WorldWideScience

Sample records for acid dye removal

  1. Using Eggshell in Acid Orange 2 Dye Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-05-01

    Full Text Available Background and purpose: Generated dye wastewater by the textile industry is usually toxic, non-biodegradable and resistant in the environment. Eggshell is one of the inexpensive material and for the reason the vesicular structures can be used as a proper adsorbent for pollutants removal. The aim of this study is to investigate the efficiency of eggshell for removal of acid orange 2 dye from aqueous solution. Materials and Methods: In the experimental study was determined the efficacy of variant variables such as contact time (15, 30, 60, 90 and 120 min, pH (3, 7 and 11, adsorbent dose (10, 25, 50 and 75 g/L, and initial dye concentration (25, 50 and 100 mg/L. The concentration of dye by spectrophotometer ultraviolet/visible in the wavelength 483 nm was examined. Results: The results showed that with increasing contact time and adsorbent dose, the dye removal efficiency was increased, but with increasing pH and initial dye concentration the removal efficiency was decreased. The maximum of removal efficiency of acid orange 2 dye got in the optimum pH: 3, contact time: 90 min, adsorbent dose: 50 g/L and initial dye concentration: 25 mg/L. Adsorption of acid orange 2 dye (R2 = 0.87 follow the Freundlich isotherm. Conclusion: Eggshells can be used as an inexpensive and effective adsorbent for the removal of acid orange 2 dye.

  2. Removal of some basic dyes by poly (Vinyl Alcohol/ acrylic acid)Hydrogel

    International Nuclear Information System (INIS)

    Hegazy, S.A.; Abdel-AAl, S.E.; Abdel-Rehim, H.A.; Khalifa, N.A.; El-Hosseiny, E.M.

    2000-01-01

    A study has made on the preparation and properties of poly (vinyl alcohol/ acrylic acid) hydrogel for the purpose of removal of cationic dyes from aqueous solutions. The effect of dose and monomer concentration on the uptake property of the hydrogel toward dye was studied. The uptake of basic methylene blue-9 dye with PVA/AAc was studied by the batch adsorption technique. The effect of pH on the dye uptake was demonstrated to find out that the suitable pH for maximum uptake occurred at pH 5. It was observed that as the concentration of dye is increased the dye uptake decreased. Furthermore, the uptake of dye by hydrogels increased as the temperature was elevated. The recovery of dye adsorbed is possible by treating the hydrogel with 5% HCl. The results obtained suggested this hydrogel possessed good removal properties towards basic methylene blue-9 dye, and this suggests that such hydrogels could be acceptable for practical uses

  3. Phosphate cellulose with metaphosphoric acid for dye removal

    International Nuclear Information System (INIS)

    Silva, S.C.C.; Silva, F.C.; Lima, L.C.B.; Santos, M.R.M.C.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    The chemical modification of cellulose is a suitable method used for producing value-added products, making them more efficient and selective for certain applications such as adsorption of dye. Thus the aim of this study was to modify the natural cellulose with metaphosphoric acid, characterized it through the techniques of FTIR and "3"1P NMR and applies it in the adsorption of brilliant green dye, evaluating the kinetic models of pseudo first-order and pseudo second-order and the theoretical models of the Langmuir, Freundlich and Temkin isotherms. The characterizations demonstrated the effectiveness of the modification, the maximum adsorption capacity was 150.0 mg g-1, adjusting better to the kinetic model of pseudo-second order and the theoretical model of Temkin, with the adsorbent showing efficient for removal of brilliant green dye. (author)

  4. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    Science.gov (United States)

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  5. Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-08-01

    Full Text Available Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI in the removal of dye acid red 18 (AR18 from aqueous solutions. Materials and Methods:This study was conducted at the laboratory scale. In this study, the removal efficiency of AR18 from a synthetic solution by NZVI was investigated. As well as the effect of solution pH, dye concentration, the concentration of NZVI and contact time in decolorization efficiency was investigated. Results:The results show that in pH = 3, contact time of 80 minutes, dye concentration of 25 mg/l and concentration of NZVI of 2 g/l, the removal efficiency was about 94%. Conclusion:According to the results of experiments, NZVI has high efficiency in removal of AR18 from aqueous solution.

  6. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.

    Science.gov (United States)

    Shakir, Kamal; Elkafrawy, Ahmed Faouzy; Ghoneimy, Hussein Fouad; Elrab Beheir, Shokry Gad; Refaat, Mamdoh

    2010-03-01

    The present work deals with removal, by ion flotation, of two dyes: a basic dye (rhodamine B (RB)) and an acidic one (thoron (TH)) from dilute aqueous solutions and simulated wastewaters. These dyes are widely used for analytical and biological staining purposes. Besides, RB is commonly used in dyeing of various industrial products. Therefore, wastewaters emanating from chemical and radiochemical laboratories, and biomedical and biological research laboratories may be contaminated with RB and TH. Ion flotation of these dyes has been investigated over a wide range of pH using the anionic surfactant, sodium lauryl sulfate (NaLS) and the cationic surfactant, cetyltrimethylammonium bromide (CTAB) as collectors. Successful removals could be achieved for RB and TH with the anionic collector, NaLS, and the cationic collector, CTAB, respectively. In addition to the effects of pH and type of collector on the efficiency of removal of each dye, the effects of collector and dye concentrations, frother dosage, ionic strength, bubbling time period and presence of foreign salts were investigated and the optimal removal conditions have been established. Removals exceeding 99.5 % and 99.9% could be achieved for RB and TH, respectively. The results obtained are discussed with respect to dissociation of dye, type of collector, ionic strength and sign and magnitude of charge of added foreign ions. Kinetics of flotation were also studied. Further studies demonstrate that under optimum conditions the developed flotation processes can be applied for the treatment of dye-contaminated wastewaters simulated to those generated at dyeing industries and radiochemical laboratories. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Use of Polymeric and Natural Materials for the Removal of Irradiated Direct and acid Dyes from Effluents

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.; Gad, Y.H.

    2000-01-01

    Wastewater effluents from textile plants typically contain appreciable quantities of organic dyes that are resistant to degrade by ordinary treatment processes and constitute a highly visible form of pollution in the receiving waters. Carbon absorption as well as ionizing radiation are used as treatment processes. However, each method alone did not achieve the complete removal of these pollutants. A combined treatment is more effective. The two direct dyes(Direct orange S, Isma fast yellow Rl) were degraded by radiation 76% and 70% ,respectively. Also, the acid dye Sandolane Rubanole E-3 GSL (Acid red 37) was degraded almost to the same extent. Addition of O 2 or H 2 O-2 resulted in a remarkable enhancement in the degradation process. The effect of ph, gamma-dose and dye concentration was studied. Polymeric ion exchangers proved to be more effective in the removal process than clays. However, granular activated carbon (GAC) was the best adsorbent for the direct dyes. Clays proved to be very good adsorbents for two basic dyes than their weak adsorption behavior of the direct ones

  8. Batch Removal of Acid Blue 292dye by Biosorption onto Lemna minor: Equilibrium and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Ali Joghataei

    2016-12-01

    Full Text Available Background: Recently, there has been a great concern about the consumption of dyes because of their toxicity, mutagenicity, carcinogenicity, and persistence in the aquatic environment. Therefore, the aim of this study was to determine the feasibility of using Lemna minor for Acid Blue 292 (AB292 dye removal from aqueous solution and to determine the optimal conditions. Methods: This experimental study was conducted in the batch systems to investigate the effects of parameters such as contact time, initial concentration of dye, pH and Lemna minor biomass dose. Isotherms and kinetic studies of dye adsorption were performed using equilibrium data. Results: According to the results, a maximum removal efficiency of 98.5% was obtained at pH of 3 and the contact time of 90 min; initial dye concentration 10 mg/L and adsorbent dose 3g/L. The adsorption data was best fitted to the Langmuir isotherm and pseudo-second order kinetic model. Conclusion: The results showed that Lemna minor could be used as a cost-effective adsorbent for removing AB292 dye from textile wastewater efficiently.

  9. Application of Acidic Treated Pumice as an Adsorbent for the Removal of Azo Dye from Aqueous Solutions:kinetic, Equilibrium and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Saied Bashiri

    2012-11-01

    Full Text Available Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as anefficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal ofAR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models.Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer.Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89 % regeneration for AR14 and AR18,respectively.

  10. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Samarghandi Mohammad

    2012-11-01

    Full Text Available Abstract Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively.

  11. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Mohamed Bouraada

    2016-07-01

    Full Text Available Two modified layered double hydroxides (HT have been synthesized by intercalating both sodium dodecylsulfate (SDS and sodium dodecylbenzenesulfonate (SDBS surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR dye removal from aqueous solution. Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorption isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorption of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g for BBR dye were much higher than those of HT-SDBS (204.1 mg/g. The intercalated Mg-Al layered double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively high concentrations, whereas HT-CO3 may only be used to remove anionic dyes of low concentrations.

  12. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    Science.gov (United States)

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Utilization of chemically modified citrus reticulata peels for biosorptive removal of acid yellow-73 dye from water

    International Nuclear Information System (INIS)

    Rehman, R.; Salman, M.; Mahmud, T.; Kanwal, F.; Zaman, W.

    2013-01-01

    Textile effluents contain several varieties of natural and synthetic dyes, which are non-biodegradable. Acid Yellow-73 is one of them. In this research work, adsorptive removal of this dye was investigated using chemically modified Citrus reticulata peels, in batch mode. It was noted that adsorption of dye on Citrus reticulata peels increased by increasing contact time and decreased in basic pH conditions. Langmuir and Freundlich isothermal models were followed by equilibrium data, but the first isotherm fitted the data better, showing that chemisorption occurred more as compared to physiosorption, showing maximum adsorption capacity 96.46 mg.g-1.L-1. The thermodynamic study showed that adsorption of Acid Yellow-73 on chemically modified Citrus reticulata peels was favorable in nature, following pseudo-second order kinetics. (author)

  14. Crossflow Ultrafiltration for Removing Direct-15 Dye from Wastewater of Textile Industry

    Directory of Open Access Journals (Sweden)

    A.L. Ahmad

    2017-11-01

    Full Text Available Ultrafiltration membrane was used to treat the effluent from textile industries. Crossflow ultrafiltration using GN polymeric membrane was used to remove the dye from textile effluent. A synthetic textile effluent of Direct-15 dye was used. The study focused through the effect of feed concentration, transmembrane pressure and solution’s pH on the permeate flux and percentage of dye removal were investigated. Dye concentration had significant effects on flux values. Under the fixed pressures and pH, the flux decreased while the dye rejection increased with increasing feed concentration. Transmembrane pressure also had significant effect on flux values. Under the fixed feed concentration and pH, the flux increased while dye rejection decreased with increasing pressure. Experiment data showed that the highest flux was observed at pH 4 (acidic condition while the highest dye removal observed at pH 7. Data collection could be used to improve the effectiveness of dye removal from textile industry wastewater using membrane technology.

  15. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    Directory of Open Access Journals (Sweden)

    Jahangiri-Rad Mahsa

    2013-01-01

    Full Text Available Abstract The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29 by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min. The optimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for color removal (amongst pH=3, 5 and 8 was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs.

  16. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    Science.gov (United States)

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.

  17. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  18. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  19. Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration

    Directory of Open Access Journals (Sweden)

    Mohammad Fadhil Abid

    2012-12-01

    Full Text Available Currently, biological method has been utilized in the treatment of wastewater -containing synthetic dyes used by textile industries in Iraq. The present work was devoted to study the operating feasibility using reverse osmosis (RO and nanofiltration (NF membrane systems as an alternative treatment method of wastewater discharged from Iraqi textile mills. Acid red, reactive black and reactive blue dyes were selected, based on the usage rate in Iraq. Effects of dye concentration, pH of solution, feed temperature, dissolved salts and operating pressure on permeate flux and dye rejection were studied. Results at operating conditions of dye concentration?=?65 mg/L, feed temperature?=?39?C and pressure?=?8 bar showed the final dye removal with RO membrane as 97.2%, 99.58% and 99.9% for acid red, reactive black and reactive blue dyes, respectively. With NF membrane, the final dye removal were as 93.77%, 95.67%, and 97% for red, black and blue dyes, respectively. The presence of salt (particularly NaCl in the dye solution resulted in a higher color removal with a permeate flux decline. It was confirmed that pH of solution had a positive impact on dye removal while feed temperature showed a different image. A comparison was made between the results of dye removal in biological and membrane methods. The results showed that membrane method had higher removal potential with lower effective cost. The present study indicates that the use of NF membrane in dye removal from the effluent of Iraqi textile mills is promising.

  20. Adsorptive removal of acid blue 113 and tartrazine by fly ash from single and binary dye solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pura, S.; Atun, G. [Istanbul University, Avcilar (Turkey). Dept. of Chemistry

    2009-07-01

    Adsorption of two acid dyestuffs, acid blue 113 (AB) and tartrazine (TA), has been studied from their single and binary solutions by using fly ash (FA) as an adsorbent. The S shaped isotherms observed for dye adsorption from single solutions show that both acid dyes are not preferred at a low concentration region whereas adsorption of the dyes from binary solutions is enhanced via solute-solute interactions. Although the L-shaped isotherm is observed in binary solutions adsorbability of AB decreases in concentrated solutions with respect to single one, time dependency of adsorption is well described with a pseudo-second-order kinetic model as well as the linear relation of Bt vs. t plots (not passing through origin) indicates that film diffusion is effective on dye adsorption. Modeled isotherm curves using isotherm parameters of the Freundlich and Dubinin-Radushkevich (D-R) equations adequately fit to experimental equilibrium data. Equilibrium adsorption of AB in binary solutions has been quite well predicted by the extended Freundlich and the Sheindorf-Rebuhn-Sheintuch (SRS) models. In general, the isotherm curves constructed in the temperature range of 298-328K show that the optimum temperature is 318K for AB removal from both single and binary solutions.

  1. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    Science.gov (United States)

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Monopolar Electro-Coagulation Process for Azo Dye C.I. Acid Red 18 Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ghasem Azarian

    2014-12-01

    Full Text Available The discharge of wastewaters containing an untreated dye results in aesthetic problems and an increase in gases solubility, which causes light transmission inhibition into water bodies. In spite of advantages of physicochemical and biological methods, these processes produce huge amounts of sludge, toxic by-products and require several oxidant chemicals. By contrast, electrochemical processes because of their high versatility, high efficiency and eco-friendly properties are more acceptable. In the present study, the removal of azo dye Acid Red 18 and chemical oxygen demand (COD from synthetic wastewater by monopolar (EC process was investigated and key parameters such as operating time, current density (CD, initial pH and energy, and electrode consumption were optimized. It was found that the process had a very good efficiency in the removal of both COD and color; for the iron electrode, the maximum amounts of color and COD removal were 99.5% and 59.0%, respectively. An operating time of 45 min, pH of 7 and CD of 1.2 mA/cm2 was selected as the optimized condition. The optimization of variables is extremely crucial as it results in a decrease in costs, energy and electrode consumption. Overall, the iron electrode used less energy than the aluminum electrode and was more acceptable for use in this process due to economical reasons. The findings of UV/vis spectra illustrated that the structures of this dye were removed by the process. In comparison with traditional methods such as aerobic and anaerobic systems, the EC process is a suitable alternative for the treatment of wastewaters containing dye pollutants.

  3. COMPARATIVE STUDIES OF PHYSICAL CHARACTERISTICS OF RAW AND MODIFIED SAWDUST FOR THEIR USE AS ADSORBENTS FOR REMOVAL OF ACID DYE

    Directory of Open Access Journals (Sweden)

    Jivan Singh

    2011-05-01

    Full Text Available The present paper aims to investigate the physical characteristics of sawdust relative to its use as an adsorbent for removal of an acid dye (Orange G from aqueous solutions. The raw sawdust was sieved to have a uniform size and was activated by sulphuric acid by refluxing the content at 60 oC for 4 h. Surface morphology and surface functional groups of both raw and modified sawdust samples were investigated by Scanning Electron Microscope (SEM, Energy Dispersive X-ray Analysis (EDX, Fourier Transformation Infrared (FTIR, and elemental analysis. All these analyses displayed significant change in the structure of the sawdust. The data obtained from batch adsorption experiments for the removal of the selected dye confirmed that adsorption characteristics of the modified sawdust were better than those of raw sawdust.

  4. Investigation of Removal Efficiency of Nano Sized Alumina for Removal of Acid Red 18 from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    M.H. Dehghani

    2014-08-01

    Full Text Available Background and Objectives: Acid Red 18 dye was one of the Azo colors that are used in textile and dyeing industries. These dyes are often toxic and carcinogenic to humans and the environment as pollution. This study was conducted with the aim of investigating on nano alumina efficiency for removal of Acid Red 18 dye from aqueous solutions. Materials and Methods: This study was carried out in the laboratory scales and effect of The initial concentration of dye (25 to 100 mg/l, pH solution (3, 7, 11, nano alumina concentration (0.1, 0.4, 1, 1.5 g/l and contact time in range 5 to 240 min on dye removal efficiency were evaluated. Also kinetic and isotherm models of adsorption process were evaluated. Results: The high removal efficiency was observed in pH=3, contact time=60 min and Adsorbent concentration of 0.4 g/L. The rate of color removal were 63/24, 50/84 and 20 percent respectively at pH of 3, 7 and 11 for the initial dye concentration of 25 mg/l and 0.4 g/l mass absorbent that showing with increasing pH removal efficiency is reduced. the studied dye absorption isotherm was fitted Langmuir model (R2=0.994 which was 83.33 mg/g for maximum adsorption. The results from kinetic studies showed that removal of the studied dye was best described by pseudo-second order kinetic model (r2=0.999. Conclusion: The present study shows nano alumina powder is promising adsorbent for removal of Acid Red 18 from aqueous solution.

  5. Photocatalytic application of Pd-ZnO-exfoliated graphite nanocomposite for the enhanced removal of acid orange 7 dye in water

    Science.gov (United States)

    Umukoro, Eseoghene H.; Madyibi, Siposetu S.; Peleyeju, Moses G.; Tshwenya, Luthando; Viljoen, Elvera H.; Ngila, Jane C.; Arotiba, Omotayo A.

    2017-12-01

    In this work, a nanocomposite photocatalyst which consists of palladium (Pd), zinc oxide (ZnO) as well as exfoliated graphite (EG) was synthesised, characterised and applied to the removal of acid orange 7 dye as a model organic pollutant. The Pd-ZnO-EG nanocomposite was synthesised by a one-pot hydrothermal technique in a Teflon-lined stainless steel autoclave at 160 °C for a period of 12 h, cooled, washed and dried. The nanocomposite was characterised by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electronic microscopy (SEM) as well as energy dispersive X-ray spectrometry (EDX). The as-prepared materials were further applied for the degradation of acid orange 7 dye photocatalytically. Results obtained showed that Pd-ZnO-EG composite displayed a better photocatalytic performance, giving better removal efficiency of 87% in comparison with ZnO and Pd-ZnO which gave 3 and 25% percentage removal respectively.

  6. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies.

    Science.gov (United States)

    Jain, Suyog N; Gogate, Parag R

    2018-03-15

    Biosorbent synthesized from dead leaves of Prunus Dulcis with chemical activation during the synthesis was applied for the removal of Acid Green 25 dye from wastewater. The obtained biosorbent was characterized using Brunauer-Emmett-Teller analysis, Fourier transform-infrared spectroscopy and scanning electron microscopy measurements. It was demonstrated that alkali treatment during the synthesis significantly increased surface area of biosorbent from 67.205 to 426.346 m 2 /g. The effect of various operating parameters on dye removal was investigated in batch operation and optimum values of parameters were established as pH of 2, 14 g/L as the dose of natural biosorbent and 6 g/L as the dose of alkali treated biosorbent. Relative error values were determined to check fitting of obtained data to the different kinetic and isotherm models. It was established that pseudo-second order kinetic model and Langmuir isotherm fitted suitably to the obtained batch experimental data. Maximum biosorption capacity values were estimated as 22.68 and 50.79 mg/g for natural biosorbent and for alkali activated Prunus Dulcis, respectively. Adsorption was observed as endothermic and activation energy of 6.22 kJ/mol confirmed physical type of adsorption. Column experiments were also conducted to probe the effectiveness of biosorbent for practical applications in continuous operation. Breakthrough parameters were established by studying the effect of biosorbent height, flow rate of dye solution and initial dye concentration on the extent of dye removal. The maximum biosorption capacity under optimized conditions in the column operation was estimated as 28.57 mg/g. Thomas and Yoon-Nelson models were found to be suitably fitted to obtained column data. Reusability study carried out in batch and continuous column operations confirmed that synthesized biosorbent can be used repeatedly for dye removal from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. POTENTIAL USE OF WOOL WASTE AS ADSORBENT FOR THE REMOVAL OF ACID DYES FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    BUCIŞCANU Ingrid

    2016-05-01

    Full Text Available At present, great amounts of raw wool are treated as waste and raise disposal problems. In the sustainable development context , wool is regarded as a biodegradable renewable resource and due to its complex chemical composition and fiber morphology, can find different useful applications. It is the aim of this paper to investigate the potential use of raw wool waste as a non-conventional adsorbent for Acid Red 337(AcR ,currently used for leather and wool dyeing. Two wool-based adsorbents were prepared, namely scoured coarse wool (Wool-S and wool activated with alcoholic solution of sodium hydroxide (Wool-A. Adsorbent dosage, dye concentration, pH and treatment time were factors taken in consideration for the assessment of the sorbate-adsorbent interaction. The removal efficiency (R % is mainly dependent on the solution pH and on the activation treatment applied to wool: at pH 3, the removal efficiency reaches the highest values of 42% on Wool-S and 99% on Wool-A. The adsorption rate is slow and needs almost 6 h to reach equilibrium. The experimental data best fitted the Langmuir equilibrium adsorption model, which proves that the adsorbent possess surface active sites to which the dye sorbate binds in monomolecular layer. Raw wool waste is a potential cheap, biodegradable and effective adsorbent for colored wastewater treatment.

  8. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    Science.gov (United States)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  9. Fabrication of Electrospun Polyamide-6/Chitosan Nanofibrous Membrane toward Anionic Dyes Removal

    Directory of Open Access Journals (Sweden)

    Mozhdeh Ghani

    2014-01-01

    Full Text Available Nanofibrous filter media of polyamide-6/chitosan were fabricated by electrospinning onto a satin fabric substrate and characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and water contact angle (WCA. Anionic dye removal capability of the filter was investigated for Solophenyl Red 3BL and Polar Yellow GN, respectively, as acidic and direct dyes were investigated with respect to solution parameters (pH and initial dye concentration and membrane parameters (electrospinning time and chitosan ratio through filtration system. Experiments were designed using response surface methodology (RSM based on five-level central composite design (CCD with four parameters to maximize removal efficiency of the filter media. Moreover, the effect of parameters and their likely interactions on dye removal were investigated by mathematically developed models. The optimum values for solution pH, initial dye concentration, electrospinning time, and chitosan ratio were predicted to be 5, 50 mg/L, 4 hr, 30% and 5, 100 mg/L, 4 hr, 10%, respectively, for achieving 96% and 95% removal of Solophenyl Red 3BL and Polar Yellow GN. Evaluation of the estimation capability of applied models revealed that the models have a good agreement with experimental values. This study demonstrated that polyamide-6/chitosan nanofibrous membrane has an enormous applicable potential in dye removal from aqueous solutions.

  10. Ozonation of acid yellow 17 dye in a semi-batch bubble column

    International Nuclear Information System (INIS)

    Lackey, Laura W.; Mines, Richard O.; McCreanor, Philip T.

    2006-01-01

    A semi-batch bubble column was used to evaluate the effect of ozonation on the removal of acid yellow 17 dye from water. Results indicate that ozonation is very effective at removing acid yellow 17 dye from synthetic textile wastewater. The ozone consumed to apparent dye removal ratio ranged from 2 to 15,000 mg ozone per mg of dye decolorized and was dependent on both ozonation time and apparent dye concentration. The biodegradability of the dye wastewater was evaluated by monitoring changes in 5-day biochemical oxygen demand (BOD 5 ) with respect to chemical oxygen demand (COD). Results indicate that the wastewater biodegradability increased with an increase in ozonation time. Film theory was used to kinetically model the gas-liquid reactions occurring in the reactor. Modeling results indicated that during the first 10-15 min of ozonation, the system could be characterized by a fast, pseudo-first-order regime. With continued ozonation, system kinetics transitioned through a moderate then to a slow regime. Successful modeling of this period required use of a kinetic equation corresponding to a more inclusive condition. Model results are presented

  11. Dye removal from textile wastewater using bioadsorbent

    International Nuclear Information System (INIS)

    Gardazi, S.M.H.

