WorldWideScience

Sample records for acid eicosapentaenoic acid

  1. Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity.

    Science.gov (United States)

    Korosh, Travis; Jordan, Kelsey D; Wu, Ja-Shin; Yarlett, Nigel; Upmacis, Rita K

    2016-01-01

    Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole-resistant T. vaginalis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  2. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes

    International Nuclear Information System (INIS)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1986-01-01

    Human keratinocytes in culture were labelled with 14 C-dihomo-gamma-linolenic acid, 14 C-arachidonic acid or 14 C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. Most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes

  3. Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes

    International Nuclear Information System (INIS)

    Hallaq, H.; Leaf, A.; Sellmayer, A.; Smith, T.W.

    1990-01-01

    Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3 endash 5 days in culture medium enriched with 5 μM arachidonic acid had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3 endash 5 days with 5 μM eicosapentaenoic acid completely prevented the toxic effects of ouabain at 0.1 mM. No differences in bumetanide-inhibitable 86 Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 ± 29 and 757 ± 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels were preserved. Incubating the myocytes with eicosapentaenoic acid for 3 endash 5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospolipids of the myocytes

  4. The omega-3 fatty acid eicosapentaenoic acid is required for normal alcohol response behaviors in C. elegans.

    Directory of Open Access Journals (Sweden)

    Richard C Raabe

    Full Text Available Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1 eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2 dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3 dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.

  5. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement.

    Science.gov (United States)

    Sarter, Barbara; Kelsey, Kristine S; Schwartz, Todd A; Harris, William S

    2015-04-01

    Several studies have demonstrated that vegetarians and vegans have much lower plasma concentrations of omega-3 fatty acids (i.e., docosahexaenoic and eicosapentaenoic acids) when compared to those who eat fish. The purposes of this study were 1) to define the age and/or sex-specific docosahexaenoic plus eicosapentaenoic acids levels in red blood cell membranes (expressed as a percent of total fatty acids; hereafter the omega-3 index) in long-term vegans, and 2) to determine the effects of a vegetarian omega-3 supplement (254 mg docosahexaenoic plus eicosapentaenoic acids/day for 4 months) on the omega-3 index. A sample (n = 165) of vegans was recruited, and their omega-3 index was determined using a dried blood spot methodology. A subset of 46 subjects with a baseline omega-3 index of vegan cohort, the index was significantly higher in females than males (3.9 ± 1.0% vs. 3.5 ± 1.0%; p = 0.026) and was directly related to age (p for trend = 0.009). The omega-3 index increased from 3.1 ± 0.6% to 4.8 ± 0.8% (p = 0.009) in the supplementation study. We conclude that vegans have low baseline omega-3 levels, but not lower than omnivores who also consume very little docosahexaenoic and eicosapentaenoic acids. The vegans responded robustly to a relatively low dose of a vegetarian omega-3 supplement. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    International Nuclear Information System (INIS)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-01-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of 14 C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three 14 C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin

  7. Eicosapentaenoic Acid Supplementation Changes Fatty Acid Composition and Corrects Endothelial Dysfunction in Hyperlipidemic Patients

    Directory of Open Access Journals (Sweden)

    Ken Yamakawa

    2012-01-01

    Full Text Available We investigated the effects of purified eicosapentaenoic acid (EPA on vascular endothelial function and free fatty acid composition in Japanese hyperlipidemic subjects. In subjects with hyperlipidemia (total cholesterol ≥220 mg/dL and/or triglycerides ≥150 mg/dL, lipid profile and forearm blood flow (FBF during reactive hyperemia were determined before and 3 months after supplementation with 1800 mg/day EPA. Peak FBF during reactive hyperemia was lower in the hyperlipidemic group than the normolipidemic group. EPA supplementation did not change serum levels of total, HDL, or LDL cholesterol, apolipoproteins, remnant-like particle (RLP cholesterol, RLP triglycerides, or malondialdehyde-modified LDL cholesterol. EPA supplementation did not change total free fatty acid levels in serum, but changed the fatty acid composition, with increased EPA and decreased linoleic acid, γ-linolenic acid, and dihomo-γ-linolenic acid. EPA supplementation recovered peak FBF after 3 months. Peak FBF recovery was correlated positively with EPA and EPA/arachidonic acid levels and correlated inversely with dihomo-γ-linolenic acid. EPA supplementation restores endothelium-dependent vasodilatation in hyperlipidemic patients despite having no effect on serum cholesterol and triglyceride patterns. These results suggest that EPA supplementation may improve vascular function at least partly via changes in fatty acid composition.

  8. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function (ID 532) and maintenance

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list...... and fish oil”. From the references provided, the Panel assumes that the food constituents that are the subject of the claims are the n-6 fatty acid gamma-linolenic acid (GLA) in evening primrose oil and the n-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA...... of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders. The food constituents that are the subjects of the health claims are “omega-3 and omega-6 fatty acids (GLA)”, “gamma-linolenic acid + eicosapentaenoic acid (GLA+EPA)”, and “evening primrose oil...

  9. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2007-01-01

    Evidence confirms that polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid, DHA are involved in growth as well in pigmentation of marine fish larvae. In the present study we examined the performance of common sole larvae reared...... on Artemia enriched with 10 formulated emulsions, differing in inclusions of ARA, EPA, and DHA. The specific growth rate of the sole larvae until late metamorphosis, 21 days after hatching (dah) was 20 to 27% d(-1). Even though the relative tissue essential fatty acid (EFA) concentrations significantly...... reflected dietary composition, neither standard growth nor larval survival were significantly related to the absolute concentrations of ARA, EPA and DHA or their ratios. This suggests low requirements for essential polyunsaturated fatty acids (PUFAs) in common sole. Malpigmentation was significantly related...

  10. Wheat aleurone polyphenols increase plasma eicosapentaenoic acid in rats

    Directory of Open Access Journals (Sweden)

    Fayçal Ounnas

    2014-08-01

    Full Text Available Methods: These studies were designed to assess whether wheat polyphenols (mainly ferulic acid [FA] increased the very-long-chain omega-3 fatty acids (VLC n-3 [eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA] in rats. Wheat aleurone (WA was used as a dietary source of wheat polyphenols. Two experiments were performed; in the first one, the rats were fed WA or control pellets (CP in presence of linseed oil (LO to provide alpha-linolenic acid (ALA, the precursor of VLC n-3. In the second one, the rats were fed WA or CP in presence of control oil (CO without ALA. The concentrations of phenolic acid metabolites in urine were also investigated. Results: The urinary concentration of conjugated FA increased with WA ingestion (p<0.05. Plasma EPA increased by 25% (p<0.05 with WA in the CO group but not in the LO group. In contrast, there was no effect of WA on plasma DHA and omega-6 fatty acids (n-6. Finally, both n-3 and n-6 in the liver remained unchanged by the WA. Conclusion: These results suggest that WA consumption has a significant effect on EPA in plasma without affecting n-6. Subsequent studies are required to examine whether these effects may explain partly the health benefits associated with whole wheat consumption.

  11. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  12. Sunflower press cake as a substrate for eicosapentaenoic acid production by representatives of the genus Mortierella

    CSIR Research Space (South Africa)

    Jacobs, A

    2010-05-01

    Full Text Available Long chain omega-3 fatty acids such as eicosapentaenoic acid (EPA) are essential for the regulation of critical biological functions in humans and other mammals. EPA production via solid state fermentation of sunflower press cake was investigated...

  13. Clinical implications of eicosapentaenoic acid/arachidonic acid ratio (EPA/AA) in adult patients with congenital heart disease.

    Science.gov (United States)

    Kanoh, Miki; Inai, Kei; Shinohara, Tokuko; Tomimatsu, Hirofumi; Nakanishi, Toshio

    2017-12-01

    Recent studies showed that a low ratio between the levels of eicosapentaenoic acid and those of arachidonic acid (EPA/AA) is associated with higher incidence of coronary artery disease and poor prognosis of heart failure, arrhythmia, and cardiac sudden death. However, the clinical implications of EPA/AA in adult patients with congenital heart disease remain unclear. We aimed to assess the prognostic value of EPA/AA regarding cardiac events in adult patients with congenital heart disease. We measured the serum levels of eicosapentaenoic acid and arachidonic acid in 130 adult patients (median age, 31 years) stratified into two groups according to their EPA/AA (low, ≤0.22; high, >0.22). We prospectively analyzed the association between EPA/AA and incidence of cardiac events during a mean observation period of 15 months, expressed in terms of hazard ratio (HR) with 95% confidence interval (95% CI). In the subgroup of patients with biventricular circulation (2VC) (n = 76), we analyzed the same clinical endpoints. In our study population, EPA/AA was not associated with the incidence of arrhythmic events (HR, 1.52; 95% CI, 0.82-2.85; p = 0.19), but low EPA/AA was a predictor of heart failure hospitalization (HR, 2.83; 95% CI, 1.35-6.30; p AA of ≤0.25 was associated with a significantly higher risk of arrhythmic events (HR, 2.55; 95% CI, 1.11-6.41; p = 0.03) and heart failure hospitalization (HR, 5.20; 95% CI, 1.78-18.1; p AA represents a useful predictor of cardiac events in adult patients with congenital heart disease.

  14. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels.

    Science.gov (United States)

    Chen, Chuck T; Bazinet, Richard P

    2015-01-01

    The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Application of a ω-3 Desaturase with an Arachidonic Acid Preference to Eicosapentaenoic Acid Production in Mortierella alpina

    Directory of Open Access Journals (Sweden)

    Chengfeng Ge

    2018-01-01

    Full Text Available In the industrial oleaginous fungus Mortierella alpina, the arachidonic acid (AA; C20:4; ω-6 fraction can reach 50% of the total fatty acids (TFAs in vivo. However, the eicosapentaenoic acid (EPA; C20:5; ω-3 fraction is less than 3% when this fungus is cultivated at a low temperature (12°C. Omega-3 fatty acid desaturase is a key enzyme in ω-3 long-chain polyunsaturated fatty acids biosynthesis pathways. To enhance EPA production, we transformed the ω-3 fatty acid desaturase (PaD17, which exhibits strong Δ-17 desaturase activity, into M. alpina, thus increasing the AA to EPA conversion rate to 49.8%. This PaD17-harboring M. alpina reconstruction strain produced 617 mg L−1 of EPA at room temperature in broth medium, this yield was increased to 1.73 g L−1 after culture medium optimization (i.e., about threefold higher than that under original culture conditions, with concomitant respective increases in dry cell weight and TFA content to 16.55 and 6.46 g L−1. These findings suggest a new platform for the future industrial production of EPA.

  16. Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Hopperton, Kathryn E; Bazinet, Richard P

    2016-09-01

    Whole body docosahexaenoic acid (DHA, 22:6n-3) synthesis from α-linolenic acid (ALA, 18:3n-3) is considered to be very low, however, the daily synthesis-secretion of DHA may be sufficient to supply the adult brain. The current study aims to assess whether whole body DHA synthesis-secretion kinetics are different when comparing plasma ALA versus eicosapentaenoic acid (EPA, 20:5n-3) as the precursor. Male Long Evans rats (n=6) were fed a 2% ALA in total fat diet for eight weeks, followed by surgery to implant a catheter into each of the jugular vein and carotid artery and 3h of steady-state infusion with a known amount of (2)H-ALA and (13)C-eicosapentaenoic acid (EPA, 20:5n3). Blood samples were collected at thirty-minute intervals and plasma enrichment of (2)H- and (13)C EPA, n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) and DHA were determined for assessment of synthesis-secretion kinetic parameters. Results indicate a 13-fold higher synthesis-secretion coefficient for DHA from EPA as compared to ALA. However, after correcting for the 6.6 fold higher endogenous plasma ALA concentration, no significant differences in daily synthesis-secretion (nmol/day) of DHA (97.6±28.2 and 172±62), DPAn-3 (853±279 and 1139±484) or EPA (1587±592 and 1628±366) were observed from plasma unesterified ALA and EPA sources, respectively. These results suggest that typical diets which are significantly higher in ALA compared to EPA yield similar daily DHA synthesis-secretion despite a significantly higher synthesis-secretion coefficient from EPA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A Taiwanese food frequency questionnaire correlates with plasma docosahexaenoic acid but not with plasma eicosapentaenoic acid levels: questionnaires and plasma biomarkers.

    Science.gov (United States)

    Chien, Kuo-Liong; Lee, Meei-Shyuan; Tsai, Yi-Tsen; Chen, Pey-Rong; Lin, Hung-Ju; Hsu, Hsiu-Ching; Lee, Yuan-The; Chen, Ming-Fong

    2013-02-16

    Little evidence is available for the validity of dietary fish and polyunsaturated fatty acid intake derived from interviewer-administered questionnaires and plasma docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentration. We estimated the correlation of DHA and EPA intake from both questionnaires and biochemical measurements. Ethnic Chinese adults with a mean (± SD) age of 59.8 (±12.8) years (n = 297) (47% women) who completed a 38-item semi-quantitative food-frequency questionnaire and provided a plasma sample were enrolled. Plasma fatty acids were analyzed by capillary gas chromatography. The Spearmen rank correlation coefficients between the intake of various types of fish and marine n-3 fatty acids as well as plasma DHA were significant, ranging from 0.20 to 0.33 (P food frequency questionnaire, were correlated with the percentages of these fatty acids in plasma, and in particular with plasma DHA. Plasma DHA levels were correlated to dietary intake of long-chain n-3 fatty acids.

  18. Effects of MAT9001 containing eicosapentaenoic acid and docosapentaenoic acid, compared to eicosapentaenoic acid ethyl esters, on triglycerides, lipoprotein cholesterol, and related variables.

    Science.gov (United States)

    Maki, Kevin C; Bobotas, George; Dicklin, Mary R; Huebner, Margie; Keane, William F

    Long-chain omega-3 fatty acid concentrate pharmaceuticals are used in the United States for treatment of severe hypertriglyceridemia (≥500 mg/dL) and are under investigation as adjuncts to statins for lowering cardiovascular risk in patients with high triglycerides (TGs; 200-499 mg/dL). To evaluate MAT9001, an investigational prescription-only omega-3 fatty acid agent containing predominantly eicosapentaenoic acid (EPA) and docosapentaenoic acid, in 42 men and women with fasting TG 200 to 400 mg/dL. In this open-label, crossover trial, subjects received MAT9001 and EPA ethyl esters (EPA-EE) in random order. They were housed in a clinical research unit for 2 14-day treatment periods, separated by a ≥35-day washout. Lipoprotein lipids, apolipoproteins (Apos) and proprotein convertase subtilisin kexin type 9 levels were measured before and at the end of each treatment period. MAT9001, compared with EPA-EE, resulted in significantly (P < .05) larger reductions from pretreatment levels for TG (-33.2% vs -10.5%), total cholesterol (-9.0% vs -6.2%), non-high-density lipoprotein cholesterol (-8.8% vs -4.6%), very low-density lipoprotein cholesterol (-32.5% vs -8.1%), Apo C3 (-25.5% vs -5.0%), and proprotein convertase subtilisin kexin type 9 (-12.3% vs +8.8%). MAT9001 also produced a significantly (P = .003) larger reduction in Apo A1 (-15.3% vs -10.2%), but responses for high-density lipoprotein cholesterol (-11.3% vs -11.1%), low-density lipoprotein cholesterol (-2.4% vs -4.3%), and Apo B (-3.8% vs -0.7%), respectively, were not significantly different relative to EPA-EE. MAT9001 produced significantly larger reductions than EPA-EE in several lipoprotein-related variables that would be expected to favorably alter cardiovascular disease risk in men and women with hypertriglyceridemia. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  19. Combined application of eicosapentaenoic acid and docosahexaenoic acid on depression in women: a meta-analysis of double-blind randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Yang JR

    2015-08-01

    Full Text Available Jia-run Yang, Dong Han, Zheng-xue Qiao, Xue Tian, Dong Qi, Xiao-hui QiuDepartment of Medical Psychology, Public Health Institute of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of ChinaObjectives: Previous randomized controlled trials (RCTs suggest that depression can be effectively treated by omega-3 polyunsaturated fatty acids (PUFAs. Therefore, we conducted this meta-analysis to systematically evaluate the clinical applicability of the combination of docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, which are the two major bioactive types of PUFAs, in depressed women.Methods: RCTs that compared the combination of DHA and EPA to placebo for short-course treatment of depression in women were systematically reviewed up to March 2015. Outcome measurement was the standardized difference in means in clinical measure of depression severity. Random effect model was performed. Meta-regression analysis was performed to assess the effects of baseline depression scores.Results: Data were obtained from eight RCTs. In these RCTs, 182 patients received placebo and 185 patients received DHA and EPA. The pooled standardized difference in mean was 0.65 with 95% CI = [0.18, 1.12]. There was no relation between the efficacy and the baseline depression scores. The sensitivity analysis found that the combination of EPA and DHA as monotherapy yielded a standardized difference in means of 0.65 (95% CI =0.41, 0.90 without heterogeneity.Discussion: These results indicate a beneficial effect of the combination of EPA and DHA on depressed mood in women compared with placebo. The clinical applicability of EPA and DHA showed greater promise and should be further explored.Keywords: depression, omega-3 polyunsaturated fatty acids, PUFAs, docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA

  20. Concentration of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA of Asian catfish oil by urea complexation: optimization of reaction conditions

    Directory of Open Access Journals (Sweden)

    Pornpisanu Thammapat

    2016-04-01

    Full Text Available Optimization of the concentrating conditions of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA extracted from Asian catfish oil was studied to obtain a maximum concentration. The crude fish oil was extracted from the belly flap and adipose tissue of Asian catfish, and the extracted oil was used as fresh crude oil. The EPA and DHA were concentrated by the urea complexation method. A hexagonal rotatable design was applied to examine the effects of crystallization temperature and urea-to-fatty acid ratio on the total content of EPA and DHA (Y1 and the liquid recovery yield (Y2 . The second order polynomial regression models for Y1 and Y2 were employed to generate the response surfaces. Under the optimum conditions of -20 °C and a urea-to-fatty acid ratio of 4 (w/w, the total concentration of EPA and DHA could be increased by up to 88%, while a liquid recovery yield of 26% was obtained.

  1. Relative turnover of [3H]arachidonic acid and [14C]eicosapentaenoic acid in stimulated human platelets

    International Nuclear Information System (INIS)

    Weaver, B.J.; Holub, B.J.

    1986-01-01

    The relative release of arachidonic acid (AA) versus eicosapentaenoic acid (EPA) from platelet phospholipids may be important in accounting for the potential of dietary fish oil containing EPA to alter platelet reactivity. Human platelets enriched in EPA and prelabelled with [ 3 H]AA and [ 14 C]EPA were used to examine the relative losses of these fatty acids from platelet phospholipids upon stimulation. Washed dual-labelled platelets were incubated with and without thrombin in the presence of BW755C and in the presence and absence of trifluoperazine. The platelet lipids were extracted and the individual phospholipids as well as diacylglycerol (DG), phosphatidic acid (PA), etc. were separated by thin-layer chromatography and the radioactivity in each fraction determined. The [ 3 H]AA/[ 14 C]EPA dpm ratio for the loss in radioactivity from PC upon thrombin stimulation was similar to that for the PC in resting platelets. This suggests no marked selectivity in the degradation of AA versus EPA species of PC during platelet activation. The [ 3 H]/[ 14 C] ratios for the increased radioactivity in DG and PA upon thrombin stimulation were slightly higher than the ratio in PI from resting platelets suggesting only a minor preference for 1-acyl 2-arachidonoyl PI over 1-acyl 2-eicosapentaenoyl PI in the pathway from PI to DG to PA

  2. Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids

    Science.gov (United States)

    Background:N-3 fatty acids are associated with favorable, and obesity with unfavorable, concentrations of chronic disease risk biomarkers.Objective:We examined whether high eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid intakes, measured as percentages of total red blood cell (RBC) fatty acid...

  3. Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth, nucleic acid and fatty acids of juvenile cobia (Rachycentron canadum).

    Science.gov (United States)

    Xu, Youqing; Ding, Zhaokun; Zhang, Haizhu; Liu, Liang; Wang, Shuqi; Gorge, John

    2009-12-01

    An experiment was performed to study the effect of different ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the growth, nucleic acid and fatty acids of cobia (Rachycentron canadum) juveniles. The juveniles were fed for 8 weeks using seven treatment diets (D-1-D-7) with the same amount of DHA and EPA (1.50 +/- 0.1% of dried diet), but varying ratios of DHA to EPA (0.90, 1.10, 1.30, 1.50, 1.70, 1.90, 2.10, respectively) and a control diet (D-0, DHA + EPA = 0.8% of dried diet, DHA/EPA = 1.30). At the end of the experiment, the mean body weight (BW) of juveniles fed D-0-D-7 increased significantly (from 6.86 +/- 1.64 in the week 0 to 58.52 +/- 16.45 g at the end of week 8, P cobia juveniles fed D-0-D-7 were significantly higher at the end of 8-week experiment than initially (P cobia juveniles increased with their growth and appeared an obvious positive relationship, especially in the muscle, based on regression analysis. The mean lipid content increased significantly in the liver (from 29.82 +/- 0.99 to 37.47 +/- 3.25% totally) and muscle (from 6.74 +/- 0.25 to 10.63 +/- 0.23% totally) of cobia juveniles (P 0.05). In the muscle and liver of juveniles, EPA decreased with its reduction in the diet; DHA, DHA/EPA ratio and poly unsaturated fatty acids (PUFAs) generally increased with their increment in the diet. The conclusion was drawn that the growth, nucleic acid and fatty acids of cobia juveniles were not significantly affected by different DHA/EPA ratios in our experiments.

  4. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study.

    Science.gov (United States)

    Amiano, P; Machón, M; Dorronsoro, M; Chirlaque, M Dolores; Barricarte, A; Sánchez, M-J; Navarro, C; Huerta, J M; Molina-Montes, E; Sánchez-Cantalejo, E; Urtizberea, M; Arriola, L; Larrañaga, N; Ardanaz, E; Quirós, J R; Moreno-Iribas, C; González, C A

    2014-03-01

    The evidence about the benefits of omega-3 fatty acid intake on coronary heart disease (CHD) is not consistent. We thus aimed to assess the relation between dietary intake of total omega-3 fatty acids (from plant and marine foods) and marine polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the risk of CHD in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis included 41,091 men and women aged 20-69 years, recruited from 1992 to 1996 and followed-up until December 2004. Omega-3 fatty acid intake was estimated from a validated dietary questionnaire. Only participants with definite incident CHD event were considered as cases. Cox regression models were used to assess the association between the intake of total omega-3 fatty acids, EPA or DHA and CHD. A total of 609 participants (79% men) had a definite CHD event. Mean intakes of total omega-3 fatty acids, EPA and DHA were very similar in the cases and in the cohort, both in men and women. In the multivariate adjusted model, omega-3 fatty acids, EPA and DHA were not related to incident CHD in either men or women. The hazard ratios (HR) for omega-3 were 1.23 in men (95% CI 0.94-15.9, p = 0.20); and 0.77 in women (95% CI 0.46-1.30, p = 0.76). In the Spanish EPIC cohort, with a relatively high intake of fish, no association was found between EPA, DHA and total omega-3 fatty acid intake and risk of CHD. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids

    Directory of Open Access Journals (Sweden)

    Somoza Veronika

    2009-02-01

    Full Text Available Abstract Background Conversion of linoleic acid (LA and alpha-linolenic acid (ALA to their higher chain homologues in humans depends on the ratio of ingested n6 and n3 fatty acids. Design and methods In order to determine the most effective ratio with regard to the conversion of ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, human hepatoma cells were incubated with varying ratios of [13C] labeled linoleic acid ([13C]LA- and alpha-linolenic acid ([13C]ALA-methylesters. Regulative cellular signal transduction pathways involved were studied by determinations of transcript levels of the genes encoding delta-5 desaturase (D5D and delta-6 desaturase (D6D, peroxisome proliferator-activated receptor alpha (PPARα and sterol regulatory element binding protein 1c (SREBP-1c. Mitogen-activated protein kinase kinase 1 (MEK1 and mitogen-activated protein kinase kinase kinase 1 (MEKK1 were also examined. Results Maximum conversion was observed in cells incubated with the mixture of [13C]LA/[13C]ALA at a ratio of 1:1, where 0.7% and 17% of the recovered [13C]ALA was converted to DHA and EPA, respectively. Furthermore, differential regulation of enzymes involved in the conversion at the transcript level, dependent on the ratio of administered n6 to n3 fatty acids in human hepatocytes was demonstrated. Conclusion Formation of EPA and DHA was highest at an administered LA/ALA ratio of 1:1, although gene expression of PPARα, SREBP-1c and D5D involved in ALA elongation were higher in the presence of ALA solely. Also, our findings suggest that a diet-induced enhancement of the cell membrane content of highly unsaturated fatty acids is only possible up to a certain level.

  6. Increased Erythrocyte Eicosapentaenoic Acid and Docosahexaenoic Acid Are Associated With Improved Attention and Behavior in Children With ADHD in a Randomized Controlled Three-Way Crossover Trial.

    Science.gov (United States)

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2015-11-01

    To investigate effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on attention, literacy, and behavior in children with ADHD. Ninety children were randomized to consume supplements high in EPA, DHA, or linoleic acid (control) for 4 months each in a crossover design. Erythrocyte fatty acids, attention, cognition, literacy, and Conners' Parent Rating Scales (CPRS) were measured at 0, 4, 8, 12 months. Fifty-three children completed the treatment. Outcome measures showed no significant differences between the three treatments. However, in children with blood samples (n = 76-46), increased erythrocyte EPA + DHA was associated with improved spelling (r = .365, p attention (r = -.540, p improve behavior, attention, and literacy in children with ADHD. © The Author(s) 2013.

  7. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review

    Science.gov (United States)

    Innes, Jacqueline K.; Calder, Philip C.

    2018-01-01

    A large body of evidence supports the cardioprotective effects of the long-chain omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). There is increasing interest in the independent effects of EPA and DHA in the modulation of cardiometabolic risk factors. This systematic review aims to appraise the latest available evidence of the differential effects of EPA and DHA on such risk factors. A systematic literature review was conducted up to May 2017. Randomised controlled trials were included if they met strict eligibility criteria, including EPA or DHA > 2 g/day and purity ≥ 90%. Eighteen identified articles were included, corresponding to six unique studies involving 527 participants. Both EPA and DHA lowered triglyceride concentration, with DHA having a greater triglyceride-lowering effect. Whilst total cholesterol levels were largely unchanged by EPA and DHA, DHA increased high-density lipoprotein (HDL) cholesterol concentration, particularly HDL2, and increased low-density lipoprotein (LDL) cholesterol concentration and LDL particle size. Both EPA and DHA inhibited platelet activity, whilst DHA improved vascular function and lowered heart rate and blood pressure to a greater extent than EPA. The effects of EPA and DHA on inflammatory markers and glycaemic control were inconclusive; however both lowered oxidative stress. Thus, EPA and DHA appear to have differential effects on cardiometabolic risk factors, but these need to be confirmed by larger clinical studies. PMID:29425187

  8. The effects of the oral administration of fish oil concentrate on the release and the metabolism of [14C]arachidonic acid and [14C]eicosapentaenoic acid by human platelets

    International Nuclear Information System (INIS)

    Hirai, A.; Terano, T.; Hamazaki, T.

    1982-01-01

    It has been suggested by several investigators that eicosapentaenoic acid (C20:5 omega 3, EPA) might have anti-thrombotic effects. In this experiment, the effect of the oral administration of EPA rich fish oil concentrate on platelet aggregation and the release and the metabolism of [ 1 - 14 C]arachidonic acid and [(U)- 14 C]eicosapentaenoic acid by human platelets was studied. Eight healthy male subjects ingested 18 capsules of fish oil concentrate (EPA 1.4 g) per day for 4 weeks. Plasma and platelet concentrations of EPA markedly increased, while those of arachidonic acid (C20:4 omega 6, AA) and docosahexaenoic acid (C22:6 omega 3, DHA) did not change. Platelet aggregation induced by collagen and ADP was reduced. Collagen induced [ 14 C]thromboxane B2 (TXB2) formation from [ 14 C]AA prelabeled platelets decreased. There was no detectable formation of [ 14 C]TXB3 from [ 14 C]EPA prelabeled platelets, and the conversion of exogenous [ 14 C]EPA to [ 14 C]TXB3 was lower than that of [ 14 C]AA to [ 14 C]TXB2. The release of [ 14 C]AA from [ 14 C]AA prelabeled platelets by collagen was significantly decreased. These observations raise the possibility that the release of arachidonic acid from platelet lipids might be affected by the alteration of EPA content in platelets

  9. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Tun-Yun Hsueh

    2018-03-01

    Full Text Available Polyunsaturated fatty acids are important nutrients for human health, especially omega-3 fatty acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, which have been found to play positive roles in the prevention of various diseases. However, previous studies have reported that excessive omega-3 fatty acids supplement during pregnancy caused side effects such as slower neural transmission times and postnatal growth restriction. In this study, we investigated the effect of EPA and DHA on mitochondrial function and gene expression in C2C12 myoblasts during skeletal muscle differentiation. C2C12 myoblasts were cultured to confluency and then treated with differentiation medium that contained fatty acids (50-µM EPA and DHA. After 72 h of myogenic differentiation, mRNA was collected, and gene expression was analyzed by real-time PCR. Microscopy was used to examine cell morphology following treatment with fatty acids. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XF24 Analyzer. Cells treated with fatty acids had fewer myotubes formed (P ≤ 0.05 compared with control cells. The expression of the genes related to myogenesis was significantly lower (P ≤ 0.05 in cells treated with fatty acids, compared with control cells. Genes associated with adipogenesis had higher (P ≤ 0.05 expression after treatment with fatty acids. Also, the mitochondrial biogenesis decreased with lower (P ≤ 0.05 gene expression and lower (P ≤ 0.05 mtDNA/nDNA ratio in cells treated with fatty acids compared with control cells. However, the expression of genes related to peroxisome biosynthesis was higher (P ≤ 0.05 in cells treated with fatty acids. Moreover, fatty-acid treatment reduced (P ≤ 0.05 oxygen consumption rate under oligomycin-inhibited (reflecting proton leak and uncoupled conditions. Our data imply that fatty acids might reduce myogenesis and increase adipogenesis in myotube formation. Fatty acids

  10. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols.

    Science.gov (United States)

    Zhang, Zhen; Liu, Fang; Ma, Xiang; Huang, Huihua; Wang, Yong

    2018-01-10

    Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.

  11. Eicosapentaenoic acid and docosahexaenoic acid in whole blood are differentially and sex-specifically associated with cardiometabolic risk markers in 8-11-year-old danish children

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Eidner, Maj B.; Stark, Ken D.

    2014-01-01

    ) investigated associations between EPA and DHA in whole blood and early cardiometabolic risk markers in 713 children aged 8-11 years and 2) explored potential mediation through waist circumference and physical activity and potential dietary confounding. We collected data on parental education, pubertal stage, 7......n-3 long-chain polyunsaturated fatty acids improve cardiovascular risk markers in adults. These effects may differ between eicosapentaenoic acid (EPA, 20∶5n-3) and docosahexaenoic acid (DHA, 22∶6n-3), but we lack evidence in children. Using baseline data from the OPUS School Meal Study we 1......-day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by the homeostatic model of assessment (HOMA-IR), and inflammatory...

  12. Considerations for incorporating eicosapentaenoic and docosahexaenoic omega-3 fatty acids into the military food supply chain.

    Science.gov (United States)

    Ismail, Adam; Rice, Harry B

    2014-11-01

    The U.S. military may consider exploring the inclusion of the long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the diets of active duty military personnel. To be successful, certain challenges must be overcome including determining appropriate dosage, ensuring cost efficiency, and optimizing stability. To increase EPA and DHA intake, the military should consider using one of three strategies, including mandates or recommendations on omega-3 supplement usage, contracts to purchase commercially available foods for distribution in the food supply chain, or direct addition of EPA and DHA into currently consumed foods. This review presents the challenges and strategies and provides potential suggestions to the military to increase the likelihood of success. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  13. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA)

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver a scientific opinion on the Tolerable Upper Intake Level (UL) of the n-3 LCPUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA......). Available data are insufficient to establish a UL for n-3 LCPUFA (individually or combined) for any population group. At observed intake levels, consumption of n-3 LCPUFA has not been associated with adverse effects in healthy children or adults. Long-term supplemental intakes of EPA and DHA combined up...... to about 5 g/day do not appear to increase the risk of spontaneous bleeding episodes or bleeding complications, or affect glucose homeostasis immune function or lipid peroxidation, provided the oxidative stability of the n-3 LCPUFAs is guaranteed. Supplemental intakes of EPA and DHA combined at doses of 2...

  14. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders.

    Science.gov (United States)

    Tesei, Alessandra; Crippa, Alessandro; Ceccarelli, Silvia Busti; Mauri, Maddalena; Molteni, Massimo; Agostoni, Carlo; Nobile, Maria

    2017-09-01

    Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined-depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)-the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.

  15. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice

    Directory of Open Access Journals (Sweden)

    Nikul K. Soni

    2016-09-01

    Full Text Available Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM. Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD with purified marine fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (HFD-ED, a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4 protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.

  16. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs.

    Science.gov (United States)

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-07-16

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n -3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E- (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR ( n = 8, p DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN.

  17. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Science.gov (United States)

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  18. Eicosapentaenoic and docosahexaenoic acids enriched polyunsaturated fatty acids from the coastal marine fish of Bay of Bengal and their therapeutic value.

    Science.gov (United States)

    Bera, Rabindranath; Dhara, Tushar K; Bhadra, Ranjan; Majumder, Gopal C; Sen, Parimal C

    2010-12-01

    Eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) enriched polyunsaturated fatty acids (PUFA) significantly present in marine fish oil emerge as preventive agents for combating many health problems specially in chronic or metabolic disorders. The fish in the coastal area of Bay of Bengal has remained unexplored with respect to EPA/DHA enriched PUFA content in its oils, although it may be a potential source in harnessing the health benefit. In this study, seven varieties of the coastal fish were analysed for the content of EPA/DHA. The one locally known as lotte, (Harpadon nehereus) though has low content of total lipids, was found to have high EPA/DHA in its oil. The phospholipids rich fraction was extracted from the total fish oil. The EPA/DHA enriched PUFA was isolated to investigate the potential use for health benefits. EPA/DHA is found to act as protective agent against mercury poisoning studied in cell culture as well as in animal mode. It is found to be highly preventive in diabetes. The lotte is available in the coastal area of Bay of Bengal adjoining West Bengal, India in large scale and it is the first report showing EPA/DHA enriched PUFA in these fish oil that can be availed to harness in important health benefits.

  19. Novel Eicosapentaenoic Acid-derived F3-isoprostanes as Biomarkers of Lipid Peroxidation*

    Science.gov (United States)

    Song, Wen-Liang; Paschos, Georgios; Fries, Susanne; Reilly, Muredach P.; Yu, Ying; Rokach, Joshua; Chang, Chih-Tsung; Patel, Pranav; Lawson, John A.; FitzGerald, Garret A.

    2009-01-01

    Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs. PMID:19520854

  20. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    Science.gov (United States)

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    Science.gov (United States)

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Inhibition of triacylglycerol and apoprotein B secretion and of low density lipoprotein binding in Hep G2 cells by eicosapentaenoic acid

    International Nuclear Information System (INIS)

    Wong, S.H.; Nestel, P.J.

    1987-01-01

    The consumption of long chain polyunsaturated fatty acids of fish oils leads to profound lowering of plasma triacylglyercol (TAG) but not of plasma cholesterol. Reasons for this were investigated with the human hepatoma cell line, the Hep G2 cell. Incubations with oleic acid (OA), linoleic acid (LA) and the characteristic marine fatty acid eicosapentaenoic acid (EPA) enriched cellular TAG mass, though least with EPA. However, secretion of very low density lipoprotein (VLDL)-TAG and apoprotein B (apo B), measured from [ 3 H]-glycerol and [ 3 H]-leucine was markedly inhibited by EPA. Preincubation with LA reduced VLDL-TAG but not apo B secretion in comparison with OA which stimulated both. A possible effect on low density lipoprotein (LDL) removal was studied by measuring [ 125 I]-LDL binding. Preincubation with either EPA or LA inhibited the saturable binding of LDL, observed with OA and control incubations. The binding of lipoproteins containing chylomicron remnants was not affected by any of the fatty acids

  3. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3, with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher

  4. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    Science.gov (United States)

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  5. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?

    Science.gov (United States)

    Song, Cai; Shieh, Chu-Hsin; Wu, Yi-Shyuan; Kalueff, Allan; Gaikwad, Siddharth; Su, Kuan-Pin

    2016-04-01

    Omega-3 polyunsaturated fatty acids (n-3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n-6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study.

    Science.gov (United States)

    Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan

    2017-07-15

    Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Banta, G.

    2008-01-01

    Dietary manipulations of arachidonic acid, ARA and eicosapentaenoic acid, EPA may have an influence on pigmentation in common sole larvae (Solea solea L., Linnaeus 1758) which may be related to a "pigmentation window". This is a specific period in the larval ontogeny where nutritional factors...... metamorphosis. Initiation of metamorphosis (i.e. start of eye migration) was related to the size of larvae and not related to ARA or EPA content. Dietary EPA or DHA did not retard the advance of eye migration. More than 90 % of highly malpigmented juveniles, (i.e. "albinos") had a permanent aberrant eye...

  8. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T.

    Directory of Open Access Journals (Sweden)

    Jinwei Zhang

    Full Text Available Omega-3 fatty acids are products of secondary metabolism, essential for growth and important for human health. Although there are numerous reports of bacterial production of omega-3 fatty acids, less information is available on the biotechnological production of these compounds from bacteria. The production of eicosapentaenoic acid (EPA, 20:5ω3 by a new species of marine bacteria Shewanella electrodiphila MAR441T was investigated under different fermentation conditions. This strain produced a high percentage (up to 26% of total fatty acids and high yields (mg / g of biomass of EPA at or below the optimal growth temperature. At higher growth temperatures these values decreased greatly. The amount of EPA produced was affected by the carbon source, which also influenced fatty acid composition. This strain required Na+ for growth and EPA synthesis and cells harvested at late exponential or early stationary phase had a higher EPA content. Both the highest amounts (20 mg g-1 and highest percent EPA content (18% occurred with growth on L-proline and (NH42SO4. The addition of cerulenin further enhanced EPA production to 30 mg g-1. Chemical mutagenesis using NTG allowed the isolation of mutants with improved levels of EPA content (from 9.7 to 15.8 mg g-1 when grown at 15°C. Thus, the yields of EPA could be substantially enhanced without the need for recombinant DNA technology, often a commercial requirement for food supplement manufacture.

  9. Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. II. Studies with radiolabeled precursors

    International Nuclear Information System (INIS)

    Khozin, I.; Adlerstein, D.; Bigongo, C.; Heimer, Y.M.; Cohen, Z.

    1997-01-01

    In the course of the study of the biosynthesis of the fatty acid eicosapentaenoic acid (EPA) in the microalga Porphyridium cruentum, cells were pulse-labeled with various radiolabeled fatty acid precursors. Our data show that the major end products of the biosynthesis are EPA-containing galactolipids of a eukaryotic and prokaryotic nature. The prokaryotic molecular species contain EPA and arachidonic acid at the sn-1 position and C16 fatty acids, mainly 16:0, at the sn-2 positions, whereas in the eukaryotic species both positions are occupied by EPA or arachidonic acid. However, we suggest that both the eukaryotic and prokaryotic molecular species are formed in two pathways, omega 6 and omega 3, which involve cytoplasmic and chloroplastic lipids. In the omega 6 pathway, cytoplasmic 18:2-phosphatidylcholine (PC) is converted to 20:4 omega 6-PC by a sequence that includes a delta 6 desaturase, an elongation step, and a delta 5 desaturase. In the minor omega 3 pathway, 18:2-PC is presumably desaturated to 18:3 omega 3, which is sequentially converted by the enzymatic sequence of the omega 6 pathway to 20:5 omega 3-PC. The products of both pathways are exported, as their diacylglycerol moieties, to the chloroplast to be galactosylated into their respective monogalactosyldiacylglycerol molecular species. The 20:4 omega 6 in both eukaryotic and prokaryotic monogalactosyldiacylglycerol can be further desaturated to EPA by a chloroplastic delta 17 (omega 3) desaturase

  10. Formulation of dark chocolate as a carrier to deliver eicosapentaenoic and docosahexaenoic acids: Effects on product quality.

    Science.gov (United States)

    Toker, Omer Said; Konar, Nevzat; Palabiyik, Ibrahim; Rasouli Pirouzian, Haniyeh; Oba, Sirin; Polat, Derya Genc; Poyrazoglu, Ender Sinan; Sagdic, Osman

    2018-07-15

    In this study, dark chocolate enriched with EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) was developed using various forms and origins. Quality characteristics such as physical, thermo-gravimetric, rheological, textural and sensory properties of chocolates were investigated. The highest EPA/DHA stability was determined in samples prepared by free-flowing powder and microencapsulated forms of omega-3 fatty acids (FA). The L ∗ and C ∗ values varied from 32.16-33.37 and 7.45-8.09, respectively for the all samples. Hardness values ranged between 6422 and 8367 N and the use of EPA/DHA in the triglyceride form caused softer chocolate whereas control sample was the hardest sample. Melting and rheological properties were not significantly affected by the studied EPA/DHA sources (P chocolate was the most preferred source whereas sample with algae oil showed the lowest acceptability. According to the results, dark chocolate can be used for delivering omega-3 FA by considering their origin and physical form. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Supplementation with eicosapentaenoic omega-3 fatty acid does not influence serum brain-derived neurotrophic factor in diabetes mellitus patients with major depression

    DEFF Research Database (Denmark)

    Bot, Mariska; Pouwer, Francois; Assies, Johanna

    2011-01-01

    BACKGROUND: Low brain-derived neurotrophic factor (BDNF) levels are observed in both depressed and diabetes patients. Animal research has shown that omega-3 polyunsaturated fatty acids increase BDNF levels. In this exploratory randomized double-blind placebo-controlled study in diabetes patients...... with major depression, we tested whether (a) omega- 3 ethyl-eicosapentaenoic acid (E-EPA) leads to increased serum BDNF levels and (b) whether changes in BDNF levels are associated with corresponding changes in depression. METHODS: Patients received 1 g/day E-EPA (n = 13) or placebo (n = 12) for 12 weeks...

  12. Do fatty acids help in overcoming reading difficulties? A double-blind, placebo-controlled study of the effects of eicosapentaenoic acid and carnosine supplementation on children with dyslexia.

    Science.gov (United States)

    Kairaluoma, L; Närhi, V; Ahonen, T; Westerholm, J; Aro, M

    2009-01-01

    There are claims that dietary supplementation of unsaturated fatty acids could help children with dyslexia to overcome their reading problems. However, these claims have not yet been empirically tested. This study was designed to test whether dietary supplementation was superior to placebo in treating reading, spelling or other reading-related skills of children with dyslexia. The experimental group (eicosapentaenoic acid, EPA, n = 30) ate dietary supplements and the control group (placebo, n = 31) placebos during the 90-day treatment period. The supplements contained omega-3 fatty acid (ethyl-EPA, 500 mg/day) and carnosine (400 mg/day). The groups were matched for reading skills, grade, gender, attention problems, intelligence and amount of special education. The literacy-related skills of the two groups were assessed before and after the treatment period. No group differences were observed between EPA and placebo in measures of reading accuracy or speed, spelling, decoding fluency, arithmetical skills, reading-related language skills, attention or behavioural problems. The present findings do not support the hypothesis that omega-3 fatty acid (ethyl-EPA) or carnosine has a role in the treatment of reading and spelling problems in children with dyslexia.

  13. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  14. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    Science.gov (United States)

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.

    Science.gov (United States)

    Fletcher, M P; Ziboh, V A

    1990-10-01

    Previous data that alimentation with fish oil rich in eicosapentaenoic acid (EPA; 20:n-3) or vegetable oil rich in gamma-linolenic acid (GLA; 18:3n-6) can reduce symptoms of inflammatory skin disorders lead us to determine the effects of dietary supplements of oils rich in EPA or GLA on guinea pig (GP) neutrophil (PMN) membrane potential (delta gamma), secretion, and superoxide (O2-) responses. Weanling GPs were initially fed diets supplemented with olive oil (less than 0.1% EPA; less than 0.1% GLA) for 2 weeks, followed by a crossover by two sets of animals to diets supplemented with fish oil (19% EPA) or borage oil (25% GLA). At 4-week intervals, 12% sterile casein-elicited peritoneal neutrophils (PMN) were assessed for membrane polyunsaturated fatty acid (PUFA) profiles and FMLP-, LTB4-, and PMA-stimulated delta gamma changes, changes in flow cytometrically measured forward scatter (FWD-SC) (shape change), 90 degrees scatter (90 degrees -SC) in cytochalasin B-pretreated-PMN (secretion response), and superoxide responses, GP incorporated EPA and GLA (as the elongation product, dihomo-GLA or DGLA) into their PMN phospholipids by 4 weeks. The peritoneal PMN of all groups demonstrated broad resting FWD-SC and poor activation-related FWD-SC increases, suggesting in vivo activation. While secretion was comparable in the three groups in response to FMLP, there was a trend toward inhibition of LTB4-stimulated 90 degrees -SC loss in both fish and borage oil groups. This was significant only with borage oil (21.7 +/- 2.1 vs 15.3 +/- 1.2% loss of baseline 90 degrees -SC, olive vs borage: P = 0.03). PMN from borage- and fish oil-fed GPs showed a progressively lower O2- response to FMLP than the olive oil group (73.9 +/- 3.9 and 42.9 +/- 6.8% of olive oil response for borage and fish oils, respectively; P less than 0.005 and P less than 0.01, respectively, at 12 weeks), while PMA-stimulated O2- was inhibited only in the fish oil-fed group and only at 12 weeks (62.0 +/- 2

  16. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri.

    Science.gov (United States)

    Guihéneuf, Freddy; Ulmann, Lionel; Mimouni, Virginie; Tremblin, Gérard

    2013-06-01

    The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation

  17. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.

    Science.gov (United States)

    Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi

    2013-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.

  18. The omega-3 fatty acid, eicosapentaenoic acid (EPA, prevents the damaging effects of tumour necrosis factor (TNF-alpha during murine skeletal muscle cell differentiation

    Directory of Open Access Journals (Sweden)

    Pearson Stephen

    2008-07-01

    Full Text Available Abstract Background Eicosapentaenoic acid (EPA is a ώ-3 polyunsaturated fatty acid with anti-inflammatory and anti-cachetic properties that may have potential benefits with regards to skeletal muscle atrophy conditions where inflammation is present. It is also reported that pathologic levels of the pro-inflammatory cytokine tumour necrosis factor (TNF-α are associated with muscle wasting, exerted through inhibition of myogenic differentiation and enhanced apoptosis. These findings led us to hypothesize that EPA may have a protective effect against skeletal muscle damage induced by the actions of TNF-α. Results The deleterious effects of TNF-α on C2C12 myogenesis were completely inhibited by co-treatment with EPA. Thus, EPA prevented the TNF-mediated loss of MyHC expression and significantly increased myogenic fusion (p p p p p p Conclusion In conclusion, EPA has a protective action against the damaging effects of TNF-α on C2C12 myogenesis. These findings support further investigations of EPA as a potential therapeutic agent during skeletal muscle regeneration following injury.

