Asahi, Takashi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2015-11-15

    At the sites of inflammation, hypohalous acids, such as hypochlorous acid and hypobromous acid (HOBr), are produced by myeloperoxidase. These hypohalous acids rapidly react with the primary amino groups to produce haloamines, which are relatively stable and can diffuse long distances and cross the plasma membrane. In this study, we examined the effects of taurine, the most abundant free amino acid in the leukocyte cytosol, on the hypohalous acid-dependent formation of 8-chloro-2'-deoxyguanosine (8-CldG) and 8-bromo-2'-deoxyguanosine (8-BrdG). The reaction of taurine with HOBr yielded taurine bromamine, which is the most stable among other bromamines of amino acids. Taurine also enhanced the bromination of only dG among the four 2'-deoxynucleosides, whereas it inhibited the 8-CldG formation. The specificity of taurine for the enhanced formation of halogenated dG is completely different from that of nicotine, an enhancer of chlorination. The amount of dibrominated taurine (taurine dibromamine) closely correlated with the formation of 8-BrdG, suggesting that taurine dibromamine might be a plausible mediator for the dG bromination in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Formation of 14C-asparagine from 14C-precursor in mulberry leaves

    International Nuclear Information System (INIS)

    Yamashita, Tadaaki

    1981-01-01

    Since a remarkable accumulation of asparagine in the young leaves of mulberry has been observed, the formation of 14 C-asparagine from 14 C-labeled substrates in young leaves was examined in comparison with that in the mature leaves. 14 C-aspartic acid and 14 C-succinic acid expected as active precursors for asparagine biosynthesis, and 14 C-sucrose as respiratory substrates were fed respectively to the disks of young or mature leaves of mulberry. Although 14 C-succinic acid was actively converted to 14 C-asparagine, no significant amount of 14 C-asparagine was formed from 14 C-aspartic acid in two hours of feeding period. The rate of formation of 14 C-asparagine from 14 C-succinic acid in the mature leaves was slightly higher than that in the young leaves. Amino acids other than asparagine acquired 14 C from 14 C-labeled substrates were mainly aspartic acid, glutamic acid, alanine and ν-amino butyric acid in both of the leaves. Intending to accelerate the formation of asparagine in the leaves, ammonium ion was supplied to culturing solution as only source of nitrogen and plants were grown for two weeks in that solution before 14 C-labeled substrates feeding experiments. Supplying of ammonium ion brought about enhanced accumulation of asparagine in the young leaves, and caused remarkable formation of 14 C-asparagine from 14 C-aspartic acid in both of the leaves. However, the rate of 14 C-asparagine formation from 14 C-aspartic acid in the young leaves did not exceed that in the mature leaves. (author)

  7. CARBOXYLIC ACIDS ELECTROOXIDATION ON SHUNGITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Oleksandr Davydenko

    2017-03-01

    Full Text Available Purpose: This article discusses the electrochemical method of directional conversion of carboxylic acids, which are the most aggressive hydrocarbons oxidation products back into the corresponding hydrocarbons. Existing methods for the regeneration of waste petroleum oils have significant drawbacks, which include the formation of new hard-reclaimed waste and loss of a significant part of the oil during regeneration. Methods: Electrooxidation processes of carboxylic acid on various electrode materials: platinum, graphite and shungite anodes were studied. Results: Potentiostatic polarization curves with simultaneous measurement of near-electrode solution pH showed differences in the process on these anode materials: dimer yield for Kolbe is decreased under the transition from platinum to shungite. At potentials higher than 2.0 v, carboxylic acid has a higher adsorbability compared to water. Therefore Faraday’s side-process of water oxidation doesn’t almost occur, which contributes to high yield of expected product according to current. Electrolysis of carboxylic acids solutions under controlled potential (2.0 and 2.4 V and chromatographic analysis of the formed products showed that along with the dimeric structures formation for Kolbe reaction, the occurrence of a hydrocarbons mixture takes place, which may be the result of disproportionation of hydrocarbon radicals (alkane and alkene and hydrocarbons of isomeric structure, by further oxidation of the hydrocarbon radical to carbocation and its subsequent transformation into the corresponding saturated and unsaturated isomers. Such statement is not supported by conception of the process of one- and two-electron carboxylic acid oxidation. Discussion: General carboxylic acid oxidation scheme according to one-electron mechanism (dimerization and disproportionation of the radical and two-electron mechanism (formation and carbocation rearrangement is proposed. The formation of hydrocarbons under

  8. Formation of different-ligand complexes of neodymium,-holmium- and erbium ions with diantipyrylmethane and gallic acid

    International Nuclear Information System (INIS)

    Gerasimenko, G.I.; Tishchenko, M.A.; Poluehktov, N.S.

    1978-01-01

    Spectrometry has been used for studying the formation of different-ligand complexes of Nd 3+ , Ho 3+ , and Er 3+ with diantipyrylmethane (DAM) and gallic aicd (GA) at pH 10.0-12.0. It has been found that in the complex being formed one ion of rare earth element interacts with one molecule of DAM and three molecules of GA. The oscillator forces grow when passing from aquaions to compounds with gallic acid and then with DAM and GA. The oscillator forces of Nd 3+ and Er 3+ depend linearly on those of Ho 3+ in the solutions of complexes with DAM and GA

  9. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  10. Pulse radiolytic study of the oxidation reaction of uric acid in presence of bovine serum albumin: evidence of possible complex formation in the transient state

    International Nuclear Information System (INIS)

    Adhikari, S.; Gopinathan, C.

    1996-01-01

    The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The reaction of CCl 3 OO . radical with uric acid produces a transient having absorption maximum at 330 nm and that with BSA produces transient having absorption maximum at 410 nm. In a composition of equal concentration of uric acid and BSA the CCl 3 OO . radical produces a transient absorption spectrum which shows two peaks at 330 nm and 350 nm and a shoulder at 410 nm. The peak at 350 nm is ascribed due to weak complex formation between BSA and uric acid radicals. The rate constant of CCl 3 OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. (author). 4 refs., 2 figs., 1 tab

  11. New Particle Formation Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, JN; McMurry, PH [University of Minnesota

    2015-01-01

    The scientific foci of the New Particle Formation Study were the formation and evolution of atmospheric aerosols and the impacts of newly formed particles on cloud processes. Specifically, we planned to: (1) to identify the species and mechanisms responsible for the initial steps of new particle formation, i.e., the formation of thermodynamically stable clusters; (2) investigate the role of acid-base chemistry in new particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; (3) investigate the contribution of other surface area or volume-controlled processes to nanoparticle formation and growth; (4) create a comprehensive dataset related to new particle formation and growth that can be used as input for our own thermodynamic models as well as the modeling efforts by our Department of Energy (DOE) Aerosol Life Cycle working group collaborators; (5) characterize the increase of the number and activity of cloud condensation nuclei (CCN) due to particle formation and growth; (6) determine the regional extent of new particle formation to address the role that atmospheric transport plays in determining the impacts, if any, of new particle formation on cloud number and properties.

  12. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  13. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    Full Text Available Microcin E492 (MccE492 is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well characterized, however it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in E. coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophillic probes, 2-4´-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59, which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  14. The Mechanism of Redox Reaction between Palladium(II Complex Ions and Potassium Formate in Acidic Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-06-01

    Full Text Available The kinetics studies of redox reaction between palladium(II chloride complex ions and potassium formate in acidic aqueous solutions was investigated. It was shown, that the reduction reaction of Pd(II is selective in respect to Pd(II complex structure. The kinetic of the process was monitored spectrophotometrically. The influence of chloride ions concentration, Pd(II initial concentration, reductant concentration, ionic strength as well as the temperature were investigated in respect to the process dynamics. Arrhenius equation parameters were determined and are equal to 65.8 kJ/mol, and A = 1.12×1011 s−1.

  15. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.

    Science.gov (United States)

    Ober, Courtney A; Gupta, Ram B

    2012-12-01

    Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

  16. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Directory of Open Access Journals (Sweden)

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  17. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    Science.gov (United States)

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  18. Characterization and antioxidant activity of gallic acid derivative

    Science.gov (United States)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  19. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  20. Effect of amino acids and frequency of reuse frying oils at different temperature on acrylamide formation in palm olein and soy bean oils via modeling system.

    Science.gov (United States)

    Daniali, G; Jinap, S; Sanny, M; Tan, C P

    2018-04-15

    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R 2 =0.884), temperature (R 2 =0.951) and amount of acrylamide formation, both at p<0.05. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The mechanism and properties of acid-coagulated milk gels

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-03-01

    Full Text Available Acid-coagulated milk products such as fresh acid-coagulated cheese varieties and yogurt areimportant dairy food products. However, little is known regarding the mechanisms involved in gel formation, physical properties of acid gels, and the effects of processing variables such as heat treatment and gelation temperature on the important physical properties of acid milk gels. This paper reviews the modern concepts of possible mechanisms involved in the formation of particle milk gel aggregation, along with recent developments including the use of techniques such as dynamic low amplitude oscillatory rheology to observe the gel formation process, and confocal laser scanning microscopy to monitor gel microstructure.

  2. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.

    Science.gov (United States)

    An, Dong; Hao, Feng; Zhang, Fuqiang; Kong, Wei; Chun, Jerold; Xu, Xuemin; Cui, Mei-Zhen

    2017-09-01

    Macrophage uptake of oxidized low-density lipoprotein (oxLDL) plays an important role in foam cell formation and the pathogenesis of atherosclerosis. We report here that lysophosphatidic acid (LPA) enhances lipopolysaccharide (LPS)-induced oxLDL uptake in macrophages. Our data revealed that both LPA and LPS highly induce the CD14 expression at messenger RNA and protein levels in macrophages. The role of CD14, one component of the LPS receptor cluster, in LPA-induced biological functions has been unknown. We took several steps to examine the role of CD14 in LPA signaling pathways. Knockdown of CD14 expression nearly completely blocked LPA/LPS-induced oxLDL uptake in macrophages, demonstrating for the first time that CD14 is a key mediator responsible for both LPA- and LPS-induced oxLDL uptake/foam cell formation. To determine the molecular mechanism mediating CD14 function, we demonstrated that both LPA and LPS significantly induce the expression of scavenger receptor class A type I (SR-AI), which has been implicated in lipid uptake process, and depletion of CD14 levels blocked LPA/LPS-induced SR-AI expression. We further showed that the SR-AI-specific antibody, which quenches SR-AI function, blocked LPA- and LPS-induced foam cell formation. Thus, SR-AI is the downstream mediator of CD14 in regulating LPA-, LPS-, and LPA/LPS-induced foam cell formation. Taken together, our results provide the first experimental evidence that CD14 is a novel connecting molecule linking both LPA and LPS pathways and is a key mediator responsible for LPA/LPS-induced foam cell formation. The LPA/LPS-CD14-SR-AI nexus might be the new convergent pathway, contributing to the worsening of atherosclerosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2008-10-01

    Full Text Available Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione, a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME, as a substitute for GSH, was investigated by the induction period (IP method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R. and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO. using differential scanning calorimetry (DSC. Upon PhCOO. radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R. radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (kinh/kp declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME mixture (1:1 molar ratio (A to the calculated IP (the simple sum of phenol acid antioxidant and ME (B was investigated. Upon R. scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO. scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid

  4. Participation of Arachidonic Acid Metabolism in the Aortic Aneurysm Formation in Patients with Marfan Syndrome

    Directory of Open Access Journals (Sweden)

    María E. Soto

    2018-02-01

    Full Text Available Marfan syndrome (MFS is a pleiotropic genetic disease involving the cardiovascular system where a fibrillin-1 mutation is present. This mutation is associated with accelerated activation of transforming growth factor β (TGFβ1 which contributes to the formation of aneurysms in the root of the aorta. There is an imbalance in the synthesis of thromboxane A2 (TXA2 and prostacyclin, that is a consequence of a differential protein expression of the isoforms of cyclooxygenases (COXs, suggesting an alteration of arachidonic acid (AA metabolism. The aim of this study was to analyze the participation of AA metabolism associated with inflammatory factors in the dilation and dissection of the aortic aneurysm in patients with MFS. A decrease in AA (p = 0.02, an increase in oleic acid (OA, TGFβ1, tumor necrosis factor alpha (TNFα, prostaglandin E2 (PGE2 (p < 0.05, and COXs activity (p = 0.002 was found. The expressions of phospholipase A2 (PLA2, cytochrome P450 (CYP450 4A, 5-lipoxygenase (5-LOX, COX2 and TXA2R (p < 0.05 showed a significant increase in the aortic aneurysm of patients with MFS compared to control subjects. COX1, 6-keto-prostaglandin 1 alpha (6-keto-PG1α and 8-isoprostane did not show significant changes. Histological examination of the aortas showed an increase of cystic necrosis, elastic fibers and collagen in MFS. The results suggest that there are inflammatory factors coupled to genetic factors that predispose to aortic endothelial dysfunction in the aortic tissue of patients with MFS. There is a decrease in the percentage of AA, associated with an increase of PLA2, COX2/TXA2R, CYP450 4A, and 5-LOX which leads to a greater synthesis of PGE2 than of 6-keto-PGF1α, thus contributing to the formation of the aortic aneurysm. The evident loss of the homeostasis in these mechanisms confirms that there is a participation of the AA pathway in the aneurysm progression in MFS.

  5. FORMATION AND ENANTIOSELECTIVE BIODEGRADATION OF THE ENANTIOMERS OF BROMOCHLOROACETIC ACID

    Science.gov (United States)

    Bromochloroacetic acid (BCAA) is formed by chlorination of drinking waters containing naturally occurring bromide. This haloacetic acid is a concern to public health because of suspected carcinogenicity and toxicity, and is a potential target of disinfectant byproduct regulations...

  6. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.

    Science.gov (United States)

    Hamilton, I R; Svensäter, G

    1998-10-01

    Our previous research has demonstrated that with the more aciduric oral bacteria, an acid shock to sub-lethal pH values results in the induction of an acid tolerance response that protects the cells at extremely low pH (pH 3.0-4.0) that kills unadapted control cells maintained at pH 7.5 (Oral Microbiol Immunol 1997: 12: 266-273). In this study, we were interested in comparing the protein profiles of acid-shocked and control cells of nine organisms from three acid-ogenic genera that could be categorized as strong, weak and non-acid responders in an attempt to identify proteins that could be classified as acid-regulated proteins and which may be important in the process of survival at very low pH. For this, log-phase cultures were rapidly acidified from pH 7.5 to 5.5 in the presence of [14C]-amino acids for varying periods up to 2 h, the period previously shown to be required for maximum induction of the acid response. The cells were extracted for total protein and subjected to one-dimensional sodium dodecyl sulfate-polyacrylamide chromatography with comparable control and acid-shocked protein profiles compared by scanning and computer analysis. Of particular interest were the proteins in the acid-shocked cells that showed enhanced labeling (i.e., synthesis) over the control cells, since these were considered acid-regulated proteins of importance in pH homeostasis. Streptococcus mutans LT11 generated the most rapid and complex pattern: a total of 36 acid-regulated proteins showing enhanced synthesis, with 25 appearing within the first 30 min of acid shock. The enhanced synthesis was transient with all proteins, with the exception of two with molecular weights of 50/49 and 33/32 kDa. Within the acid-regulated proteins were proteins having molecular weights comparable to the heat shock proteins and the various subunits of the membrane H+/ATPase. By comparison, the strong responder, Lactobacillus casei 151, showed the enhanced formation of only nine proteins within the

  7. Encapsulation of ferulic acid ethyl ester in caseinate to suppress off-flavor formation in UHT milk.

    Science.gov (United States)

    Guan, Yongguang; Zhong, Qixin

    2017-12-15

    Phenolic compounds can principally suppress the off-flavor development in ultrahigh temperature (UHT) treated milk, but little has been studied for lipophilic phenolic compounds that are to be encapsulated for even distribution in milk. The objective of this work was to study physicochemical properties of ferulic acid ethyl ester (FAEE) encapsulated in sodium caseinate and the inhibition of volatile formation after UHT processing. The capsules had an average hydrodynamic diameter of 246.2±10.9nm, a polydispersity index of 0.26±0.01, and a zeta-potential of -31.72±0.74mV. The capsules and the encapsulated FAEE were stable after heating at 138°C for 16min and UV radiation at 365nm for 32h. The encapsulated FAEE at a level of 0.18-1.42mg/mL suppressed the formation of 2-acetyl-2-thiazoline in model UHT milk by 32.8-63.2% after 30-day storage at 30°C. Therefore, FAEE encapsulated in caseinate can be potentially used to improve the quality of UHT milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ethylene-enhanced catabolism of [14C]indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues

    International Nuclear Information System (INIS)

    Sagee, O.; Riov, J.; Goren, J.