    2014-01-01

    Textile industries throughout the world produce huge quantities of dyes and pigments annually. Effluents from textile industries are dye wastewater, and disposal of these wastes to freshwater bodies causes damage to the environment. Among the treatment technologies, adsorption is an attractive and viable option, provided that the sorbent is inexpensive and readily available for use. In this study, a typical basic dye, methylene blue, in wastewater was treated using Melia azedarach sawdust. The effects of contact time, adsorbent amount and particle size were investigated on the removal efficiency of adsorbent for methylene blue. Complete removal of the dye were attained at higher adsorbent dose of 3 g/L with 50 mg/L initial dye concentration. The maximum adsorption was at 240 minutes, whereas more than 90% removal with 105 meu m particle size of 1 g/L adsorbent for same initial dye concentration. The experimental data best fits with 2 Langmuir adsorption isotherm (R= 0.991). (author)

  12. Synthesis, characterization and dyeing behavior of heterocyclic acid dyes and mordent acid dyes on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    Patel Hitendra M.

    2012-01-01

    Full Text Available Novel heterocyclic acid and mordent acid dyes were synthesized by the coupling of diazonium salt solution of different aromatic amines with 2- butyl-3-(4-hydroxybenzoylbenzofuran. The resulting heterocyclic acid dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1HNMR, 13C-NMR spectral studies and UV- visible spectroscopy. The dyeing performance of all the heterocyclic acid dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness.

  13. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  14. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media

    International Nuclear Information System (INIS)

    Silva, Alessandra C.; Pic, Jean Stephane; Sant'Anna, Geraldo L.; Dezotti, Marcia

    2009-01-01

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L -1 , NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation.

  15. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2009-01-01

    Full Text Available Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of chrome pretreated wool and silk have also been monitored. The result shows that better hue was obtained on mordented fiber. Results of bactericidal studies of chrome pretreated fibers revealed that the toxicity of mordented dyes against bacteria is fairly good. Dyeing on wool and silk fibers resulted in yellowish pink to reddish brown colourations having excellent light fastness and washing fastness.

  16. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution.

    Science.gov (United States)

    Wang, Qi; Luan, Zhaokun; Wei, Ning; Li, Jin; Liu, Chengxi

    2009-10-30

    In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.

  17. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  18. Removal of methylene blue dye from wastewater by using supported liquid memberane technology

    Directory of Open Access Journals (Sweden)

    Ashraf Muhammad Waqar

    2016-06-01

    Full Text Available The present work describes the application of Supported Liquid Membrane (SLM technology towards the removal and recovery of a cationic dye (Methylene Blue from aqueous solutions. Natural and non-toxic vegetable oils have been impregnated on microporous polymeric films of polyvinylidene fluoride (PVDF to constitute a liquid membrane. Different parameters affecting the transport, like pH of feed solution, acid concentration in the strip solution, initial dye concentration, oil types and stirring speeds have been investigated. Highest value of flux (1.7 × 10−5 mg/cm2/sec1 for methylene blue dye was achieved with sunflower oil impregnated on the PVDF support, with pH maintained at 12 in the feed solution and 0.3 M hydrochloric acid concentration in the strip solution. It took 6 hours to transport maximum amount of dye under optimum conditions.

  19. Removal of Remazol brilliant violet textile dye by adsorption using rice hulls

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Geyse Adriana Correa; Silva, Domingos Sergio Araujo; Santos, Clayane Carvalho dos; Bezerra, Cicero Wellington Brito; Tanaka, Auro Atsushi; Santana, Sirlane Aparecida Abreu, E-mail: cwb.bezerra@ufma.br [Universidade Federal do Maranhao, (UFMA), Sao Luis (Brazil); Vieira, Adriana Pires [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2017-01-15

    The release of industrial effluents into the environment causes widespread contamination of aquatic systems. Adsorption is seen as one of the most promising treatment processes, and lignocellulosic materials have gained prominence as adsorbents. This study investigates the potential of rice hulls, either in natura or treated with nitric acid, as adsorbents for removal of the dye. The adsorbents were characterized by infrared spectroscopy, solid state {sup 13}C-NMR, thermogravimetric analysis, and pH at point of zero charge. The dye adsorption experiments were carried out in batch mode, using different experimental conditions. The kinetic adsorption data could be fitted using the model of Elovich. The Freundlich model provided the best fit to the isothermal data. The thermodynamic parameters confirmed the spontaneity of the adsorption process. These adsorbents offer an alternative for dye removal, with advantages including biomass availability and low cost. (author)

  20. Removal of Reactive-dyes from Textile Plant Effluents Using Polyvinyl Alcohol-coated Active Carbon obtained from Sesame Seeds

    Directory of Open Access Journals (Sweden)

    Sheida Moradi- Nasab

    2016-09-01

    Full Text Available In this study, the adsorption of active carbon derived from waste sesame seeds coated with polyvinyl alcohol (AC/PVA was investigated for removing red 198 and blue 19 reactive dyes from textile effluents. The batch process was carried out to identify such parameters as pH, adsorbent dose, contact time, and initial dye concentration involved in the dye removal adsorption capacity of AC/PVA. Also, batch kinetic and isotherm experiments were conducted. Results indicated that the maximum dye removal was obtained in an acidic pH over 90 min of contact time and that adsorption rates followed the pseudo-second-order kinetics. Blue and red dye concentrations were determined using the spectrophotometric method at 590 and 517 nm, respectively. It may be concluded that AC/PVA is capable of removing blue and red reactive dyes and can be used as an efficient, cheap, and accessible adsorbent for treating textile effluents.

  1. Color removal from dye-containing wastewater by magnesium chloride.

    Science.gov (United States)

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  2. Removal of Remazol brilliant violet textile dye by adsorption using rice hulls

    Directory of Open Access Journals (Sweden)

    Geyse Adriana Corrêa Ribeiro

    Full Text Available Abstract The release of industrial effluents into the environment causes widespread contamination of aquatic systems. Adsorption is seen as one of the most promising treatment processes, and lignocellulosic materials have gained prominence as adsorbents. This study investigates the potential of rice hulls, either in natura or treated with nitric acid, as adsorbents for removal of the dye. The adsorbents were characterized by infrared spectroscopy, solid state 13C-NMR, thermogravimetric analysis, and pH at point of zero charge. The dye adsorption experiments were carried out in batch mode, using different experimental conditions. The kinetic adsorption data could be fitted using the model of Elovich. The Freundlich model provided the best fit to the isothermal data. The thermodynamic parameters confirmed the spontaneity of the adsorption process. These adsorbents offer an alternative for dye removal, with advantages including biomass availability and low cost.

  3. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood; Khorramfar, Shooka; Amini, Farrokhlegha; Arami, Mokhtar

    2011-01-01

    Highlights: ► Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. ► Kinetics data followed pseudo-second order kinetic model. ► Isotherm data followed Langmuir isotherm. ► Q 0 for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. ► PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q 0 ) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  4. Studies on Removal of Dyes from wastewater using Electro-coagulation Process

    OpenAIRE

    N B. Patel; B D. Soni; J P. Ruparelia

    2000-01-01

    Electro-coagulation (EC) is one of the effective techniques to remove colour, COD and organic compounds from wastewater. In this paper electro coagulation technique has been used for the removal of colour and COD from dye solutions containing Direct Black 22 and Acid Red 97 using batch process. For batch the process effect of operational parameters such as current density, initial pH of the solution, time of electrolysis and electrode materials were studied to attempt max...

  5. The effect of the textile industry dye bath additive EDTMPA on colour removal characteristics by ozone oxidation.

    Science.gov (United States)

    Olmez, T; Kabdaşli, I; Tünay, O

    2007-01-01

    In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.

  6. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO{sub 3} semiconductor catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Hayat, K. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Hooshani, K. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-10-30

    Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO{sub 3} semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H{sub 2}O{sub 2}), and potassium bromate (KBrO{sub 3}). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.

  7. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@aut.ac.ir [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Khorramfar, Shooka [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Amini, Farrokhlegha [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Arami, Mokhtar [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. Black-Right-Pointing-Pointer Kinetics data followed pseudo-second order kinetic model. Black-Right-Pointing-Pointer Isotherm data followed Langmuir isotherm. Black-Right-Pointing-Pointer Q{sub 0} for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. Black-Right-Pointing-Pointer PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q{sub 0}) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  8. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  9. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  10. Factor Affecting Textile Dye Removal Using Adsorbent From Activated Carbon: A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Razi Mohd Adib

    2017-01-01

    Full Text Available Industrial company such as textile, leather, cosmetics, paper and plastic generated wastewater containing large amount of dye colour. The removal of dye materials are importance as the presence of this kind of pollutant influence the quality of water and makes it aesthetically unpleasant. As their chemical structures are complicated, it is difficult to treat dyes with municipal waste treatment operations. Even a small quantity of dye does cause high visibility and undesirability. There have been various treatment technique reviewed for the removal of dye in wastewater. However, these treatment process has made it to another expensive treatment method. This review focus on the application of adsorbent in dye removal from textile wastewater as the most economical and effective method, adsorption has become the most preferred method to remove dye. The review provides literature information about different basis materials used to produce activated carbon like agricultural waste and industrial waste as well as the operational parameters factors in term of contact time, adsorbent dosage, pH solution and initial dye concentration that will affect the process in removing textile dye. This review approach the low cost and environmental friendly adsorbent for replacing conventional activated carbon.

  11. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  12. Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water.

    Science.gov (United States)

    Chawla, Sneha; Uppal, Himani; Yadav, Mohit; Bahadur, Nupur; Singh, Nahar

    2017-01-01

    In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO 2 ) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO 2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg -1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Adsorption of Acid Yellow-73 and Direct Violet-51 Dyes from Textile Wastewater by Using Iron Doped Corncob Charcoal

    Directory of Open Access Journals (Sweden)

    Mujtaba Baqar

    2015-06-01

    Full Text Available The presence of synthetic dyes in textile industry wastewater lead to deterioration of precious fresh water resources, making the need to remove dyes crucial for environmental protection. Recently, different techniques have been employed to remove these dyes from water resources. Among them, biosorption has gained tremendous popularity due to its eco-friendly nature and inexpensive method. In this study, the removal potential of two acid dyes, i.e. yellow-73 and direct violet-51, was assessed from textile effluent samples using iron modified corncob charcoal. The adsorption efficiency ranged between 93.93 ­ 97.96 % and 92.2 - 95.4 % for acid yellow-73 and direct violet-51, respectively. Furthermore, study highlights optimum parameters for successful adsorption of these dyes, such as stirring time (numbers, pH (numbers, temperature (numbers, and adsorbent dosage (numbers. Keeping in consideration these findings, we recommend the use of Iron Doped Corncob Charcoal (IDCC as a low-cost, efficient alternative for wastewater treatment, primarily minimizing the detrimental effects of hazardous dyes.

  14. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  15. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Wijetunga, Somasiri; Li Xiufen; Jian Chen

    2010-01-01

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  16. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  17. Removal of Organic Dyes by Nanostructure ZnO-Bamboo Charcoal Composites with Photocatalysis Function

    Directory of Open Access Journals (Sweden)

    Xinliang Yu

    2015-01-01

    Full Text Available Composites of nanostructure zinc oxide (nano-ZnO and bamboo charcoal (BC were successfully prepared via impregnation-precipitation method. The products were characterized by XRD, SEM, and EDS. Rhodamine B (RhB and acid fuchsin (AF were selected as the organic dyes of photocatalysis degradation under the irradiation of ultraviolet light (UV. The influence of particle size of BC, irradiation time, pH value of the solution, and additive amount of H2O2 on removal of the dyes has been studied. The results show that smaller particle size of BC in the composites has a better removal effect. The composites possess the highest removal capacity for RhB and AF under the conditions of pH = 2 and pH = 5.4, respectively. The optimum additive amount of H2O2 for 5 mL RhB and AF was 0.050 mL and 0.1 mL, with a removal rate of 93% and 99%, respectively.

  18. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  19. Study of Modern Nano Enhanced Techniques for Removal of Dyes and Metals

    Directory of Open Access Journals (Sweden)

    Samavia Batool

    2014-01-01

    Full Text Available Industrial effluent often contains the significant amount of hexavalent chromium and synthetic dyes. The discharge of wastewater without proper treatment into water streams consequently enters the soil and disturbs the aquatic and terrestrial life. A range of wastewater treatment technologies have been proposed which can efficiently reduce both Cr(VI and azo dyes simultaneously to less toxic form such as biodegradation, biosorption, adsorption, bioaccumulation, and nanotechnology. Rate of simultaneous reduction of Cr(VI and azo dyes can be enhanced by combining different treatment techniques. Utilization of synergistic treatment is receiving much attention due to its enhanced efficiency to remove Cr(VI and azo dye simultaneously. This review evaluates the removal methods for simultaneous removal of Cr(VI and azo dyes by nanomicrobiology, surface engineered nanoparticles, and nanophotocatalyst. Sorption mechanism of biochar for heavy metals and organic contaminants is also discussed. Potential microbial strains capable of simultaneous removal of Cr(VI and azo dyes have been summarized in some details as well.

  20. An Improved Method for Removal of Azo Dye Orange II from Textile Effluent Using Albumin as Sorbent

    Directory of Open Access Journals (Sweden)

    Tadashi Ohashi

    2012-11-01

    Full Text Available Azo dyes are generally resistant to biodegradation due to their complex structures. Acid orange II is one of the most widely used dyes in the textile industry. The influence of bovine serum albumin (BSA in different concentrations, pH, and time of contact on Orange II was investigated using kinetics and adsorption-isotherm experiments. The results showed that the maximum colour removed from dye/albumin was 99.50% and that a stable dye-protein complex had been formed at pH 3.5 and in a proportion of 1:3 (v/v, respectively. The synthetic effluent did not show toxicity to the microcrustacean Artemia salina, and showed a CL50 equal to 97 µg/mL to azo dye orange II. Additionally, the methodology was effective in removing the maximum of orange II using BSA by adsorption at pH 3.5 which mainly attracted ions to the azo dye during the adsorption process. This suggests that this form of treatment is economical and easy to use which potentially could lead to bovine serum albumin being used as a sorbent for azo dyes.

  1. Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2018-02-01

    Full Text Available Dyes are one of the most important existing pollutants in textile industrial wastewater. These compounds are often toxic, carcinogenic, and mutagenic to living organisms, chemically and photochemically stable, and non-biodegradable. Acid red 18 is one of the azo dyes that are currently used in the textile industries. Photocatalytic degradation offers a great potential as an advanced oxidation process, in this study photocatalytic degradation of Acid red 18 by using BiOI/ZnO nanocomposite was evaluated under visible light irradiation. The influence of most essential parameters such as pH and BiOI/ZnO dosage were studied for optimum conditions. The dye removal efficiency was 85.1% at optimum experimental conditions of pH of 7, and BiOI/ZnO dosage of 1.5 g/L. The data had a good agreement with pseudo first-order kinetic model. Thus, the BiOI/ZnO/UV is an efficient process for dye degradation. Keywords: Photodegradation, Nanocomposite, BiOI/ZnO, Degradation, Dye, Acid red 18

  2. Dye and its removal from aqueous solution by adsorption: a review.

    Science.gov (United States)

    Yagub, Mustafa T; Sen, Tushar Kanti; Afroze, Sharmeen; Ang, H M

    2014-07-01

    In this review article the authors presented up to-date development on the application of adsorption in the removal of dyes from aqueous solution. This review article provides extensive literature information about dyes, its classification and toxicity, various treatment methods, and dye adsorption characteristics by various adsorbents. One of the objectives of this review article is to organise the scattered available information on various aspects on a wide range of potentially effective adsorbents in the removal of dyes. Therefore, an extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here. Dye bearing waste treatment by adsorption using low cost alternative adsorbent is a demanding area as it has double benefits i.e. water treatment and waste management. Further, activated carbon from biomass has the advantage of offering an effected low cost replacement for non-renewable coal based granular activated carbon provided that they have similar or better adsorption on efficiency. The effectiveness of various adsorbents under different physico-chemical process parameters and their comparative adsorption capacity towards dye adsorption has also been presented. This review paper also includes the affective adsorption factors of dye such as solution pH, initial dye concentration, adsorbent dosage, and temperature. The applicability of various adsorption kinetic models and isotherm models for dye removal by wide range of adsorbents is also reported here. Conclusions have been drawn from the literature reviewed and few suggestions for future research are proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Simultaneous studies on solar energy storage by CO2 reduction to HCOOH with Brilliant Green dye removal photoelectrochemically

    Directory of Open Access Journals (Sweden)

    V.S.K. Yadav

    2016-12-01

    Full Text Available The simultaneous study on photoelectrochemical CO2 reduction with Brilliant Green (BG dye removal was studied in the present work. Experimental studies were done in aqueous solutions of sodium and potassium based electrolytes using a cathode [Zinc (Zn and Tin (Sn] and a common cobalt oxide (Co3O4 anode electrocatalyst. The influence of reaction with electrolyte concentration for the both catalysts was shown clearly with respect to time. The selected electrocatalysts were able to reduce CO2 to formic acid (HCOOH along with high BG dye removal. With Sn as cathode, the maximum BG dye removal was obtained to be KHCO3–[95.9% (10 min–0.2 M], NaHCO3–[98.6% (15 min–0.6 M]. Similarly for Zn, KHCO3–[99.8% (10 min–0.4 M], NaHCO3–[99.9% (20 min–0.8 M] were observed respectively. Finally, the results have proven that higher efficiencies for BG dye removal were obtained along with HCOOH formation, which might be a better alternate for water purification and to decrease the atmospheric CO2 concentrations.

  4. optimization of crystal violet dye removal from aqueous solution

    African Journals Online (AJOL)

    maje malamiyo

    -Journal of Chemistry, 6(4):1109-1116. Malik P.K. (2003): Use of activated carbons prepared from sawdust and rice-husk for Adsorption of acid dyes: a case study of acid yellow 36,. Dyes Pigments 56:239-249. Malik, R., Ramteke, D.S., and ...

  5. Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps

    International Nuclear Information System (INIS)

    Zainal, Zulkarnain; Hui, Lee Kong; Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin; Abdullah, Abdul Halim; Ramli, Irmawati

    2005-01-01

    The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at ∼28 deg C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis

  6. Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus

    International Nuclear Information System (INIS)

    Ozer, Ayla; Akkaya, Goenuel; Turabik, Meral

    2006-01-01

    In this study, the biosorption of Acid Blue 290 and Acid Blue 324 on Spirogyra rhizopus, a green algae growing on fresh water, was studied with respect to initial pH, temperature, initial dye concentration and biosorbent concentration. The optimum initial pH and temperature values for AB 290 and AB 324 biosorption were found to be 2.0, 30 deg. C and 3.0, 25 deg. C, respectively. It was observed that the adsorbed AB 290 and AB 324 amounts increased with increasing the initial dye concentration up to 1500 and 750 mg/L, respectively. The Langmuir, Freundlich, Redlich-Peterson and Koble-Corrigan isotherm models were applied to the experimental equilibrium data and the isotherm constants were determined by using Polymath 4.1 software. The monolayer coverage capacities of S. rhizopus for AB 290 and AB 324 dyes were found as 1356.6 mg/g and 367.0 mg/g, respectively. The intraparticle diffusion model and the pseudo-second order kinetic model were applied to the experimental data in order to describe the removal mechanism of these acidic dyes by S. rhizopus. The pseudo-second order kinetic model described very well the biosorption kinetics of AB 290 and AB 324 dyes. Thermodynamic studies showed that the biosorption of AB 290 and AB 324 on S. rhizopus was exothermic in nature

  7. Column operation studies for the removal of dyes and phenols using a low cost adsorbent

    International Nuclear Information System (INIS)

    Gupta, V. K.; Suhas; Tyagi, I.

    2016-01-01

    Fertilizer plant waste carbon slurry has been investigated after some processing used as efficient adsorbent for the fast removal and rapid adsorption of dyes and phenols using columns. The results reveals that the adsorbent developed from carbon slurry is carbonaceous in nature and having appreciable surface area (380 m2/g) can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet) as well as anionic (ethyl orange, metanil yellow, acid blue 113), and phenols (phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol) fruitfully from water. The column type continuous flow operations were used to obtain the breakthrough curves. The breakthrough capacity, exhaustion capacity and degree of column utilization were optimized and evaluated from the plots. The results obtained revealed that the degree of column utilization for dyes falls in range from 60 to 76% while for phenols was in the range 53-58%. The exhaustion capacities were quite high as compared to the breakthrough capacities and were found to be 217, 211, 104, 126, 233, 248, 267 mg/g for meldola blue, crystal violet, chrysoidine G, methylene blue, ethyl orange, metanil yellow, acid blue 113, respectively and 25.6, 72.2, 82.2 and 197.3 mg/g for phenol, 2-chlorophenol, 4- chlorophenol and 2,4-dichlorophenol, respectively.

  8. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  9. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  10. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-01-01

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  11. Acid-base indicator properties of dyes from local plants I: Dyes from ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Acid-base indicator properties of dyes from local plants I: Dyes from Basella alba. (Indian spinach) and ... solution, which change colour immediately after the equivalence point has .... The pH ranges over which the dyes change colour were ...

  12. Adsorption of acid dye onto activated Algerian clay

    OpenAIRE

    D. Bendaho; T. A. Driss; D. Bassou

    2017-01-01

    In this work, activated clay from Algeria was used as adsorbent for the removal of methyl orange (MO) from aqueous solution, for this, the effects of several parameters such as contact time, adsorbent dose, pH value of aqueous solution and temperature on the adsorption of MO were also studied. The results showed that nearly 30 min of contact time are found to be sufficient for the adsorption to reach equilibrium and the adsorption was favourable at lower pH. The acid dye concentration is meas...

  13. Rice husk as dyes removal from impregnated cotton wastes generated in sports industries of sialkot, pakistan

    International Nuclear Information System (INIS)

    Junaid, M.; Khan, M.U.; Malik, R.N.

    2014-01-01

    The current study was designed to the potential dyes removal present in solid wastes of cotton (Generated from sports industries). Sport products were colored with different shaded dyes with the help of cotton that are disposed to the different environmental compartment. Cost effective and eco-friendly adsorbents (rice husk) has been collected and used as an ideal alternative to the conventional method of dyes removal for disposed cotton wastes. The effect of pH, contact time, adsorbent dose, shaking speed and amount of dyes solution of rice husks on dyes removal have been evaluated and optimized. Maximum and efficient dyes removal was observed at pH (3.0), contact time (240 min), adsorbent dose (8.0 g), shaking speed (300 rpm) and amount of dyes solution (200 ml). All these conditions have ensured dyes removal up to 91, 93, 92, 90 and 93% respectively. This process highlighted the advantage of recovery of methyl ethyl ketone (MEK) and dyes which may be used again after modification. Furthermore the present study encourages that the rice husks generated as biological waste can be used as promising tool for dyes removal. (author)

  14. Removal of reactive dyes from wastewater by shale

    Directory of Open Access Journals (Sweden)

    Jareeya Yimrattanabovorn

    2012-02-01

    Full Text Available Colored textile effluents represent severe environmental problems as they contain mixture of chemicals, auxiliariesand dyestuffs of different classes and chemical constitutions. Elimination of dyes in the textile wastewater by conventionalwastewater treatment methods is very difficult. At present, there is a growing interest in using inexpensive and potentialmaterials for the adsorption of reactive dyes. Shale has been reported to be a potential media to remove color from wastewaterbecause of its chemical characteristics. In this study, shale was used as an adsorbent. The chosen shale had particlesizes of : A (1.00 < A < 2.00 mm, B (0.50 < B < 1.00 mm, C (0.25 < C < 0.50 mm, D (0.18 < D < 0.25 mm and E (0.15 < E < 0.18mm. Remazol Deep Red RGB (Red, Remazol Brilliant Blue RN gran (Blue and Remazol Yellow 3RS 133% gran (Yellow wereused as adsorbates. Batch adsorption experiments were performed to investigate the effect of contact time, pH, temperatureand initial dye concentration. It was found that the equilibrium data were best described by the Langmuir isotherm model,with the maximum monolayer adsorption capacities of 0.0110-0.0322 mg/g for Red, 0.4479-1.1409 mg/g for Blue and 0.0133-0.0255 mg/g for Yellow, respectively. The maximum adsorption capacity of reactive dye by shale occurred at an initial pH of 2,initial concentration of 700 Pt-Co and temperature 45°C. Reactive dye adsorption capacities increased with an increase of theinitial dye concentration and temperature whereas with a decrease of pH. The fixed bed column experiments were appliedwith actual textile wastewater for estimation of life span. The results showed that COD and color removal efficiencies of shalefix bed column were 97% and 90%, respectively. Also the shale fixed bed columns were suitable for using with textile effluentfrom activated sludge system because of their COD and color removal efficiencies and life expectancy comparison using withdyebath wastewater and raw

  15. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  16. The Application of Low-Cost Adsorbent for Reactive Blue 19 Dye Removal from Aqueous Solution: Lemna Minor

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-10-01

    Full Text Available Background & Aims of the Study: Due to widespread use and adverse effect of dyes, the removal of dyes from effluents is necessary. This study was aimed to remove the reactive blue 19 dye removal from aqueous solution by dried Lemna minor. Materials and Methods:  The effect of various parameters including contact time, solution pH, adsorbent dosage and dye concentration was investigated in this experimental-lab study, Also, the isotherm and kinetic studies was performed for RB19 dye adsorption process. Results: The results indicated that RB19 dye removal efficiency increases by increasing of contact time and adsorbent dosage. The equilibrium time was 75 min ad the maximum dye removal efficiency was obtained in pH=3. Also, the dye removal efficiency decreases by increasing of pH and initial concentration. It was found that the equilibrium data was best follow by Langmuier isotherm. Also, the pseudo-second-kinetic model was best applicable for RB 19 dye adsorption. Conclusion: It can be concluded that the dried Lemna minor can be considered as an effective adsorbent to remove the RB19 dye.