  19. Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.

    Science.gov (United States)

    Liang, Yi; Zhao, Xuefei; Strait, Megan; Wen, Zhiyou

    2012-05-01

    This study was to explore the use of thin stillage, a major byproduct in dry milling corn-ethanol plants, for production of eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Thin stillage contains various compounds that were ideal for fungal growth. Thin stillage concentration and temperature played important roles in fungal growth and EPA production. When 50% thin stillage was used in a stepwise temperature shift culture process, the cell density reached 23 g/L at day 9 with EPA yield and productivity of 243 and 27 mg/L day, respectively. The fungal biomass contained 39% lipid, 28% protein, 30% carbohydrate, and 3% ash. The fungal culture also generated a nutrient-depleted liquid by removing organic compounds in the raw thin stillage. The results collectively showed a new use of thin stillage by feeding to the fungus P. irregulare for producing omega-3 fatty acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Palmitic Acid Induces Osteoblastic Differentiation in Vascular Smooth Muscle Cells through ACSL3 and NF-κB, Novel Targets of Eicosapentaenoic Acid

    Science.gov (United States)

    Kageyama, Aiko; Matsui, Hiroki; Ohta, Masahiko; Sambuichi, Keisuke; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Yokoyama, Tomoyuki; Kurabayashi, Masahiko

    2013-01-01

    Free fatty acids (FFAs), elevated in metabolic syndrome and diabetes, play a crucial role in the development of atherosclerotic cardiovascular disease, and eicosapentaenoic acid (EPA) counteracts many aspects of FFA-induced vascular pathology. Although vascular calcification is invariably associated with atherosclerosis, the mechanisms involved are not completely elucidated. In this study, we tested the hypothesis that EPA prevents the osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC) induced by palmitic acid (PA), the most abundant long-chain saturated fatty acid in plasma. PA increased and EPA abolished the expression of the genes for bone-related proteins, including bone morphogenetic protein (BMP)-2, Msx2 and osteopontin in human aortic smooth muscle cells (HASMC). Among the long-chain acyl-CoA synthetase (ACSL) subfamily, ACSL3 expression was predominant in HASMC, and PA robustly increased and EPA efficiently inhibited ACSL3 expression. Importantly, PA-induced osteoblastic differentiation was mediated, at least in part, by ACSL3 activation because acyl-CoA synthetase (ACS) inhibitor or siRNA targeted to ACSL3 completely prevented the PA induction of both BMP-2 and Msx2. Conversely, adenovirus-mediated ACSL3 overexpression enhanced PA-induced BMP-2 and Msx2 expression. In addition, EPA, ACSL3 siRNA and ACS inhibitor attenuated calcium deposition and caspase activation induced by PA. Notably, PA induced activation of NF-κB, and NF-κB inhibitor prevented PA-induction of osteoblastic gene expression and calcium deposition. Immunohistochemistry revealed the prominent expression of ACSL3 in VSMC and macrophages in human non-calcifying and calcifying atherosclerotic plaques from the carotid arteries. These results identify ACSL3 and NF-κB as mediators of PA-induced osteoblastic differentiation and calcium deposition in VSMC and suggest that EPA prevents vascular calcification by inhibiting such a new molecular pathway elicited

  1. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    Science.gov (United States)

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  2. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  3. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    Science.gov (United States)

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  4. Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus : A randomized, double-blind placebo-controlled study

    NARCIS (Netherlands)

    Bot, M.; Pouwer, F.; Assies, J.; Jansen, E. H. J. M.; Diamant, M.; Snoek, F. J.; Beekman, A. T. F.; de Jonge, P.

    2010-01-01

    Background: Depression is common in individuals with diabetes. The present study is the first randomized controlled trial to test the efficacy of omega-3 ethyl-eicosapentaenoic acid (E-EPA) as adjuvant to antidepressant medication in the treatment of depression in adults with diabetes mellitus.

  5. Minimal food effect for eicosapentaenoic acid and docosahexaenoic acid bioavailability from omega-3-acid ethyl esters with an Advanced Lipid TechnologiesTM (ALT®)-based formulation.

    Science.gov (United States)

    Lopez-Toledano, Miguel A; Thorsteinsson, Thorsteinn; Daak, Ahmed A; Maki, Kevin C; Johns, Colleen; Rabinowicz, Adrian L; Sancilio, Frederick D

    The absorption of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) omega-3-acid ethyl esters (EEs) is influenced by food. There is a need for a formulation of EE that is less impacted by food effect. SC401 is a novel Advanced Lipid Technologies-based formulation of EPA-EE and DHA-EE. In the presence of an aqueous medium, Advanced Lipid Technologies forms stable micelles in situ independent of bile salt secretion. This effect is hypothesized to improve EPA-EE and DHA-EE bioavailability while it helps mitigate the food effect associated with their consumption. The aim of the article was to assess the effect of food on the bioavailability of DHA and EPA after a single oral dose of 1530 mg omega-3 fatty acids EE (SC401) in 24 healthy subjects under fasted and low-fat (9% of total calories from fat) and high-fat (50% of total calories from fat) meal conditions. This was a randomized, open-label, single-dose, 3-period, 3-way crossover study. Blood samples for pharmacokinetic analyses were taken at predose and at 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10, 12 and 24 hours postdose. To assess the safety of the intervention, active monitoring of adverse events, physical examinations, vital signs, clinical laboratory assessments (chemistry, hematology, and urinalysis), and 12-lead electrocardiograms were conducted. SC401 showed high bioavailability of both EPA and DHA in fasted, low-fat meal, and high-fat meal conditions. No differences were found in SC401 DHA AUC 0-t (t = 24 hours) among the 3 conditions (91.69% high-fat/fasted, 97.12% low-fat/fasted, and 105.92% low-fat/high-fat; P > .05 in all cases). In contrast, SC401 EPA AUC 0-t was affected by food intake (179.06% high-fat/fasted, P food effect for DHA and partially ameliorated it for EPA. SC401 represents a convenient option for treatment of severe hypertriglyceridemia, especially for patients under a restricted intake of dietary fat. Copyright © 2017 National Lipid

  6. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial.

    Science.gov (United States)

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2012-06-01

    To determine the effects of an eicosapentaenoic acid (EPA)-rich oil and a docosahexaenoic acid (DHA)-rich oil versus an ω-6 polyunsaturated fatty acid-rich safflower oil (control) on literacy and behavior in children with attention-deficit/hyperactivity disorder (ADHD) in a randomized controlled trial. Supplements rich in EPA, DHA, or safflower oil were randomly allocated for 4 mo to 90 Australian children 7 to 12 y old with ADHD symptoms higher than the 90th percentile on the Conners Rating Scales. The effect of supplementation on cognition, literacy, and parent-rated behavior was assessed by linear mixed modeling. Pearson correlations determined associations between the changes in outcome measurements and the erythrocyte fatty acid content (percentage of total) from baseline to 4 mo. There were no significant differences between the supplement groups in the primary outcomes after 4 mo. However, the erythrocyte fatty acid profiles indicated that an increased proportion of DHA was associated with improved word reading (r = 0.394) and lower parent ratings of oppositional behavior (r = 0.392). These effects were more evident in a subgroup of 17 children with learning difficulties: an increased erythrocyte DHA was associated with improved word reading (r = 0.683), improved spelling (r = 0.556), an improved ability to divide attention (r = 0.676), and lower parent ratings of oppositional behavior (r = 0.777), hyperactivity (r = 0.702), restlessness (r = 0.705), and overall ADHD symptoms (r = 0.665). Increases in erythrocyte ω-3 polyunsaturated fatty acids, specifically DHA, may improve literacy and behavior in children with ADHD. The greatest benefit may be observed in children who have comorbid learning difficulties. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    International Nuclear Information System (INIS)

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul; Chung, Jin Ho

    2008-01-01

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  8. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    OpenAIRE

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery.Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells.To assess the role of calcium in t...

  9. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve

    2010-01-01

    and eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...... inhibition of AA-dependent PGE(2) synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially...

  10. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.

    Science.gov (United States)

    Sherratt, Samuel C R; Mason, R Preston

    2018-01-31

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  12. A randomized clinical trial of high eicosapentaenoic acid omega-3 fatty acids and inositol as monotherapy and in combination in the treatment of pediatric bipolar spectrum disorders: a pilot study.

    Science.gov (United States)

    Wozniak, Janet; Faraone, Stephen V; Chan, James; Tarko, Laura; Hernandez, Mariely; Davis, Jacqueline; Woodworth, K Yvonne; Biederman, Joseph

    2015-11-01

    We conducted a 12-week, randomized, double-blind, controlled clinical trial to evaluate the effectiveness and tolerability of high eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) omega-3 fatty acids and inositol as monotherapy and in combination in children with bipolar spectrum disorders. Participants were children 5-12 years of age meeting DSM-IV diagnostic criteria for bipolar spectrum disorders (bipolar I or II disorder or bipolar disorder not otherwise specified [NOS]) and displaying mixed, manic, or hypomanic symptoms. Subjects with severe illness were excluded. Subjects were randomized to 1 of 3 treatment arms: inositol plus placebo, omega-3 fatty acids plus placebo, and the combined active treatment of omega-3 fatty acids plus inositol. Data were collected from February 2012 to November 2013. Twenty-four subjects were exposed to treatment (≥ 1 week of study completed) (inositol [n = 7], omega-3 fatty acids [n = 7], and omega-3 fatty acids plus inositol [n =10]). Fifty-four percent of the subjects completed the study. Subjects randomized to the omega-3 fatty acids plus inositol arm had the largest score decrease comparing improvement from baseline to end point with respect to the Young Mania Rating Scale (P < .05). Similar results were found for the Children's Depression Rating Scale (P < .05) and the Brief Psychiatric Rating Scale (P <.05). Results of this pilot randomized, double-blind, controlled trial suggest that the combined treatment of omega-3 fatty acids plus inositol reduced symptoms of mania and depression in prepubertal children with mild to moderate bipolar spectrum disorders. Results should be interpreted in light of limitations, which include exclusion of severely ill subjects, 54% completion rate, and small sample size. ClinicalTrials.gov identifier: NCT01396486. © Copyright 2015 Physicians Postgraduate Press, Inc.

  13. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  15. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study.

    Science.gov (United States)

    2008-12-01

    To determine whether ethyl-eicosapentaenoic acid (ethyl-EPA), an omega-3 fatty acid, improves the motor features of Huntington disease. Six-month multicenter, randomized, double-blind, placebo-controlled trial followed by a 6-month open-label phase without disclosing initial treatment assignments. Forty-one research sites in the United States and Canada. Three hundred sixteen adults with Huntington disease, enriched for a population with shorter trinucleotide (cytosine-adenine-guanine) repeat length expansions. Random assignment to placebo or ethyl-EPA, 1 g twice a day, followed by open-label treatment with ethyl-EPA. Six-month change in the Total Motor Score 4 component of the Unified Huntington's Disease Rating Scale analyzed for all research participants and those with shorter cytosine-adenine-guanine repeat length expansions (<45). At 6 months, the Total Motor Score 4 point change for patients receiving ethyl-EPA did not differ from that for those receiving placebo. No differences were found in measures of function, cognition, or global impression. Before public disclosure of the 6-month placebo-controlled results, 192 individuals completed the open-label phase. The Total Motor Score 4 change did not worsen for those who received active treatment for 12 continuous months compared with those who received active treatment for only 6 months (2.0-point worsening; P=.02). Ethyl-EPA was not beneficial in patients with Huntington disease during 6 months of placebo-controlled evaluation. Clinical Trial Registry clinicaltrials.gov Identifier: NCT00146211.

  16. Incorporation of conjugated linoleic acid (CLA and α-linolenic acid (LNA in pacu fillets

    Directory of Open Access Journals (Sweden)

    Deoclécio José Barilli

    2014-03-01

    Full Text Available The objective of this study was to evaluate the incorporation of conjugated linoleic acid and α-linolenic acid in fillets of pacu fish raised in net cages and fed diets enriched with these acids. The fish were fed for 49 days, and at the end of this period the fatty acid content in the fillets was determined by gas chromatography. Concentrations of α-linolenic acid, eicosapentaenoic acid, and the total omega-3 (n-3 fatty acid in the fillets increased, improving the n-6/n-3 ratio. In addition, the incorporation of conjugated linoleic acid in the fish fillets proved well established. This study showed that the use of diets enriched with conjugated linoleic acid and α-linolenic acid results in the incorporation of these acids in the of pacu fish fillets, improving their nutritional quality.

  17. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    Science.gov (United States)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  18. Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2017-01-01

    Full Text Available The aim of the research was to enrich eggs with n-3 polyunsaturated fatty acids by using plant oils and fish oil as dietary supplements in laying hens’ feed. The focus was put on the effect of the daily consumption of 100 g of egg yolk, i.e. 100 g of egg mass, on the human health. The 1st group of laying hens was fed a diet containing soybean and fish oil, and the 2nd group was given feed containing a combination of linseed, rapeseed, soybean, and fish oils. Eggs laid by the 2nd group contained 4.73% α-linolenic acid, 0.20% eicosapentaenoic acid and 2.37% docosahexaenoic acid (% of total fatty acids in yolk lipids, P < 0.001, which marks an increase of × 4.04 for α-linolenic acid, × 3.33 for eicosapentaenoic acid, and × 1.75 for docosahexaenoic acid compared to eggs laid by the 1st group. Total n-3 polyunsaturated fatty acids in eggs of the 2nd group were × 2.8 higher than in the 1st first group. Calculated per 100 g of eggs of the 2nd group, the intake for the human body corresponds to 435 mg α-linolenic acid, 18.43 mg eicosapentaenoic acid, and 218.2 mg docosahexaenoic acid.

  19. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  20. Synthesis of Phosphatidylcholine Containing Highly Unsaturated Fatty Acid by Phospholipase A2 and Effect on Retinoic Acid Induced Differentiation of HL-60 Cells

    OpenAIRE

    細川, 雅史; 大島, 宏哲; 甲野, 裕之; 高橋, 是太郎; 羽田野, 六男; 小田島, 粛夫

    1993-01-01

    Phosphatidylcholine containing highly unsaturated fatty acid (HUFA-PC) was prepared by porcine pancreatic phospholipase A2, which catalyzed esterification between lysophosphatidylcholine (LPC) and highly unsaturated fatty acid (HUFA), under a scaled-up reaction system. Fatty acid mixture prepared from sardine oil, purified eicosapentaenoic acid (EPA), and purified docosahexaenoic acid (DHA) were used as the substrates of HUFA. The yield of HUFA-PC was 17.0-19.9%. Synthesized phosphatidylcholi...

  1. Arachidonic acid/docosahexaenoic acid-supplemented diet in early life reduces body weight gain, plasma lipids, and adiposity in later life in ApoE*3 Leiden mice

    NARCIS (Netherlands)

    Wielinga, P.Y.; Harthoorn, L.F.; Verschuren, L.; Schoemaker, M.H.; Jouni, Z.E.; Tol, E.A.F. van; Kleemann, R.; Kooistra, T.

    2012-01-01

    Scope: This study addresses whether early life arachidonic acid (ARA)/docosahexaenoic acid (DHA) supplementation or eicosapentaenoic acid (EPA)/DHA (Omacor) supplementation affects body weight gain, lipid metabolism, and adipose tissue quantity and quality in later life in ApoE*3Leiden-transgenic

  2. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism.

    Science.gov (United States)

    Pappalardo, Giulia; Almeida, Ana; Ravasco, Paula

    2015-04-01

    The objective of this review article is to present the most recent intervention studies with EPA on nutritional outcomes in cancer patients, e.g. nutritional status, weight & lean body mass. For this purpose a PubMed(®) and MedLine(®) search of the published literature up to and including January 2014 that contained the keywords: cancer, sarcopenia, EPA, ω-3 fatty acids, weight, intervention trial, muscle mass was conducted. The collected data was summarized and written in text format and in tables that contained: study design, patient' population, sample size, statistical significance and results of the intervention. The paper will cover malignancy, body composition, intervention with EPA, physiological mechanisms of action of EPA, effect of EPA on weight and body composition, future research. In cancer patients deterioration of muscle mass can be present regardless of body weight or Body Mass Index (BMI). Thus, sarcopenia in cancer patients with excessive fat mass (FM), entitled sarcopenic obesity, has gained greater relevance in clinical practice; it can negatively influence patients' functional status, tolerance to treatments & disease prognosis. The search for an effective nutritional intervention that improves body composition (preservation of muscle mass and muscle quality) is of utmost importance for clinicians and patients. The improvement of muscle quality is an even more recent area of interest because it has probable implications in patients' prognosis. Eicosapentaenoic acid (EPA) has been identified as a promising nutrient with the wide clinical benefits. Several mechanisms have been proposed to explain EPA potential benefits on body composition: inhibition of catabolic stimuli by modulating pro-inflammatory cytokines production and enhancing insulin sensitivity that induces protein synthesis; also, EPA may attenuate deterioration of nutritional status resulting from antineoplastic therapies by improving calorie and protein intake as well. Indeed

  3. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... Docosahexaenoic acid (C22:6 ω3), linoleic acid (C18:2 ω6) and eicosapentaenoic acid. (C20:5 ω3) had the highest levels among the PUFAs. ... coronary artery disease, diabetes, hyper-tension and .... factors such as season, the type and amount of feed ..... composition of some Malaysian freswater fish.

  4. Retroconversion is a minor contributor to increases in eicosapentaenoic acid following docosahexaenoic acid feeding as determined by compound specific isotope analysis in rat liver.

    Science.gov (United States)

    Metherel, Adam H; Chouinard-Watkins, Raphaël; Trépanier, Marc-Olivier; Lacombe, R J Scott; Bazinet, Richard P

    2017-01-01

    Dietary docosahexaenoic acid (DHA, 22:6n-3) not only increases blood and tissue levels of DHA, but also eicosapentaenoic acid (EPA, 20:5n-3). It is generally believed that this increase is due to DHA retroconversion to EPA, however, a slower conversion of α-linolenic acid (ALA, 18:3n-3) derived EPA to downstream metabolic products (i.e. slower turnover of EPA) is equally plausible. In this study, 21-day old Long Evans rats were weaned onto an ALA only or DHA + ALA diet for 12 weeks. Afterwards, livers were collected and the natural abundance 13 C-enrichment was determined by compound specific isotope analysis (CSIA) of liver EPA by isotope ratio mass-spectrometry and compared to dietary ALA and DHA 13 C-enrichment. Isotopic signatures (per mil, ‰) for liver EPA were not different ( p  > 0.05) between the ALA only diet (-25.89 ± 0.39 ‰, mean ± SEM) and the DHA + ALA diet (-26.26 ± 0.40 ‰), suggesting the relative contribution from dietary ALA and DHA to liver EPA did not change. However, with DHA feeding estimates of absolute EPA contribution from ALA increased 4.4-fold (147 ± 22 to 788 ± 153 nmol/g) compared to 3.2-fold from DHA (91 ± 14 to 382 ± 13 nmol/g), respectively. In conclusion, CSIA of liver EPA in rats following 12-weeks of dietary DHA suggests that retroconversion of DHA to EPA is a relatively small contributor to increases in EPA, and that this increase in EPA is largely coming from elongation/desaturation of ALA.

  5. Eicosahexanoic Acid (EPA and Docosahexanoic Acid (DHA in Muscle Damage and Function

    Directory of Open Access Journals (Sweden)

    Eisuke Ochi

    2018-04-01

    Full Text Available Nutritional supplementation not only helps in improving and maintaining performance in sports and exercise, but also contributes in reducing exercise fatigue and in recovery from exhaustion. Fish oil contains large amounts of omega-3 fatty acids, eicosapentaenoic acid (EPA; 20:5 n-3 and docosahexaenoic acid (DHA; 22:6 n-3. It is widely known that omega-3 fatty acids are effective for improving cardiac function, depression, cognitive function, and blood as well as lowering blood pressure. In the relationship between omega-3 fatty acids and exercise performance, previous studies have been predicted improved endurance performance, antioxidant and anti-inflammatory responses, and effectivity against delayed-onset muscle soreness. However, the optimal dose, duration, and timing remain unclear. This review focuses on the effects of omega-3 fatty acid on muscle damage and function as evaluated by human and animal studies and summarizes its effects on muscle and nerve damage, and muscle mass and strength.

  6. The role of essential fatty acids in the control of coronary heart disease

    DEFF Research Database (Denmark)

    Vedtofte, Mia S.; Jakobsen, Marianne U; Lauritzen, Lotte

    2012-01-01

    Evidence from various research paradigms supports the cardiovascular benefits of a high intake of n-3 polyunsaturated fatty acids (PUFAs), especially the long-chain, marine-derived n-3 PUFA, eicosapentaenoic acids and docosahexaenoic acids. The effect of the plant-derived alpha-linolenic acid (ALA...

  7. Chronic Psychological Stress Was Not Ameliorated by Omega-3 Eicosapentaenoic Acid (EPA

    Directory of Open Access Journals (Sweden)

    Joanne Bradbury

    2017-10-01

    Full Text Available Background: Chronic psychological stress and mental health disorders are endemic in Western culture where population dietary insufficiencies of omega-3 fatty acids (n-3FA from seafood have been observed.Objective: This study was designed to test for a causal relationship between one of the most active components of fish oil, eicosapentaenoic acid (EPA, and chronic psychological stress.Method: A randomized double-blind, placebo-controlled clinical trial with parallel-assignment to two groups was designed (Trial Id: ACTRN12610000404022. The interventions were four EPA-rich fish oil capsules per day, delivering 2.2 g/d EPA (and 0.44 g/d DHA, or identical placebo (low-phenolic olive oil capsules with 5% fish oil to aid blinding. The primary outcome was the between-group difference on the Perceived Stress Scale (PSS-10 after 12 weeks supplementation. An a priori power analysis determined that group sizes of 43 would provide 80% power to detect a significant between-group difference of 12.5%, at α = 0.05. Ninety community members (64 females, 26 males reporting chronic work stress were recruited via public advertising in northern NSW, Australia.Results: At baseline the omega-3 index (EPA + DHA as % to total fatty acids in red blood cell membranes was 5.2% in both groups (SD = 1.6% control group; 1.8% active group. After supplementation this remained stable at 5.3% (SD = 1.6% for the control group but increased to 8.9% (SD = 1.5% for the active group, demonstrating successful incorporation of EPA into cells. Intention-to-treat (ITT analysis found no significant between-group differences in PSS outcome scores post-intervention (b = 1.21, p = 0.30 after adjusting for sex (b = 2.36, p = 0.079, baseline PSS (b = 0.42, p = 0.001 and baseline logEPA [b = 1.41, p = 0.185; F(3, 86 = 8.47, p < 0.01, n = 89, R-square = 0.243].Discussion: Treatment increased cell membrane EPA but, contrary to the hypothesis, there was no effect on perceived stress. Limitations

  8. Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia.

    Science.gov (United States)

    Minami, Asako; Ishimura, Noriko; Sakamoto, Sadaichi; Takishita, Eiko; Mawatari, Kazuaki; Okada, Kazuko; Nakaya, Yutaka

    2002-02-01

    The purpose of the present study was to test whether hyperlipidaemia and insulin resistance in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats can be improved by dietary supplementation with purified eicosapentaenoic acid (EPA) or oleic acid (OA). Male OLETF rats were fed powdered chow (510 g fat/kg) alone (n 8) or chow supplemented with 10 g EPA- (n 8) or OA- (n 8) rich oil/kg per d from 5 weeks until 30 weeks of age. An oral glucose tolerance test and hyperinsulinaemic euglycaemic clamp was performed at 25 and 30 weeks of age. EPA supplementation resulted in significantly (P<0.05) reduced plasma lipids, hepatic triacylglycerols, and abdominal fat deposits, and more efficient in vivo glucose disposal compared with OA supplementation and no supplementation. OA supplementation was associated with significantly increased insulin response to oral glucose compared with EPA supplementation and no supplementation. Inverse correlation was noted between glucose uptake and plasma triacylglycerol levels (r -086, P<0.001) and abdominal fat volume (r -0.80, P<0.001). The result of oral glucose tolerance test study showed that the rats fed EPA tended to improve glucose intolerance, although this was not statistically significant. Levels of plasma insulin at 60 min after glucose was significantly increased in rats fed OA compared with the other two groups. The results indicate that long-term feeding of EPA might be effective in preventing insulin resistance in diabetes-prone rats, at least in part, due to improving hypertriacylglycerolaemia.

  9. Eicosapentaenoic Acid and Docosahexaenoic Acid in Whole Blood Are Differentially and Sex-Specifically Associated with Cardiometabolic Risk Markers in 8–11-Year-Old Danish Children

    Science.gov (United States)

    Damsgaard, Camilla T.; Eidner, Maj B.; Stark, Ken D.; Hjorth, Mads F.; Sjödin, Anders; Andersen, Malene R.; Andersen, Rikke; Tetens, Inge; Astrup, Arne; Michaelsen, Kim F.; Lauritzen, Lotte

    2014-01-01

    n-3 long-chain polyunsaturated fatty acids improve cardiovascular risk markers in adults. These effects may differ between eicosapentaenoic acid (EPA, 20∶5n-3) and docosahexaenoic acid (DHA, 22∶6n-3), but we lack evidence in children. Using baseline data from the OPUS School Meal Study we 1) investigated associations between EPA and DHA in whole blood and early cardiometabolic risk markers in 713 children aged 8–11 years and 2) explored potential mediation through waist circumference and physical activity and potential dietary confounding. We collected data on parental education, pubertal stage, 7-day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by the homeostatic model of assessment (HOMA-IR), and inflammatory markers. Whole blood EPA was associated with a 2.7 mmHg (95% CI 0.4; 5.1) higher diastolic blood pressure per weight% EPA, but only in boys. Heart rate was negatively associated with both EPA and DHA status (P = 0.02 and P = 0.002, respectively). Whole blood EPA was negatively associated with triacylglycerol (P = 0.003) and positively with total cholesterol, low density and high density lipoprotein (HDL) cholesterol and HDL:triacylglycerol (all P<0.01) whereas DHA was negatively associated with insulin and HOMA-IR (P = 0.003) and tended to be negatively associated with a metabolic syndrome-score (P = 0.05). Adjustment for waist circumference and physical activity did not change the associations. The association between DHA and HOMA-IR was attenuated but remained after adjustment for fiber intake and none of the other associations were confounded by dietary fat, protein, fiber or energy intake. This study showed that EPA status was negatively associated with triacylglycerol and positively with cholesterols whereas DHA was negatively associated with

  10. High-oleic ready-to-use therapeutic food maintains docosahexaenoic acid status in severe malnutrition

    Science.gov (United States)

    Ready-to-use therapeutic food (RUTF) is the preferred treatment for uncomplicated severe acute malnutrition. It contains large amounts of linoleic acid and little a-linolenic acid, which may reduce the availability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to the recovering child...

  11. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men ...-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men

  12. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA.

    Directory of Open Access Journals (Sweden)

    Dolores Pérez

    Full Text Available BACKGROUND: Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity. METHODS AND FINDINGS: A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA, but not docosahexaenoic acid (DHA, relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested. CONCLUSIONS: In this study we isolated, purified, biochemically characterized and immobilized a

  13. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    Science.gov (United States)

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  14. Profiling of Polar Lipids in Marine Oleaginous Diatom Fistulifera solaris JPCC DA0580: Prediction of the Potential Mechanism for Eicosapentaenoic Acid-Incorporation into Triacylglycerol

    Directory of Open Access Journals (Sweden)

    Yue Liang

    2014-05-01

    Full Text Available The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.

  15. Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus

    DEFF Research Database (Denmark)

    Bot, M; Pouwer, F; Assies, Johanna

    2010-01-01

    . METHODS: In the VU University Medical Center, we conducted a 12-week, placebo-controlled, double-blind, parallel-group intervention study of E-EPA (1g/day) versus placebo in 25 diabetes patients meeting DSM-IV criteria for major depressive disorder, who were already using antidepressant medication......BACKGROUND: Depression is common in individuals with diabetes. The present study is the first randomized controlled trial to test the efficacy of omega-3 ethyl-eicosapentaenoic acid (E-EPA) as adjuvant to antidepressant medication in the treatment of depression in adults with diabetes mellitus....... The primary outcome was severity of depressive symptoms, assessed by the Montgomery Asberg Depression Rating Scale (MADRS) at baseline and 12-week follow-up at two-weekly intervals. Blood samples were collected at baseline and at 12-week follow-up to determine EPA levels in erythrocyte membranes. Data were...

  16. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves

    NARCIS (Netherlands)

    Hendriks, I.E.; Van Duren, L.A.; Herman, P.M.J.

    2003-01-01

    The pre-spawning condition of adult bivalves is influenced by quantity and quality of available food. For bivalves, the essential polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3) are presumed to determine the nutritional value of

  17. Evaluation of the hepatic bioconversion of α-linolenic acid (ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in rats fed with oils from chia (Salvia hispánica or rosa mosqueta (Rosa rubiginosa

    Directory of Open Access Journals (Sweden)

    Tapia O., G.

    2012-03-01

    Full Text Available The high dietary intake of n-6 fatty acids in relation to n-3 fatty acids generates health disorders, such as cardiovascular diseases, inflammatory diseases and other chronic diseases. The consumption of fish, which is rich in n-3 fatty acids, is low in Latin America and it is necessary to seek other alternatives, such as chia oil (CO or rosa mosqueta oil (RMO, which are rich in α-linolenic acid (ALA, the precursor of the n -3 fatty acids, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. This study evaluates the hepatic bioconversion of ALA to EPA and DHA and the damage to the liver (histology and transaminase in Sprague- Dawley rats fed different vegetable oils. Four experimental groups (n = 9 animals each group were fed the following dietary supplements for 21 days: a sunflower oil (SFO, b RMO, c CO d olive oil with fish oil added (EPA and DHA (OO/FO. RMO and CO increased the hepatic levels of ALA, EPA and DHA and decreased the n-6/n-3 ratio compared to SFO (p El elevado aporte en la dieta de ácidos grasos omega- 6, en relación a los ácidos grasos omega-3, genera alteraciones de la salud cardiovascular, inflamación y otras patologías crónicas no transmisibles. Por otro lado, el pescado rico en ácidos grasos omega-3 es de bajo consumo en Latinoamérica, siendo necesario buscar otras alternativas de aporte de ácidos grasos omega-3, como lo son el aceite de chía (CO o el de rosa mosqueta (RMO, ricos en ácido α-linolénico (ALA, que es el precursor de los ácidos grasos omega-3, eicosapentaenoico (EPA y docosahexaenoico (DHA. Este trabajo evaluó en forma preliminar la bioconversión hepática del ALA en EPA y DHA y el daño hepático (histología y transaminasas en ratas Sprague-Dawley alimentadas con diferentes aceites vegetales. Se conformaron cuatro grupos experimentales (n = 9 animales por grupo que recibieron durante 21 días: a aceite de girasol (SFO; b RMO, c CO y d aceite de oliva adicionado de aceite de pescado (EPA

  18. Influence of ionizing radiation on the fatty acid composition of herring fillets

    International Nuclear Information System (INIS)

    Adam, S.; Paul, G.; Ehlermann, D.

    1982-01-01

    The effect of γ-irradiation (absorbed dose: 50 kGy, dose-rate: 2.9 kGy/h) on the distribution of fatty acid components in herring fillets has been examined using high-resolution gas chromatographic methods. Radiolytic treatment at 0 0 C and exclusion of atmospheric oxygen caused no significant decrease in the relative amounts of the constituent saturated, monounsaturated and polyunsaturated fatty acid components. Specifically, eicosapentaenoic acid (20:5) and docosahexaenoic acid (22:6), which are of particular physiological interest were not affected by γ-rays, even after additional storage of the irradiated material at 0 0 C for 4 weeks. Irradiation of oil extracted from herring fillets or of herring oil/water emulsions under aerobic conditions, however, destroyed eicosapentaenoic acid and docosahexaenoic acid significantly. The loss of radio-resistance - as compared to the radiation-induced processes in the fillets - is explained by the absence of proteins, which effectively protect the lipid components from radiolytic decomposition. It is concluded that the commercial radiation processing of herring at the recommended dose levels (1 to 2 kGy) should not reduce the content of unsaturated fatty acid components. (author)

  19. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Science.gov (United States)

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (pbreve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (pbreve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (pbreve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (pbreve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (pbreve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

  20. Relationship between coronary flow reserve evaluated by phase-contrast cine cardiovascular magnetic resonance and serum eicosapentaenoic acid

    Science.gov (United States)

    2013-01-01

    Background Long-term intake of long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs), especially eicosapentaenoic acid (EPA) is associated with a low risk for cardiovascular disease. Phase-contrast cine cardiovascular magnetic resonance (PC cine CMR) can assess coronary flow reserve (CFR). The present study investigates the relationship between CFR evaluated by PC cine CMR and the serum EPA. Methods We studied 127 patients (male, 116 (91%); mean age, 72.2 ± 7.4 years) with known or suspected coronary artery disease (CAD). X-ray coronary angiography revealed no significant coronary arterial stenoses (defined as luminal diameter reduction ≥50% on quantitative coronary angiogram (QCA) analysis) in all study participants. Breath-hold PC cine CMR images of the coronary sinus (CS) were acquired to assess blood flow of the CS both at rest and during adenosine triphosphate (ATP) infusion. We calculated CFR as CS blood flow during ATP infusion divided by that at rest. Patients were allocated to groups according to whether they had high (n = 64, EPA ≥ 75.8 μg/mL) or low (n = 63, EPA  2.5, which is the previously reported lower limit of normal flow reserve without obstructive CAD. Multivariate analysis revealed that EPA is an independent predictor of CFR > 2.5 (odds ratio, 1.01; 95% confidence interval, 1.00 – 1.02, p = 0.008). Conclusions The serum EPA is significantly correlated with CFR in CAD patients without significant coronary artery stenosis. PMID:24359564

  1. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    Science.gov (United States)

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  2. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kuniha Konuma

    Full Text Available Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH, while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS, where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA, a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  3. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  4. Modification of essential fatty acid composition in broodstock of cultured European eel Anguilla anguilla L

    DEFF Research Database (Denmark)

    Støttrup, Josianne; Jacobsen, Charlotte; Tomkiewicz, Jonna

    2013-01-01

    Farmed eels had lower levels of arachidonic acid (20:4 n-6) (ARA) and higher ratios of eicosapentaenoic acid (20:5 n-3) (EPA):ARA compared to wild European eels collected from the Baltic Sea and southern Norwegian coast. Eels fed a formulated feed (JD) with a distribution of essential fatty acids...... and docosahexaenoic acid (22:6 n-3) (DHA) had accumulated in ovarian polar lipids......Farmed eels had lower levels of arachidonic acid (20:4 n-6) (ARA) and higher ratios of eicosapentaenoic acid (20:5 n-3) (EPA):ARA compared to wild European eels collected from the Baltic Sea and southern Norwegian coast. Eels fed a formulated feed (JD) with a distribution of essential fatty acids...... (EFA) resembling wild European eel were sampled after 0, 5, 10, 14 and 44 weeks of feeding to examine changes in fatty acid composition (FAC) in ovaries, visceral fat and muscle. The results showed a slow but steady incorporation of EFA. Lipids are incorporated in the oocytes early in oogenesis...

  5. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  6. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    P.C. Calder

    1998-04-01

    Full Text Available 1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3. Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6, the precursor of arachidonic acid (20:4n-6. 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

  7. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    Science.gov (United States)

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  8. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Eoin Barrett

    Full Text Available The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15 were orally gavaged with either B. breve DPC6330 (10(9 microorganisms/day alone or in combination with 0.5% (w/w linoleic acid & 0.5% (w/w α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11 in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05. Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11 in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05, whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05 compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01 and α-linolenic acid in adipose tissue (p<0.001, whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05, and α-linolenic acid in adipose tissue (p<0.001. B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated

  9. Influence of goats feeding on the fatty acids content in milk

    Directory of Open Access Journals (Sweden)

    Željka Klir

    2012-12-01

    Full Text Available Numerous studies have demonstrated the possibility of modeling the content of fatty acids of milk fat, in order to increase the contents of desirable n-3 unsaturated fatty acids and decrease saturated fatty acid with adequate nutrition of goats. Previous studies showed that the milk of goats on pasture increased content of caproic (C6:0, caprylic (C8:0, conjugated linoleic acid (CLA, rumenic acid, cis-9, trans-11 C18:2, linolenic (C18:3, eicosapentaenoic (C20:5 and docosahexaenoic (C22:6 and total content of polyunsaturated fatty acids (PUFA. In the same group of goats lower content of palmitoleic (C16:1, linoleic (C18:2 and total n-6 unsaturated fatty acids was found, as well as lower n-6/n-3 ratio compared with group of goats kept indoors and fed with alfalfa hay. In milk of goats fed with diets supplemented with safflower oil, content of CLA significantly increased, while goats fed with diets supplement with linseed oil had significantly higher content of C18:3 in milk, compared with group of goats fed without addition of these oils. Goats fed with addition of protected fish oil had significant transfer of eicosapentaenoic-EPA and docosahexaenoic-DHA fatty acids in milk. Protected fish oil reduced the negative impact of long chain fatty acids on the activity of ruminal microorganisms, consumption and digestibility of fiber, as well as inhibition of synthesis of fatty acids in milk gland. When adding unprotected fish oil, increase of stearic (C18:0 and oleic (C18:1 fatty acids occurred, because of the biohydrogenation of polyunsaturated fatty acids in rumen.

  10. Short-term supplementation of low-dose gamma-linolenic acid (GLA), alpha-linolenic acid (ALA), or GLA plus ALA does not augment LCP omega 3 status of Dutch vegans to an appreciable extent

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Martini, I A; Muskiet, F A

    Vegans do not consume meat and fish and have therefore low intakes of long chain polyunsaturated fatty acids (LCP). They may consequently have little negative feedback inhibition from dietary LCP on conversion of alpha -linolenic acid (ALA) to the LCP omega 3 eicosapentaenoic (EPA) and

  11. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits.

    Science.gov (United States)

    Shahidi, Fereidoon; Ambigaipalan, Priyatharini

    2018-03-25

    Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

  12. Effects of n-3 fatty acids on cognitive decline: A randomized double-blind, placebo-controlled trial in stable myocardial infarction patients

    NARCIS (Netherlands)

    Geleijnse, J.M.; Giltay, E.J.; Kromhout, D.

    2012-01-01

    Background Epidemiological studies suggest a protective effect of n-3 fatty acids derived from fish (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) against cognitive decline. For a-linolenic acid (ALA) obtained from vegetable sources, the effect on cognitive decline is unknown. We

  13. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    OpenAIRE

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protei...

  14. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies

    Science.gov (United States)

    The role of omega-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. This study sought to evaluate biomarkers of seafood-derived eicosapentaenoic acid ...

  15. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study.

    Science.gov (United States)

    Scorletti, Eleonora; Bhatia, Lokpal; McCormick, Keith G; Clough, Geraldine F; Nash, Kathryn; Hodson, Leanne; Moyses, Helen E; Calder, Philip C; Byrne, Christopher D

    2014-10-01

    There is no licensed treatment for non-alcoholic fatty liver disease (NAFLD), a condition that increases risk of chronic liver disease, type 2 diabetes and cardiovascular disease. We tested whether 15-18 months treatment with docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA) (Omacor/Lovaza) (4 g/day) decreased liver fat and improved two histologically-validated liver fibrosis biomarker scores (primary outcomes). Patients with NAFLD were randomised in a double blind placebo-controlled trial [DHA+EPA(n=51), placebo(n=52)]. We quantified liver fat percentage (%) by magnetic resonance spectroscopy in three liver zones. We measured liver fibrosis using two validated scores. We tested adherence to the intervention (Omacor group) and contamination (with DHA and EPA) (placebo group) by measuring erythrocyte percentage DHA and EPA enrichment (gas chromatography). We undertook multivariable linear regression to test effects of: a) DHA+EPA treatment (ITT analyses) and b) erythrocyte DHA and EPA enrichment (secondary analysis). Median (IQR) baseline and end of study liver fat% were 21.7 (19.3) and 19.7 (18.0) (placebo), and 23.0 (36.2) and 16.3 (22.0), (DHA+EPA). In the fully adjusted regression model there was a trend towards improvement in liver fat% with DHA+EPA treatment (β=-3.64 (95%CI -8.0,0.8); p=0.1) but there was evidence of contamination in the placebo group and variable adherence to the intervention in the Omacor group. Further regression analysis showed that DHA enrichment was independently associated with a decrease in liver fat% (for each 1% enrichment, β=-1.70 (95%CI -2.9,-0.5); p=0.007). No improvement in the fibrosis scores occurred. Conclusion. Erythrocyte DHA enrichment with DHA+EPA treatment is linearly associated with decreased liver fat%. Substantial decreases in liver fat% can be achieved with high percentage erythrocyte DHA enrichment in NAFLD. (Hepatology 2014;).

  16. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  17. Plasma polyunsaturated fatty acids are directly associated with cognition in overweight children but not in normal weight children.

    Science.gov (United States)

    Haapala, E A; Viitasalo, A; Venäläinen, T; Eloranta, A-M; Ågren, J; Lindi, V; Lakka, T A

    2016-12-01

    Polyunsaturated fatty acids are essential nutrients for the normal development of the brain. We investigated the associations between plasma polyunsaturated fatty acids and cognition in normal weight and overweight children. The study recruited 386 normal weight children and 58 overweight children aged six to eight years and blood samples were drawn after a 12-hour fast. We assessed plasma polyunsaturated fatty acids using gas chromatography, cognition using Raven's Coloured Progressive Matrices, and overweight and obesity using the age-specific and sex-specific cut-offs from the International Obesity Task Force. The data were analysed by linear regression analyses adjusted for age and sex. Higher proportions of eicosapentaenoic acid in plasma triacylglycerols (β = 0.311, p = 0.020, p = 0.029 for interaction) and docosahexaenoic acid in plasma triacylglycerols (β = 0.281, p = 0.038, p = 0.049 for interaction) were both associated with higher Raven's scores in overweight children but not in normal weight children. Higher eicosapentaenoic acid to arachidonic acid ratios in triacylglycerols (β = 0.317, p = 0.019) and phospholipids (β = 0.273, p = 0.046) were directly associated with the Raven's score in overweight children but not in normal weight children. These findings suggest that increasing the consumption of fish and other sources of eicosapentaenoic acid and docosahexaenoic acid may improve cognition among overweight children. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  19. Eicosapentaenoic and Docosahexaenoic Acids Attenuate Progression of Albuminuria in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease.

    Science.gov (United States)

    Elajami, Tarec K; Alfaddagh, Abdulhamied; Lakshminarayan, Dharshan; Soliman, Michael; Chandnani, Madhuri; Welty, Francine K

    2017-07-14

    Albuminuria is a marker of inflammation and an independent predictor of cardiovascular morbidity and mortality. The current study evaluated whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation attenuates progression of albuminuria in subjects with coronary artery disease. Two-hundred sixty-two subjects with stable coronary artery disease were randomized to either Lovaza (1.86 g of EPA and 1.5 g of DHA daily) or no Lovaza (control) for 1 year. Percent change in urine albumin-to-creatinine ratio (ACR) was compared. Mean (SD) age was 63.3 (7.6) years; 17% were women and 30% had type 2 diabetes mellitus. In nondiabetic subjects, no change in urine ACR occurred in either the Lovaza or control groups. In contrast, ACR increased 72.3% ( P diabetic subjects not receiving Lovaza, whereas those receiving Lovaza had no change. In diabetic subjects on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker, those receiving Lovaza had no change in urine ACR, whereas those not receiving Lovaza had a 64.2% increase ( P type 2 diabetes mellitus and coronary artery disease, most of whom were on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker. Thus, EPA and DHA supplementation should be considered as additional therapy to an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker in subjects with type 2 diabetes mellitus and coronary artery disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01624727. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Effect of eicosapentaenoic acid/docosahexaenoic acid on coronary high-intensity plaques detected with non-contrast T1-weighted imaging (the AQUAMARINE EPA/DHA study): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nakao, Kazuhiro; Noguchi, Teruo; Asaumi, Yasuhide; Morita, Yoshiaki; Kanaya, Tomoaki; Fujino, Masashi; Hosoda, Hayato; Yoneda, Shuichi; Kawakami, Shoji; Nagai, Toshiyuki; Nishihira, Kensaku; Nakashima, Takahiro; Kumasaka, Reon; Arakawa, Tetsuo; Otsuka, Fumiyuki; Nakanishi, Michio; Kataoka, Yu; Tahara, Yoshio; Goto, Yoichi; Yamamoto, Haruko; Hamasaki, Toshimitsu; Yasuda, Satoshi

    2018-01-08

    Despite the success of HMG-CoA reductase inhibitor (statin) therapy in reducing atherosclerotic cardiovascular events, a residual risk for cardiovascular events in patients with coronary artery disease (CAD) remains. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are promising anti-atherosclerosis agents that might reduce the residual CAD risk. Non-contrast T1-weighted imaging (T1WI) with cardiac magnetic resonance (CMR) less invasively identifies high-risk coronary plaques as high-intensity signals. These high-intensity plaques (HIPs) are quantitatively assessed using the plaque-to-myocardium signal intensity ratio (PMR). Our goal is to assess the effect of EPA/DHA on coronary HIPs detected with T1WI in patients with CAD on statin treatment. This prospective, controlled, randomized, open-label study examines the effect of 12 months of EPA/DHA therapy and statin treatment on PMR of HIPs detected with CMR and computed tomography angiography (CTA) in patients with CAD. The primary endpoint is the change in PMR after EPA/DHA treatment. Secondary endpoints include changes in Hounsfield units, plaque volume, vessel area, and plaque area measured using CTA. Subjects are randomly assigned to either of three groups: the 2 g/day EPA/DHA group, the 4 g/day EPA/DHA group, or the no-treatment group. This trial will help assess whether EPA/DHA has an anti-atherosclerotic effect using PMR of HIPs detected by CMR. The trial outcomes will provide novel insights into the effect of EPA/DHA on high-risk coronary plaques and may provide new strategies for lowering the residual risk in patients with CAD on statin therapy. The University Hospital Medical Information Network (UMIN) Clinical Trials Registry, ID: UMIN000015316 . Registered on 2 October 2014.