    1990-01-01

    Exogenous [ 14 C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [ 14 C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels

  9. Analysis of the formation of Ta2O5 passive films in acid media through mechanistic modeling

    International Nuclear Information System (INIS)

    Cabrera-Sierra, R.; Vazquez-Arenas, J.; Cardoso, S.; Luna-Sanchez, R.M.; Trejo, M.A.; Marin-Cruz, J.; Hallen, J.M.

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) analyses are carried out to evaluate the passive features of tantalum oxide films (Ta 2 O 5 ) formed at different potentiostatic conditions (0.5, 1.0, 1.5 and 2.0 V vs SSE). A supporting electrolyte of 0.1 M H 2 SO 4 (pH 1) has been used to emulate acidic corrosive conditions for the growth of films with an n-type electronic character. A modification of the point defect model (PDM) accounting for the formation of molecular hydrogen (blistering damage) is used to fit the experimental EIS diagrams, and obtain the kinetic parameters that best describe the semiconductive behavior of the passive films. After this analysis, diffusivities in the order of 5.37 ± 1.6 x 10 -17 and 1.98 ± 1.4 x 10 -20 cm 2 s -1 were obtained for the oxygen (D VO·· ) and hydroxyl vacancies (D VOH· ), respectively. These findings show the capabilities of the EIS and the physicochemical modeling to account for the formation of valve-metal oxide films on a different range of conditions.

  10. From quantum chemical formation free energies to evaporation rates

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-01-01

    Full Text Available Atmospheric new particle formation is an important source of atmospheric aerosols. Large efforts have been made during the past few years to identify which molecules are behind this phenomenon, but the actual birth mechanism of the particles is not yet well known. Quantum chemical calculations have proven to be a powerful tool to gain new insights into the very first steps of particle formation. In the present study we use formation free energies calculated by quantum chemical methods to estimate the evaporation rates of species from sulfuric acid clusters containing ammonia or dimethylamine. We have found that dimethylamine forms much more stable clusters with sulphuric acid than ammonia does. On the other hand, the existence of a very deep local minimum for clusters with two sulfuric acid molecules and two dimethylamine molecules hinders their growth to larger clusters. These results indicate that other compounds may be needed to make clusters grow to larger sizes (containing more than three sulfuric acid molecules.

  11. CaSO4 Scale Formation on Vibrated Piping System in the Presence Citric Acid

    Science.gov (United States)

    Mangestiyono, W.; Jamari, J.; Muryanto, S.; Bayuseno, A. P.

    2018-02-01

    Vibration in many industries commonly generated by the operation mechanical equipment such as extruder, mixer, blower, compressor, turbine, generator etc. Vibration propagates into the floor and attacks the pipe around those mechanical equipment. In this paper, the influence of vibration in a pipe on the CaSO4 scale formation was investigated to understand the effect of vibration on the kinetics, mass of scale, crystal phases and crystal polymorph. To generate vibration force, mechanical equipment was prepared consisted of electrical motor, crankshaft, connecting rod and a vibration table at where test pipe section mounted. Deposition rate increased significantly when the vibration affected to the system i.e. 0.5997 and 1.6705 gr/hr for vibration frequency 4.00 and 8.00 Hz. The addition 10.00 ppm of citric acid declined the deposition rate of 8 Hz experiment from 3.4599 gr/hr to 2.2865 gr/hr.

  12. Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2 -Supported Gold Catalyst.

    Science.gov (United States)

    Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka

    2018-05-14

    The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    OpenAIRE

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to ...

  14. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  15. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  16. Reduction of Inflammatory Responses and Enhancement of Extracellular Matrix Formation by Vanillin-Incorporated Poly(Lactic-co-Glycolic Acid) Scaffolds

    Science.gov (United States)

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson

    2012-01-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications. PMID:22551555

  17. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Science.gov (United States)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  18. Effect of citric acid on noncovalent interactions in biopolymer jellies

    Directory of Open Access Journals (Sweden)

    Kuanyzhbek Musabekov

    2015-09-01

    Full Text Available The effect of citric acid on the formation of gels based on gelatine, melon pulp and sugar has been studied. It is found that the structuring of gelatin the presence of melon pulp is due to hydrogen bonds between the amino acids of gelatin and pectin melon by hydrogen bonds. It is shown that the structuring of gelatin and gelatin – melon pulp depends on the concentration of sugar. The addition of acid in the pectin-gelatin composition reduces the pH, the solubility of pectin and accelerates the formation of jelly. This is due to the fact that in the presence of citric acid reduced the degree of dissociation of galacturonic acid. The intensity of the effect of citric acid on the structure in the presence of melon pulp could be explained by the formation of hydrogen bonds between pectin and citric acid.

  19. Chemical and physical structures of proteinoids and related polyamino acids

    Science.gov (United States)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  20. Influence of the glutamic acid content of the diet on the catabolic rate of labelled glutamic acid in rats. 2

    International Nuclear Information System (INIS)

    Wilke, A.; Simon, O.; Bergner, H.

    1984-01-01

    40 rats with a body weight of 100 g received 7 semisynthetic diets with different contents of glutamic acid and one diet contained whole-egg. A L-amino acid mixture corresponding to the pattern of egg protein was the protein source of the semisynthetic diets. Glutamic acid was supplemented succesively from 0 to 58 mol-% of the total amino acid content. On the 8th day of the experimental feeding the animals were labelled by subcutaneous injection of 14 C-glutamic acid. Subsequently the CO 2 and the 14 CO 2 excretion were measured for 24 hours. In this period 64 to 68 % of the injected radioactivity were recovered as 14 CO 2 . The curve pattern of 14 CO 2 excretion indicates two different processes of 14 CO 2 formation. One characterizing the direct degradation of glutamic acid to CO 2 with a high rate constant and a second one with a lower rate constant characterizing the 14 CO 2 formation via metabolites of glutamic acid. 77 % of the total 14 CO 2 excretion in 24 hours resulted from the direct oxidation of glutamic acid and 23 % from the oxidation of intermediates. When 14 CO 2 formation was measured 10 to 24 hours after injection of 14 C-glutamic acid a positive correlation to the content of glutamic acid in the diet was observed. The intestinal tissue contributes considerably to the catabolization of glutamic acid, however, there seems to exist an upper limit for this capacity. (author)

  1. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  2. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    Science.gov (United States)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  3. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    Science.gov (United States)

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

  4. PENGARUH ASAM AKROBAT TERHADAP PEMBENTUKAN GEL MIOFIBRIL IKAN MATA BESAR (Selar crumenophthalnus [effect of ascorbic acid on gel formation of myofibril from big eye scad fish (Selar crumenophthalnus

    Directory of Open Access Journals (Sweden)

    Yuli Witono

    2005-08-01

    Full Text Available Effect of ascorbic acid on gel formation of myofibril from big eye scad fish (Selar crumenophthalnuswere studied for its development as food ingredient. Myofibril was galled by the addition of various concentrations of ascorbic acid (0, 0.1, 0.2, 0.3 and 0.4% and the gels were then characterized for its cooking loss, of the gel, but at 0.4% the cooking loss of gel increased significantly. Accordingly, the WHC of the gel changed insignificantly with the ascorbic acid addition below 0.3%, and decrease sharply in the addition of 0.4%. Gel textures were affected by the addition of ascorbic acid at all levels, namely 29.9 ± 1.9, 31.0 ± 0.3, 35.4 ± 0.4, 46.7 ± 1.5, and 115.7 ± 3.2 g/7 mm for 0, 0.1, 0.2, 0.3 and 0.4%, respectively. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE showed that addition of ascorbic acid drove formation odfdisulphide bond in the myosin heavy chain (MHC and other myofirillar proteins, resulting in the development of a strong three dimensions structure I myofibril gel as shown by microscopic structure.

  5. Cyclization during synthetic studies on necic acids and their precursors

    International Nuclear Information System (INIS)

    Drewes, S.E.; Emslie, N.D.; Pitchford, A.T.; Wallace, B.W.

    1982-01-01

    The synthesis of macrocyclic diesters which incorporate one of the necic acids, retronecic acid, is described. Instances are also cited of the formation of 'unwanted' cyclic products which result during interconversion of certain intermediates used in the synthesis of necic acids. The mechanism of formation of these products serves to highlight interesting aspects of the reactivity of the intermediates

  6. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    DEFF Research Database (Denmark)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recogniz......The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target......-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments....... Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation...

  7. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  8. K-Basin gel formation studies

    International Nuclear Information System (INIS)

    Beck, M.A.

    1998-01-01

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates

  9. Formation of malonic dialdehyde and other 2-thiobarbituric-acid-active products in γ-radiolysis of DNA and DNA model substances in aqueous solution

    International Nuclear Information System (INIS)

    Langfinger, K.D.

    1984-01-01

    During radiation-induced DNA strand break, a product was observed which reacts positively with 2-thiobarbituric acid (TBA) to malonic dialdehyde (MDA) but is not a free MDA. The paper therefore discusses the formation of products during γ irradiation of DNA and DNA model substances which react positively with TBA to MDA. This reaction is highly sensitive but has low specificity, so that further analytical techniques were used for characterisation. These were: kinematic studies on chromophore formation using TBA, UV spectroscopy, and chromatography. The investigations comprised 1. Irradiation of sugars and polyalcohols. 2. Irradiation of nucleosides and nucleotides. 3. Irradiation of DNA. (orig./PW) [de

  10. A randomized controlled experimental study of the efficacy of platelet-rich plasma and hyaluronic acid for the prevention of adhesion formation in a rat uterine horn model.

    Science.gov (United States)

    Oz, Murat; Cetinkaya, Nilufer; Bas, Sevda; Korkmaz, Elmas; Ozgu, Emre; Terzioglu, Gokay Serdar; Buyukkagnici, Umran; Akbay, Serap; Caydere, Muzaffer; Gungor, Tayfun

    2016-09-01

    Platelet-rich plasma (PRP) has been known to possess an efficacy in tissue regeneration. The aim of this study was to determine the role of PRP on post-operative adhesion formation in an experimental rat study. Thirty Sprague-Dawley rats were randomly divided into control, hyaluronic acid, and PRP treatment groups and operated on for uterine horn adhesion modeling. Blood was collected to produce a PRP with platelet counts of 688 × 10(3)/μL, and 1 ml of either hyaluronic acid gel or PRP was administered over the standard lesions, while the control group received no medication. The evaluation of post-operative adhesions was done on the 30th post-operative day. The location, extent, type, and tenacity of adhesions as well as total adhesion scores, tissue inflammation, fibrosis and transforming growth factor-1beta (TGF-1β) expressions were evaluated. The total adhesion score was significantly lower in the PRP group (3.2 ± 1.5) compared with the hyaluronic acid (5.0 ± 1.3) and control (8.1 ± 1.7) groups. The extent of the adhesions was significantly lower in the PRP group. There was no significant difference in the type and tenacity of adhesions between the hyaluronic acid and the PRP group. The level of inflammation was significantly higher in the control group than the others, while there was no difference between the PRP and hyaluronic acid groups. TGF-1β expression was significantly lesser in the PRP group than the control and hyaluronic acid groups. PRP is more effective than hyaluronic acid treatment in preventing post-operative adhesion formation in an experimental rat uterine horn adhesion model.

  11. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer.

    Science.gov (United States)

    Seamon, Kyle J; Bumpus, Namandjé N; Stivers, James T

    2016-11-08

    Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.

  12. Implications for the formation of abasic sites following modification of polydeoxycytidylic acid by acrolein in vitro

    International Nuclear Information System (INIS)

    Smith, R.A.; Sysel, I.A.; Tibbels, T.S.; Cohen, S.M.

    1988-01-01

    Polydeoxycytidylic acid (poly dC) was incubated with excess acrolein. A Nensorb 20 nucleic acid purification cartridge was used to bind the polymeric material in the poly dC/acrolein reaction mixture. The non-polymeric material eluted from this column had a UV absorbance four times higher than that of the control. The flourescence spectrum of the eluted material did not correspond to that of unmodified cytosine. Separate aliquots of the reaction mixture were digested to deoxynucleotide 3 ' -monophosphates by incubation with micrococcal nuclease and spleen phosphodiesterase. The products were converted to 3 2P-labelled deoxynucleotide 3 ' ,5-biphosphates by incubation with T4 polynucleotide kinase and excess [γ- 3 2P]ATP. The ' -monophosphate was selectively removed by incubation with nuclease P1. Two dimensional thin-layer chromatography (TLC) on polyethyleneimine cellulose (PEI)-cellulose and detection of 3 2P-labeled deoxynucleotide 5 ' -monophosphates by autoradiography failed to provide evidence for the formation of an acrolein adduct of deoxycytidine 5'-monophosphate. When acrolein-modified deoxycytidine 5 ' -monophosphate, was detected. These data show that acrolein-modified deoxycytidine 3 ' -monophosphates are substrates for 3 2P labeling by T4 polynucleotide kinase and are stable under the assay conditions employed

  13. Role of gallic and p-coumaric acids in the AHL-dependent expression of flgA gene and in the process of biofilm formation in food-associated Pseudomonas fluorescens KM120.

    Science.gov (United States)

    Myszka, Kamila; Schmidt, Marcin T; Białas, Wojciech; Olkowicz, Mariola; Leja, Katarzyna; Czaczyk, Katarzyna

    2016-09-01

    In the process of Pseudomonas fluorescens biofilm formation, N-acyl-l-homoserine lactone (AHL)-mediated flagella synthesis plays a key role. Inhibition of AHL production may attenuate P. fluorescens biofilm on solid surfaces. This work validated the anti-biofilm properties of p-coumaric and gallic acids via the ability of phenolics to suppress AHL synthesis in P. fluorescens KM120. The dependence between synthesis of AHL molecules, expression of flagella gene (flgA) and the ability of biofilm formation by P. fluorescens KM120 on a stainless steel surface (type 304L) was also investigated. Research was carried out in a purpose-built flow cell device. Limitations on AHL synthesis in P. fluorescens KM120 were observed at concentrations of 120 and 240 µmol L(-1) of phenolic acids in medium. At such levels of gallic and p-coumaric acids the ability of P. fluorescens KM120 to synthesize 3-oxo-C6-homoserine lactone (HSL) was not observed. These concentrations caused decreased expression of flgA gene in P. fluorescens KM120. The changes in expression of AHL-dependent flgA gene significantly decreased the rate of microorganism colonization on the stainless steel surface. Phenolic acids are able to inhibit biofilm formation. The results obtained in the work may help to develop alternative techniques for anti-biofilm treatment in the food industry. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process.