  17. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  18. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye

    International Nuclear Information System (INIS)

    Akar, Tamer; Tosun, Ilknur; Kaynak, Zerrin; Kavas, Emine; Incirkus, Gonul; Akar, Sibel Tunali

    2009-01-01

    This study focuses on the possible use of macro-fungus Agaricus bisporus to remove Acid Red 44 dye from aqueous solutions. Batch equilibrium studies were carried out as a function of pH, biomass amount, contact time and temperature to determine the decolorization efficiency of biosorbent. The highest dye removal yield was achieved at pH 2.0. Equilibrium occurred within about 30 min. Biosorption data were successfully described by Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum monolayer biosorption capacity of biosorbent material was found as 1.19 x 10 -4 mol g -1 . Thermodynamic parameters indicated that the biosorption of Acid Red 44 onto fungal biomass was spontaneous and endothermic in nature. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of possible dye-biosorbent interaction and surface structure of biosorbent, respectively. Finally the proposed biosorbent was successfully used for the decolorization of Acid Red 44 in synthetic wastewater conditions.

  19. Modified coal fly ash as low cost adsorbent for removal reactive dyes from batik industry

    Directory of Open Access Journals (Sweden)

    Taufiq Agus

    2018-01-01

    Full Text Available The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET surface area analysis, X-ray powder diffraction (XRD, Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. The effects of operational parameters such as initial dye concentration (50–200 mg/L, solution pH (4–10 and adsorbent dosage (50–200 mg/L were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.

  20. Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    DHIRUBHAI J. DESAI

    2010-05-01

    Full Text Available Novel acid mono azo and mordent acid mono azo dyes were synthesised by the coupling of diazonium salt solution of different aromatic amines with 2-hydroxy-4-methoxybenzophenone. The resulting dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1H-NMR and UV–visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre-treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness. The results of antibacterial studies of chrome pre-treated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  1. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-04-01

    Full Text Available Abstract Background and purpose:The main objectives of this research were to evaluating the application of electrocoagulation process for 198 dye from the aqueous phase and determining the optimum operating conditions to the dye removal using aluminum and iron electrodes. Materials and Methods:The present study was conducted in bench-scale. The spectrophotometer DR 5000 was used to determine the dye concentration. The effects of pH, retention time, voltage, dye concentration on the efficiency of electrocoagulation process were investigated. Data were analyzed in SPSS for Windows 16.0 using Pearson’scorrelation coefficient to analyze the relationship between these parameters. Results:The results showed that the optimal conditions for reactive red 198 (RR-198 dye removal from the aqueous solution are pH of 11, the voltage of 32 V, the initial dye concentration of 10 ppm, and the reaction time of 40 min. Pearson correlation analysis showed that there is a significant relationship between voltage and the reaction time with the removal efficiencies (P< 0.01. Conclusion:It was revealed that the removal efficiency of dye was directly proportional to the voltage and reaction time, but inversely proportional to the initial dye concentration. In conclusion, electrocoagulation process using two-fold iron and aluminum electrodes is an appropriate method for reducing the RR-198 dye in the aqueous phase.

  2. Studies on Synthesis and Dyeing Preformance of Acid Dyes Based on 4,7-Dihydroxy-1,10-Phenanthroline-2,9-Dione

    Directory of Open Access Journals (Sweden)

    B. V. Patel

    2008-01-01

    Full Text Available Some new azo acid dyes were prepared by coupling various diazotized acid components such as anthranilic acid, sulphanilic acid, laurent acid, peri acid, tobias acid, H-acid, J-acid, gamma acid, sulphotobias acid, 4-aminotoluiene-3-sulphonic acid, 5-sulpho- anthranilic acid, 2-naphthylamine-3,6,8-trisulphonic acid, bronner acid, metanilic acid and cleve acid with 4,7-dihydroxy-1,10-phenanthroline-2,9-dione. The dyes were characterized by elemental, IR and TLC analyses. Their dyeing performance as acid dyes has been assessed on viscose rayon, wool and cotton fibres.

  3. Acid azo dye remediation in anoxic-aerobic-anoxic microenvironment under periodic discontinuous batch operation: bio-electro kinetics and microbial inventory.

    Science.gov (United States)

    Venkata Mohan, S; Suresh Babu, P; Naresh, K; Velvizhi, G; Madamwar, Datta

    2012-09-01

    Functional behavior of anoxic-aerobic-anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50 ± 1 U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0 ± 0.2 μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chien-Hsin, E-mail: yangch@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Wen-Churng [Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan (China); Wang, Tzong-Liu; Shieh, Yeong-Tarng; Chen, Wen-Janq; Liao, Shao-Hong; Sun, Yu-Kuang [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2011-10-17

    Highlights: {yields} We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. {yields} A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. {yields} Carbazole donor in the dye molecule provides electron in increasing efficiency. {yields} Two rhodaniline-3-acetic acids play a key role in increasing efficiency. {yields} AC impedance proves this dye's effect on enhancing charge transfer in TiO{sub 2}. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO{sub 2}-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO{sub 2}, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO{sub 2} (e{sup -}). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  5. Removal of Reactive Dyes (Green, Orange, and Yellow from Aqueous Solutions by Peanut Shell Powder as a Natural Adsorbent

    Directory of Open Access Journals (Sweden)

    Hosein Nadi

    2012-11-01

    -bireactive dye removal. Appl Catal B Environ 2006;67(1:86-92. 2. Shu HY, Huang CR. Degradation of commercial ago dyes in water using ozonation and UV enhanced ozonation process. Chemosphere 1995;31(8:3813-25. 3. Clarke EA, Anliker R. Organic dyes and pigments. In The Handbook of Environmental Chemistry. Berlin: Springer-Verlag; 1980;3(part A:181-215. 4. Riu J, Schönsee I, Barceló D. Determination of sulfonated azo dyes in water and wastewater. TrAC Trends Anal Chem1997;16(7:405-19. 5. Venkatamohan S, Mamatha VVS, Karthikeyan J. Removal of colour from acid and direct dyes by adsorption onto silica fumes. Fresenius Envion Bull 1998;7(1:51-8. 6. da Silveira Neta JJ, Moreira GC, da Silva CJ, Reis C, Reis EL. Use of polyurethane foams for the removal of the Direct Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination 2011;281:55–60. 7. Paul J, Naik DB, Sabharwal S. High energy induced decoloration and mineralization of reactive red 120 dye in aqueous solution:a steady state and pulse radiolysis study. Radiat Phys Chem. 2010;79(7:770-6. 8. Merzouk B, Gourich B, Madani K, Vial Ch, Sekki A. Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination 2011;272(1-3:246-53. 9. Gholami Borujeni F, Mahvi AH, Naseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M. Application of immobilized horseradish peroxidase for removal and detoxification of azo dye from aqueous solution. Res J Chem Environ 2011;15:217-22. 10. Gholami-Borujeni F, Mahvi AH, Nasseri S, Faramarzi MA, Nabizadeh R, Alimohammadi M. Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Appl Biochem Biotechnol 2011;165(5-6:1274-84. 11. Dehghani MH, Mesdaghinia AR, Nasseri S, Mahvi AH, Azam K. Application of SCR technology for degradation of reactive yellow dye in aqueous solution. Water Qual Res J Can 2008;43(2/3:183-7. 12. Mahvi AH, Ghanbarian M, Nasseri S, Khairi A. Mineralization and discoloration of

  6. Application of AzollaFiliculoides Biomass in Acid Black 1 Dye Adsorption from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2014-09-01

    Full Text Available Background and purpose: The textile dyes are considered as important pollutants due to the toxicity on human and environment. Therefore, the dye removal from industrial effluents is necessary. This study evaluates the ability of Azolla for the adsorption of acid black 1 (AB1 dye from aqueous solution. Materials and Methods: This was an experimental-laboratory study. The Azolla biomass was sun dried, crushed and sieved to particle sizes in the range of 1-2 mm. Then, it treated with 0.1 M HCl for 5 h, followed by washing with distilled water, and it used as an adsorbent. The effect of study parameter was investigated, and the residues AB1 concentration was measured by DR2800 spectrophotometer at in λmax = 622 nm. Results: The results indicated that the efficiency of AB1 adsorption decreased with increased initial dye concentration. It increased with increased contact time and adsorbent. The highest adsorption efficiency was occurred at pH = 2. The equilibrium data were the best fitted on Langmuir isotherm and pseudo-second-order kinetic model. Conclusion: The Azolla could present high ability in dye removal. Therefore, it can be used as inexpensive and effective adsorbent in textile effluent treatment.

  7. A novel biosorbent for dye removal: Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Laboratoire de Sciences Analytiques (UMR CNRS 5180), Universite Claude Bernard Lyon 1, Universite de Lyon, 69622 Villeurbanne Cedex (France); Xia Siqing [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)], E-mail: siqingxia@mail.tongji.edu.cn; Wang Xuejiang; Yang Aming; Xu Bin; Chen Ling; Zhu Zhiliang; Zhao Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Jaffrezic-Renault, Nicole; Leonard, Didier [Laboratoire de Sciences Analytiques (UMR CNRS 5180), Universite Claude Bernard Lyon 1, Universite de Lyon, 69622 Villeurbanne Cedex (France)

    2009-04-15

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery.

  8. A novel biosorbent for dye removal: Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Xia Siqing; Wang Xuejiang; Yang Aming; Xu Bin; Chen Ling; Zhu Zhiliang; Zhao Jianfu; Jaffrezic-Renault, Nicole; Leonard, Didier

    2009-01-01

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery

  9. Removal of Congo red dye from aqueous solutions using a halloysite-magnetite-based composite.

    Science.gov (United States)

    Ferrarini, F; Bonetto, L R; Crespo, Janaina S; Giovanela, M

    2016-01-01

    Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer-Emmett-Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.

  10. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    OpenAIRE

    Castañeda-Díaz, J.; Pavón-Silva, T.; Gutiérrez-Segura, E.; Colín-Cruz, A.

    2017-01-01

    The cationic dye malachite green (MG) and the anionic dye Remazol yellow (RY) were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more ...

  11. Removal of acid red 88 from wastewater by adsorption on agrobased waste material. A case study of Iranian golden Sesamum indicum hull

    Directory of Open Access Journals (Sweden)

    Mahmoud Zarei

    2017-08-01

    Full Text Available Background: Colors are very useful in different industries such as textile and leather but when they enter water, can cause many biological and environmental problems. In the present research, a waste agricultural material which is freely available is employed to analyze its efficiency for removing acid dye from contaminated wastewaters. Methods: In this study, batch adsorption experiments were performed in the treatment process of acid red 88 (AR88 by Iranian golden Sesamum indicum (IGSI seeds hull which is produced abundantly in some countries and especially in Iran up to 1100 kg/ha. Also, the effect of operational parameters like adsorption time, pH, dye concentration and adsorbent dosage was studied on pollutant removing efficiency. The experimental data of AR88 adsorption was fitted to Langmuir, Freundlich and Temkin isotherm models. The scanning electron microscopy (SEM images for the IGSI were taken before and after adsorption process. Results: The efficiency of dye adsorption on adsorbent was found to be 98.2%. The optimum pH for treatment was 4.5 which is in the acidic range. Enhancing the adsorbent dosage from 0.5 to 2.5 g caused increasing in removal efficiency from 73.85% to 95.85%. Decreasing in dye concentration from 70 to 30 mg/L caused increasing in removal efficiency from 79.73% to 95.83%. The process of adsorption was best fitted to Langmuir model and the amount of dye adsorbed on adsorbent, qe, was found to be 25 mg/g. Comparison between SEM images before and after dye adsorption, showed the significant difference that was due to the dye loading on adsorbent. Conclusion: The results of present study demonstrated higher dye removal efficiency for AR88 in acidic pHs. Employing the IGSI material in this study proves to be a potential alternative to expensive adsorbents, utilized for the treatment of contaminated industrial waste waters.

  12. Quaternized triethanolamine-sebacoyl moieties in highly branched polymer architecture as a host for the entrapment of acid dyes in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Meriem Bendjelloul

    2017-03-01

    Full Text Available This paper reports the synthesis of a hyperbranched polymer by a cost-effective one-step copolymerization of A3 and B2 monomers, namely, triethanolamine and sebacoyl chloride, respectively, followed by methylation of tertiary amine groups. The structure of the hyperbranched polymer QTEAS as an efficient material for the removal of acid dyes was demonstrated by Fourier transform infrared spectroscopy (FTIR, cross polarization magic angle spinning (CPMAS 13C NMR, thermogravimetric analysis (TGA, powder X-ray diffraction (DRX and scanning electron microscopy (SEM. The removal of indigo carmine (IC and Evans blue (EB was expected to be driven by the electrostatic attraction between positively charged quaternary ammonium groups within the hyperbranched polymer and the negatively charged dyes. The removal process was found to be closely connected to the total number of sulfonate groups on the surface of the dyes. Nonetheless, the ionic strength does not affect the dyes' removal efficiency by the hyperbranched polymer. The sorption capacities at saturation of the monolayer qmax were determined to be 213.22 mg g−1 and 214.13 mg g−1, for IC and EB, respectively, thus showing the greater affinity of QTEAS sorbent for both dyes. Despite its extended molecular structure, EB is removed with the same effectiveness as IC. Finally, the great efficiency of the highly branched polymer for dye removal from colored wastewater was clearly demonstrated.

  13. REMOVAL OF AN ACID DYE FROM AQUEOUS SOLUTIONS BY ADSORPTION ON A COMMERCIAL GRANULAR ACTIVATED CARBON: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    Marius Sebastian Secula

    2011-12-01

    Full Text Available The present paper approaches the study of the adsorption of an acid dye on a commercial granular activated carbon (GAC. Batch experiments were conducted to study the equilibrium isotherms and kinetics of Indigo Carmine on GAC. The kinetic data were analyzed using the Lagargren, Ho, Elovich, Weber-Morris and Bangham models in order to establish the most adequate model that describes this process, and to investigate the rate of IC adsorption. Equilibrium data were fitted to Langmuir and Freundlich isotherms. Langmuir isotherm equilibrium model and Ho kinetic model fitted best the experimental data.The effects of temperature (25 – 45 °C, initial concentration of dye (7.5 – 150 mg•L−1, GAC dose (0.02 – 1 g•L-1, particle size (2 – 7 mm in diameter, solution pH (3 – 11 on GAC adsorption capacity were established. The adsorption process is found to be favored by a neutral pH, high values of temperature and small particle sizes. The highest adsorption capacity (133.8 mg•g-1 of the GAC is obtained at 45 °C. The removal efficiency increases with GAC dose at relatively low initial concentrations of dye. Thermodynamic parameters such as standard enthalpy (H, standard entropy (S and standard free energy (G were evaluated. The adsorption of Indigo Carmine onto GAC is an endothermic process.

  14. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Barun Kumar Nandi

    2017-05-01

    Full Text Available This paper presents an experimental study on the removal of brilliant green dye from aqueous solutions in a batch stirred electrocoagulation (EC reactor using iron electrodes. The main objectives of the experiments were to investigate the effects of the various operating parameters, such as current density, inter electrode distance, initial dye concentration, pH of the solution, EC duration and salt (NaCl concentrations on the brilliant green dye removal efficiency from synthetic wastewater containing in batch EC process. The experimental results showed that 99.59% dye removal was observed for initial dye concentration of 100 mg/L with current density of 41.7 A/m2, initial pH of 4.0 at the end of 30 min of operation. It was observed that, an increase in current density, time of operation and decrease in inter electrode distance improved the dye removal efficiency. Optimum pH for highest dye removal was 4.0–10.0. It was also observed that increase in salt (NaCl concentration in the solution reduces the specific electrical energy consumption (SEEC.

  15. An overview of nanomaterials applied for removing dyes from wastewater.

    Science.gov (United States)

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  16. Malachite green "a cationic dye" and its removal from aqueous solution by adsorption

    Science.gov (United States)

    Raval, Nirav P.; Shah, Prapti U.; Shah, Nisha K.

    2017-11-01

    Adsorption can be efficiently employed for the removal of various toxic dyes from water and wastewater. In this article, the authors reviewed variety of adsorbents used by various researchers for the removal of malachite green (MG) dye from an aqueous environment. The main motto of this review article was to assemble the scattered available information of adsorbents used for the removal of MG to enlighten their wide potential. In addition to this, various optimal experimental conditions (solution pH, equilibrium contact time, amount of adsorbent and temperature) as well as adsorption isotherms, kinetics and thermodynamics data of different adsorbents towards MG were also analyzed and tabulated. Finally, it was concluded that the agricultural solid wastes and biosorbents such as biopolymers and biomass adsorbents have demonstrated outstanding adsorption capabilities for removal of MG dye.

  17. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    Science.gov (United States)

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  19. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    Directory of Open Access Journals (Sweden)

    J. Castañeda-Díaz

    2017-01-01

    Full Text Available The cationic dye malachite green (MG and the anionic dye Remazol yellow (RY were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more efficient for removing dyes than electrocoagulation alone. The thermodynamic parameters suggested the feasibility of the process and indicated that the adsorption was spontaneous and endothermic (ΔS=0.037 and −0.009 for MG and RY, resp.. The ΔG value further indicated that the adsorption process was spontaneous (−6.31 and −10.48; T=303 K. The kinetic electrocoagulation results and fixed-bed adsorption results were adequately described using a first-order model and a Bohart-Adams model, respectively. The adsorption capacities of the batch and column studies differed for each dye, and both adsorbent materials showed a high affinity for the cationic dye. Thus, the results presented in this work indicate that a continuous electrocoagulation-adsorption system can effectively remove this type of pollutant from water. The morphology and elements present in the sludge and adsorbents before and after dye adsorption were characterized using SEM-EDS and FT-IR.

  20. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Bhatti, S.N.H.N.; Sadaf, S.; Sadaf, S.; Farrukh, Z.; Noreen, S.

    2014-01-01

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  1. Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder

    Science.gov (United States)

    Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.

    2017-11-01

    In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.

  2. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    International Nuclear Information System (INIS)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-01-01

    Highlights: ► A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. ► Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). ► PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. ► The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 ± 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m −3 d −1 ) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m −3 d −1 (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  3. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China); Lee, Hyung-Sool [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 (Canada); Wang, Ai-Jie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. Black-Right-Pointing-Pointer Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). Black-Right-Pointing-Pointer PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. Black-Right-Pointing-Pointer The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 {+-} 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m{sup -3} d{sup -1}) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m{sup -3} d{sup -1} (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  4. Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds.

    Science.gov (United States)

    Weber, Caroline Trevisan; Collazzo, Gabriela Carvalho; Mazutti, Marcio Antonio; Foletto, Edson Luiz; Dotto, Guilherme Luiz

    2014-01-01

    Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180-200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g(-1) for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.

  5. Removal of binary azo dyes from water by UV-irradiated degradation in TiO2 suspensions

    International Nuclear Information System (INIS)

    Juang, Ruey-Shin; Lin, Su-Hsia; Hsueh, Pei-Ying

    2010-01-01

    Photodegradation and mineralization of single and binary Acid Orange 7 (AO7) and Reactive Red 2 (RR2) under UV irradiation in TiO 2 suspensions was examined. Experiments were conducted as a function of initial pH, TiO 2 dose, and initial dye concentration. First-order derivative spectrophotometric method was used to simultaneously analyze AO7 and RR2 in binary solutions. The Langmuir-Hinshelwood kinetic model was applied to evaluate and compare the apparent rate constants for the photodegradation of both dyes in single and binary solutions. It was shown that photodegradation of both dyes in binary solution was slower than those in single solution under comparable conditions. Moreover, the difference between the apparent rate constants of RR2 and AO7 became smaller in contrast to the cases of single solutions. After 20-min UV irradiation with 0.5 g/L TiO 2 , complete removal of single 0.086 mM AO7 and 0.086 mM RR2 at pH 6.8 was obtained, but only 60% and 45% of binary 0.086 mM AO7 and 0.086 mM RR2 was removed, respectively.

  6. Adsorptive removal of cationic dye from aqueous solution using ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Received 15 October 2017, received in revised form 03 December 2017, accepted 31 December 2017. Keywords: African Border Tree, ... to remove dyes include flocculation, oxidation, ..... estuarine algae, crustaceans and fishes. Environ.

  7. Organic dyes removal using magnetically modified rye straw

    Czech Academy of Sciences Publication Activity Database

    Baldíková, E.; Šafaříková, Miroslava; Šafařík, Ivo

    2015-01-01

    Roč. 180, APR 2015 (2015), s. 181-185 ISSN 0304-8853 R&D Projects: GA ČR GA13-13709S Institutional support: RVO:67179843 Keywords : Rye straw * Adsorbent * Dyes removal * Magnetic modification Subject RIV: CC - Organic Chemistry Impact factor: 2.357, year: 2015

  8. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.

    Science.gov (United States)

    Jeon, Jong-Rok; Kim, Eun-Ju; Kim, Young-Mo; Murugesan, Kumarasamy; Kim, Jae-Hwan; Chang, Yoon-Seok

    2009-11-01

    Natural organic coagulants (NOCs) such as chitosan and Moringa oleifera seeds have been extensively characterized for potential application in water treatment as an alternative to metal-based coagulants. However, the action of both chitosan and M. oleifera seeds is mainly restricted to anionic organic pollutants because of their cationic functional groups affording poor cationic pollutant coagulation by electrostatic repulsion. In this study, we employed ethanolic grape seed extract (GSE) and grape seed-derived polyphenols such as tannic acid and catechin in an effort to find novel NOCs showing stable anionic forms for removal of cationic organic pollutants. The target substances tested were malachite green (MG) and crystal violet (CV), both mutagenic cationic dyes. Polyphenol treatment induced fast decolorization followed by gradual floc formation concomitant with red or blue shifts in maximum absorbance wavelengths of the cationic dyes. Liquid chromatography analysis of flocs formed by polyphenols directly showed that initial supramolecular complexes attributed mainly to electrostatic attraction between polyphenol hydroxyphenyl groups and cationic dyes further progressed into stronger aggregates, leading to precipitation of dye-polyphenol complexes. Consistent with the results obtained using catechin and tannic acid, use of GSE also resulted in effective decolorization and coagulation of soluble MG and CV in aqueous solutions. Screening of several organic GSE components for NOC activity strongly suggested that natural polyphenols are the main organic ingredients causing MG and CV removal via gradual floc formation. The treatment by natural polyphenols and GSE decreased toxicity of MG- or CV-contaminated water.

  9. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  10. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    Science.gov (United States)

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  11. Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye

    Directory of Open Access Journals (Sweden)

    Warda Hassan

    2017-05-01

    Full Text Available Conventional technologies for the removal of dyes from the waste water are proving expensive due to non-regenerable materials used and their high costs. The use of dried biomass from Haloxylon recurvum plant stems (HRS was studied for the removal of methylene blue, a textile dye, from its aqueous solution. FTIR studies revealed a variety of functional groups on the plant surface including carboxyl and amino groups. The pH at the point of zero charge (pHpzc was found to be 6.3. The dye uptake by the plant increased with increasing pH, time of contact and dye concentration. Lagergren Pseudo first order and the Ho’s pseudo second order models were used to study the kinetics. The Langmuir and Freundlich equilibrium models were studied and the qmax was 22.93 mg/g. The changes in the values of free energy (ΔGo and enthalpy (ΔHo indicated the spontaneous, feasible and exothermic nature of the sorption process. H. recurvum plant is locally available in large quantities, so the powdered stems can act as a cost-effective and ecofriendly biosorbent for the removal of the dye from its aqueous solutions.

  12. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  13. Removal of Reactive Anionic Dyes from Binary Solutions by Adsorption onto Quaternized Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Intidhar Jabir Idan

    2017-01-01

    Full Text Available The most challenging mission in wastewater treatment plants is the removal of anionic dyes, because they are water-soluble and produce very shining colours in the water. In this regard, kenaf core fiber (KCF was chemically modified by the quaternized agent (3-chloro-2-hydroxypropyltrimethylammonium chloride to increase surface area and change the surface properties in order to improve the removing reactive anionic dyes from binary aqueous solution. The influencing operating factors like dye concentration, pH, adsorbent dosage, and contact time were examined in a batch mode. The results indicate that the percentage of removal of Reactive Red-RB (RR-RB and Reactive Black-5 (RB-5 dyes from binary solution was increased with increasing dyes concentrations and the maximum percentage of removal reached up to 98.4% and 99.9% for RR-RB and RB-5, respectively. Studies on effect of pH showed that the adsorption was not significantly influenced by pH. The equilibrium analyses explain that, in spite of the extended Langmuir model failure to describe the data in the binary system, it is better than the Jain and Snoeyink model in describing the adsorption behavior of binary dyes onto QKCF. Also, the pseudo-second-order model was better to represent the adsorption kinetics for RR-RB and RB-5 dyes on QKCF.