  1. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  2. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    International Nuclear Information System (INIS)

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-01-01

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using 3 H-labelled phenylalanine. Protein breakdown was measured using 3 H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion

  3. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kamolrat, Torkamol [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom); Gray, Stuart R., E-mail: s.r.gray@abdn.ac.uk [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom)

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  4. Biotransformation of arachidonic acid (AA) and eicosapentaenoic acid (EPA) into lipoxins and lipoxenes by porcine leukocytes

    International Nuclear Information System (INIS)

    Wong, P.Y.K.; Spur, B.; Hirai, A.; Yoshida, S.; Tamura, Y.; Lam, B.K.

    1986-01-01

    Lipoxins and lipoxenes have been reported to be formed after incubation of 15-hydroperoxyeicosatetraenoic acid and 15-hydroperoxyeicosapentaenoic acid with human leukocytes and porcine leukocytes, respectively. The authors examined the ability of porcine leukocytes to metabolize [ 14 C]-AA and [ 14 C]-EPA (100 μM) to lipoxins and lipoxenes. Incubation products were separated by RP-HPLC and identified by U.V. spectrum and GC/MS. Porcine leukocytes metabolized both AA and EPA to form lipoxins and lipoxenes in addition to mono- and di-hydroxyl fatty acids. Quantitative analysis from U.V. absorbance after RP-HPLC revealed that about 0.05% of AA was converted to lipoxins A and B and 0.1% of EPA was converted to lipoxenes A and B. In addition, treatment of leukotriene A 4 and leukotriene A 5 with 15-lipoxygenase also gave rise to several isomers of lipoxin and lipoxene. Thus, lipoxins and lipoxenes would have been derived from AA and EPA after dioxygenation by 5-lipoxygenase and 15-lipoxygenase, respectively. When tested for biological activity, lipoxene A (2 μM), like lipoxin A, induced superoxide anion generation in canine neutrophils but had no effect on lysosomal enzyme release on neutrophil aggregation

  5. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program.

    Science.gov (United States)

    Carrero, Juan Jesús; Fonollá, Juristo; Marti, José Luis; Jiménez, Jesús; Boza, Julio J; López-Huertas, Eduardo

    2007-02-01

    Certain nutrients have been shown to be effective in preventing coronary heart disease. We hypothesized that a daily intake of low amounts of a number of these nutrients would exert beneficial effects on risk factors and clinical variables in patients that suffered from myocardial infarction (MI) and were following a cardiac rehabilitation program. Forty male MI patients were randomly allocated into 2 groups. The supplemented group consumed 500 mL/d of a fortified dairy product containing eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, and vitamins A, B-6, D, and E. The control group consumed 500 mL/d of semi-skimmed milk with added vitamins A and D. The patients received supervised exercise training, lifestyle and dietary recommendations, and they were instructed to consume the products in addition to their regular diet. Blood extractions and clinical examinations were performed after 0, 3, 6, 9, and 12 mo. Plasma concentrations of eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, vitamin B-6, and vitamin E increased after supplementation (Preactive protein concentrations decreased in the supplemented group (Pprogram comprising regular exercise and the intake of a combination of dietary nutrients, reduced a variety of risk factors in MI patients, which supports the rationale for nutritional programs in the secondary prevention of coronary heart disease.

  6. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review

    Directory of Open Access Journals (Sweden)

    Undurti N. Das

    2018-05-01

    Full Text Available Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines, free radicals, etc. However, little attention has been paid to the possibility that lipids could function as antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty acids (PUFAs, mainly free acids and their putative mechanisms of action are described. In general, PUFAs kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals, augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance the phagocytic action of leukocytes and macrophages. Higher intakes of α-linolenic and cis-linoleic acids (ALA and LA respectively and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids (PUFAs: linoleic, α-linolenic, γ-linolenic (GLA, dihomo-GLA (DGLA, arachidonic (AA, eicosapentaenoic (EPA, and docosahexaenoic acids (DHA function as endogenous anti-bacterial, anti-fungal, anti-viral, anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus. Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo. Prostaglandin E1 (PGE1 and prostaglandin A (PGA, derived from DGLA, AA, and EPA inhibit viral replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent superoxide production by

  7. Evaluation of the impact of genetic polymorphisms in glutathione-related genes on the association between methylmercury or n-3 polyunsaturated long chain fatty acids and risk of myocardial infarction: a case-control study

    Directory of Open Access Journals (Sweden)

    Norberg Margareta

    2011-04-01

    Full Text Available Abstract Background The n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. However, fish also contains methylmercury, which influences the risk of myocardial infarction, possibly by generating oxidative stress. Methylmercury is metabolized by conjugation to glutathione, which facilitates elimination. Glutathione is also an antioxidant. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would thus benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction. Methods Polymorphisms in glutathione-synthesizing (glutamyl-cysteine ligase catalytic subunit, GCLC and glutamyl-cysteine ligase modifier subunit, GCLM or glutathione-conjugating (glutathione S-transferase P, GSTP1 genes were genotyped in 1027 individuals from northern Sweden (458 cases of first-ever myocardial infarction and 569 matched controls. The impact of these polymorphisms on the association between erythrocyte-mercury (proxy for methylmercury and risk of myocardial infarction, as well as between plasma eicosapentaenoic+docosahexaenoic acid and risk of myocardial infarction, was evaluated by conditional logistic regression. The effect of erythrocyte-selenium on risk of myocardial infarction was also taken into consideration. Results There were no strong genetic modifying effects on the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction risk. When eicosapentaenoic

  8. Effect of the preparation of canned "crumbled anchovy" (Engraulis ringens) on polyunsaturated omega 3 fatty acids

    OpenAIRE

    Ordoñez, Lenny R.; Hernánde, Eloisa M.

    2015-01-01

    The anchoveta (Engraulis ringens) is a major fishery resources exploited in Peru. It is rich source of proteins of high biological value and polyunsaturated fatty acids omega-3: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The objective was to determine the effect of the process of preparing the canned "crumbled anchovy" with emphasis on polyunsaturated omega-3 fatty acids and true content of them in canning. It was developed following the standardized technology by the Institu...

  9. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    OpenAIRE

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA...

  10. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    Science.gov (United States)

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P  0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Omega-3 Fatty Acids and Incident Ischemic Stroke and Its Atherothrombotic and Cardioembolic Subtypes in 3 US Cohorts.

    Science.gov (United States)

    Saber, Hamidreza; Yakoob, Mohammad Yawar; Shi, Peilin; Longstreth, W T; Lemaitre, Rozenn N; Siscovick, David; Rexrode, Kathryn M; Willett, Walter C; Mozaffarian, Dariush

    2017-10-01

    The associations of individual long-chain n-3 polyunsaturated fatty acids with incident ischemic stroke and its main subtypes are not well established. We aimed to investigate prospectively the relationship of circulating eicosapentaenoic acid, docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with risk of total ischemic, atherothrombotic, and cardioembolic stroke. We measured circulating phospholipid fatty acids at baseline in 3 separate US cohorts: CHS (Cardiovascular Health Study), NHS (Nurses' Health Study), and HPFS (Health Professionals Follow-Up Study). Ischemic strokes were prospectively adjudicated and classified into atherothrombotic (large- and small-vessel infarctions) or cardioembolic by imaging studies and medical records. Risk according to fatty acid levels was assessed using Cox proportional hazards (CHS) or conditional logistic regression (NHS, HPFS) according to study design. Cohort findings were pooled using fixed-effects meta-analysis. A total of 953 incident ischemic strokes were identified (408 atherothrombotic, 256 cardioembolic, and 289 undetermined subtypes) during median follow-up of 11.2 years (CHS) and 8.3 years (pooled, NHS and HPFS). After multivariable adjustment, lower risk of total ischemic stroke was seen with higher DPA (highest versus lowest quartiles; pooled hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.58-0.92) and DHA (HR, 0.80; 95% CI, 0.64-1.00) but not eicosapentaenoic acid (HR, 0.94; 95% CI, 0.77-1.19). DHA was associated with lower risk of atherothrombotic stroke (HR, 0.53; 95% CI, 0.34-0.83) and DPA with lower risk of cardioembolic stroke (HR, 0.58; 95% CI, 0.37-0.92). Findings in each individual cohort were consistent with pooled results. In 3 large US cohorts, higher circulating levels of DHA were inversely associated with incident atherothrombotic stroke and DPA with cardioembolic stroke. These novel findings suggest differential pathways of benefit for DHA, DPA, and eicosapentaenoic acid. © 2017

  12. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  13. Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in children - a workshop report

    NARCIS (Netherlands)

    Koletzko, B.; Uauy, R.; Palou, A.; Kok, F.J.; Hornstra, G.; Eilander, A.; Moretti, D.; Osendarp, S.J.M.; Zock, P.L.; Innis, S.

    2010-01-01

    There is controversy whether children should have a dietary supply of preformed long-chain polyunsaturated n-3 fatty acids EPA and DHA. The aims of the workshop were to review evidence for a possible benefit of a preformed EPA and/or DHA supply, of data required to set desirable intakes for children

  14. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    OpenAIRE

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic ac...

  15. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus

    Czech Academy of Sciences Publication Activity Database

    Cepák, Vladislav; Přibyl, Pavel; Kohoutková, J.; Kaštánek, P.

    2014-01-01

    Roč. 26, č. 1 (2014), s. 181-190 ISSN 0921-8971 R&D Projects: GA TA ČR TE01020080; GA TA ČR TA03011027 Institutional support: RVO:67985939 Keywords : Eicosapentaenoic acid * polyunsaturated fatty acids * Trachydiscus minutus Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.559, year: 2014

  16. Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Soraia Carvalho Abreu

    2018-05-01

    Full Text Available Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF, thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1, prostaglandin E2 (PGE2, interleukin (IL-10, and transforming growth factor (TGF-β1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes, and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-β, modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel

  17. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  18. Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer's disease.

    NARCIS (Netherlands)

    Rijpma, A.; Meulenbroek, O.V.; Hees, A.M. van; Sijben, J.W.; Vellas, B.; Shah, R.C.; Bennett, D.A.; Scheltens, P.; Olde Rikkert, M.G.M.

    2015-01-01

    INTRODUCTION: Circulating levels of uridine, selenium, vitamins B12, E and C, folate, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been shown to be lower in patients with Alzheimer's disease (AD) than in healthy individuals. These low levels may affect disease pathways involved in

  19. Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer's disease

    NARCIS (Netherlands)

    Rijpma, A.; Meulenbroek, O.; van Hees, A.M.J.; Sijben, J.W.C.; Vellas, B.; Shah, R.C.; Bennett, D.A.; Scheltens, P.; Rikkert, M.G.M.O.

    2015-01-01

    Introduction: Circulating levels of uridine, selenium, vitamins B12, E and C, folate, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been shown to be lower in patients with Alzheimer's disease (AD) than in healthy individuals. These low levels may affect disease pathways

  20. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    Science.gov (United States)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  1. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients

    Directory of Open Access Journals (Sweden)

    Calder P.C.

    2003-01-01

    Full Text Available Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6. Linoleic acid is the precursor of arachidonic acid (20:4n-6. In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

  2. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Brockhoff, P.M.B.; Jensen, Benny

    2000-01-01

    Increased intensity of train oil taste, bitterness, and metal taste are the most pronounced sensory changes during frozen storage of salmon (Refsgaard, H. H. F.; Brockhoff, P. B.; Jensen, B. Sensory and Chemical Changes in Farmed Atlantic Salmon (Salmo salar) during Frozen Storage. J. Agric. Food...... Chem. 1998a, 46, 3473-3479). Addition of each of the unsaturated fatty acids: palmitoleic acid (16:1, n - 7), linoleic acid (C18:2, it - 6), eicosapentaenoic acid (EPA; C20:5, it - 3) and docosahexaenoic acid (DHA; C22:6, n. - 3) to fresh minced salmon changed the sensory perception and increased...... the intensity of train oil taste, bitterness, and metal taste. The added level of each fatty acid (similar to 1 mg/g salmon meat) was equivalent to the concentration of the fatty acids determined in salmon stored as fillet at -10 degrees C for 6 months. The effect of addition of the fatty acids on the intensity...

  3. EU REPRO: The Production of fish feed enriched with poly-unsaturated fatty acid

    CSIR Research Space (South Africa)

    Erasmus, C

    2007-01-01

    Full Text Available .2 The Production of Fish Feed enriched with poly-unsaturated fatty acids Corinda Erasmus Annali Jacobs Gerda Lombard Petrus van Zyl Judy Reddy Ntombikayise Nkomo Elizabeth Timme Partner 11 Slide 2 © CSIR 2006 www... www.csir.co.za FLOW DIAGRAM OF THE PRODUCTION OF EPA- ENRICHED FISH FEED BSG (SPENT GRAIN) Eicosapentaenoic Acid (EPA) Protein-rich BSG FISH FEED PELLETS MODIFICATION OF BSG (ENZYME/CHEMICAL/MECHANICAL) FERMENTATION (RECOVERY OF EPA...

  4. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-01-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of β-rays from 22.5 mm diameter 90 Sr/ 90 Y plaques at a dose rate of ∼3 Gy/min. Essential fatty acids were administered orally in the form of two open-quotes activeclose quotes oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a open-quotes placeboclose quotes oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when open-quotes activeclose quotes oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of β-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs

  5. Baking Reduces Prostaglandin, Resolvin, and Hydroxy-Fatty Acid Content of Farm-Raised Atlantic Salmon (Salmo salar)

    OpenAIRE

    Raatz, Susan K.; Golovko, Mikhail Y.; Brose, Stephen A.; Rosenberger, Thad A.; Burr, Gary S.; Wolters, William R.; Picklo, Matthew J.

    2011-01-01

    Consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have known protective effects in the vasculature. It is not known whether consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo sa...

  6. Quantitative determination of fatty acids in marine fish and shellfish from warm water of Straits of Malacca for nutraceutical purposes.

    Science.gov (United States)

    Abd Aziz, Nurnadia; Azlan, Azrina; Ismail, Amin; Mohd Alinafiah, Suryati; Razman, Muhammad Rizal

    2013-01-01

    This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs), especially alpha-linolenic acid (ALA, C18:3 n3), eicosapentaenoic acid (EPA, C20:5 n3), and docosahexaenoic acid (DHA, C22:6 n3). Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P < 0.05) amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2-944.1 mg/100 g wet sample) of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S) ratios for most samples were higher than that of Menhaden oil (P/S = 0.58), a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω - 3/ω - 6 = 6.4, P/S = 1.7), moonfish (highest ALA, ω - 3/ω - 6 = 1.9, P/S = 1.0), and longtail shad (highest EPA, ω - 3/ω - 6 = 0.8, P/S = 0.4) were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.

  7. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    NARCIS (Netherlands)

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects

  8. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    Science.gov (United States)

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  9. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of 9 studies in the CHARGE consortium

    Science.gov (United States)

    Smith, Caren E.; Follis, Jack L.; Nettleton, Jennifer A.; Foy, Millennia; Wu, Jason H.Y.; Ma, Yiyi; Tanaka, Toshiko; Manichakul, Ani W.; Wu, Hongyu; Chu, Audrey Y.; Steffen, Lyn M.; Fornage, Myriam; Mozaffarian, Dariush; Kabagambe, Edmond K.; Ferruci, Luigi; da Chen, Yii-Der I; Rich, Stephen S.; Djoussé, Luc; Ridker, Paul M.; Tang, Weihong; McKnight, Barbara; Tsai, Michael Y.; Bandinelli, Stefania; Rotter, Jerome I.; Hu, Frank B.; Chasman, Daniel I.; Psaty, Bruce M.; Arnett, Donna K.; King, Irena B.; Sun, Qi; Wang, Lu; Lumley, Thomas; Chiuve, Stephanie E.; Siscovick, David S; Ordovás, José M.; Lemaitre, Rozenn N.

    2015-01-01

    Scope Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. Objective We evaluated interactions between genetic variants and fatty acid intakes for circulating alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Methods and Results We conducted meta-analyses (N to 11,668) evaluating interactions between dietary fatty acids and genetic variants (rs174538 and rs174548 in FADS1 (fatty acid desaturase 1), rs7435 in AGPAT3 (1-acyl-sn-glycerol-3-phosphate), rs4985167 in PDXDC1 (pyridoxal-dependent decarboxylase domain-containing 1), rs780094 in GCKR (glucokinase regulatory protein) and rs3734398 in ELOVL2 (fatty acid elongase 2)). Stratification by measurement compartment (plasma vs. erthyrocyte) revealed compartment-specific interactions between FADS1 rs174538 and rs174548 and dietary ALA and linoleic acid for DHA and DPA. Conclusion Our findings reinforce earlier reports that genetically-based differences in circulating fatty acids may be partially due to differences in the conversion of fatty acid precursors. Further, fatty acids measurement compartment may modify gene-diet relationships, and considering compartment may improve the detection of gene-fatty acids interactions for circulating fatty acid outcomes. PMID:25626431

  10. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    Science.gov (United States)

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  11. Lipid and fatty acid fractions in Lingula anatina (Brachiopoda): an intertidal benthic fauna in the West Bengal-Orissa coast, India

    OpenAIRE

    Samaresh Samanta; Tapas Kumar Das; Amalesh Choudhury; Susanta Kumar Chakraborty

    2014-01-01

    Objective: To record the fractional components of lipid and polyunsaturated fatty acids of Lingula anatina (L. anatina), a Precambrian intertidal benthic brachiopod, giving emphasis on -ω series group especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) alongside assessing their biotransformation within the population and mangrove-estuarine associated community. Methods: Different biological samples after being collected from three contrasting study sites viz. ...

  12. THE USE OF OMEGA-3 FATTY ACIDS FOR THE TREATMENT OF PATIENTS WITH CARDIAC ARRHYTHMIAS

    Directory of Open Access Journals (Sweden)

    A. O. Malygin

    2015-09-01

    Full Text Available Antiarrhythmic effect of omega-3 polyunsaturated fatty acids (ω-3 PUFA, eicosapentaenoic and docosahexaenoic acids in patients with recurrent atrial fibrillation and ventricular arrhythmias had been proven. The positive effect of the ω-3 PUFA on the risk of sudden arrhythmic death and overall mortality in the patients after myocardial infarction and patients with chronic heart failure had been also proven.

  13. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis.

    Directory of Open Access Journals (Sweden)

    Dawn M Wiese

    Full Text Available Ulcerative colitis (UC is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA. Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines.Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography.UC subjects had increased total fat and oleic acid (OA intake, but decreased arachidonic acid (AA intake vs controls. In serum, there was less percent saturated fatty acid (SFA and AA, with higher monounsaturated fatty acids (MUFA, linoleic acid, OA, eicosapentaenoic acid (EPA, and docosapentaenoic acid (DPA in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations.In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.

  14. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis.

    Science.gov (United States)

    Wiese, Dawn M; Horst, Sara N; Brown, Caroline T; Allaman, Margaret M; Hodges, Mallary E; Slaughter, James C; Druce, Jennifer P; Beaulieu, Dawn B; Schwartz, David A; Wilson, Keith T; Coburn, Lori A

    2016-01-01

    Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.

  15. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  16. A novel cost-effectiveness model of prescription eicosapentaenoic acid extrapolated to secondary prevention of cardiovascular diseases in the United States.

    Science.gov (United States)

    Philip, Sephy; Chowdhury, Sumita; Nelson, John R; Benjamin Everett, P; Hulme-Lowe, Carolyn K; Schmier, Jordana K

    2016-10-01

    Given the substantial economic and health burden of cardiovascular disease and the residual cardiovascular risk that remains despite statin therapy, adjunctive therapies are needed. The purpose of this model was to estimate the cost-effectiveness of high-purity prescription eicosapentaenoic acid (EPA) omega-3 fatty acid intervention in secondary prevention of cardiovascular diseases in statin-treated patient populations extrapolated to the US. The deterministic model utilized inputs for cardiovascular events, costs, and utilities from published sources. Expert opinion was used when assumptions were required. The model takes the perspective of a US commercial, third-party payer with costs presented in 2014 US dollars. The model extends to 5 years and applies a 3% discount rate to costs and benefits. Sensitivity analyses were conducted to explore the influence of various input parameters on costs and outcomes. Using base case parameters, EPA-plus-statin therapy compared with statin monotherapy resulted in cost savings (total 5-year costs $29,393 vs $30,587 per person, respectively) and improved utilities (average 3.627 vs 3.575, respectively). The results were not sensitive to multiple variations in model inputs and consistently identified EPA-plus-statin therapy to be the economically dominant strategy, with both lower costs and better patient utilities over the modeled 5-year period. The model is only an approximation of reality and does not capture all complexities of a real-world scenario without further inputs from ongoing trials. The model may under-estimate the cost-effectiveness of EPA-plus-statin therapy because it allows only a single event per patient. This novel model suggests that combining EPA with statin therapy for secondary prevention of cardiovascular disease in the US may be a cost-saving and more compelling intervention than statin monotherapy.

  17. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    Science.gov (United States)

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  18. Combined intervention with pioglitazone and n-3 fatty acids in metformin-treated type 2 diabetic patients: improvement of lipid metabolism

    Czech Academy of Sciences Publication Activity Database

    Veleba, J.; Kopecký Jr., J.; Janovská, Petra; Kuda, Ondřej; Horáková, Olga; Malínská, H.; Kazdová, L.; Oliyarnyk, O.; Škop, V.; Trnovská, J.; Hájek, M.; Škoch, A.; Flachs, Pavel; Bardová, Kristina; Rossmeisl, Martin; Olza, J.; de Castro, S. G.; Calder, P. C.; Gardlo, Alžběta; Fišerová, E.; Jensen, J.; Bryhn, M.; Kopecký, Jan; Pelikánová, T.

    2015-01-01

    Roč. 12, Dec 2 (2015), s. 52 ISSN 1743-7075 R&D Projects: GA MZd(CZ) NT13763 Institutional support: RVO:67985823 Keywords : eicosapentaenoic acid * docosahexaenoic acid * indirect calorimetry * meal test * humans * hyperinsulinemic-euglycemic clamp Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.280, year: 2015

  19. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    OpenAIRE

    Huss, Michael; V?lp, Andreas; Stauss-Grabo, Manuela

    2010-01-01

    Abstract Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsy...

  20. Quantitative Determination of Fatty Acids in Marine Fish and Shellfish from Warm Water of Straits of Malacca for Nutraceutical Purposes

    Directory of Open Access Journals (Sweden)

    Nurnadia Abd Aziz

    2013-01-01

    Full Text Available This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs, especially alpha-linolenic acid (ALA, C18:3 n3, eicosapentaenoic acid (EPA, C20:5 n3, and docosahexaenoic acid (DHA, C22:6 n3. Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P<0.05 amounts of eicosapentaenoic acid (EPA, docosahexaenoic acid (DHA, and alpha-linolenic acid (ALA, respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2–944.1 mg/100g wet sample of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S ratios for most samples were higher than that of Menhaden oil (P/S=0.58, a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω-3/ω-6=6.4, P/S=1.7, moonfish (highest ALA, ω-3/ω-6=1.9, P/S=1.0, and longtail shad (highest EPA, ω-3/ω-6=0.8, P/S=0.4 were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.

  1. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  2. Characteristics of fatty acid composition of Gammarus lacustris inhabiting lakes with and without fish.

    Science.gov (United States)

    Makhutova, O N; Sharapova, T A; Kalachova, G S; Shulepina, S P; Gladyshev, M I

    2016-01-01

    The effect of a biotic factor--the presence of predatory fish in water--on the composition and content of fatty acids in crustaceans was studied in the populations of the lake amphipod Gammarus lacustris from two lakes with fish and three lakes without fish. It was found that, at an overall increase in the quantity and quality of food resources (namely, increase in the content of eicosapentaenoic acid and docosahexaenoic acid (DHA) in the biomass), the relative rate of DHA accumulation in gammarids in the lakes without fish is higher than in the lake with fish.

  3. Low plasma eicosapentaenoic acid levels are associated with elevated trait aggression and impulsivity in major depressive disorder with a history of comorbid substance use disorder.

    Science.gov (United States)

    Beier, Anne Mette; Lauritzen, Lotte; Galfalvy, Hanga C; Cooper, Thomas B; Oquendo, Maria A; Grunebaum, Michael F; Mann, J John; Sublette, M Elizabeth

    2014-10-01

    Major depressive disorder (MDD) is associated with low levels of omega-3 polyunsaturated fatty acids (PUFAs), holding promise for new perspectives on disease etiology and treatment targets. As aggressive and impulsive behaviors are associated with low omega-3 PUFA levels in some clinical contexts, we investigated plasma PUFA relationships with trait aggression and impulsivity in patients with MDD. Medication-free MDD patients (n = 48) and healthy volunteers (HV, n = 35) were assessed with the Brown-Goodwin Aggression Inventory. A subset (MDD, n = 39; HV, n = 33) completed the Barratt Impulsiveness Scale. Plasma PUFAs eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6) were quantified and ln-transformed to mitigate distributional skew. Ln-transformed PUFA (lnPUFA) levels were predictors in regression models, with aggression or impulsivity scores as outcomes, and cofactors of sex and diagnostic status (MDD with or without a history of substance use disorder [SUD], or HV). Interactions were tested between relevant PUFAs and diagnostic status. Additional analyses explored possible confounds of depression severity, self-reported childhood abuse history, and, in MDD patients, suicide attempt history. Among PUFA, lnEPA but not lnDHA predicted aggression (F1,76 = 12.493, p = 0.001), and impulsivity (F1,65 = 5.598, p = 0.021), with interactions between lnEPA and history of SUD for both aggression (F1,76 = 7.941, p = 0.001) and impulsivity (F1,65 = 3.485, p = 0.037). Results remained significant when adjusted for childhood abuse, depression severity, or history of suicide attempt. In conclusion, low EPA levels were associated with aggression and impulsivity only in patients with MDD and comorbid SUD, even though in most cases SUD was in full sustained remission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of n-3 fatty acids on cardiac autonomic activity among Nunavik Inuit adults

    OpenAIRE

    Valera, Beatriz; Dewailly, Eric; Anassour-Laouan-Sidi, Elhadji; Poirier, Paul

    2012-01-01

    Objectives. Inuit from Nunavik (northern Quebec) consume large amounts of fish and marine mammals, which are important sources of n-3 polyunsaturated fatty acids (n-3 PUFAs). These substances have a beneficial impact on heart rate (HR) and heart rate variability (HRV). However, it is unknown if this beneficial impact remains significant in populations with high mercury exposure. The study assessed the impact of n-3 PUFAs (Docosahexaenoic [DHA] and Eicosapentaenoic acid [EPA]) on resting HR an...

  5. Long chain poly-unsaturated fatty acids attenuate the IL-1?-induced pro-inflammatory response in human fetal intestinal epithelial cells

    OpenAIRE

    Wijendran, Vasuki; Brenna, JT; Wang, Dong Hao; Zhu, Weishu; Meng, Di; Ganguli, Kriston; Kothapalli, Kumar SD; Requena, Pilar; Innis, Sheila; Walker, WA

    2015-01-01

    Background Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. Methods Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate wit...

  6. Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics

    Science.gov (United States)

    Xu, Qinzeng; Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2014-11-01

    Fatty acids (FAs) provide energy and also can be used to trace trophic relationships among organisms. Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months. We examined fatty acid profiles in aestivated and non-aestivated A. japonicus using multivariate analyses (PERMANOVA, MDS, ANOSIM, and SIMPER). The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly. The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers. Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation, and long chain FAs such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) that produced from intestinal degradation, are digested during deep aestivation. Specific changes in the fatty acid composition of A. japonicus during aestivation needs more detailed study in the future.

  7. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions

    OpenAIRE

    Walker, Celia G.; West, Annette L.; Browning, Lucy M.; Madden, Jackie; Gambell, Joanna M.; Jebb, Susan A.; Calder, Philip C.

    2015-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify...

  8. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  9. Effect of omega-3 fatty acids on canine atopic dermatitis.

    Science.gov (United States)

    Mueller, R S; Fieseler, K V; Fettman, M J; Zabel, S; Rosychuk, R A W; Ogilvie, G K; Greenwalt, T L

    2004-06-01

    Twenty-nine dogs were included in a double-blinded, placebo-controlled, randomised trial and were orally supplemented for 10 weeks with either flax oil (200 mg/kg/day), eicosapentaenoic acid (50 mg/kg/day) and docosahexaenoic acid (35 mg/kg/day) in a commercial preparation, or mineral oil as a placebo. For each dog, clinical scores were determined based on a scoring system developed prior to the trial. Total omega-6 and omega-3 intake and the ratio of omega-6:omega-3 (omega-6:3) were calculated before and after the trial. The dogs' clinical scores improved in those supplemented with flax oil and the commercial preparation, but not in the placebo group. No correlation was identified between total fatty acid intake or omega-6:3 ratio and clinical scores. Based on the results of this study, the total intake of fatty acids or the omega-6:3 ratio do not seem to be the main factors in determining the clinical response.

  10. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans.To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure.The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry.Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders.High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  11. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study.

    Science.gov (United States)

    Allaire, Janie; Couture, Patrick; Leclerc, Myriam; Charest, Amélie; Marin, Johanne; Lépine, Marie-Claude; Talbot, Denis; Tchernof, André; Lamarche, Benoît

    2016-08-01

    To date, most studies on the anti-inflammatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans have used a mixture of the 2 fatty acids in various forms and proportions. We compared the effects of EPA supplementation with those of DHA supplementation (re-esterified triacylglycerol; 90% pure) on inflammation markers (primary outcome) and blood lipids (secondary outcome) in men and women at risk of cardiovascular disease. In a double-blind, randomized, crossover, controlled study, healthy men (n = 48) and women (n = 106) with abdominal obesity and low-grade systemic inflammation consumed 3 g/d of the following supplements for periods of 10 wk: 1) EPA (2.7 g/d), 2) DHA (2.7 g/d), and 3) corn oil as a control with each supplementation separated by a 9-wk washout period. Primary analyses assessed the difference in cardiometabolic outcomes between EPA and DHA. Supplementation with DHA compared with supplementation with EPA led to a greater reduction in interleukin-18 (IL-18) (-7.0% ± 2.8% compared with -0.5% ± 3.0%, respectively; P = 0.01) and a greater increase in adiponectin (3.1% ± 1.6% compared with -1.2% ± 1.7%, respectively; P DHA and EPA, changes in CRP (-7.9% ± 5.0% compared with -1.8% ± 6.5%, respectively; P = 0.25), IL-6 (-12.0% ± 7.0% compared with -13.4% ± 7.0%, respectively; P = 0.86), and tumor necrosis factor-α (-14.8% ± 5.1% compared with -7.6% ± 10.2%, respectively; P = 0.63) were NS. DHA compared with EPA led to more pronounced reductions in triglycerides (-13.3% ± 2.3% compared with -11.9% ± 2.2%, respectively; P = 0.005) and the cholesterol:HDL-cholesterol ratio (-2.5% ± 1.3% compared with 0.3% ± 1.1%, respectively; P = 0.006) and greater increases in HDL cholesterol (7.6% ± 1.4% compared with -0.7% ± 1.1%, respectively; P DHA compared with EPA was significant in men but not in women (P-treatment × sex interaction = 0.046). DHA is more effective than EPA in modulating specific markers of inflammation

  12. A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance.

    Science.gov (United States)

    Camacho-Rodríguez, J; González-Céspedes, A M; Cerón-García, M C; Fernández-Sevilla, J M; Acién-Fernández, F G; Molina-Grima, E

    2014-03-01

    Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day(-1)) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l(-1) day(-1) (peak 0.4 g l(-1) day(-1)) at 0.4 day(-1) in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l(-1) day(-1).

  13. Synthesis of Monoacylglycerol Rich in Polyunsaturated Fatty Acids from Tuna Oil with Immobilized Lipase AK

    DEFF Research Database (Denmark)

    Pawongrat, Ratchapol; Xu, Xuebing; H-Kittikun, Aran

    2007-01-01

    The aim of this study was to produce monoacylglycerols (MAG) rich in polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), by glycerolysis of tuna oil with lipase AK from Pseudomonas fluorescence immobilized on Accurel EP-100 (IM-AK). tert...... on tuna oil. The temperature was controlled at 45 degrees C. Under these conditions, with a 24 h reaction, the yield of MAG was 24.6%, but containing 56.0 wt% PUFA (EPA and DHA). Stability of the IM-AK was also studied. The hydrolytic activity of the enzyme remained at 88% and 80% of initial activity...

  14. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    Science.gov (United States)

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p acids arachidic, behenic, and lignoceric acid (p acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  15. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    Science.gov (United States)

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: Design and baseline characteristics of the Alpha Omega Trial

    NARCIS (Netherlands)

    Geleijnse, J.M.; Giltay, E.J.; Schouten, E.G.; Goede, de J.; Oude Griep, L.M.; Teitsma-Jansen, A.M.; Katan, M.B.; Kromhout, D.

    2010-01-01

    Background Weekly fish consumption has been related to a lower risk of fatal coronary heart disease (CHD) and incident stroke in populations with a low fish intake. This relation has mainly been attributed to n-3 fatty acids in fish, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid

  17. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: design and baseline characteristics of the Alpha Omega Trial

    NARCIS (Netherlands)

    Geleijnse, Johanna M.; Giltay, Erik J.; Schouten, Evert G.; de Goede, Janette; Oude Griep, Linda M.; Teitsma-Jansen, Anna M.; Katan, Martijn B.; Kromhout, Daan; Kromhout, D.; Schouten, E. G.; Geleijnse, J. M.; Giltay, E. J.; de Goede, J.; Oude Griep, L. M.; Mulder, B. J. M.; Mulder, J. W.; Zock, P. L.; de Boer, M. J.; de Leeuw, H.; Boersma, E.; Jukema, J. W.; van Binsbergen, J. J.; van der Kuip, D. A. M.; Thomas, K.; Rivero-Ayerza, M.; Vollaard, A. M.; Fieren, C. J.; van Kempen, L. H. J.; Bakx, A.; Sedney, M. I.; Hertzberger, D. P.; Michels, H. R.; de Rotte, A. A.; van Rugge, R. P.; Klootwijk, A.; Verheul, J. A.; Nicastia, D. M.; Robles de Medina, R.; van Rossem, M.; Leenders, C. M.; van der Meer, P.; Uppal, S. C.; Blok, J. G.; Visser, R. F.; Mosterd, A.; Umans, V. A.; Reichert, C. L. A.; Louwerenburg, J. W.; Liem, A. H.; van Rees, C.

    2010-01-01

    BACKGROUND: Weekly fish consumption has been related to a lower risk of fatal coronary heart disease (CHD) and incident stroke in populations with a low fish intake. This relation has mainly been attributed to n-3 fatty acids in fish, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid

  18. FATTY ACID COMPOSITION AND PROSTAGLANDIN CONTENT OF THE RED SEAWEED Gracilaria sp. FROM INDONESIA

    Directory of Open Access Journals (Sweden)

    Muhammad Ikbal Illijas

    2012-06-01

    Full Text Available High content of polyunsaturated fatty acids (PUFAs such as arachidonic and eicosapentaenoic acids are typical for the red alga. Analysis of fatty acid composition and prostaglandin content was conducted in the red alga Gracilaria sp. from Indonesia. Total lipid of the alga was extracted with CHCl3-MeOH (2:1, v/v. Analysis of the fatty acids composition was performed on gas chromatography (GC equipped with omega wax column (30 m x 0,32 mm i.d., Supelco, PA, USA and analysis of prostaglandins were carried out by HPLC on ODS column (Mightysil RP-18 GP, 250 mm x 4.6 mm, 5 μm. The content of fatty acids high for were palmitic acid (50% and arachidonic acid (26.9%, whereas prostaglandin E2 was identified and found lower concentration (44.2 μg/gram total lipid.

  19. Incorporation and profile of fatty acids in tilapia fillets (Oreochromis niloticus fed with tung oil

    Directory of Open Access Journals (Sweden)

    Elton Guntendorfer Bonafé

    2013-02-01

    Full Text Available The acceptance of tung oil enriched diet and the incorporation of conjugated linolenic acid - CLnA into fillets of Genetically Improved Farmed Tilapia (GIFT were investigated. The diet was well accepted, and after 10 days CLnA was incorporated into the fillets with a 1.02% content of total fatty acids (FA. In addition, biosynthesis of the conjugated linoleic acid isomers - CLA (0.31% of fillet total FA content from CLnA, and the presence of alpha-linolenic acid - LNA (1.08% of fillet total FA content, eicosapentaenoic acid - EPA (2.85% of fillet total FA content and docosahexaenoic acid - DHA (3.08% of fillet total FA content were observed. Therefore, the consumption of this fish can increase the intake of different FA (CLnA, CLA, LNA, EPA and DHA, which play an important role in human metabolism.

  20. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    Science.gov (United States)

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  1. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    Directory of Open Access Journals (Sweden)

    van Keulen Herman

    2011-06-01

    Full Text Available Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum and two from tropical seas (Caulerpa taxifolia, Sargassum natans was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3 and omega-6 (n-6 polyunsaturated fatty acids (PUFAs, were in the concentration range of 2-14 mg/g dry matter (DM, while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6 and/or eicosapentaenoic acids (EPA, C20:5, n-3, the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3 at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6 FA: (n-3 FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3, while in S. natans also docosahexaenoic acid (DHA, C

  2. Omega-3 fatty acids for breast cancer prevention and survivorship.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-05-04

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship.

  3. Marine n-3 fatty acids in adipose tissue and development of atrial fibrillation

    DEFF Research Database (Denmark)

    Rix, Thomas Andersen; Joensen, Albert Marni; Riahi, Sam

    2013-01-01

    OBJECTIVE: Consumption of fish and marine n-3 polyunsaturated fatty acids (PUFA) may be associated with a lower risk of atrial fibrillation (AF), but results have been inconsistent. The aim was to investigate this further by measurements of marine n-3 PUFA in adipose tissue. DESIGN: Cohort study.......77, 95% CI 0.53 to 1.10) of marine n-3 PUFA compared with the lowest tertile. Similar trends, but also not statistically significant, were found separately for eicosapentaenoic, docosahexaenoic and docosapentaenoic acids. CONCLUSIONS: There was no statistically significant association between the content...

  4. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    Directory of Open Access Journals (Sweden)

    Adarme-Vega T

    2012-07-01

    Full Text Available Abstract Omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5 and DHA (C22:6 and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.

  5. The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia

    NARCIS (Netherlands)

    Stalenhoef, A. F.; de Graaf, J.; Wittekoek, M. E.; Bredie, S. J.; Demacker, P. N.; Kastelein, J. J.

    2000-01-01

    We evaluated in a double-blind randomized trial with a double-dummy design in 28 patients with primary hypertriglyceridemia, the effect of gemfibrozil (1200 mg/day) versus Omacor (4 g/day), a drug containing the n-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), on lipid and

  6. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  7. Eicosapentaenoic acid (EPA) efficacy for colorectal aberrant crypt foci (ACF): a double-blind randomized controlled trial

    International Nuclear Information System (INIS)

    Higurashi, Takuma; Ohkubo, Hidenori; Sakai, Eiji; Maeda, Shin; Morita, Satoshi; Natsumeda, Yutaka; Nagase, Hajime; Nakajima, Atsushi; Hosono, Kunihiro; Endo, Hiroki; Takahashi, Hirokazu; Iida, Hiroshi; Uchiyama, Takashi; Ezuka, Akiko; Uchiyama, Shiori; Yamada, Eiji

    2012-01-01

    Colorectal cancer (CRC) is one of the most commonly occurring neoplasms and a leading cause of cancer death worldwide, and new preventive strategies are needed to lower the burden of this disease. Eicosapentaenoic acid (EPA), the omega-3 polyunsaturated fatty acid that is widely used in the treatment of hyperlipidemia and prevention of cardiovascular disease, has recently been suggested to have a suppressive effect on tumorigenesis and cancer cell growth. In CRC chemoprevention trials, in general, the incidence of polyps or of the cancer itself is set as the study endpoint. Although the incidence rate of CRC would be the most reliable endpoint, use of this endpoint would be unsuitable for chemoprevention trials, because of the relatively low occurrence rate of CRC in the general population and the long-term observation period that it would necessitate. Moreover, there is an ethical problem in conducting long-term trials to determine whether a test drug might be effective or harmful. Aberrant crypt foci (ACF), defined as lesions containing crypts that are larger in diameter and stain more darkly with methylene blue than normal crypts, are considered as a reliable surrogate biomarker of CRC. Thus, we devised a prospective randomized controlled trial as a preliminary study prior to a CRC chemoprevention trial to evaluate the chemopreventive effect of EPA against colorectal ACF formation and the safety of this drug, in patients scheduled for polypectomy. This study is a multicenter, double-blind, placebo-controlled, randomized controlled trial to be conducted in patients with both colorectal ACF and colorectal polyps scheduled for polypectomy. Eligible patients shall be recruited for the study and the number of ACF in the rectum counted at the baseline colonoscopy. Then, the participants shall be allocated randomly to either one of two groups, the EPA group and the placebo group. Patients in the EPA group shall receive oral 900-mg EPA capsules thrice daily (total daily

  8. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Waleed Amjad Khan

    2017-01-01

    Full Text Available Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3 and docosahexaenoic acid (DHA; C22:6 n-3 are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  9. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  10. TRIGLYCERIDES, ATHEROSCLEROSIS, AND CARDIOVASCULAR OUTCOME STUDIES: FOCUS ON OMEGA-3 FATTY ACIDS.

    Science.gov (United States)

    Handelsman, Yehuda; Shapiro, Michael D

    2017-01-01

    To provide an overview of the roles of triglycerides and triglyceride-lowering agents in atherosclerosis in the context of cardiovascular outcomes studies. We reviewed the published literature as well as ClinicalTrials.gov entries for ongoing studies. Despite improved atherosclerotic cardiovascular disease (ASCVD) outcomes with statin therapy, residual risk remains. Epidemiologic data and recent genetic insights provide compelling evidence that triglycerides are in the causal pathway for the development of atherosclerosis, thereby renewing interest in targeting triglycerides to improve ASCVD outcomes. Fibrates, niacin, and omega-3 fatty acids (OM3FAs) are three classes of triglyceride-lowering drugs. Outcome studies with triglyceride-lowering agents have been inconsistent. With regard to OM3FAs, the JELIS study showed that eicosapentaenoic acid (EPA) significantly reduced major coronary events in statin-treated hypercholesterolemic patients. Regarding other agents, extended-release niacin and fenofibrate are no longer recommended as statin add-on therapy (by some guidelines, though not all) because of the lack of convincing evidence from outcome studies. Notably, subgroup analyses from the outcome studies have generated the hypothesis that triglyceride lowering may provide benefit in statin-treated patients with persistent hypertriglyceridemia. Two ongoing OM3FA outcome studies (REDUCE-IT and STRENGTH) are testing this hypothesis in high-risk, statin-treated patients with triglyceride levels of 200 to 500 mg/dL. There is consistent evidence that triglycerides are in the causal pathway of atherosclerosis but inconsistent evidence from cardiovascular outcomes studies as to whether triglyceride-lowering agents reduce cardiovascular risk. Ongoing outcomes studies will determine the role of triglyceride lowering in statin-treated patients with high-dose prescription OM3FAs in terms of improved ASCVD outcomes. AACE = American Association of Clinical Endocrinologists

  11. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sun Hee Kim

    2015-01-01

    Full Text Available Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ6-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ5-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3 and docosatetraenoic acid (22:4 n-6 as well as eicosapentaenoic acid (20:5 n-3 and arachidonic acid (20:4 n-6 in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3 could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible.

  12. Arachidonic Acid, but Not Omega-3 Index, Relates to the Prevalence and Progression of Abdominal Aortic Aneurysm in a Population-Based Study of Danish Men

    DEFF Research Database (Denmark)

    Lindholt, Jes S; Kristensen, Katrine L; Burillo, Elena

    2018-01-01

    BACKGROUND: Animal models support dietary omega-3 fatty acids protection against abdominal aortic aneurysm (AAA), but clinical data are scarce. The sum of red blood cell proportions of the omega-3 eicosapentaenoic and docosahexaenoic acids, known as omega-3 index, is a valid surrogate for long-te...

  13. Fatty acid composition of symbiotic zooxanthellae in relation to their hosts.

    Science.gov (United States)

    Bishop, D G; Kenrick, J R

    1980-10-01

    Gymnodinoid dinoflagellate symbionts, commonly referred to as zooxanthellae, are widely distributed among marine invertebrates. It has been assumed that they represent only one species,Gymnodinium microadriaticum. The fatty acid composition of total lipids and galactolipids of zooxanthellae isolated from 8 species of corals, 3 species of clams and a foraminiferan have been analyzed and found to vary according to the host. For example, the content of eicosapentaenoic acid in clam zooxanthellae monogalactosyldiacylglycerol was less than 2%, whereas in the same lipid from coral zooxanthellae, the content ranged from 9 to 22%. Corresponding values for the acid in digalactosyl-diacylglycerol were 1-8% from clam zooxanthellae and 23-40% from coral zooxanthellae. Coral zooxanthellae monogalactosyldiacylglycerol contain higher levels of octadecatetraenoic acid than are found in digalactosyldiacylglycerol, whereas the reverse is true in clam zooxanthellae. The fatty acid composition of the lipids of an axenic culture of zooxanthellae isolated from the clamTridacna maxima are similar to those of cells freshly isolated from the host. The results suggest either that the host is capable of affecting the fatty acid metabolism of the symbiont or that different strains of zooxanthellae occur in corals and clams.

  14. Fatty acid composition of fish species with different feeding habits from an Arctic Lake.

    Science.gov (United States)

    Gladyshev, M I; Sushchik, N N; Glushchenko, L A; Zadelenov, V A; Rudchenko, A E; Dgebuadze, Y Y

    2017-05-01

    We compared the composition and content of fatty acids (FAs) in fish with different feeding habits (sardine (least) cisco Coregonus sardinella, goggle-eyed charr (pucheglazka) form of Salvelinus alpinus complex, humpback whitefish Coregonus pidschian, broad whitefish Coregonus nasus, boganid charr Salvelinus boganidae, and northern pike Esox lucius from an Arctic Lake. Feeding habits of the studied fish (planktivore, benthivore, or piscivore) significantly affected the composition of biomarker fatty acids and the ratio of stable isotopes of carbon and nitrogen in their biomass. The hypothesis on a higher content of eicosapentaenoic and docosahexaenoic acids in the fish of higher trophic level (piscivores) when compared within the same taxonomic group (order Salmoniformes) was confirmed.

  15. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    Science.gov (United States)

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  16. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    Science.gov (United States)

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  17. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Han, Lirong [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Qi, Wentao [Academy of State Administration of Grain, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing, 100037 (China); Cheng, Dai; Ma, Xiaolei; Hou, Lihua [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Cao, Xiaohong, E-mail: caoxh@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Wang, Chunling, E-mail: wangchunling@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China)

    2015-01-24

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP

  18. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    Science.gov (United States)

    Mori, Trevor A

    2017-11-01

    Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

    Science.gov (United States)

    Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354

  20. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls.