    Science.gov (United States)

    Li, Xiaodan; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-12-15

    The effects of frying oils' fatty acids profile on the formation of polar components and their retention in French fries and corresponding deep-fried oils were investigated in the present study, using oils with different fatty acids composition. Our analysis showed that the total polar compounds (TPCs) content in French fries was only slightly lower than that in deep-fried oils, indicating that there was no significant difference considering the amounts of TPCs in French fries and deep-fried oils. Our further analysis showed that different polar components in TPCs distributed differently in deep-fried oils and oils extracted from French fries. Specifically, the level of oligomeric and dimeric triacylglycerols was higher in French fries while oxidized triacylglycerols and diacylglycerols content was higher in deep-fried oils. The different retention of TPCs components in French fries may be explained by their interactions with carbohydrates, which are shown to enhance with the increase of hydrophobic property. Chemometric analysis showed that no correlation between the polar compounds level and saturated fatty acids profile was observed. Meanwhile, the polar compounds content was highly correlated with the formation of trans-C18:1, and a highly positive association between polar compounds and C18:2 content was also observed in palm oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration.

    Science.gov (United States)

    Bordiga, M; Lorenzo, C; Pardo, F; Salinas, M R; Travaglia, F; Arlorio, M; Coïsson, J D; Garde-Cerdán, T

    2016-04-15

    The validation of a HPLC-PDA-MS/MS chromatographic method for the quali/quantitative characterization of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine has been described and discussed. Four standards showed a good linearity with high correlation coefficient values (over 0.9989) and LOD and LOQ were 0.001-0.015 mg/L and 0.004-0.045 mg/L, respectively. Furthermore, this study reported how factors such as temperature, alcoholic degree, and amino acids concentration are able to influence the formation of these four alcohols in Monastrell wines. The quantification values of these alcohols has been detected both at the half and end of alcoholic fermentation, and at the end of malolactic fermentation. In relation to interactions between factors, several significant variations emerged (p ⩽ 0.001). The impact of amino acids supplementation in Monastrell must it has been demonstrated, mainly in regards to histaminol and tryptophol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    Science.gov (United States)

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  17. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    Science.gov (United States)

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Formation mechanism of coamorphous drug−amino acid mixtures

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Larsen, Flemming Hofmann; Cornett, Claus

    2015-01-01

    Two coamorphous drug−amino acid systems, indomethacin−tryptophan (Ind−Trp) and furosemide−tryptophan Fur−Trp), were analyzed toward their ease of amorphization and mechanism of coamorphization during ball milling. The two mixtures were compared to the corresponding amorphization of the pure drug...

  19. Facile access to amides and hydroxamic acids directly from nitroarenes.

    Science.gov (United States)

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  20. Dew point of gases with low sulfuric acid content

    Energy Technology Data Exchange (ETDEWEB)

    Fieg, J.

    1981-07-01

    Discusses control of air pollution caused by sulfur compounds in solid fuels during combustion. Excessive amount of oxygen during combustion leads to formation of sulfur trioxide. Sulfur trioxide reacts with water vapor and forms sulfuric acid. Chemical reactions which lead to formation of sulfuric acid are described. Conditions for sulfuric acid condensation are analyzed. Several methods for determining dew point of flue gases with low sulfuric acid content are reviewed: methods based on determination of electric conductivity of condensed sulfuric acid (Francis, Cheney, Kiyoure), method based on determination of sulfuric acid concentration in the gaseous phase and in the liquid phase after cooling (Lee, Lisle and Sensenbaugh, Ross and Goksoyr). (26 refs.) (In Polish)

  1. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation.

    Science.gov (United States)

    Du, Sheng; Sugano, Mami; Tsushima, Miho; Nakamura, Teruko; Yamamoto, Fukuju

    2004-04-01

    Eight-year-old Metasequoia glyptostroboides seedlings were tilted at a 45 degrees angle to induce compression-wood formation on the lower side of the stems. After 2 weeks of treatment, half of the seedlings were sampled and the remaining half were tilted to the opposite orientation to exchange the upper and lower sides and were kept for 2 more weeks until sampled. Cambium-emitted ethylene was analyzed by gas chromatography with flame-ionization detection. Endogenous indole-3-acetic acid (IAA) was measured by gas chromatography-mass spectrometry. Tracheid production and compression-wood formation were determined by light microscopy. Anatomical studies showed that tracheid production was promoted and compression-wood tracheids always developed on the gravitationally lower side of tilted stems in both the original tilting and the subsequent reverse-tilting periods. These were accompanied by an increase in IAA content in and an accelerated ethylene-evolution rate from the cambial region of the same side.

  2. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  3. Dynamics of Green AuNP Formation and Their Application in Core-Shell Nanostructures

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Zhang, Jingdong; Jensen, Palle Skovhus

    The formation of gold nanoparticles in our optimized synthesis is achieved through reduction of tetrachloroauric acid in 2 - (N - morpholino)ethanesulphonic acid (MES) buffered glucose and stabilization by starch at room temperature. The formation has been followed by measuring the electrochemica...

  4. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  5. Some studies on the reaction between nitrous acid and plutonium(IV)

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Bagawde, S.V.; Ramakrishna, V.V.; Patil, S.K.

    1976-01-01

    In the ion exchange and solvent extraction studies nitrous acid is used as an oxidant for Pu(IV) in perchloric acid. Earlier studies had indicated that Pu(IV) forms complex with nitrous acid. The present investigation aimed to study this complex formation by solvent extraction and spectrophotometric methods, revealed that is no significant complex formation between Pu(IV) and nitrous acid. The high apparent equilibrium constant for the complex formation is caused by the partial reduction of Pu(IV) to Pu(III) by nitrous acid. The nitrate complexing is negligible in the case of Th(IV) and Np(IV) as well. Systematic investigation on the redox reactions of plutonium in different oxidation states with nitrous acid is now in progress. The preliminary results obtained indicate that Pu(IV) is reduced to Pu(III) by nitrous acid with a rate that can be conveniently followed spectrophotometrically. (T.I.)

  6. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    Science.gov (United States)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  7. Wormholes propagation for fractured-vuggy formation: Laboratory tests, numerical simulation and field application

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-12-01

    Full Text Available The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs. While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions. Alveolate dissolved pores, krast caves, and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin. There were four categories of formation, which are matrix dominated, inter-breccia dissolved pore dominated, dissolved pore and cave dominated, and fissure and cave dominated, based on the development intensity and connectedness of caves and fissures. The caves and fissures make the wormhole formation and propagation particularly complicated. Firstly, the 3-D topological structure of dissolved pores, vugs, fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free. Secondly, 3-D patterns of wormhole are obtained with CT scanning after core flooding by acid. Additionally, the pore-throat network model is reconstructed with digital cores technology. Then, the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation. Lastly, the wormhole pattern gained by CT scanning and simulating with two-scale model is compared. Meanwhile, the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field, Sichuan Basin. The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve, which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations. In addition, the simulated

  8. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  9. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Directory of Open Access Journals (Sweden)

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  10. Synthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation

    NARCIS (Netherlands)

    Klis, van der Frits; Haveren, van Jacco; Es, van Daan S.; Bitter, Harry

    2017-01-01

    5-Hydroxymethylfurfural (HMF) is a versatile intermediate in biomass conversion pathways. However, the notoriously unstable nature of HMF imposes challenges to design selective routes to chemicals such as furan-2,5-dicarboxylic acid (FDCA). Here, a new strategy for obtaining furans is presented,

  11. {alpha}-Man monolayer formation via Si-C bond formation and protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Funato, Koji [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Yoshiko, E-mail: miuray@jaist.ac.j [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2009-11-30

    An acetylenyl-terminated saccharide was synthesized and the thin layer formation on the hydrogen-terminated silicon was investigated. The acetylenyl-terminated saccharide was synthesized by the condensation reaction of hexynoic acid and p-aminophenyl saccharide. This was reacted with hydrogen-terminated silicon (Si-H) by a photochemical reaction. The resulting saccharide modified substrate was analyzed by ellipsometry and X-ray photoelectron spectroscopy, which showed the formation of a uniform monolayer. The surface's ability to recognize proteins was analyzed by fluorescent microscopy, and showed specific interactions with sugar recognition proteins.

  12. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N S [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Wong, K W [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Li, Q [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Zheng, Z [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Lau, W M [Surface Science Western, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2007-10-17

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to {approx}60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version.

  13. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    International Nuclear Information System (INIS)

    Lam, N S; Wong, K W; Li, Q; Zheng, Z; Lau, W M

    2007-01-01

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to ∼60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version

  14. Isolate-specific effects of patulin, penicillic Acid and EDTA on biofilm formation and growth of dental unit water line biofilm isolates.

    Science.gov (United States)

    Liaqat, Iram; Bachmann, Robert Thomas; Sabri, Anjum Nasim; Edyvean, Robert G J

    2010-08-01

    Dental unit water line (DUWL) contamination by opportunistic pathogens has its significance in nosocomial infection of patients, health care workers, and life-threatening infections to immunocompromized persons. Recently, the quorum sensing (QS) system of DUWL isolates has been found to affect their biofilm-forming ability, making it an attractive target for antimicrobial therapy. In this study, the effect of two quorum-sensing inhibitory compounds (patulin; PAT, penicillic acid; PA) and EDTA on planktonic growth, AI-2 signalling and in vitro biofilm formation of Pseudomonas aeruginosa, Achromobacter xylosoxidans and Achromobacter sp. was monitored. Vibrio harveyi BB170 bioassay and crystal violet staining methods were used to detect the AI-2 monitoring and biofilm formation in DUWL isolates, respectively. The V. harveyi BB170 bioassay failed to induce bioluminescence in A. xylosoxidans and Achromobacter sp., while P. aeruginosa showed AI-2 like activity suggesting the need of some pretreatments prior to bioassay. All strains were found to form biofilms within 72 h of incubation. The QSIs/EDTA combination have isolate-specific effects on biofilm formation and in some cases it stimulated biofilm formation as often as it was inhibited. However, detailed information about the anti-biofilm effect of these compounds is still lacking.

  15. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  16. Determination of thymine glycol residues in irradiated or oxidized DNA by formation of methylglyceric acid

    International Nuclear Information System (INIS)

    Schellenberg, K.A.; Shaeffer, J.

    1986-01-01

    Treatment of DNA solutions with X-irradiation various oxidants including hydrogen peroxide plus ferrous ion, hydrogen peroxide plus copper ion and ascorbate, permanganate, or sonication in the presence of dissolved oxygen all produced varying amounts of thymine glycol residues. After denaturing the DNA with heat, the glycol residues were reduced and labeled at the 6 position with tritium- labeled sodium borohydride. Subsequent reaction with anhydrous methanolic HCl gave a quantitative yield of the methyl ester of methylglyceric acid, which was determined by thin layer chromatography. The method, developed using thymidine as a model, was used to ascertain the requirements for glycol formation in DNA. It was shown that hydroxyl radical generating systems, permanganate, X-irradiation, or sonication in presence of oxygen were required, but hydrogen peroxide in the absence of iron or copper and ascorbate was inactive. Application to determination of DNA damage in vivo is being explored

  17. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-01-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  18. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  19. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Directory of Open Access Journals (Sweden)

    D. K. Deshmukh

    2016-04-01

    Full Text Available Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12, ω-oxoacids (ωC2–ωC9, pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3 as well as water-soluble organic carbon (WSOC, organic carbon (OC, and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−. In all the size-segregated aerosols, oxalic acid (C2 was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2 was the dominant oxoacid and glyoxal (Gly was more abundant than methylglyoxal. Diacids (C2–C5, ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm whereas azelaic (C9 and 9-oxononanoic (ωC9 acids peaked at coarse mode (3.3–4.7 µm. Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99, indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95 further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96, which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9 and oxoacid (ωC9 with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  20. A study on complex formation of cadmium (II) ions, 9

    International Nuclear Information System (INIS)

    Matsui, Haruo

    1984-01-01

    Formation constants of cadmium (11) complexes with dicarboxylic acids such as oxalic, malonic, methylmalonic, succinic, and glutaric acids were determined in aqueous solutions containing 3 mol.dm -3 LiClO 4 as a constan ionic medium at 25 0 C by potentiometric titrations. It was reported in the previous works that cadmium (11)- aspartic acid complexes contained two chelate rings. However, a problem remained whether the second chelate ring could be formed by six membered-ring containing -O-Cd-N- bond or by seven membered-ring containing -O-Cd-O- bond. The results of the present work suggested that it would be formed by a six membered ring. Cadmium (11) ions were coordinated with a carboxylic group of the dicarboxylic acids studied, and formed no chelate ring within the complexes. The white precipitate appeared in the solution containing cadmium (11) ion and oxalic acid, in the pH range below 3.0, therefore, the chelate formation was not ascertained in this case. The formation constants, log βsub(pr)= log([Cdsub(p)Lsub(r)sup((2p-2r)+)]/([Cd 2+ ]sup(p)[L 2- ]sup(r))), of the complexes were: log β 11 = 1.98, log β 12 = 3.05 for cadmium (11)-malonic acid; log β 11 = 2.28, log β 12 = 3.06 for cadmium (11)-methylmalonic acid; log β 11 = 1.78, log β 12 = 3.08 for cadmium (11)-succinic acid; log β 11 = 1.85, log β 12 = 3.28 for cadmium (11)-glutaric acid complexes. (author)

  1. Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.

    Science.gov (United States)

    Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F

    2014-01-01

    The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.

  2. Protein haze formation in wines revisited. The stabilising effect of organic acids

    OpenAIRE

    Batista, L.; Monteiro, L.; Loureiro, V.; Teixeira, A.R.; Ferreira, R.B.

    2010-01-01

    The effect on the wine protein haze potential of five organic acids commonly encountered in wines (L(+)- tartaric, L( )-malic, citric, succinic and gluconic acids) was assessed. All five acids, tested at 20 mM, reduced dramatically the haze potential of proteins, either in wine or dissolved in water, throughout the range of pH values typical of wines (i.e., from 2.8 through 3.8). Subtle differences among the acid effects did not correlate with the number of their carboxyl groups, ...

  3. Identification of candidate amino acids involved in the formation of pink-red pigments in onion (Allium cepa L.) juice and separation by HPLC.

    Science.gov (United States)

    Lee, Eun Jin; Yoo, Kil Sun; Patil, Bhimanagouda S

    2010-10-01

    The formation of pink-red pigments ("pinking") by various amino acids was investigated by reacting amino acids with compounds present in onion juice. The unknown pink-red pigments were generated and separated using high-performance liquid chromatography (HPLC) and a diode array detector (DAD) in the range of 200 to 700 nm. To generate pink-red pigments, we developed several reaction systems using garlic alliinase, purified 1-propenyl-L-cysteine sulfoxide (1-PeCSO), onion thiosulfinate, natural onion juice, and 21 free amino acids. The compound 1-PeCSO was a key compound associated with pinking in the presence of both the alliinase and amino acids. Numerous naturally occurring pink-red pigments were detected and separated from pink onion juice using the HPLC-DAD system at 515 nm. Most free amino acids, with the exceptions of histidine, serine, and cysteine, formed various pink-red pigments when reacted with onion thiosulfinate. This observation indicated that onion pinking is caused not by a single pigment, but by many. Furthermore, more than one color compound could be produced from a single amino acid; this explains, in part, why there were many pink-red compound peaks in the chromatogram of discolored natural onion juice. We presumed that the complexity of the pink-red pigments was due to the involvement of more than 21 natural amino acids as well as several derivatives of the color products produced from each amino acid. We observed that the pinking process in onion juice is very similar to that of the greening process in crushed garlic, emphasizing that both thiosulfinate from flavor precursors and free amino acids are absolutely required for the discoloration.

  4. Mathematical modeling of the formation of sedimentary acid precipitation in the atmosphere in view of the evaporation of moisture from their surface

    Directory of Open Access Journals (Sweden)

    Gvozdyakov Dmitry

    2017-01-01

    Full Text Available The article presents the results of numeric simulation of the formation of sedimentary acid precipitation in the atmosphere taking into account the evaporation of moisture from their surfaces. It is established that the joint condensation of vapors of sulfuric anhydride and water vapor, given the flow of solar energy and the evaporation process significantly slows the growth of drops. The possibility of achieving the underlying surface by the formed sediments is analyzed.