  14. In liquid laser treated graphene oxide for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paola, E-mail: rsspla1@gmail.com [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); D’Urso, Luisa [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Hu, Anming [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 57996-2210 (United States); Zhou, Norman [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); Compagnini, Giuseppe [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy)

    2015-09-01

    Highlights: • Graphene oxide and reduced graphene oxide were tested as adsorbents for dye removal from water. • Reduced graphene oxide was obtained after laser irradiation of a colloidal suspension of graphene oxide. • Methylene blue was chosen as the dye to test graphene oxide and reduced graphene oxide. - Abstract: The presence of dyes, pharmaceuticals and many other pollutants in wastewaters is critical due to severe effects on the human beings and on the environment. Here, solutions of graphene oxide (GO) and reduced graphene oxide (rGO) were tested as adsorbents for the removal of methylene blue (MB), a cationic dye, from aqueous media. The reduced forms of graphene oxide were obtained after laser irradiation of colloidal suspensions of graphene oxide, obtained by the Hummers and Offeman's method. We observed that both graphene oxide and its reduced forms are excellent adsorbents towards methylene blue. In particular, rGO showed a higher adsorption capacity than GO, suggesting that a strict control of laser irradiation time permits to obtain rGO with different degrees of reduction and therefore the residual oxygenated functional groups may influence the adsorption behaviour more or less. Characterization of the samples by atomic force microscopy (AFM) showed that produced rGO sheets via laser irradiation exhibited a discontinuous surface where some holes could be detected contributing to an enhancement of the rGO surface area that is a higher adsorption capacity.

  15. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113

    International Nuclear Information System (INIS)

    Gupta, V.K.; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-01-01

    Research highlights: → The system is cheap, efficient and fast for the removal of dyes from waters. → Higher adsorption capacity is due to higher mesoporous volume of the adsorbent. → The rate determining step of the adsorption process is particle diffusion. - Abstract: A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  16. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    Science.gov (United States)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  17. Construction of an integrated enzyme system consisting azoreductase and glucose 1-dehydrogenase for dye removal.

    Science.gov (United States)

    Yang, Yuyi; Wei, Buqing; Zhao, Yuhua; Wang, Jun

    2013-02-01

    Azo dyes are toxic and carcinogenic and are often present in industrial effluents. In this research, azoreductase and glucose 1-dehydrogenase were coupled for both continuous generation of the cofactor NADH and azo dye removal. The results show that 85% maximum relative activity of azoreductase in an integrated enzyme system was obtained at the conditions: 1U azoreductase:10U glucose 1-dehydrogenase, 250mM glucose, 1.0mM NAD(+) and 150μM methyl red. Sensitivity analysis of the factors in the enzyme system affecting dye removal examined by an artificial neural network model shows that the relative importance of enzyme ratio between azoreductase and glucose 1-dehydrogenase was 22%, followed by dye concentration (27%), NAD(+) concentration (23%) and glucose concentration (22%), indicating none of the variables could be ignored in the enzyme system. Batch results show that the enzyme system has application potential for dye removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A new alternative adsorbent for the removal of cationic dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2016-09-01

    Full Text Available Adsorption of Malachite green (MG and Methylene blue (MB from aqueous solutions on low cost adsorbent prepared from Annona squmosa seed (CAS is studied experimentally. Results obtained indicate that the removal efficiency of Malachite green and Methylene blue at 27 ± 2 °C exceeds 75.66% and 24.33% respectively, and that the adsorption process is highly pH-dependent. Results showed that the optimum pH for dye removal is 6.0. The amount of dye adsorbed from aqueous solution increases with the increase of the initial dye concentration. Smaller adsorbent particle adds to increase the percentage removal of Malachite green and Methylene blue. The equilibrium data fitted well to the Langmuir model (R2 > 0.97 and the adsorption kinetic followed the pseudo-second-order equation (R2 > 0.99. The maximum adsorption capacities of MG, MB on CAS are 25.91 mg g−1 and 08.52 mg g−1 respectively. These results suggest that A. squmosa seed is a potential low-cost adsorbent for the dye removal from industrial wastewater. The adsorption capacity of CAS on MG is greater than MB.

  20. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    Science.gov (United States)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  1. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    International Nuclear Information System (INIS)

    Peláez-Cid, A A; Tlalpa-Galán, M A; Herrera-González, A M

    2013-01-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C; CarTunaT and CarZAPT consist of the materials carbonized at 400 °C; lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H 3 PO 4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  2. Flexible graphene composites for removal of methylene blue dye-contaminant from water

    Science.gov (United States)

    Oliva, J.; Martinez, A. I.; Oliva, A. I.; Garcia, C. R.; Martinez-Luevanos, A.; Garcia-Lobato, M.; Ochoa-Valiente, R.; Berlanga, A.

    2018-04-01

    This work presents the use of flexible graphene composites (FGCs) fabricated by a casting method for the removal of Methylene blue (MB) dye from water. Those FGCs with elastic modulus of 15 MPa had enough mechanical resistance to support the Al2O3:Eu3+ and SrAl2O4:Bi3+ photocatalytic powders. After the incorporation of those powders in the FGCs, their photocatalytic activity was evaluated by monitoring the degradation of MB dye under solar irradiation. Scanning electron microscopy (SEM) images demonstrate that the surface of FGCs with catalysts powders presents pores with sizes in the range of 15-40 μm, which favored the sunlight absorption by scattering effects. Moreover, X-Ray diffraction measurements confirmed the formation of the composites by displacements of their diffraction peaks. The MB dye was completely removed (by photocatalysis and by physical adsorption) from the water after 180 min and 270 min by using the FGCs with Al2O3:Eu3+ and SrAl2O4:Bi3+ catalysts respectively. Hence, the results of photocatalytic activity suggest that our FGCs could be used as an effective support of catalyst powders for the easy removal of dye contaminants in wastewater treatment plants.

  3. Removal of Dye in Wastewater by Adsorption-Coagulation Combined System with Hibiscus sabdariffa as the Coagulant

    Directory of Open Access Journals (Sweden)

    Hoong Ho Nicholas Jian

    2018-01-01

    Full Text Available The conventional process to treat dye wastewater is the physicochemical treatment such as coagulation, flocculation and adsorption process. A new approach has been demonstrated to treat Congo red dye wastewater, which is the adsorption-coagulation hybrid process. Natural coagulant extracted from Hibiscus sabdariffa seeds is used as the coagulant while activated carbon is used as the adsorbent in this case study. The objective of this experiment is to study the significant factors that will affect the efficiency of dye removal. Then, the optimum conditions for the hybrid process is determined using Respond Surface Methodology (RSM. The variables are pH, initial dye concentration, coagulant dosage and adsorbent dosage while the response of experiment is the dye removal percentage. A three-level and four-variable Box-Behnken design (BBD is used for the RSM. A total of 27 sets of experimental results is required to determine the optimum conditions. Jar test is used to conduct the experiment with the addition of coagulant and adsorbent simultaneously. Based on the regression model analysis and ANOVA, the highly significant factors that contribute to the dye removal efficiency through adsorption-coagulation hybrid process are pH of solution and initial dye concentration. The RSM results shows that the optimised process parameters for adsorption-coagulation hybrid process with Hibiscus sabdariffa seeds as the coagulant and activated carbon as the adsorbent are pH 2, initial dye concentration of 385 ppm, coagulant dosage of 209 mg/L and adsorbent dosage of 150 mg/L. The dye removal reaches up to 96.67% under optimum parameters.

  4. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27

    OpenAIRE

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Background Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. Methods In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by ...

  5. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  6. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    CSIR Research Space (South Africa)

    Mittala, H

    2016-02-01

    Full Text Available after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose...

  7. FACTORS AFFECTING THE REMOVAL OF A BASIC AND AN AZO DYE FROM ARTIFICIAL SOLUTIONS BY ADSORPTION USING ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    H Albroomi

    2014-10-01

    Full Text Available Decolourisation of wastewater, particularly from textile industries, is one of the major environmental concerns these days. Current methods for removing dyes from wastewater are costly and cannot effectively be used to treat wide range of such wastewater. This work describes the use of commercial available granular activated carbon (GAC as an efficient adsorbent material for dyes removal. Aqueous solutions of various basic dye Methylene Blue (MB and azo-dye Tartrazine with concentrations 5-20 mg l–1 and 10-100 mg l–1, respectively, were shaken with certain amount of GAC to determine the adsorption capacity and removal efficiencies. The effects of adsorbent dose, initial pH, initial dye concentration, agitation speed and contact time on dyes removal efficiencies have been studied. Maximum dye concentration was removed from the solution within 60-90 min after the beginning of every experiment. Adsorption parameters were found to fit well into Langmuir and Freundlich adsorption isotherms models with correlation coefficient (R2 > 0.99 in the concentration range of MB and TZ studied.

  8. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics.

    Science.gov (United States)

    Malik, P K

    2004-09-10

    Mahogany sawdust was used to develop an effective carbon adsorbent. This adsorbent was employed for the removal of direct dyes from spent textile dyeing wastewater. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The equilibrium adsorption capacity of the sawdust carbon was determined with the Langmuir equation as well as the pseudo-second-order rate equation and found to be >300 mg dye per gram of the adsorbent. The most ideal pH for adsorption of direct dyes onto sawdust carbon was found to be 3 and below. The results indicate that the Mahogany sawdust carbon could be employed as a low cost alternative to commercial activated carbon in the removal of dyes from wastewater.

  9. Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution.

    Science.gov (United States)

    Takam, Brice; Acayanka, Elie; Kamgang, Georges Y; Pedekwang, Merlin T; Laminsi, Samuel

    2017-07-01

    Removal of cationic dye, Azur II, and anionic dye, Reactive Red 2 (RR-2) from aqueous solutions, has been successfully achieved by using a modified agricultural biomaterial waste: cocoa shell husk (Theobroma cacao) treated by gliding arc plasma (CPHP). The biomass in its natural form CPHN and modified form CPHP was characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and point of zero charge (pH pzc ). Experimental variables such as initial pH, contact time, and temperature were optimized for adsorptive characteristics of CPHN and CPHP. The results show that the removal of the Azur II dye was favorable in the basic pH region (pH 10) while the Reactive Red 2 dye was favorable in the acidic pH region (pH 2). The minimum equilibrium time for Azur II and RR-2 dye was obtained after 40 and 240 min, respectively. The adsorption kinetics and isotherm data obtained were best described by a pseudo-second-order kinetic rate model and a combination of Langmuir-Freundlich isotherm models. This work indicates that the plasma-treated raw materials are good alternative multi-purpose sorbents for the removal of many coexisting pollutants from aqueous solutions.

  10. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell

    Directory of Open Access Journals (Sweden)

    Yusef Omidi Khaniabadi

    2017-03-01

    Full Text Available Background: Synthetic dyes have several harmful effects on human health as well as aquatic life. In this study, activated carbon (AV-AC, based on Aloe vera leaf shells, was used as a novel agricultural adsorbent, one that is low-cost and available for the removal of Congo red (CR as a carcinogenic dye from aqueous solutions. Methods: In the batch system, the influence of different parameters like contact time, pH, adsorbent dosage, and initial CR concentration were examined on the dye removal from liquid medium. The experimental data were fitted by pseudo-first-order and pseudo-second-order kinetics, and also Langmuir and Freundlich isotherms models. Results: The optimum contact time and pH for the uptake of CR were obtained at 20 minutes and acidic pH of 2. The maximum uptake capacity of CR dye by AV-AC was 1850 mg/g. The results showed that the experimental data were well-fitted by the pseudo-second-order kinetic model (R2 > 0.99 and Freundlich isotherm model (R2 > 0.99. Conclusion: According to the results of our study, the AV-AC is a low-cost, non-toxic, and effective adsorbent for the uptake of CR dye from aqueous media.

  11. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    International Nuclear Information System (INIS)

    Song Zhi; Hu Juncheng; Chen Lifang; Richards, Ryan

    2009-01-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g -1 , 35.15 mg g -1 and 22 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g -1 . In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  12. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  13. Advanced treatments for the removal of a textile dye

    International Nuclear Information System (INIS)

    Almazan S, P. T.

    2016-01-01

    In this work, the remove a dye from aqueous solution and the treatment of textile wastewater using natural and iron and copper modified materials and advanced oxidation by Fenton and photo-Fenton heterogeneous processes are presented. Clay and activated carbon were modified using Fe and Cu electrodes at ph values of 7 and 2 respectively. The materials were characterized by scanning electronic microscopy (Sem), electron X-ray dispersive spectroscopy (EDS), X-ray diffraction and specific area (Bet), the optimum ph for clay modifications with Fe and Cu was 7, whereas for copper modified activated carbon was 2, because de elemental analysis indicated that under the above conditions the content of evaluated metals is highest. The specific area for natural and iron and copper modified clay samples was 5.97, 131.30 and 78.44 m"2/g, whereas for natural and copper modified activated carbon at ph 2 was 654.85 and 647.61 m"2/g. Dye and wastewater used in this study were obtained from a laundry where jeans are manufactured in Almoloya del Rio in Mexico State. Dye was characterized by infrared spectrophotometry and UV-Vis and it was compared with a standard of potassium indigo trisulfonate and it was observed that both spectra were identical, whereby the dye used in this study is an indigo dye with a maximum absorption band at 591 nm. The characterization of wastewater shows a low biodegradability index (0.25) indicating the presence of non-biodegradability organic matter, and a high concentration of phosphorous was found (93.7 mg/L). A compound parabolic concentrator (CPC-2D) was built to concentrate UV radiation from sunlight and applied in photo-Fenton heterogeneous process obtaining concentrated UV-A and UV-B radiation of 54.29±0.71 and 1.65±0.37 W/m"2 respectively. Iron modified clay (Mt-Fe-7) and copper modified activated carbon (Ac-Cu-2) was used as catalyst in the photo-Fenton process with hydrogen peroxide. The results show that using 1.5 g of catalyst, a

  14. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: Moussavi@modares.ac.ir [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahmoudi, Maryam [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2009-09-15

    In the present investigation, a porous MgO powder was synthesized and tested for the removal of dyes from aqueous solution. The size of the MgO particles was in the range of 38-44 nm, with an average specific surface area of 153.7 m{sup 2}/g. Adsorption of reactive blue 19 and reactive red 198 was conducted to model azo and anthraquinone dyes at various MgO dosages, dye concentrations, solution pHs and contact times in a batch reactor. Experimental results indicate that the prepared MgO powder can remove more than 98% of both dyes under optimum operational conditions of a dosage of 0.2 g, pH 8 and a contact time of 5 min for initial dye concentrations of 50-300 mg/L. The isotherm evaluations revealed that the Langmuir model attained better fits to the experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacities were 166.7 and 123.5 mg of dye per gram of adsorbent for RB 19 and RR 198, respectively. In addition, adsorption kinetic data followed a pseudo-second-order rate for both tested dyes.

  15. Removal of basic dye methylene blue by using bioabsorbents Ulva ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... after adsorption. The removal data were fitted into the Langmuir and Freundlich adsorption isotherm .... solid phases at various equilibrium concentrations. The ... dye required to form monolayer over the surface of adsorbent ...

  16. Studies on Synthesis and Dyeing Preformance of Acid Dyes Based on 4,7-Dihydroxy-3,8-di-α-naphthylazo-1,10-phenanthroline-2,9-Dione

    Directory of Open Access Journals (Sweden)

    B. V. Patel

    2007-01-01

    Full Text Available Some new azo acid dyes were prepared by coupling various diazotized acid components such as anthranilic acid, sulphanilic acid, laurentacid, peri acid, tobias acid, H-acid, J-acid, gamma acid, sulphotobias acid,4-aminotoluiene-3-sulphonic acid, 5-sulpho- anthranilic acid, 2-naphthylamine-3,6,8-trisulphonic acid, bronner acid, metanilic acid and cleve acid with 4,7-dihydroxy-3,8-di-α-naphthylazo-1,10-phenanthroline-2,9-dione. The dyes were characterized by elemental, IR and TLC analyses. Their dyeing performance as acid dyes has been assessed on viscose rayon, wool and cotton fibres.

  17. Preliminary study on the dye removal efficacy of immobilized marine ...

    African Journals Online (AJOL)

    Preliminary study on the dye removal efficacy of immobilized marine and freshwater microalgal beads from textile wastewater. SD Kumar, P Santhanam, R Nandakumar, S Anath, B Balaji Prasath, A Shenbaga Devi, S Jeyanthi, T Jayalakshima, P Ananthi ...

  18. Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Jain, Rajeev; Nayak, Arunima; Agarwal, Shilpi; Shrivastava, Meenakshi

    2011-01-01

    The removal of the dye-tartrazine by photodegradation has been investigated using titanium dioxide surface as photocatalyst under UV light. The process was carried out at different pH, catalyst dose, dye concentration and effects of the electron acceptor H 2 O 2 . It was found that under the influence of TiO 2 as catalyst, the colored solution of the dye became colorless and the process followed a pseudo first order kinetics. The optimum conditions for the degradation of dye were 6 x 10 -5 M dye concentration, pH of 11, and 0.18 mg/L of catalyst dose. In order to evaluate the effect of electron acceptor, the effect of H 2 O 2 on the degradation process was also monitored and it was found that the hydroxyl radical formation and retardation of electron-hole recombination took place simultaneously. The adsorption studies of tartrazine at various dose of TiO 2 followed the Langmuir isotherm trend. In order to determine the quality of waste water, Chemical Oxygen Demand (COD) measurements were carried out both before and after the treatment and a significant decrease in the values was observed, implying good potential of this technique to remove tartrazine dye from aqueous solutions. Research highlights: →Degradation efficiency increases with increase in catalyst concentration. →Adsorption of tartrazine on TiO 2 followed the Langmuir isotherm. →The photocatalytic kinetics follows first order.

  19. Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K., E-mail: vinodfcy@gmail.com [Indian Institute of Technology Roorkee, Department of Chemistry, Roorkee, 247667 (India); King Fahd University of Petroleum and Minerals, Chemistry Department, Dhahran (Saudi Arabia); Jain, Rajeev [Jiwaji University, Department of Environmental Chemistry, Gwalior-474011 (India); Nayak, Arunima [Indian Institute of Technology Roorkee, Department of Chemistry, Roorkee, 247667 (India); Agarwal, Shilpi; Shrivastava, Meenakshi [Jiwaji University, Department of Environmental Chemistry, Gwalior-474011 (India)

    2011-07-20

    The removal of the dye-tartrazine by photodegradation has been investigated using titanium dioxide surface as photocatalyst under UV light. The process was carried out at different pH, catalyst dose, dye concentration and effects of the electron acceptor H{sub 2}O{sub 2}. It was found that under the influence of TiO{sub 2} as catalyst, the colored solution of the dye became colorless and the process followed a pseudo first order kinetics. The optimum conditions for the degradation of dye were 6 x 10{sup -5} M dye concentration, pH of 11, and 0.18 mg/L of catalyst dose. In order to evaluate the effect of electron acceptor, the effect of H{sub 2}O{sub 2} on the degradation process was also monitored and it was found that the hydroxyl radical formation and retardation of electron-hole recombination took place simultaneously. The adsorption studies of tartrazine at various dose of TiO{sub 2} followed the Langmuir isotherm trend. In order to determine the quality of waste water, Chemical Oxygen Demand (COD) measurements were carried out both before and after the treatment and a significant decrease in the values was observed, implying good potential of this technique to remove tartrazine dye from aqueous solutions. Research highlights: {yields}Degradation efficiency increases with increase in catalyst concentration. {yields}Adsorption of tartrazine on TiO{sub 2} followed the Langmuir isotherm. {yields}The photocatalytic kinetics follows first order.

  20. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    Directory of Open Access Journals (Sweden)

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  1. Photo-catalytic Removal of Methyl Orange Dye by Polyaniline ...

    African Journals Online (AJOL)

    Photo-catalytic Removal of Methyl Orange Dye by Polyaniline Modified ZnO using Visible Radiation. ... The as-synthesized nano-ZnO, PANI and PANI/ZnO nanocomposite were characterized by X-ray diffraction (XRD), FT-IR, and UV-Vis spectroscopy. The UV–visible spectroscopy studies showed that the absorption peak ...

  2. Efficient removal of disperse dye by mixed culture of ganoderma lucidum and coriolus versicolor

    International Nuclear Information System (INIS)

    Sadaf, S.; Bhatti, H.N.; Bibi, I.

    2013-01-01

    In the current study, an attempt was made to check the potential of aerobic mixed culture of two indigenous white rot fungi for the decolorization of different disperse dyes in batch culture mode and optimization of different conditions to enhance the biotransformation of dyes. Initial screening trial with six disperse dyes, viz. (Foron Yellow RD5GL, Foron Red RDRBLS, Foron Rubine RDGFL, Foron Black RD3GRN, Foron Blue RDGLN and Foron Turquoise SBLN), was carried out using mixed culture of Ganoderma lucidum and Coriolus versicolor. From all the tested dyes, the mixed culture showed better removal efficiency (93 %) with Foron Turquoise SBLN dye after 8 days of incubation period as compared to other tested dyes. Enhanced color removal (98 %) was observed when the medium was amended by ammonium tartarate, maltose, MnSO/sub 4/ at pH 4.5 and 30 degree C with 2 mL fungal culture during 2nd day of incubation period. Enzyme profile showed that the mixed culture produced three liginolytic enzymes like lignin peroxidase (LiP), manganase peroxidase (MnP) and laccase but MnP was found to be the major enzyme. The results indicated that white rot fungi (WRF) could be used to treat wastewater containing disperse dyes. (author)

  3. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water

    Energy Technology Data Exchange (ETDEWEB)

    Bée, Agnès, E-mail: agnes.bee@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); Obeid, Layaly, E-mail: lghannoum@hotmail.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); CertiNergy Solutions, 33 avenue du Maine, BP 195, 75755 Paris Cedex 15 (France); Mbolantenaina, Rakotomalala, E-mail: mbolantenaina@yahoo.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); Welschbillig, Mathias, E-mail: welschbillig@certinergysolutions.com [CertiNergy Solutions, 33 avenue du Maine, BP 195, 75755 Paris Cedex 15 (France); Talbot, Delphine, E-mail: delphine.talbot@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France)

    2017-01-01

    A magnetic composite material composed of magnetic nanoparticles and clay encapsulated in cross-linked chitosan beads was prepared, characterized and used as a magsorbent for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The magnetic properties of these beads represent an advantage to recover them at the end of the depollution process. The optimal weight ratio R=clay:chitosan for the removal of MB in a large range of pH was determined. For beads without clay, the maximal adsorption capacity of MB occurs in the pH range [9–12], while for beads with clay, the pH range extends by increasing the amount of clay to reach [3–12] for R>0.5. Adsorption isotherms show that the adsorption capacity of magnetic beads is equal to 82 mg/g. Moreover, the kinetics of dye adsorption is relatively fast since 50% of the dye is removed in the first 13 min for an initial MB concentration equal to 100 mg/L. The estimation of the number of adsorption sites at a given pH shows that the main driving force for adsorption of MB in a large range of pH is the electrostatic interaction between the positively charged dye and the permanent negative charges of clay. - Highlights: • A magsorbent based on magnetic nanoparticles and clay encapsulated in chitosan beads was prepared and characterized. • Clay played significant role for the removal of a cationic dye. • The magnetic beads exhibit a maximum adsorption capacity of 82 mg/g for methylene blue. • The pH range of the maximum adsorption extends from [9–12] to [3–12] by increasing the amount of clay. • The magsorbent could be magnetically removed from solution.

  4. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    Science.gov (United States)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  5. Decolorization of Ionic Dyes from Synthesized Textile Wastewater by Nanofiltration Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mehrdad Farhadian

    2015-07-01

    Full Text Available Decolorization of aqueous solutions containing ionic dyes (Reactive Blue 19 and Acid Black 172 by a TFC commercial polyamide nanofilter (NF in a spiral wound configuration was studied. The effect of operating parameters including feed concentration (60-180 mg/l, pressure (0.5-1.1 MPa and pH (6-10 on dye removal efficiency was evaluated. The response surface method (RSM was utilized for the experimental design and statistical analysis to identify the impact of each factor. The results showed that an increase in the dye concentration and pH can significantly enhance the removal efficiency from 88% and 87% up to 95% and 93% for Reactive and Acid dye, respectively. The effect of pressure on the removal efficiency showed different behavior such that by the raise of pressure from 0.5 to 0.8 MPa, the removal efficiency increased to its maximum, then reduction in removal efficiency was observed by further increases in pressure above the optimum range. The maximum dye removal efficiencies which were predicted at the optimum conditions by Design Expert software were 97 % and 94 % for Reactive Blue 19 and Acid Black 172, respectively. According to the results of this study, NF processes can be used at a significantly lower pressure and fouling issue for reuse applications as an alternative to the widely used RO process.

  6. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    Science.gov (United States)

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nanotubular Halloysite Clay as Efficient Water Filtration System for Removal of Cationic and Anionic Dyes

    International Nuclear Information System (INIS)

    Zhao, Yafei; Abdullayev, Elshad; Lvov, Yuri

    2014-01-01

    Halloysite nanotubes, chemically similar to kaolinite, are formed by rolling of kaolinite layers in tubes with diameter of 50 nm and length of ca. 1 μm. Halloysite has negative SiO 2 outermost and positive Al 2 O 3 inner lumen surface, which enables it to be used as potential absorbent for both cationic and anionic dyes due to the efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolinite. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. These results indicate a potential to utilize halloysite for the removal of ionic dyes from environmental waters

  8. Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions.