    Science.gov (United States)

    Milte, Catherine M; Sinn, Natalie; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Howe, Peter R C

    2011-01-01

    Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, pcognitive decline in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2014-10-01

    acid ( DHA ; 22:6ω-3) Eicosapentaenoic acid (EPA; 20:5ω-3) Lipoxin A4 Resolvin E1 Protectin DX Resolvin D1 LOX LOX LOX Structures and Endogenous Source...1 AD_________________ Award Number: W81XWH-12-2-0082 TITLE: Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid...Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects of

  2. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    Science.gov (United States)

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    Energy Technology Data Exchange (ETDEWEB)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.; Hook, Paul W.; Crowe, Braden J.; Huesemann, Michael H.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.

  4. Omega-3 fatty acid monotherapy for pediatric bipolar disorder: a prospective open-label trial.

    Science.gov (United States)

    Wozniak, Janet; Biederman, Joseph; Mick, Eric; Waxmonsky, James; Hantsoo, Liisa; Best, Catherine; Cluette-Brown, Joanne E; Laposata, Michael

    2007-01-01

    To test the effectiveness and safety of omega-3 fatty acids (Omegabrite(R) brand) in the treatment of pediatric bipolar disorder (BPD). Subjects (N=20) were outpatients of both sexes, 6 to 17 years of age, with a DSM-IV diagnosis of BPD and Young Mania Rating Scale (YMRS) score of >15 treated over an 8-week period in open-label trial with omega-3 fatty acids 1290 mg-4300 mg combined EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Subjects experienced a statistically significant but modest 8.9+/-2.9 point reduction in the YMRS scores (baseline YMRS=28.9+/-10.1; endpoint YMRS=19.1+/-2.6, pDHA increased in treated subjects. As only 35% of these subjects had a response by the usual accepted criteria of >50% decrease on the YMRS, omega-3 fatty acids treatment was associated with a very modest improvement in manic symptoms in children with BPD.

  5. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Merdzhanova Albena

    2017-03-01

    Full Text Available This article presents information about omega-3 (h-3 and omega-6 (n-6 polyunsaturated fatty acid (PUFA contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers’ awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3 and DHA (docosahexaenoic acid, C 22:6 n-3. Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD, stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  6. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Science.gov (United States)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  7. Acculturation and Plasma Fatty Acid Concentrations in Hispanic and Chinese-American Adults: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Diep, Cassandra S; Lemaitre, Rozenn N; Chen, Tzu-An; Baranowski, Tom; Lutsey, Pamela L; Manichaikul, Ani W; Rich, Stephen S; St-Jules, David E; Steffen, Brian T; Tsai, Michael Y; Siscovick, David S; Frazier-Wood, Alexis C

    2016-01-01

    Acculturation to the U.S. is associated with increased risk of cardiovascular disease, but the etiologic pathways are not fully understood. Plasma fatty acid levels exhibit ethnic differences and are emerging as biomarkers and predictors of cardiovascular disease risk. Thus, plasma fatty acids may represent one pathway underlying the association between acculturation and cardiovascular disease. We investigated the cross-sectional relationship between acculturation and plasma phospholipid fatty acids in a diverse sample of Hispanic- and Chinese-American adults. Participants included 377 Mexican, 320 non-Mexican Hispanic, and 712 Chinese adults from the Multi-Ethnic Study of Atherosclerosis, who had full plasma phospholipid assays and acculturation information. Acculturation was determined from three proxy measures: nativity, language spoken at home, and years in the U.S., with possible scores ranging from 0 (least acculturated) to 5 (most acculturated) points. α-Linolenic acid, linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid were measured in fasting plasma. Linear regression models were conducted in race/ethnicity-stratified analyses, with acculturation as the predictor and plasma phospholipid fatty acids as the outcome variables. We ran secondary analyses to examine associations between acculturation and dietary fatty acids for comparison. Covariates included age, gender, education, and income. Contrary to our hypothesis, no statistically significant associations were detected between acculturation and plasma phospholipid fatty acids for Chinese, non-Mexican Hispanic, or Mexican participants. However, acculturation was related to dietary total n-6 fatty acids and dietary n-3/n-6 ratios in expected directions for Mexican, non-Mexican Hispanic, and combined Hispanic participants. In Chinese individuals, acculturation was unexpectedly associated with lower arachidonic acid intake. Absence of associations between acculturation and

  8. Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Directory of Open Access Journals (Sweden)

    Kawabata Terue

    2011-08-01

    Full Text Available Abstract Background We reported that the compositions of arachidonic acid (ARA in erythrocytes and plasma phospholipids (PL in the elderly were lower than those in the young, though the ARA intake was nearly identical. Objective We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested. Methods One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed. Results No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA + docosahexaenoic acid (DHA intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects. Conclusions Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.

  9. Nutritional quality evaluation of rabbit meat (Flemish Giant breed corelated with fatty acids content

    Directory of Open Access Journals (Sweden)

    Gabriela Frunză

    2016-10-01

    Full Text Available The aim of this study was to assess the nutritional quality of rabbit meat (Flemish Giant breed in terms of content of fatty acids. The biological material consisted of 42 rabbits (17 females and 15 males from which were collected Longissimus dorsi, Semimembranosus and Triceps Brachii muscles immediately after slaughter. The samples were vacuum packaged, frozen at -80 0C, and immediately after thawing have been minced and freeze-dried at -110 0C (using lyophilizer CoolSafe Scanvac. The content in fatty acids was followed through NIRS methodology, using FOSS 6500 spectrophotometer, by gender. Was determined: the saturated fatty acids: C14:0 (Myristic acid, C15: 0 (Pentadecanoic acid, C16: 0 (Palmitic acid, C17: 0 (Heptadecanoic acid and C18: 0 (Stearic acid; monounsaturated fatty acids: Palmitoleic acid (C16: 1n-7, Vaccenic acid, cis-isomer of oleic acid (C18: 1n-7 and oleic acid (C18: 1n-9 and the polyunsaturated fatty acids (ω3 and ω6: C18: 2n-6 (linoleic acid, C18: 3n-3 (Linolenic acid, C20: 2n-6 (Eicosadienoic acid, C20: 3n-6 (Eicosatrienoic acid, C20: 4n-6 (arachidonic acid, C20: 5n-3 (Eicosapentaenoic acid, C22: 4n-6 (Docosatetraenoic acid, C22: 5n-3 (Docosopentaenoic acid and C22: 6n- 3 (docosahexaenoic acid. The results were statistically analyzed, including analysis of variance (ANOVA and was observed significant differences between gender.

  10. Acides gras oméga-3 et déclin cognitif : la controverse

    Directory of Open Access Journals (Sweden)

    Barberger-Gateau Pascale

    2013-03-01

    Full Text Available Basic research suggests a protective effect of the long-chain omega-3 polyunsaturated fatty acidseicosapentaenoic acid (EPA and docosahexaenoic acid (DHA – against brain aging. In humans, many epidemiological studies have found an inverse association between fish consumption or high blood levels of EPA and DHA, and cognitive decline or risk of dementia. However, most randomized controlled trials with EPA and/or DHA supplements have failed to show any impact on cognitive decline. This paper analyses several reasons for such inconsistent results, including the time and duration of the supplementation, the cognitive and dietary inclusion criteria, the optimal doses of EPA and DHA, the interaction with genetic polymorphisms, and the need to consider synergistic effects between nutrients as they are provided by healthy diets.

  11. Maternal and cord blood fatty acid patterns with excessive gestational weight gain and neonatal macrosomia.

    Science.gov (United States)

    Liu, Kaiyong; Ye, Kui; Han, Yanping; Sheng, Jie; Jin, Zhongxiu; Bo, Qinli; Hu, Chunqiu; Hu, Chuanlai; Li, Li

    2017-03-01

    This study evaluated the association of maternal excessive gestational weight gain with saturated and polyunsaturated fatty acid concentrations in maternal and cord serum. We included 77 pairs of women and their newborns and classified them into three groups as follows: mothers with normal gestational weight gain and their babies with normal birth weight in group I (30 pairs), mothers with excessive gestational weight gain and their babies with normal birth weight in group II (30 pairs), and mothers with excessive gestational weight gain and their macrosomic babies in group III (17 pairs). Serum fatty acid concentrations were determined through gas chromatography-mass spectrometry. No remarkable difference in maternal dietary intake was observed among the three groups. C16:0, C18:0, eicosapentaenoic acid, and docosahexaenoic acid concentrations were significantly higher in group III mothers than in group I mothers. Compared with group I neonates, total saturated and polyunsaturated fatty acid concentrations were significantly lower but total n-3 polyunsaturated fatty acid and docosahexaenoic acid concentrations were significantly higher in group II neonates (ppattern.

  12. Update on the management of severe hypertriglyceridemia – focus on free fatty acid forms of omega-3

    Directory of Open Access Journals (Sweden)

    Pirillo A

    2015-04-01

    Full Text Available Angela Pirillo,1,2 Alberico Luigi Catapano2,3 1Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; 2IRCCS Multimedica, Milan, Italy; 3Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Abstract: High levels of plasma triglycerides (TG are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG, particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA. These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk

  13. Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase.

    Science.gov (United States)

    Bakke, Siril S; Moro, Cedric; Nikolić, Nataša; Hessvik, Nina P; Badin, Pierre-Marie; Lauvhaug, Line; Fredriksson, Katarina; Hesselink, Matthijs K C; Boekschoten, Mark V; Kersten, Sander; Gaster, Michael; Thoresen, G Hege; Rustan, Arild C

    2012-10-01

    Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Incorporation of medium chain fatty acids into fish oil triglycerides by chemical and enzymatic inter esterification

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, M. M. C.; Oliveira de Pilot, L.; Gomes Correira, F.; Grimaldi, R.; Mara Block, J.; Ninow, J. L.

    2009-07-01

    Structured triglycerides (STs) containing both medium chain fatty acids (MCFA) and polyunsaturated fatty acids (PUFA) in the same molecule offer nutritional and therapeutic benefits. The aim of this work was to establish the incorporation of MCFA into fish oil triglycerides (TAGs), while maintaining substantial levels of docosahexaenoic and eicosapentaenoic acids. The effects of different acyl donors (capric acid methyl ester/MeC10 or medium chain triglyceride/TCM) and of the catalyst (chemical or enzymatic) on the fatty acid composition of the reaction product were studied. The fatty acid composition of the fish oil TAG was modified after inter esterification to contain MCFA, and it depended on the catalyst and on the substrates. Thermo grams obtained by Differential Scanning Calorimetry (DSC) showed that inter esterification promoted noteworthy changes in the melting profile of the samples. STs of clinical nutrition interest containing both EPA and DHA obtained from fish oil along with MCFA were successfully produced. (Author) 70 refs.

  15. The effect of endogenous essential and nonessential fatty acids on the uptake and subsequent agonist-induced release of arachidonate

    International Nuclear Information System (INIS)

    Furth, E.E.; Hurtubise, V.; Schott, M.A.; Laposata, M.

    1989-01-01

    We have demonstrated that the uptake and agonist-induced release of a pulse of arachidonate are influenced by the size and composition of preexisting endogenous fatty acid pools. EFD-1 cells, an essential fatty acid-deficient mouse fibrosarcoma cell line, were incubated with radiolabeled (14C or 3H) arachidonate, linoleate, eicosapentaenoate (EPA), palmitate, or oleate in concentrations of 0-33 microM for 24 h. After 24 h, the cells were pulsed with 0.67 microM radiolabeled (3H or 14C, opposite first label) arachidonate for 15 min and then stimulated with 10 microM bradykinin for 4 min. Because EFD-1 cells contain no endogenous essential fatty acids, we were able to create essential fatty acid-repleted cells for which the specific activity of the newly constructed endogenous essential fatty acid pool was known. Loading the endogenous pool with the essential fatty acids arachidonate, eicosapentaenoate, or linoleate (15-20 nmol of fatty acid incorporated/10(6) cells) decreased the uptake of a pulse of arachidonate from 200 to 100 pmol/10(6) cells but had no effect on palmitate uptake. The percent of arachidonate incorporated during the pulse which was released upon agonist stimulation increased 2-fold (4-8%) as the endogenous pool of essential fatty acids was increased from 0 to 15-20 nmol/10(6) cells. This 8% release was at least 3-fold greater than the percent release from the various endogenous essential fatty acid pools. In contrast, loading the endogenous pool with the nonessential fatty acids oleate or palmitate to more than 2-3 times their preexisting cellular level had no effect on the uptake of an arachidonate pulse. Like the essential fatty acids, increasing endogenous oleate increased (by 2-fold) the percent release of arachidonate incorporated during the pulse, whereas endogenous palmitate had no effect on subsequent agonist-induced release from this arachidonate pool

  16. Arachidonic acid assimilation by thrombocytes from white carneau pigeons

    International Nuclear Information System (INIS)

    Saxon, D.J.; Blankenship, T.

    1986-01-01

    The metabolism of arachidonic acid was investigated using thrombocyte-enriched-plasma from RBWC and WC-II white carneau pigeons, which differ genetically in their susceptibility to atherosclerosis. Thrombocytes were incubated at 42 C with [ 14 C] arachidonate in Puck's solution. After a 1 hour labeling period the WC-II cells had taken up 69% and RBWC 77% of the [ 14 C]arachidonate from the medium. When 8,11,14-eicosatrienoic acid or 5,8,11,14,17-eicosapentaenoic acid were added to incubation media the [ 14 C] uptake was reduced in each type cell, with WC-II exhibiting the greatest effect. Release of [ 14 C]molecules from cells labeled with [ 14 ]Carachidonate was studied using calcium ionophore and indomethacin. Indomethacin inhibited [ 14 C] molecule release similarly in both RBWC and WC-II cells. Calcium ionophore was twice as effective in stimulating [ 14 C]molecule release from WC-II than RBWC cells. Therefore, the WE-II cells (from pigeons greater in susceptibility to atherosclerosis) are more sensitive to calcium ionophore than the REWC cells

  17. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  18. Proximate and fatty acid composition of cooked South African Cape snoek (Thyrsites atun

    Directory of Open Access Journals (Sweden)

    Suné S. Henning

    2017-05-01

    Full Text Available Cape snoek (Thyrsites atun is an important source of protein for people in South Africa; however, nutritional information thereof is limited. The proximate and fatty acid compositions of raw and cooked (80 °C snoek muscles were determined according to official AOAC methods. The mean moisture, ash, total lipids and protein for raw snoek were 72.8±1.86%, 1.3±0.09%, 4.0±1.16 and 21.5±1.35%, respectively. Cape snoek is very high in palmitic acid (24.65±1.43%, oleic acid (18.21±2.64%, eicosapentaenoic acid (EPA, 9.11±2.06% and docosahexaenoic acid (DHA, 19.70±3.25%. With the exception of total lipids, cooking significantly reduced moisture (69.40±2.03% and ash (1.12±0.12%, and increased protein (24.47±1.39% content. It is concluded that Cape snoek is very high in protein and can be classified as a low-fat fish which is rich in EPA and DHA.

  19. Fatty acid CoA ligase-4 gene polymorphism influences fatty acid metabolism in metabolic syndrome, but not in depression.

    Science.gov (United States)

    Zeman, Miroslav; Vecka, Marek; Jáchymová, Marie; Jirák, Roman; Tvrzická, Eva; Stanková, Barbora; Zák, Ales

    2009-04-01

    The composition of polyunsaturated fatty acids (PUFAs) in cell membranes and body tissues is altered in metabolic syndrome (MetS) and depressive disorder (DD). Within the cell, fatty acid coenzyme A (CoA) ligases (FACLs) activate PUFAs by esterifying with CoA. The FACL4 isoform prefers PUFAs (arachidonic and eicosapentaenoic acid) as substrates, and the FACL4 gene is mapped to Xq23. We have analyzed the association between the common single nucleotide polymorphism (SNP) (rs1324805, C to T substitution) in the first intron of the FACL4 gene and MetS or DD. The study included 113 healthy subjects (54 Males/59 Females), 56 MetS patients (34M/22F) and 41 DD patients (7M/34F). In MetS group, T-carriers and patients with CC or C0 (CC/C0) genotype did not differ in the values of metabolic indices of MetS and M/F ratio. Nevertheless, in comparison with CC/C0, the T-allele carriers were characterized by enhanced unfavorable changes in fatty acid metabolism typical for MetS: higher content of dihomogammalinolenic acid (P phosphatidylcholine (PC) (P = 0.052), lower index of Delta5 desaturation (P insulin, conjugated dienes and index of insulin resistance, but showed no significant association with the studied SNP. The present study shows that the common SNP (C to T substitution) in the first intron of the FACL4 gene is associated with altered FA composition of plasma phosphatidylcholines in patients with MetS.

  20. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  1. Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast

    International Nuclear Information System (INIS)

    Rodríguez-Núñez, K.; Toledo-Aguero, P.

    2017-01-01

    Microalgae represent an important nutritional source for diverse organisms, therefore, their nutritional value, and more specifically, total lipid and fatty acid contents, must be considered. This study evaluated the nutritional contents and potential growth under controlled conditions of Nitzschia sp. and Chaetoceros sp. Tropical microalgae, isolated from the Gulf of Nicoya, Costa Rica. In both strains, the nutritional composition and the fatty acid profile were evaluated in exponential and stationary phases. With regards to fatty acids, Nitzschia sp. had more Eicosapentaenoic Acid (EPA) in both the exponential (32.80%) and stationary (27.20%) phases. The results in growth rate, production and biochemical composition indicated two tropical microalgae strains suitable for cultivation under controlled conditions. The studies of the phytoplankton in this geographical area is highly relevant because of its importance in the primary production of nutrients and the importance of finding sources of fatty acids such as the EPA. [es

  2. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial.

    Science.gov (United States)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey; Ezhov, Marat; Nordestgaard, Borge G; Machielse, Ben N; Kling, Douglas; Davidson, Michael H

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms. The aim was to evaluate the safety and lipid-altering efficacy in subjects with severe hypertriglyceridemia of an investigational pharmaceutical omega-3 free fatty acid (OM3-FFA) containing eicosapentaenoic acid and docosahexaenoic acid. This was a multinational, double-blind, randomized, out-patient study. Men and women with triglycerides (TGs) ≥ 500 mg/dL, but severe hypertriglyceridemia. This trial was registered at www.clinicaltrials.gov as NCT01242527. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  3. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  4. CONTENT OF LONG CHAIN OMEGA-3 FATTY ACID COMPOSITION IN SOME IRANIAN CANNED FISH

    Directory of Open Access Journals (Sweden)

    Bahar Nazari

    2010-12-01

    Full Text Available Abstract    BACKGROUND: Ecological studies have found a negative correlation between the risk of developing heart disease and fish consumption because of their long chain omega-3 fatty acids. This study was undertaken to determine the amounts of the common fatty acid content of several commercial canned fish marketing in Iran, with particular attention to long chain omega-3 fatty acids.    METHODS: The most consumed available brands of canned fish were randomly selected seven times from products available in supermarkets. Total lipids were extracted by using the Folch method and prepared for fatty acid analysis. Individual fatty acids were quantified by gas chromatography (GC with 60 meter capillary column and flame ionization detector.    RESULTS: The most common saturated fatty acids (SFA in Iranian canned fish was palmitic acid (C16:0 followed by stearic acid (C18:0. The amount of all trans fatty acids (TFAs except elaidic acid (C18:1 9t was 0%. The highest amount of polyunsaturated fatty acids (PUFAs related to long chain omega-3 fatty acids include eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The most abundant monounsaturated fatty acids (MUFAs were oleic acid (C18:1 9c.     CONCLUSION: This study showed higher contents of EPA and DHA in Iranian commercially available canned fish compared to the canned fish in other countries.      Keywords: Iranian canned fish, fatty acids, long chain omega-3 fatty acids, gas chromatography.  

  5. The role of Omega-3 and Omega-9 fatty acids for the treatment of neuropathic pain after neurotrauma.

    Science.gov (United States)

    Galán-Arriero, Iriana; Serrano-Muñoz, Diego; Gómez-Soriano, Julio; Goicoechea, Carlos; Taylor, Julian; Velasco, Ana; Ávila-Martín, Gerardo

    2017-09-01

    Omega-3 polyunsaturated fatty acids (PUFAs), such as docosaexaenoic acid (DHA) and eicosapentaenoic acid (EPA), mediate neuroactive effects in experimental models of traumatic peripheral nerve and spinal cord injury. Cellular mechanisms of PUFAs include reduced neuroinflammation and oxidative stress, enhanced neurotrophic support, and activation of cell survival pathways. Bioactive Omega-9 monounsaturated fatty acids, such as oleic acid (OA) and 2-hydroxy oleic acid (2-OHOA), also show therapeutic effects in neurotrauma models. These FAs reduces noxious hyperreflexia and pain-related anxiety behavior following peripheral nerve injury and improves sensorimotor function following spinal cord injury (SCI), including facilitation of descending inhibitory antinociception. The relative safe profile of neuroactive fatty acids (FAs) holds promise for the future clinical development of these molecules as analgesic agents. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health?

    Science.gov (United States)

    Leikin-Frenkel, Alicia I

    2016-03-23

    The role of ω3 alpha linolenic acid (ALA) in the maternal diet during pregnancy and lactation, and its effect on the prevention of disease and programming of health in offspring, is largely unknown. Compared to ALA, ω3 docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids have been more widely researched due to their direct implication in fetal neural development. In this literature search we found that ALA, the essential ω3 fatty acid and metabolic precursor of DHA and EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA, during fetal development as a regulator of gene programming for the prevention of metabolic disease and promotion of health in offspring.

  7. Amino and fatty acid dynamics of octopus (Octopus vulgaris) early life stages under ocean warming.

    Science.gov (United States)

    Lopes, Vanessa M; Faleiro, Filipa; Baptista, Miguel; Pimentel, Marta S; Paula, José R; Couto, Ana; Bandarra, Narcisa; Anacleto, Patrícia; Marques, António; Rosa, Rui

    2016-01-01

    The oceans are becoming warmer, and the higher temperatures are expected to have a major impact on marine life at different levels of biological organization, especially at the most vulnerable early life stages. Thus, we hypothesize that the future warmer scenarios (here +3 °C) will affect the biochemical composition (amino acid - AA, and fatty acid-FA) of octopod (Octopus vulgaris) embryos and recently-hatched pelagic paralarvae. The main essential amino acids found in octopus embryos were arginine, leucine and lysine; while aspartic and glutamic acids, and taurine were the main non-essential amino acids. Palmitic, eicosapentaenoic and docosahexaenoic acids were the main FAs found in octopus tissues. Relevant ontogenetic changes were observed, namely a steep decrease in the content of many AAs, and a selective retention of FAs, thus evidencing the protein-based metabolism of these cephalopods. Temperature per si did not elicit significant changes in the overall FA composition, but was responsible for a significant decrease in the content of several AAs, indicating increased embryonic consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A New Insight to Bone Turnover: Role of -3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Naroa Kajarabille

    2013-01-01

    Full Text Available Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA, especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κβ (RANK, a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health.

  9. Omega-3 fatty acids related to cognitive impairment in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Kazumi Satogami

    2017-09-01

    Full Text Available Cognitive impairment is strongly associated with functional outcome in patients with schizophrenia but its pathophysiology remains largely unclear. Involvement of omega-3 fatty acids in the cognitive function of healthy individuals and patients with neuropsychiatric disease has received increasing attention. The aim of this study was to examine the relationship between omega-3 fatty acids with cognitive function, social function, and psychiatric symptoms in patients with schizophrenia. The subjects included 30 patients with schizophrenia or schizoaffective disorder. Psychiatric symptoms, cognitive function, and social function were assessed using the Positive and Negative Syndrome Scale, the Brief Assessment of Cognition in Schizophrenia (BACS, and the Social Functioning Scale (SFS, respectively. Blood serum omega-3 fatty acids were assessed using gas chromatography. The BACS composite score was significantly correlated with blood eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA levels. In addition, a daily dose of antipsychotic medication was negatively and significantly correlated with the blood DHA level and with the BACS composite score. Step-wise multiple regression analyses demonstrated that the SFS score was significantly associated with the BACS composite score. Our results indicate that reduced blood omega-3 fatty acids are associated with cognitive impairment, which then impacts social functioning outcomes in schizophrenia.

  10. Reprint of: Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.

    Science.gov (United States)

    Mori, Trevor A

    2018-04-12

    Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    Science.gov (United States)

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  12. Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

    Science.gov (United States)

    Hu, Shiwei; Xu, Leilei; Shi, Di; Wang, Jingfeng; Wang, Yuming; Lou, Qiaoming; Xue, Changhu

    2014-04-01

    Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus. Copyright © 2013 The Society for Biotechnology, Japan. All rights reserved.

  13. Role of n-3 fatty acids in muscle loss and myosteatosis.

    Science.gov (United States)

    Ewaschuk, Julia B; Almasud, Alaa; Mazurak, Vera C

    2014-06-01

    Image-based methods such as computed tomography for assessing body composition enables quantification of muscle mass and muscle density and reveals that low muscle mass and myosteatosis (fat infiltration into muscle) are common in people with cancer. Myosteatosis and low muscle mass have emerged as independent risk factors for mortality in cancer; however, the characteristics and pathogenesis of these features have not been resolved. Muscle depletion is associated with low plasma eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) in cancer and supplementation with n-3 fatty acids has been shown to ameliorate muscle loss and myosteatosis in clinical studies, suggesting a relationship between n-3 fatty acids and muscle health. Since the mechanisms by which n-3 fatty acids alter body composition in cancer remain unknown, related literature from other conditions associated with myosteatosis, such as insulin resistance and obesity is considered. In these noncancer conditions, it has been reported that n-3 fatty acids act by increasing insulin sensitivity, reducing inflammatory mediators, and altering adipokine profiles and transcription factors; therefore, the plausibility of these mechanisms of action in the neoplastic state are considered. The aim of this review is to summarize what is known about the effects of n-3 fatty acids with regards to muscle condition and to discuss potential mechanisms for effects of n-3 fatty acids on muscle health.

  14. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    Science.gov (United States)

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author

  15. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp.

    Directory of Open Access Journals (Sweden)

    T. Catalina Adarme-Vega

    2014-06-01

    Full Text Available With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA to C20:4 eicosatetraenoic acid (ETA, correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4, but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt.

  16. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Lobna Ouldamer

    Full Text Available The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality.Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality.We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality.These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  17. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Science.gov (United States)

    Ouldamer, Lobna; Goupille, Caroline; Vildé, Anne; Arbion, Flavie; Body, Gilles; Chevalier, Stephan; Cottier, Jean Philippe; Bougnoux, Philippe

    2016-01-01

    The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality. Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality. We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality. These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  18. Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast

    Directory of Open Access Journals (Sweden)

    K. Rodríguez-Núñez

    2017-09-01

    Full Text Available Microalgae represent an important nutritional source for diverse organisms, therefore, their nutritional value, and more specifically, total lipid and fatty acid contents, must be considered. This study evaluated the nutritional contents and potential growth under controlled conditions of Nitzschia sp. and Chaetoceros sp. Tropical microalgae, isolated from the Gulf of Nicoya, Costa Rica. In both strains, the nutritional composition and the fatty acid profile were evaluated in exponential and stationary phases. With regards to fatty acids, v sp. had more Eicosapentaenoic Acid (EPA in both the exponential (32.80% and stationary (27.20% phases. The results in growth rate, production and biochemical composition indicated two tropical microalgae strains suitable for cultivation under controlled conditions. The studies of the phytoplankton in this geographical area is highly relevant because of its importance in the primary production of nutrients and the importance of finding sources of fatty acids such as the EPA.

  19. The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for omega-3 and omega-6 fatty acids.

    Science.gov (United States)

    Hibbeln, Joseph R; Gow, Rachel V

    2014-11-01

    The current burden of psychological distress and illness poses as a significant barrier to optimal force efficacy. Here we assess nutrients in military diets, specifically highly unsaturated essential fatty acids, in the reduction of risk or treatment of psychiatric distress. Moderate to strong evidence from several meta-analyses of prospective cohort trials indicate that Mediterranean diet patterns reduce risk of clinical depressions. Specific nutrients and foods of biological interest in relation to mental health outcomes are then discussed and evaluated. Moderate evidence indicates that when fish consumption decreases and simultaneously omega-6 increases, the risk of clinical depressive symptoms are elevated. One meta-analysis examining tissue compositions provides moderate to strong evidence that higher levels of omega-3 highly unsaturated fatty acids (HUFAs) (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) are associated with decreased risk of clinical depressions. Other meta-analytic reviews of randomized placebo-controlled trials provide moderate to strong evidence of significantly improving clinically depressive symptoms when the formulation given was >50% in eicosapentaenoic acid. Finally, a meta-analysis of omega-3 HUFAs provides modest evidence of clinical efficacy for attention-deficit hyperactivity disorder. This article recommends that a rebalancing of the essential fatty acid composition of U.S. military diets, achieve tissue compositions of HUFAs consistent with traditional Mediterranean diets, may help reduce military psychiatric distress and simultaneously increase force efficacy substantially. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  20. Validation of the omega-3 fatty acid intake measured by a web-based food frequency questionnaire against omega-3 fatty acids in red blood cells in men with prostate cancer.

    Science.gov (United States)

    Allaire, J; Moreel, X; Labonté, M-È; Léger, C; Caron, A; Julien, P; Lamarche, B; Fradet, V

    2015-09-01

    The objective of this study was to evaluate the ability of a web-based self-administered food frequency questionnaire (web-FFQ) to assess the omega-3 (ω-3) fatty acids (FAs) intake of men affected with prostate cancer (PCa) against a biomarker. The study presented herein is a sub-study from a phase II clinical trial. Enrolled patients afflicted with PCa were included in the sub-study analysis if the FA profiles from the red blood cell (RBC) membranes and FA intakes at baseline were both determined at the time of the data analysis (n=60). Spearman's correlation coefficients were calculated to estimate the correlations between FA intakes and their proportions in the RBC membranes. Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were highly correlated with their respective proportions in the RBC membranes (both rs=0.593, Pstudies carried out in men with PCa.

  1. Long-Term Effects of Docosahexaenoic Acid-Bound Phospholipids and the Combination of Docosahexaenoic Acid-Bound Triglyceride and Egg Yolk Phospholipid on Lipid Metabolism in Mice

    Science.gov (United States)

    Che, Hongxia; Cui, Jie; Wen, Min; Xu, Jie; Yanagita, Teruyoshi; Wang, Qi; Xue, Changhu; Wang, Yuming

    2018-04-01

    The bioavailability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) depends on their chemical forms. This study investigated the long-term effects of DHA-bound triglyceride (TG-DHA), DHA-bound phospholipid (PL-DHA), and the combination of TG-DHA and egg yolk phospholipid (Egg-PL) on lipid metabolism in mice fed with a high-fat diet (fat levels of 22.5%). Male C57BL/6J mice were fed with different formulations containing 0.5% DHA, including TG-DHA, PL-DHA, and the combination of TG-DHA and Egg-PL, for 6 weeks. Serum, hepatic, and cerebral lipid concentrations and the fatty acid compositions of the liver and brain were determined. The concentrations of serum total triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and hepatic TG in the PL-DHA group and the combination group were significantly lower than those in the high-fat (HF) group ( P Egg-PL in decreasing the AI. Long-term dietary supplementation with low amount of DHA (0.5%) may improve hepatic DHA levels, although cerebral DHA levels may not be enhanced.

  2. The impact of omega 3 fatty acids in atherosclerosis and arterial stiffness: An overview of their actions.

    Science.gov (United States)

    Verveniotis, Alexios; Siasos, Gerasimos; Oikonomou, Evangelos; Tsigkou, Vasiliki; Papageorgiou, Nikolaos; Zaromitidou, Marina; Psaltopoulou, Theodora; Marinos, Georgios; Deftereos, Spyridon; Vavuranakis, Manolis; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2018-03-20

    Fatty acids are common dietary nutrients particularly in economically developed countries. Research has revealed that omega-3fatty acids exert beneficial effects in the progression of atherosclerosis and cardiovascular disease. Moreover, eicosapentaenoic acid and docosahexaenoic acid possess a number of biological actions which improve cardio-metabolic health. Omega-3 fatty acids display remarkable anti-oxidant, anti-inflammatory, anti-thrombotic and anti-arrythmogenic actions. Furthermore, they improve the levels of triglycerides, glucose metabolism and endothelial function. The aim of this review article is to present physical, biochemical and biological properties of omega-3 fatty acids and summarize the most important mechanisms of action on arterial wall properties and arterial stiffness in atherosclerosis. Omega-3 fatty acids may prevent the progression of atherosclerosis. Endothelial dysfunction and arterial stiffness can be regulated by the supplementation of omega-3 fatty acids. The mechanisms of action of omega-3 fatty acids on cardiovascular health and arterial stiffening have been established. However, further research is needed in order to translate the conflicting results among the studies and improve the therapeutic options of cardiovascular disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Effect of different light spectra on growth and fatty acid composition in the eustigmatophycean microalga Trachydiscus minutus

    Czech Academy of Sciences Publication Activity Database

    Cepák, Vladislav; Přibyl, Pavel; Jiřičný, Vladimír; Kohoutková, J.

    2016-01-01

    Roč. 6, 3-4 (2016), 103-115 ISSN 1314-6394 R&D Projects: GA TA ČR TE01020080; GA TA ČR TA03011027 Institutional support: RVO:67985939 ; RVO:67985858 Keywords : eicosapentaenoic acid * light * Trachydiscus minutus Subject RIV: EE - Microbiology, Virology; EE - Microbiology, Virology (UCHP-M) OBOR OECD: Microbiology; Microbiology (UCHP-M)

  4. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health?

    Directory of Open Access Journals (Sweden)

    Alicia I. Leikin-Frenkel

    2016-03-01

    Full Text Available The role of ω3 alpha linolenic acid (ALA in the maternal diet during pregnancy and lactation, and its effect on the prevention of disease and programming of health in offspring, is largely unknown. Compared to ALA, ω3 docosahexaenoic (DHA and eicosapentaenoic (EPA acids have been more widely researched due to their direct implication in fetal neural development. In this literature search we found that ALA, the essential ω3 fatty acid and metabolic precursor of DHA and EPA has been, paradoxically, almost unexplored. In light of new and evolving findings, this review proposes that ALA may have an intrinsic role, beyond the role as metabolic parent of DHA and EPA, during fetal development as a regulator of gene programming for the prevention of metabolic disease and promotion of health in offspring.

  5. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  6. Investigating the Role of Polyunsaturated Fatty Acids in Bone Development Using Animal Models

    Directory of Open Access Journals (Sweden)

    Beatrice Y.Y. Lau

    2013-11-01

    Full Text Available Incorporating n-3 polyunsaturated fatty acids (PUFA in the diet may promote the development of a healthy skeleton and thereby reduce the risk of developing osteoporosis in later life. Studies using developing animal models suggest lowering dietary n-6 PUFA and increasing n-3 PUFA intakes, especially long chain n-3 PUFA, may be beneficial for achieving higher bone mineral content, density and stronger bones. To date, the evidence regarding the effects of α-linolenic acid (ALA remain equivocal, in contrast to evidence from the longer chain products, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. This review reports the results of investigations into n-3 PUFA supplementation on bone fatty acid composition, strength and mineral content in developing animal models as well as the mechanistic relationships of PUFA and bone, and identifies critical areas for future research. Overall, this review supports a probable role for essential (ALA and long chain (EPA and DHA n-3 PUFA for bone health. Understanding the role of PUFA in optimizing bone health may lead to dietary strategies that promote bone development and maintenance of a healthy skeleton.

  7. Validation of fatty acid intakes estimated by a food frequency questionnaire using erythrocyte fatty acid profiling in the Montreal Heart Institute Biobank.

    Science.gov (United States)

    Turcot, V; Brunet, J; Daneault, C; Tardif, J C; Des Rosiers, C; Lettre, G

    2015-12-01

    To improve the prevention, treatment and risk prediction of cardiovascular diseases, genetic markers and gene-diet interactions are currently being investigated. The Montreal Heart Institute (MHI) Biobank is suitable for such studies because of its large sample size (currently, n = 17 000), the availability of biospecimens, and the collection of data on dietary intakes of saturated (SFAs) and n-3 and n-6 polyunsaturated (PUFAs) fatty acids estimated from a 14-item food frequency questionnaire (FFQ). We tested the validity of the FFQ by correlating dietary intakes of these fatty acids with their red blood cell (RBC) content in MHI Biobank participants. Seventy-five men and 75 women were selected from the Biobank. We successfully obtained RBC fatty acids for 142 subjects using gas chromatography coupled to mass spectrometry. Spearman correlation coefficients were used to test whether SFA scores and daily intakes (g day(-1)) of n-3 and n-6 PUFAs correlate with their RBC content. Based on covariate-adjusted analyses, intakes of n-3 PUFAs from vegetable sources were significantly correlated with RBC α-linolenic acid levels (ρ = 0.23, P = 0.007), whereas n-3 PUFA intakes from marine sources correlated significantly with RBC eicosapentaenoic acid (ρ = 0.29, P = 0.0008) and docosahexaenoic acid (ρ = 0.41, P = 9.2 × 10(-7)) levels. Intakes of n-6 PUFAs from vegetable sources correlated with RBC linoleic acid (ρ = 0.18, P = 0.04). SFA scores were not correlated with RBC total SFAs. The MHI Biobank 14-item FFQ can appropriately estimate daily intakes of n-3 PUFAs from vegetable and marine sources, as well as vegetable n-6 PUFAs, which enables the possibility of using these data in future studies. © 2014 The British Dietetic Association Ltd.

  8. Dietary intake and food sources of fatty acids in Australian adolescents.

    Science.gov (United States)

    O'Sullivan, Therese A; Ambrosini, Gina; Beilin, Lawrie J; Mori, Trevor A; Oddy, Wendy H

    2011-02-01

    Dietary fat consumed during childhood and adolescence may be related to the development of cardiovascular and other chronic diseases in adulthood; however, there is a lack of information on specific fatty acid intakes and food sources in these populations. Our study aimed to assess fatty acid intakes in Australian adolescents, compare intakes with national guidelines, and identify major food sources of fatty acids. Dietary intake was assessed using measured 3-d records in 822 adolescents aged 13-15 y participating in The Western Australian Pregnancy Cohort (Raine) Study, Australia. Mean daily total fat intakes were 90 ± 25 g for boys and 73 ± 20 g for girls, with saturated fat contributing 14% of total energy intake. Mean contribution to daily energy intake for linoleic, alpha-linolenic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids were 3.0%, 0.40%, 0.02%, 0.01%, and 0.04%, respectively, for boys, and 3.3%, 0.42%, 0.02%, 0.01%, and 0.05% for girls. To meet guidelines for chronic disease prevention, consumption of long-chain omega-3 fatty acids in this population may need to increase up to three-fold and the proportion of saturated fat decrease by one-third. Girls were more likely to achieve the guidelines. Major food sources were dairy products for total fat, saturated fat and alpha-linolenic acid, margarines for linoleic acid, and fish for long-chain omega-3 fatty acids. Results suggest that for this population, a higher dietary intake of long-chain omega-3 fatty acids, particularly for boys, and lower proportion of saturated fat is required to meet recommendations for prevention of chronic disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Effects of omega-3 fatty acids on progestin stimulation of invasive properties in breast cancer.

    Science.gov (United States)

    Moore, Michael R; King, Rebecca A

    2012-12-01

    Clinical studies have shown that progestins increase breast cancer risk in hormone replacement therapy, while we and others have previously reported that progestins stimulate invasive properties in progesterone receptor (PR)-rich human breast cancer cell lines. Based on others' reports that omega-3 fatty acids inhibit metastatic properties of breast cancer, we have reviewed the literature for possible connections between omega-3 fatty-acid-driven pathways and progestin-stimulated pathways in an attempt to suggest theoretical mechanisms for possible omega-3 fatty acid inhibition of progestin stimulation of breast cancer invasion. We also present some data suggesting that fatty acids regulate progestin stimulation of invasive properties in PR-rich T47D human breast cancer cells, and that an appropriate concentration of the omega-3 fatty acid eicosapentaenoic acid inhibits progestin stimulation of invasive properties. It is hoped that focus on the inter-relationship between pathways by which omega-3 fatty acids inhibit and progestins stimulate breast cancer invasive properties will lead to further in vitro, in vivo, and clinical studies testing the hypothesis that omega-3 fatty acids can inhibit progestin stimulation of invasive properties in breast cancer, and ameliorate harmful effects of progestins which occur in combined progestin-estrogen hormone replacement therapy.

  10. Effects of omega-3 fatty acids on regulatory T cells in hematologic neoplasms

    Directory of Open Access Journals (Sweden)

    Dayanne da Silva Borges Betiati

    2013-01-01

    Full Text Available The development of leukemia and lymphomas is related to the increase in inflammatory process modulators. These, in turn, have divergent actions on the neoplastic process. Populations of T cells have different roles in the neoplastic environment; while interferon-gamma positive T cells have antitumor activity, the FoxP3+interleukin-10 positive population present a pro-tumor activity. Simultaneously, the inflammatory process promotes the mobilization of fatty acids from the cell membrane to produce lipid mediators, which also participate of the inflammatory response. Eicosapentaenoic (EPA and docosahexaenoic (DHA omega-3 fatty acids, when incorporated in the plasmatic membrane, decrease the arachidonic acid (AA metabolism and the production of eicosanoids derived from it. Thus, an alternative family of lipid mediators are produced that are often less inflammatory than those produced from arachidonic acid. Fatty acids can also influence the production of peptide mediators such as cytokines, and the expression of transcription factors, which can determine the production patterns of eicosanoids and cytokines as well as cell differentiation. Due to these properties, the objective of this literature review was to investigate studies published over the last 15 years on the effects of using omega-3 fatty acids on inflammatory markers in leukemia and lymphomas.

  11. Lipid class and fatty acid content of the Leptocephalus larva of tropical eels

    DEFF Research Database (Denmark)

    Deibel, D.; Parrish, C.C.; Grønkjær, P.

    2012-01-01

    :0 (23 mol%), 22:6n-3 (docosahexaenoic acid, DHA, 16 mol%), 18:0 (8.2 mol%), 20:5n-3 (eicosapentaenoic acid, EPA, 6.7 mol%), 18:1n-9 (6.4 mol%) and 16:1n-7 (6.3 mol%). The DHA:EPA ratio ranged from 2.4 to 2.9, sufficient for normal growth and development of fish larvae generally. The leptocephali had...... storage and condition of leptocephali, we determined the lipid class and fatty acid concentration of larvae collected on a cross-shelf transect off Broome, northwestern Australia. The total lipid concentration of two families and four sub-families of leptocephali ranged from 2.7 to 7.0 mg g wet weight-1......, at the low end of the few published values. Phospholipid and triacylglycerol made up ca. 63 % of the total lipid pool. The triacylglycerol:sterol ratio, an index of nutritional condition, ranged from 0.9 to 3.7, indicating that the leptocephali were in good condition. The predominant fatty acids were 16...

  12. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: the OmegAD study.

    Science.gov (United States)

    Freund Levi, Y; Vedin, I; Cederholm, T; Basun, H; Faxén Irving, G; Eriksdotter, M; Hjorth, E; Schultzberg, M; Vessby, B; Wahlund, L-O; Salem, N; Palmblad, J

    2014-04-01

    Little is known about the transfer of essential fatty acids (FAs) across the human blood-brain barrier (BBB) in adulthood. In this study, we investigated whether oral supplementation with omega-3 (n-3) FAs would change the FA profile of the cerebrospinal fluid (CSF). A total of 33 patients (18 receiving the n-3 FA supplement and 15 receiving placebo) were included in the study. These patients were participants in the double-blind, placebo-controlled randomized OmegAD study in which 204 patients with mild Alzheimer's disease (AD) received 2.3 g n-3 FA [high in docosahexaenoic acid (DHA)] or placebo daily for 6 months. CSF FA levels were related to changes in plasma FA and to CSF biomarkers of AD and inflammation. At 6 months, the n-3 FA supplement group displayed significant increases in CSF (and plasma) eicosapentaenoic acid (EPA), DHA and total n-3 FA levels (P acid were strongly correlated, in contrast to those of DHA. Changes in DHA levels in CSF were inversely correlated with CSF levels of total and phosphorylated tau, and directly correlated with soluble interleukin-1 receptor type II. Thus, the more DHA increased in CSF, the greater the change in CSF AD/inflammatory biomarkers. Oral supplementation with n-3 FAs conferred changes in the n-3 FA profile in CSF, suggesting transfer of these FAs across the BBB in adults. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  13. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus.

    Science.gov (United States)

    Alashmali, Shoug M; Kitson, Alex P; Lin, Lin; Lacombe, R J Scott; Bazinet, Richard P

    2017-09-13

    The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compared to offspring (starting from post-weaning) affect the levels of n-6 and n-3 fatty acids in phospholipids (PL) and lipid mediators in the hippocampus of mice. Pregnant mice were randomly assigned to consume either a deprived or an adequate n-6 PUFA diet during pregnancy and lactation (maternal exposure). On postnatal day (PND) 21, half of the male pups were weaned onto the same diet as their dams, and the other half were switched to the other diet for 9 weeks (offspring exposure). At PND 84, upon head-focused high-energy microwave irradiation, hippocampi were collected for PL fatty acid and lipid mediator analyses. Arachidonic acid (ARA) concentrations were significantly decreased in both total PL and PL fractions, while eicosapentaenoic acid (EPA) concentrations were increased only in PL fractions upon n-6 PUFA deprivation of offspring, regardless of maternal exposure. Several ARA-derived eicosanoids were reduced, while some of the EPA-derived eicosanoids were elevated by n-6 PUFA deprivation in offspring. There was no effect of diet on docosahexaenoic acid (DHA) or DHA-derived docosanoids concentrations under either maternal or offspring exposure. These results indicate that the maternal exposure to dietary n-6 PUFA may not be as important as the offspring exposure in regulating hippocampal ARA and some lipid mediators. Results from this study will be helpful in the design of experiments aimed at testing the significance of altering brain ARA levels over different stages of life.

  14. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  15. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    Directory of Open Access Journals (Sweden)

    Agnes Robert

    2014-01-01

    Full Text Available Fatty acids (FAs particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus, Nile tilapia (Oreochromis niloticus, Tilapia zillii, and dagaa (Rastrineobola argentea from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA, eicosapentaenoic (EPA, docosapentaenoic (DPA, and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34 compared to L. niloticus (27, T. zillii (26, and R. argentea (21. The levels of EPA differed significantly among the four commercial fish species (F=6.19,  P=0.001. The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F=0.652,  P=0.583. The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA.

  16. Fatty Acid Modulation of the Endocannabinoid System and the Effect on Food Intake and Metabolism

    Directory of Open Access Journals (Sweden)

    Shaan S. Naughton

    2013-01-01

    Full Text Available Endocannabinoids and their G-protein coupled receptors (GPCR are a current research focus in the area of obesity due to the system’s role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA and 2-arachidonoyl glycerol (2-AG and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β-oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.