  5. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    Science.gov (United States)

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  6. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  7. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    Science.gov (United States)

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    Science.gov (United States)

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO 2 /IrO 2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO 2 /IrO 2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  9. By-product formation in repetitive PCR amplification of DNA libraries during SELEX.

    Science.gov (United States)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.

  10. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    Science.gov (United States)

    Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  11. Behavior of copper in acidic sulfate solution: Comparison with acidic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Tromans, D.; Silva, J.C. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering

    1997-03-01

    The anodic polarization behavior of copper in a 0.1 M sulfuric acid (H{sub 2}SO{sub 4}) + 1 M sodium sulfate (Na{sub 2}SO{sub 4}) solution (pH = 2.0) was studied at room temperature under quiescent and stirred conditions. The behavior was compared with aqueous equilibria via construction of a potential-vs-pH (E-pH) diagram for the copper-sulfate-water (Cu-SO{sub 4}{sup 2}-H{sub 2}O) system. Interpretation of the behavior was aided by comparison with aqueous equilibria and polarization studies of copper in a 0.2 M hydrochloric acid (HCl) + 1 M sodium chloride (NaCl) solution(pH = 0.8). The initial anodic dissolution region in the acidic sulfate solution exhibited Tafel behavior with a slope consistent with formation of cupric ions (Cu{sup 2+}) whose rate of formation was charge-transfer controlled. At higher potentials, limiting current density (i{sub L}) behavior was observed under E-pH conditions that were consistent with formation of a film of copper sulfate pentahydrate (CuSO{sub 4} {degree} 5H{sub 2}O). Comparison of experimental i{sub L} values with those predicted by mass transport-controlled processes, using estimates of the diffusion layer thickness obtained from the mass transfer-influenced region of apparent Tafel behavior in the acidic chloride solution, were in sufficient agreement to indicate i{sub L} was controlled by the rate of dissolution of the CuSO{sub 4} {degree} 5H{sub 2}O film via transport of Cu{sup 2+} from the film-electrolyte interface into the bulk solution.

  12. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  13. Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils.

    Science.gov (United States)

    Ewert, Alice; Granvogl, Michael; Schieberle, Peter

    2014-08-20

    Acrolein (2-propenal) is classified as a foodborne toxicant and was shown to be present in significant amounts in heated edible oils. Up to now, its formation was mainly suggested to be from the glycerol part of triacylglycerides, although a clear influence of the unsaturation of the fatty acid moiety was also obvious in previous studies. To unequivocally clarify the role of the glycerol and the fatty acid parts in acrolein formation, two series of labeled triacylglycerides were synthesized: [(13)C(3)]-triacylglycerides of stearic, oleic, linoleic, and linolenic acid and [(13)C(54)]-triacylglycerides with labeled stearic, oleic, and linoleic acid, but with unlabeled glycerol. Heating of each of the seven intermediates singly in silicon oil and measurement of the formed amounts of labeled and unlabeled acrolein clearly proved the fatty acid backbone as the key precursor structure. Enzymatically synthesized pure linoleic acid and linolenic acid hydroperoxides were shown to be the key intermediates in acrolein formation, thus allowing the discussion of a radical-induced reaction pathway leading to the formation of the aldehyde. Surprisingly, although several oils contained high amounts of acrolein after heating, deep-fried foods themselves, such as donuts or French fries, were low in the aldehyde.

  14. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  15. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds.

    Science.gov (United States)

    Chang, Chenchen; Huang, Rong; Yan, Yan; Ma, Hongmin; Dai, Zheng; Zhang, Benying; Deng, Zixin; Liu, Wen; Qu, Xudong

    2015-04-01

    Selective modification of carbon scaffolds via biosynthetic engineering is important for polyketide structural diversification. Yet, this scope is currently restricted to simple aliphatic groups due to (1) limited variety of CoA-linked extender units, which lack aromatic structures and chemical reactivity, and (2) narrow acyltransferase (AT) specificity, which is limited to aliphatic CoA-linked extender units. In this report, we uncovered and characterized the first aromatic CoA-linked extender unit benzylmalonyl-CoA from the biosynthetic pathways of splenocin and enterocin in Streptomyces sp. CNQ431. Its synthesis employs a deamination/reductive carboxylation strategy to convert phenylalanine into benzylmalonyl-CoA, providing a link between amino acid and CoA-linked extender unit synthesis. By characterization of its selection, we further validated that AT domains of splenocin, and antimycin polyketide synthases are able to select this extender unit to introduce the phenyl group into their dilactone scaffolds. The biosynthetic machinery involved in the formation of this extender unit is highly versatile and can be potentially tailored for tyrosine, histidine and aspartic acid. The disclosed aromatic extender unit, amino acid-oriented synthetic pathway, and aromatic-selective AT domains provides a systematic breakthrough toward current knowledge of polyketide extender unit formation and selection, and also opens a route for further engineering of polyketide carbon scaffolds using amino acids.

  16. Surface acidity and solid-state compatibility of excipients with an acid-sensitive API: case study of atorvastatin calcium.

    Science.gov (United States)

    Govindarajan, Ramprakash; Landis, Margaret; Hancock, Bruno; Gatlin, Larry A; Suryanarayanan, Raj; Shalaev, Evgenyi Y

    2015-04-01

    The objectives of this study were to measure the apparent surface acidity of common excipients and to correlate the acidity with the chemical stability of an acid-sensitive active pharmaceutical ingredient (API) in binary API-excipient powder mixtures. The acidity of 26 solid excipients was determined by two methods, (i) by measuring the pH of their suspensions or solutions and (ii) the pH equivalent (pHeq) measured via ionization of probe molecules deposited on the surface of the excipients. The chemical stability of an API, atorvastatin calcium (AC), in mixtures with the excipients was evaluated by monitoring the appearance of an acid-induced degradant, atorvastatin lactone, under accelerated storage conditions. The extent of lactone formation in AC-excipient mixtures was presented as a function of either solution/suspension pH or pHeq. No lactone formation was observed in mixtures with excipients having pHeq > 6, while the lactone levels were pronounced (> 0.6% after 6 weeks at 50°C/20% RH) with excipients exhibiting pHeq 6, 3-6, and < 3) were consistent with the reported solution pH-stability profile of AC. In contrast to the pHeq scale, lactone formation did not show any clear trend when plotted as a function of the suspension/solution pH. Two mechanisms to explain the discrepancy between the suspension/solution pH and the chemical stability data were discussed. Acidic excipients, which are expected to be incompatible with an acid-sensitive API, were identified based on pHeq measurements. The incompatibility prediction was confirmed in the chemical stability tests using AC as an example of an acid-sensitive API.

  17. Polarographic determination of stability constants of Eu(III) complexes with acrylic acid and crotonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A L.J.; Makhan, S [Punjabi Univ., Patiala (India). Dept. of Chemistry

    1979-07-01

    Compositions and formation constants of Eu(III) complexes with acrylic acid and crotonic acid have been studied polarographically. The reductions are reversible and diffusion-controlled. The plot of Esub(1/2) versus -log Csub(x) is linear in the case of Eu(III)-acrylic acid system. The change in number of ligands bound to europium during reduction was found to be approximately equal to 1 and ratio of dissociation constants of Eu(III) and Eu(II) was found to be 40.76 x 10sup(-2). In the case of Eu(III)-crotonic acid system, composition and formation constants have been calculated by the method of Deford and Hume. Crotonic acid forms two complex species with europium (..beta../sub 1/, 60; ..beta../sub 2/, 4.2x10sup(+2)). The percentage distribution of various complex species as a function of ligand concentration has been calculated in the case of Eu(III)-crotonic acid system. A polarographic method for the determination of micro amounts of Eu(III) in the presence of diverse ions has been developed. Under optimum conditions Eu(III) in the concentration range 4x10sup(-4)-2x10sup(-3)M can be successfully determined in various mixtures.

  18. Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Elsa M. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto Politecnico de Setubal, ESTBarreiro, Rua Americo da Silva Marinho, 2839-001 Lavradio (Portugal); Rego, Talita S. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Minas da Piedade, Manuel E., E-mail: memp@fc.ul.p [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2011-06-15

    Research highlights: {yields} We determined the {Delta}{sub sol}H{sub m} of solid nicotinic acid (NA) in water by solution calorimetry. {yields} We determined {Delta}{sub dil}H{sub m} of an aqueous nicotinic acid solution by flow calorimetry. {yields} We determined (aq, {infinity}) for the 3 NA species involved in acid/base equilibria. {yields} We determined the enthalpy of formation of NA(aq) under saturation conditions.. - Abstract: The molar enthalpy of solution of solid nicotinic acid (NA) at T = 298.15 K, to give an aqueous solution of molality m = 3.748 . 10{sup -3} mol {center_dot} kg{sup -1}, was determined as {Delta}{sub sol}H{sub m} = (19,927 {+-} 48) J {center_dot} mol{sup -1}, by solution calorimetry. Enthalpies of dilution, {Delta}{sub dil}H{sub m}, of 0.1005 mol {center_dot} kg{sup -1} aqueous nicotinic acid to yield final solutions with molality in the approximate range (0.03 to 0.09) mol {center_dot} kg{sup -1} were also measured by flow calorimetry. Combining the two sets of data and the results of pH measurements, with values of proton dissociation enthalpies and {Delta}{sub f}H{sub m}{sup 0}(NA, cr) selected from the literature, it was possible to derive the standard molar enthalpies of formation of the three nicotinic acid species involved in protonation/deprotonation equilibria, at infinite dilution: {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COOH.{infinity}H{sub 2}O,aq) = (328.2 {+-} 1.2) kJ {center_dot} mol{sup -1}, {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (325.0 {+-} 1.2) kJ {center_dot} mol{sup -1}, and {Delta}{sub f}H{sub m}{sup 0}(NC{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (313.7 {+-} 1.2) kJ {center_dot} mol{sup -1}. Finally, the enthalpy of solution of nicotinic acid at T = 298.15 K, under saturation conditions (m = 0.138 mol {center_dot} kg{sup -1}), and the standard molar enthalpy of formation of the corresponding solution could also be obtained as {Delta

  19. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Esmeray Küley

    2013-01-01

    Full Text Available The influences of fish infusion decarboxylase broth (IDB on biogenic amines (BA formation by lactic acid bacteria (LAB were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream IDB. The result of the study showed that significant differences in ammonia (AMN and BA production were observed among the LAB strains in fish IDB (p < 0.05. The highest AMN and TMA production by LAB strains were observed for white shark IDB. The all tested bacteria had decarboxylation activity in fish IDB. The uppermost accumulated amines by LAB strains were tyramine (TYM, dopamine, serotonin and spermidine. The maximum histamine production was observed in sardine (101.69 mg/L and mackerel (100.84 mg/L IDB by Leuconostoc mesenteroides subsp. cremoris and Pediococcus acidophilus, respectively. Lactobacillus delbrueckii subsp. lactis and Pediococcus acidophilus had a high TYM producing capability (2943 mg/L and 1157 mg/L in sardine IDB.

  20. Laser-induced photochemical reaction of aqueous maleic acid solutions containing H2O2

    International Nuclear Information System (INIS)

    Shimizu, Yuichi; Kawanishi, Shunichi; Suzuki, Nobutake

    1995-01-01

    Hydroxy acid such as glycolic, tartaric and malic acids was directly produced by XeF-laser irradiation of the N 2 -saturated maleic acid aqueous solution containing H 2 O 2 . The selectivities of these products at the maximum of tartaric acid were 71, 4, and 2% at H 2 O 2 feeding rate of 3.2 ml h -1 , respectively. On the other hand, the irradiation of maleates such as dipotassium, calcium, and disodium greatly enhanced the selectivities of tartaric acid formation to 19%, and of malic acid formation to 13%, respectively, for dipotassium maleate. It may be considered from these results that the stability of the hydroxylated intermediate radical plays an important role for the efficient formations of tartaric and malic acids. (author)

  1. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro.

    Science.gov (United States)

    Ghelani, Hardik; Razmovski-Naumovski, Valentina; Pragada, Rajeswara Rao; Nammi, Srinivas

    2018-01-15

    Fructose-mediated protein glycation (fructation) has been linked to an increase in diabetic and cardiovascular complications due to over consumption of high-fructose containing diets in recent times. The objective of the present study is to evaluate the protective effect of (R)-α-lipoic acid (ALA) against fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro. The anti-glycation activity of ALA was determined using the formation of AGEs fluorescence intensity, iron released from the heme moiety of myoglobin and the level of fructosamine. The fructation-induced myoglobin oxidation was examined using the level of protein carbonyl content and thiol group estimation. The results showed that co-incubation of myoglobin (1 mg/mL), fructose (1 M) and ALA (1, 2 and 4 mM) significantly inhibited the formation of AGEs during the 30 day study period. ALA markedly decreased the levels of fructosamine, which is directly associated with the reduction of AGEs formation. Furthermore, ALA significantly reduced free iron release from myoglobin which is attributed to the protection of myoglobin from fructose-induced glycation. The results also demonstrated a significant protective effect of ALA on myoglobin oxidative damages, as seen from decreased protein carbonyl content and increased protein thiols. These findings provide new insights into the anti-glycation properties of ALA and emphasize that ALA supplementation is beneficial in the prevention of AGEs-mediated diabetic and cardiovascular complications.

  2. Prevalence of renal uric acid stones in the adult.

    Science.gov (United States)

    Trinchieri, Alberto; Montanari, Emanuele

    2017-12-01

    The aim of this study was to estimate uric acid renal stone prevalence rates of adults in different countries of the world. PubMed was searched for papers dealing with "urinary calculi and prevalence or composition" for the period from January 1996 to June 2016. Alternative searches were made to collect further information on specific topics. The prevalence rate of uric acid stones was computed by the general renal stone prevalence rate and the frequency of uric acid stones in each country. After the initial search, 2180 papers were extracted. Out of them, 79 papers were selected after the reading of the titles and of the abstracts. For ten countries, papers relating to both the renal stone prevalence in the general population and the frequency of uric stones were available. Additional search produced 13 papers that completed information on 11 more countries in 5 continents. Estimated prevalence rate of uric acid stones was >0.75% in Thailand, Pakistan, Saudi Arabia, Iran, South Africa (white population), United States and Australia; ranged 0.50-0.75% in Turkey, Israel, Italy, India (Southern), Spain, Taiwan, Germany, Brazil; and uric acid stone formation. A hot and dry climate increases fluid losses reducing urinary volume and urinary pH. A diet rich in meat protein causes low urinary pH and increased uric acid excretion. On the other hand, uric acid stone formation is frequently associated with obesity, metabolic syndrome and diabetes type 2 that are linked to dietary energy excess mainly from carbohydrate and saturated fat and also present with low urine pH values. An epidemic of uric acid stone formation could be if current nutritional trends will be maintained both in developed countries and in developing countries and the areas of greater climatic risk for the formation of uric acid stones will enlarge as result of the "global warming".