    Science.gov (United States)

    Esquerdo, V M; Cadaval, T R S; Dotto, G L; Pinto, L A A

    2014-06-15

    The dye adsorption with chitosan is considered an eco-friendly alternative technology in relation to the existing water treatment technologies. However, the application of chitosan for dyes removal is limited, due to its low surface area and porosity. Then we prepared a chitosan scaffold with a megaporous structure as an alternative adsorbent to remove food dyes from solutions. The chitosan scaffold was characterized by infrared spectroscopy, scanning electron microscopy and structural characteristics. The potential of chitosan scaffold to remove five food dyes from solutions was investigated by equilibrium isotherms and thermodynamic study. The scaffold-dyes interactions were elucidated, and desorption studies were carried out. The chitosan scaffold presented pore sizes from 50 to 200 μm, porosity of 92.2±1.2% and specific surface area of 1135±2 m(2) g(-1). The two-step Langmuir model was suitable to represent the equilibrium data. The adsorption was spontaneous, favorable, exothermic and enthalpy-controlled process. Electrostatic interactions occurred between chitosan scaffold and dyes. Desorption was possible with NaOH solution (0.10 mol L(-1)). The chitosan megaporous scaffold showed good structural characteristics and high adsorption capacities (788-3316 mg g(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Adsorption Properties of Low-Cost Biomaterial Derived from Prunus amygdalus L. for Dye Removal from Water

    Science.gov (United States)

    Deniz, Fatih

    2013-01-01

    The capability of Prunus amygdalus L. (almond) shell for dye removal from aqueous solutions was investigated and methyl orange was used as a model compound. The effects of operational parameters including pH, ionic strength, adsorbent concentration and mesh size, dye concentration, contact time, and temperature on the removal of dye were evaluated. The adsorption kinetics conformed to the pseudo-second-order kinetic model. The equilibrium data pointed out excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 41.34 mg g−1 at 293 K. Thermodynamic analysis proved a spontaneous, favorable, and exothermic process. It can be concluded that almond shell might be a potential low-cost adsorbent for methyl orange removal from aqueous media. PMID:23935442

  10. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin-Na; Wang, Bing [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Li, Gang [Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, 325006 Wenzhou, Zhejiang Province (China); Wang, Sheng [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Crowley, David E., E-mail: crowley@ucr.edu [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Zhao, Yu-Hua, E-mail: yhzhao225@zju.edu.cn [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. Black-Right-Pointing-Pointer Amine groups played a major role in the biosorption of Acid Black 172. Black-Right-Pointing-Pointer The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH{sub 2}) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  11. Adsorptioin performance of modified nkalagu bentonite in dye removal: kinetics, equilibrium, thermodynamics and structureal properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2015-01-01

    The adsorption performance of modified Nkalagu bentonite in removing Congo red (CR) from solution was investigated. The raw bentonite was modified by three different physicochemical methods: thermal activation (TA), acid activation (AA), and combined acid and thermal activation (ATA). The Congo red adsorption increased with increase in contact time, initial dye concentration, adsorbent dosage, temperature, and pH change. The results of the kinetics analysis of the adsorption data revealed that adsorption follows pseudo second-order kinetics. Analysis of the equilibrium data showed that Langmuir isotherm provided a better fit to the data. Evaluation of the thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. The results from this study suggest that a combination of thermal and acid activation is an effective modification method to improve adsorption capacity of bentonite and makes the bentonite as low-cost adsorbent for removal of water pollutants. (author)

  12. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste

    International Nuclear Information System (INIS)

    Tsai, W.-T.; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M.

    2008-01-01

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater

  13. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    Science.gov (United States)

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  14. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, W.-T. [Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan (China)], E-mail: wttsai@mail.npust.edu.tw; Hsu, H.-C.; Su, T.-Y.; Lin, K.-Y.; Lin, C.-M. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  15. Comparison of activated carbon and bottom ash removal of reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, A.R.; Gunes, Y.; Karakaya, N.; Gunes, E. [Trakya University, Tekirdag (Turkey). Dept. of Environmental Engineering

    2007-03-15

    The adsorption of reactive dye from synthetic aqueous solution onto granular activated carbon (GAC) and coal-based bottom ash (CBBA) were studied under the same experimental conditions. As an alternative to GAC CBBA was used as adsorbent for dye removal from aqueous solution. The amount of Vertigo Navy Marine (VNM) adsorbed onto CBBA was lower compared with GAC at equilibrium and dye adsorption capacity increased from 0.71 to 3.82 mg g{sup -1}, and 0.73 to 6.35 mg g{sup -1} with the initial concentration of dye from 25 to 300 mg l{sup -1} respectively. The initial dye uptake of CBBA was not so rapid as in the case of GAC and the dye uptake was slow and gradually attained equilibrium.

  16. Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye.

    Science.gov (United States)

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Geraldi, Claudinéia A Q; Manenti, Diego R; Trigueros, Daniela E G; Oliveira, Ana Paula de; Borba, Carlos E; Kroumov, Alexander D

    2015-01-01

    In this work, the removal of reactive blue 5G (RB5G) dye using the drying biomass of banana pseudostem (BPS) was investigated. The characterization of BPS particles was performed. Improvement in the RB5G dye removal performance at the following sorption conditions was evidenced: pH 1, 30°C sorption temperature and 40 rpm shaking, regardless of the particle size range. Kinetic RB5G dye sorption data obtained at better conditions fit well in an Elovich model. A combined Langmuir-BET isotherm model provides a good representation of the RB5G dye equilibrium sorption data, which shows the evidence of a physical sorption process on the BPS surface. Based on the results, the removal of RB5G dye molecules by BPS is based on a physical sorption process.

  17. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  18. Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Kim, Hwanhee

    2015-01-01

    In this work, N-benzyltriazole derivatized dextran was evaluated for its potential as a novel carbohydrate-based adsorbent for the removal of methyl violet dye from water. The modified dextran was synthesized by a click reaction of pentynyl dextran and benzyl azide, and the structure...... was characterized by nuclear magnetic resonance spectroscopy, elemental analysis, and scanning electron microscopy. Dextran was substituted with a triazole-linked benzyl group. For decolorization of the dye effluent, adsorption is a very effective treatment; here, the driving force is based on hydrogen bonding, pi...... stacking, and electrostatic interaction between the methyl violet dye and the N-benzyltriazole derivatized dextran. Batch experiments were carried out to investigate the required contact time and the effects of pH, initial dye concentrations, and temperature. The experimental data were analyzed...

  19. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Thimmasandra Narayan Ramesh

    2015-01-01

    Full Text Available Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spectroscopy. Different types of adsorption isotherm models were evaluated and it was found that Langmuir isotherm fits well at both pH values (6-7 and 12-13. Adsorption of indigo carmine onto magnesium hydroxide at pH 6-7/pH 12-13 follows pseudo-second order rate kinetics.

  20. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...

  1. CW-laser induced microchannels in dye-polymethacrylic acid films

    OpenAIRE

    M.A. Camacho-López

    2007-01-01

    In this work we report on the formation of microchannels on dye-polymethacrylic acid films using a cw-laser. A focalized beam of a He-Ne laser (632.8 nm emission line) was used to form microchannels on the films. It was found that there exists a laser power density threshold for a pit formation that depends on the dye concentration. The dimensions of the laser-induced channels are dependent on the laser power density. Microchannel formation in the transparent polymethacrylic acid films was no...

  2. Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingang, E-mail: hjg@hdu.edu.cn [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wu, Mengke; Chen, Jianjun; Liu, Xiuyan; Chen, Tingting [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wen, Yue [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Tang, Junhong; Xie, Zhengmiao [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-12-15

    Highlights: • Henna stem mixed with ceramic media in UAF enhanced the removal of AO7. • Bio-reduction was the main AO7 removal pathway in henna-added UAF. • Adsorption and endogenous reduction were the main removal pathways in the control. • Henna played a multiple role in providing electron donors and redox mediator. - Abstract: Effects of henna plant biomass (stem) packed in an up-flow anaerobic bio-filter (UAF) on an azo dye (AO7) removal were investigated. AO7 removal, sulfanilic acid (SA) formation, and pseudo first-order kinetic constants for these reactions (k{sub AO7} and k{sub SA}) were higher in the henna-added UAF (R2) than in the control UAF without henna (R1). The maximum k{sub AO7} in R1 and R2 were 0.0345 and 0.2024 cm{sup −1}, respectively, on day 18; the corresponding molar ratios of SA formation to AO7 removal were 0.582 and 0.990. Adsorption and endogenous bio-reduction were the main AO7 removal pathways in R1, while in R2 bio-reduction was the dominant. Organics in henna could be released and fermented to volatile fatty acids, acting as effective electron donors for AO7 reduction, which was accelerated by soluble and/or fixed lawsone. Afterwards, the removal process weakened over time, indicating the demand of electron donation and lawsone-releasing during the long-term operation of UAF.

  3. Removal of basic dye methylene blue by using bioabsorbents Ulva ...

    African Journals Online (AJOL)

    In the present study, the removal of textile dye methylene blue was studied by adsorption technique using adsorbents such as, alumina, Ulva lactuca and Sargassum (Maine algae). The batch technique was adopted under the optimize condition of amount of adsorbent, stay time, concentration, temperature and pH. By using ...

  4. Bengal Gram Seed Husk as an adsorbent for the removal of dye from aqueous solutions – Batch studies

    Directory of Open Access Journals (Sweden)

    M.C. Somasekhara Reddy

    2017-05-01

    Full Text Available The feasibility of using Indian Seed Husk of Bengal Gram (Scientific Name: Cicer arietinum (SHBG, abundantly available in and around the Kurnool in Andhra Pradesh, for the anionic dye (Congo red, CR adsorption from aqueous solution, has been investigated as a low cost and an eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, de-sorption and pH. Maximum colour removal was observed at lower pH. The dye attained equilibrium approximately at 1, 1.5, 2 and 2.5 h for dye concentrations 25, 50, 75 and 100 mg/l respectively. The present dye removal decreased from 89% to 74% as the dye concentration has been increased from 25 mg/l to 100 mg/l. A maximum removal of 92% is obtained at lower pH. Adsorption decreases with increase in pH. Maximum de-sorption of 26.4% is achieved in water medium at pH 11.95. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 41.66 mg g−1. The pseudo-second-order kinetics was the best for the adsorption of CR, by SHBG with good correlation. The results suggest that SHBG is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  5. Removal of hazardous dye congored from waste material

    International Nuclear Information System (INIS)

    Jain, Rajeev; Sikarwar, Shalini

    2008-01-01

    The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste material sawdust as adsorbent. Sawdust, a biosorbent, was successfully utilized in removing a water soluble azo dye, congored from wastewater. The paper incorporates effect of pH, temperature, amount of adsorbent, contact time, concentration of adsorbate, particle size on adsorption. Specific rate constants of the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherm models were then applied to calculate thermodynamics parameters as well as to suggest the plausible mechanism of the ongoing adsorption processes. In order to observe the quality of wastewater COD measurements were also carried out before and after the treatments. A significant decrease in the COD values was observed, which clearly indicates that adsorption method offer good potential to remove congored from wastewater

  6. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    Science.gov (United States)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  7. KINETIC MODELING AND ISOTHERM STUDIES ON A BATCH REMOVAL OF ACID RED 114 BY AN ACTIVATED PLANT BIOMASS

    Directory of Open Access Journals (Sweden)

    N. RAJAMOHAN

    2013-12-01

    Full Text Available In this paper, the dye Acid Red 114(AR 114 was removed from aqueous solutions using Acid-Activated Eichornia Crassipes (AAEC under batch conditions. The optimum conditions for AR 114 removal were found to be pH 1.5, adsorbent dosage = 1.25 g/L of solution and equilibrium time = 3 h. The equilibrium data were evaluated for compliance with Langmuir, Freundlich and Temkin isotherms and Langmuir isotherm was found to fit well. The maximum sorption capacity was estimated as 112.34 mg/g of adsorbent. Also, adsorption kinetics of the dye was studied and the rates of sorption were found to follow pseudo-second order kinetics with good correlation (R2 ≥ 0.997.The kinetic study at different temperatures revealed that the sorption was an endothermic process. The activation energy of the sorption process was estimated as 9.722 kJ/mol.

  8. Removal of the blue 1 dye of aqueous solutions using ferric zeolite

    International Nuclear Information System (INIS)

    Pinedo H, S. Y.

    2010-01-01

    Water is essential to all life forms, including humans. In recent years water use has increased substantially, also has been altered in its capacity as a result of various human activities, such as domestic, industrial and agricultural, also by natural activity. Undoubtedly one of the main pollutants today are the waste generated by the food industry, due to the use of dyes for the production of their products. So it is necessary to restore water quality through treatment systems to remove contaminants, and thus prevent disease and imbalance of ecosystems. Due to the above, it is important to conduct research directed towards finding new ways to remove dyes such as blue 1 used in the food industry, using low cost materials and abundant in nature as zeolites. To accomplish the above, the present study has the purpose to evaluate the adsorption capacity of the blue dye 1 in aqueous solutions. To accomplish that objective, the zeolite material was reconditioned to improve its sorption properties of the material and provide the ability to adsorb pollutants such as this dye. The zeolite material was characterized by scanning electron microscopy and elemental analysis, X-ray diffraction and infrared spectroscopy. To evaluate the ability of blue 1 dye sorption the kinetics and sorption isotherms were determined; the experimental results were adjusted to mathematical models such as pseudo-first order, pseudo second order and Elovich to describe the kinetic process, and the Langmuir, Freundlich and Langmuir-Freundlich to describe sorption isotherms. The results showed that ferric zeolite surface is a heterogeneous material and has a considerable adsorption capacity, which makes it a potential adsorbent for removing color from aqueous streams. Also the sorption of the dye was evaluated at different ph values; the most sorption was carried out at ph values 1, 3 and 11. We also evaluated the change in mass where the sorption capacities for the blue 1 increase by increasing

  9. Modified magnetite nanoparticles with cetyltrimethylammonium bromide as superior adsorbent for rapid removal of the disperse dyes from wastewater of textile companies

    Directory of Open Access Journals (Sweden)

    Ali Asghar Rajabi

    2016-01-01

    Full Text Available This paper reports application of cetyltrimethylammonium bromide (CTAB coated magnetite nanoparticles (Fe3O4 NPs as a novel adsorbent for removal of two types of disperse dyes, including disperse red 167, and disperse blue 183, from wastewater of textile companies. The effect of parameters including type of surfactant, pH of solution, surfactant concentration, and amount of salt, was investigated and optimized. The obtained results showed that the ratio of initial dye concentration to CTAB amounts has critical effect on removal processes so that removal efficiencies higher than 95% can be achieved even at high concentration of dyes as high as 500 mg l-1 when the ratio is optimum. Removal of dyes is very fast, and equilibrium is reached at times less than 10 min even for high concentration of the dyes. Very high adsorbent capacity (as high as 2000 mg g-1 was yielded for maximum tested concentration of the dyes (500 mg g-1. The obtained result was confirmed by thermogravimetric analysis data. This study showed that CTAB coated Fe3O4 NPs is a very efficient adsorbent for removal of dyes from wastewater of textile companies and has high capacity under optimum conditions.

  10. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system.

    Science.gov (United States)

    Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno

    2017-06-15

    In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Incorporation of Kojic Acid-Azo Dyes on TiO2 Thin Films for Dye Sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Carolynne Zie Wei Sie

    2017-01-01

    Full Text Available Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs. A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54% in the series.

  12. Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel

    Directory of Open Access Journals (Sweden)

    Sundus Saleh Nehaba

    2017-07-01

    Full Text Available This study is conducted to evaluate the ability of using pomegranate peel as low cost material for adsorption one of synthetic textile dye (C.I.Direct Red 89 dye. The removal of dye from aqueous solution is done by using pomegranate peel with two forms, as raw pomegranate peel (RPP and activated carbon prepared from pomegranate peel(ACPP. Some operational factors like contact time, pH, adsorbent dosage , and temperature were investigated in experimental work. Also the thermodynamic parameters ΔH, ΔG, and ΔS were calculated, the result shows that the adsorption process of dye onto two forms of adsorbents was spontaneous and endothermic in nature. Finally, the adsorption isotherm of experimental data we refitted for the Langmuir, and Freundlich equations

  13. Role of brown-rot fungi in the bioremoval of azo dyes under different conditions

    Directory of Open Access Journals (Sweden)

    Naeem Ali

    2010-12-01

    Full Text Available The present study is vital to the understanding of bioremediation of structurally different azo dyes by some unusual Brown-rot fungi. Bioremoval of each dye (20 mg l-1 was tested in two different culture media under static and shaking conditions by taking inocula from different fungi. Fungal strains showed varying dyes removal abilities, though considerable high in case of Acid Red (AR 151(di-azo as compared to Orange (Or II (mono-azo. With an exception of Aspergillus tereus SA3, all the fungal isolates showed higher removal of dyes in SDB. Under static condition, the maximum decolorizing fungal strains were; Aspergillus flavus SA2 (67% and Alternaria spp. SA4 (57% in AR 151, while Penicillium spp. (34 and 33 % in Orange II, in SDB and STE, respectively. Bioremoval of dyes was considerably increased when experiments were shifted from static to shaking mode. It was specifically increased (% in; AR 151 (255 with Penicillium spp., Or II with A. flavus SA2 (112 and Alternaria spp. (111. The primary mechanism of dyes removal proved to be fungal biosorption. However, reduction of dyes (onto fungal with formation of their products (α. naphthol, sulphalinic acid and aniline furthermore revealed that dyes (specifically azo were actually biodegraded.

  14. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L

    Energy Technology Data Exchange (ETDEWEB)

    Agustia, Yuda Virgantara, E-mail: yuda.mechanical.engineer@student.uns.ac.id; Suyitno,, E-mail: suyitno@uns.ac.id; Sutanto, Bayu, E-mail: bayu.sutanto@student.uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Arifin, Zainal, E-mail: zainal-a@uns.ac.id [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Department of Mechanical Engineering, Brawijaya University, Malang (Indonesia)

    2016-03-29

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, E{sub HOMO} and E{sub LUMO} was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where E{sub red} = −0.37V, E{sub LUMO} = −4.28 eV, E{sub ox} = 1.15V, E{sub HOMO} = −5.83 eV, and E{sub band} {sub gap} = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  16. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey); Olgun, Asim [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey)]. E-mail: aolgun@dumlupinar.edu.tr

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  17. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Atar, Necip; Olgun, Asim

    2007-01-01

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  18. Utilization of magnetically responsive cereal by-product for organic dye removal

    Czech Academy of Sciences Publication Activity Database

    Baldíková, Eva; Politi, D.; Maděrová, Zdeňka; Pospíšková, K.; Sidiras, D.; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 96, č. 6 (2016), s. 2204-2214 ISSN 0022-5142 R&D Projects: GA ČR GA13-13709S Grant - others:GA MŠk(CZ) LO1305 Institutional support: RVO:67179843 Keywords : modified rice straw * aqueous-solution * methylene-blue * wheat-straw * activated carbon * cost adsorbents * crystal violet * anionic dyes * adsorption * acid * barley straw * magnetic modification * magnetic adsorbent * microwave-assisted synthesis * organic dyes Subject RIV: GC - Agronomy Impact factor: 2.463, year: 2016

  19. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet

    Directory of Open Access Journals (Sweden)

    Helena Ma A. M. M. S. Ali

    2017-11-01

    Full Text Available The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1. Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer.

  20. Modification of azo dyes by lactic acid bacteria.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2009-08-01

    The ability of Lactobacillus casei and Lactobacillus paracasei to modify the azo dye, tartrazine, was recently documented as the result of the investigation on red coloured spoilage in acidified cucumbers. Fourteen other lactic acid bacteria (LAB) were screened for their capability to modify the food colouring tartrazine and other azo dyes of relevance for the textile industry. Most LAB modified tartrazine under anaerobic conditions, but not under aerobic conditions in modified chemically defined media. Microbial growth was not affected by the presence of the azo dyes in the culture medium. The product of the tartrazine modification by LAB was identified as a molecule 111 daltons larger than its precursor by liquid chromatography-mass spectrometry. This product had a purple colour under aerobic conditions and was colourless under anaerobic conditions. It absorbed light at 361 and 553 nm. LAB are capable of anabolizing azo dyes only under anaerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: Although micro-organisms capable of reducing the azo bond on multiple dyes have been known for decades, this is the first report of anabolism of azo dyes by food related micro-organisms, such as LAB.

  1. Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay

    Directory of Open Access Journals (Sweden)

    Ahmadishoar Javad

    2017-01-01

    Full Text Available In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB and Disperse Red 135 (DR from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.

  2. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    Science.gov (United States)

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  3. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    Science.gov (United States)

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of Tannic Acid on the zeta Potential, Sorption, and Surface Free Energy in the Process of Dyeing of Leacril with a Cationic Dye.

    Science.gov (United States)

    Espinosa-Jiménez; Giménez-Martín; Ontiveros-Ortega

    1998-11-01

    The behavior of the surface free energy in the process of dyeing Leacril pretreated with tannic acid and subsequently dyeing with the cationic dye Rhodamine B has been studied. Also the electrokinetic behavior of these systems has been analyzed by studying the zeta potential, which has been obtained by means of the streaming potential technique. Values more significative of the zeta potential of these systems have been obtained using the three models of capillaries existing in the literature. The qualitative behavior of the zeta potential is the same for the three models of capillaries tested in this paper. These models are those of Goring and Mason, Biefer and Mason, and Chang and Robertson. The zeta potential of the systems analyzed is negative in the range of concentration of the dye in the liquid phase from 10(-6) to ca. 10(-4) M of dye. In the range of low concentrations (from 10(-6) to ca. 10(-5) M of dye) the zeta potential of the system untreated Leacril/Rhodamine B increases in absolute value due to increasing hydrophobic attractions between both the hydrophobic chains of the dye and the Leacril fibers in aqueous media. In the system Leacril treated with tannic acid/Rhodamine B, this increase is also due to the presence of hydrogen bonding between the phenolic hydroxyl groups of the tannic acid and the sulfonate and sulfate end groups of Leacril fibers. For concentrations of dye between 10(-5) and 10(-4) M of dye in solution, the zeta potential decreases in absolute value due to the electrostatic attractions between the groups negatively charged in the fiber and the cation of the dye. The zeta potential changes its sign at the highest concentrations of dye used in this work. The adsorption of Rhodamine B onto both untreated Leacril and Leacril treated with tannic acid is favored by the increasing temperature of adsorption. The behavior of the components of the surface free energy obtained by the thin-layer wicking technique led us to consider that the

  5. Adsorption of acid red from dye wastewater by Zn{sub 2}Al-NO{sub 3} LDHs and the resource of adsorbent sludge as nanofiller for polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tianshan; Gao, Yanshan; Zhang, Zhang [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Yan, Xingru; Zhang, Xi; Guo, Zhanhu [Integrated Composites Laboratory, Dan F Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710 (United States); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2014-02-25

    Highlights: • High removal efficiency of acid red 97 from dye wastewater was achieved by using Zn{sub 2}Al-NO{sub 3} LDHs adsorbent. • The resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) was proposed for the first time. • The thermal stability of PP was significantly improved by introducing only small amount of LDH adsorbent sludge. • The resource the dye adsorbent sludge as multifunctional nanofiller for polymers is a very promising option. -- Abstract: In this contribution, we report the removal of acid red 97 (AC97) from simulated dye wastewater by using Zn{sub 2}Al-NO{sub 3} layered double hydroxides (LDHs) adsorbent, and the resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) for the first time. The obtained Zn{sub 2}Al-NO{sub 3} LDH was analyzed using X-ray diffraction and scanning electron microscopy analysis, confirming the formation of pure and platelike LDH nanoparticles. The effects of adsorption time and initial dye concentration on the removal of AC97 from wastewater were systematically investigated, showing that the Zn{sub 2}Al-NO{sub 3} LDHs is very efficient in removing AC97. The saturated adsorption capacity of water washed and acetone washed Zn{sub 2}Al-LDHs is 204.4 and 299.5 mg/g, respectively. Finally, the LDH adsorbent sludge was added into PP using a modified solvent mixing method. Thermal gravimetric analysis and ultraviolet (UV) absorption analysis of PP/Zn{sub 2}Al-AC97 LDHs nanocomposites suggested that the Zn{sub 2}Al-AC97 LDH can significantly improve the thermal stability and UV shielding ability of PP. This data demonstrated that it is very promising to resource the dye adsorbent sludge as multifunctional nanofiller for polymers.