  17. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing

    Directory of Open Access Journals (Sweden)

    Rodrigo Valenzuela

    2015-08-01

    Full Text Available α-Linolenic acid (ALA is the precursor of docosahexaenoic acid (DHA in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L., a plant native to some Latin American countries, is high in ALA (up to 60% and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22–35 years old tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21 and a chia group (n = 19, which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA ingestion, no showing modification of arachidonic acid (AA, eicosapentaenoic acid (EPA and DHA; (ii a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA.

  18. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    Science.gov (United States)

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  19. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiajie Liu

    2014-11-01

    Full Text Available Breast cancer (BC is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA, are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA, however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

  20. Impact of Docosahexaenoic Acid on Gene Expression during Osteoclastogenesis in Vitro—A Comprehensive Analysis

    Directory of Open Access Journals (Sweden)

    Ikuo Morita

    2013-08-01

    Full Text Available Polyunsaturated fatty acids (PUFAs, especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.

  1. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  2. Effect of the inclusion of fish residue oils in diets on the fatty acid profile of muscles of males and females lambari (Astyanax altiparanae

    Directory of Open Access Journals (Sweden)

    Ligia Uribe Gonçalves

    2012-09-01

    Full Text Available This study evaluated the effects of two lipids sources of fish residue (tilapia and salmon compared with a vegetable oil source (soybean oil on the fatty acid profiles of male and female lambari. This experiment was developed in a completely randomized experimental design in a 3 × 2 factorial arrangement, totaling 6 treatments resulting from the combination of the three experimental diets for both sexes, with four replications for each treatment. This study involved 120 male (2.58±0.13 g and 72 female lambari (4.00±0.09 g, fed the experimental diets twice a day until apparent satiation for a period of 60 days. Oleic, linoleic, palmitic and stearic fatty acids were found at higher concentrations in all experimental oils and diets, as well in the muscle of male and female lambari. The low amounts of arachidonic, eicosapentaenoic and docosahexaenoic acids in the experimental diets and subsequent greater concentrations in muscle tissue, suggested that lambari are able to desaturate and elongate the chain of fatty acids with 18 carbons. The fish of both sexes that received the diet with soybean oil showed high levels of n-6 fatty acids, especially of C18: 2n-6 and low levels of eicosapentaenoic and docosahexaenoic acids. The diet with salmon residue oil promoted higher levels of fatty acids of the n-3 series and resulted in the best n-3/n-6 ratio in the muscle of male and female lambari. The oils from fish residues can be a substitute for traditional fish oil and its use in the lambari diets does not impair its growth.

  3. Fatty acid effects on fibroblast cholesterol synthesis

    International Nuclear Information System (INIS)

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-01-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [ 14 C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [ 14 C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14 C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  4. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians.

    Science.gov (United States)

    Cribb, Lachlan; Murphy, Jenifer; Froud, Amy; Oliver, Georgina; Bousman, Chad A; Ng, Chee H; Sarris, Jerome

    2017-05-29

    Polyunsaturated fatty acids (PUFAs) play an important role in the pathophysiology of major depressive disorder (MDD), related, in part, to their role in inflammatory systems. The enzymes δ-5 and δ-6 desaturase are the rate-limiting steps in the metabolism of PUFAs and are encoded in the genes fatty acid desaturase (FADS) 1 and 2, respectively. Single nucleotide polymorphisms (SNPs) and haplotypes within the FADS gene cluster have been shown to influence PUFA composition. The objective of this study was to determine whether key omega-3 (n-3) and omega-6 (n-6) fatty acids may be associated with depression, and to explore the role of FADS genotype in PUFA variation. Four erythrocyte long chain (LC) fatty acids (linoleic acid [LA], α-linolenic acid [ALA], arachidonic acid [AA] and Eicosapentaenoic acid [EPA]), as well as six SNPs (rs174537, rs174547, rs174570, rs174575, rs498793 and rs3834458) within the FADS gene cluster were measured in a sample of 207 participants (154 with MDD versus 53 non-depressed controls). The precursor LC-PUFAs LA and ALA appeared to be negatively associated with depression (P depression (P Precursor LC-PUFAs, LA and ALA, appear to be associated with MDD and potentially modulated by genetic variation in the FADS gene cluster. These results provide support for the consideration of PUFA composition, diet and FADS genetic variation in the pathophysiology of MDD.

  5. Maternal Plasma Phosphatidylcholine Fatty Acids and Atopy and Wheeze in the Offspring at Age of 6 Years

    Directory of Open Access Journals (Sweden)

    Katharine C. Pike

    2012-01-01

    Full Text Available Variation in exposure to polyunsaturated fatty acids (PUFAs might influence the development of atopy, asthma, and wheeze. This study aimed to determine whether differences in PUFA concentrations in maternal plasma phosphatidylcholine are associated with the risk of childhood wheeze or atopy. For 865 term-born children, we measured phosphatidylcholine fatty acid composition in maternal plasma collected at 34 weeks’ gestation. Wheezing was classified using questionnaires at 6, 12, 24, and 36 months and 6 years. At age of 6 years, the children underwent skin prick testing, fractional exhaled nitric oxide (FENO measurement, and spirometry. Maternal n-6 fatty acids and the ratio of n-3 to n-6 fatty acids were not associated with childhood wheeze. However, higher maternal eicosapentaenoic acid, docosahexaenoic acid, and total n-3 fatty acids were associated with reduced risk of non-atopic persistent/late wheeze (RR 0.57, 0.67 and 0.69, resp. P=0.01, 0.015, and 0.021, resp.. Maternal arachidonic acid was positively associated with FENO (P=0.024. A higher ratio of linoleic acid to its unsaturated metabolic products was associated with reduced risk of skin sensitisation (RR 0.82, P=0.013. These associations provide some support for the hypothesis that variation in exposure to n-6 and n-3 fatty acids during pregnancy influences the risk of childhood wheeze and atopy.

  6. Bioavailability of Dietary Omega-3 Fatty Acids Added to a Variety of Sausages in Healthy Individuals.

    Science.gov (United States)

    Köhler, Anton; Heinrich, Johanna; von Schacky, Clemens

    2017-06-19

    A low Omega-3 Index (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocytes) is associated with cardiac, cerebral, and other health issues. Intake of EPA and DHA, but not of alpha-linolenic acid (ALA), increases the Omega-3 Index. We investigated bioavailability, safety, palatability and tolerability of EPA and DHA in a novel source: a variety of sausages. We screened 96 healthy volunteers, and recruited 44 with an Omega-3 Index Omega-3 Index increased from 4.18 ± 0.54 to 5.72 ± 0.66% ( p Omega-3 Index per intake of EPA and DHA we observed was higher than for other sources previously studied, indicating superior bioavailability. As increasing production of EPA and DHA is difficult, improvements of bioavailability can facilitate reaching the target range for the Omega-3 Index (8-11%).

  7. Composicao quimica, perfil de acidos graxos e quantificacao dos acidos ƒ¿-linolenico, eicosapentaenoico e docosahexaenoico em visceras de tilapias (Oreochromis niloticus = Percentual composition, fatty acids and quantification of the LNA (Alfa-Linolenic, EPA (Eicosapentaenoic and DHA (Docosahexaenoic acids in visceras of Nile Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Nilson Evelázio de Souza

    2005-01-01

    Full Text Available Foi avaliada a composição química de vísceras de tilápias (Oreochromis niloticus criadas em cativeiro Os teores de umidade, cinza, proteína bruta e lipídios totais foram de 64,4%; 1,3%; 6,3% e 18,0%, respectivamente, caracterizando alta concentração de lipídiostotais em relação a outros resíduos de peixes. Foram identificados 49 ácidos graxos, sendo majoritários os ácidos: oléico, (32,8%, seguido do palmítico, (19,9% e linoléico, (18,2%. As razões entre n-6/n-3 e ácidos poliinsaturados/saturados foram de 5,5 e 0,9, respectivamente. As quantificações dos ácidos graxos alfa-linolênico, eicosapentaenóico e docosahexaenóico, em mg/g de lipídios totais, foram de 10,4, 1,4 e 9,3, respectivamente. O elevado teor de lipídios totais das vísceras contribuiu significativamente para as quantidadesde ácidos graxos n-3. Todos os parâmetros analisados foram satisfatórios sob o ponto de vista nutricional e neste sentido as vísceras de tilápias poderão ser utilizadaa para alimentar peixes ou outros animais.The chemical composition was evaluated in visceras of tilapias raised in captivity. The moisture, ash, crude protein and total lipids contents were 64.4%; 1.3%; 6.3% and 18.0%, respectively, characterizing high total lipids concentration in relation other residues of fish. Forty nine fatty acids were detected, the major fatty acids were oleic (32.8%, palmitic (19.9% and linoleic-1 (18.2% and oleic (9.4%. The ratio n-6/n-3 and polyunsaturated/saturated fatty acids, showed the values 5.5 and 0.9, respectively. The quantifications of alfa-linolenic, eicosapentaenoic and docosahexaenoic acids (in mg/g of total lipids, were 10.4, 1.4 and 0.3, respectively. The higher contents of total lipids in visceras contributed significantly for amounts of n-3 fatty acids. All the parameters analyzed were shown nutritional value satisfactory in this sense visceras of tilapias can be used in the feed of fish and other animal.

  8. Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (Arius maculatus) commercialized in Cameroon

    International Nuclear Information System (INIS)

    Tenyang, N.; Womeni, H.M.; Tiencheu, B.; Villeneuve, P.; Linder, M.

    2017-01-01

    The effects of refrigeration at 4 °C during 9 days on the quality and stability of catfish oil were evaluated using a change in fatty acid composition by gas chromatography (GC), commonly used analytical indexes (acid and peroxide values), and analysis by Fourier transform infrared (FTIR) spectroscopy. The results revealed that lipid deterioration, hydrolysis and oxidation occurred throughout the cold storage (4 °C). Refrigeration induced the lipolysis of triglycerides by lipases and phospholipases. It also affected the fatty acids composition of the catfish. The progressive loss of unsaturation was monitored by the decrease in the absorbance band at 3012 cm−1on FTIR spectra and the lowest value was observed in the catfish muscle at 9 days of refrigeration. Eicosapentaenoic C20:5ω3 (EPA) and docosahexaenoic C22:6ω3 (DHA) acids were the polyunsaturated fatty acids most affected during refrigeration. Refrigeration for less than 5 days was found to be the best conditions for the preservation of the catfish. [es

  9. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.

    Science.gov (United States)

    Liang, Yi; Garcia, Rafael A; Piazza, George J; Wen, Zhiyou

    2011-11-23

    Rendered animal proteins are well suited for animal nutrition applications, but the market is maturing, and there is a need to develop new uses for these products. The objective of this study is to explore the possibility of using animal proteins as a nutrient source for microbial production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum and the fungus Pythium irregulare. To be absorbed by the microorganisms, the proteins needed to be hydrolyzed into small peptides and free amino acids. The utility of the protein hydrolysates for microorganisms depended on the hydrolysis method used and the type of microorganism. The enzymatic hydrolysates supported better cell growth performance than the alkali hydrolysates did. P. irregulare displayed better overall growth performance on the experimental hydrolysates compared to S. limacinum. When P. irregulare was grown in medium containing 10 g/L enzymatic hydrolysate derived from meat and bone meal or feather meal, the performance of cell growth, lipid synthesis, and omega-3 fatty acid production was comparable to the that of culture using commercial yeast extract. The fungal biomass derived from the animal proteins had 26-29% lipid, 32-34% protein, 34-39% carbohydrate, and industrial microorganisms which can produce omega-3 fatty acids for making omega-3-fortified foods or feeds.

  10. Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole ( Solea solea ) larvae and juveniles

    DEFF Research Database (Denmark)

    McKenzie, David; Lund, Ivar; Pedersen, Per Bovbjerg

    2008-01-01

    Dover sole (Solea solea, Linneaus 1758) were raised from first feeding on brine shrimp (Artemia sp.) with different contents and compositions of the essential fatty acids (EFA) arachidonic acid (ARA, 20:4n - 6); eicosapentaenoic acid (EPA, 20:5n - 3), and docosahexaenoic acid (DHA, 22:6n - 3......), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega...... DHA) to provide a high ratio of ARA to DHA, and (4) enriched with these fish oils to provide a low ratio of ARA to DHA. Sole fed un-enriched Artemia were significantly less tolerant to hypoxia than the other dietary groups. Larvae from this group had significantly higher routine metabolic rate (RMR...

  11. Docosahexaenoic acid is an independent predictor of all-cause mortality in hemodialysis patients.

    Science.gov (United States)

    Hamazaki, Kei; Terashima, Yoshihiro; Itomura, Miho; Sawazaki, Shigeki; Inagaki, Hitoshi; Kuroda, Masahiro; Tomita, Shin; Hirata, Hitoshi; Inadera, Hidekuni; Hamazaki, Tomohito

    2011-01-01

    Dietary n-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid have been shown to reduce cardiovascular mortality. Patients on hemodialysis (HD) have a very high mortality from cardiovascular disease. Fish consumption reduces all-cause mortality in patients on HD. Moreover, n-3 PUFAs, especially DHA levels in red blood cells (RBCs), are associated with arteriosclerosis in patients on HD. The aim of this study was to determine whether DHA levels in RBCs predict the mortality of patients on HD in a prospective cohort study. A cohort of 176 patients (64.1 ± 12.0 (mean ± SD) years of age, 96 men and 80 women) under HD treatment was studied. The fatty acid composition of their RBCs was analyzed by gas chromatography. During the study period of 5 years, 54 deaths occurred. After adjustment for 10 confounding factors, the Cox hazard ratio of all-cause mortality of the patients on HD in the highest DHA tertile (>8.1%, 15 deaths) was 0.43 (95% CI 0.21-0.88) compared with those patients in the lowest DHA tertile (HD. Copyright © 2010 S. Karger AG, Basel.

  12. The Role of Omega-3 Polyunsaturated Fatty Acids in the Treatment of Patients with Acute Respiratory Distress Syndrome: A Clinical Review

    Directory of Open Access Journals (Sweden)

    M. García de Acilu

    2015-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA and gamma-linolenic acid (GLA has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect of ω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use of ω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness of ω-3 polyunsaturated fatty acids.

  13. Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density.

    Science.gov (United States)

    Lage, Sergio; Bueno, María; Andrade, Fernando; Prieto, José Angel; Delgado, Carmen; Legarda, María; Sanjurjo, Pablo; Aldámiz-Echevarría, Luis Jose

    2010-12-01

    Patients with phenylketonuria (PKU) undergo a restrictive vegan-like diet, with almost total absence of n-3 fatty acids, which have been proposed as potential contributors to bone formation in the healthy population. The PKU diet might lead these patients to bone mass loss and, consequently, to the development of osteopenia/osteoporosis. Therefore, we proposed to analyze their plasma fatty acid profile status and its relationship with bone health. We recruited 47 PKU patients for this cross-sectional study and divided the cohort into three age groups (6-10 years, 11-18 years, 19-42 years). We measured their plasma fatty acid profile and bone mineral density (BMD) (both at the femoral neck and the lumbar spine). Seventy-seven healthy controls also participated as reference values of plasma fatty acids. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and total n-3 fatty acids were significantly diminished in PKU patients compared with healthy controls. DHA, EPA, and total n-3 fatty acids were also positively associated with bone mineral density (r = 0.83, p = 0.010; r = 0.57, p = 0.006; r = 0.73, p = 0.040, respectively). There was no association between phenylalanine (Phe), Index of Dietary Control (IDC), calcium, 25-hydroxivitamin D concentrations, daily calcium intake, and BMD. Our results suggest a possible influence of essential fatty acids over BMD in PKU patients. The lack of essential n-3 fatty acids intake in the PKU diet might affect bone mineralization. Further clinical trials are needed to confirm the effect of the n-3 essential fatty acids on bone accrual in a cohort of PKU patients.

  14. Differential partitioning of rumen-protected n-3 and n-6 fatty acids into muscles with different metabolism.

    Science.gov (United States)

    Wolf, C; Ulbrich, S E; Kreuzer, M; Berard, J; Giller, K

    2018-03-01

    Bioavailability of polyunsaturated fatty acids (PUFA) in ruminants is enhanced by their protection from ruminal biohydrogenation. Both n-3 and n-6 PUFA fulfil important physiological functions. We investigated potentially different incorporation patterns of these functional PUFA into three beef muscles with different activity characteristics. We supplemented 33 Angus heifers with rumen-protected oils characterized either by mainly C18:2 n-6 (linoleic acid (LA) in sunflower oil) or by C20:5 (eicosapentaenoic acid (EPA)) and C22:6 (docosahexaenoic acid (DHA)), both prevalent n-3 PUFA in fish oil. Contents and proportions of n-3 and n-6 PUFA of total fatty acids were elevated in the muscles of the respective diet group but they were partitioned differently into the muscles. For EPA and DHA, but not for LA, the diet effect was more distinct in the extensor carpi radialis compared to longissimus thoracis and biceps femoris. Partitioning of PUFA in metabolism could be related to muscle function. This has to be confirmed in other muscles, adipose tissues and organs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae.

    Science.gov (United States)

    Aussant, Justine; Guihéneuf, Freddy; Stengel, Dagmar B

    2018-04-25

    Microalgae are considered a sustainable source of high-value products with health benefits. Marine algae-derived omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are considered dietary elements with effects on mental health, cognition enhancement, and cardiovascular protection. This study investigated the temperature effect on omega-3 LC-PUFA production in eight species of microalgae from various taxonomic groups, with a focus on achieving an optimal balance between omega-3 accumulation and efficient growth performance. Samples were batch-cultivated at four different temperatures, with constant light, and fatty acid methyl esters (FAME) were analyzed by gas chromatography. Several nutritional indices were calculated to assess the potential value of biomass produced for human consumption. Two promising candidates were identified suitable for batch cultivation and large-scale production: Nannochloropsis oculata for EPA and Isochrysis galbana for DHA production, with optimum productivities obtained between 14 and 20 °C, and nutritional indices falling within the range required for nutritional benefit.

  16. Topical Formulation Comprising Fatty Acid Extract from Cod Liver Oil: Development, Evaluation and Stability Studies.

    Science.gov (United States)

    Ilievska, Biljana; Loftsson, Thorsteinn; Hjalmarsdottir, Martha Asdis; Asgrimsdottir, Gudrun Marta

    2016-06-01

    The purpose of this study was to develop a pharmaceutical formulation containing fatty acid extract rich in free omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid for topical use. Although the health benefits of cod liver oil and other fish oils taken orally as a dietary supplement have been acknowledged and exploited, it is clear that their use can be extended further to cover their antibacterial properties. In vitro evaluation showed that 20% (v/v) fatty acid extract exhibits good activity against strains of the Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis, Streptoccoccus pyogenes and Streptoccoccus pneumonia. Therefore, free polyunsaturated fatty acids from cod liver oil or other fish oils can be used as safe and natural antibacterial agents. In this study, ointment compositions containing free fatty acids as active antibacterial agents were prepared by using various natural waxes and characterized. The effects of different waxes, such as carnauba wax, ozokerite wax, laurel wax, beeswax, rice bran wax, candelilla wax and microcrystalline wax, in the concentration range of 1% to 5% (w/w) on the ointment texture, consistency and stability were evaluated. The results showed significant variations in texture, sensory and rheological profiles. This was attributed to the wax's nature and chain composition. Microcrystalline wax gave the best results but laurel wax, beeswax and rice bran wax exhibited excellent texturing, similar sensory profiles and well-balanced rheological properties.

  17. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats.

    Directory of Open Access Journals (Sweden)

    Jean A Hall

    Full Text Available The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA, but no eicosapentaenoic acid (EPA or docosahexaenoic acid (DHA. Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001 serum concentrations of EPA (173%, DHA (61%, and AA (35%; decreased urine specific gravity (P = 0.02; decreased urine calcium concentration (P = 0.06; decreased relative-super-saturation for struvite crystals (P = 0.03; and increased resistance to oxalate crystal formation (P = 0.06 compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01. These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA.

  18. Fucoxanthin and Polyunsaturated Fatty Acids Co-Extraction by a Green Process

    Directory of Open Access Journals (Sweden)

    Antoine Delbrut

    2018-04-01

    Full Text Available By their autotrophic nature and their molecular richness, microalgae are serious assets in the context of current environmental and societal challenges. Some species produce both omega-3 long chain polyunsaturated fatty acids (PUFAs and xanthophylls, two molecular families widely studied for their bioactivities in the fields of nutrition and cosmetics. Whereas most studies separately deal with the two families, synergies could be exploited with extracts containing both PUFAs and xanthophylls. The purpose of our work was to determine cost effective and eco-friendly parameters for their co-extraction. The effect of several parameters (solvent, solvent/biomass ratio, temperature, duration were studied, using two microalgal species, the non-calcifying Haptophyta Tisochrysis lutea, and the diatom Phaeodactylum tricornutum, that presents a silicified frustule. Analyses of PUFAs and fucoxanthin (Fx, the main xanthophyll, allowed to compare kinetics and extraction yields between experimental protocols. Co-extraction yields achieved using 96% ethanol as solvent were 100% for Fx and docosahexaenoic acid (DHA in one hour from T. lutea biomass, and respectively 95% and 89% for Fx and eicosapentaenoic acid (EPA in eight hours from P. tricornutum. These conditions are compatible with industrial applications.

  19. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry.

    Science.gov (United States)

    Walker, Rebecca; Decker, Eric A; McClements, David Julian

    2015-01-01

    Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (rfoods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.

  20. Effect of eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, on UVR-related cancer risk in humans. An assessment of early genotoxic markers

    NARCIS (Netherlands)

    Rhodes, L.E.; Shahbakhti, H.; Azurdia, R.M.; Moison, R.M.W.; Steenwinkel, M.J.S.T.; Homburg, M.I.; Dean, M.P.; McArdle, F.; Beijersbergen van Henegouwen, G.M.J.; Epe, B.; Vink, A.A.

    2003-01-01

    Dietary omega-3 polyunsaturated fatty acids (ω-3 PUFAs) protect against photocarcinogenesis in animals, but prospective human studies are scarce. The mechanism(s) underlying the photoprotection are uncertain, although ω-3 PUFAs may influence oxidative stress. We examined the effect of

  1. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  2. Functional Foods Enriched with Marine Microalga Nannochloropsis oculata as a Source of ω-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Srinivasan Babuskin

    2014-01-01

    Full Text Available The demand for functional food incorporated with ω-3 fatty acids is increasing over the years due to their added health benefits, such as reducing the risk of cardiovascular diseases, type II diabetes, ocular diseases, arthritis, etc. This study mainly aims to develop functional cookies and pasta enriched with ω-3 fatty acids. Nannochloropsis oculata was used because of its relatively high growth rate, high lipid content, resistance to mixing and contamination together with high nutritional values. The effect of the incorporation of Nannochloropsis oculata biomass on colour, firmness, fatty acid profile and sensory characteristics of cookies and pasta were evaluated. The colour values were found to be stable for two months of storage and the firmness increased with the addition of microalgal biomass. Omega-3 polyunsaturated fatty acid (PUFA levels (eicosapentaenoic and docosahexaenoic acids of 98 mg per 100 g and 63 mg per 100 g were observed in cookies and pasta, respectively, enriched with 1 % of Nannochloropsis oculata biomass. Sensory evaluation showed that the addition of up to 2 and 3 % of microalgal biomass was positively evaluated and accepted for cookies and pasta, respectively. This study confirms that the cookies and pasta enriched with Nannochloropsis oculata biomass might be used as a potential source of ω-3 fatty acids.

  3. Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria.

    Science.gov (United States)

    Gramer, Gwendolyn; Haege, Gisela; Langhans, Claus-Dieter; Schuhmann, Vera; Burgard, Peter; Hoffmann, Georg F

    2016-06-01

    Patients with phenylketonuria have been reported to be deficient in long-chain polyunsaturated fatty acids (LCPUFAs). It has been postulated that good compliance with the dietary regimen negatively influences LCPUFA status. In 36 patients with phenylketonuria and 18 age-matched healthy control subjects LCPUFA-levels in plasma phospholipids and cholesteryl esters, erythrocyte phosphatidylcholine and phosphatidylethanolamine were evaluated. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels did not differ significantly between patients and control subjects in plasma and erythrocyte fractions. There was a significant negative correlation between SDS (standard deviation) scores of DHA-levels in erythrocyte parameters from the respective age-matched control group and patients' concurrent and long-term phenylalanine levels for erythrocyte phosphatidylethanolamine and erythrocyte phosphatidylcholine. Patients with lower (higher) phenylalanine levels had positive (negative) DHA-SDS. In contrast to previous reports we did not find lower LCPUFA-levels in patients with phenylketonuria compared to age-matched healthy control subjects. Good dietary control was associated with better LCPUFA status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of dietary fatty acids on the production and quality of eggs and larvae of Atlantic cod (Gadus morhua L.)

    DEFF Research Database (Denmark)

    Røjbek, Maria; Støttrup, Josianne; Jacobsen, Charlotte

    2014-01-01

    Cultivated Atlantic cod (Gadus morhua) entering their first year of gamete maturation were fed diets with different levels of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) for 6.5 months prior to commencement of spawning. Gravid females were stripped three times: at the beginning, peak......–173% higher in eggs than in diets. Cod fed the diet with the lowest EPA/ARA ratio had the greatest egg production. Eggs from fish on a diet with high ARA level had significantly higher fertilization and hatching success than those fed low levels of ARA. This diet produced on average 71 viable eggs g 1 female...

  5. Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Cristina de Mello-Sampayo

    2017-07-01

    Full Text Available Diacronema vlkianum is a marine microalgae for which supposed health promoting effects have been claimed based on its phytochemical composition. The potential use of its biomass as health ingredient, including detox-shakes, and the lack of bioavailability studies were the main concerns. In order to evaluate the microalgae-biomass assimilation and its health-benefits, single-dose (CD1-mice studies were followed by 66-days repeated-dose study in Wistar rats with the highest tested single-dose of microalgae equivalent to 101 mg/kg eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA. Microalgae-supplementation modulated EPA and docosapentaenoic acid enrichment at arachidonic acid content expenditure in erythrocytes and liver, while increasing EPA content of heart and adipose tissues of rats. Those fatty acid (FA changes confirmed the D. vlkianum-biomass FA assimilation. The principal component analyses discriminated brain from other tissues, which formed two other groups (erythrocytes, liver, and heart separated from kidney and adipose tissues, pointing to a distinct signature of FA deposition for the brain and for the other organs. The improved serum lipid profile, omega-3 index and erythrocyte plasticity support the cardiovascular benefits of D. vlkianum. These results bolster the potential of D. vlkianum-biomass to become a “heart-healthy” food supplement providing a safe and renewable source of bioavailable omega-3 FA.

  6. Treatment of an adrenomyeloneuropathy patient with Lorenzo's oil and supplementation with docosahexaenoic acid-A case report

    Directory of Open Access Journals (Sweden)

    Bergh Jacobus J

    2011-08-01

    Full Text Available Abstract This is a case report of adrenomyeloneuropathy (AMN, the adult variant of adrenoleukodystryphy (ALD. The diagnoses in the patient, aged 34, was confirmed via increased serum very long chain fatty acid concentration (VLCFA. Treatment started with the cholesterol lowering drug, atorvastatin, followed by add-on therapy with Lorenzo's oil (LO and finally supplementation with docosahexaenoic acid (DHA. The magnetic resonance imaging (MRI scan of the AMN patient before DHA treatment, already showed abnormal white matter in the brain. Although the MRI showed no neurological improvement after 6 months of DHA treatment, no selective progression of demyelination was detected in the AMN patient. Contrary to what was expected, LO failed to sustain or normalize the VLCFA levels or improve clinical symptoms. It was however, shown that DHA supplementation in addition to LO, increased DHA levels in both plasma and red blood cells (RBC. Additionally, the study showed evidence that the elongase activity in the elongation of eicosapentaenoic acid (EPA to docosapentaenoic acid (DPA might have been significantly compromised, due to the increased DHA levels.

  7. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology.

    Science.gov (United States)

    Khadge, Saraswoti; Sharp, John Graham; Thiele, Geoffrey M; McGuire, Timothy R; Klassen, Lynell W; Duryee, Michael J; Britton, Holly C; Dafferner, Alicia J; Beck, Jordan; Black, Paul N; DiRusso, Concetta C; Talmadge, James

    2018-02-01

    Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Incorporation of eicosapentaenioic and docosahexaenoic acids into breast adipose tissue of women at high risk of breast cancer: a randomized clinical trial of dietary fish and n-3 fatty acid capsules.

    Science.gov (United States)

    Straka, Shana; Lester, Joanne L; Cole, Rachel M; Andridge, Rebecca R; Puchala, Sarah; Rose, Angela M; Clinton, Steven K; Belury, Martha A; Yee, Lisa D

    2015-09-01

    The fatty acid profile of dietary lipids is reflected in mammary adipose tissue and may influence mammary gland biology and cancer risk. To determine the effects of fish consumption on breast adipose tissue fatty acids, we conducted a study of fish versus n-3 PUFA supplements in women at increased risk of breast cancer. High risk women were randomized to comparable doses of marine n-3 PUFAs as canned salmon + albacore or capsules for 3 months. Pre- and posttreatment fatty acid profiles were obtained by GC. Dietary fish (n = 12) and n-3 PUFA capsules (n = 13) yielded increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma (p breast fat (p Women taking capsules had higher plasma and erythrocyte membrane EPA changes (∼four versus twofold, p = 0.002), without significant differences in DHA. Increases in breast adipose EPA, DHA were similar for both groups. Higher BMI correlated with smaller changes in plasma, erythrocyte membrane EPA, and breast adipose EPA, DHA. Adherence was excellent at 93.9% overall and higher in the fish arm (p = 0.01). Fish provides an excellent source of n-3 PUFAs that increases breast adipose EPA, DHA similar to supplements and represents a well-tolerated intervention for future studies of the impact of n-3 PUFAs and dietary patterns on breast cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of the ovary fatty acids composition of Rhamdia quelen (Quoy & Gaimard (Teleostei: Siluriformes, throughout their reproductive cycle

    Directory of Open Access Journals (Sweden)

    Rodrigo Vargas Anido

    Full Text Available Knowledge about gonad fatty acid composition is important for broodstock diet formulation. This study characterized ovary fatty acid composition of wild female jundiá catfish (Rhamdia quelen in their different gonadal maturation stages. Female jundiá (n = 36, average weight= 383.8 + 208.8 g were captured in the rio Uruguay, comprising all seasons. Ovaries were extracted and classified according to their gonadal maturation stage. Gonad-somatic ratio varied significantly among seasons, being higher in spring (3.7, followed by summer (2.2, winter (0.9 and autumn (0.6. Main fatty acids groups detected were: saturated (SFA= 35.5%, monounsaturated (MUFA= 28.1% and polyunsaturated fatty acids (PUFA= 33.5%. Over the four seasons, palmitic acid was recorded in large quantities, followed by docosahexaenoic acid (DHA and arachidonic acid (ARA. ARA was present in higher concentrations in immature or maturing ovaries, and its content decreased along the maturation process. Conversely, DHA and eicosapentaenoic acid (EPA contents increased during maturation. Such variation resulted in an increase in EPA/ARA and DHA/ARA ratios in mature gonads, which can be important for successful breeding. Such findings suggest that jundiá broodstock diets should contain lipids that provide long chain polyunsaturated fatty acids from both the n-3 and n-6 series to ensure gonadal maturation completion.

  10. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil.

    Science.gov (United States)

    Elkin, Robert G; Kukorowski, Alexandra N; Ying, Yun; Harvatine, Kevin J

    2018-02-01

    Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives. © 2018 AOCS.

  11. Absolute versus relative measures of plasma fatty acids and health outcomes: example of phospholipid omega-3 and omega-6 fatty acids and all-cause mortality in women.

    Science.gov (United States)

    Miura, Kyoko; Hughes, Maria Celia B; Ungerer, Jacobus P J; Smith, David D; Green, Adèle C

    2018-03-01

    In a well-characterised community-based prospective study, we aimed to systematically assess the differences in associations of plasma omega-3 and omega-6 fatty acid (FA) status with all-cause mortality when plasma FA status is expressed in absolute concentrations versus relative levels. In a community sample of 564 women aged 25-75 years in Queensland, Australia, baseline plasma phospholipid FA levels were measured using gas chromatography. Specific FAs analysed were eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, total long-chain omega-3 FAs, linoleic acid, arachidonic acid, and total omega-6 FAs. Levels of each FA were expressed in absolute amounts (µg/mL) and relative levels (% of total FAs) and divided into thirds. Deaths were monitored for 17 years and hazard ratios and 95% confidence intervals calculated to assess risk of death according to absolute versus relative plasma FA levels. In total 81 (14%) women died during follow-up. Agreement between absolute and relative measures of plasma FAs was higher in omega-3 than omega-6 FAs. The results of multivariate analyses for risk of all-cause mortality were generally similar with risk tending to inverse associations with plasma phospholipid omega-3 FAs and no association with omega-6 FAs. Sensitivity analyses examining effects of age and presence of serious medical conditions on risk of mortality did not alter findings. The directions and magnitude of associations with mortality of absolute versus relative FA levels were comparable. However, plasma FA expressed as absolute concentrations may be preferred for ease of comparison and since relative units can be deduced from absolute units.

  12. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ..., Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of castor oil, polymer with adipic acid, linoleic acid... pesticide formulation. Advance Polymer Technology submitted a petition to EPA under the Federal Food, Drug...

  13. Effects of ω-3 Fatty Acid Supplementation on Glycemic Status and Hhigh Sensitive C-Reactive Protein in Women with Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Rafraf

    2012-12-01

    Full Text Available Background & Objectives: Polycystic ovary syndrome (PCOS is one of the major endocrine disorders among females. PCOS is associated with development of type 2 diabetes and cardiovascular disease. The objectives of this study were to determine the effects of omega-3 fatty acids on glycemic status and high sensitive C-reactive protein in women with PCOS.   Methods: This double-blind randomized controlled clinical trial was conducted on 61 PCOS patients. Subjects in ω-3 fatty acids (n=30 and placebo (n=31 groups take 4 ω-3 fatty acids capsules (each one contained 180 mg eicosapentaenoic acid and 120 mg docosahexanoic acid or placebo daily for 8 weeks. Anthropometric and biochemical measurments and food intakes were assessed at the beginning and at the end of the study.   Results: ω-3 fatty acid supplementation caused significant decrease in serum levels of glucose, insulin (p 0.05.   Conclusion: ω-3 fatty acid supplementation had some beneficial effects on glycemic status of PCOS patients and may be useful in prevention and control of metabolic conmplication of this syndrome.

  14. Slaughter yield and fatty acid profiles of fillets of pike (Esox lucius L. caught before and after spawning

    Directory of Open Access Journals (Sweden)

    Zakęś Zdzisław

    2015-12-01

    Full Text Available The aim of the study was to determine the impact pike fishing season (before spawning in fall (group A and after spawning in spring (group B had on the slaughter yield and fillet fatty acid profile. The slaughter yield of fillets with skin and skinned fillets from the group B fish was significantly lower (by approximately 7.5% of body weight. The fatty acid profile of the fish meat from the groups examined differed significantly. The fillets of pike caught before spawning were dominated by unsaturated fatty acids (UFA, while those from fish caught after spawning had mainly saturated fatty acids (SFA. The share of polyunsaturated fatty acids (PUFA in the fillets of fish that had spawned was sixfold lower, and the n-3 PUFA differences were nearly ninefold. The content of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids in fillets of fish that had spawned was ninefold lower than in those that had not yet done so. Consequently, the ratio of n-3 PUFA/n-6 PUFA in pike from group A was over three times higher than that in the fish that had spawned (2.61 vs 0.82. Fillets from pike that have spawned are a significantly poorer source of valuable fatty acids for consumers.

  15. Fatty acid profile of the fat in selected smoked marine fish.

    Science.gov (United States)

    Regulska-Ilow, Bozena; Ilow, Rafał; Konikowska, Klaudia; Kawicka, Anna; Rózańska, Dorota; Bochińska, Agnieszka

    2013-01-01

    Fish and marine animals fat is a source of unique long chain polyunsaturated fatty acids (LC-PUFA): eicosapentaenoic (EPA), docosahexaenoic (DHA) and dipicolinic (DPA). These compounds have a beneficial influence on blood lipid profile and they reduce the risk of cardiovascular diseases, atherosclerosis and disorders of central nervous system. The proper ratio of n-6/n-3 fatty acids in diet is necessary to maintain a balance between the effects of eicosanoids synthesized from these acids in the body. The aim of this study was the evaluation of total fat and cholesterol content and percentage of fatty acids in selected commercial smoked marine fish. The studied samples were smoked marine fish such as: halibut, mackerel, bloater and sprat. The percentage total fat content in edible muscles was evaluated via the Folch modified method. The fat was extracted via the Bligh-Dyer modified method. The enzymatic hydrolysis was used to assesses cholesterol content in samples. The content of fatty acids, expressed as methyl esters, was evaluated with gas chromatography. The average content of total fat in 100 g of fillet of halibut, mackerel, bloater and sprat amounted respectively to: 14.5 g, 25.7 g, 13.9 g and 13.9 g. The average content of cholesterol in 100 g of halibut, mackerel, bloater and sprat was respectively: 54.5 mg, 51.5 mg, 57.5 mg and 130.9 mg. The amount of saturated fatty acids (SFA) was about 1/4 of total fatty acids in the analyzed samples. The oleic acid (C18:1 n-9) was the major compound among monounsaturated fatty acids (MUFA) and amounted to 44% of these fatty acids. The percentage of polyunsaturated fatty acids (PUFA) in halibut, mackerel, bloater and sprat was respectively: 31.9%, 45.4%, 40.8% and 37.0%. The percentage of n-3 PUFA in mackerel and bloater was 30.1% and 30.2%, while in halibut and sprat was lower and amounted to 22.5% and 25.6%, respectively. In terms of nutritional magnitude the meat of mackerel and herring, compared to the meat of

  16. Topical Formulation Comprising Fatty Acid Extract from Cod Liver Oil: Development, Evaluation and Stability Studies

    Directory of Open Access Journals (Sweden)

    Biljana Ilievska

    2016-06-01

    Full Text Available The purpose of this study was to develop a pharmaceutical formulation containing fatty acid extract rich in free omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid for topical use. Although the health benefits of cod liver oil and other fish oils taken orally as a dietary supplement have been acknowledged and exploited, it is clear that their use can be extended further to cover their antibacterial properties. In vitro evaluation showed that 20% (v/v fatty acid extract exhibits good activity against strains of the Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis, Streptoccoccus pyogenes and Streptoccoccus pneumonia. Therefore, free polyunsaturated fatty acids from cod liver oil or other fish oils can be used as safe and natural antibacterial agents. In this study, ointment compositions containing free fatty acids as active antibacterial agents were prepared by using various natural waxes and characterized. The effects of different waxes, such as carnauba wax, ozokerite wax, laurel wax, beeswax, rice bran wax, candelilla wax and microcrystalline wax, in the concentration range of 1% to 5% (w/w on the ointment texture, consistency and stability were evaluated. The results showed significant variations in texture, sensory and rheological profiles. This was attributed to the wax’s nature and chain composition. Microcrystalline wax gave the best results but laurel wax, beeswax and rice bran wax exhibited excellent texturing, similar sensory profiles and well-balanced rheological properties.

  17. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics

    Science.gov (United States)

    2013-01-01

    Background Dietary supplementation with botanical oils that contain n-6 and n-3 eighteen carbon chain (18C)-PUFA such as γ linolenic acid (GLA, 18:3n-6), stearidonic acid (SDA, 18:4n-3) and α linolenic acid (ALA, 18:3n-3) have been shown to impact PUFA metabolism, alter inflammatory processes including arachidonic acid (AA) metabolism and improve inflammatory disorders. Methods The diet of mild asthmatics patients was supplemented for three weeks with varying doses of two botanical seed oils (borage oil [Borago officinalis, BO] and echium seed oil [Echium plantagineum; EO]) that contain SDA, ALA and GLA. A three week wash out period followed. The impact of these dietary manipulations was evaluated for several biochemical endpoints, including in vivo PUFA metabolism and ex vivo leukotriene generation from stimulated leukocytes. Results Supplementation with several EO/BO combinations increased circulating 20–22 carbon (20–22C) PUFAs, including eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and dihommo-gammalinolenic acid (DGLA), which have been shown to inhibit AA metabolism and inflammation without impacting circulating AA levels. BO/EO combinations also inhibited ex vivo leukotriene generation with some combinations attenuating cysteinyl leukotriene generation in stimulated basophils by >50% and in stimulated neutrophils by >35%. Conclusions This study shows that dietary supplementation with BO/EO alters 20–22C PUFA levels and attenuates leukotriene production in a manner consistent with a reduction in inflammation. PMID:24088297

  18. Comparing the Impact of Prescription Omega-3 Fatty Acid Products on Low-Density Lipoprotein Cholesterol.

    Science.gov (United States)

    Sharp, Randall P; Gales, Barry J; Sirajuddin, Riaz

    2018-04-01

    Elevated levels of triglycerides are associated with pancreatitis and an increased risk of coronary heart disease. Numerous pharmacologic therapies are available to treat hypertriglyceridemia, including prescription omega-3 fatty acids, which reduce triglyceride levels by 20-50%. Available data indicate the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be beneficial for secondary prevention of coronary heart disease. Products containing DHA may increase low-density lipoprotein cholesterol (LDL-C) and, subsequently, coronary heart disease risk. We reviewed prescription omega-3 fatty acid products, of which two-omega-3 acid ethyl esters (OM3EE) and omega-3 carboxylic acid (OM3CA)-contain both DHA and EPA, whereas the other-icosapent ethyl (IPE)-contains EPA only. We identified three retrospective chart reviews and three case reports comparing IPE with OM3EE, whereas two studies compared IPE with placebo. We also reviewed the major studies of OM3EE versus placebo used to gain US FDA approval. LDL-C levels decreased or did not increase significantly in all available studies and case reports in patients receiving the IPE product, with the best data supporting a dose of 4 g per day. The majority of studies only included patients taking IPE concomitantly with statins, but limited data from one study using IPE monotherapy showed a small reduction in LDL-C. Many questions remain regarding IPE, including whether the product reduces cardiovascular events and mortality.

  19. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    Science.gov (United States)

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series.

  20. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    Science.gov (United States)

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  2. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women's Health Initiative Memory Study.

    Directory of Open Access Journals (Sweden)

    William S Harris

    Full Text Available The relations between dietary and/or circulating levels of fatty acids and the development of type 2 diabetes is unclear. Protective associations with the marine omega-3 fatty acids and linoleic acid, and with a marker of fatty acid desaturase activity delta-5 desaturase (D5D ratio have been reported, as have adverse relations with saturated fatty acids and D6D ratio.To determine the associations between red blood cell (RBC fatty acid distributions and incident type 2 diabetes.Prospective observational cohort study nested in the Women's Health Initiative Memory Study.General population.Postmenopausal women.Self-reported incident type 2 diabetes.There were 703 new cases of type 2 diabetes over 11 years of follow up among 6379 postmenopausal women. In the fully adjusted models, baseline RBC D5D ratio was inversely associated with incident type 2 diabetes [Hazard Ratio (HR 0.88, 95% confidence interval (CI 0.81-0.95 per 1 SD increase. Similarly, baseline RBC D6D ratio and palmitic acid were directly associated with incident type 2 diabetes (HR 1.14, 95% CI 1.04-1.25; and HR 1.24, 95% CI 1.14-1.35, respectively. None of these relations were materially altered by excluding incident cases in the first two years of follow-up. There were no significant relations with eicosapentaenoic, docosahexaenoic or linoleic acids.Whether altered fatty acid desaturase activities or palmitic acid levels are causally related to the development of type 2 diabetes cannot be determined from this study, but our findings suggest that proportions of certain fatty acids in RBC membranes are associated with risk for type 2 diabetes.

  3. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women's Health Initiative Memory Study.

    Science.gov (United States)

    Harris, William S; Luo, Juhua; Pottala, James V; Margolis, Karen L; Espeland, Mark A; Robinson, Jennifer G

    2016-01-01

    The relations between dietary and/or circulating levels of fatty acids and the development of type 2 diabetes is unclear. Protective associations with the marine omega-3 fatty acids and linoleic acid, and with a marker of fatty acid desaturase activity delta-5 desaturase (D5D ratio) have been reported, as have adverse relations with saturated fatty acids and D6D ratio. To determine the associations between red blood cell (RBC) fatty acid distributions and incident type 2 diabetes. Prospective observational cohort study nested in the Women's Health Initiative Memory Study. General population. Postmenopausal women. Self-reported incident type 2 diabetes. There were 703 new cases of type 2 diabetes over 11 years of follow up among 6379 postmenopausal women. In the fully adjusted models, baseline RBC D5D ratio was inversely associated with incident type 2 diabetes [Hazard Ratio (HR) 0.88, 95% confidence interval (CI) 0.81-0.95) per 1 SD increase. Similarly, baseline RBC D6D ratio and palmitic acid were directly associated with incident type 2 diabetes (HR 1.14, 95% CI 1.04-1.25; and HR 1.24, 95% CI 1.14-1.35, respectively). None of these relations were materially altered by excluding incident cases in the first two years of follow-up. There were no significant relations with eicosapentaenoic, docosahexaenoic or linoleic acids. Whether altered fatty acid desaturase activities or palmitic acid levels are causally related to the development of type 2 diabetes cannot be determined from this study, but our findings suggest that proportions of certain fatty acids in RBC membranes are associated with risk for type 2 diabetes.

  4. Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study

    Directory of Open Access Journals (Sweden)

    David Robert M

    2009-05-01

    Full Text Available Abstract It is well established that the ingestion of the omega-3 (N3 fatty acids docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3 in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ containing MicroN3 (450–550 mg EPA/DHA during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P

  5. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Science.gov (United States)

    Leu, E.; Daase, M.; Schulz, K. G.; Stuhr, A.; Riebesell, U.

    2013-02-01

    The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm), yielding pH values (on the total scale) from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1) prior to the addition of inorganic nutrients, (2) first bloom after nutrient addition, and (3) second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs): 44-60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA), an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes) increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  6. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  7. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  8. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    Science.gov (United States)

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka.

  9. Effects of EPA and lipoic acid supplementation on circulating FGF21 and the fatty acid profile in overweight/obese women following a hypocaloric diet.