  3. Study of aniline polymerization reactions through the particle size formation in acidic and neutral medium

    Science.gov (United States)

    Aribowo, Slamet; Hafizah, Mas Ayu Elita; Manaf, Azwar; Andreas

    2018-04-01

    In the present paper, we reported particle size kinetic studies on the conducting polyaniline (PANI) which synthesized through a chemical oxidative polymerization technique from aniline monomer. PANI was prepared using ammonium persulfate (APS) as oxidizing agent which carried out in acidic and neutral medium at various batch temperatures of respectively 20, 30 and 50 °C. From the studies, it was noticed that the complete polymerization reaction progressed within 480 minutes duration time. The pH of the solution during reaction kinetic reached values 0.8 - to 1.2 in acidic media, while in the neutral media the pH value reached values 3.8 - 4.9. The batch temperature controlled the polymerization reaction in which the reaction progressing, which followed by the temperature rise of solution above the batch temperature before settled down to the initial temperature. An increment in the batch temperature gave highest rise in the solution temperature for the two media which cannot be more than 50 °C. The final product of polymerization reaction was PANI confirmed by Fourier Transform Infra-Red (FTIR) spectrophotometer for molecule structure identification. The averages particle size of PANI which carried out in the two different media is evidently similar in the range 30 - 40 μm and insensitive to the batch temperature. However, the particle size of PANI which obtained from the polymerization reaction at a batch temperature of 50 °C under acidic condition reached ˜53.1 μm at the tip of the propagation stage which started in the first 5 minutes. The size is obviously being the largest among the batch temperatures. Whereas, under neutral condition the particle size is much larger which reached the size 135 μm at the batch temperature of 20 °C. It is concluded that the particle size formation during the polymerization reaction being one of the important parameter to determine particle growing of polymer which indicated the reaction kinetics mechanism of synthesize

  4. Primary and secondary kinetic isotope effects in the acid-catalyzed dehydration of 1,1'-diadamantylmethylcarbinol in aqueous acetic acid

    International Nuclear Information System (INIS)

    Lomas, J.S.

    1981-01-01

    The sulfuric acid catalyzed dehydration of 1,1'-diadamantyl-methylcarbinol in anhydrous acetic acid proceeds exclusively to 1,1'-bis(1-adamantyl)ethylene. The secondary deuterium isotope effect of 1.32 found for this reaction shows that carbonium ion formation from the protonated alcohol is rate determining. In the presence of water, however, capture of the carbonium ion competes with deprotonation, introducing a primary isotope effect. Consequently, the overall KIE rises, reaching 3.18 for 80% aqueous acetic acid. Analysis of the KIE for 80 to 100% aqueous acetic acid is consistent with a simple classical mechanism involving reversible formation of the intermediate carbonium ion. The primary isotope effect upon deprotonation is at the most 2.98, indicative of an asymmetric transition state close to the carbonium ion

  5. Ravynic acid, an antibiotic polyeneyne tetramic acid from Penicillium sp. elucidated through synthesis.

    Science.gov (United States)

    Myrtle, J D; Beekman, A M; Barrow, R A

    2016-09-21

    A new antibiotic natural product, ravynic acid, has been isolated from a Penicillium sp. of fungus, collected from Ravensbourne National Park. The 3-acylpolyenyne tetramic acid structure was definitively elucidated via synthesis. Highlights of the synthetic method include the heat induced formation of the 3-acylphosphorane tetramic acid and a selective Wittig cross-coupling to efficiently prepare the natural compounds carbon skeleton. The natural compound was shown to inhibit the growth of Staphylococcus aureus down to concentrations of 2.5 µg mL(-1).

  6. Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats

    Science.gov (United States)

    Kroghsbo, Stine; Andersen, Nanna B.; Rasmussen, Tina F.; Madsen, Charlotte B.

    2014-01-01

    Background Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. Objectives To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes. Conclusions In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten. PMID:25207551

  7. CW-laser induced microchannels in dye-polymethacrylic acid films

    OpenAIRE

    M.A. Camacho-López

    2007-01-01

    In this work we report on the formation of microchannels on dye-polymethacrylic acid films using a cw-laser. A focalized beam of a He-Ne laser (632.8 nm emission line) was used to form microchannels on the films. It was found that there exists a laser power density threshold for a pit formation that depends on the dye concentration. The dimensions of the laser-induced channels are dependent on the laser power density. Microchannel formation in the transparent polymethacrylic acid films was no...

  8. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  9. Precipitation pathways for ferrihydrite formation in acidic solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Frandsen, Cathrine; Wallace, Adam F.

    2016-01-01

    to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 ... occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process....

  10. Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway

    NARCIS (Netherlands)

    Ramos-Díaz, A.; Brito-Argáez, L.; Munnik, T.; Hernández-Sotomayor, S.M.T.

    2007-01-01

    Aluminum (Al(3+)) has been recognized as a main toxic factor in crop production in acid lands. Phosphatidic acid (PA) is emerging as an important lipid signaling molecule and has been implicated in various stress-signaling pathways in plants. In this paper, we focus on how PA generation is affected

  11. On the Sensitivity of Peptide Nucleic Acid Duplex Formation and Crystal Dissolution to a Variation of Force-Field Parameters.

    Science.gov (United States)

    Bachmann, Stephan J; Lin, Zhixiong; Stafforst, Thorsten; van Gunsteren, Wilfred F; Dolenc, Jožica

    2014-01-14

    The technique of one-step perturbation to explore the relation between particular force-field parameters on the one hand and particular properties of a biomolecular system on the other hand from one or a few molecular dynamics simulations is applied to investigate the dependence of the free enthalpy of dimer formation and of crystal dissolution of a self-complementary fragment (H-CGTACG-NH2) of peptide nucleic acid, PNA, a mimic of DNA. The simulations show that PNA dimer formation in aqueous solution is favored by a decrease in the base charges with respect to values of the GROMOS 45A4 force field, while it is disfavored by a decrease in the backbone charges. In contrast, crystal dissolution of the PNA dimer is favored by a decrease in base charges, while a variation of backbone charges has a minor effect on this free enthalpy change. These opposite effects in a crystalline versus aqueous solution environment can be understood from the different water contents for these systems and have consequences for biomolecular force-field development.

  12. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  13. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    Science.gov (United States)

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  14. Formation of an adduct by clenbuterol, a beta-adrenoceptor agonist drug, and serum albumin in human saliva at the acidic pH of the stomach: evidence for an aryl radical-based process.

    Science.gov (United States)

    Pietraforte, D; Brambilla, G; Camerini, S; Scorza, G; Peri, L; Loizzo, A; Crescenzi, M; Minetti, M

    2008-07-15

    Clenbuterol (CLB) is an antiasthmatic drug used also illegally as a lean muscle mass enhancer in both humans and animals. CLB and amine-related drugs in general are nitrosatable, thus raising concerns regarding possible genotoxic/carcinogenic activity. Oral administration of CLB raises the issue of its possible transformation by salivary nitrite at the acidic pH of gastric juice. In acidic human saliva CLB was rapidly transformed to the CLB arenediazonium ion. This suggests a reaction of CLB with salivary nitrite, as confirmed in aerobic HNO(2) solution by a drastic decrease in nitric oxide, nitrite, and nitrate. In human saliva, both glutathione and ascorbic acid were able to inhibit CLB arenediazonium formation and to react with preformed CLB arenediazonium. The effect of ascorbic acid is particularly pertinent because this vitamin is actively concentrated within the gastric juice. EPR spin trapping experiments showed that preformed CLB arenediazonium ion was reduced to the aryl radical by ascorbic acid, glutathione, and serum albumin, the major protein of saliva. As demonstrated by anti-CLB antibodies and MS, the CLB-albumin interaction leads to the formation of a covalent drug-protein adduct, with a preference for Tyr-rich regions. This study highlights the possible hazards associated with the use/abuse of this drug.

  15. Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried-food outlets.

    Science.gov (United States)

    Velasco, Joaquín; Marmesat, Susana; Bordeaux, Olivier; Márquez-Ruiz, Gloria; Dobarganes, Carmen

    2004-07-14

    The formation and evolution of monoepoxy fatty acids, arising from oleic and linoleic acids, were investigated in olive oil and conventional sunflower oil, representatives of monounsaturated and polyunsaturated oils, respectively, during thermoxidation at 180 degrees C for 5, 10, and 15 h. Six monoepoxy fatty acids, cis-9,10- and trans-9,10-epoxystearate, arising from oleic acid, and cis-9,10-, trans-9,10-, cis-12,13-, and trans-12,13-epoxyoleate, arising from linoleic acid, were analyzed by gas chromatography after oil derivatization to fatty acid methyl esters. Considerable amounts, ranging from 4.29 to 14.24 mg/g of oil in olive oil and from 5.10 to 9.44 mg/g of oil in sunflower oil, were found after the heating periods assayed. Results showed that the monoepoxides quantitated constituted a major group among the oxidized fatty acid monomers formed at high temperature. For similar levels of degradation, higher contents of the monoepoxides were found in olive oil than in sunflower oil. Ten used frying oils from restaurants and fried-food outlets in Spain were analyzed to determine the contents of the monoepoxides in real frying oil samples. Levels ranged from 3.37 to 14.42 mg/g of oil. Results show that, for similar degradation levels, the monoepoxides were more abundant in the monounsaturated oils than in the polyunsaturated oils.

  16. Random poly(amino acid)s synthesized by ring opening polymerization as additives in the biomimetic mineralization of CaCO3

    NARCIS (Netherlands)

    Dmitrovic, V.; Habraken, G.J.M.; Hendrix, M.M.R.M.; Habraken, W.J.E.M.; Heise, A.; With, de G.; Sommerdijk, N.A.J.M.

    2012-01-01

    Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino acid)s to mimic

  17. Selected topics in photochemistry of nucleic acids. Recent results and perspectives

    International Nuclear Information System (INIS)

    Loeber, G.; Kittler, L.

    1977-01-01

    Recent results on the following photoreactions of nucleic acids are reported: photochemistry of aza-bases and minor bases, formation of photoproducts of the non-cyclobutane type, formations of furocoumarin-pyrimidine photoadducts, fluorescence of dye-nucleic acid complexes and their role in chromosomal fluorescence staining, and mechanisms of the photochemical reaction. Results are discussed with respect to: (i) photobiological relevance of light-induced defects in nucleic acids; (ii) possibilities of achieving higher selectivity of light-induced defects in nucleic acids; (iii) the use of nucleic acid photochemistry to analyze genetic material. An extensive bibliography is included. (author)

  18. Fatty acid biosynthesis. VIII. The fate of malonyl-CoA in fatty acid biosynthesis by purified enzymes from lactating-rabbit mammary gland

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1971-01-01

    - 1. We have investigated the formation and utilization of malonyl-CoA in fatty acid synthesis catalysed by preparations of partially purified acetyl-CoA carboxylase and purified fatty acid synthetase from lactating-rabbit mammary gland. - 2. Carboxylation of [1-14C]acetyl-CoA was linked to fatty...... acid synthesis by the presence of fatty acid synthetase and NADPH. The rate of fatty acid formation was equal to that of acetyl-CoA carboxylation, without the accumulation of free malonyl-CoA to a concentration required to obtain the same rate of fatty acid synthesis from added [1,3-14C2]malonyl......-CoA. - 3. The preparations of acetyl-CoA carboxylase and fatty acid synthetase were each able to decarboxylate [1,3-14C2]malonyl-CoA. - 4. Both enzyme preparations acted as competitive inhibitors of 14CO2 fixation into acetyl-CoA catalysed by acetyl-CoA carboxylase in the absence of NADPH...

  19. Distribution equilibria of Eu(III) in the system: bis(2-ethylhexyl)phosphoric acid organic diluent-NaCl, lactic acid, polyaminocarboxylic acid, water

    International Nuclear Information System (INIS)

    Danesi, P.R.; Cianetti, C.; Horwitz, E.P.

    1982-01-01

    The distribution equilibria of Eu 3+ between aqueous phases containing lactic acid and N'-(2hydroxyethyl)ethylenediamine-N,N,N'-triacetic acid (HEDTA) or diethylenetriamine-N,N,N',N',N''-penetaacetic acid (DTPA) at constant ionic strength (μ = 1.0), and n-dodecane solutions of HDEHP have been studied. The formation constants of the simple Eu-lactate complexes and Eu-lactate-HEDTA mixed complex were evaluated from the k/sub d/ data. The conclusion is reached that no lactic acid is coextracted into the organic phase at tracer metal concentrations. The separation factors between Eu 3+ , Pm 3+ , and Am 3+ have been evaluated in the presence of HEDTA

  20. The Influence of Various Vibration Frequency on Barium Sulfate Scale Formation Of Vibrated Piping System In The Presence Citric Acid

    Science.gov (United States)

    Karaman, N.; Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2018-01-01

    In this paper, the influence of vibrated piping system for BaSO4 scale formation was investigated. The vibration frequency and presence of citric acid were independent variables determining the kinetics, mass deposit and polymorph of the crystals. Correspondingly, induction time and mass of scale were obtained during the experiments. The crystalline scale was observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) to investigate the morphology and the phase mineral deposits, respectively. This effect indicated that the increase in vibration frequency promoted the increased deposition rate, while the pure barite with a plate-like morphology was produced in the experiments.

  1. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Phaechamud, Thawatchai, E-mail: tphaechamud011@yahoo.com; Chitrattha, Sasiprapa, E-mail: sasi_toey@hotmail.com

    2016-04-01

    Porous PLA structure has been widely used in cell transplantation, drug carrier and wound dressing. The porous structure can be controlled depending on the choice of the polymer, solvent, nonsolvent and preparation parameters. In this study, the porous PLA matrix membranes were prepared by adding PEG 400 in PLA solution using dichloromethane (DCM) as solvent prior to casting. The influence of other liquids as co-solvent on pore formation and the structural change during membrane formation were evaluated. The co-solvents affected both porous topography and mechanical properties of PLA membrane. The porous matrix were produced when the non-solvent of PLA was used as co-solvent. Cryo-SEM micrographs revealed that PEG 400 still remained in the PLA porous matrix membrane. From the tracking of the structural change during film formation, the PLA–PEG solution changed into porous structure by liquid liquid phase separation and solidification processes, respectively. Thermogravimetric analysis revealed that PLA–PEG in DCM solution exhibited the two-step of weight loss, the first step occurred from DCM evaporation and the second step occurred from the degradation of PLA–PEG matrix. The liquid–liquid phase separation and solidification started when the amount of DCM was higher than PEG 400 for 2.67 folds and DCM amount was equal to that of PEG 400, respectively. These results could clarify the pore formation mechanism of porous PLA membrane and will be useful for the further investigation and application. - Highlights: • Pore formation mechanism of PLA matrix membrane inducing by PEG 400 addition was investigated. • Cryo-scanning electron microscopy revealed the embedded PEG 400 in matrix membrane. • Tracking of structural change during membrane formation with stereomicroscope and thermogravimetric analysis could explain the pore formation mechanism. • Liquid-liquid phase separation of PLA-PEG 400 solution started when the amount of dichloromethane remained 2

  2. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane

    International Nuclear Information System (INIS)

    Phaechamud, Thawatchai; Chitrattha, Sasiprapa

    2016-01-01

    Porous PLA structure has been widely used in cell transplantation, drug carrier and wound dressing. The porous structure can be controlled depending on the choice of the polymer, solvent, nonsolvent and preparation parameters. In this study, the porous PLA matrix membranes were prepared by adding PEG 400 in PLA solution using dichloromethane (DCM) as solvent prior to casting. The influence of other liquids as co-solvent on pore formation and the structural change during membrane formation were evaluated. The co-solvents affected both porous topography and mechanical properties of PLA membrane. The porous matrix were produced when the non-solvent of PLA was used as co-solvent. Cryo-SEM micrographs revealed that PEG 400 still remained in the PLA porous matrix membrane. From the tracking of the structural change during film formation, the PLA–PEG solution changed into porous structure by liquid liquid phase separation and solidification processes, respectively. Thermogravimetric analysis revealed that PLA–PEG in DCM solution exhibited the two-step of weight loss, the first step occurred from DCM evaporation and the second step occurred from the degradation of PLA–PEG matrix. The liquid–liquid phase separation and solidification started when the amount of DCM was higher than PEG 400 for 2.67 folds and DCM amount was equal to that of PEG 400, respectively. These results could clarify the pore formation mechanism of porous PLA membrane and will be useful for the further investigation and application. - Highlights: • Pore formation mechanism of PLA matrix membrane inducing by PEG 400 addition was investigated. • Cryo-scanning electron microscopy revealed the embedded PEG 400 in matrix membrane. • Tracking of structural change during membrane formation with stereomicroscope and thermogravimetric analysis could explain the pore formation mechanism. • Liquid-liquid phase separation of PLA-PEG 400 solution started when the amount of dichloromethane remained 2

  3. Boronic acid-based autoligation of nucleic acids

    DEFF Research Database (Denmark)

    Barbeyron, R.; Vasseur, J.-J.; Smietana, M.