  6. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L

    International Nuclear Information System (INIS)

    Agustia, Yuda Virgantara; Suyitno,; Sutanto, Bayu; Arifin, Zainal

    2016-01-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, E_H_O_M_O and E_L_U_M_O was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where E_r_e_d = −0.37V, E_L_U_M_O = −4.28 eV, E_o_x = 1.15V, E_H_O_M_O = −5.83 eV, and E_b_a_n_d _g_a_p = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  7. Fly ash: An alternative to powdered activated carbon for the removal of eosin dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    V.O. Njoku

    2013-05-01

    Full Text Available This paper reports the use of powdered activated carbon (PAC and raw coal fly ash (RFA in the removal of eosin dye from aqueous solution in batch processes. Operational parameters such as contact time, initial dye concentration, pH and temperature were investigated. Adsorption equilibrium was established in 120 min for the two adsorbents. Langmuir and Freundlich isotherms were used to fit the adsorption data. Langmuir model gave the best fit in both cases. The adsorption capacities of PAC and RFA were found to be 62.28 mg/g and 43.48 mg/g, respectively. The highest percentage of eosin dye removal for both PAC (98% and RFA (90% was observed at pH 2. Pseudo first-order and pseudo second-order kinetic models were used to fit the adsorption data. Pseudo second-order kinetic model gave the best description of the adsorption of eosin dye onto the two adsorbents. Thermodynamic parameters, ΔH0, ΔS0 and ΔG0 confirmed the physical nature, spontaneity and the endothermic nature of the adsorption process. A regeneration technique and a process calculation for evaluating the adsorbent dose required were carried out. This study has shown that RFA is a good alternative adsorbent in the removal of eosin dye from aqueous solution.

  8. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  9. Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion

    International Nuclear Information System (INIS)

    Villanueva-Rodriguez, M.; Hernandez-Ramirez, A.; Peralta-Hernandez, J.M.; Bandala, Erick R.; Quiroz-Alfaro, Marco A.

    2009-01-01

    This work shows preliminary results on the electrochemical oxidation process (EOP) using boron-doped diamond (BDD) electrode for acidic yellow 36 oxidation, a common azo dye used in textile industry. The study is centred in the synergetic effect of ferrous ions and hydroxyl free radicals for improving discoloration of azo dye. The assays were carried out in a typical glass cell under potentiostatic conditions. On experimental conditions, the EOP was able to partially remove the dye from the reaction mixture. The reaction rate increased significantly by addition of Fe 2+ (1 mM as ferrous sulphate) to the system and by (assumed) generation of ferrate ion [Fe(VI)] over BDD electrode. Ferrate is considered as a highly oxidizing reagent capable of removing the colorant from the reaction mixture, in synergistic action with the hydroxyl radicals produced on the BDD surface. Further increases in the Fe 2+ concentration lead to depletion of the reaction rate probably due to the hydroxyl radical scavenging effect of Fe 2+ excess in the system.

  10. Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes.

    Science.gov (United States)

    Xu, Rui; Mao, Jie; Peng, Na; Luo, Xiaogang; Chang, Chunyu

    2018-05-15

    Numerous adsorbents have been reported for efficient removal of dye from water, but the high cost raw materials and complicated fabrication process limit their practical applications. Herein, novel nanocomposite microspheres were fabricated from chitin and clay by a simple thermally induced sol-gel transition. Clay nanosheets were uniformly embedded in a nanofiber weaved chitin microsphere matrix, leading to their hierarchical architecture. Benefiting from this unique structure, microspheres could efficiently remove methylene blue (MB) through a spontaneous physic-sorption process which fit well with pseudo-second-order and Langmuir isotherm models. The maximal values of adsorption capability obtained by calculation and experiment were 152.2 and 156.7 mg g -1 , respectively. Chitin/clay microspheres (CCM2) could remove 99.99% MB from its aqueous solution (10 mg g -1 ) within 20 min. These findings provide insight into a new strategy for fabrication of dye adsorbents with hierarchical structure from low cost raw materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. UV/Ni–TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs

    Directory of Open Access Journals (Sweden)

    Azam Pirkarami

    2014-03-01

    Full Text Available This paper reports an investigation into the effect of a number of operating factors on the removal of Reactive Red 19 (RR 19, Acid Orange 7 (AO 7, and Acid Red 18 (AR 18 from an aqueous solution through photoelectrocatalysis. Nano-Ni–TiO2 was used as the photocatalyst applied in suspension to achieve a larger catalyst surface area. Photocatalyst dose, dye concentration, pH, bias potential, electrolyte concentration, and temperature were found to be optimum at 0.6 ppm, 30 ppm, 7, 1.6 V, 5 ppm, and 25 °C respectively. Significant reduction was observed in the COD values of the solutions, denoting effective treatment. Photocatalyst efficiency was evaluated using SEM, XRD, and FT-IR techniques. Cost analysis was performed for the treatment process. The energy required by the experiment was supplied by solar cells, meaning that no money had to be spent on electricity.

  12. Adsorption capacity of Curcuma longa for the removal of basic green 1 dye--equilibrium, kinetics and thermodynamic study.

    Science.gov (United States)

    Roopavathi, K V; Shanthakumar, S

    2016-09-01

    In the present study, Curcuma longa (turmeric plant) was used as an adsorbent to remove Basic Green 1 (BG) dye. Batch study was carried out to evaluate the adsorption potential of C. longa and influencing factors such as pH (4-10), adsorbent dose (0.2-5 g l-1), initial dye concentration (50-250 mg l-1) and temperature (30-50°C) on dye removal were analysed. The characterisation of adsorbent was carried out using fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) method. Isotherm models that included Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, and kinetic models such as pseudo first order, pseudo second-order, Elovich and intraparticle diffusion models were studied. A maximum removal percentage (82.76%) of BG dye from aqueous solution was obtained with optimum conditions of pH 7, 1g l-1 adsorbent dose and 30°C temperature, for 100 mg l-1 initial dye concentration. The equilibrium and kinetic study revealed that the experimental data fitted suitably the Freundlich isotherm and Pseudo second order kinetic model. Thermodynamic analysis proved that adsorption system in this study was spontaneous, feasible and endothermic in nature.

  13. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.

    Science.gov (United States)

    Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun

    2016-12-01

    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.

    Science.gov (United States)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-11-15

    Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Influence of operating conditions on the removal of brilliant vital red dye from aqueous media by bio-sorption using rice husk

    International Nuclear Information System (INIS)

    Rehman, R.; Anwar, J.; Mahmud, T.; Salman, M.; Shafique, U.

    2011-01-01

    Bio-sorption is emerging as an economical and eco friendly methodology for the removal of hazardous and toxic chemicals from waste water. The operating conditions have a great influence on the efficiency of this process. Conventional and indigenous bio sorbents like bagasse, wheat husk and rice husk have been evaluated for their removing efficiency of Brilliant Vital Red dye from water. Rice husk is proved better among them. The effect of important operating conditions for the removal of the dye using rice husk were studied. The observed optimum values for various factors are; 0.2 g of bio sorbent, 25 ppm initial dye concentration, 30 deg. C temperature, 15 minutes contact time, 300 rpm stirring speed and 2.0 ph. Langmuir adsorption isotherm model was also applied to evaluate maximum adsorption capacity of rice husk for Brilliant Vital Red dye. Q/sub max/ value was 15.06 which indicated that rice husk can effectively be used for the removal of Brilliant Vital Red dye from wastewater using the optimized operational conditions. This study would be accommodative with regard to practical wastewater treatment. (author)

  16. Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs

    Science.gov (United States)

    Çakar, Soner; Özacar, Mahmut

    2016-06-01

    In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.

  17. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    Science.gov (United States)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  19. Biosorption of Acid Dye in Single and Multidye Systems onto Sawdust of Locust Bean (Parkia biglobosa Tree

    Directory of Open Access Journals (Sweden)

    Abdur-Rahim Adebisi Giwa

    2016-01-01

    Full Text Available Properties of raw sawdust of Parkia biglobosa, as a biosorbent for the removal of Acid Blue 161 dye in single, binary, and ternary dye systems with Rhodamine B and Methylene Blue dyes in aqueous solution, were investigated. The sawdust was characterized using Scanning Electron Microscopy, Fourier Transform Infrared spectrophotometry, X-ray diffraction, and pH point of zero charge. Batch adsorption experiments were carried out to determine the equilibrium characteristics, thermodynamics, and kinetics of the sorption processes. The data obtained were subjected to various isotherm and kinetics equations. The results showed that the adsorption processes were described by different isotherm models depending on the composition of the system; they were all spontaneous (ΔG ranges from −0.72 to −5.36 kJ/mol and endothermic (range of ΔH is 11.37–26.31 kJ/mol and with increased randomness with ΔS values of 55.55 and 98.78 J·mol/K for single and ternary systems, respectively. Pseudo-second-order kinetics model gave better fit for all the sorption systems studied irrespective of the differences in composition, with the initial and overall rate constants higher for the mixtures than for the single system (6.76 g·mg−1min−1. The presence of Rhodamine B and Methylene Blue had a synergetic effect on the maximum monolayer capacity of the adsorbent for Acid Blue 161 dye.

  20. Box-Behnken design for optimizing the acid blue dye adsorption on flower wastes Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores

    OpenAIRE

    Ana Cristina Jaramillo Madrid; Ana Maria Echavarria; Angelina Hormaza

    2013-01-01

    In this paper we identified the best conditions for the removal of Acid Blue 9 dye (AB9) using ower wastes (FW) as an adsorbent were determined using a full factorial 23 and a Box-Behnken design for further optimization. Adsorbent dose (D), dye concentration (C) and contact time (t), were the assessed variables. The dye content was quantied by UV-Vis spectrometry. The statistical model presented an adequate adjustment coecient (R2 = 99,18%), allowing to achieve a removal of 98,5% with a dosag...

  1. Organofunctionalized Amazon smectite for dye removal from aqueous medium-Kinetic and thermodynamic adsorption investigations

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis L., E-mail: denis@cpd.ufmt.br [Universidade Federal de Mato Grosso, DRM-UFMT, Mato Grosso, Brasil 78060 900 (Brazil); Silva, Weber L.L. [Universidade Federal de Mato Grosso, DRM-UFMT, Mato Grosso, Brasil 78060 900 (Brazil); Oliveira, Helen C.P. [Universidade Estadual do Norte Fluminense, UENF, Rio de Janeiro, Brasil 28013 602 (Brazil); Viana, Rubia R. [Universidade Federal de Mato Grosso, DRM-UFMT, Mato Grosso, Brasil 78060 900 (Brazil); Airoldi, Claudio [Chemistry Institute, State University of Campinas, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2011-02-15

    The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g{sup -1} for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions.

  2. Organofunctionalized Amazon smectite for dye removal from aqueous medium-Kinetic and thermodynamic adsorption investigations

    International Nuclear Information System (INIS)

    Guerra, Denis L.; Silva, Weber L.L.; Oliveira, Helen C.P.; Viana, Rubia R.; Airoldi, Claudio

    2011-01-01

    The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g -1 for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions.

  3. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    Science.gov (United States)

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Comparison of Moringa stenopetala seed extract as a clean coagulant with Alum and Moringa stenopetala-Alum hybrid coagulant to remove direct dye from Textile Wastewater.

    Science.gov (United States)

    Dalvand, Arash; Gholibegloo, Elham; Ganjali, Mohammad Reza; Golchinpoor, Najmeh; Khazaei, Mohammad; Kamani, Hossein; Hosseini, Sara Sadat; Mahvi, Amir Hossein

    2016-08-01

    In this study, the efficiency of Moringa stenopetala seed extract was compared with alum and M. stenopetala-alum hybrid coagulant to remove Direct Red 23 azo dye from textile wastewater. The effects of parameters such as pH, coagulant dose, type of salt used for the extraction of coagulant and initial dye concentration on dye removal efficiency were investigated. Moreover, the existing functional groups on the structure of M. stenopetala coagulant (MSC) were determined by Fourier transform infrared spectroscopy, and the morphology of sludge produced by MSC, alum, and hybrid coagulant was characterized by scanning electron microscopy. Ninhydrin test was also used to determine the quantity of primary amines in the MSC and Moringa oleifera coagulant (MOC). According to the results, with increasing the coagulant dose and decreasing the initial dye concentration, dye removal efficiency has increased. The maximum dye removal of 98.5, 98.2, and 98.3 % were obtained by using 240, 120, and 80 mg/L MSC, alum and hybrid coagulant at pH 7, respectively. The results also showed MSC was much more effective than MOC for dye removal. The volume of sludge produced by MSC was one fourth and half of those produced by alum and hybrid coagulant, respectively. Based on the results, hybrid coagulant was the most efficient coagulant for direct dye removal from colored wastewater.

  5. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  6. Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain.

    Science.gov (United States)

    Daâssi, Dalel; Zouari-Mechichi, Hela; Frikha, Fakher; Martinez, Maria Jesus; Nasri, Moncef; Mechichi, Tahar

    2013-04-01

    This study concerns the decolorization and detoxification of the azo dye Acid Orange 51 (AO51) by crude laccase from Trametes trogii produced in solid culture using sawdust as support media. A three-level Box-Behnken factorial design with four factors (enzyme concentration, 1-hydroxybenzotriazole (HBT) concentration, dye concentration and reaction time) combined with response surface methodology was applied to optimize AO51 decolorization. A mathematical model was developed showing the effect of each factor and their interactions on color removal. The model predicted that Acid Orange 51 decolorization above 87.87 ± 1.27 % could be obtained when enzyme concentration, HBT concentration, dye concentration and reaction time were set at 1 U/mL, 0.75 mM, 60 mg/L and 2 days, respectively. The experimental values were in good agreement with the predicted ones and the models were highly significant, the correlation coefficient (R 2 ) being 0.9. Then the desirability function was employed to determine the optimal decolorization condition for each dye and minimize the process cost simultaneously. In addition, germination index assay showed that laccase-treated dye was detoxified; however in the presence of HBT, the phytotoxicity of the treated dye was increased. By using cheap agro-industrial wastes, such as sawdust, a potential laccase was obtained. The low cost of laccase production may further broaden its application in textile wastewater treatment.

  7. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.

    Science.gov (United States)

    Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

    2015-01-01

    The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.

  8. Anaerobic removal of the brl direct blue dye in Upflow Anaerobic Sludge Blanket (UASB with activated carbon

    Directory of Open Access Journals (Sweden)

    Christian Zavala-Rivera

    2015-07-01

    Full Text Available In this research the brl direct blue dye was used for anaerobic removal with a bacterial consortium of industrial effluents from Industrial Park Río Seco (IPRS, Arequipa, Peru; in an anaerobic reactor of UASB Upflow with activated carbon. The reactor had a capacity of 14.4 L with sludge and activated carbon of 40% of volume, with an organic load of 6 Kg COD/m3•dia and a hydraulic retention time of 1 day with an upward flow. The objective was to measure the efficiency of the anaerobic removal of coloring in a time of 28 days. The results showed an increase of 41% of the solids suspended volatile (SSV 12894 mg•L-1 up to 21546 mg•L-1 under the conditions of the experiment, with a removal of 57% of the chemical demand of oxygen (COD from 484 mg•L-1 to 122 mg•L-1 and a removal of 87% of the dye Blue direct the 69.61 brl mg•L-1 to 9 mg•L-1. Results with activated charcoal granular only, they showed a removal of 61% of the dye Blue direct 70.67 brl mg•L-1 to 27.83 mg•L-1 at 28 days.

  9. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    Zulkarnain Zainal; Chan, Sook Keng; Abdul Halim Abdullah

    2008-01-01

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO 2 / AC was found to be two times better than the removal by immobilised AC or immobilised TiO 2 alone. In 4 hours and with the concentration of 10 ppm, TiO 2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  10. Organofunctionalized Amazon smectite for dye removal from aqueous medium--kinetic and thermodynamic adsorption investigations.

    Science.gov (United States)

    Guerra, Denis L; Silva, Weber L L; Oliveira, Helen C P; Viana, Rúbia R; Airoldi, Claudio

    2011-02-15

    The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g(-1) for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions. Copyright © 2010. Published by Elsevier B.V.

  11. REMOVAL OF REACTIVE DYES FROM WASTEWATER OF TEXTILE INDUSTRIES BY USING ENVIRONMENTAL FRIENDLY ADSORBENTS

    Directory of Open Access Journals (Sweden)

    ALAM Md Shamim

    2016-05-01

    Full Text Available This paper is aimed at developing a method to treat wastewater by using inexpensive adsorbents. Textile industries produce wastewater, otherwise known as effluent, as a bi-product of their production. The effluent contains several pollutants. Among the various stages of textile production, the operations in the dyeing plant, which include pre-treatments, dyeing, printing and finishing, produce the most pollution. The textile dyeing wastes contain unused or partially used organic compounds, and high level of different pollutants. They are often of strong color and may also be of high temperature. When disposed into water bodies or onto land these effluents will result in the deterioration of ecology and damage to aquatic life. Furthermore they may cause damage to fisheries and economic loss to fishermen and farmer, there may be impacts on human health which can be removed with the help of an effluent treatment plant (ETP. The “clean” water can then be safely discharged into the environment and ultimately save our environment from pollution. In this study, rice husk and cotton dust were used as an adsorbent. In this research work waste water was characterized with this useless adsorbents. The parameters which were tested in this study are DO, BOD, COD, TS, TDS and TSS. The results showed that the selected bio adsorbents have good potential for removal of reactive dyes from textile effluent.

  12. Synthesis and Application of Iron Oxide/Silica Gel Nanocomposite for Removal of Sulfur Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Naser Tavassoli

    2017-03-01

    Full Text Available Background & Aims of the Study: water pollution by synthetic organic dyes is mainly regarded as environmental and ecological critical issues worldwide. In this research, magnetite iron oxide/silica gel nanocomposite (termed as Fe3O4/SG was synthesized chemically and then used as an effective adsorbent for removal of sulfur dyes from aqueous solution. Materials and Methods: The various parameters such as pH, sorbent dosage, initial dye concentration, contact time and dye solution temperature were investigated in a batch system. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models. Results: The experimental data fit well with pseudo-second-order kinetic model (R2≥0.998 and conformed better to Langmuir isotherm model (R2≥0.997. The maximum adsorption capacity for Fe3O4/SG obtained from the Langmuir model was 11.1mg/g. Evaluation of thermodynamic parameters proved that the adsorption process was normally feasible, spontaneous and exothermic. Conclusion: It can be concluded that the Fe3O4/SG can be considered as a cost-effective and an environmental friendly adsorbent for efficient removal of sulfur dyes from aqueous solutions.

  13. Removal of organic dyes by magnetic alginate beads.

    Science.gov (United States)

    Rocher, Vincent; Siaugue, Jean-Michel; Cabuil, Valérie; Bee, Agnès

    2008-02-01

    This study deals with the development of a clean and safe process for water pollution remediation. We have synthesized a magnetic adsorbent in order to develop a solid-phase extraction process assisted by a magnetic field. To follow an 'ecoconception' approach, magnetic beads containing magnetic nanoparticles and activated carbon are prepared with a biopolymer extracted from algae, sodium alginate. The use of renewable bioresources of low cost and those disposable in large amount allows the development of a product with a low impact on the environment. The adsorption properties of activated carbon and magnetic properties of iron oxide nanoparticles are combined to produce an interesting magnetic composite. Synthesis and characterization of the magnetic beads have been reported. Their adsorption capacity was investigated by measuring the removal of two dyes (methylene blue and methyl orange) of different charges from aqueous solutions. The efficiency of the beads has been compared with that of non-encapsulated activated carbon. The effects of initial dye concentration, pH and calcium content of the beads have been studied. Adsorption kinetics experiments have been carried out and the data have been well fitted by a pseudo-second-order equation.

  14. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology

    Science.gov (United States)

    Loqman, Amal; El Bali, Brahim; Lützenkirchen, Johannes; Weidler, Peter G.; Kherbeche, Abdelhak

    2017-11-01

    The current study relates to the removal of a dye [crystal violet (CV)] from aqueous solutions through batch adsorption experiment onto a local clay from Morocco. The clay was characterized by X-ray diffraction, IR spectroscopy, X-ray fluorescence, scanning electron microscope, Brunauer-Emmett-Teller analysis and Fraunhofer diffraction method. The influence of independent variables on the removal efficiency was determined and optimized by response surface methodology using the Box-Behnken surface statistical design. The model predicted maximum adsorption of 81.62% under the optimum conditions of operational parameters (125 mg L-1 initial dye concentration, 2.5 g L-1 adsorbent dose and time of 43 min). Practically, the removal ranges in 27.4-95.3%.

  15. Removal of Acid Red 14 from Contaminated Water Using UV/S2O82- Advanced Oxidation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Rasoulifard

    2012-10-01

    Full Text Available The present study investigates the degradation of Acid Red 14 (AR14, commonly used as a textile dye in aqueous medium through the oxidation process by UV /S2O82- under a set of variables concentration of S2O82-, Ag+, AR14 and temperature. Commonly Ag+, heat and UV light can excite S2O82− to sulfate radical form (SO4−•, a stronger oxidant (E0 = 2.60 V than S2O82−, to enhance significantly the oxidation of contaminants. Also the changes in the absorption spectra of AR14 solutions during the photoxidation process showed that decrease of absorption peak of the dye at λmax = 514 nm indicates a rapid degradation of the azo dye. The results of this study suggest that the oxidative treatment of AR14 by peroxydisulfate with UV is a viable option for removal of the textile dyes from effluents.

  16. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  17. Removal of Reactive Orange 16 Dye from Aqueous Solution by Using Modified Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Maytham Kadhim Obaid

    2016-01-01

    Full Text Available Evaluated removal of reactive orange 16 (RO16 dye from aqueous solution was studied in batch mode by using kenaf core fiber as low-cost adsorbents. In this attempt, kenaf core fiber with size 0.25–1 mm was treated by using (3-chloro-2-hydroxypropyl trimethylammonium chloride (CHMAC as quaternization agent. Then effective parameters include adsorbent dose, pH, and contact time and initial dye concentration on adsorption by modified kenaf core fiber was investigated. In addition, isotherms and kinetics adsorption studies were estimated for determination of the equilibrium adsorption capacity and reactions dynamics, respectively. Results showed that the best dose of MKCF was 0.1 g/100 mL, the maximum removal of RO16 was 97.25 at 30°C, pH = 6.5, and agitation speed was 150 rpm. The results also showed that the equilibrium data were represented by Freundlich isotherm with correlation coefficients R2=0.9924, and the kinetic study followed the pseudo-second-order kinetic model with correlation coefficients R2=0.9997 for Co=100 mg/L. Furthermore, the maximum adsorption capacity was 416.86 mg/g. Adsorption through kenaf was found to be very effective for the removal of the RO16 dye.

  18. Comparative removal of congo red dye from water by adsorption on grewia asiatica leaves, raphanus sativus peels and activated charcoal

    International Nuclear Information System (INIS)

    Rehman, R.; Abbas, A.; Murtaza, S.; Mahmud, T.; Waheed-uz-Zaman; Salman, M.; Shafiq, U.

    2012-01-01

    Water treatment by adsorption methodology is being evolved in recent years. Various researchers are searching new adsorbents for water treatment which can replace activated charcoal. In the following study, the efficiency of removing Congo Red dye from water using two novel adsorbents, i.e. Raphanus sativus (Radish) peels and Grewia asiatica (Phalsa) leaves was evaluated and compared with activated charcoal. The adsorption process is carried out batch wise by using different concentrations of the aqueous dye solution with different adsorbent doses, agitation rate, varying contact time intervals, at a range of initial pH values and at different temperatures. Various chemicals were used for enhancing the adsorption capacity of adsorbents. The suitability of the adsorbent for using it is tested by fitting the adsorption data on Langmuir isotherm. The results showed that the Phalsa leaves powder is more effective adsorbent than Reddish peels for removing Congo Red dye from water. It can be used for removing Congo Red dye from waste water. (author)

  19. Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis

    Science.gov (United States)

    Dutta, Arun Kumar; Ghorai, Uttam Kumar; Chattopadhyay, Kalyan Kumar; Banerjee, Diptonil

    2018-05-01

    Amorphous carbon nanotubes were synthesized using low temperature solid state reaction. The as synthesized a-CNTs were used to remove two different textile dyes, Methyl Orange and Rhodamine B from water. Two ways of removal were followed; i.e. Adsorption and UV assisted catalysis. Adsorption experiment was carried out under various conditions. Analysis of the adsorption data was performed using Langmuir, Freundlich and Temkin models. It has been shown that the as prepared samples can effectively be used as adsorbent of textile dyes. Exposure of visible or UV light can make no significant additional effect to the removal efficiency. The mechanism of the adsorption has been found to be following a pseudo 1st order mechanism with corresponding correlation factor >0.95. Also it has been shown that presence of impurities can drastically kill the performance of the sample. This detail comparative study has been reported for the first time.

  20. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  1. Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry

    International Nuclear Information System (INIS)

    Monteiro Paschoal, Fabiana Maria; Anderson, Marc A.; Zanoni, Maria Valnice B.

    2009-01-01

    The feasibility of the photobleaching of a leather acid dye, acid red 151, simultaneously to degradation of anionic surfactant, Tamol, and reduction of Cr(VI) to the less toxic Cr(III) was investigated by photoelectrocatalytic oxidation. The best experimental conditions were found to be pH 2.0 and 0.1 mol L -1 sodium sulfate when the nanoporous Ti/TiO 2 photo anode was biased at +1.0 V and submitted to UV-irradiation. The photoelectrocatalytic oxidation promotes 100% discoloration, reducing around 98-100% of Cr(VI) and achieving an abatement of 95% of the original total organic carbon. The effect of pH, the applied potential, the Cr(VI) concentration and the complexation reaction between Cr(VI) and acid red dye were evaluated as to their effect on the kinetics of the reaction.