    Science.gov (United States)

    Escoté, Xavier; Félix-Soriano, Elisa; Gayoso, Lucía; Huerta, Ana Elsa; Alvarado, María Antonella; Ansorena, Diana; Astiasarán, Iciar; Martínez, J Alfredo; Moreno-Aliaga, María Jesús

    2018-05-23

    FGF21 has emerged as a key metabolism and energy homeostasis regulator. Dietary supplementation with eicosapentaenoic acid (EPA) and/or α-lipoic acid (LIP) has shown beneficial effects on obesity. In this study, we evaluated EPA and/or LIP effects on plasma FGF21 and the fatty acid (FA) profile in overweight/obese women following hypocaloric diets. At the baseline, FGF21 levels were negatively related to the AST/ALT ratio and HMW adiponectin. The weight loss did not cause any significant changes in FGF21 levels, but after the intervention FGF21 increased in EPA-supplemented groups compared to non-EPA-supplemented groups. EPA supplementation decreased the plasma n-6-PUFA content and increased n-3-PUFAs, mainly EPA and DPA, but not DHA. In the LIP-alone supplemented group a decrease in the total SFA and n-6-PUFA content was observed after the supplementation. Furthermore, EPA affected the desaturase activity, lowering Δ4D and raising Δ5/6D. These effects were not observed in the LIP-supplemented groups. Besides, the changes in FGF21 levels were associated with the changes in EPA, n-3-PUFAs, Δ5/6D, and n-6/n-3 PUFA ratio. Altogether, our study suggests that n-3-PUFAs influence FGF21 levels in obesity, although the specific mechanisms implicated remain to be elucidated.

  10. Fatty acids in six small pelagic fish species and their crustacean prey from the mindanao sea, southern Philippines.

    Science.gov (United States)

    Metillo, Ephrime Bicoy; Aspiras-Eya, Anna Arlene

    2014-08-01

    Fatty acids are important in human health and useful in the analysis of the marine food web, however information on tropical pelagic organisms is scarce. Six zooplanktivorous small pelagic fish species (Decapterus kurroides, Decapterus macarellus, Selar crumenophthalmus, Sardinella lemuru, Spratilloides gracilis and Stolephorus insularis) and four of their zooplanktonic crustacean prey [three sergestoid species (Acetes erythraeus, Acetes intermedius and Lucifer penicillifer) and one calanoid copepod (Acartia erythraea)] were collected from the Mindanao Sea, and their fatty acids were profiled. The resulting profiles revealed 17 fatty acids that were specific to certain species and 9 {myristic acid [C14:0], palmitic acid [C16:0], stearic acid [C18:0]; palmitoleic acid [C16:1], oleic acid [C18:1n9c], linoleic acid [C18:2n6c], linolenic acid [C18:3n3], eicosapentaenoic acid (EPA) [C20:5n3] and docosahexaenoic acid (DHA) [C22:6n3]} that were common to all species. Cluster analysis and non-metric multidimensional scaling (NMDS) of fatty acids indicate a high similarity in profiles in all species, but separate fish and zooplankton clusters were obtained. Mackerel species (D. macarellus, D. kurroides and S. crumenophthalmus) had concentrations of total n-3 fatty acids that match those of their Acetes prey. The copepod A. erythraea and the sergestoid L. penicillifer exhibited the lowest values of the EPA:DHA ratio, which was most likely due to their phytoplanktivorous feeding habits, but the occurrence of the highest values of the ratio in Acetes suggests the inclusion of plant detritus in their diet. DHA values appear to affirm the trophic link among copepod, Lucifer, Acetes and mackerel species.

  11. [Acids in coffee. XI. The proportion of individual acids in the total titratable acid].

    Science.gov (United States)

    Engelhardt, U H; Maier, H G

    1985-07-01

    22 acids in ground roast coffees and instant coffees were determined by GLC of their silyl derivatives (after preseparation by gel electrophoresis) or isotachophoresis. The contribution to the total acidity (which was estimated by titration to pH 8 after cation exchange of the coffee solutions) was calculated for each individual acid. The mentioned acids contribute with 67% (roast coffee) and 72% (instant coffee) to the total acidity. In the first place citric acid (12.2% in roast coffee/10.7% in instant coffee), acetic acid (11.2%/8.8%) and the high molecular weight acids (8%/9%) contribute to the total acidity. Also to be mentioned are the shares of chlorogenic acids (9%/4.8%), formic acid (5.3%/4.6%), quinic acid (4.7%/5.9%), malic acid (3.9%/3%) and phosphoric acid (2.5%/5.2%). A notable difference in the contribution to total acidity between roast and instant coffee was found for phosphoric acid and pyrrolidonecarboxylic acid (0.7%/1.9%). It can be concluded that those two acids are formed or released from e.g. their esters in higher amounts than other acids during the production of instant coffee.

  12. Growth, Fatty Acid, and Lipid Composition of Marine Microalgae Skeletonema costatum Available in Bangladesh Coast: Consideration as Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    Tania Sharmin

    2016-01-01

    Full Text Available Among the various potential sources of renewable energy, biofuels are of most interest. Marine microalgae are the most promising oil sources for making biofuels, which can grow very rapidly and convert solar energy to chemical energy via CO2 fixation. The fatty acid profile of almost all the microalgal oil is suitable for the synthesis of biofuel. In this research, fatty acid and lipid contents of Bangladeshi strains of marine microalgae Skeletonema costatum were performed. For this, the crude oil was extracted by Soxhlet extraction method, using three most common solvent systems, pure hexane and mixture of CHCl3 : MeOH (2 : 1 and hexane : EtOH (3 : 1 one by one. Highest oil recovery (15.37% came from CHCl3 : MeOH (2 : 1 solvent system from dry biomass whereas the lowest (2.49% came from n-hexane from wet biomass. The qualitative analysis of the extracted oil by GC/MS analysis revealed that it contained significant amount of myristic acid (C14:0, palmitic acid (C16:0, stearic acid (C18:0, and palmitoleic acid (C16:1. It also indicated presence of hexadecatrienoic acid, benzenedicarboxylic acid, oleic acid, arachidonic acid, eicosapentaenoic acid (EPA, 9-Octadecenoic acid methyl ester (C19H36O2, and so forth. The obtained fatty acid profile indicates high potentiality of S. costatum species to be used as promising biofuel feedstock a little improvisation and substantially it can replace diesel in near future.

  13. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans.

    Science.gov (United States)

    Bernal-Santos, G; O'Donnell, A M; Vicini, J L; Hartnell, G F; Bauman, D E

    2010-01-01

    Very long chain n-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) are important in human cardiac health and the prevention of chronic diseases, but food sources are limited. Stearidonic acid (SDA; 18:4n-3) is an n-3 fatty acid that humans are able to convert to EPA. In utilizing SDA-enhanced soybean oil (SBO) derived from genetically modified soybeans, our objectives were to examine the potential to increase the n-3 fatty acid content of milk fat and to determine the efficiency of SDA uptake from the digestive tract and transfer to milk fat. Three multiparous, rumen-fistulated Holstein cows were assigned randomly in a 3 x 3 Latin square design to the following treatments: 1) control (no oil infusion); 2) abomasal infusion of SDA-enhanced SBO (SDA-abo); and 3) ruminal infusion of SDA-enhanced SBO (SDA-rum). The SDA-enhanced SBO contained 27.1% SDA, 10.4% alpha-linolenic acid, and 7.2% gamma-linolenic acid. Oil infusions provided 57 g/d of SDA with equal amounts of oil infused into either the rumen or abomasum at 6-h intervals over a 7-d infusion period. Cow numbers were limited and no treatment differences were detected for DMI or milk production (22.9+/-0.5 kg/d and 32.3+/-0.9 kg/d, respectively; least squares means +/- SE), milk protein percentage and yield (3.24+/-0.04% and 1.03+/-0.02 kg/d), or lactose percentage and yield (4.88+/-0.05% and 1.55+/-0.05 kg/d). Treatment also had no effect on milk fat yield (1.36+/-0.03 kg/d), but milk fat percentage was lower for the SDA-rum treatment (4.04+/-0.04% vs. 4.30+/-0.04% for control and 4.41+/-0.05% for SDA-abo). The SDA-abo treatment increased n-3 fatty acids to 3.9% of total milk fatty acids, a value more than 5-fold greater than that for the control. Expressed as a percentage of total milk fatty acids, values (least squares means +/- SE) for the SDA-abo treatment were 1.55+/-0.03% for alpha-linolenic acid (18:3n-3), 1.86+/-0.02 for SDA, 0.23 +/- soybeans combined with proper ruminal protection to achieve

  14. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  15. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    Science.gov (United States)

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Baking reduces prostaglandin, resolvin, and hydroxy-fatty acid content of farm-raised Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Raatz, Susan K; Golovko, Mikhail Y; Brose, Stephen A; Rosenberger, Thad A; Burr, Gary S; Wolters, William R; Picklo, Matthew J

    2011-10-26

    The consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (22:6n-3) have known protective effects in the vasculature. It is not known whether the consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo salar) increases the level of n-3 and n-6 PUFA oxidation products over raw salmon. We measured the contents of several monohydroxy-fatty acids (MHFA), prostanoids, and resolvins. Our data demonstrate that baking did not change the overall total levels of MHFA. However, baking resulted in selective regioisomeric loss of hydroxy fatty acids from arachidonic acid (20:4n-6) and EPA, while significantly increasing hydroxyl-linoleic acid levels. The contents of prostanoids and resolvins were reduced several-fold with baking. The inclusion of a coating on the salmon prior to baking reduced the loss of some MHFA but had no effect on prostanoid losses incurred by baking. Baking did not decrease n-3 PUFA contents, indicating that baking of salmon is an acceptable means of preparation that does not alter the potential health benefits of high n-3 seafood consumption. The extent to which the levels of MHFA, prostanoids, and resolvins in the raw or baked fish have physiologic consequence for humans needs to be determined.

  17. Korzystny wpływ kwasów omega-3 na rozwój dziecka = The beneficial effect of omega-3 acids on child development

    Directory of Open Access Journals (Sweden)

    Agnieszka Pluta

    2016-07-01

    Zakład Pielęgniarstwa Społecznego Collegium Medicum w Bydgoszczy Uniwersytetu Mikołaja Kopernika w Toruniu         Keywords: child development, omega-3acids, supplementation. Słowa kluczowe: rozwój dziecka,  kwasy omega-3, suplementacja.     Abstract   Fatty acids are one of the determinants of normal development of the child. A special role is attributed to omega-3 acids. Representative of this group of acids include alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid. The paper presents the biological activity of omega-3 with a particular focus on their impact on child development.       Streszczenie   Kwasy tłuszczowe są jednym z determinantów prawidłowego rozwoju dziecka. Szczególną rolę przypisuje się kwasom omega-3. Przedstawicielami tej grupy kwasów są kwas alfa-linolenowy, dokozaheksaenowy oraz eikozapentaenowy. W pracy przedstawiono aktywność biologiczną kwasów omega-3 ze szczególnym uwzględnieniem ich wpływu na rozwój dziecka.

  18. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    Directory of Open Access Journals (Sweden)

    Bimal Prasanna Mohanty

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer’s disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  19. [Modification of the pattern of fatty acids of erythrocytes’ membranes due to the acetone intoxication].

    Science.gov (United States)

    Momot, T V; Kushnerova, N F; Rakhmanin, Yu A

    Results of the study of the impact of acetone intoxication on the fatty acids pattern of the general lipids of erythrocytes’ membranes in rats are presented. The inhalation exposure of acetone was carried out in the inoculation chamber with the volume of 100 liters. The chamber was designed for the type of B.A. Kurlyandsky with self-contained system of purification and air regeneration and specified parameters of temperature (20-22С) and air humidity. The flow rate of the air and aerosolized acetone passed through the chamber accounted of 10 liters/min. Concentration of acetone in the chamber was sustained at the level of 206 ± 3,9 mg/m that corresponds to maximum permissible concentration for acetone vapor in the air of a working area. The time of exposure was 6 hours per day for 3 weeks in a monotonous mode, excluding weekend, and was based upon specific parameters of environment simulation in industry. The acetone impact was shown to be accompanied by the gain in the quantity of all kinds of saturated fatty acids and the fall of unsaturated fatty acids in general lipids of erythrocytes ’ membranes in rats and in the structure ofphospholipid fractions. In the content of phosphatydilcholine and phosphatydilethanolamine, as a basic structural phospholipids of biological membranes, there was noted the increase in palmitic and stearic acids. In the range offatty acids of the n-6 family the amount of linoleic and arachidonic acids decreased. In the array of fatty acids of the n-3 family the content of linolenic, eicosapentaenoic and docosahexaenoic acids (n-3 family) declined. Redistribution of fatty acids in the erythrocytes membrane towards to such alteration in quantity as the increasing of saturation and decreasing of the unsaturated fatty acids supposes the change of its physical and chemical properties, permeability, lability and complexity of passing erythrocyte via microcircular channels.

  20. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome.

    Science.gov (United States)

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2017-11-02

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases (CVDs). On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and CVDs has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of CVDs, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese/overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of CVD risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in CVDs and metabolic syndrome.

  1. Effect of the omega-3 fatty acid plus vitamin E supplementation on subjective global assessment score, glucose metabolism, and lipid concentrations in chronic hemodialysis patients.

    Science.gov (United States)

    Asemi, Zatollah; Soleimani, Alireza; Bahmani, Fereshteh; Shakeri, Hossein; Mazroii, Navid; Abedi, Fatemeh; Fallah, Melika; Mohammadi, Ali Akbar; Esmaillzadeh, Ahmad

    2016-02-01

    This study was conducted to determine the effects of omega-3 fatty acid plus vitamin E supplementation on subjective global assessment (SGA) score and metabolic profiles in chronic hemodialysis (HD) patients. This randomized double-blind placebo-controlled clinical trial was conducted among 120 chronic HD patients. Participants were randomly divided into four groups to receive: (i) 1250 mg/day omega-3 fatty acid containing 600 mg eicosapentaenoic acid and 300 mg docosahexaenoic acid + vitamin E placebo (n = 30), (ii) 400 IU/day vitamin E + omega-3 fatty acids placebo (n = 30), (iii) 1250 mg omega-3 fatty acids/day + 400 IU/day vitamin E (n = 30), and (iv) omega-3 fatty acids placebo + vitamin E placebo (n = 30) for 12 wk. Fasting blood samples were taken at baseline and after 12-wk intervention to measure metabolic profiles. Patients who received combined omega-3 fatty acids and vitamin E supplements compared with vitamin E, omega-3 fatty acids, and placebo had significantly decreased SGA score (p acids plus vitamin E supplementation for 12 wk among HD patients had beneficial effects on SGA score and metabolic profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Directory of Open Access Journals (Sweden)

    João Varela

    2013-06-01

    Full Text Available The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.

  3. Low levels of docosahexaenoic acid identified in acute coronary syndrome patients with depression.

    Science.gov (United States)

    Parker, Gordon B; Heruc, Gabriella A; Hilton, Therese M; Olley, Amanda; Brotchie, Heather; Hadzi-Pavlovic, Dusan; Friend, Cheryl; Walsh, Warren F; Stocker, Roland

    2006-03-30

    As deficiencies in n-3 PUFAs have been linked separately to depression and to cardiovascular disease, they could act as a higher order variable contributing to the established link between depression and cardiovascular disease. We therefore examine the relationship between depression and omega-3 polyunsaturated fatty acids (n-3 PUFA), including total n-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in patients with acute coronary syndrome (ACS). Plasma phospholipid levels of n-3 PUFA were measured in 100 patients hospitalized with ACS. Current major depressive episode was assessed by the Composite International Diagnostic Interview (CIDI). Depression severity was assessed by the 18-item Depression in the Medically Ill (DMI-18) measure. Patients clinically diagnosed with current depression had significantly lower mean total n-3 PUFA and DHA levels. Higher DMI-18 depression severity scores were significantly associated with lower DHA levels, with similar but non-significant trends observed for EPA and total n-3 PUFA levels. The finding that low DHA levels were associated with depression variables in ACS patients may explain links demonstrated between cardiovascular health and depression, and may have prophylactic and treatment implications.

  4. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Science.gov (United States)

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  5. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2016-03-01

    Full Text Available In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  6. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  7. Omega-3 carboxylic acids (Epanova): a review of its use in patients with severe hypertriglyceridemia.

    Science.gov (United States)

    Blair, Hannah A; Dhillon, Sohita

    2014-10-01

    Omega-3 carboxylic acids (Epanova) [OM3-CA] is the first free fatty acid form of long-chain marine omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid being the most abundant) to be approved by the US FDA as an adjunct to diet to lower triglyceride levels in patients with severe hypertriglyceridemia (≥ 500 mg/dL). Oral OM3-CA has greater bioavailability than ethyl ester forms of omega-3 and, unlike omega-3 acid ethyl esters, does not require co-ingestion of a high-fat meal, as it does not need pancreatic enzyme activity for absorption. In the 12-week EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial, OM3-CA 2 or 4 g/day significantly reduced serum triglyceride levels relative to placebo. Other lipid parameters, including non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol, and very low-density lipoprotein cholesterol (VLDL-C) levels, were also reduced significantly with OM3-CA relative to placebo. Low-density lipoprotein cholesterol levels were increased significantly with OM3-CA relative to placebo; however, these increases were not accompanied by increases in the circulating concentrations of non-HDL-C, VLDL-C, or apolipoprotein B. OM3-CA was generally well tolerated in this study, with most adverse events being of mild or moderate severity. Although additional comparative data are needed to position OM3-CA with respect to other formulations of omega-3 fatty acids, current evidence suggests that OM3-CA is a useful addition to the treatment options available for patients with severe hypertriglyceridemia.

  8. Micronutrients, Essential Fatty Acids and Bone Health in Phenylketonuria.

    Science.gov (United States)

    Demirdas, Serwet; van Spronsen, Francjan J; Hollak, Carla E M; van der Lee, J Hanneke; Bisschop, Peter H; Vaz, Fred M; Ter Horst, Nienke M; Rubio-Gozalbo, M Estela; Bosch, Annet M

    2017-01-01

    In phenylketonuria (PKU), a natural protein-restricted dietary treatment prevents severe cognitive impairment. Nutrient deficiencies may occur due to strict diet. This study is aimed at evaluating the dietary intake and blood concentrations of micronutrients and essential fatty acids (FA), bone mineral density (BMD) and fracture history in patients on long-term dietary treatment. Sixty early diagnosed Dutch patients (aged 1-39 years) were included in a multi-center cross-sectional study. Their dietary intake, blood concentrations of micronutrients, FA, fracture history and BMD were assessed. Selenium dietary intake and serum concentrations were low in 14 and 46% of patients, respectively. The serum 25-OH vitamin D2 + D3 concentration was low in 14% of patients while 20% of patients had a low vitamin D intake. Zinc serum concentrations were below normal in 14% of patients, despite adequate intake. Folic acid serum concentrations and intake were elevated. Despite safe total protein and fat intake, arginine plasma concentrations and erythrocyte eicosapentaenoic acid were below reference values in 19 and 6% of patients, respectively. Low BMD (Z-score <-2) was slightly more prevalent in patients, but the lifetime fracture prevalence was comparable to the general population. Dutch patients with PKU on long-term dietary treatment have a near normal nutrient status. Supplementation of micronutrients of which deficiency may be deleterious (e.g., vitamin D and selenium) should be considered. BMD warrants further investigation. © 2017 S. Karger AG, Basel.

  9. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper

    2016-01-01

    (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from......OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... auricles, EAT above the right ventricle, PAT, and SAT below the sternum from 50 patients undergoing cardiac surgery. Samples were frozen at -80°C and the content of n-3 PUFAs determined by gas chromatography with results given in relative weight%. RESULTS EPA and DHA were significantly correlated in EAT...

  10. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    Science.gov (United States)

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Production of eicosapentaenoic acid by representatives of the genus Mortierella on brewers’ spent grain

    CSIR Research Space (South Africa)

    Jacobs, A

    2009-01-01

    Full Text Available Mucorales and Mortierellales (Cavalier- Smith 1998; Dyal & Narine 2005). The oil produced by these fungi has the GRAS (generally recognised as safe) status (Cohen & Ratledge 2005) and Mortierella species have found industrial applications... fermentation (Shimizu et al. 1989; Jang et al. 2000; Dyal & Narine 2005). Linseed c©2009 Institute of Molecular Biology, Slovak Academy of Sciences 2 A. Jacobs et al. oil (LSO), which contains ∼57% of the ω-3 precursor α-linolenic acid (C18:3 n-3), could...

  12. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  13. Eicosapentaenoic acid and docosahexaenoic acid in whole blood are differentially and sex-specifically associated with cardiometabolic risk markers in 8-11-year-old danish children

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Eidner, Maj B.; Stark, Ken D.

    2014-01-01

    -day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by the homeostatic model of assessment (HOMA-IR), and inflammatory...

  14. BIOTECHNOLOGY AS A USEFUL TOOL FOR NUTRITIONAL IMPROVEMENT OF CEREAL-BASED MATERIALS ENRICHED WITH POLYUNSATURATED FATTY ACIDS AND PIGMENTS

    Directory of Open Access Journals (Sweden)

    M. Čertík

    2008-09-01

    Full Text Available Cereals represent a major food supply for humanity. Although these sources are rich in proteins and carbohydrates, many of them are deficient in several essential nutrients, such as polyunsaturated fatty acids (PUFAs and carotenoid pigments. One possible approach how to enhance the content of PUFAs or carotenoids in cereal diet is based on biotechnological transformation of cereal materials by solid state fermentations. This technique is powerful tool for effective valorisation of these resources to various types of value-added bioproducts with demanded properties and functions. Selected filamentous Mucorales fungi were applied for conversion of numerous agroindustrial substrates to bioproducts enriched with PUFAs, such as gamma-linolenic acid (GLA, dihomo-gamma-linolenic acid (DGLA, arachidonic acid (AA and eicosapentaenoic acid (EPA. On the other hand, a range of yeast species utilizing agroindustrial substrates were employed for formation of carotenoids, such as β-carotene, torulene, torularhodine and astaxanthin. Such naturally prepared cereal based bioproducts enriched with either PUFAs or carotenoid pigments may be used as an inexpensive food and feed supplement. The work was supported by grant VEGA No. 1/0747/08 from the Grant Agency of Ministry of Education, Slovak Republic.

  15. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    Science.gov (United States)

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from 20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  16. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  17. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA.

    Science.gov (United States)

    Block, Robert C; Abdolahi, Amir; Tu, Xin; Georas, Steve N; Brenna, J Thomas; Phipps, Richard P; Lawrence, Peter; Mousa, Shaker A

    2015-05-01

    Aspirin's prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin's effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a "V"-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA.

  19. Alternation of plasma fatty acids composition and desaturase activities in children with liver steatosis.

    Directory of Open Access Journals (Sweden)

    Man-Chin Hua

    Full Text Available The aim of this study was to investigate changes in plasma fatty acids proportions and estimated desaturase activities for variable grading of liver steatosis in children.In total, 111 schoolchildren (aged 8-18 years were included in the analysis from March 2015 to August 2016. Anthropometric evaluation, liver ultrasound examination and scoring for nonalcoholic fatty liver disease (NAFLD score = 0-6, and biochemical and plasma fatty acids analysis were performed. We compared the composition ratio of fatty acids between children with high-grade liver steatosis (NAFLD score = 4-6, low-grade liver steatosis (NAFLD score = 1-3, and healthy controls (NAFLD score = 0. In addition, correlation coefficients (r between NAFLD score, metabolic variables, and estimated activity of desaturase indices (stearoyl-coenzyme A desaturase-1 (SCD1, delta-5 and delta-6 desaturase were calculated.Compared with healthy controls, children with liver steatosis showed a higher proportion of monounsaturated fatty acids (21.16 ± 2.81% vs. 19.68 ± 2.71%, p = 0.024. In addition, children with high- grade liver steatosis exhibited higher proportions of palmitic acid (C16:0, palmitoleic acid (C16:1n-7, dihomo-γ-linolenic acid (C20:3n-6, adrenic acid (C22:4n-6, and docosapentaenoic acid (C22:5n-6; and lower proportions of eicosapentaenoic acid (C20:5n-3 (P< 0.05. In all subjects, the NAFLD score was positively correlated with body mass index (BMI (kg/m2 (r = 0.696, homeostasis model of assessment ratio-index (HOMA-IR (r = 0.510, SCD1(16 (r = 0.273, and the delta-6 index (r = 0.494; and inversely associated with the delta-5 index (r = -0.443.Our current data suggested that children with liver steatosis was highly associated with obesity, and insulin resistance. In addition, increased endogenous lipogenesis through altered desaturase activity may contribute to the progression of liver steatosis in children.

  20. Usnic acid controls the acidity tolerance of lichens

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene

    2008-01-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK a1 value of usnic acid of 4.4. Below this optimum pH, dissolved SO 2 reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH a1 . - Combined field and experimental data suggest that usnic acid makes lichens sensitive to acidity at pH <3.5

  1. Do Omega-3/6 Fatty Acids Have a Therapeutic Role in Children and Young People with ADHD?

    Directory of Open Access Journals (Sweden)

    E. Derbyshire

    2017-01-01

    Full Text Available Background. Attention deficit hyperactivity disorder (ADHD is a debilitating behavioural disorder affecting daily ability to function, learn, and interact with peers. This publication assesses the role of omega-3/6 fatty acids in the treatment and management of ADHD. Methods. A systematic review of 16 randomised controlled trials was undertaken. Trials included a total of 1,514 children and young people with ADHD who were allocated to take an omega-3/6 intervention, or a placebo. Results. Of the studies identified, 13 reported favourable benefits on ADHD symptoms including improvements in hyperactivity, impulsivity, attention, visual learning, word reading, and working/short-term memory. Four studies used supplements containing a 9 : 3 : 1 ratio of eicosapentaenoic acid : docosahexaenoic acid : gamma linolenic acid which appeared effective at improving erythrocyte levels. Supplementation with this ratio of fatty acids also showed promise as an adjunctive therapy to traditional medications, lowering the dose and improving the compliance with medications such as methylphenidate. Conclusion. ADHD is a frequent and debilitating childhood condition. Given disparaging feelings towards psychostimulant medications, omega-3/6 fatty acids offer great promise as a suitable adjunctive therapy for ADHD.

  2. Response of periphyton fatty acid composition to supplemental flows in the upper Esopus Creek, Catskill Mountains, New York

    Science.gov (United States)

    George, Scott D.; Ernst, Anne G.; Baldigo, Barry P.; Honeyfield, Dale C.

    2016-01-07

    Fatty acid analysis of periphyton is an emerging tool for assessing the condition of a stream ecosystem on the basis of its water quality. The study presented in this report was designed to test the hypothesis that periphyton communities have a fatty acid profile that can detect excessive turbidity and suspended sediment. The fatty acid composition of periphyton was assessed during two seasons upstream and downstream from an underground aqueduct that provides supplemental flows, which are a potential source of turbidity and suspended sediment on the upper Esopus Creek, New York. These data were compared with measurements of periphyton standing crop, diatom community structure and integrity, and basic water-quality parameters. Periphyton standing crop and diatom community integrity indicated little evidence of impairment from the supplemental flows. The relative abundances of two physiologically important fatty acids, γ-linolenic acid (18:3ω6) and eicosapentaenoic acid (20:5ω3), were significantly lower downstream from the supplemental flows and multivariate analyses of fatty acid profiles identified significant differences between sites upstream and downstream from the supplemental flows. Individual fatty acids and summary metrics, however, were not significantly correlated with turbidity or suspended sediment. Together, these results indicate that the supplemental flows may cause some measurable effects but they do not constitute a major disturbance to the periphyton community on the upper Esopus Creek. Fatty acid analysis may have potential as a tool for monitoring changes in periphyton nutritional composition that may reflect water quality and ecosystem health but needs to be further evaluated around a more definitive source of water-quality impairment.

  3. Perinatal long chain polyunsaturated fatty acid supply Are there long term consequences?

    Directory of Open Access Journals (Sweden)

    Demmelmair Hans

    2007-05-01

    Full Text Available Long-chain polyunsaturated fatty acids (LC-PUFA, especially docosahexaenoic acid (DHA, are essential components of biological membranes or act as precursors for eicosanoid formation, in case of the 20 carbon atom fatty acids, arachidonic acid (AA, dihomo-c-linolenic acid and eicosapentaenoic acid. During pregnancy LC-PUFA are enriched in the fetal circulation relative to maternal plasma. The corresponding placental processes have not been fully elucidated so far, but there are good indications that the LC-PUFA enrichment during the materno-fetal transfer is mediated by differences in the incorporation into lipid classes within the placenta between fatty acids and that specific fatty acid binding and transfer proteins are of major importance. In vitro a plasma membrane fatty acid binding protein could be identified, which preferentially binds DHA and AA compared to linoleic and oleic acids; in addition the m-RNA expression of fatty acid transfer protein 4 (FATP-4 in placental tissue was found to correlate significantly with the DHA percentage in cord blood phospholipids. After birth the percentage of LC-PUFA in infantile blood rapidly declines to levels depending on the dietary LC-PUFA supply, although preterm and full-term babies can convert linoleic and _-linolenic acids into AA and DHA, respectively. Breast milk provides preformed LC-PUFA, and breastfed infants have higher LC-PUFA levels in plasma and tissue than infants fed formulas without LC-PUFA. The high percentage of DHA in brain and other nervous tissue and the fact that the perinatal period is a period of fast brain growth suggests the importance of placental DHA transfer and dietary DHA content for optimal infantile development. Most but not all randomized, double blind, controlled clinical trials in preterm and in healthy full term infants demonstrated benefits of formulas supplemented with DHA and AA for the neurological development compared to formulas without LC-PUFA. Furthermore

  4. Effects of omega-3 fatty acids on depression and quality of life in maintenance hemodialysis patients.

    Science.gov (United States)

    Dashti-Khavidaki, Simin; Gharekhani, Afshin; Khatami, Mohammad-Reza; Miri, Elham-Sadat; Khalili, Hossein; Razeghi, Effat; Hashemi-Nazari, Seyed-Saeed; Mansournia, Mohammad-Ali

    2014-01-01

    Depression and health-related quality of life (HRQoL) are closely interrelated among hemodialysis (HD) patients and associated with negative impacts on patients' clinical outcomes. Considering previous reports on clinical benefits of omega-3 fatty acids in major depression and HRQoL in other patient populations, this study examined effects of omega-3 fatty acids on depression and HRQoL in chronic HD patients. In this randomized placebo-controlled trial, 40 adult patients with a Beck Depression Inventory (BDI) score of ≥16 and HD vintage of at least 3 months were randomized to ingest 6 soft-gel capsules of either omega-3 fatty acids (180 mg eicosapentaenoic acid and 120 mg docosahexaenoic acid in each capsule) or corresponding placebo, daily for 4 months. At baseline and after 4 months, 2 questionnaires of BDI and the Medical Outcome Study 36-Item Short-Form Health Survey were completed by each patient. Although baseline BDI score was comparable between the 2 groups, it was significantly lower in the omega-3 group compared with the placebo group at the end of the study (P = 0.008). Except for mental health, social functioning, and general health, other domains of HRQoL showed significant improvement in the omega-3 group compared with the placebo group at month 4 of the study (P acids in HD patients with depressive symptoms seems to be efficacious in improving depressive symptoms and HRQoL.

  5. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Damitha De Mel

    2014-08-01

    Full Text Available Omega-3 (ω-3 fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA. The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA. Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  6. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    Science.gov (United States)

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  7. Risk of secondary lymphedema in breast cancer survivors is related to serum phospholipid fatty acid desaturation.

    Science.gov (United States)

    Ryu, Eunjung; Yim, Seung Yun; Do, Hyun Ju; Lim, Jae-Young; Yang, Eun Joo; Shin, Min-Jeong; Lee, Seung-Min

    2016-09-01

    Secondary lymphedema is a common irreversible side effect of breast cancer surgery. We investigated if risk of secondary lymphedema in breast cancer survivors was related to changes in serum phospholipid fatty acid composition. Study subjects were voluntarily recruited into the following three groups: breast cancer survivors who had sentinel lymph node biopsy without lymphedema (SLNB), those who had auxillary lymph node dissection without lymphedema (ALND), and those who had ALND with lymphedema (ALND + LE). Body mass index (BMI), serum lipid profiles, bioimpedance data with single-frequency bioimpedance analysis (SFBIA), and serum phospholipid compositions were analyzed and compared among the groups. BMI, serum total cholesterol (total-C), and low-density lipoprotein cholesterol (LDL-C) and SFBIA ratios increased only in the ALND + LE. High polyunsaturated fatty acids (PUFAs) and high C20:4 to C18:2 n-6 PUFAs (arachidonic acid [AA]/linoleic acid [LA]) was detected in the ALND and ALND + LE groups compared to SLNB. The ALND + LE group showed increased activity indices for delta 6 desaturase (D6D) and D5D and increased ratio of AA to eicosapentaenoic acid (AA/EPA) compared to the ALND and SLNB groups. Correlation and regression analysis indicated that D6D, D5D, and AA/EPA were associated with SFBIA ratios. We demonstrated that breast cancer survivors with lymphedema had elevated total PUFAs, fatty acid desaturase activity indices, and AA/EPA in serum phospholipids. Our findings suggested that desaturation extent of fatty acid composition might be related to the risk of secondary lymphedema in breast cancer survivors.

  8. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    Science.gov (United States)

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  9. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  10. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  11. Erythrocyte fatty acids and risk of proliferative and nonproliferative fibrocystic disease in women in Shanghai, China.

    Science.gov (United States)

    Shannon, Jackilen; King, Irena B; Lampe, Johanna W; Gao, Dao Li; Ray, Roberta M; Lin, Ming-Gang; Stalsberg, Helge; Thomas, David B

    2009-01-01

    Although benign breast changes are more common than breast cancer, little evidence regarding risk factors for benign breast conditions is available. Omega-3 (n-3) fatty acids have antiinflammatory and antiproliferative actions and may be important in reducing the risk of benign conditions. There is a lack of research on the association of n-3 fatty acids with risk of benign fibrocystic breast changes. The objectives of the study were to evaluate the role of n-3 and other fatty acids in the development of benign proliferative fibrocystic conditions (PFCs) and nonproliferative fibrocystic conditions (NPFCs) in the breast and to evaluate the progression of fibrocystic changes in breast cancer. We conducted a case-control study to determine erythrocyte fatty acid concentrations in 155 women with NPFCs, 185 women with PFCs, 241 women with breast cancer (127 with nonproliferative and 114 with proliferative changes in the noncancerous extratumoral mammary epithelium), and 1,030 control subjects. We estimated the relative risk of NPFCs, PFCs, and breast cancer with proliferative and nonproliferative changes in extratumoral tissue compared with the risk of these changes alone. Women in the highest quartile of eicosapentaenoic acid concentrations were 67% less likely to have an NPFC alone or with breast cancer and 49% less likely to have breast cancer than were women with PFCs. gamma-Linolenic acid (18:3n-6) was positively associated with all fibrocystic and cancerous conditions. Palmitic:palmitoleic acid (n-7 saturation index) was inversely associated with risk in all comparisons. Our results support a protective effects of n-3 fatty acid intake and the n-7 saturation index against benign fibrocystic breast changes and the progression of proliferative changes to breast cancer.

  12. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  13. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015.

    Science.gov (United States)

    Sprague, M; Dick, J R; Tocher, D R

    2016-02-22

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids.

  14. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    Science.gov (United States)

    Janssen, Carola I F; Kiliaan, Amanda J

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important components of neuronal membranes, while eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid also affect cardiovascular health and inflammation. In neural development, LCPUFA deficiency can lead to severe disorders like schizophrenia and attention deficit hyperactivity disorder. Perinatal LCPUFA supplementation demonstrated beneficial effects in neural development in humans and rodents resulting in improved cognition and sensorimotor integration. In normal aging, the effect of LCPUFA on prevention of cognitive impairment will be discussed. LCPUFA are important for neuronal membrane integrity and function, and also contribute in prevention of brain hypoperfusion. Cerebral perfusion can be compromised as result of obesity, cerebrovascular disease, hypertension, or diabetes mellitus type 2. Last, we will focus on the role of LCPUFA in most common neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. These disorders are characterized by impaired cognition and connectivity and both clinical and animal supplementation studies have shown the potential of LCPUFA to decrease neurodegeneration and inflammation. This review shows that LCPUFA are essential throughout life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Enzymatic formation of hexadecenoic acid from palmitic acid

    International Nuclear Information System (INIS)

    Nakano, Masao; Fujino, Yasuhiko

    1975-01-01

    Desaturation of palmitic acid was investigated in an enzyme system prepared from rat liver. 2-trans-Hexadecenoic acid as well as 9-cis-gexadecenoic acid (palmitoleic acid) were found to be formed as monoenoic acid in this system. (author)

  16. Intake of omega-3 fatty acids contributes to bone mineral density at the hip in a younger Japanese female population.

    Science.gov (United States)

    Kuroda, T; Ohta, H; Onoe, Y; Tsugawa, N; Shiraki, M

    2017-10-01

    This study investigated the relationships between intakes of polyunsaturated fatty acids, omega-3 fatty acids, and omega-6 fatty acids and bone mineral density in Japanese women aged 19 to 25 years. Intakes of omega-3 fatty acids (n-3) were positively associated with peak bone mass at the hip. Lifestyle factors such as physical activity and nutrition intake are known to optimize the peak bone mass (PBM). Recently, intake of polyunsaturated fatty acids (PUFAs) has been reported to contribute to bone metabolism. In this study, the relationships of intakes of n-3 and omega-6 (n-6) fatty acids with PBM were evaluated in Japanese female subjects. A total of 275 healthy female subjects (19-25 years) having PBM were enrolled, and lumbar and total hip bone mineral density (BMD) and bone metabolic parameters were measured. Dietary intakes of total energy, total n-3 fatty acids, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-6 fatty acids were assessed by a self-administered questionnaire. Physical activity information was also assessed. The mean ± SD age was 20.6 ± 1.4 years, and BMI was 21.2 ± 2.7 kg/m 2 . BMI and serum bone alkaline phosphatase contributed significantly to lumbar BMD on multiple regression analysis. Intake of n-3 fatty acids and physical activity were also significantly related to total hip BMD. Using EPA or DHA instead of total n-3 fatty acids in the model did not result in a significant result. Adequate total n-3 fatty acid intake may help maximize PBM at the hip.

  17. Red blood cell polyunsaturated fatty acids and mortality in the Women's Health Initiative Memory Study.

    Science.gov (United States)

    Harris, William S; Luo, Juhua; Pottala, James V; Espeland, Mark A; Margolis, Karen L; Manson, Joann E; Wang, Lu; Brasky, Theodore M; Robinson, Jennifer G

    The prognostic value of circulating polyunsaturated fatty acid (PUFA) levels is unclear. To determine the associations between red blood cell (RBC) PUFA levels and risk for death. This prospective cohort study included 6501 women aged 65 to 80 years who participated in the Women's Health Initiative Memory Study (enrolment began 1996). RBC PUFA levels were measured at baseline and expressed as a percent of total RBC PUFAs. PUFAs of primary interest were the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their sum (the Omega-3 Index). PUFAs of secondary interest included the 2 major n-6 PUFAs, linoleic acid and arachidonic acid, and the PUFA factor score (a calculated variable including 6 PUFAs that accounts for their intercorrelations). The primary outcome was total mortality through August 2014. After a median of 14.9 years of follow-up, 1851 women (28.5%) had died. RBC levels of EPA and DHA were higher in the survivors (P < .002 for each). In the fully adjusted models, the hazard ratios (99% confidence intervals) for mortality associated with a 1 standard deviation PUFA increase for total mortality were 0.92 (0.85, 0.98) for the Omega-3 Index, 0.89 (0.82, 0.96) for EPA, 0.93 (0.87, 1.0) for DHA, and 0.76 (0.64, 0.90) for the PUFA factor score. There were no significant associations of alpha-linolenic acid, arachidonic acid or linoleic acid with total mortality. Higher RBC levels of marine n-3 PUFAs were associated with reduced risk for all-cause mortality. These findings support the beneficial relationship between the Omega-3 Index and health outcomes. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  18. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    Science.gov (United States)

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P abalone fed diet supplemented with 2% FO (P abalone fed diet supplemented with 1.5% FO (P abalone fed with diet containing 0.5% FO supplement (P abalone, with 1.5% being the most effective supplementation level.

  19. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Directory of Open Access Journals (Sweden)

    E. Leu

    2013-02-01

    Full Text Available The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm, yielding pH values (on the total scale from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1 prior to the addition of inorganic nutrients, (2 first bloom after nutrient addition, and (3 second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs: 44–60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA, an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  20. Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles

    Directory of Open Access Journals (Sweden)

    Md. Nurun Nabi

    2013-10-01

    Full Text Available Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE and Graphical Analysis for Interactive Assistance (GAIA analysis. Fatty acid methyl ester (FAME profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN, iodine value (IV, cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA contents. Application of a polyunsaturated fatty acid (PUFA weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.

  1. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    Science.gov (United States)

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  2. Glycosyltransferase glycosylating flavokermesic acid and/or kermesic acid

    DEFF Research Database (Denmark)

    2016-01-01

    An isolated glycosyltransferase (GT) polypeptide capable of: (I) : conjugating glucose to flavokermesic acid (FK); and/or (II) : conjugating glucose to kermesic acid (KA) and use of this GT to e.g. make Carminic acid.......An isolated glycosyltransferase (GT) polypeptide capable of: (I) : conjugating glucose to flavokermesic acid (FK); and/or (II) : conjugating glucose to kermesic acid (KA) and use of this GT to e.g. make Carminic acid....

  3. GLYCOSYLTRANSFERASE GLYCOSYLATING FLAVOKERMESIC ACID AND/OR KERMESIC ACID

    DEFF Research Database (Denmark)

    2015-01-01

    An isolated glycosyltransferase (GT) polypeptide capable of: (I): conjugating glucose to flavokermesic acid (FK); and/or (II): conjugating glucose to kermesic acid (KA) and use of this GT to e.g. make Carminic acid.......An isolated glycosyltransferase (GT) polypeptide capable of: (I): conjugating glucose to flavokermesic acid (FK); and/or (II): conjugating glucose to kermesic acid (KA) and use of this GT to e.g. make Carminic acid....

  4. Major depression is associated with lower omega-3 fatty acid levels in patients with recent acute coronary syndromes.

    Science.gov (United States)

    Frasure-Smith, Nancy; Lespérance, François; Julien, Pierre

    2004-05-01

    Polyunsaturated fatty acids (PUFAs) are intrinsic cell membrane components and closely involved in neurotransmission and receptor function. Lower omega-3 levels are associated with increased risk of coronary artery disease (CAD), increases in cardiac events in CAD patients, and depression. We sought to examine relationships between depression and serum levels of omega-3 and omega-6 PUFAs in patients recovering from acute coronary syndromes (ACS). We carried out a case-control study of serum PUFA levels and current major depression in 54 age- and sex-matched pairs approximately 2 months following ACS. Depressed patients had significantly lower concentrations of total omega-3 and docosahexaenoic acid (DHA), and higher ratios of arachidonic acid (AA) to DHA, AA to eicosapentaenoic acid (EPA), and n-3 to n-6 than controls. There were no baseline differences in any potential risk or protective factors for depression. Results are consistent with previous reports in depressed patients without CAD, and with literature concerning omega-3 levels and risk of CAD events. Dietary, genetic, and hormonal factors may all play a role in both depression and CAD. Both prospective studies and randomized trials are needed to help clarify the interrelationships.

  5. Fat food for a bad mood. Could we treat and prevent depression in Type 2 diabetes by means of omega-3 polyunsaturated fatty acids?

    DEFF Research Database (Denmark)

    Pouwer, F; Nijpels, G; Beekman, Aartjan T F

    2005-01-01

    that eicosapentaenoic acid is an effective adjunct treatment of depression in diabetes, while docosahexanoic acid is not. Moreover, consumption of omega-3 PUFA reduces the risk of cardiovascular disease and may therefore indirectly decrease depression in Type 2 diabetes, via the reduction of cardiovascular......AIMS: Evidence strongly suggests that depression is a common complication of Type 2 diabetes mellitus. However, there is considerable room to improve the effectiveness of pharmacological antidepressant agents, as in only 50-60% of the depressed subjects with diabetes does pharmacotherapy lead...... to remission of depression. The aim of the present paper was to review whether polyunsaturated fatty acids (PUFA) of the omega-3 family could be used for the prevention and treatment of depression in Type 2 diabetes. METHODS: MEDLINE database and published reference lists were used to identify studies...

  6. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.

    Science.gov (United States)

    Backes, James; Anzalone, Deborah; Hilleman, Daniel; Catini, Julia

    2016-07-22

    Hypertriglyceridemia (triglycerides > 150 mg/dL) affects ~25 % of the United States (US) population and is associated with increased cardiovascular risk. Severe hypertriglyceridemia (≥ 500 mg/dL) is also a risk factor for pancreatitis. Three omega-3 fatty acid (OM3FA) prescription formulations are approved in the US for the treatment of adults with severe hypertriglyceridemia: (1) OM3FA ethyl esters (OM3EE), a mixture of OM3FA ethyl esters, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Lovaza®, Omtryg™, and generics); (2) icosapent ethyl (IPE), EPA ethyl esters (Vascepa®); and (3) omega-3 carboxylic acids (OM3CA), a mixture of OM3FAs in free fatty acid form, primarily EPA, DHA, and docosapentaenoic acid (Epanova®). At approved doses, all formulations substantially reduce triglyceride and very-low-density lipoprotein levels. DHA-containing formulations may also increase low-density lipoprotein cholesterol. However, this is not accompanied by increased non-high-density lipoprotein cholesterol, which is thought to provide a better indication of cardiovascular risk in this patient population. Proposed mechanisms of action of OM3FAs include inhibition of diacylglycerol acyltransferase, increased plasma lipoprotein lipase activity, decreased hepatic lipogenesis, and increased hepatic β-oxidation. OM3CA bioavailability (area under the plasma concentration-time curve from zero to the last measurable concentration) is up to 4-fold greater than that of OM3FA ethyl esters, and unlike ethyl esters, the absorption of OM3CA is not dependent on pancreatic lipase hydrolysis. All three formulations are well tolerated (the most common adverse events are gastrointestinal) and demonstrate a lack of drug-drug interactions with other lipid-lowering drugs, such as statins and fibrates. OM3FAs appear to be an effective treatment option for patients with severe hypertriglyceridemia.