    2013-01-01

    Abstract: The development of synthetic systems displaying dynamic and adaptive characteristics is a formidable challenge with wide applications from biotechnology to therapeutics. Recently, we described a dynamic and programmable nucleic acid-based system relying on the formation of reversible bo....... Evidence suggests that geometric and steric factors are key features for controlling the equilibria. Graphical Abstract: [Figure not available: see fulltext.]...

  4. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  5. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Science.gov (United States)

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  6. New particle formation in the sulfuric acid-dimethylamine-water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model

    Science.gov (United States)

    Kürten, Andreas; Li, Chenxi; Bianchi, Federico; Curtius, Joachim; Dias, António; Donahue, Neil M.; Duplissy, Jonathan; Flagan, Richard C.; Hakala, Jani; Jokinen, Tuija; Kirkby, Jasper; Kulmala, Markku; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Onnela, Antti; Rissanen, Matti P.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Tröstl, Jasmin; Ye, Penglin; McMurry, Peter H.

    2018-01-01

    A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (˜ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm-3, and dimethylamine mixing ratio of ˜ 40 pptv, i.e., 1 × 109 cm-3).

  7. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    Science.gov (United States)

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    Science.gov (United States)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  9. Acid-base properties of a limed pyritic overburden during simulated weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R. [South Dakota State University, Brookings, SD (United States). Plant Science Dept.

    1997-11-01

    Surface-mine reclamation is often hindered by the formation of acid mine soil and acid mine drainage from FeS{sub 2} oxidation. Surface soils containing FeS{sub 2} are often treated with crushed limestone (predominately CaCO{sub 3}) to prevent aid minesoil formation. The main objective of this study was to evaluate the long-term effectiveness of liming pyritic minesoil to prevent the formation of acid minesoil and acid mine drainage. Pyritic minesoils that did not receive lime became acidic very rapidly and produced acidic leachate. Almost all of the FeS{sub 2} in this treatment oxidized during the first 200 d. The addition of lime at a rate of 25% of the theoretical acid-base account (ABA) significantly slowed FeS{sub 2} oxidation, but rapid oxidation ensued after the added lime was neutralized. Treatments receiving a liming rate of 50% ABA or greater remained neutral to alkaline throughout the study. Acid-base values and residual FeS{sub 2}-CO{sub 3} data, however, indicate that the lime was dissolving from the system faster than the FeS{sub 2} was oxidizing, and all the treatments would eventually become acidic. The results indicate that the liming of a pyritic overburden to an ABA of 125% is not a sustainable solution to preventing acid minesoil and acid mine drainage. 25 refs., 6 figs., 3 tabs.

  10. Hydrotalcite formation facilitates effective contaminant and radionuclide removal from acidic uranium mine barren lixiviant

    International Nuclear Information System (INIS)

    Douglas, Grant; Shackleton, Mark; Woods, Peter

    2014-01-01

    Highlights: • Remediation of barren lixiviant using hydrotalcite precipitation. • High U and rare earth element concentration factor. • Hydrotalcite may be further modified for long-term disposal. • Potential application to U and other commodities. - Abstract: An assessment of hydrotalcite (HT) formation as a method to neutralise acidity and remove trace elements was undertaken using barren lixiviant from Heathgate Resources’ Beverley North in situ recovery (ISR) U mine in South Australia. This study demonstrated proof of concept in terms of the neutralisation of acidity and concomitant removal of a range of trace elements and U–Th series radionuclides from the barren lixiviant using MgCl 2 as a supplementary Mg source to optimise Mg:Al mol ratios and NaOH as the neutralising agent. Hydrotalcite was the predominant mineral formed during neutralisation, hosting a range of elements including substantial U (∼0.2%) and rare earth elements (REE ∼0.1%). High U and REE recovery (∼99%) from barren lixiviant after HT precipitation indicates a potential to both remediate barren lixiviant and to offset remediation costs. Alternatively, HT precipitates formed during barren lixiviant neutralisation may be further stabilised via calcination, silicification or a combination thereof forming minerals potentially amenable for inclusion in a long-term waste repository at the cessation of ISR mining. Importantly, the composition of the neutralised barren lixiviant produced via HT precipitation is similar to that of existing groundwater allowing for the possibility of direct aquifer re-injection after remediation. A potential exists to apply this HT-based remediation technology to conventional or ISR U mines (or mines exploiting other commodities) and allows for the prospect of a fully integrated ISR mining, processing and lixiviant remediation strategy consistent with stringent environmental and mine closure standards

  11. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria

    Directory of Open Access Journals (Sweden)

    Michel Oelschlägel

    2015-06-01

    The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S-enantiomer of the acid with 40% enantiomeric excess.

  12. Low molecular weight organic acids in fogwater in an urban area (Strasbourg, France)

    Energy Technology Data Exchange (ETDEWEB)

    Millet, M.; Wortham, H.; Sanusi, A.; Mirabel, P. [Centre de Geochime de la Surface, Equipe de Physico-Chimie de l`Atmosphere, Strasbourg (France)

    1997-10-27

    This work presents the chemical analysis of low weight carboxylic acids: formate and acetate in two droplet-size categories (2-6 and 5-8 {mu}m) of fogwater collected in Strasbourg (eastern France) between 1991 and 1994. For each sample, the ratio between acetate and formate was calculated, in many cases, this ratio was typically higher than one. This calculation indicates that the origin of acetate and formate can be attributed to automobile exhaust. Maximum contribution of these acids to the total free acidity of fogwater was also checked and the results show that the contribution is very low in regard to the strong mineral acids from anthropogenic origin

  13. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; di Rienzo, Valentina; Boss, Paul K; Davies, Christopher

    2015-07-01

    The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleucine is a crucial step in the JA signaling pathway since only JA-Ile is recognized by the jasmonate receptor. The conjugation reaction is catalyzed by JA-amido synthetases, belonging to the family of Gretchen Hagen3 (GH3) proteins. Here, in vitro studies of two grapevine (Vitis vinifera L. cv Shiraz) GH3 enzymes, VvGH3-7 and VvGH3-9, demonstrated JA-conjugating activities with an overlapping range of amino acid substrates, including isoleucine. Expression studies of the corresponding genes in grape berries combined with JA and JA-Ile measurements suggested a primary role for JA signaling in fruit set and cell division and did not support an involvement of JA in the ripening process. In response to methyl JA (MeJA) treatment, and in wounded and unwounded (distal) leaves, VvGH3-9 transcripts accumulated, indicating a participation in the JA response. In contrast, VvGH3-7 was unresponsive to MeJA and local wounding, demonstrating a differential transcriptional regulation of VvGH3-7 and VvGH3-9. The transient induction of VvGH3-7 in unwounded, distal leaves was suggestive of the involvement of an unknown mobile wound signal. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Formation of fatty acid esterified vitamin D3 in rat skin by exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Takada, K.

    1983-01-01

    The formation of fatty acid esters of vitamin D3 was demonstrated in rat skin exposed to artificial ultraviolet rays by using multi-dimensional high-performance liquid chromatography, ultraviolet spectrophotometry, and gas-liquid chromatography-mass spectrometry. This result indicated that the fatty acid esters of 7-dehydrocholesterol in rat skin (at least 80% of 7-dehydrocholesterol in rat skin is esterified) is also isomerized into vitamin D3 ester in vivo. The initial percentage of the esterified form was 84.3% and this did not significantly change up to the time when about half of the skin total vitamin D3 disappeared (2 days). Consequently, it was speculated that the vitamin D3 ester was delivered into the blood circulation from skin without having been hydrolyzed. This was supported by the presence of vitamin D3 ester in rat plasma exposed to ultraviolet radiation. In addition, in connection with the study of the restriction of vitamin D3 synthesis, distribution of total vitamin D3 in rat skin exposed to ultraviolet irradiation in vivo was compared with that in isolated skin exposed to ultraviolet radiation. The dermal layer of the isolated skin contained about 4 times more total vitamin D3 than that of in vivo skin. This finding suggests not only that ultraviolet rays could not penetrate deeply into the in vivo skin, but that the restriction of cutaneous synthesis of vitamin D3 observed in vivo may arise from this reduced penetration of ultraviolet rays

  15. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  16. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  17. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  18. Amino acids as co-amorphous excipients for simvastatin and glibenclamide

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2014-01-01

    to a few drugs and amino acids. To facilitate the rational selection of amino acids, the practical importance of the amino acid coming from the biological target site of the drug (and associated intermolecular interactions) needs to be established. In the present study, the formation of co......-amorphous systems using cryomilling and combinations of two poorly water-soluble drugs (simvastatin and glibenclamide) with the amino acids aspartic acid, lysine, serine, and threonine was investigated. Solid-state characterization with X-ray powder diffraction, differential scanning calorimetry, and Fourier...... in the mixtures. Interestingly, a favorable effect by the excipients on the tautomerism of amorphous glibenclamide in the co-amorphous blends was seen, as the formation of the thermodynamically less stable imidic acid tautomer of glibenclamide was suppressed compared to that of the pure amorphous drug...

  19. Potentiometric studies on mixed-ligand chelates of uranyl ion with carboxylic acid phenolic acids

    International Nuclear Information System (INIS)

    Bandiwadekar, S.P.; Chavar, A.M.

    1988-01-01

    Mixed ligand complexes of UO 2 2+ with bidentate carboxylic and phenolic acids have been studied potentiometrically at 30 ± 0.1degC and μ=0.2M (NaClO 4 ). 1:1 and 1:2 complexes of UO 2 2+ with phthalic acid (PTHA), maleic acid (MAE), malonic acid (MAL), quinolinic acid (QA), 5-sulphosalicylic acid (5-SSA), salicylic acid (SA), and only 1:1 complexes in the case of mandelic acid (MAD) have been detected. The formation of 1:1:1 mixed ligand complexes has been inferred from simultaneous equilibria in the present study. The values of ΔlogK, Ksub(DAL), Ksub(2LA) or Ksub(2AL) for the ternary complexes have been calculated. The stabilities of mixed ligand complexes depend on the size of the chelate ring and the stabilities of the binary complexes. (author). 15 refs

  20. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  1. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice.

    Science.gov (United States)

    Su, Jin; Sherman, Alexandra; Doerfler, Phillip A; Byrne, Barry J; Herzog, Roland W; Daniell, Henry

    2015-10-01

    Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.

    1985-01-01

    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  3. Molecular dynamics of palmitic acid and lead palmitate in cross-linked linseed oil films: Implications from deuterium magnetic resonance for lead soap formation in traditional oil paintings.

    Science.gov (United States)

    Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil

    2018-02-01

    Many oil paintings, dating from the 15th century to the present, are affected by the formation of heavy-metal carboxylates (soaps) that alter the structural integrity and appearance of the works. Through transport phenomena not yet understood, free fatty acids formed from oils used as binders migrate through the paint film and react with heavy-metal ions that are constituents of pigments and/or driers, forming metal carboxylates. The local molecular dynamics of fatty acids and metal carboxylates are factors influencing material transport in these systems. We report temperature-dependent 2 H NMR spectra of palmitic acid and lead palmitate as pure materials, in cross-linked linseed oil films, and in a lead white linseed oil paint film as part of our broader research into metal soap formation. Local dynamics at the α carbon, at the terminal methyl group, and at the middle of the fatty acid chain were observed in specifically deuterated materials. Changes in the dynamic behavior with temperature were observed by the appearance of two species, a solid-like material and a liquid-like material. The relative amounts of the two phases and their deuterium NMR parameters indicate that the amount of liquid-like material and the local dynamics at that site increase with temperature. At the three locations along the chain and at all temperatures, there is a larger percentage of acyl chains of both palmitic acid and lead palmitate that are "mobile" or liquid-like in linseed oil films than there are in the pure materials. However, the percentage of liquid-like species is decreased in a lead white paint film, as compared to a linseed oil matrix. In addition, these experiments indicate that there is a larger percentage of liquid-like acyl chains of palmitic acid than of lead palmitate under identical conditions in these model paint systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  5. New Acid Combination for a Successful Sandstone Acidizing

    Science.gov (United States)

    Shafiq, M. U.; Mahmud, H. K. B.; Rezaee, R.

    2017-05-01

    With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

  6. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    Directory of Open Access Journals (Sweden)

    Andrea Polo

    2014-05-01

    Full Text Available This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97% and thickness (−50%, and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition.

  7. Mechanisms of fat, oil and grease (FOG) deposit formation in sewer lines.

    Science.gov (United States)

    He, Xia; de los Reyes, Francis L; Leming, Michael L; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2013-09-01

    FOG deposits in sewer systems have recently been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. In this study, batch tests were performed to elucidate the mechanisms of FOG deposit formation that lead to sanitary sewer overflows (SSOs). We report the first formation of FOG deposits on a concrete surface under laboratory conditions that mimic the formation of deposits in sewer systems. Results showed that calcium, the dominant metal in FOG deposits, can be released from concrete surfaces under low pH conditions and contribute to the formation process. Small amounts of additional oil to grease interceptor effluent substantially facilitated the air/water or pipe surface/water interfacial reaction between free fatty acids and calcium to produce surface FOG deposits. Tests of different fatty acids revealed that more viscous FOG deposit solids were formed on concrete surfaces, and concrete corrosion was accelerated, in the presence of unsaturated FFAs versus saturated FFAs. Based on all the data, a comprehensive model was proposed for the mechanisms of FOG deposit formation in sewer systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh, India

    Science.gov (United States)

    Goswami, Sukanta; Upadhyay, P. K.; Bhagat, Sangeeta; Zakaulla, Syed; Bhatt, A. K.; Natarajan, V.; Dey, Sukanta

    2018-03-01

    The lower stratigraphic part of the Cuddapah basin is marked by mafic and felsic volcanism. Tadpatri Formation consists of a greater variety of rock types due to bimodal volcanism in the upper part. Presence of bimodal volcanism is an indication of continental rift setting. Various genetic processes involved in the formation of such volcanic sequence result in original textures which are classified into volcaniclastic and coherent categories. Detailed and systematic field works in Tadpatri-Tonduru transect of SW Cuddapah basin have provided information on the physical processes producing this diversity of rock types. Felsic volcanism is manifested here with features as finger print of past rhyolite-dacite eruptions. Acid volcanics, tuffs and associated shale of Tadpatri Formation are studied and mapped in the field. With supporting subordinate studies on geochemistry, mineralogy and petrogenesis of the volcanics to validate field features accurately, it is understood that volcanism was associated with rifting and shallow marine environmental condition. Four facies (i.e., surge, flow, fall and resedimented volcaniclastic) are demarcated to describe stratigraphic units and volcanic history of the mapped area. The present contribution focuses on the fundamental characterization and categorization of field-based features diagnostic of silica-rich volcanic activities in the Tadpatri Formation.

  9. One-step formation of lipid-polyacrylic acid-calcium carbonate nanoparticles for co-delivery of doxorubicin and curcumin.

    Science.gov (United States)

    Peng, Jianqing; Fumoto, Shintaro; Miyamoto, Hirotaka; Chen, Yi; Kuroda, Naotaka; Nishida, Koyo

    2017-09-01

    A doxorubicin (Dox) and curcumin (Cur) combination treatment regimen has been widely studied in pre-clinical research. However, the nanoparticles developed for this combination therapy require a consecutive drug loading process because of the different water-solubility of these drugs. This study provides a strategy for the "one-step" formation of nanoparticles encapsulating both Dox and Cur. We took advantage of polyacrylic acid (PAA) and calcium carbonate (CaCO 3 ) to realise a high drug entrapment efficiency (EE) and pH-sensitive drug release using a simplified preparation method. Optimisation of lipid ratios and concentrations of CaCO 3 was conducted. Under optimal conditions, the mean diameter of PEGylated lipid/PAA/CaCO 3 nanoparticles with encapsulated Cur and Dox (LPCCD) was less than 100 nm. An obvious pH-sensitive release of both drugs was observed, with different Dox and Cur release rates. Successful co-delivery of Cur and Dox was achieved via LPCCD on HepG2 cells. LPCCD altered the bio-distribution of Dox and Cur in vivo and decreased Dox-induced cardiotoxicity. The current investigation has developed an efficient ternary system for co-delivery of Dox and Cur to tumours, using a "one-step" formation resulting in nanoparticles possessing remarkable pH-sensitive drug release behaviour, which may be valuable for further clinical studies and eventual clinical application.