  2. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal.

    Science.gov (United States)

    El-Naggar, Mehrez E; Radwan, Emad K; El-Wakeel, Shaimaa T; Kafafy, Hany; Gad-Allah, Tarek A; El-Kalliny, Amer S; Shaheen, Tharwat I

    2018-07-01

    Recently, naturally occurring biopolymers have attracted the attention as potential adsorbents for the removal of water contaminants. In this work, we present the development of microcrystalline cellulose (MCC)-based nanogel grafted with acrylamide and acrylic acid in the presence of methylene bisacrylamide and potassium persulphate as a crosslinking agent and initiator, respectively. World-class facilities such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), surface analysis, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and zeta sizer were used to characterize the synthesized MCC based nanogel. The prepared nanogel was applied to remove reactive red 195 (RR195) dye and Cd (II) from aqueous medium at different operational conditions. The adsorption experiments showed that the feed concentration of monomers has a significant effect on the removal of RR195 which peaked (93% removal) after 10min of contact time at pH2 and a dose of 1.5g/L. On contrary, the feed concentration has insignificant effect on the removal of Cd (II) which peaked (97% removal) after 30min of contact time at pH6 and a dose of 0.5g/L. The adsorption equilibrium data of RR195 and Cd (II) was best described by Freundlich and Langmuir, respectively. Conclusively, the prepared MCC based nanogels were proved as promising adsorbents for the removal of organic pollutants as well as heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe{sub 3}O{sub 4} nanoparticles: Optimization, reusability, kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Dalvand, Arash; Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Reza Ganjali, Mohammad [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khoobi, Mehdi [Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Nazmara, Shahrokh [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hossein Mahvi, Amir, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-04-15

    This study aimed to investigate the removal of Reactive Blue 19 from colored wastewater using Fe{sub 3}O{sub 4} magnetic nanoparticles modified with L-arginine (Fe{sub 3}O{sub 4}@L-arginine). In order to investigate the effect of independent variables on dye removal and determining the optimum condition, the Box–Behnken Design (BBD) under Response Surface Methodology (RSM) was employed. Fe{sub 3}O{sub 4}@L-arginine nanoparticles were synthesized and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. Applying Fe{sub 3}O{sub 4}@L-arginine nanoparticles for dye removal showed that; by increasing adsorbent dose and decreasing pH, dye concentration, and ionic strength dye removal has been increased. In the optimum condition, Fe{sub 3}O{sub 4}@L-arginine nanoparticles were able to remove dye as high as 96.34% at an initial dye concentration of 50 mg/L, adsorbent dose of 0.74 g/L, and pH 3. The findings indicated that dye removal followed pseudo-second-order kinetic (R{sup 2}=0.999) and Freundlich isotherm (R{sup 2}=0.989). Based on the obtained results, as an efficient and reusable adsorbent, Fe{sub 3}O{sub 4}@L-arginine nanoparticles can be successfully applied for dye removal from colored wastewater. - Highlights: • The Fe{sub 3}O{sub 4}@L-arginine removed RB 19 azo dye from wastewater efficiently. • BBD under RSM was used to analyze and optimize the adsorption process. • pH was the most influential parameter in dye removal.

  4. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    Directory of Open Access Journals (Sweden)

    S.A. Bapat

    2016-03-01

    Full Text Available Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  5. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    International Nuclear Information System (INIS)

    Bapat, S. A.; Jaspal, D. K.

    2016-01-01

    Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  6. Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces

    Directory of Open Access Journals (Sweden)

    Akbar Elsagh

    2017-05-01

    Full Text Available We are employed in the present study of single-walled carbon nanotubes (SWCNTs, carboxylate group functionalized single-walled carbon nanotubes (SWCNT-COOH, graphene (G and graphene oxide (GO as alternative adsorbents for the removal of cationic dye Basic Red 46 (BR 46, from aqueous solution. Various physico-chemical parameters were studied such as electrical conductivity behaviors, contact time, solution pH, and dye concentration. The experimental results show that SWCNTs, SWCNT-COOH, G and GO are promising adsorbents for removing BR 46. The adsorption equilibrium data were analyzed using various adsorption isotherms, and the results have shown that adsorption behavior of BR 46 could be described reasonably well by the Langmuir isotherm. Results showed that the removal of BR 46 increased with increasing initial dye concentration, contact time and pH. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order, and intra-particle diffusion models. Results show that the pseudo-first order kinetic model for SWCNTs, SWCNT-COOH and the pseudo-second order for G and GO were found to correlate the experimental data well.

  7. Nanotubular halloysite clay as efficient water filtration system for cationic and anionic dyes removal

    OpenAIRE

    Conference, Nanostruc; Yafei Zhao, Elshad Abdullayev and Yuri Lvov

    2014-01-01

    Halloysite clay has chemical structure similar to kaolinite but it is rolled in tubes with diameter of 50 nm and length of ca. 1000 nm. Halloysite exhibits higher adsorption capacity for both cationic and anionic dyes because it has negative SiO2 outermost and positive Al2O3 inner lumen surface. An adsorption study using cationicRhodamine 6G and anionic Chrome azurol S has shown pproximately two times better dye removal for halloysite as compared to kaolin. Halloysite filters have been effect...

  8. Investigation of adsorption and inhibitive effect of acid red GRE (183 dye on the corrosion of carbon steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    M. Abd El-raouf

    2015-09-01

    Full Text Available The adsorption and corrosion inhibitive effect of acid red GRE (183 dye on carbon steel alloy in 1 M HCl solutions was studied using various techniques. Results of weight loss, Tafel polarization measurements and electrochemical impedance spectroscopy (EIS techniques show that this compound has fairly good inhibiting properties for steel corrosion in acidic bath; with efficiency around 96% at a concentration of 50 ppm. The inhibition is of a mixed anodic–cathodic nature. Factors affecting the corrosion process have been calculated and discussed. Acid red GRE (183 dye was shown to be an inhibitor in the acidic corrosion. Inhibition efficiency increased with acid red GRE (183 dye concentration but decreased with rise in temperature, corrosion inhibition is attributed to the adsorption of acid red GRE (183 dye on the carbon steel surface via a physical adsorption mechanism. Langmuir isotherm is found to provide an accurate description of the adsorption behavior of the investigated azo compound. The nature of the protective film was investigated using SEM and EDX techniques.

  9. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2

    International Nuclear Information System (INIS)

    Abbasi, Mahmood; Asl, Nima Razzaghi

    2008-01-01

    The sonolysis of Basic Blue 41 dye in aqueous solution was performed at 35 kHz using ultrasonic power of 160 W and aqueous temperature of 25 + 1 o C within 180 min. The TiO 2 nanoparticles were used as a catalyst to assist the sonication process. The effect of experimental parameters such as pH, H 2 O 2 concentration and initial dye concentration on the reaction were investigated. It was recognized that in lower pH values the dye removal rate decreased. However, dye removal increased via increase in H 2 O 2 concentration and lowering the initial dye concentration. All intermediate compounds were detected by integrated gas chromatography-mass spectrometry (GC/MS) and also ion chromatograph (IC). During the decolorization, all nitrogen atoms and aromatic groups of Basic Blue 41 were converted to urea, nitrate, formic acid, acetic acid and oxalic acid, etc. Kinetic studies revealed that the degradation process followed pseudo-first order mechanism with the correlation coefficient (R 2 ) of 0.9918 under experimental conditions. The results showed that power ultrasound can be regarded as an appropriate tool for degradation of azo dyes to non-toxic end products

  10. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    Directory of Open Access Journals (Sweden)

    Shixiong Sheng

    2017-12-01

    Full Text Available This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7 to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  11. Removal of reactive blue 19 dyes from textile wastewater by pomegranate seed powder: Isotherm and kinetic studies

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dehvari

    2016-01-01

    Full Text Available Aims: The aim of this study was the evaluation of adsorption kinetics and equilibrium of reactive blue 19 dyes from textile synthetic wastewater by pomegranate seed powder. Materials and Methods: This study is an experimental research, which was performed in laboratory scale. In this study, the parameters such as adsorbent dose, pH and retention time, initial concentration of dye and agitation rate have been investigated. After washing and boiling of pomegranate seeds for 2 h, they dried, milled and finally pulverized by standard ASTM sieves (40-100 mesh. Maximum adsorption wave length (λmax by spectrophotometer ultra violet/visible (model SP-3000 Plus 592 nm was determined. The Langmuir, Freundlich and Temkin isotherm models and the pseudo-first-order and pseudo-second-order kinetic models were analyzed. Results: According to results, the removal efficiency with adsorbent dose, retention time and agitation rate has a direct relation. Maximum adsorption occurred in the first 60 min. The removal efficiency with initial concentration of dye and pH of solution has indirect relation. The Freundlich isotherm fits the experimental data better than the other isotherms. It was recognized that the adsorption followed by pseudo-second-order model (R2 > 0.99. Conclusion: Based on the results, pomegranate seeds as a new natural sorbent can be used in removal of dye and other environmental pollutants with desirable absorption capacity.

  12. Poly(acrylamide) functionalized chitosan: An efficient adsorbent for azo dyes from aqueous solutions

    International Nuclear Information System (INIS)

    Singh, Vandana; Sharma, Ajit Kumar; Sanghi, Rashmi

    2009-01-01

    In the present communication we report on the optimization of persulfate/ascorbic acid initiated synthesis of chitosan-graft-poly(acrylamide) (Ch-g-PAM) and its application in the removal of azo dyes. The optimum yield of the copolymer was obtained using 16 x 10 -2 M acrylamide, 3.0 x 10 -2 M ascorbic acid, 2.4 x 10 -3 M K 2 S 2 O 8 and 0.1 g chitosan in 25 mL of 5% aqueous formic acid at 45 ± 0.2 o C. Ch-g-PAM remained water insoluble even under highly acidic conditions and could efficiently remove Remazol violet and Procion yellow dyes from the aqueous solutions over a pH range of 3-8 in contrast to chitosan (Ch) which showed pH dependent adsorption. The adsorption data of the Ch-g-PAM and Ch for both the dyes were modeled by Langmuir and Freundlich isotherms where the data fitted better to Langmuir isotherms. To understand the adsorption behavior of Ch-g-PAM, adsorption of Remazol violet on to the copolymer was optimized and the kinetic and thermodynamic studies were carried out taking Ch as reference. Both Ch-g-PAM and Ch followed pseudo-second-order adsorption kinetics. The thermodynamic study revealed a positive heat of adsorption (ΔH o ), a positive ΔS o and a negative ΔG o , indicating spontaneous and endothermic nature of the adsorption of RV dye on to the Ch-g-PAM. The Ch-g-PAM was found to be very efficient in removing color from real industrial wastewater as well, though the interfering ions present in the wastewater slightly hindered its adsorption capacity. The data from regeneration efficiencies for ten cycles evidenced the high reusability of the copolymer in the treatment of waste water laden with even high concentrations of dye.

  13. Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Montilla, Francisco; Morallon, Emilia; Olivi, Paulo

    2009-01-01

    The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds.

  14. Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials

    International Nuclear Information System (INIS)

    Mittal, Alok; Kaur, Dipika; Mittal, Jyoti

    2009-01-01

    De-Oiled Soya, an agricultural waste material and Bottom Ash a waste of power plants, have been used as adsorbents for the removal and recovery of a triarylmethane dye Fast Green FCF from wastewater. Batch studies have been carried by observing the effects of pH, temperature, concentration of the dye, amount of adsorbents, sieve size of adsorbent, contact time, etc. Graphical correlation of various adsorption isotherm models like, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich have been carried out for both the adsorbents. The adsorption over both the materials has been found endothermic and feasible in nature. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process have been calculated. The kinetic studies suggest the process following pseudo first order kinetics and involvement of particle diffusion mechanism. The bulk removal of the dye has been carried out by passing the dye solution through columns of Bottom Ash and De-Oiled Soya and saturation factor of each column has been calculated. Attempts have also been made to recover the dye by eluting dilute NaOH through the columns

  15. Dyes removal of textile wastewater onto surfactant modified zeolite from coal ash and evaluation of the toxic effects

    International Nuclear Information System (INIS)

    Ferreira, Patricia Cunico

    2015-01-01

    process, acute effects were substantially reduced after adsorption treatment of aqueous solution with SN and ST by ZMF, as well as their hydrolysed forms, showing no toxicity after removal of 100% of colour. After treatment with ZPM there was an increase of the toxicity, with exception of SHN and STH dyes that do not show toxicity after the treatment. Toxicity Identification Evaluation tests (TIE) were realized in order to identify what substances were causing the observed toxicity for the SN, ST and the leached of ZMF and ZMB. The acute effects were significantly reduced after manipulation with Solid-Phase Extraction (SPE) and Ethylenediaminetetraacetic acid (EDTA) for the leached of ZMB and ZMF. The dyes showed reduced in the toxicity after manipulation with EDTA indicating that the toxicants are mostly cationic metals. (author)

  16. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater.

    Science.gov (United States)

    Srivastava, Varsha; Sillanpää, Mika

    2017-01-01

    Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG 0 for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes. Copyright © 2016. Published by Elsevier B.V.

  17. Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.

    Science.gov (United States)

    Dixit, Aparna Banerjee; Ray, Krishanu; Black, Lindsay W

    2012-12-11

    Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.

  18. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  19. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); An, Chunjiang; Xin, Xiaying [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2 (Canada); Zhang, Yan [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); Liu, Xia [Canadian Light Source, Saskatoon, S7N 2V3 (Canada)

    2017-05-31

    Highlights: • Surfactant modified flax shives for removing anionic azo dyes. • The equilibrium and kinetic studies for the adsorption of anionic azo dyes. • The migration patterns of dye pollutants at flax shive-water interface. • New insights from synchrotron infrared-assisted characterization. • Potential as biomass adsorbent for the removal of dyes from wastewater. - Abstract: From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  20. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    International Nuclear Information System (INIS)

    Wang, Wenxia; Huang, Guohe; An, Chunjiang; Xin, Xiaying; Zhang, Yan; Liu, Xia

    2017-01-01

    Highlights: • Surfactant modified flax shives for removing anionic azo dyes. • The equilibrium and kinetic studies for the adsorption of anionic azo dyes. • The migration patterns of dye pollutants at flax shive-water interface. • New insights from synchrotron infrared-assisted characterization. • Potential as biomass adsorbent for the removal of dyes from wastewater. - Abstract: From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  1. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon

    International Nuclear Information System (INIS)

    Ahmad, Rais; Kumar, Rajeev

    2010-01-01

    This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH o value of 13.613 kJ/mol.

  2. Radiation degradation adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Hegazy, E.A.; El-Kelesh, N.A.

    2000-01-01

    The degradation kinetics due to gamma irradiation of aqueous solutions of some organic pollutants (reactive yellow dye, acidic yellow Dye and fast yellow Dye) were investigated. A combined treatment of gamma irradiation and conventional methods was applied and is much more effective than either alone. Factors affecting the radiolysis of the pollutants such as concentration, irradiation dose, dose rate and ph of the solutions was studied. Radiochemical degradation yields were calculated to elucidate the mechanism of the degradation process. Also, the feasibility of using granular activated carbon (GAC), ion exchange resins (Merck I, III, Iv) for the removal of these pollutants from aqueous solution were studied. Synergistic treatment of the dye solutions by irradiation methods showed that the saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of O 2 , H 2 O 2 or Na Ocl resulted in remarkable enhancement. Adsorption of the dyes into GAC and some ion-exchangers, showed that GAC has the highest adsorption capacity compared with ion-exchangers. Irradiation followed by adsorption resulted in the removal of these toxic pollutants from wastewater

  3. Radiation degradation adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    Al-Dousougi, A. M.; Hijarzi, A. A.; Al-Qalash, N. A. A.

    2002-01-01

    The degradation kinetics due to gamma irradiation of aqueous solutions of some organic pollutants (Reactive Yellow Dye, acidic yellow dye and fast yellow dye) were investigated. A combined treatment of gamma irradiation and conventional methods was applied and is much more effective than either alone. Factors affecting the radiolysis of the pollutants such as concentration, irradiation dose, dose rate, and pH of the solutions was studied. Radiochemical degradation yields were calculated to elucidate the mechanism of the degradation process. Also, the feasibility of using granular Activated carbon (GAC), ion exchange resins (Metck I, II, III, IV) for the removal of these pollutants from aqueous solutions were studied. Synergistic treatment of the dye solutions by irradiation methods showed that the saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of O 2 , H 2 O 2 or NaOCI resulted in remarkable enhancement. Adsorption of the dyes onto GAC and some ion-exchangers, showed that GAC has the highest adsorption capacity compared with ion-exchangers. Irradiation followed by adsorption resulted in the removal of these toxic pollutants from wastewater. (author)

  4. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater.

    Science.gov (United States)

    Fan, Jun; Li, Haibo; Shuang, Chendong; Li, Wentao; Li, Aimin

    2014-08-01

    This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency. Copyright © 2014. Published by Elsevier B.V.

  5. Effective and highly recyclable ceramic membrane based on amorphous nanosilica for dye removal from t

    Directory of Open Access Journals (Sweden)

    Gehan M.K. Tolba

    2016-03-01

    Full Text Available In this study, an adsorptive ceramic membrane was prepared by a simple dry pressing of a mixture of nanosilica produced from low cost rice husk by hydrothermal technique at sub-critical water conditions, calcium phosphate, and ammonium acetate together and then calcined at 600 °C in air. Optimization of the raw materials ratio was found to be necessary to avoid crack formation during sintering process. The membrane microstructure, dye removal efficiency and the permeation flux of the membranes were investigated. The membrane was tested to remove the methylene blue from aqueous solution. Results show that the removal of the dye increases as the silica content increases in the all given membranes and it decreases with an increase in the ammonium acetate. Moreover, the water flux decreases with an increase in the silica content. The methylene blue adsorbed onto the silica membrane can be removed by calcination and the membrane could be recycled several times without any obvious loss in the adsorption performance. In conclusion, this study demonstrates a convenient strategy to prepare an effective adsorptive membrane, which can be applied as a highly recyclable membrane for the adsorption of organic maters.

  6. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong Tuyet, E-mail: ntphuong@hcmus.edu.vn [Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City (Viet Nam); Nguyen, Vinh Son; Phan, Thu Anh Pham; Le, Tan Nhut Van; Le, Duyen My; Le, Duy Dang; Tran, Vy Anh [Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City (Viet Nam); Huynh, Tuan Van [Faculty of Physics and Engineering Physics, University of Science, Vietnam National University, Ho Chi Minh City (Viet Nam); Lund, Torben [Department of Science, Systems and Models, Roskilde University DK-4000 (Denmark)

    2017-01-15

    Highlights: • Adsorption of Nicotinic acid on TiO{sub 2} surface is characterized by IR and XPS analysis. • The blocking effect of Nicotinic acid toward electron transfer on TiO{sub 2} electrode is indicated by recent developed method of cyclic voltammetry. • Low concentration of Nicotinic acid (<10 mM) helps to increase the amount of dye loading on TiO{sub 2} surface. • The use of Nicotinic acid at optimum concentration improves the efficiency of the resulting DSC from 3.14 to 5.02%. • Nicotinic acid enhances the cell performance by the same extend as other standard co-adsorbents at optimum concentrations. - Abstract: With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (<10 mM) increased the N719 ruthenium dye loading on the TiO{sub 2} electrode surface by 10–12%, whereas higher concentrations of NTA lowered the dye loading. The adsorption of NTA onto the TiO{sub 2} electrode surface was studied by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and the blocking effect of NTA toward electron transfer between the electrode and 1,4-dicyanonaphthalene (redox couple electrolyte probe) was investigated by cyclic voltammetry. Subsequently, the performance of NTA in functional DSCs was evaluated by current–voltage (J–V) DSC characterization and compared with that of DSCs fabricated with two well-established co-adsorbents i.e., chenodeoxycholic acid (CDA) and octadecylphosphonic acid (OPA). The findings showed that under optimized co-adsorbent concentration (1 mM NTA, 0.03 mM CDA, 0.015 mM OPA), the efficiency of the corresponding solar cells increased to the same extent. Specifically, the use of NTA at optimum concentration improved the efficiency of the resulting DSC from 3.14 to 5.02%.

  7. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria, E-mail: maria.visa@unitbv.ro; Chelaru, Andreea-Maria, E-mail: andreea.chelaru1@yahoo.com

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO{sub 2}/Al{sub 2}O{sub 3} over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  8. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    International Nuclear Information System (INIS)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-01-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO 2 /Al 2 O 3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  9. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste

    International Nuclear Information System (INIS)

    Clarke, Catherine E.; Kielar, Filip; Johnson, Karen L.

    2013-01-01

    Highlights: ► This study looks at the oxidative breakdown of the amine containing dye acid yellow 36 by a Mn oxide containing mine waste. ► The oxidation proceeds by successive one electron transfers between the dye molecule and the Mn oxide minerals. ► The initial decolorization of the dye is rapid, but does not involve the cleavage of the azo bond. -- Abstract: The oxidative breakdown of acid azo dye acid yellow 36 (AY 36) by a Mn oxide containing mine tailings is demonstrated. The oxidation reaction is pH dependent with the rate of decolorization increasing with decreasing pH. The oxidation reaction mechanism is initiated at the amino moiety and proceeds via successive, one electron transfers from the dye to the Mn oxide minerals. The reaction pathway involves the formation of a number of colorless intermediate products, some of which hydrolyze in a Mn oxide-independent step. Decolorization of the dye is rapid and is observed before the cleavage of the azo-bond, which is a slower process. The terminal oxidation products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. The reaction order of the initial decolorization was determined to be pseudo fractional order with respect to pH and pseudo first order with respect to dye concentration and Mn tailings’ surface area

  10. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  11. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, Marco [Dipartimento di Ingegneria Chimica e di Processo ' G.B. Bonino' , Universita degli Studi di Genova, p.le J.F. Kennedy 1, 16129 Genova (Italy)], E-mail: marco.panizza@unige.it; Cerisola, Giacomo [Dipartimento di Ingegneria Chimica e di Processo ' G.B. Bonino' , Universita degli Studi di Genova, p.le J.F. Kennedy 1, 16129 Genova (Italy)

    2008-05-01

    Electrochemical oxidation of synthetic wastewater containing acid blue 22 on a boron-doped diamond electrode (BDD) was studied, using cyclic voltammetry and bulk electrolysis. The influence of current density, dye concentration, flow rate, and temperature was investigated, in order to find the best conditions for COD and colour removal. It was found that, during oxidation, a polymeric film, causing BDD deactivation, was formed in the potential region of water stability, and that it was removed by anodic polarisation at high potentials in the region of O{sub 2} evolution. Bulk electrolysis results showed that the electrochemical process was suitable for completely removing COD and effectively decolourising wastewaters, due to the production of hydroxyl radicals on the diamond surface. In particular, under optimal experimental conditions of flow rates (i.e. 300 dm{sup 3} h{sup -1}) and current density (i.e. 20 mA cm{sup -2}), 97% of COD was removed in 12 h electrolysis, with 70 kWh m{sup -3}energy consumption.

  12. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation

    International Nuclear Information System (INIS)

    Panizza, Marco; Cerisola, Giacomo

    2008-01-01

    Electrochemical oxidation of synthetic wastewater containing acid blue 22 on a boron-doped diamond electrode (BDD) was studied, using cyclic voltammetry and bulk electrolysis. The influence of current density, dye concentration, flow rate, and temperature was investigated, in order to find the best conditions for COD and colour removal. It was found that, during oxidation, a polymeric film, causing BDD deactivation, was formed in the potential region of water stability, and that it was removed by anodic polarisation at high potentials in the region of O 2 evolution. Bulk electrolysis results showed that the electrochemical process was suitable for completely removing COD and effectively decolourising wastewaters, due to the production of hydroxyl radicals on the diamond surface. In particular, under optimal experimental conditions of flow rates (i.e. 300 dm 3 h -1 ) and current density (i.e. 20 mA cm -2 ), 97% of COD was removed in 12 h electrolysis, with 70 kWh m -3 energy consumption

  13. Preparation of SBA-15-PAMAM as a Nano Adsorbent for Removal of Acid Red 266 from Aqueous Media: Batch Adsorption and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Maryam Mirzaie

    2017-12-01

    Full Text Available The purpose of the present study was to increase the adsorption capacity of SBA-15 for acidic dyes. Ordered mesoporous silica SBA-15 was successfully synthesized and functionalized by polyamidoamine (PAMAM dendrimer to develop an efficient anionic dye adsorbent. The prepared materials were characterized by field emission scanning electron microscope (FE-SEM, Fourier transforms infrared spectroscope (FT-IR and N2 adsorption–desorption analysis. The study was concocted in the Science and Research Branch of Islamic Azad University of Tehran, Iran in 2016. The produced adsorbent (SBA-15-Den was applied for the removal of Acid Red 266 (AR266 from aqueous media. The effects of various operational parameters including solution pH, adsorbent dosage, contact time, and temperature on removal of AR266 using SBA-15-Den were investigated in batch adsorption mode. Within the optimum conditions, SBA-15-Den exhibited an excellent adsorptive capability of 1111.11 mg/g. Equilibrium data were best described by Langmuir model (R2 > 0.98 completely.