  7. Fatty Acids Profile of Intramuscular Fat in Light Lambs Traditionally and Artificially Reared

    Directory of Open Access Journals (Sweden)

    Milan MARGETÍN

    2014-03-01

    Full Text Available The quality of 40 carcasses of light lambs of the synthetic population of Slovak Dairy sheep from (a artificial rearing (AR and (b traditional rearing (TR was assessed on the basis of fatty acids profile of intramuscular fat (IMF. Lambs from AR in comparison with TR were of lower quality as assessed on the basis of fatty acids (FAs profile. The content of conjugated linolic acid (CLA in the fat of TR lambs was severalfold higher (0.749 vs. 0.193 g.100g-1 FAME, P<0.001 than in AR lambs. Similarly, the content of trans-vaccenic (TVA, á-linolenic (ALA, rumenic (RA, eicosapentaenoic (EPA and docosahexaenoic acid (DHA was in TR lambs significantly higher (P<0.001 than in AR lambs (0.955 vs. 0.111; 0.715 vs. 0.251; 0.672 vs. 0.148; 0.352 vs. 0.061; 0.252 vs. 0.079 g.100g-1 FAME. In contrary, the content of linoleic acid (LA, the ratio of LA/ALA and n-6/n-3 in AR lambs was higher than in TR lambs (9.07 vs. 4.81 g.100 g-1 FAME; 39.11 vs. 6.80; 14.56 vs. 3.25, P<0.001. In TR lambs the content of n-3 PUFA and BCFA was significantly higher (P<0.001 than in AR lambs (2.08 vs. 0.84 and 1.95 vs. 0.45. The value of thrombogenic index was higher in AR lambs in comparison with TR lambs (1.44 vs. 1.31; P<0.05. Significant differences between FAs of IMF of ram lambs and ewe lambs were observed only in the case of arachidonic acid (P<0.05.

  8. Specific bile acid radioimmunoassays for separate determinations of unconjugated cholic acid, conjugated cholic acid and conjugated deoxycholic acid in serum and their clinical application

    International Nuclear Information System (INIS)

    Matern, S.; Gerok, W.

    1977-01-01

    Specific radioimmunoassays for separate determinations of serum unconjugated cholic, conjugated cholic and conjugated deoxycholic acids have been developed. Prior to the radioimmunoassay, extraction of serum bile acids was performed with Amberlite XAD-2. Unconjugated cholic acid was separated from glyco- and taurocholic acids by thin-layer chromatography. At 50% displacement of bound labeled glyco[ 3 H]cholic acid using antiserum obtained after immunization with cholic acid-bovine serum albumin-conjugate the cross-reactivity of taurocholic acid was 100%, cholic acid 80%, glycochenodeoxycholic acid 10%, chenodeoxycholic acid 7%, conjugated deoxycholic acid 3%, and conjugated lithocholic acid 3 H]cholic acid was linear on a logit-log plot from 5 to 80 pmol of unlabeled glycocholic acid. Fasting serum conjugated cholic acid in healthy subjects was 0.68 +- 0.34 μmol/l. Unconjugated cholic acid was determined by a solid phase radioimmunoassay using the cholic acid antibody chemically bound to Sepharose. The displacement curve of [ 3 H]cholic acid in the solid phase radioimmunoassay was linear on a logit-log plot from 5 to 200 pmol of unlabeled cholic acid. The coefficient of variation between samples was 5%. Fasting serum conjugated deoxycholic acid concentrations in 10 healthy subjects ranged from 0.18 to 0.92 μmol/l determined by a radioimmunoassay using antiserum obtained after immunization with deoxycholic acid-bovine serum albumin-conjugate. The clinical application of these bile acid radioimmunoassays is shown by an 'oral cholate tolerance test' as a sensitive indicator of liver function and by an 'oral cholyglycine tolerance test' as a useful test for bile acid absorption. (orig.) [de

  9. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids in the coastal Arabian Sea sediments: whereas amino acids content of fulvic acids was lower than that of humic acids in the coastal sediments of Bay of Bengal. Slope sedimentary humic acids were relatively enriched in amino acids as compared...

  10. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  11. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  12. Lipid and fatty acid fractions in Lingula anatina (Brachiopoda: an intertidal benthic fauna in the West Bengal-Orissa coast, India

    Directory of Open Access Journals (Sweden)

    Samaresh Samanta

    2014-05-01

    Full Text Available Objective: To record the fractional components of lipid and polyunsaturated fatty acids of Lingula anatina (L. anatina, a Precambrian intertidal benthic brachiopod, giving emphasis on -ω series group especially eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA alongside assessing their biotransformation within the population and mangrove-estuarine associated community. Methods: Different biological samples after being collected from three contrasting study sites viz. SI, SII and SIII at Talsari (Longitude 87°5′ E to 88°5′ E and Latitude 20°30′ N to 22°2′ N were stored at -20 °C until analyzed. Total lipids were extracted from each sample following Bligh and Dryer method. Identification and conformation of fatty acids were done by following Ackman method. Results: On analyzing different collected samples, muscles of L. anatina exhibited the highest amount of total lipids (2.95% of which 54.03% belongs to phospholipid groups. Different body parts of studied species contained appreciable and greater amount of EPA and DHA than α-linolenic acid. Conclusions: Different collected samples exhibited variabilities in respect of total lipids and its fractional fatty acid components. The muscles of L. anatina showed maximum storage of lipids and fatty acids. Differential occurrences of EPA and DHA in different body parts of L. anatina are supposed to be due to the biotransformation process converting the α-linolenic acid from its primary food sources.

  13. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Directory of Open Access Journals (Sweden)

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  14. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis.

    Science.gov (United States)

    Tsutsumi, Rie; Horikawa, Yousuke T; Kume, Katsuyoshi; Tanaka, Katsuya; Kasai, Asuka; Kadota, Takako; Tsutsumi, Yasuo M

    2015-07-01

    Sepsis and septic shock syndrome are among the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by bacteria within the colon may translocate across a compromised epithelium, leading to oxidative stress, inflammation, sepsis, and eventually death. We examined the effects of a whey-based enteral formula high in cysteine (antioxidant precursor) and the addition of ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), against a mouse model of LPS-induced sepsis. Mice were fed either a whey-based diet with EPA-DHA (PAF), a whey-based diet without EPA-DHA (PSTD), or a casein-based control diet (CONT). Mice fed PAF or PSTD were protected against LPS-induced weight loss. Whey-based diets suppressed inflammatory cytokine release and oxidative stress damage. Furthermore, PAF and PSTD were able to inhibit autophagy, a mechanism in which the cell recycles damaged organelles. These anti-inflammatory and antioxidative effects of PSTD and PAF resulted in decreased liver inflammation and intestinal damage and promoted protective microbiota within the intestines. These data suggest a clinical role for whey peptide-based diets in promoting healing and recovery in critically ill patients. © 2014 American Society for Parenteral and Enteral Nutrition.

  15. Prostaglandin transporter (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived PGE3.

    Science.gov (United States)

    Gose, Tomoka; Nakanishi, Takeo; Kamo, Shunsuke; Shimada, Hiroaki; Otake, Katsumasa; Tamai, Ikumi

    2016-01-01

    Eicosapentaenoic acid (EPA)-derived prostaglandin E3 (PGE3) possesses an anti-inflammatory effect; however, information for transporters that regulate its peri-cellular concentration is limited. The present study, therefore, aimed to clarify transporters involved in local disposition of PGE3. PGE3 uptake was assessed in HEK293 cells transfected with OATP2A1/SLCO2A1, OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, OAT1/SLC22A6, OCT1/SLC22A1 or OCT2/SLC22A2 genes, compared with HEK293 cells transfected with plasmid vector alone (Mock). PGE3 uptake by OATP2A1-expressing HEK293 cells (HEK/2A1) was the highest and followed by HEK/1B1, while no significantly higher uptake of PGE3 than Mock cells was detected by other transporters. Saturation kinetics in PGE3 uptake by HEK/2A1 estimated the Km as 7.202 ± 0.595 μM, which was 22 times higher than that of PGE2 (Km=0.331 ± 0.131 μM). Furthermore, tissue disposition of PGE3 was examined in wild-type (WT) and Slco2a1-deficient (Slco2a1(-/-)) mice after oral administration of EPA ethyl ester (EPA-E) when they underwent intraperitoneal injection of endotoxin (e.g., lipopolysaccharide). PGE3 concentration was significantly higher in the lung, and tended to increase in the colon, stomach, and kidney of Slco2a1(-/-), compared to WT mice. Ratio of PGE2 metabolite 15-keto PGE2 over PGE2 concentration was significantly lower in the lung and colon of Slco2a1(-/-) than that of WT mice, suggesting that PGE3 metabolism is downregulated in Slco2a1(-/-) mice. In conclusion, PGE3 was found to be a substrate of OATP2A1, and local disposition of PGE3 could be regulated by OATP2A1 at least in the lung. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid

    NARCIS (Netherlands)

    Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This

  17. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  18. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    Science.gov (United States)

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    Science.gov (United States)

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  20. Depression and serum adiponectin and adipose omega-3 and omega-6 fatty acids in adolescents.

    Science.gov (United States)

    Mamalakis, George; Kiriakakis, Michael; Tsibinos, George; Hatzis, Christos; Flouri, Sofia; Mantzoros, Christos; Kafatos, Anthony

    2006-10-01

    The purpose of the present study was to investigate for a possible relationship between depression and serum adiponectin and adipose tissue omega-3 and omega-6 PUFA. The sample consisted of 90 healthy adolescent volunteers from the island of Crete. There were 54 girls and 36 boys, aged 13 to 18. The mean age was 15.2 years. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D). Fatty acids were determined by gas chromatography in adipose tissue. CES-D correlated with dihomo-gamma linolenic acid (DGLA). Multiple linear regression analyses showed that BDI was negatively associated with eicosapentaenoic acid (EPA), while CES-D was positively associated with DGLA in adipose tissue. Serum adiponectin was not significantly associated with depression. The negative relationship between adipose EPA and depression in adolescents, is in line with findings of previous studies involving adult and elderly subjects, demonstrating negative relations between depression and adipose omega-3 PUFA. This is the first literature report of a relationship between depression and an individual omega-3 fatty acid in adolescents. The inverse relationship between adipose EPA and depression indicates that a low long-term dietary intake of EPA is associated with an increased risk for depression in adolescents.

  1. Variation in the proximate composition and fatty acid profile recovered from Argentine hake (Merluccius hubbsi) waste from Patagonia

    Energy Technology Data Exchange (ETDEWEB)

    Cretton, M.; Rost, E.; Mazzuca-Sobczuk, T.; Mazzuca, M.

    2016-07-01

    The fish processing operations in Patagonia produce large amounts of waste. The main fishery resource in Argentina is the Argentine hake (Merluccius hubbsi). The ports of the province of Chubut (the most important of which are Puerto Madryn, Rawson and Comodoro Rivadavia), together with Caleta Paula Port (province of Santa Cruz), in the Argentine Patagonia, capture more than 82,000 tons of hake annualy, 80% of which are of M. hubbsi, which is mostly converted into fillets. From this capture, about 2,296 tons of liver would be available for the extraction of oil. To promote the recovery and industrial use of fish oil, in the present study, we determined the variation in the proximate composition and fatty acid profile of Argentine hake waste from the ports mentioned above at different catch times. Proximate composition was determined according of the Official Methods of Analysis (AOAC). Fatty acid profile was analyzed by gas chromatography of the fatty acid methyl esters (FAMEs). A standard mixture of FAMEs was run under identical conditions to identify the compounds on the basis of their retention times. Fatty acids were quantified using heptadecanoic acid (C17:0) as internal standard. The highest lipid recovery (27.0 to 41.8% of total lipids) was obtained from the liver fraction. Palmitic acid (C16:0), oleic acid (18:1 n9), docosahexaenoic acid (22:6 n3), eicosapentaenoic acid (20:5 n3) and palmitoleic acid (16:1) were the main constituents. Protein levels in viscera without livers (V-L) were higher than those in the liver. The extraction of marine fish oil and the production of fish offal meal from waste from fish factories would contribute to the sustainability of the regional industry, because it would also decrease the volume of waste, with benefits to the environment. (Author)

  2. Nutrition and brain aging: role of fatty acids with an epidemiological perspective

    Directory of Open Access Journals (Sweden)

    Samieri Cécilia

    2011-07-01

    Full Text Available In the absence of identified etiologic treatment for dementia, the potential preventive role of nutrition may offer an interesting perspective. The objective of the thesis of C. Samieri was to study the association between nutrition and brain aging in 1,796 subjects, aged 65 y or older, from the Bordeaux sample of the Three-City study, with a particular emphasis on fatty acids. Considering the multidimensional nature of nutritional data, several complementary strategies were used. At the global diet level, dietary patterns actually observed in the population were identified by exploratory methods. Older subjects with a ‘‘healthy’’ pattern, who consumed more than 3.5 weekly servings of fish in men and more than 6 daily servings of fruits and vegetables in women, showed a better cognitive and psychological health. Adherence to the Mediterranean diet, measured according to a score-based confirmatory method, was associated with slower global cognitive decline after 5 y of follow-up. At the nutrient biomarker level, higher plasma eicosapentaenoic acid (EPA, a long-chain omega-3 fatty acid, was associated with a decreased dementia risk, and the omega-6-to-omega-3 fatty acids ratio to an increased risk, particularly in depressed subjects. EPA was also related to slower working memory decline in depressed subjects or in carriers of the e4 allele of the ApoE gene. Docosahexaenoic acid was related to slower working memory decline only in ApoE4 carriers. Overall, this work suggests a positive impact of a healthy diet rich in fruits and vegetables and fish, and notably the Mediterranean diet, on cognition in older subjects. Long-chain n-3 PUFA, in particular EPA, may be key protective nutrients against risk of dementia and cognitive decline.

  3. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  4. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  5. CLINICAL IMPLICATION OF FATTY ACID CHANGES IN PATIENTS WITH PRIMARY GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2015-12-01

    Full Text Available Aim. To study blood levels of non-esterified fatty acids (NEFAs and adenyl nucleotides, and fatty acids levels in lipids of erythrocyte membranes in patients with primary gout associated with arterial hypertension (HT. Material and methods. 175 male patients with primary gout were included in the study. According to 24-hour blood pressure (BP monitoring results patients were split into two groups: 74 patients with normal BP (group 1 and 101 patients with HT (group 2. 29 healthy age-comparable subjects were included into control group. Uric acid, total NEFAs and glycerol blood levels were studied in all patients. Adenyl nucleotides (ATP , ADP and AMP levels were determined in erythrocytes. Higher fatty acid levels were specified in lipids of erythrocyte membranes, including the following acids: myristinic (С14:0, palmitinic (С16:0, stearic (С18:0, pentadecanic (С15:0, heptadecanic (С17:0, pentadecenic (С15:1, heptadecenic (С17:1, palmitooleic (С16:1, oleic (С18:1, linoleic (С18:2ω6, α-linolenic (С18:3ω3, γ-linolenic (С18:3ω6, dihomo-γ-linolenic (С20:3ω6, arachidonic (С20:4ω6, eicosapentaenoic (С20:5ω3, and docosapentaenoic (С22:5ω3. Results and discussion. Hypertensive patients with gout demonstrated higher NEFAs blood level and greater changes in ATP-ADP-AMP system than normotensive gout patients and healthy subjects as well as 2.2 and 3.7 times higher NEFAs/ATP ratio, respectively. In hypertensive patients with primary gout the composition of fatty acids in erythrocyte membranes lipids changed due to increase in saturated fatty acids amount and decrease in unsaturated fatty acids amount, at that monoenic acid levels increased while polyenic acid levels decreased in unsaturated acids composition. Hypertensive patients with gout shown 1.3 and 2.5 times less levels of ω-3 poly-unsaturated fatty acids (PUFA than normotensive gout patients and healthy subjects, respectively. At the same time ω-6 PUFA levels changed in

  6. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    Science.gov (United States)

    Ramirex-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  7. Long chain fatty acids and related pro-inflammatory, specialized pro-resolving lipid mediators and their intermediates in preterm human milk during the first month of lactation.

    Science.gov (United States)

    Robinson, D T; Palac, H L; Baillif, V; Van Goethem, E; Dubourdeau, M; Van Horn, L; Martin, C R

    2017-06-01

    This study aimed to measure longitudinal quantities of the long chain fatty acids, their biologically active terminal metabolites and related intermediates (also called oxylipins) in preterm human milk expressed during the first month of lactation. In a prospective cohort, breast milk was collected throughout the first month of lactation in 30 women who delivered preterm infants. Eighteen bioactive lipids and their intermediates were quantified via solid phase extraction and LC-MS/MS. Analysis by GC-FID quantified the fatty acid precursors. Arachidonic acid (ARA) and docosahexaenoic acid (DHA) milk concentrations significantly declined throughout the first month. Oxylipin concentrations did not change during lactation. Positive associations existed between ARA and thromboxane B2, eicosapentaenoic acid and 18-hydroxyeicosapentaenoic acid, and between DHA and PDX and 14- and 17-hydroxydocosahexaenoic acids. DHA concentrations were 1.5 times higher and 14-HDHA was 1.7 times higher in milk from women taking DHA supplements. This investigation showed conditionally essential fatty acids, ARA and DHA, decreased in preterm milk, suggesting a need to supplement their intake for the breast milk-fed preterm infant. Positive associations between parent fatty acids, bioactive lipids and intermediates, as well as sensitivity of milk to maternal fatty acid intake, support consideration of a comprehensive approach to providing fatty acids for preterm infants through both maternal and infant supplementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular interaction of pinic acid with sulfuric acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurtén, Theo; Bilde, Merete

    2014-01-01

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...... cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures...

  9. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  10. New Acid Combination for a Successful Sandstone Acidizing

    Science.gov (United States)

    Shafiq, M. U.; Mahmud, H. K. B.; Rezaee, R.

    2017-05-01

    With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

  11. Blood omega-3 and trans fatty acids in middle-aged acute coronary syndrome patients.

    Science.gov (United States)

    Harris, William S; Reid, Kimberly J; Sands, Scott A; Spertus, John A

    2007-01-15

    We tested the hypothesis that lower blood omega-3 (omega-3) fatty acids (FAs) and/or higher trans FAs are associated with the risk of an acute coronary syndrome (ACS). Higher levels of omega-3 FA have been associated with decreased risk of sudden cardiac death. However, their association with ACS risk is unclear. Although higher self-reported intakes of trans FAs have been linked to increased coronary risk, the association between blood levels of trans FA and ACS risk is also unknown. We analyzed the FA composition of whole blood from 94 subjects with ACS and 94 age-, gender-, and race-matched controls. Omega-3 and trans FA associations with ACS were assessed using multivariable models after adjusting for smoking status, alcohol use, diabetes, body mass index, serum lipids, and history of myocardial infarction or revascularization. Subjects' mean age was 47 years, 54% were men, and 80% were Caucasian. Whole blood long-chain omega-3 FA (eicosapentaenoic acid [EPA] plus docosahexaenoic acid [DHA]) content was 29% lower in patients than in controls (1.7 +/- 0.9% vs 2.4 +/- 1.4%, p ACS, but higher blood trans FA content is not. Blood EPA + DHA may serve as a new, modifiable risk factor for ACS.

  12. Application of citric acid in acid stimulation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Alkhaldi, M.H.; Sarma, H.K. [Adelaide Univ., Adelaide (Australia); Nasr-el-Din, H.A. [Texas A and M Univ., College Station, TX (United States)

    2009-07-01

    A rotating disk apparatus was used to investigate mass transfer during the reaction of citric acid with calcite. The study evaluated the effects of initial acid concentrations, temperature, and disk rotational speed on the effective diffusion coefficient of citric acid. The diffusion coefficient was calculated at 25, 40, and 50 degrees C using various citric acid concentrations. The study indicated that the coefficient was a function of the interactions between calcium citrate precipitation and counter calcium ions. At high acid concentrations, the effects of calcium citrate precipitation and counter calcium ions were significant. The calculated citric acid diffusion coefficients were not comparable with measured effective diffusion coefficients using the rotating disk. At lower initial citric acid concentrations, the effects of both calcium citrate precipitation and counter calcium ions on citric acid diffusivity were minimal. It was concluded that temperature effects on the diffusion coefficient followed Arrhenius law. Activation energy was equal to 37.9 kJ/mol. 34 refs., 4 tabs., 13 figs.

  13. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  14. Determination of dissociation constants or propionic acid and lactic acid (2-hydroxypropionic acid) by potentiometry and conductometry

    International Nuclear Information System (INIS)

    Saeeduddin; Khanzada, A.W.K.

    2004-01-01

    Dissociation constants of propionic acid and 2-hydroxypropionic acid (lactic acid) have been studied at different temperatures between 25 to 50 deg. C interval. Propionic acid is analyzed by conductometry while 2-hydroxypropionic acid is analyzed by potentiometry. Both investigated compounds are symmetrical carboxylic acids having same length of carbon chain but are markedly different in ionic behavior. We were interested to see how the hydroxyl group (-OH) induction in propionic acid affects on pKa values of 2-hydroxypropionic acid. We observed that as temperature increases pKa values increase. The increase is observed for both the investigated compounds. PKa values of 2-hydroxypropionic acid are lower as compared to propionic acid because of electron withdrawing (-OH). (author)

  15. The Current Role of Omega-3 Fatty Acids in the Management of Atrial Fibrillation.

    Science.gov (United States)

    Christou, Georgios A; Christou, Konstantinos A; Korantzopoulos, Panagiotis; Rizos, Evangelos C; Nikas, Dimitrios N; Goudevenos, John A

    2015-09-22

    The main dietary source of omega-3 polyunsaturated fatty acids (n-3 PUFA) is fish, which contains eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In the present manuscript, we aimed to review the current evidence regarding the clinical role of n-3 PUFA in the prevention of atrial fibrillation (AF) and the possible underlying mechanisms. A literature search based on PubMed listings was performed using "Omega-3 fatty acids" and "atrial fibrilation" as key search terms. n-3 PUFA have been shown to attenuate structural atrial remodeling, prolong atrial effective refractory period through the prevention of reentry and suppress ectopic firing from pulmonary veins. Dietary fish intake has been found to have no effect on the incidence of AF in the majority of studies. Circulating DHA has been consistently reported to be inversely associated with AF risk, whereas EPA has no such effect. The majority of studies investigating the impact of n-3 PUFA supplementation on the incidence of AF following cardiac surgery reported no benefit, though most of them did not use n-3 PUFA pretreatment for adequate duration. Studies using adequate four-week pretreatment with n-3 PUFA before cardioversion of AF showed a reduction of the AF incidence. Although n-3 PUFA have antiarrhythmogenic properties, their clinical efficacy on the prevention of AF is not consistently supported. Further well-designed studies are needed to overcome the limitations of the existing studies and provide robust conclusions.

  16. Omega-3 Fatty Acids Inhibit Tumor Growth in a Rat Model of Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Belmiro Parada

    2013-01-01

    Full Text Available Omega-3 (ω-3 fatty acids have been tested on prevention and treatment of several cancer types, but the efficacy on “in vivo” bladder cancer has not been analyzed yet. This study aimed at evaluating the chemopreventive efficacy of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA mixture in an animal model of bladder cancer. Forty-four male Wistar rats were divided into 4 groups during a 20-week protocol: control; carcinogen—N-butyl-N-(4-hydroxybutyl nitrosamine (BBN; ω-3 (DHA + EPA; and ω-3 + BBN. BBN and ω-3 were given during the initial 8 weeks. At week 20 blood and bladder were collected and checked for the presence of urothelium lesions and tumors, markers of inflammation, proliferation, and redox status. Incidence of bladder carcinoma was, control (0%, ω-3 (0%, BBN (65%, and ω-3 + BBN (62.5%. The ω-3 + BBN group had no infiltrative tumors or carcinoma in situ, and tumor volume was significantly reduced compared to the BBN (0.9 ± 0.1 mm3 versus 112.5 ± 6.4 mm3. Also, it showed a reduced MDA/TAS ratio and BBN-induced serum CRP, TGF-β1, and CD31 were prevented. In conclusion, omega-3 fatty acids inhibit the development of premalignant and malignant lesions in a rat model of bladder cancer, which might be due to anti-inflammatory, antioxidant, anti-proliferative, and anti-angiogenic properties.

  17. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  18. Keloids in rural black South Africans. Part 2: dietary fatty acid intake and total phospholipid fatty acid profile in the blood of keloid patients.

    Science.gov (United States)

    Louw, L; Dannhauser, A

    2000-11-01

    In the second part of this study, emphasis is placed on nutritional intakes (fatty acids and micronutrients) and fatty acid intake and metabolism in the blood, respectively, according to a combined 24 h recall and standardized food frequency questionnaire analyses of keloid prone patients (n=10), compared with normal black South Africans (n=80), and total phospholipid blood (plasma and red blood cell ) analyses of keloid patients (n=20), compared with normal individuals (n=20). Lipid extraction and fractionation by standard procedures, total phospholipid (TPL) separation with thin layer chromatography, and fatty acid methyl ester analyses with gas liquid chromatography techniques were used. Since nutrition may play a role in several disease disorders, the purpose of this study was to confirm or refute a role for essential fatty acids (EFAs) in the hypothesis of keloid formations stated in part 1 of this study. (1)According to the Canadian recommendation (1991), we observed that in keloid patients linoleic acid (LA) and arachidonic acid (AA) dietary intakes, as EFAs of the omega-6-series, are higher than the recommended 7-11 g/d. However, the a-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) dietary intakes, as EFAs of the omega-3 series, are lower than the recommendation of 1.1-1.5 g/d. This was also the case in the control group, where a higher dietary intake of the omega-6 fatty acids and a slightly lower dietary intake of the omega-3 fatty acids occurred. Thus, we confirm a high dietary intake of LA (as a product of organ meats, diary products and many vegetable oils) and AA (as a product of meats and egg yolks), as well as lower dietary intakes of ALA (as a product of grains, green leafy vegetables, soy oil, rapeseed oil and linseed), and EPA and DHA (as products of marine oils). Lower micronutrient intakes than the recommended dietary allowances were observed in the keloid group that may influence EFA metabolism and/or collagen

  19. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  20. Polyunsaturated fatty acids production by Schizochytrium sp. isolated from mangrove

    Directory of Open Access Journals (Sweden)

    K.W. Fan

    2003-09-01

    Full Text Available Five Schizochytrium strains (N-1, N-2, N-5, N-6, and N-9 were isolated from fallen, senescent leaves of mangrove tree (Kandelia candel in Hong Kong. The fungi were cultivated in glucose yeast extract medium containing 60 g of glucose, 10 g of yeast extract and 1 L of 15‰ artificial seawater, initial pH 6.0, with shaking for 52 hr at 25ºC. Biomass yields of 5 isolates ranged from 10.8 to 13.2 g/l. Isolate N-2 yielding the highest dried cell mass at 13.2 g/l and isolate N-9 grew poorly with 10.8 g/l of biomass. EPA (Eicosapentaenoic acid, 20:5n-3 yield was low in most strains, while DHA (Docosahexaenoic acid, 22:6n-3 was high on the same medium. The contents of DHA in biomass varied: 174.9, 203.6, 186.1, 171.3 and 157.9 mg/g of dried-biomass for Schizochytrium isolate N-1, N-2, N-5, N-6, and N-9, respectively. Isolate N-2 had the highest proportion of DHA in fatty acid profile with 15:0, 28.7%; 16:0, 21.3%; 18:0, 0.9%; 18:3, 0.2%; 20:4, 0.3%; 20:5, 0.9%; 22:4, 6.7%; 22:6, 36.1%; and others, 9.3%. The salinity range for growth of Schizochytrium isolates was from 0-30‰ with optimum salinity for growth between 20-30‰.

  1. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, Margreet R.; Hollman, Peter C H; Katan, Martijn B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  2. B vitamin and/or ω-3 fatty acid supplementation and cancer: ancillary findings from the supplementation with folate, vitamins B6 and B12, and/or omega-3 fatty acids (SU.FOL.OM3) randomized trial.

    Science.gov (United States)

    Andreeva, Valentina A; Touvier, Mathilde; Kesse-Guyot, Emmanuelle; Julia, Chantal; Galan, Pilar; Hercberg, Serge

    2012-04-09

    To advance knowledge about the cancer-chemopreventive potential of individual nutrients, we investigated the effects of B vitamin and/or ω-3 fatty acid supplements on cancer outcomes among survivors of cardiovascular disease. This was an ancillary study of the Supplementation With Folate, Vitamins B(6) and B(12) and/or Omega-3 Fatty Acids (SU.FOL.OM3) secondary prevention trial (2003-2009). In all, 2501 individuals aged 45 to 80 years were randomized in a 2 × 2 factorial design to one of the following 4 daily supplementation groups: (1) 5-methyltetrahydrofolate (0.56 mg), pyridoxine hydrochloride (vitamin B(6); 3 mg) and cyanocobalamin (vitamin B(12); 0.02 mg); (2) eicosapentaenoic and docosahexaenoic acid (600 mg) in a 2:1 ratio; (3) B vitamins and ω-3 fatty acids; or (4) placebo. Overall and sex-specific hazard ratios (HRs) and 95% CIs regarding the cancer outcomes were estimated with Cox proportional hazards models. After 5 years of supplementation, incident cancer was validated in 7.0% of the sample (145 events in men and 29 in women), and death from cancer occurred in 2.3% of the sample. There was no association between cancer outcomes and supplementation with B vitamins (HR, 1.15 [95% CI, 0.85-1.55]) and/or ω-3 fatty acids (HR, 1.17 [95% CI, 0.87-1.58]). There was a statistically significant interaction of treatment by sex, with no effect of treatment on cancer risk among men and increased cancer risk among women for ω-3 fatty acid supplementation (HR, 3.02 [95% CI, 1.33-6.89]). We found no beneficial effects of supplementation with relatively low doses of B vitamins and/or ω-3 fatty acids on cancer outcomes in individuals with prior cardiovascular disease. Trial Registration  isrctn.org Identifier: ISRCTN41926726.

  3. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?

    Directory of Open Access Journals (Sweden)

    Sieswerda Lee E

    2007-09-01

    Full Text Available Abstract Background A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA. This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determine whether omega-3 PUFA are likely to be efficacious in these disorders. Results Most trials involved a small number of participants but were largely well designed. Omega-3 PUFA were well tolerated by both children and adults with mild gastrointestinal effects being the only consistently reported adverse event. For schizophrenia and borderline personality disorder we found little evidence of a robust clinically relevant effect. In the case of attention deficit hyperactivity disorder and related disorders, most trials showed at most small benefits over placebo. A limited meta-analysis of these trials suggested that benefits of omega-3 PUFA supplementation may be greater in a classroom setting than at home. Some evidence indicates that omega-3 PUFA may reduce symptoms of anxiety although the data is preliminary and inconclusive. The most convincing evidence for beneficial effects of omega-3 PUFA is to be found in mood disorders. A meta-analysis of trials involving patients with major depressive disorder and bipolar disorder provided evidence that omega-3 PUFA supplementation reduces symptoms of depression. Furthermore, meta-regression analysis suggests that supplementation with eicosapentaenoic acid may be more beneficial in mood disorders than with docosahexaenoic acid, although several confounding factors prevented a definitive conclusion being made regarding which species of omega-3 PUFA is most beneficial. The mechanisms underlying the apparent efficacy of

  4. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben; Hamid, Mohamed Ali

    2015-01-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H 3 PO 4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid. (paper)

  5. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    Science.gov (United States)

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  6. Erythrocyte fatty acids and risk of proliferative and nonproliferative fibrocystic disease in women in Shanghai, China123

    Science.gov (United States)

    Shannon, Jackilen; King, Irena B; Lampe, Johanna W; Gao, Dao Li; Ray, Roberta M; Lin, Ming-Gang; Stalsberg, Helge; Thomas, David B

    2009-01-01

    Background: Although benign breast changes are more common than breast cancer, little evidence regarding risk factors for benign breast conditions is available. Omega-3 (n–3) fatty acids have antiinflammatory and antiproliferative actions and may be important in reducing the risk of benign conditions. There is a lack of research on the association of n–3 fatty acids with risk of benign fibrocystic breast changes. Objectives: The objectives of the study were to evaluate the role of n–3 and other fatty acids in the development of benign proliferative fibrocystic conditions (PFCs) and nonproliferative fibrocystic conditions (NPFCs) in the breast and to evaluate the progression of fibrocystic changes in breast cancer. Design: We conducted a case-control study to determine erythrocyte fatty acid concentrations in 155 women with NPFCs, 185 women with PFCs, 241 women with breast cancer (127 with nonproliferative and 114 with proliferative changes in the noncancerous extratumoral mammary epithelium), and 1030 control subjects. We estimated the relative risk of NPFCs, PFCs, and breast cancer with proliferative and nonproliferative changes in extratumoral tissue compared with the risk of these changes alone. Results: Women in the highest quartile of eicosapentaenoic acid concentrations were 67% less likely to have an NPFC alone or with breast cancer and 49% less likely to have breast cancer than were women with PFCs. γ-Linolenic acid (18:3n–6) was positively associated with all fibrocystic and cancerous conditions. Palmitic:palmitoleic acid (n–7 saturation index) was inversely associated with risk in all comparisons. Conclusion: Our results support a protective effects of n–3 fatty acid intake and the n–7 saturation index against benign fibrocystic breast changes and the progression of proliferative changes to breast cancer. PMID:19056601

  7. Aspartic acid

    Science.gov (United States)

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  8. Effects of processing on proximate and fatty acid compositions of six commercial sea cucumber species of Sri Lanka.

    Science.gov (United States)

    Nishanthan, G; Kumara, P A D A; de Croos, M D S T; Prasada, D V P; Dissanayake, D C T

    2018-05-01

    Processing and its impacts on proximate composition and fatty acid profile of six sea cucumber species; Bohadschia marmorata, Stichopus chloronotus, Holothuria spinifera, Thelenota anax, Holothuria scabra and Bohadschia sp. 1 collected from the northwest coast of Sri Lanka were analyzed. Sea cucumbers are processed into bêche - de - mer by both domestic and industrial level processors following the similar steps of cleaning, evisceration, first boiling, salting, second boiling and drying. However, domestically processed bêche - de - mer always reported a higher percentage of moisture, crude ash, crude fat and lower percentage of crude protein than industrially processed products. Although processing resulted in a significant reduction of total SFA and MUFA in fresh individuals of most of these species, total PUFA increased significantly in processed individuals excluding Bohadschia species. Palmitic acid was found to be the most dominant fatty acid in all these species followed by eicosapentaenoic acid, which showed a significant increase in processed products, except Bohadschia sp. 1. Total MUFA were higher than total SFA in all sea cucumber species having exceptions in Bohadchia sp.1 and fresh S. chloronotus. These findings will make a significant contribution to fill the gaps in existing information as no any previous information is available for species like H. spinifera and S. chloronotus .

  9. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Carla R V Coelho

    Full Text Available A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1 modifying diets by changing the quantities and proportions of foods and 2 increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets.

  10. Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function.

    Science.gov (United States)

    Kesse-Guyot, E; Péneau, S; Ferry, M; Jeandel, C; Hercberg, S; Galan, P

    2011-02-01

    Because of their structural, anti-inflammatory and antithrombic properties, long-chain n-3 fatty acids may be key factors in the aging process. We sought to elucidate the association between intake of long-chain n-3 fatty acids and/or fish and cognitive function evaluated 13 years after dietary assessment. Prospective population-based study. 3,294 adults from the SU.VI.MAX study (Supplementation with Antioxidant Vitamins and Minerals study). MEASUREMENTS/STATISTICAL ANALYSIS: Subjects underwent a standardized clinical examination which included cognitive tests and self-reported cognitive difficulties scale (2007-2009). Poor scores were defined using percentiles as cut-off. Dietary data were assessed through repeated 24-h dietary records. Odd ratio (OR), comparing the fourth (Q4) to the first quartile (Q1), of having a poor score were calculated using adjusted logistic regression. Self-reported cognitive difficulties were less frequent among subjects with higher intakes of total n-3 long chain fatty acids (OR = 0.72, CI 95%=0.56-0.92) and eicosapentaenoic acid (OR Q4 versus Q1 = 0.74, CI 95%=0.58-0.95), even after adjustment for depressive symptoms. A borderline significant association was also found with high fish consumption (OR Q4 versus Q1 = 0.80, CI 95%=0.63-1.01). Cognitive complaints, which may be an early indicator of cognitive decline, are less frequent among the elderly who have a high long-chain n-3 acids intake, as assessed 13 years earlier.

  11. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    Science.gov (United States)

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  12. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions

    Directory of Open Access Journals (Sweden)

    Celia G. Walker

    2015-08-01

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA is correspondingly decreased, the effect on other fatty acids (FA is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC, cholesteryl ester (CE and triglyceride (TAG and for blood mononuclear cells (MNC, red blood cells (RBC and platelets (PLAT. Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%–64% of placebo in the four portions group. We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.

  13. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions.

    Science.gov (United States)

    Walker, Celia G; West, Annette L; Browning, Lucy M; Madden, Jackie; Gambell, Joanna M; Jebb, Susan A; Calder, Philip C

    2015-08-03

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0-4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC), cholesteryl ester (CE) and triglyceride (TAG) and for blood mononuclear cells (MNC), red blood cells (RBC) and platelets (PLAT). Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA) in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%-64% of placebo in the four portions group). We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.

  14. Update on the management of severe hypertriglyceridemia--focus on free fatty acid forms of omega-3.

    Science.gov (United States)

    Pirillo, Angela; Catapano, Alberico Luigi

    2015-01-01

    High levels of plasma triglycerides (TG) are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG), particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA). These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA) form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk subjects, the addition of omega-3 to statin therapy may prevent or reduce major cardiovascular events.

  15. Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid

    NARCIS (Netherlands)

    Brouwer, Thomas; Blahusiak, Marek; Babic, Katarina; Schuur, Boelo

    2017-01-01

    Levulinic acid (LA) can be produced from lignocellulosic materials via hydroxylation followed by an acid-catalyzed conversion of hexoses. Inorganic homogeneous catalysts are mostly used, in particular sulphuric acid, yielding a mixture of LA with sulphuric acid, formic acid (FA) and furfural.

  16. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    Science.gov (United States)

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  18. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    Petit, Gerard

    1972-01-01

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF 3 (CH 3 COOH) 2 . The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF 3 COOH and CH 3 COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation [fr

  19. Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio.

    Science.gov (United States)

    Bispo, Paulo; Batista, Irineu; Bernardino, Raul J; Bandarra, Narcisa Maria

    2014-02-01

    The increasing evidence on the differential biochemical effects of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) raises the need of n-3 highly unsaturated fatty acid concentrates with different amounts of these fatty acids. In the present work, physicochemical and enzymatic techniques were combined to obtain acylglycerols, mainly triacylglycerols (TAG), rich in n-3 fatty acids. Sardine oil was obtained by washing sardine (Sardina pilchardus) mince with a NaHCO3 solution, hydrolyzed in a KOH-ethanol solution, and concentrated with urea. The esterification reaction was performed in the stoichiometric proportion of substrates for re-esterification to TAG, with 10 % level of Rhizomucor miehei lipase based on the weight of substrates, without any solvent, during 48 h. This procedure led to approximately 88 % of acylglycerols, where more than 66 % were TAG and the concentration of n-3 fatty acids was higher than 60 %, the EPA and DHA ratio (EPA/DHA) was 4:1. The content of DHA in the unesterifed fraction (free fatty acids) increased from 20 to 54 %, while the EPA level in the same fraction decreased from 33 to 12.5 % (EPA/DHA ratio ≈1:4). Computational methods (density functional theory calculations) have been carried out at the B3LYP/6-31G(d,p) level to explain some of the experimental results.

  20. Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production

    Directory of Open Access Journals (Sweden)

    Ravelo Ángel G

    2011-04-01

    Full Text Available Abstract Background The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs from fish, i.e. eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 are well known. These same benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs, such as stearidonic acid (SDA, 18:4 n-3. In order to obtain alternative sources for the large-scale production of PUFAs, new searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors, i.e. SDA and GLA (18:3n-6, γ-linolenic acid. Results The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in order to research the accumulation and metabolism of fatty acids (FAs in a plant particularly rich in GLA and SDA. Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid and 18:3n-6 (GLA, accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, α-linolenic acid and 18:4n-3 (SDA, represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the optimal productivity was always associated with the highest biomass density during the culture period. Assuming a compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines (29.75 and 60.95 mg/g DW, with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the hairy roots with very minute amounts being released into the liquid nutrient medium. Conclusions The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots. They are capable of biosynthesizing and accumulating a large

  1. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile.

    Science.gov (United States)

    Moran, Colm A; Morlacchini, Mauro; Keegan, Jason D; Fusconi, Giorgio

    2018-05-01

    The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. A total of 144 Pig Improvement Company (PIC)×Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (±13.1) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

  2. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    Science.gov (United States)

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protein (CRP) and fasting TG prior to n-3 supplementation in two studies (Study 1: n = 115, aged 20–44 years, body mass index (BMI) 20–30 kg/m2, TG = 34–176 mg/dL; Study 2: n = 28, aged 22–65 years, BMI 24–37 kg/m2, TG = 141–339 mg/dL). We also characterized the dose-response effects of n-3 fatty acid supplementation on RBC n-3 DPA after five months of supplementation with fish oil (Study 1: 0, 300, 600, 900, and 1800 mg/day EPA + DHA) and eight weeks of prescription n-3 ethyl esters (Study 2: 0, 850, and 3400 mg/day EPA + DHA). In Study 1, RBC n-3 DPA was inversely correlated with CRP (R2 = 36%, p < 0.001) and with fasting TG (r = −0.30, p = 0.001). The latter finding was replicated in Study 2 (r = −0.33, p = 0.04). In both studies, n-3 supplementation significantly increased RBC n-3 DPA dose-dependently. Relative increases were greater for Study 1, with increases of 29%–61% vs. 14%–26% for Study 2. The associations between RBC n-3 DPA, CRP, and fasting TG may have important implications for the prevention of atherosclerosis and chronic inflammatory diseases and warrant further study. PMID:26247967

  3. Role of sialic acid in synaptosomal transport of amino acid transmitters

    International Nuclear Information System (INIS)

    Zaleska, M.M.; Erecinska, M.

    1987-01-01

    Active, high-affinity, sodium-dependent uptake of [ 14 C]-aminobutyric acid and of the acidic amino acid D-[ 3 H]-aspartate was inhibited by pretreatment of synaptosomes with neuraminidase from Vibrio cholerae. Inhibition was of a noncompetitive type and was related to the amount of sialic acid released. The maximum accumulation ratios of both amino acids (intracellular [amino acid]/extracellular [amino acid]) remained largely unaltered. Treatment with neuraminidase affected neither the synaptosomal energy levels nor the concentration of internal potassium. It is suggested that the γ-aminobutyric acid and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of the carrier proteins directly and not through modification of driving forces responsible for amino acid uptake

  4. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  5. 17,21-Secohopanoic acids, 25-norhopanoic acids, and 28-norhopanoic acids in source rocks and crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Xueming Pan; Philp, R.P. [University of Oklahoma, Norman, OK (United States). School of Geology and Geophysics

    2006-09-15

    The presence of three families of hopanoic acids, 17,21-secohopanoic acids, 25-norhopanoic acids, and 28-norhopanoic acids, is discussed. Oils from West Siberia and tar balls from the Seychelles Islands were found to contain relatively high proportions of 17,21-secohopanoic acids. These acids have not been previously reported in any oils or source rocks. A heavily biodegraded West Siberian oil, was found to contain an homologous series of 25-norhopanoic acids co-occurring with the 25-norhopanes as previously reported in only a small number of oils from Campos Basin, Brazil. 28-Norhopanoic acids have been reported in various sediments and extracts of the Monterey Shale, but in this study their occurrence has been extended to oils, degraded oils, and tar balls sourced from the Monterey Shale. The primary purpose herein is to report the occurrence of these acids and possible relationships between the acids and corresponding hydrocarbons. (Author)

  6. Process for the preparation of lactic acid and glyceric acid

    Science.gov (United States)

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  7. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    Science.gov (United States)

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  8. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    Science.gov (United States)

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  9. Adjunctive low-dose docosahexaenoic acid (DHA) for major depression: An open-label pilot trial.

    Science.gov (United States)

    Smith, Deidre J; Sarris, Jerome; Dowling, Nathan; O'Connor, Manjula; Ng, Chee H

    2018-04-01

    Whilst the majority of evidence supports the adjunctive use of eicosapentaenoic acid (EPA) in improving mood, to date no study exists using low-dose docosahexaenoic acid (DHA) alone as an adjunctive treatment in patients with mild to moderate major depressive disorder (MDD). A naturalistic 8-week open-label pilot trial of low-dose DHA, (260 mg or 520 mg/day) in 28 patients with MDD who were non-responsive to medication or psychotherapy, with a Hamilton Depression Rating Scale (HAM-D) score of greater than 17, was conducted. Primary outcomes of depression, clinical severity, and daytime sleepiness were measured. After 8 weeks, 54% of patients had a ≥50% reduction on the HAM-D, and 45% were in remission (HAM-D ≤ 7). The eta-squared statistic (0.59) indicated a large effect size for the reduction of depression (equivalent to Cohen's d of 2.4). However confidence in this effect size is tempered due to the lack of a placebo. The mean score for the Clinical Global Impression Severity Scale was significantly improved by 1.28 points (P depression.

  10. Analysis of certain fatty acids and toxic metal bioaccumulation in various tissues of three fish species that are consumed by Turkish people.

    Science.gov (United States)

    Kaya, Gökçe; Türkoğlu, Semra

    2017-04-01

    Concentrations of toxic metals (Mn, Ni, Hg, Cd, Pb, Cr) in the muscle, skin, and liver of Mugil cephalus, Mullus barbatus, and Pagellus erythrinus which were purchased in large supermarkets of Elazig, and Mullus barbatus, which were caught on the sea of İskenderun Bay, Turkey, were analyzed. Fundamental analyses were carried out by inductively coupled plasma-mass spectrometry (ICP-MS) after samples were prepared by microwave digestion. Mean metal concentrations in different tissues were varied in the ranges of Cd 4-426, Cr 116-4458, Mn 141-24774, Hg 9-471, Pb 96-695, and Ni 68-6581 μg kg -1 , for wet weight. The investigated metal bioaccumulation in the muscles of fish species, in general, was lower than those in the liver and skin. This method was verified by NCS ZC73016 chicken trace element-certified reference material analysis. In addition, fatty acids in the muscles of three fish species were analyzed. According to the gas chromatography (GC) results of fatty acids, the monounsaturated fatty acids (MUFA) were found to be between 23.76 and 31.97%. The fatty acids' polyunsaturated fatty acids (PUFA) ratio was found to be between 13.67 and 30.71% and saturated fatty acids ratios were determined in the range of 24.06-32.30%. In all fish species, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ratio, which increase the value of these fish species, were high. These results show that these three fish species are good sources of fatty acids.

  11. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    Science.gov (United States)

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  12. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    Science.gov (United States)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  13. Serum content of oleic acid is associated with higher platelet-, endothelial- and leukocyte-derived circulating microparticles in Norwegian normolipidemic elderly patients after an acute myocardial infarction

    DEFF Research Database (Denmark)

    Chiva-Blanch, G; Bratseth, V; Laake, K

    2016-01-01

    (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from......OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... auricles, EAT above the right ventricle, PAT, and SAT below the sternum from 50 patients undergoing cardiac surgery. Samples were frozen at -80°C and the content of n-3 PUFAs determined by gas chromatography with results given in relative weight%. RESULTS EPA and DHA were significantly correlated in EAT...