  10. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    International Nuclear Information System (INIS)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N.

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability consta nt of the complex is 1.12x10 21 , the conditional molar absorptivitis 1.80x10 0 . This complex formation reaction was used for photometric determination of boron in natural water

  11. Thermochemistry of 1,3-diethylbarbituric and 1,3-diethyl-2-thiobarbituric acids: Experimental and computational study

    International Nuclear Information System (INIS)

    Notario, Rafael; Roux, María Victoria; Ros, Francisco; Emel’yanenko, Vladimir N.; Zaitsau, Dzmitry H.; Verevkin, Sergey P.

    2014-01-01

    Highlights: • Enthalpies of formation in condensed phase have been obtained. • Enthalpy of vaporization of 1,3-diethylbarbituric acid has been determined. • Enthalpy of sublimation of 1,3-diethyl-2-thiobarbituric acid has been determined. • Gas-phase enthalpies of formation have been obtained. • Gas-phase enthalpies of formation have been calculated at G3 and G4 levels. - Abstract: This paper reports an experimental and computational thermochemical study on two barbituric acid derivatives, viz. 1,3-diethylbarbituric acid and 1,3-diethyl-2-thiobarbituric acid. Values of standard molar enthalpies of formation in the gas phase at T = 298.15 K have been derived from experiment. Energies of combustion were measured by the static bomb combustion calorimetry in the case of 1,3-diethylbarbituric acid, and the rotating-bomb combustion calorimetry in the case of 1,3-diethyl-2-thiobarbituric acid. From the combustion energies, standard molar enthalpies of formation in the crystalline state at T = 298.15 K were calculated. The enthalpy of vaporization of 1,3-diethylbarbituric acid and enthalpy of sublimation of 1,3-diethyl-2-thiobarbituric acid were determined using the transpiration method. Combining calorimetric and transpiration results, values of −(611.9 ± 2.0) kJ · mol −1 and −(343.8 ± 2.2) kJ · mol −1 for the gas-phase enthalpies of formation at T = 298.15 K of 1,3-diethylbarbituric and 1,3-diethyl-2-thiobarbituric acids, respectively, were derived. Theoretical calculations at the G3 and G4 levels were performed, and a study of the molecular structure of the compounds has been carried out. Calculated enthalpies of formation were in very good agreement with the experimental values

  12. Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries.

    Science.gov (United States)

    Gamboa-Santos, Juliana; Megías-Pérez, Roberto; Soria, A Cristina; Olano, Agustín; Montilla, Antonia; Villamiel, Mar

    2014-06-15

    In this paper, a study on the usefulness of the determination of vitamin C together with indicators of the initial steps of Maillard reaction (2-furoylmethyl amino acids, 2-FM-AA) during the convective drying of strawberries has been carried out for the first time, paying special attention to the kinetics of degradation and formation, respectively, of both parameters. Formation of 2-FM-AA of Lys, Arg and GABA and vitamin C loss increased with time and temperature following, respectively, a zero and first-order kinetics. As supported by its lower activation energy, 2-FM-GABA (55.9 kJ/mol) and 2-FM-Lys+2-FM-Arg (58.2 kJ/mol) were shown to be slightly more sensitive indicators than vitamin C (82.1 kJ/mol). The obtained results, together with a complementary study on the rehydration ability and sensorial attributes of samples, pointed out the suitability of the convective drying system to obtain dried strawberries of high nutritive quality and bioactivity and good consumer acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Regulation of uric acid metabolism and excretion.

    Science.gov (United States)

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation.

    Directory of Open Access Journals (Sweden)

    Alexander I Alexandrov

    Full Text Available Fragmentation of amyloid polymers by the chaperone Hsp104 allows them to propagate as prions in yeast. The factors which determine the frequency of fragmentation are unclear, though it is often presumed to depend on the physical strength of prion polymers. Proteins with long polyglutamine stretches represent a tractable model for revealing sequence elements required for polymer fragmentation in yeast, since they form poorly fragmented amyloids. Here we show that interspersion of polyglutamine stretches with various amino acid residues differentially affects the in vivo formation and fragmentation of the respective amyloids. Aromatic residues tyrosine, tryptophan and phenylalanine strongly stimulated polymer fragmentation, leading to the appearance of oligomers as small as dimers. Alanine, methionine, cysteine, serine, threonine and histidine also enhanced fragmentation, while charged residues, proline, glycine and leucine inhibited polymerization. Our data indicate that fragmentation frequency primarily depends on the recognition of fragmentation-promoting residues by Hsp104 and/or its co-chaperones, rather than on the physical stability of polymers. This suggests that differential exposure of such residues to chaperones defines prion variant-specific differences in polymer fragmentation efficiency.

  15. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism.

    Science.gov (United States)

    Plaga, W; Vielhaber, G; Wallach, J; Knappe, J

    2000-01-21

    The recently determined crystal structure of pyruvate formate-lyase (PFL) suggested a new view of the mechanism of this glycyl radical enzyme, namely that intermediary thiyl radicals of Cys-418 and Cys-419 participate in different ways [Becker, A. et al. (1999) Nat. Struct. Biol. 6, 969-975]. We report here a suicide reaction of PFL that occurs with the substrate-analog methacrylate with retention of the protein radical (K(I)=0.42 mM, k(i)=0.14 min(-1)). Using [1-(14)C]methacrylate (synthesized via acetone cyanhydrin), the reaction end-product was identified by peptide mapping and cocrystallization experiments as S-(2-carboxy-(2S)-propyl) substituted Cys-418. The stereoselectivity of the observed Michael addition reaction is compatible with a radical mechanism that involves Cys-418 thiyl as nucleophile and Cys-419 as H-atom donor, thus supporting the functional assignments of these catalytic amino acid residues derived from the protein structure.

  16. Analysis of the formation of Ta{sub 2}O{sub 5} passive films in acid media through mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Sierra, R., E-mail: roma_ipn@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico); Vazquez-Arenas, J. [Chemical Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G (Canada); Cardoso, S. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico); Luna-Sanchez, R.M. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Energia, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, CP 02200, D.F. (Mexico); Trejo, M.A. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico); Marin-Cruz, J. [Instituto Mexicano del Petroleo, Coordinacion de Ingenieria Molecular, Competencia de Quimica Aplicada. Eje Central Lazaro Cardenas Norte 152, CP 07730, D.F. (Mexico); Hallen, J.M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Departamento de Ingenieria Quimica Industrial, UPALM Ed. 7, 1er. Piso CP 07738, D.F. (Mexico)

    2011-09-30

    Electrochemical impedance spectroscopy (EIS) analyses are carried out to evaluate the passive features of tantalum oxide films (Ta{sub 2}O{sub 5}) formed at different potentiostatic conditions (0.5, 1.0, 1.5 and 2.0 V vs SSE). A supporting electrolyte of 0.1 M H{sub 2}SO{sub 4} (pH 1) has been used to emulate acidic corrosive conditions for the growth of films with an n-type electronic character. A modification of the point defect model (PDM) accounting for the formation of molecular hydrogen (blistering damage) is used to fit the experimental EIS diagrams, and obtain the kinetic parameters that best describe the semiconductive behavior of the passive films. After this analysis, diffusivities in the order of 5.37 {+-} 1.6 x 10{sup -17} and 1.98 {+-} 1.4 x 10{sup -20} cm{sup 2} s{sup -1} were obtained for the oxygen (D{sub VO}{center_dot}{center_dot}) and hydroxyl vacancies (D{sub VOH}{center_dot}), respectively. These findings show the capabilities of the EIS and the physicochemical modeling to account for the formation of valve-metal oxide films on a different range of conditions.

  17. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    Science.gov (United States)

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  18. Formation of fractals by the self-assembly of interpolymer adducts of ...

    Indian Academy of Sciences (India)

    Polycarboxylic acids form self-organized poly- ... observation of the formation of fractal patterns in self- organizing polyacrylic acid systems in films driven by hydrogen bonding .... various positions, the SEM and EDX studies are car- ried out.

  19. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.

    Science.gov (United States)

    Akbar, Naved; Gupta, Supriya; Tiwari, Apoorv; Singh, K P; Kumar, Anil

    2018-04-05

    In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  1. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  2. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver

    International Nuclear Information System (INIS)

    Mei, Nan; Arlt, Volker M.; Phillips, David H.; Heflich, Robert H.; Chen, Tao

    2006-01-01

    Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by 32 P-postlabeling and mutant frequency (MF) was determined using the λ Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N 6 -yl]-aristolactam I, 7-[deoxyadenosin-N 6 -yl]-aristolactam II and 7-[deoxyguanosin-N 2 -yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/10 8 nucleotides in liver and 95-4598 adducts/10 8 nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 x 10 -6 in liver compared with the MFs of 78-1319 x 10 -6 that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T → T:A transversion was the predominant mutation in AA-treated rats; whereas G:C → A:T transition was the main type of mutation in control rats. These results indicate that the AA treatment that eventually

  3. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Nan [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States)]. E-mail: nan.mei@fda.hhs.gov; Arlt, Volker M. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Phillips, David H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG (United Kingdom); Heflich, Robert H. [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States); Chen, Tao [Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States)

    2006-12-01

    Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by {sup 32}P-postlabeling and mutant frequency (MF) was determined using the {lambda} Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N {sup 6}-yl]-aristolactam I, 7-[deoxyadenosin-N {sup 6}-yl]-aristolactam II and 7-[deoxyguanosin-N {sup 2}-yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/10{sup 8} nucleotides in liver and 95-4598 adducts/10{sup 8} nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 x 10{sup -6} in liver compared with the MFs of 78-1319 x 10{sup -6} that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T {sup {yields}} T:A transversion was the predominant mutation in AA-treated rats; whereas G:C {sup {yields}} A:T transition was the main type of mutation in control

  4. Formation and repair of gamma-ray induced nucleic acid base damage in bacteria and mammalian cells. Final report, September 1, 1973--August 31, 1976

    International Nuclear Information System (INIS)

    Cerutti, P.A.

    1976-01-01

    Results are summarized from a three-year study of the formation and repair of γ-ray induced thymine damage in bacteria and mammalian cells. A systematic study was made of the formation of a specific type of ionizing radiation induced base damage under in vivo conditions. Assay for the determination of γ-ray products of the 5,6-dihydroxy-dihydrothymine type (alkaline-acid degradation assay) and a method for the determination of the formation of 5-methylene-uracil radicals (formation of ( 3 H)H 2 O from thymine-methyl ( 3 H)) are discussed. The radiation-chemical reactivity of thymine decreased according to the following pattern in different biological systems: phi X174-DNA greater than E. coli DNA = phi X174 phage much greater than HeLa chromatin greater than E. coli cells greater than human fibroblasts WI-38. In WI-38 the efficiency of formation of 5-methylene-uracil radicals was 1.6 x 10 -3 per Krad and 10 6 daltons DNA and of products of the 5,6-dihydroxy-dihydrothymine type 0.54 x 10 -3 per Krad per 10 6 daltons DNA (uncorrected). It was concluded that γ-rays produce DNA single strand breaks and (total) base damage with comparable efficiencies under in vivo conditions in cultured cells. A list is included of 18 published papers that report the findings in detail

  5. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  6. Identification of a Key Gene Involved in Branched-Chain Short Fatty Acids Formation in Natto by Transcriptional Analysis and Enzymatic Characterization in Bacillus subtilis.

    Science.gov (United States)

    Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan

    2017-03-01

    Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.

  7. Studies of the influence of soil biogenic acidity on podzol formation

    OpenAIRE

    Yashin, Ivan; Vasenev, Ivan; Valentini, Ricardo; Petukhova, Anastasiya; Kogut, Lubov

    2013-01-01

    The paper with a review and generalization of data analysis on the principal forms of soil biogenic acidity is based on research into representative podzols and podzoluvisols with combined parent materials and boreal (taiga) ecosystems at the Central Forest Biosphere Reserve (CFBR) (Tver region), Forest Experimental Station of RSAU (FES) (Moscow) and LAMP Experimental plot in Taiga park of Petrozavodsk. Long-term monitoring of acidity forms was performed by the authors during 2002-2012. Two p...

  8. Modulation of homocysteine toxicity by S-nitrosothiol formation: a mechanistic approach.

    Science.gov (United States)

    Morakinyo, Moshood K; Strongin, Robert M; Simoyi, Reuben H

    2010-08-05

    The metabolic conversion of homocysteine (HCYSH) to homocysteine thiolactone (HTL) has been reported as the major cause of HCYSH pathogenesis. It was hypothesized that inhibition of the thiol group of HCYSH by S-nitrosation will prevent its metabolic conversion to HTL. The kinetics, reaction dynamics, and mechanism of reaction of HCYSH and nitrous acid to produce S-nitrosohomocysteine (HCYSNO) was studied in mildly to highly acidic pHs. Transnitrosation of this non-protein-forming amino acid by S-nitrosoglutathione (GSNO) was also studied at physiological pH 7.4 in phosphate buffer. In both cases, HCYSNO formed quantitatively. Copper ions were found to play dual roles, catalyzing the rate of formation of HCYSNO as well as its rate of decomposition. In the presence of a transition-metal ions chelator, HCYSNO was very stable with a half-life of 198 h at pH 7.4. Nitrosation by nitrous acid occurred via the formation of more powerful nitrosating agents, nitrosonium cation (NO(+)) and dinitrogen trioxide (N(2)O(3)). In highly acidic environments, NO(+) was found to be the most effective nitrosating agent with a first-order dependence on nitrous acid. N(2)O(3) was the most relevant nitrosating agent in a mildly acidic environment with a second-order dependence on nitrous acid. The bimolecular rate constants for the direct reactions of HCYSH and nitrous acid, N(2)O(3), and NO(+) were 9.0 x 10(-2), 9.50 x 10(3), and 6.57 x 10(10) M(-1) s(-1), respectively. These rate constant values agreed with the electrophilic order of these nitrosating agents: HNO(2) formation kinetics of HCYSNO. This study has shown that it is possible to modulate homocysteine toxicity by preventing its conversion to a more toxic HTL by S-nitrosation.

  9. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  10. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.

    Science.gov (United States)

    Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni

    2015-01-01

    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.

  11. Electrochemical synthesis of polyaniline in the presence of poly(amidosulfonic acid)s with different rigidity of polymer backbone and characterization of the films obtained

    International Nuclear Information System (INIS)

    Nekrasov, A.A.; Gribkova, O.L.; Eremina, T.V.; Isakova, A.A.; Ivanov, V.F.; Tverskoj, V.A.; Vannikov, A.V.

    2008-01-01

    We have studied electrochemical matrix polymerization of aniline in the presence of poly(amidosulfonic acid)s of different nature: poly(2-acrylamido-2-methyl-1-propanosulfonic acid) (PAMPSA, flexible backbone); poly(p,p'-(2,2'-disulfoacid)-diphenylene-iso-phthalamid) (i-PASA, semi-rigid backbone); poly(p,p'-(2,2'-disulfoacid)-diphelylene-tere-phthalamid) (t-PASA, rigid backbone). Also, we have investigated spectral and electrochemical properties of the films obtained, as well as their surface morphology. The matrix polymerization results in the formation of interpolymer complexes of polyaniline (PANI) and the above-cited polyacids. The acceleration of aniline electropolymerization in the presence of poly(amidosulfonic acid)s was observed due to association of aniline molecules to sulfonic groups of the polyacid and higher local concentration of protons near the polyacid backbone. The rigid-chain polyacids interfere with the normal course of the electropolymerization, which manifests itself in the changes of the shape of time dependences of absorbance and charge. Cyclic voltammetry and spectroelectrochemical experiments showed that the formation of interpolymer complex with rigid-chain polyacids distorts spectroelectrochemical characteristics of PANI. This evidently results from steric hindrances in the formation of quinoid units

  12. Interaction of neptunium(V) with polyacrylic acid

    International Nuclear Information System (INIS)

    Kubota, Takumi; Tochiyama, Osamu; Yamazaki, Hiromichi; Sato, Nobuharu

    1996-01-01

    For the quantitative description of the interaction of actinoids with humic substances, it is necessary to clarify the effects of both polyelectrolyte and heterogeneous nature of humic substances. To estimate these effects separately, polyacrylic acid has been selected as representative of well-defined, homogenous polymeric weak acids, and its interaction with Np(V) has been investigated by a solvent extraction method. By expressing the effective concentration of the complexing ligand by the concentration of ionized carboxylate groups, the apparent complex formation constant has been obtained at several pH, ionic strength and average molecular weights. The results indicated that the apparent complex formation constant varied with the degree of ionization(α) of polyacrylic acid and that the manner of variation resembled that of its apparent proton association constant. (author)

  13. Mechanocatalytic Production of Lactic Acid from Glucose by Ball Milling

    Directory of Open Access Journals (Sweden)

    Luyang Li

    2017-06-01

    Full Text Available A solvent-free process was developed for the direct production of lactic acid from glucose in a mechanocatalytic process in the presence of Ba(OH2, and a moderate lactic acid yield of 35.6% was obtained. Glucose conversion and lactic acid formation were favorable at higher catalyst/glucose mass ratios. However, at relatively lower catalyst/glucose mass ratios, they were greatly inhibited, and the promotion of fructose formation was observed. The mechanocatalytic process was applicable for various carbohydrates such as C5 sugars, C6 sugars, and disaccharides with 20–36% lactic acid yields achieved. This work provides a new pathway for the production of value-added chemicals from biomass resources.

  14. Bile acid sequestrants and the treatment of type 2 diabetes mellitus

    NARCIS (Netherlands)

    Staels, Bart; Kuipers, Folkert

    2007-01-01

    Bile acids promote bile formation and facilitate dietary lipid absorption. Animal and human studies showing disturbed bile acid metabolism in diabetes mellitus suggest a link between bile acids and glucose control. Bile acids are activating ligands of the farnesoid X receptor (FXR), a nuclear

  15. Titan's Primordial Soup: Formation of Amino Acids via Low-Temperature Hydrolysis of Tholins

    Science.gov (United States)

    Neish, Catherine D.; Somogyi, Árpád; Smith, Mark A.

    2010-04-01

    Titan organic haze analogues, or "tholins," produce biomolecules when hydrolyzed at low temperature over long timescales. By using a combination of high-resolution mass spectroscopy and tandem mass spectrometry fragmentation techniques, four amino acids were identified in a tholin sample that had been hydrolyzed in a 13 wt % ammonia-water solution at 253 ± 1 K and 293 ± 1 K for 1 year. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions thought to be similar to those found in impact melt pools and cryolavas on Titan, which are at a stage of chemical evolution not unlike the "primordial soup" of the early Earth. Future missions to Titan should therefore carry instrumentation capable of, but certainly not limited to, detecting amino acids and other prebiotic molecules on Titan's surface.

  16. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  17. Root Formation in Ethylene-Insensitive Plants1

    Science.gov (United States)

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  18. Studies on the solvent extraction behaviour of Pu(IV) from nitric acid, nitric-perchloric acid and hydrochloric acids, by di,2-ethylhexyl phosphoric acid (HDEHP)

    International Nuclear Information System (INIS)

    Phal, D.G.; Kannan, S.K.; Ramakrishna, V.V.

    1994-01-01

    Extraction of plutonium (IV) from aqueous nitric acid, nitric-perchloric acid and hydrochloric acids by di,2-ethylhexyl phosphoric acid, the dimeric form of which is represented as H 2 Y 2 , in different diluents (dodecane, toluene and chloroform) was investigated. The composition of the extracted Pu(IV) species were found to be Pu(NO 3 ) 2 (HY) 2 , Pu(NO 3 )(ClO 4 )(HY 2 ) 2 , PuClY(HY 2 ) 2 and PuCl 2 (HY 2 ) 2 from nitric, nitric-perchloric and hydrochloric acids respectively, the last one being pre-dominant at high aqueous acidities (i.e. 5M HCl). Synergic enhancement in the extraction of Pu(IV) from different aqueous media, by the addition of thenoyltrifluoroacetone (HTTA) to HDEHP was also investigated and was attributed to the formation and extraction of the species PuX(TTA)(HY 2 ) 2 , and Pu(TTA) 2 (HY 2 ) 2 where X=Cl - or NO 3 - . The addition of the neutral extractant TOPO to H 2 Y 2 also resulted in synergism. The possible equilibria in these systems were inferred and the corresponding equilibrium constants determined. (author). 24 refs., 10 figs., 10 tabs

  19. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    Science.gov (United States)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear complex Al 2(OH) 2(C 2O 4) 44- to exist in a

  20. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1.

    Science.gov (United States)

    Xu, Ling-Ling; Lai, Yi-Ling; Wang, Lin; Liu, Xing-Zhong

    2011-02-01

    The in vitro effects of abscisic acid (ABA) and nitric oxide (NO) on the nematode-trapping fungus Drechslerella stenobrocha AS6.1 were examined. The average number of traps (constricting rings) per colony and the percentage of nematodes (Caenorhabditis elegans) trapped were greatly increased by addition of ABA but greatly suppressed by addition of sodium nitroprusside (SNP, an NO donor) to corn meal agar. The suppressive effect of SNP was not negated by addition of an NO synthase competitive inhibitor (l-naphthylacetic acid, L-NNA) or an NO-specific scavenger [2-(4-carboxyphenyl)-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO]. When added without SNP, however, L-NNA and cPTIO caused moderate increases in trap number and trapping. The results indicate that the trap formation and nematode-trapping ability of D. stenobrocha were enhanced by ABA but decreased by exogenous NO. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation

    Science.gov (United States)

    Mathews, Kyle G.; Cullen, John; Seiler, Gabriela

    2018-01-01

    Mucocele formation is characterized by secretion of abnormally thick mucus by the gallbladder epithelium of dogs that may cause obstruction of the bile duct or rupture of the gallbladder. The disease is increasingly recognized and is associated with a high morbidity and mortality. The cause of gallbladder mucocele formation in dogs is unknown. There is a strong breed predisposition and affected dogs have a high incidence of concurrent endocrinopathy or hyperlipidemia. These observations suggest a significant influence of both genetic and metabolic factors on disease pathogenesis. In this study, we investigated a theory that mucocele formation is associated with a syndrome of metabolic disruption. We surmised that a global, untargeted metabolomics approach could provide unique insight into the systemic pathogenesis of gallbladder mucocele formation and identify specific compounds as candidate biomarkers or treatment targets. Moreover, concurrent examination of the serum and hepatic duct bile metabolome would enable the construction of mechanism-based theories or identification of specific compounds responsible for altered function of the gallbladder epithelium. Abnormalities observed in dogs with gallbladder mucocele formation, including a 33-fold decrease in serum adenosine 5’-monophosphate (AMP), lower quantities of precursors required for synthesis of energy transporting nucleotides, and increases in citric acid cycle intermediates, suggest excess metabolic energy and a carbon surplus. Altered quantities of compounds involved in protein translation and RNA turnover, together with accumulation of gamma-glutamylated and N-acetylated amino acids in serum suggest abnormal regulation of protein and amino acid metabolism. Increases in lathosterol and 7α-hydroxycholesterol suggest a primary increase in cholesterol synthesis and diversion to bile acid formation. A number of specific biomarker compounds were identified for their ability to distinguish between control

  2. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.

    Science.gov (United States)

    Miki, Yuta; Okazaki, Seiji; Asano, Yasuhisa

    2017-05-01

    We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH 2 ) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH 2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH 2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH 2 production. The apparent K m values of this variant for D-Ala and NH 3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH 2 from 10 and 50 mM D-Ala and 3 M NH 4 Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.

  4. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation.

    Science.gov (United States)

    Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T

    2013-02-01

    Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.

  5. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  6. Micellar effect on the sensitivity of spectrophotometric Mo(VI) determination based on the formation of gallic acid complex providing evidence for the polyoxoanion structure of molybdate ions

    International Nuclear Information System (INIS)

    Tascioglu, Senay; Sendil, Olcay; Beyreli, Sivekar

    2007-01-01

    In this study effects of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and nonionic (Triton X-100, TX100) micelles on the sensitivity of spectrophotometric molybdenum(VI) (Mo) determination based on the formation of a binary complex with gallic acid (GA) were investigated. Micellar CTAB was found to enhance the formation of Mo-GA complex. SDS micelles exerted an inhibitory effect while TX100 micelles had no effect on the complex formation. By the optimization of experimental conditions, the determination limit of the method suggested in the literature was lowered from 5.2 x 10 -5 to 4.6 x 10 -6 and to 5.7 x 10 -7 M, in the absence and presence of CTAB, respectively. The mechanism of the effect of CTAB was investigated by spectrophotometric titrations and it was concluded that CTAB did not form a ternary complex with Mo and GA. The stoichiometry of the complex, deduced from the results of spectrophotometric titrations, provided evidence for the formation of para-Mo 7 O 4 6- polyanions at pH 4.5, indicating to the formation of a charge transfer complex between these ions and GA in micellar medium

  7. Spectrographic investigation of neodymium complexing with hexamethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.

    1980-01-01

    Complex formation between neodymium and hexamethylenediamine-tetraacetic acid (HMTA, H 2 L) in aqueous solution has been studied by high-resolution spectrography. Formation of NdHL, Hd(HL) 2 3- , Nd(HL) 3 6- complexes has been proved, their values of formation constants (lg Csub(form)) being equal to 5.63+-0.45, 4.20+-0.15, 2.63+-0.15, respectively

  8. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    Science.gov (United States)

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  9. Biodegradable poly(lactic acid)

    Indian Academy of Sciences (India)

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning ...

  10. Formation and characterization of calcium orthophosphates in the presence of two different acidic macromolecules

    Science.gov (United States)

    Pelin, Irina M.; Maier, Vasilica; Suflet, Dana M.; Popescu, Irina; Darie-Nita, Raluca N.; Aflori, Magdalena; Butnaru, Maria

    2017-10-01

    The synthetic nanocrystalline calcium orthophosphates have a notable bioactivity due to the chemical similarity with biological apatite from calcified tissues. In mineralized tissues, the highly ordered structures come from organized assemblies of biomacromolecules and inorganic nanoparticles. One of the purposes of this work was to study the effect of two types of acidic macromolecules: atelocollagen and phosphorylated curdlan onto calcium orthophosphates formation after 30 days of maturation at 2 ± 2 °C. The resulted samples after a long aging time, either calcium orthophosphates or composites, were first investigated by FT-IR spectroscopy and X-ray diffractometry and the results indicated that precipitated hydroxyapatite with low crystallinity was obtained when the synthesis was performed in the presence of phosphorylated curdlan. The macromolecules influenced the morphology of the particles as shown by scanning and transmission electron microscopy. The presence of macromolecules as demonstrated by thermal investigation also influenced the rheological properties of the samples. The second purpose of the work was to evaluate the cytotoxicity of the samples using the MTT assay, and the results revealed very good cells viability. The preliminary results are encouraging regarding the use of these materials for further tests in order to develop injectable bone substitutes.

  11. submitter Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system

    CERN Document Server

    Kürten, A; Rondo, L; Bianchi, F; Duplissy, J; Jokinen, T; Junninen, H; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Almeida, J; Amorim, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Franchin, A; Kirkby, J; Kupc, A; Makhmutov, V; Petäjä, T; Praplan, A P; Riccobono, F; Steiner, G; Tomé, A; Tsagkogeorgas, G; Wagner, P E; Wimmer, D; Baltensperger, U; Kulmala, M; Worsnop, D R; Curtius, J

    2015-01-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary $(H_2SO_4–H_2O)$ system and the ternary system involving ammonia $(H_2SO_4–H_2O–NH_3)$ may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary sys...

  12. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    Science.gov (United States)

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  14. An immunochemical assay for 8,5'-cyclonucleotides in irradiated nucleic acids

    International Nuclear Information System (INIS)

    Fuciarelli, A.F.; Raleigh, J.A.

    1985-01-01

    The transfer of radiation damage initiated in the sugar phosphate backbone to a nucleotide base as exemplified by 8,5'-cyclonucleotide formation has been investigated in polyadenylic acid, native and heat-denatured DNA. Polyclonal antiserum was raised in rabbits with a protein-8,5'-cycloadenosine-5'monophosphate (8,5'-cycloAMP) conjugate prepared by the carbodiimide method. An indirect, enzyme-linked immunosorbent assay (ELISA) was developed with this antiserum to probe for 8,5'-cycloAMP formation. The assay can readily detect product formation in polyadenylic acid irradiated to a total dose of 1.0 krad in the absence of oxygen. Product formation in native or heat-denatured DNA irradiated in 0.1 M phosphate buffer (pH 7.00) in the absence of oxygen is detected after approximately 20 krads. The authors shall extend these studies to determine the utility of immunochemical assays for investigating the radiation chemistry of nucleic acids

  15. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  16. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro

    Directory of Open Access Journals (Sweden)

    Yutao Yang

    2016-01-01

    Full Text Available Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC of 16% and minimum bactericidal concentration (MBC of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50. A scanning electron microscopy (SEM showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM suggested that the extracellular polysaccharides (EPS synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans.

  17. Amadori products formation in emulsified systems

    NARCIS (Netherlands)

    Troise, Antonio Dario; Berton-Carabin, Claire C.; Fogliano, Vincenzo

    2016-01-01

    The formation of Amadori products (APs) is the key step determining the development of the Maillard reaction (MR). The information on the chemical behaviour of the reaction between amino acids and reducing sugars in emulsions during thermal treatments is scanty and mainly focused on volatile

  18. Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies.

    Science.gov (United States)

    Majzner, Katarzyna; Chlopicki, Stefan; Baranska, Malgorzata

    2016-04-01

    In this work the formation of lipid droplets (LDs) in human endothelial cells culture in response to the uptake of polyunsaturated fatty acids (PUFAs) was studied. Additionally, an effect of 1-methylnicotinamide (MNA) on the process of LDs formation was investigated. LDs have been previously described structurally and to some degree biochemically, however neither the precise function of LDs nor the factors responsible for LD induction have been clarified. Lipid droplets, sometimes referred in the literature as lipid bodies are organelles known to regulate neutrophil, eosinophil, or tumor cell functions but their presence and function in the endothelium is largely unexplored. 3D linear Raman spectroscopy was used to study LDs formation in vitro in a single endothelial cell. The method provides information about distribution and size of LDs as well as their composition. The incubation of endothelial cells with various PUFAs resulted in formation of LDs. As a complementary method for LDs identification a fluorescence microscopy was applied. Fluorescence measurements confirmed the Raman results suggesting endothelial cells uptake of PUFAs and subsequent LDs formation in the cytoplasm of the endothelium. Furthermore, MNA seem to potentiate intracellular uptake of PUFAs to the endothelium that may bear physiological and pharmacological significance. Confocal Raman imaging of HAoEC cell with LDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β(2)-amino acids.

    Science.gov (United States)

    Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin

    2015-04-20

    A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atmospheric particle formation in spatially and temporally varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lauros, J.

    2011-07-01

    Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further