  14. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    Science.gov (United States)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  15. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children

    Directory of Open Access Journals (Sweden)

    Nicolai A. Lund-Blix

    2016-08-01

    Full Text Available Background: There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. Objective: The objective was to evaluate the suitability of a food frequency questionnaire (FFQ to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA. Design: Cross-sectional data for the present study were derived from the prospective cohort ‘Environmental Triggers of Type 1 Diabetes Study’. Infants were recruited from the Norwegian general population during 2001–2007. One hundred and ten (age 3–10 years children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Results: Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29, total fat dairy products (r=0.39, and cheese products (r=0.36. EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA. To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. Conclusions: The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a

  16. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children.

    Science.gov (United States)

    Lund-Blix, Nicolai A; Rønningen, Kjersti S; Bøås, Håkon; Tapia, German; Andersen, Lene F

    2016-01-01

    There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. The objective was to evaluate the suitability of a food frequency questionnaire (FFQ) to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Cross-sectional data for the present study were derived from the prospective cohort 'Environmental Triggers of Type 1 Diabetes Study'. Infants were recruited from the Norwegian general population during 2001-2007. One hundred and ten (age 3-10 years) children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29), total fat dairy products (r=0.39), and cheese products (r=0.36). EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively) and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA). To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a high-fat content and cod liver/fish oil supplements.

  17. Classical bile acids in animals, beta-phocaecholic acid in ducks.

    Science.gov (United States)

    Jirsa, M; Klinot, J; Klinotová, E; Ubik, K; Kucera, K

    1989-01-01

    1. Bile samples of different animals were analysed and the percentage content of classical bile acids was determined. 2. Herbivorous birds mostly excreted a large proportion of chenodeoxycholic acid. 3. The anteater (Myrmecophaga tridactyla) excreted deoxycholic acid most probably as a primary bile acid. 4. In the bile of ducks (Anas platyrhynchos) a large amount of (23R)3 alpha, 7 alpha, 23-trihydroxy-5 beta-cholan-24-oic acid (beta-phocaecholic acid) was found.

  18. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0.45% dehydroisoandrosterone (DHA)

    International Nuclear Information System (INIS)

    Matsunaga, A.; Cottam, G.L.

    1987-01-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous [1- 14 C]arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1α were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet

  19. Decontamination effectiveness of mixtures of citric acid, oxalic acid and EDTA

    International Nuclear Information System (INIS)

    Speranzini, R.A.

    1990-01-01

    An experimental study of the decontamination effectiveness of citric acid, oxalic acid and EDTA mixtures was conducted to assess whether oxalic acid could be removed from decontamination solutions to minimize corrosion. In loop experiments, radioactive specimens from two boiling water reactors and one pressurized water reactor were suspended in solutions of single acids or in mixtures of reagents at total reagent concentrations of less than 0.1 wt% under conditions similar to those used to decontaminate reactor systems. Rate constants for dissolution of oxides and decontamination factors were measured. Based on the results, it was concluded that under certain conditions, oxalic acid was the most effective reagent for the dissolution of oxides. It was also found, however, that conditions under which effective dissolution occurred in solutions of oxalic acid and/or citric acid were difficult to define and control. EDTA was found to be an effective reagent for dissolution of oxides such that rates of dissolution in EDTA containing solutions at 117 degrees Celsius were comparable to rates in oxalic acid containing solutions. At 90 degrees Celsius, EDTA acted synergistically with oxalic acid such that the rate of dissolution of oxides in citric-acid/oxalic-acid/EDTA solutions was higher than in citric-acid/EDTA solutions. The rates of dissolution of oxides were significantly reduced when 60 mg/kg of ferric ion was added to the citric-acid/oxalic-acid, citric-acid/EDTA and citric-acid/oxalic-acid/EDTA solutions. It was concluded that effective decontaminations of BWR and PWR systems could be achieved with mixtures of citric acid and EDTA

  20. Biochemical and fatty acid composition of Arca noae (Bivalvia: Arcidae from the Mali Ston Bay, Adriatic Sea

    Directory of Open Access Journals (Sweden)

    I. DUPCIC RADIC

    2014-03-01

    Full Text Available Biochemical and fatty acid composition of the bivalve Arca noae were investigated in the Mali Ston Bay in relation to environmental conditions. Sampling was carried out monthly, from December 2001 to November 2002. Wet shellfish meat consists on average of 77.61% water and 22.39% dry matter, while dry shellfish meat consists on average of 89.04% organic and 10.96% inorganic matter. PCA analysis identified temperature, nitrate, silicate, MICRO, Chl a and salinity as the most important environmental factors influencing biochemical composition of A. noae. An increase of dry weight content of A. noae was observed during the spring when both the sea temperature and food supply increased rapidly. Contents of protein (54.39-62.06% of dry weight, carbohydrate (4.13-8.07% of dry weight and lipid (3.46-8.58% of dry weight varied significantly during the year. Protein and lipid level reached the maximum value in June. The fatty acid profiles of total lipids extracted from A. noae showed high level of unsaturation (UNS/SAT 1.9-3.4. Total polyunsaturated fatty acids (PUFA represented the majority of total fatty acids (40.3-59.9% of total fatty acids and the most abundant were eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acid. n-3/n-6 PUFA ratio value varied between 2.1 and 5.0 and was the highest during the spring (April to June. Due to their low lipid and high percentages of healthy polyunsaturated fatty acids A. noae can be evaluated as a quality seafood product. The most suitable period of the year for its consumption is in the spring when it reaches its highest nutritional values.

  1. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture

    Directory of Open Access Journals (Sweden)

    Gonçalo S. Marinho

    2015-07-01

    Full Text Available This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA and at a reference site in Denmark (2013–2014. Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW in July to 3.33%–3.35% DW in November (p < 0.05 in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%, 14:0 (11.07%–29.37% and 18:1n-9 (10.15%–16.94%. Polyunsaturated fatty acids (PUFA’s made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME. This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3, but also arachidonic (ARA and stearidonic acid (SDA, which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon and lean fish (cod this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC-PUFA’s in general compared to traditional vegetables.

  2. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    International Nuclear Information System (INIS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiationпј€1–7 kGyпј‰ and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC. - Highlights: • E-beam irradiation generated three novel volatile compounds. • E-beam irradiation increased the relative proportions of alcohols, aldehydes, and ketones. • E-beam irradiation coupled to microwave heating increased aldehyde levels and generated five heterocyclic compounds. • E-beam irradiation at 5 and 7 kGy decreased the levels of unsaturated fatty acids, but did not affect trans fatty acid levels.

  3. Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Gow, Rachel V; Vallee-Tourangeau, Frederic; Crawford, Michael Angus; Taylor, Eric; Ghebremeskel, Kebreab; Bueno, Allain A; Hibbeln, Joseph R; Sumich, Alexander; Rubia, Katya

    2013-06-01

    A number of research studies have reported abnormal plasma fatty acid profiles in children with ADHD along with some benefit of n-3 to symptoms of ADHD. However, it is currently unclear whether (lower) long chain-polyunsaturated fatty acids (LC-PUFAs) are related to ADHD pathology or to associated behaviours. The aim of this study was to test whether (1) ADHD children have abnormal plasma LC-PUFA levels and (2) ADHD symptoms and associated behaviours are correlated with LC-PUFA levels. Seventy-two, male children with (n=29) and without a clinical diagnosis of ADHD (n=43) were compared in their plasma levels of LC-PUFA. Plasma DHA was higher in the control group prior to statistical correction. Callous-unemotional (CU) traits were found to be significantly negatively related to both eicosapentaenoic acid (EPA), and total omega-3 in the ADHD group. The findings unveil for the first time that CU and anti-social traits in ADHD are associated with lower omega-3 levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Galectin-3, a marker of cardiac remodeling, is inversely related to serum levels of marine omega-3 fatty acids. A cross-sectional study

    DEFF Research Database (Denmark)

    Laake, K; Seljeflot, I; Schmidt, E B

    2017-01-01

    OBJECTIVE: Marine polyunsaturated n-3 fatty acids (n-3 PUFA) may have cardioprotective effects and beneficial influence on the fibrotic process. We evaluated the associations between serum marine n-3 PUFA and selected biomarkers of fibrosis and cardiac remodeling in elderly patients with acute...... myocardial infarction. RESULTS: Gal-3 was inversely correlated to eicosapentaenoic acid (r = -.120, p = .039) and docosahexaenoic acid (r = -.125, p = .031) and positively correlated to the n-6/n-3 ratio (r = .131, p = .023). Gal-3 levels were significantly higher in diabetics vs non-diabetics (12.00 vs 9.......61 ng/mL, p = .007) and in patients with NYHA class ≥III for dyspnea at inclusion (11.33 vs 9.75 ng/mL, p = .006). CONCLUSIONS: The associations between the marine n-3 PUFA and levels of Gal-3 indicate beneficial effects of n-3 PUFA on cardiac remodeling in an elderly population with acute myocardial...

  5. Radioimmunoassay of conjugated cholic acid, chenodeoxycholic acid, and deoxycholic acid from human serum, with use of 125I-labeled ligands

    International Nuclear Information System (INIS)

    Maeentausta, O.; Jaenne, O.

    1979-01-01

    We describe a method for radioimmunoassay of conjugated cholic acid, chenodeoxycholic acid, and deoxycholic acid in serum. In the method, 125 I-labeled bile acid conjugates are used as the tracers along with antibodies raised against individual bile acid-bovine serum albumin conjugates. Antibody-bound and free bile acids were separated by polyethylene glycol precipitation (final concentration, 125 g/L). The lowest measurable amounts of the bile acids, expressed as pmol/tube, were: cholic acid conjugates, 2; chenodeoxycholic acid conjugates, 0.5; and deoxycholic acid conjugates, 2. Analytical recovery of bile acids added to bile acid-free serum ranged from 85 to 110%; intra-assay and inter-assay CVs ranged from 8.3 to 5.3% and from 5.3 to 12.2%, respectively. Concentrations (mean +- SD) of the bile acid conjugates in serum from apparently healthy women and men (in μmol/L) were: cholic acid conjugates, 0.43 +- 0.17 (n=126); chenodeoxycholic acid conjugates, 0.47 +- 0.23 (n=111); and deoxycholic acid conjugates, 0.33 +- 0.11 (n=96). The values for primary bile acids were greatly increased in patients with various hepatobiliary diseases

  6. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2008-10-01

    Full Text Available Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione, a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME, as a substitute for GSH, was investigated by the induction period (IP method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R. and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO. using differential scanning calorimetry (DSC. Upon PhCOO. radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R. radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (kinh/kp declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME mixture (1:1 molar ratio (A to the calculated IP (the simple sum of phenol acid antioxidant and ME (B was investigated. Upon R. scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO. scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid

  7. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  8. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    Science.gov (United States)

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity. Copyright © 2015 Elsevier B.V. and Société Fran

  9. Understanding Acid Rain

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  10. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    Science.gov (United States)

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of Omega-3 Fatty Acid Supplementation on Oxylipins in a Routine Clinical Setting

    Directory of Open Access Journals (Sweden)

    Christoph Schmöcker

    2018-01-01

    Full Text Available Omega-6 polyunsaturated fatty acid (n-6 PUFA is the predominant polyunsaturated fatty acid (PUFA, especially in Western diet. A high omega-6/omega-3 ratio in Western diets is implicated in the development of cardiovascular diseases and inflammatory processes. Studies in animal models and in humans have demonstrated beneficial effects of omega-3 PUFA (n-3 PUFA in a variety of diseases, including cardiac arrhythmias and inflammatory diseases, as well as breast and colon cancer. The molecular mechanisms underlying the effects of n-3 PUFA are still not well understood. Possible mechanisms include competition between n-3 and n-6 PUFAs at the cyclooxygenase (COX and lipoxygenase (LOX and cytochrome P450 levels, and subsequent formation of oxylipins with specific anti-inflammatory or anti-arrhythmic effects. In this study, we report the impact of routine long-term treatment with prescription-grade n-3 PUFA (either 840 mg or 1680 mg per day on blood cell membrane fatty acid composition, as well as plasma oxylipin patterns, in a patient population with severe hyperlipidemia and cardiovascular disease who are on standard lipid-lowering and cardioprotective medications. Lipidomics analyses were performed by LC/ESI-MS/MS. Supplementation led to a dose-dependent increase in n-3 PUFA eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in the blood cell fraction. We also observed a dose-dependent increase in EPA- and DHA-derived epoxy metabolites, whereas the effect of n-3 PUFA supplementation on LOX-dependent EPA- and DHA-derived hydroxy metabolites was less pronounced, with a tendency towards lower metabolites in subjects with higher n-3 PUFA levels. These data thus generally confirm effects of n-3 PUFA supplementation observed previously in healthy individuals. Additionally, they indicate a suppressive effect of high n-3 PUFA supplementation on the formation of LOX metabolites in the context of concomitant aspirin medication.

  12. Omega-3 fatty acids supplementation does not affect serum lipids in chronic hemodialysis patients.

    Science.gov (United States)

    Poulia, Kalliopi-Anna; Panagiotakos, Demosthenes B; Tourlede, Eleftheria; Rezou, Athanasia; Stamatiadis, Dimitrios; Boletis, John; Zampelas, Antonis

    2011-11-01

    The aim of this study was to test the hypothesis that omega-3 fatty acids have an effect on serum lipids and inflammation markers in chronic hemodialysis (HD) patients. The study followed a single-blind, randomized, crossover design. The study was conducted at the Hemodialysis Unit of the Laikon General Hospital in Athens, Greece. A total of 25 chronic HD patients were included in the study (16 men, 9 women, age: 51 ± 15 years). Patients were randomly assigned to one of the following 2 intervention groups: omega-3 fatty acids plus α-tocopherol (920 mg eicosapentaenoic Acid (EPA), 760 mg docosahexaenoic acid (DHA), 8 mg α-tocopherol in total per day) or α-tocopherol supplement (100 mg/week resulting in 14.2 mg/day) alone for 4 weeks. After a washout period of 4 weeks, the 2 groups were crossed. Medical history data were collected and anthropometric and nutritional intake evaluation was performed at the beginning and at the end of both interventions. Hematological and biochemical parameters as well as C-reactive protein levels were measured. No statistically significant results were recorded in the lipidemic profiles of the participants between baseline and the 2 interventions. C-reactive protein levels also did not change significantly between the 2 interventions (5.54 ± 3.33 to 6.70 ± 5.01 mg/L [P = .19] with vitamin E vs. 7.13 ± 5.04 to 6.87 ± 5.24 [P = .78] with omega-3, P overall = .53). The results of this study do not provide support for the positive effects of omega-3 fatty acid supplementation in HD patients. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    Science.gov (United States)

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  14. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  15. Essential versus potentially toxic dietary substances: A seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, Martin [Aquatic Ecosystem Management Research Division, National Water Research Institute, Environment Canada, 867 Lakeshore Road, P.O. Box 505, Burlington, ON L7R 4A6 (Canada)], E-mail: martin.kainz@donau-uni.ac.at; Arts, Michael T. [Water and Aquatic Sciences Research Program, University of Victoria, Department of Biology, P.O. Box 3020, Stn. CSC, Victoria, BC V8W 3N5 (Canada); Mazumder, Asit [Aquatic Ecosystem Management Research Division, National Water Research Institute, Environment Canada, 867 Lakeshore Road, P.O. Box 505, Burlington, ON L7R 4A6 (Canada)

    2008-09-15

    We investigated seasonal variability of essential fatty acids (EFA) and methyl mercury (MeHg) concentrations in four size categories of planktonic organisms in two coastal lakes. MeHg concentrations increased significantly with increasing plankton size and were independent of plankton taxonomy. However, total EFA increased from seston to mesozooplankton, but decreased in the cladoceran-dominated macrozooplankton size-class. Analysis of EFA patterns revealed that linoleic, alpha-linolenic, arachidonic, and eicosapentaenoic acids increased with increasing zooplankton size, but docosahexaenoic acid (DHA) in the cladoceran-dominated macrozooplankton was generally lower than in seston. This consistent pattern demonstrates that cladocerans, although bioaccumulating MeHg, convey less DHA than similar-sized copepods to their consumers. It is thus evident that fish consuming cladocerans have restricted access to DHA, yet unrestricted dietary access to MeHg. Thus, the structure of planktonic food webs clearly affects the composition of EFA and regulates dietary supply of these essential nutrients, while MeHg bioaccumulates with increasing zooplankton size. - The structure of planktonic food webs largely regulates the composition and dietary supply of essential fatty acids, while MeHg bioaccumulates with zooplankton size.

  16. Essential versus potentially toxic dietary substances: A seasonal comparison of essential fatty acids and methyl mercury concentrations in the planktonic food web

    International Nuclear Information System (INIS)

    Kainz, Martin; Arts, Michael T.; Mazumder, Asit

    2008-01-01

    We investigated seasonal variability of essential fatty acids (EFA) and methyl mercury (MeHg) concentrations in four size categories of planktonic organisms in two coastal lakes. MeHg concentrations increased significantly with increasing plankton size and were independent of plankton taxonomy. However, total EFA increased from seston to mesozooplankton, but decreased in the cladoceran-dominated macrozooplankton size-class. Analysis of EFA patterns revealed that linoleic, alpha-linolenic, arachidonic, and eicosapentaenoic acids increased with increasing zooplankton size, but docosahexaenoic acid (DHA) in the cladoceran-dominated macrozooplankton was generally lower than in seston. This consistent pattern demonstrates that cladocerans, although bioaccumulating MeHg, convey less DHA than similar-sized copepods to their consumers. It is thus evident that fish consuming cladocerans have restricted access to DHA, yet unrestricted dietary access to MeHg. Thus, the structure of planktonic food webs clearly affects the composition of EFA and regulates dietary supply of these essential nutrients, while MeHg bioaccumulates with increasing zooplankton size. - The structure of planktonic food webs largely regulates the composition and dietary supply of essential fatty acids, while MeHg bioaccumulates with zooplankton size

  17. Fatty acids and astaxanthin composition of two edible native Mexican crayfish Cambarellus (C.) montezumae and Procambarus (M.) bouvieri

    International Nuclear Information System (INIS)

    Coral-Hinostroza, G.; Diaz-Martinez, M.; Huberman, A.; Silencio-Barrita, J.L.

    2016-01-01

    The content and composition of the fatty acids (F As) and astaxanthin (AST) in the edible forms of crayfish: the whole animal of Cambarellus (C.) montezumae, and the tail meat (TM) of Procambarus (M.) bouvieri were determined by GC and HPLC. The exoskeleton (EXK) of P. (M.) bouvieri was also studied. Unsaturated FAs, and mostly oleic acid (C18:1 n-9), were predominant in both edible forms. The contents of the polyunsaturated eicosapentaenoic (C20:5 n-3, EPA), arachidonic (C20:4 n-6, ARA) and docosahexaenoic acid (C22:6 n-3, DHA), were higher in the TM of P. (M.) bouvieri than in the complete C. (C.) montezumae (p 79.50%). AST esters were enriched with saturated FAs in C. (C.) montezumae and with PUFAs in EXK of P. (M.) bouvieri. We conclude that both C. (C.) montezumae and the TM of P. (M.) bouvieri are traditional foods rich in n-3 PUFAs and C. (C.) montezumae in AST. The EXK of P. (M.) bouvieri is a rich potential source of AST, n-3 PUFAs, and the combination AST-DHA. [es

  18. Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid (TPOP): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Matsuoka, Yutaka; Nishi, Daisuke; Yonemoto, Naohiro; Hamazaki, Kei; Matsumura, Kenta; Noguchi, Hiroko; Hashimoto, Kenji; Hamazaki, Tomohito

    2013-01-05

    Preclinical and clinical studies suggest that supplementation with omega-3 fatty acids after trauma might reduce subsequent posttraumatic stress disorder (PTSD). To date, we have shown in an open trial that PTSD symptoms in critically injured patients can be reduced by taking omega-3 fatty acids, hypothesized to stimulate hippocampal neurogenesis. The primary aim of the present randomized controlled trial is to examine the efficacy of omega-3 fatty acid supplementation in the secondary prevention of PTSD following accidental injury, as compared with placebo. This paper describes the rationale and protocol of this trial. The Tachikawa Project for Prevention of Posttraumatic Stress Disorder with Polyunsaturated Fatty Acid (TPOP) is a double-blinded, parallel group, randomized controlled trial to assess whether omega-3 fatty acid supplementation can prevent PTSD symptoms among accident-injured patients consecutively admitted to an intensive care unit. We plan to recruit accident-injured patients and follow them prospectively for 12 weeks. Enrolled patients will be randomized to either the omega-3 fatty acid supplement group (1,470 mg docosahexaenoic acid and 147 mg eicosapentaenoic acid daily) or placebo group. Primary outcome is score on the Clinician-Administered PTSD Scale (CAPS). We will need to randomize 140 injured patients to have 90% power to detect a 10-point difference in mean CAPS scores with omega-3 fatty acid supplementation compared with placebo. Secondary measures are diagnosis of PTSD and major depressive disorder, depressive symptoms, physiologic response in the experiment using script-driven imagery and acoustic stimulation, serum brain-derived neurotrophic factor, health-related quality of life, resilience, and aggression. Analyses will be by intent to treat. The trial was initiated on December 13 2008, with 104 subjects randomized by November 30 2012. This study promises to be the first trial to provide a novel prevention strategy for PTSD among

  19. Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    Plutonium metal can be readily dissolved in aqueous solutions of sulfamic acid. When the plutonium sulfamate--sulfamic acid solutions are added to normal purex process streams, the sulfamate ion is oxidized by addition of sodium nitrite. This generates sodium sulfate which must be stored as radioactive waste. When recovery of ingrown 241 Am or storage of the dissolved plutonium must be considered, the sulfamate ion poses major and undesirable precipitation problems in the process streams. The present studies show that 40 to 80% of the sulfamate present in the dissolver solutions can be removed by precipitation as sulfamic acid by the addition of concentrated nitric acid. Addition of 64% nitric acid allows precipitation of 40 to 50% of the sulfamate; addition of 72% nitric acid allows precipitation of 50 to 60% of the sulfamate. If the solutions are chilled, additional sulfamic acid will precipitate. If the solutions are chilled to -10 0 C, about 70 to 80% of the orginal sulfamic acid in the dissolver will precipitate. A single, low-volume wash of the sulfamic acid crystals with concentrated nitric acid will decontaminate the crystals to a plutonium content of 5 dis/(min-gram)

  20. Omega-3 fatty acid levels and general performance of commercial broilers fed practical levels of redfish meal.

    Science.gov (United States)

    Hulan, H W; Ackman, R G; Ratnayake, W M; Proudfoot, F G

    1989-01-01

    A total of 1,200 day-old Arbor Acre broiler chickens was randomly assigned to 12 pens (50 males and 50 females/pen) and divided into three blocks of four pens each. Each of four different diets was fed ad libitum to one pen of birds within each block to determine the effect of feeding practical levels of redfish meal (RFM) on performance and omega-3 fatty acid content of edible meat and skin lipids of broiler chickens. The four diets included (control) 0%, 4.0%, 8.0%, and 12.0% RFM. Feeding diets containing RFM had no effect on overall mortality or feed efficiency but resulted in decreased incidence of sudden death syndrome and lower body weight (P less than .01) and feed consumption (P less than .05). Additions of RFM to the diets resulted in a substantial dietary enrichment of omega-3 fatty acids (especially eicosapentaenoic acid, EPA or 20:5n-3, and docosahexaenoic acid, DHA or 22:6n-3). Analyses (wt/wt%) revealed that breast meat (less skin) was lower (P less than .001) in lipid and triglyceride but higher in free cholesterol (P less than .001) and phospholipid (P less than .001) than thigh meat (less skin). Dietary treatment had no effect on carcass lipid content or composition. Breast meat lipid contained more (P less than .001) omega-3 fatty acids (especially EPA and DHA), more docosapentaenoic acid, (DPA or 22:5n-3) and more total omega-3 polyunsaturated acids (n-3 PUFA) than thigh meat lipids. Feeding additional RFM resulted in an increased (P less than .001) accumulation of EPA, DPA, DHA, and total n-3 PUFA primarily at the expense of two omega-6 fatty acids, linoleic (18:2n-6) and arachidonic acid (20:4n-6). It can be calculated from the data presented that the consumption of 100 g of chicken that has been fed 12.0% RFM would contribute approximately 197 mg of omega-3 fatty acids (EPA + DPA + DHA) in contrast with the 138 mg of omega-3 fatty acids which would be realized from the consumption of 100 g of white fish such as cod.

  1. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Science.gov (United States)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  2. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    International Nuclear Information System (INIS)

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands

  3. Effects of Omega-3 Fatty Acids on Markers of Inflammation in Patients With Chronic Kidney Disease: A Controversial Issue.

    Science.gov (United States)

    Hu, Chun; Yang, Ming; Zhu, Xuejing; Gao, Peng; Yang, Shikun; Han, Yachun; Chen, Xianghui; Xiao, Li; Yuan, Shuguang; Liu, Fuyou; Kanwar, Yashpal S; Sun, Lin

    2018-04-01

    Chronic kidney disease (CKD) is a global problem which contributes to a significant morbidity and mortality in China. Concomitant inflammatory state further boosts the mortality due to cardiovascular events in patients with CKD undergoing dialysis. There is a general notion that Omega-3 fatty acids including docosahexaenoic acids (DHA) and eicosapentaenoic (EPA) have certain health benefits perhaps via the regulation of inflammation. However, the anti-inflammatory effect of omega-3 fatty acids in patients with CKD is controversial. We analyzed the data of oral supplementation of omega-3 fatty acids in CKD patients by searching literature on database from inception to August 2016. The analysis included randomized controlled trials (RCTs) derived from multiple databases, and the effect of omega-3 fatty acids supplementation versus the control cohorts were compared. All of the data analysis was calculated by RevMan 5.2. A total of 12 RCTs involving 487 patients were included in the meta-analysis. Among them 254 patients received omega-3 fatty acids and 233 patients served as controls who received placebo. The meta-analysis revealed no statistical significance in serum levels of C-reactive protein (CRP) (SMD, -0.20; 95% CI, -0.44 to 0.05; P = 0.11), IL-6 (SMD, 0.00; 95% CI, -0.33 to 0.33; P = 0.99) and TNF-α (SMD, 0.14; 95% CI, -0.17 to 0.44; P = 0.38) between the omega-3 fatty acids supplementation group and control. This suggested that there is insufficient evidence to conclude the benefit of omega-3 fatty acids oral supplementation in reducing serum levels of CRP, IL-6 and TNF-α in patients with CKD. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  4. 15N NMR spectroscopic investigation of nitrous and nitric acids in sulfuric acid solutions of varying acidities

    International Nuclear Information System (INIS)

    Prakash, G.K.S.; Heiliger, L.; Olah, G.A.

    1990-01-01

    Both nitrous and nitric acids were studied in sulfuric acid solutions of varying acid strengths by 15 N NMR spectroscopy. The study gives new insights into the nature of intermediates present at different acid strengths. Furthermore, we have also discovered a novel redox reaction between NO 2 + and NO + ions involving the intermediacy of their respective acids. A mechanism is proposed to explain the observed results. 13 refs., 2 figs., 1 tab

  5. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Lin, Yu-Hong; Bazinet, Richard P

    2017-02-01

    n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

  6. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  7. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    Science.gov (United States)

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  8. Resting state electroencephalographic correlates with red cell long-chain fatty acids, memory performance and age in adolescent boys with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sumich, Alexander; Matsudaira, Toshiko; Gow, Rachel V; Ibrahimovic, Almira; Ghebremeskel, Kebreab; Crawford, Michael; Taylor, Eric

    2009-12-01

    Abnormal fatty acid status has been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Delayed maturation in ADHD may result in raised frontal low frequency (theta) electroencephalographic activity (EEG) and a reduction in posterior high frequency (beta, alpha) activity. The current study used sequential linear regression to investigate the association between age, resting-state EEG and levels of long-chain polyunsaturated omega-3 and omega-6 fatty acids in red blood cells in 46 adolescent boys with ADHD symptoms. Docosahexaenoic acid (DHA) levels were positively associated with fast frequency activity: alpha during eyes-open and beta during eyes-closed conditions. Frontal theta activity during both eyes-open and eyes-closed conditions was inversely associated with age and positively associated with eicosapentaenoic acid (EPA) levels. Alpha activity correlated positively with performance on fluency for categories (semantic memory). Theta activity correlated inversely with performance on delayed (25 min) verbal memory (recall + recognition/2). No associations were observed between long-chain omega-6 and EEG measures. Results support differential associations for DHA and EPA with fast and slow EEG activity respectively. Results support EEG activity as an objective biomarker of neural function associated with long-chain omega-3 fatty acids in ADHD.

  9. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  10. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial.

    Science.gov (United States)

    Widenhorn-Müller, Katharina; Schwanda, Simone; Scholz, Elke; Spitzer, Manfred; Bode, Harald

    2014-01-01

    To determine whether supplementation with the long-chain omega-3 polyunsaturated fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) affects behavioral symptoms and cognitive impairments in children 6-12 years of age diagnosed with attention-deficit/hyperactivity disorder (ADHD). The randomized, double-blind placebo-controlled 16 weeks trial was conducted with 95 children diagnosed with ADHD according to DSM-IV criteria. Behavior was assessed by parents, teachers and investigators using standardized rating scales and questionnaires. Further outcome variables were working memory, speed of information processing and various measures of attention. For a subgroup of 81 participants, erythrocyte membrane fatty acid composition was analyzed before and after the intervention. Supplementation with the omega-3 fatty acid mix increased EPA and DHA concentrations in erythrocyte membranes and improved working memory function, but had no effect on other cognitive measures and parent- and teacher-rated behavior in the study population. Improved working memory correlated significantly with increased EPA, DHA and decreased AA (arachidonic acid). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids.

    Science.gov (United States)

    Ostermann, Annika I; Schebb, Nils Helge

    2017-07-19

    A growing body of evidence suggests that the intake of the long chain omega-3 polyunsaturated fatty acids (n3-PUFA) eicosapentaenoic acid (C20:5 n3, EPA) and docosahexaenoic acid (C22:6 n3, DHA) is linked to beneficial health effects, particularly in the prevention of cardiovascular and inflammatory diseases. Although the molecular mode of action of n3-PUFA is still not fully understood, it is not controversial that a significant portion of the (patho)-physiological effects of PUFA are mediated by their oxidative metabolites, i.e. eicosanoids and other oxylipins. Quantitative targeted oxylipin methods allow the comprehensive monitoring of n3-PUFA supplementation induced changes in the pattern of oxylipins in order to understand their biology. In this short review, results from intervention studies are summarized analyzing >30 oxylipins from different PUFAs in response to n3-PUFA supplementation. The results are not only qualitatively compared with respect to the study design, n3-PUFA dose and trends in the lipid mediators, but also quantitatively based on the relative change in the oxylipin level induced by n3-PUFA. The evaluation of the data from the studies shows that the change in oxylipins generally corresponded to the observed changes in their precursor PUFA, i.e. the lower the individual n3-status at the baseline, the higher the increase in EPA and DHA derived oxylipins. The strongest relative increases were found for EPA derived oxylipins, while changes in arachidonic acid (C20:4 n6, ARA) derived eicosanoids were heterogeneous. After 3-12 weeks of supplementation, similar relative changes were observed in free and total (free + esterified) oxylipins in plasma and serum. Regarding EPA derived oxylipins, the results indicate a trend for a linear increase with dose. However, the interpretation of the quantitative oxylipin patterns between studies is hampered by strong inter-individual variances in oxylipin levels between and also within the studies. In the

  12. Comparative Analysis of EPA/DHA-PL Forage and Liposomes in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats and Their Related Mechanisms.

    Science.gov (United States)

    Chang, Mengru; Zhang, Tiantian; Han, Xiuqing; Tang, Qingjuan; Yanagita, Teruyoshi; Xu, Jie; Xue, Changhu; Wang, Yuming

    2018-02-14

    Nonalcoholic fatty liver disease (NAFLD) has become one predictive factor of death from various illnesses. The present study was to comparatively investigate the effects of eicosapentaenoic acid-enriched and docosahexaenoic acid-enriched phospholipids forage (EPA-PL and DHA-PL) and liposomes (lipo-EPA and lipo-DHA) on NAFLD and demonstrate the possible protective mechanisms involved. The additive doses of EPA-PL and DHA-PL in all treatment groups were 1% of total diets, respectively. The results showed that Lipo-EPA could significantly improve hepatic function by down-regulating orotic acid-induced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels by 55.6% and 34.2%, respectively (p DHA could also significantly suppress hepatic lipid accumulation mainly by enhancement of hepatic lipolysis and cholesterol efflux. Furthermore, DHA-PL played a certain role in inhibiting hepatic lipogenesis and accelerating cholesterol efflux. The results obtained in this work might contribute to the understanding of the biological activities of EPA/DHA-PL and liposomes and further investigation on its potential application values for food supplements.

  13. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    Science.gov (United States)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  14. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  15. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota.

    Science.gov (United States)

    Watson, Henry; Mitra, Suparna; Croden, Fiona C; Taylor, Morag; Wood, Henry M; Perry, Sarah L; Spencer, Jade A; Quirke, Phil; Toogood, Giles J; Lawton, Clare L; Dye, Louise; Loadman, Paul M; Hull, Mark A

    2017-09-26

    Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). A randomised, open-label, cross-over trial of 8 weeks' treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week 'washout' period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium , Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure. ISRCTN18662143. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  16. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  18. Feeding ω-3 PUFA enriched rotifers to Galaxias maculatus (Jenyns, 1842 larvae reared at different salinity conditions: effects on growth parameters, survival and fatty acids profile

    Directory of Open Access Journals (Sweden)

    Patricio Dantagnan

    2013-07-01

    Full Text Available Despite the well known importance of ω-3 polyunsaturated fatty acids (PUFA in marine and freshwater fish larvae, there are few studies on how essential fatty acid requirements and composition on whole body can be altered by changes in water salinity. The present study aimed to determine the effect of salinity on ω-3 PUFA requirements, larval growth survival and fatty acid composition of Galaxias maculatus larvae cultured at two different salinities (0 and 15 g L-1 for 20 days while fed rotifers containing two different levels of ω-3 PUFA (1.87 and 3.16%. The results denoted a marked difference in ω-3 PUFA requirements and in the pattern of fatty acid deposition in the whole body of larvae reared at different salinities, depending of ω-3 PUFA in diets. Thus, to improve growth and survival larvae of G. maculatus reared at 0 g L-1 require higher levels of ω-3 PUFA, principally 18:3 ω-3. Larvae reared at salinities of 15 g L-1 require low levels of ω-3 PUFA for optimal survival, especially 18:3 ω-3. Eicosapentaenoic acid and docosahexaenoic acid content in the whole body of larvae was also affected by water salinity.

  19. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    Science.gov (United States)

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  20. Acidizing reservoirs while chelating iron with sulfosalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W A; Berkshire, D C

    1980-09-30

    A well treating process is described in which an aqueous solution of a strong acid capable of dissolving solids in a manner increasing the permeability of a subterranean earth formation is injected into a subterranean reservoir that contains an asphaltenic oil. At least the first injected portion of the aqueous acid and a solution or homogeneous dispersion of at least enough 5-sulfosalicylic acid to chelate with and prevent the formation of iron-asphaltene solids are included with substantially all of the ferric ions that become dissolved within the strong acid solution that enters the earth formation. 10 claims.

  1. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  2. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    Science.gov (United States)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  3. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely used...

  4. Fat content, fatty acid pattern and iron content in livers of turkeys with hepatic lipidosis.

    Science.gov (United States)

    Visscher, Christian; Middendorf, Lea; Günther, Ronald; Engels, Alexandra; Leibfacher, Christof; Möhle, Henrik; Düngelhoef, Kristian; Weier, Stefan; Haider, Wolfram; Radko, Dimitri

    2017-05-30

    The so-called "hepatic lipidosis" in turkeys is an acute progressive disease associated with a high mortality rate in a very short time. Dead animals show a massive fatty degeneration of the liver. The cause is still unclear. Previous findings suggest that there may be parallels to human non-alcoholic fatty liver disease. The object of the study was to examine the changes in the fat contents, the fatty acid composition and the iron content in livers of animals, which have died from hepatic lipidosis. The conspicuous livers (n = 85) were collected from 20 flocks where the phenomenon of massive increased animal losses accompanied by marked macroscopically visible pathological liver steatosis suddenly occurred. For comparison and as a reference, livers (n = 16) of two healthy flocks were taken. Healthy and diseased flocks were fed identical diets concerning official nutrient recommendations and were operating under standardized, comparable conventional conditions. Compared to livers of healthy animals, in the livers of turkeys died from hepatic lipidosis there were found massively increased fat levels (130 ± 33.2 vs. 324 ± 101 g/kg dry matter-DM). In all fatty livers, different fatty acids concentrations were present in significantly increased concentrations compared to controls (palmitic acid: 104 g/kg DM, +345%; palmitoleic acid: 18.0 g/kg DM, + 570%; oleic acid: 115 g/kg DM, +437%). Fatty acids concentrations relevant for liver metabolism and inflammation were significantly reduced (arachidonic acid: 2.92 g/kg DM, -66.6%; eicosapentaenoic acid: 0.141 g/kg DM, -78.3%; docosahexaenoic acid: 0.227 g/kg DM, -90.4%). The ratio of certain fatty acids to one another between control and case livers changed analogously to liver diseases in humans (e.g.: C18:0/C16:0 - 0.913 against 0.311; C16:1n7/C16:0 - 0.090 against 0.165; C18:1/C18:0 - 0.938 against 4.03). The iron content in the liver tissue also increased massively (271 ± 51.5 vs 712 ± 214 mg/kg DM). The hepatic

  5. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis.

    Science.gov (United States)

    Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z

    2013-07-01

    The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Heart and bile acids - Clinical consequences of altered bile acid metabolism.

    Science.gov (United States)

    Vasavan, Tharni; Ferraro, Elisa; Ibrahim, Effendi; Dixon, Peter; Gorelik, Julia; Williamson, Catherine

    2018-04-01

    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  8. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    Science.gov (United States)

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  9. Yield, flesh parameters, and proximate and fatty acid composition in muscle tissue of wild and cultured Vieja Colorada (Cichlasoma festae) in tropical Ecuadorian river

    International Nuclear Information System (INIS)

    González, M.A.; Angón, E.; Rodríguez, J.; Moya, A.; García, A.; Peña, F.

    2017-01-01

    This study was conducted to determine the composition of cultured and wild Cichlasoma festae in Ecuador. The mean slaughter yield and dress-out were similar for cultured and wild specimens and the average fillet fat content for cultured fish was significantly higher compared to the wild fish. The pH, fillet color, drip loss and coked loss were similar between populations. Significant differences were found in protein, lipid and ash content in both studied populations. This study showed that saturated fatty acid (SFA) was higher than sum of monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both populations. Palmitic, oleic and linoleic acids had the maximum percentage of SFA, MUFA and PUFA respectively. In cultured and wild fish was also found to differ in the PUFA/SFA, docosahexaenoic acid/eicosapentaenoic acid, n-3/n-6 ratios and atherogenicity and thrombogenicity indices. Minerals included Ca, P, K, Mg, Zn, Fe, Cu and Mn. There were significant differences in the first six ones. The production system (cultured or wild) influences significantly most of the analyzed characteristics of carcass and flesh of C. festae. These results provide valued nutritional information of native species to produce sources of food with low-fat and high-protein, and safety food for the consumers in Ecuadorian country.

  10. Yield, flesh parameters, and proximate and fatty acid composition in muscle tissue of wild and cultured Vieja Colorada (Cichlasoma festae) in tropical Ecuadorian river

    Energy Technology Data Exchange (ETDEWEB)

    González, M.A.; Angón, E.; Rodríguez, J.; Moya, A.; García, A.; Peña, F.

    2017-07-01

    This study was conducted to determine the composition of cultured and wild Cichlasoma festae in Ecuador. The mean slaughter yield and dress-out were similar for cultured and wild specimens and the average fillet fat content for cultured fish was significantly higher compared to the wild fish. The pH, fillet color, drip loss and coked loss were similar between populations. Significant differences were found in protein, lipid and ash content in both studied populations. This study showed that saturated fatty acid (SFA) was higher than sum of monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both populations. Palmitic, oleic and linoleic acids had the maximum percentage of SFA, MUFA and PUFA respectively. In cultured and wild fish was also found to differ in the PUFA/SFA, docosahexaenoic acid/eicosapentaenoic acid, n-3/n-6 ratios and atherogenicity and thrombogenicity indices. Minerals included Ca, P, K, Mg, Zn, Fe, Cu and Mn. There were significant differences in the first six ones. The production system (cultured or wild) influences significantly most of the analyzed characteristics of carcass and flesh of C. festae. These results provide valued nutritional information of native species to produce sources of food with low-fat and high-protein, and safety food for the consumers in Ecuadorian country.

  11. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-05-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Studies on the complexes of uranium(IV), thorium(IV) and lanthanum(III) acetates with p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid

    International Nuclear Information System (INIS)

    Singh, Mangal; Singh, Ajaib

    1979-01-01

    Complexes of acetates of U(IV), Th(IV) and La(III) with the ligands p-aminobenzoic acid, m-aminobenzoic acid, benzilic acid and phthalic acid have been prepared. Colour and chemical analytical data are recorded. They are characterised on the basis of IR and reflectance spectra and magnetic susceptibility data. (M.G.B.)

  13. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    International Nuclear Information System (INIS)

    Creelman, R.A.; Zeevaart, J.A.D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18 O 2 and 80% N 2 indicates that one atom of 18 O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18 O 2 indicates that one atom of 18 O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables

  14. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  15. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    Science.gov (United States)

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  16. Stimulation of apical sodium-dependent bile acid transporter expands the bile acid pool and generates bile acids with positive feedback properties.

    Science.gov (United States)

    Rudling, Mats; Bonde, Ylva

    2015-01-01

    Bile acid synthesis has been considered a prototype for how a physiological process is controlled by end product feedback inhibition. By this feedback inhibition, bile acid concentrations are kept within safe ranges. However, careful examination of published rodent data strongly suggests that bile acid synthesis is also under potent positive feedback control by hydrophilic bile acids. Current concepts on the regulation of bile acid synthesis are derived from mouse models. Recent data have shown that mice have farnesoid X receptor (FXR) antagonistic bile acids capable of quenching responses elicited by FXR agonistic bile acids. This is important to recognize to understand the regulation of bile acid synthesis in the mouse, and in particular to clarify if mouse model findings are valid also in the human situation. In addition to classic end product feedback inhibition, regulation of bile acid synthesis in the mouse largely appears also to be driven by changes in hepatic levels of murine bile acids such as α- and β-muricholic acids. This has not been previously recognized. Stimulated bile acid synthesis or induction of the apical sodium-dependent bile acid transporter in the intestine, increase the availability of chenodeoxycholic acid in the liver, thereby promoting hepatic conversion of this bile acid into muricholic acids. Recognition of these mechanisms is essential for understanding the regulation of bile acid synthesis in the mouse, and for our awareness of important species differences in the regulation of bile acid synthesis in mice and humans. 2015 S. Karger AG, Basel.

  17. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity

    OpenAIRE

    Haeusler, Rebecca A.; Camastra, Stefania; Nannipieri, Monica; Astiarraga, Brenno; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Ferrannini, Ele

    2015-01-01

    We measured plasma bile acids, markers of bile acid synthesis, and expression of bile acid transporters in obese and nonobese subjects. We found that obesity was associated with increased bile acid synthesis and 12-hydroxylation, blunted response of plasma bile acids to insulin infusion or a mixed meal, and decreased expression of liver bile acid transporters.

  18. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  19. Transformation of chenodeoxycholic acid to ursodeoxycholic acid in patients with Crohn's disease

    International Nuclear Information System (INIS)

    Miwa, H.; Yamamoto, M.; Nishida, T.; Yao, T.

    1986-01-01

    In vivo 7 beta-epimerization of chenodeoxycholic acid to ursodeoxycholic acid and the role of 7-ketolithocholic acid as an intermediate in this biotransformation were studied in 11 patients with Crohn's disease and in 5 healthy volunteers. The incorporation of deuterium into biliary ursodeoxycholic acid and 7-ketolithocholic acid was determined by computed gas chromatography-mass fragmentography after ingestion of a dideuterated chenodeoxycholic acid, chenodeoxycholic-11,12-d2 acid. The incorporation of deuterium into ursodeoxycholic acid increased to a peak level at 48 h in the patients with Crohn's disease, but was delayed in healthy volunteers. In 8 patients and 2 healthy controls there were small amounts of 7-ketolithocholic acid in bile. The incorporation of deuterium into 7-ketolithocholic acid was confirmed in only 2 patients and the peak level was noted at 48 h. These observations suggest that 7-ketolithocholic acid is an intermediate of this biotransformation in patients with Crohn's disease

  20. Oral omega-3 fatty acids promote resolution in chemical peritonitis.

    Science.gov (United States)

    Chacon, Alexander C; Phillips, Brett E; Chacon, Miranda A; Brunke-Reese, Deborah; Kelleher, Shannon L; Soybel, David I

    2016-11-01

    Recent studies suggest that purified omega-3 fatty acids may attenuate acute inflammation and hasten the transition to healing. In this study, we tested the hypothesis that pretreatment with omega-3-rich fish oil (FO) would promote resolution of peritoneal inflammation through production of specific lipid mediators. C57/BL6 mice were given a daily 200-μL oral gavage of saline (CTL) or FO (1.0-1.5 g/kg/d docosahexaenoic acid and 1.3-2.0 g/kg/d eicosapentaenoic acid) for 7 d before chemical peritonitis was induced with thioglycollate. Peritoneal lavage fluid was collected before induction and at days 2 and 4 after peritonitis onset. Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4), Resolvin D1 (RvD1), and the composition of immune cell populations were examined in peritoneal lavage exudates. Cells harvested from the peritoneum were assessed for macrophage differentiation markers, phagocytosis, and lipopolysaccharide-induced cytokine secretion profiles (interleukin [IL]-6, IL-10, IL-1β, TNFα). The ratio of RvD1 to pro-inflammatory PGE2 and LTB4 was increased in the peritoneal cavity of FO-supplemented animals. FO induced a decrease in the number of monocytes in the lavage fluid, with no change in the number of macrophages, neutrophils, or lymphocytes. Macrophage phagocytosis and M1/M2 messenger RNA markers were unchanged by FO with the exception of decreased PPARγ expression. FO increased ex vivo TNFα secretion after stimulation with lipopolysaccharide. Our findings provide evidence that nutraceutically relevant doses of FO supplements given before and during chemical peritonitis shift the balance of lipid mediators towards a proresolution, anti-inflammatory state without drastically altering the number or phenotype of local innate immune cell populations. Copyright © 2016 Elsevier Inc. All rights reserved.