  14. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    Science.gov (United States)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  15. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).

    Science.gov (United States)

    Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2017-10-01

    Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.

  16. Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite

    Energy Technology Data Exchange (ETDEWEB)

    Bouraada, Mohamed; Lafjah, Mama [Laboratoire de valorisation des materiaux, University of Mostaganem, B.P. 227, Mostaganem R.P. (Algeria); Ouali, Mohand Said [Laboratoire de valorisation des materiaux, University of Mostaganem, B.P. 227, Mostaganem R.P. (Algeria)], E-mail: ouali@univ-mosta.dz; Menorval, Louis Charles de [LAMMI (CNRS-UMR5072), Universite Montpellier II, 2 Place Eugene Bataillon, Case Courrier 015, 34095 Montpellier cedex 5 (France)

    2008-05-30

    Dodecylsulfate- and dodecyl benzene sulfonate-hydrotalcites were prepared by calcination-rehydratation method. The surfactants intercalation in the interlayer space of hydrotalcite were checked by PXRD and FTIR spectroscopy where the resulting materials were found to be similar to those reported in the literature and were used to remove a basic dye (safranine) from aqueous solutions. The sorption kinetics data fitted the pseudo second order model. The isotherms were established and the parameters calculated. The sorption data fitted the Langmuir model with good values of the determination coefficient. The thermodynamic parameters calculated from Van't Hoff plots gave a low value of {delta}G{sup o} (<-20 kJ mol{sup -1}) indicating a spontaneous physisorption process. Two regeneration cycles were processed by acetone extraction leading to the same removal capacity of the obtained materials as the original surfactant-intercalated hydrotalcites. The UV-vis spectra of the recovered extracts were similar to the spectrum of safranine, which means that the dye was recovered without any modification.

  17. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    Amin, Nevine Kamal

    2009-01-01

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R 2 > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG o ), standard enthalpy (ΔH o ), standard entropy (ΔS o ), and the activation energy (E a ) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  18. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nevine Kamal, E-mail: nkamalamin@yahoo.com [Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R{sup 2} > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy ({Delta}G{sup o}), standard enthalpy ({Delta}H{sup o}), standard entropy ({Delta}S{sup o}), and the activation energy (E{sub a}) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  19. [Contents mensuration of total alkaloid in Uncaria rhynchophylla by acid dye colorimetry].

    Science.gov (United States)

    Zeng, Chang-qing; Luo, Bei-liang

    2007-08-01

    To investigate the method of determination of total alkaloids Uncaria rhynchophylla. The Contents of total Alkaloid were determined by Acid dye Colorimetry. Acid dye color conditions: pH3.6 buffer 5.0 ml, bromocresol green liquid 5.0 ml; chloroform extraction three times, each time was exeracted for 2 minutes, put it aside for at least 5 minutes for the determination of the best method. Rhynchophylline 6.018 microg - 108.324 microg in the linear range, Recoveriys rate was 97.19%, RSD was 1.34% (n = 6). The method is simple, highly sensitive and reproducible.

  20. Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-08-01

    Full Text Available Dyes are an important class of pollutants and disposal of them in precious water resources must be avoided. Among various methods adsorption occupies a prominent place in dye removal. The aim of this study is to evaluate adsorption of dye Reactive Red 198 and Blue 19 (RR-198 & RB-19 (on to Aloe Vera plant ash from aqueous solutions. In this research Aloe Vera ash was prepared at laboratory conditions and then after shredding, screened by ASTM standard sieve with 60 -200 mesh sizes and the effects of pH (3-12, adsorbent dose (0.1-1 g/L, contact time (10-60 min, initial dye concentration (10-160 mg/L and temperature were investigated in the experiment. In different samples Dye concentration was measured by spectrophotometer at 592 nm and 520 nm wavelength for RR198 and RB19 respectively. Also the Langmuir and Freundlich adsorption isotherms were determined in order to describe the relations between the colored solutions and the adsorbent. The results of this study showed that acidic conditions were more conducive to enhance the hydrolysis rate than basic ones as the decomposition was optimum at pH 3. The adsorption rate of RR-198 and RB-19 dyes was increased by increasing of initial dye concentration, increasing of adsorbent dose in 0.1 to 0.4 mg/L. Dye solution was decolorized in a relatively short time (20 min. The efficiencies for RR-198 and RB- 19 reactive dyes were 82.68% and 90.42% respectively. The maximum adsorption capacity (qmax has been found to be 80.152 mg/g for RR-198 reactive dye and 88.452 mg/g for Blue 19 reactive dye. Adsorption isotherms were examined by Freundlich and Langmuir isotherm that finally showed the Freundlich multilayer isotherm has better accordance with dates. The results indicate that Aloe Vera ash plant as a natural and inexpensive adsorbent is a suitable adsorbent for the adsorption of textile dyes.

  1. Microwave-enhanced UV/H2O2 degradation of an azo dye (tartrazine): optimization, colour removal, mineralization and ecotoxicity.

    Science.gov (United States)

    Parolin, Fernanda; Nascimento, Ulisses Magalhães; Azevedo, Eduardo Bessa

    2013-01-01

    This study optimizes two factors, pH and initial [H2O2], in the ultraviolet (UV)/H2O2/microwave (MW) process through experimental design and assesses the effect of MWs on the colour removal of an azo-dye (tartrazine) solution that was favoured by an acidic pH. The estimated optimal conditions were: initial [H2O2] = 2.0 mmol L(-1) and pH = 2.6, at 30 +/- 2 degrees C. We obtained colour removals of approximately 92% in 24 min of irradiation (EDL, 244.2 W), following zero order kinetics: k = (3.9 +/- 0.52) x 10(-2) a.u. min(-1) and R2 = 0.989. Chemical and biological oxygen demand were significantly removed. On the other hand, the carbon content, biodegradability and ecotoxicity (Lactuca sativa) remained approximately the same. The UV/H2O2/MW process was shown to be eight times faster than other tested processes (MW, H2O2, H2O2/MW, and UV/MW).

  2. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue

    2016-01-01

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  3. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-11-05

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  4. Effect of Isotopic Substitution on Elementary Processes in Dye-Sensitized Solar Cells: Deuterated Amino-Phenyl Acid Dyes on TiO2

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2013-03-01

    Full Text Available We present the first computational study of the effects of isotopic substitution on the operation of dye-sensitized solar cells. Ab initio molecular dynamics is used to study the effect of deuteration on light absorption, dye adsorption dynamics, the averaged over vibrations driving force to injection (∆Gi and regeneration (∆Gr, as well as on promotion of electron back-donation in dyes NK1 (2E,4E-2-cyano-5-(4-dimethylaminophenylpenta-2,4-dienoic acid and NK7 (2E,4E-2-cyano-5-(4-diphenylaminophenylpenta-2,4-dienoic acid adsorbed in monodentate molecular and bidentate bridging dissociative configurations on the anatase (101 surface of TiO2. Deuteration causes a red shift of the absorption spectrum of the dye/TiO2 complex by about 5% (dozens of nm, which can noticeably affect the overlap with the solar spectrum in real cells. The dynamics effect on the driving force to injection and recombination (the difference between the averaged <∆Gi,r> and ∆Gi,requil at the equilibrium configuration is strong, yet there is surprisingly little isotopic effect: the average driving force to injection <∆Gi> and to regeneration <∆Gr> changes by only about 10 meV upon deuteration. The nuclear dynamics enhance recombination to the dye ground state due to the approach of the electron-donating group to TiO2, yet this effect is similar for deuterated and non-deuterated dyes. We conclude that the nuclear dynamics of the C-H(D bonds, mostly affected by deuteration, might not be important for the operation of photoelectrochemical cells based on organic dyes. As the expectation value of the ground state energy is higher than its optimum geometry value (by up to 0.1 eV in the present case, nuclear motions will affect dye regeneration by recently proposed redox shuttle-dye combinations operating at low driving forces.

  5. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  6. A Study on the Removal of Direct Blue 71 Dye From Textile Wastewater Produced From State Company of Cotton Industries by Electrocoagulation Using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2017-02-01

    Full Text Available The removal of direct blue 71 dye from a prepared wastewater was studied employing batch electrocoagulation (EC cell. The electrodes of aluminum were used. The influence of process variables which include initial pH (2.0-12.0, wastewater conductivity (0.8 -12.57 mS/cm , initial dye concentration (30 -210 mg/L, electrolysis time (3-12 min, current density (10-50 mA/cm2 were studied in order to maximize the color removal from wastewater. Experimental results showed that the color removal yield increases with increasing pH until pH 6.0 after that it decreased with increasing pH. The color removal increased with increasing current density, wastewater conductivity, electrolysis time, and decreased with increasing the concentration of initial dye. The maximum color removal yield of 96.5% was obtained at pH 6.0, wastewater conductivity 9.28 mS/cm , electrolysis time 6 min ,the concentration of initial dye 6 0 mg/L and current density 30 mA/cm2 .

  7. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal

    Institute of Scientific and Technical Information of China (English)

    Eshraq Ahmed Abdullah; Abdul Halim Abdullah; Zulkarnain Zainal; Mohd Zobir Hussein; Tan Kar Ban

    2012-01-01

    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents.The synthesized product was characterized by different analytical techniques.The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants.Different kinetic,isotherm and diffusion models were chosen to describe the adsorption process.X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however,the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes.Dyes removal was found to be a function of adsorbent dosage,initial dye concentration,solution pH and temperature.The reduction of Langrnuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent.Mass transfer can be described by intra-particle diffusion at a certain stage,but it was not the rate limiting step that controlled the adsorption process.Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.

  8. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  9. Poly(Poly(Ethylene Glycol Methyl Ether Methacrylate Grafted Chitosan for Dye Removal from Water

    Directory of Open Access Journals (Sweden)

    Bryan Tsai

    2017-03-01

    Full Text Available As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16 from water by adsorption with chitosan grafted poly(poly(ethylene glycol methyl ether methacrylate (CTS-GMA-g-PPEGMA was investigated. The chitosan (CTS was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol methyl ether methacrylate using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g and 150 mg/g, respectively, while the Langmuir equations estimated 232 mg/g and 194 mg/g, respectively. The fundamental assumptions underlying the Langmuir model may not be applicable for azo dye adsorption, which could explain the difference. The Freundlich isotherm parameters, n and K, were determined to be 2.18 and 17.7 for CTS-g-GMA-PPEGMA and 0.14 and 2.11 for chitosan, respectively. An “n” value between one and ten generally indicates favorable adsorption. The adsorption capacities of a chitosan-PPEGMA 50/50 physical mixture and pure PPEGMA were also investigated, and both exhibited significantly lower adsorption capacities than pure chitosan. In this work, CTS-g-GMA-PPEGMA proved to be more effective than its parent chitosan, with a 33% increase in adsorption capacity.

  10. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  11. Adsorption of Acid Red 18 by Activated Carbon Prepared from Cedar Tree: Kinetic and Equilibrium Study

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi

    2012-10-01

    Full Text Available Introduction: Textile effluents are one of the main environmental pollution sources and contain toxic compounds which threat the environment. For that reason, the activated carbon prepared from Cedar Tree was used for removal of Acid Red 18 as an Azo Dye. Material and Methods: Activated carbon was prepared by chemical activation and was used in batch system for dye removal. Effect of various experimental parameters such as pH (3 to11, initial dye concentration (50, 75 and 100 mg/L, contact time (1 to 120 min and adsorbent dosage (2 to 10 g/L were investigated. Equilibrium data was fitted onto Langmuir and Freundlich isotherm model. In addition, pseudo first order and pseudo second order models were used to investigate the kinetic of adsorption process. Results: Results shows that dye removal was increase with increase in adsorbent dosage, contact time and initial dye concentration. In addition, higher removal efficiency was observed in low pH (pH=3. At 120 min contact time, pH=3, 6 g/L adsorbent dosage and 100 mg/L of initial dye concentration, more than 95% of dye was removed. Equilibrium data was best fitted onto Freundlich isotherm model. According to Langmuir constant, maximum sorption capacity was observed to be 51/28 mg/L. in addition pseudo second order model best describe the kinetic of adsorption of Acid Red 18 onto present adsorbent. Conclusion: The results of present work well demonstrate that prepare activated carbon from Pine Tree has higher adsorption capacity toward Acid Red 18 Azo dye and can be used for removal of dyes from textile effluents.

  12. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Two different azo dyes known as acid fast red (AFR) and Congo red (CR) were examined for their decolorization by five strains of actinomycetes (Streptomyces globosus, Streptomyces alanosinicus, Streptomyces ruber, Streptomyces gancidicus, and Nocardiopsis aegyptia) under shake and static conditions. Streptomyces ...

  13. Effects of kainic acid lesions in lateral geniculate nucleus: activity dependence of retrograde axonal transport of fluorescent dyes.

    Science.gov (United States)

    Woodward, W R; Coull, B M

    1988-06-28

    Kainic acid lesions in the dorsal lateral geniculate nucleus of rats block the retrograde axonal transport of fluorescent dyes in corticogeniculate neurons without affecting the retrograde transport of D-aspartate or the orthograde transport of radiolabelled proteins in these neurons. This blocking of dye transport does not appear to be a consequence of kainic acid-induced damage to axon terminals in the geniculate since retinal ganglion cells are still able to transport dyes retrograde. A more likely explanation for these results is that fluorescent dye transport requires electrical activity in neurons, and elimination of the geniculate afferents to visual cortex reduces impulse traffic in cortical output fibers to a level below that required to support detectable dye transport. This interpretation is supported by the observation that kainic acid lesions also reduce retrograde transport of dyes in cortical neurons which project to the superior colliculus. Electrical stimulation in the subcortical white matter restores the transport of dye compounds in corticogeniculate neurons: evidence consistent with an activity-dependent mechanism of retrograde transport for these substances. These results provide evidence that axon terminals of retinal ganglion cells and corticogeniculate neurons survive in kainate-lesioned geniculates and are capable of normal neuronal function.

  14. Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water

    Directory of Open Access Journals (Sweden)

    Ke-Deng Zhang

    2017-02-01

    Full Text Available Zirconium based metal organic frameworks (Zr-MOFs have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7 could be up to 358 mg·g−1 at 318 K, estimated by the Langmuir isotherm model. This is ascribed to the presence of an open active metal site that significantly intensified the adsorption, by majorly increasing the interaction strength with the adsorbates. Additionally, the enhanced π delocalization and suitable pore size of UiO-66 gave rise to the highest host–guest interaction, which further improves both the adsorption capacity and separation selectivity at low concentrations. Furthermore, the stability of UiO-66 was actually verified for the first time, through comparing the structure of the samples before and after adsorption mainly by Powder X-ray diffraction and thermal gravimetric analysis.

  15. Evaluation of the adsorbent properties of a zeolite rock modified for the removal of the azo dyes as water pollutants

    International Nuclear Information System (INIS)

    Torres P, J.

    2005-01-01

    At the moment some investigations which make reference to the removal of dyes for diverse adsorbent materials; as well as the factors that influence in the sorption process, considering the type so much of dye as those characteristics of the adsorbent material. In this work were investigated those adsorbent properties of a zeolite rock coming from San Luis Potosi State for the removal of azo dyes, using as peculiar cases the Red 40 (Red Allura) and the Yellow 5 (Tartrazine); for it were determined kinetic parameters and the sorption isotherms, as well as the sorption mechanisms involved in each case, between the dyes and the zeolite rock. In this work also it was considered the characterization before and after to removal of color from the water, through advanced analytical techniques such as the scanning electron microscopy of high vacuum (SEM), elementary microanalysis (EDS) and X-ray diffraction (XRD). The experimental part of the work fundamentally consisted, in the conditioning with a NaCl solution and later on the modification with HDTMA-Br of the natural zeolite rock, for then to put it in contact with solutions of the dyes R-40 and A-5, varying so much the contact times as the concentrations; the quantification of sodium in the liquid phase after the modification of the zeolite rock to determine the capacity of external cation exchange (CICE) it was carried out by means of the atomic absorption spectroscopy technique (EAA), and the quantification of the surfactant and the dyes in the liquid phase, it was carried out by means of the UV-vis spectrophotometry technique. It was found that the kinetic model that better it describes the process of sorption of R-40 and A-5 for the modified zeolite rock with HDTMA-Br, leaving of monocomponent and bi component solutions, it is the pseudo- second order. Inside of the obtained results for the sorption isotherms, as much the dye R-40 as the dye A-5 its presented a better adjustment to the Langmuir model. In what refers

  16. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    International Nuclear Information System (INIS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-01-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  17. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Jingwei, E-mail: jwzhang@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Jiwei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Gong, Chunhong [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou, Jingfang, E-mail: jingfang.zhou@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Zhijun [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2015-12-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  18. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions

    Science.gov (United States)

    Uddin, Md. Tamez; Rahman, Md. Arifur; Rukanuzzaman, Md.; Islam, Md. Akhtarul

    2017-10-01

    This study was aimed at using mango leaf powder (MLP) as a potential adsorbent for the removal of methylene blue (MB) from aqueous solutions. Characterization of the adsorbent was carried out with scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The pH at the point of zero charge of the adsorbent was determined by titration method and was found a value to be 5.6 ± 0.2. Batch studies were performed to evaluate the influence of various experimental parameters like initial solution pH, contact time, initial concentration of dye and adsorbent dosage on the removal of MB. An adsorption-desorption study was carried out resulting the mechanism of adsorption was carried out by electrostatic force of attraction. The adsorption equilibrium time required for the adsorption of MB on MLP was almost 2 h and 85 ± 5% of the total amount of dye uptake was found to occur in the first rapid phase (30 min). The Langmuir and Freundlich isotherm models were used for modeling the adsorption equilibrium. The experimental equilibrium data could be well interpreted by Langmuir isotherm with maximum adsorption capacity of 156 mg/g. To state the sorption kinetics, the fits of pseudo-first-order and pseudo-second-order kinetic models were investigated. It was obtained that the adsorption process followed the pseudo-second-order rate kinetics. The above findings suggest that MLP can be effectively used for decontamination of dye containing wastewater.

  19. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye

    International Nuclear Information System (INIS)

    Tunc, Ozlem; Tanaci, Hacer; Aksu, Zuemriye

    2009-01-01

    In this study, the potential use of cotton plant wastes - stalk (CS) and hull (CH) - as sorbents for the removal of Remazol Black B (RB5), a vinyl sulfone type reactive dye, was investigated. The results indicated that adsorption was strongly pH-dependent but slightly temperature-dependent for each sorbent-dye system. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants were evaluated at 25 deg. C. All models except the Freundlich model were applicable for the description of dye adsorption by both sorbents in the concentration range studied. According to the Langmuir model, CS and CH sorbents exhibited the highest RB5 dye uptake capacities of 35.7 and 50.9 mg g -1 , respectively, at an initial pH value of 1.0. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo second-order type kinetic model for each sorbent. Using the Langmuir model parameters, thermodynamic constant ΔG o was also evaluated for each sorption system

  20. The comparison of spectra and dyeing properties of new azonaphthalimide with analogues azobenzene dyes on natural and synthetic polymers

    Directory of Open Access Journals (Sweden)

    Mozhgan Hosseinnezhad

    2017-05-01

    Full Text Available The aim of the present research was to prepare new acid dyes based on naphthalimides. In this respect a series of monoazo acid dyes have been obtained using 4-amino-N-methyl (alternatively N-butyl-1,8-naphthalimide, aniline and p-nitroaniline as diazo components. 2-Naphthol-6-sulfonic acid (Schaeffer’s acid and 1-naphthol-8-amino-3,6-disulfonic acid (H-acid were used as coupling components. The spectrophotometric properties of the synthesized dyes were investigated in various solvents and compared with analogues azobenzene dyes. It is found, when acid dyes are applied in various solvents and different pH, additional bathochromically shifted bands of different intensity appear in the electronic spectra. This effect is caused by the occurrence of the equilibrium of azo and hydrazone forms in the dyes. The synthesized acid dyes were applied on wool fabrics in order to consider their dyeing properties, fastnesses and the obtainable color gamut. The synthesized dyes represented that they have the ability of dyeing wool and polyamide fabrics and give red to violet hues with good wash, medium light, and good milling and perspiration fastnesses.

  1. Biochemical study of some environmental pollutants dyes Part II: disperse dyes

    International Nuclear Information System (INIS)

    Shakra, S.; Ahmed, F.A.; Fetyan, N.A.

    2005-01-01

    This work was aimed to develop a method for removal of the dyes color from the textile wastewater that is well be much less costly than the other chemical or physical methods used. It therefore included: 1. Preparation of three disperses dyes. 2. Isolation of dyes degradable microorganisms from wastewater effluents and soil after adding 200 ppm of each dye individually. 3. Decolorisation and biodegradation of the dyes in liquid culture of the isolated bacteria (Bacillus thuringiensis). 4. Identification of the probable byproducts by different instruments. 5. Toxicity assessment of the dyes and their biodegraded products

  2. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    Science.gov (United States)

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch

    International Nuclear Information System (INIS)

    Wang Zuohua; Xiang Bo; Cheng Rumei; Li Yijiu

    2010-01-01

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g -1 , respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g -1 ) > AO10 (0.592 mmol g -1 ) > AR18 (0.411 mmol g -1 ) > AG25 (0.047 mmol g -1 ). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  4. Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier

    Energy Technology Data Exchange (ETDEWEB)

    Othman, N., E-mail: norasikin@cheme.utm.my [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Zailani, S.N.; Mili, N. [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The emulsion liquid membrane process for synthetic reactive dyes recovery was examined. Black-Right-Pointing-Pointer Mobile carriers of tri-dodycylamine and salicyclic acid was used in formulation to remove the reactive dyes from simulated wastewater. Black-Right-Pointing-Pointer Almost 100% of dye was extracted and recovered in receiving phase. Black-Right-Pointing-Pointer An electrical field was used to breakdown the emulsion to separate the liquid membrane and receiving/recovery phase. - Abstract: The extraction of Red 3BS reactive dye from aqueous solution was studied using emulsion liquid membrane (ELM). ELM is one of the processes that have very high potential in treating industrial wastewater consisting of dyes. In this research, Red 3BS reactive dye was extracted from simulated wastewater using tridodecylamine (TDA) as the carrier agent, salicyclic acid (SA) to protonate TDA, sodium chloride as the stripping agent, kerosene as the diluent and SPAN 80 as emulsifier. Experimental parameters investigated were salicyclic acid concentration, extraction time, SPAN 80 concentration, sodium chloride concentration, TDA concentration, agitation speed, homogenizer speed, emulsifying time and treat ratio. The results show almost 100% of Red 3BS was removed and stripped in the receiving phase at the optimum condition in this ELM system. High voltage coalesce was applied to break the emulsion hence, enables recovery of Red 3BS in the receiving phase.

  5. Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution

    International Nuclear Information System (INIS)

    Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.

    2011-01-01

    The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.

  6. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    International Nuclear Information System (INIS)

    Cardoso, Natali F.; Lima, Eder C.; Royer, Betina; Bach, Marta V.; Dotto, Guilherme L.; Pinto, Luiz A.A.; Calvete, Tatiana

    2012-01-01

    Highlights: ► Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. ► The maximum adsorption capacities were found at pH 2 and 298 K. ► The values were 482.2 and 267.2 mg g −1 for SP and AC, respectively. ► Adsorption was exothermic, spontaneous and favorable. ► SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g −1 for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4–99.0% and 93.6–97.7%, respectively, of the dye mixtures containing high saline concentrations.

  7. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Natali F. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Bach, Marta V. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Dotto, Guilherme L.; Pinto, Luiz A.A. [Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande, FURG, R. Engenheiro Alfredo Huch 475, 96201-900, Rio Grande, RS (Brazil); Calvete, Tatiana [Universitary Center La Salle (UNILASALLE), Av. Victor Barreto 2288, 92010-000, Canoas, RS (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. Black-Right-Pointing-Pointer The maximum adsorption capacities were found at pH 2 and 298 K. Black-Right-Pointing-Pointer The values were 482.2 and 267.2 mg g{sup -1} for SP and AC, respectively. Black-Right-Pointing-Pointer Adsorption was exothermic, spontaneous and favorable. Black-Right-Pointing-Pointer SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g{sup -1} for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.

  8. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  9. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  10. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  11. Adsorptive removal of congo red and sunset yellow dyes from water systems by lady finger stem

    International Nuclear Information System (INIS)

    Abbas, A.; Murtaza, S.; Ayub, R.; Rehman, R.; Zahid, A.

    2012-01-01

    Summary: In this research work two anionic dyes, i.e. Congo Red and Sunset Yellow were removed successfully from aqueous media by Lady Finger stem in batch mode. Operational conditions optimization showed that agitation speed and particle size did not affect much in adsorption of these dyes; but contact time, pH, adsorbent dose and temperature of system effects the adsorption rate. Optimized conditions of adsorption for Congo Red dye were: 40 minute contact time, 8.0 pH, 0.5 g adsorbent dose, 40-60 microns mesh sized particles, 150 rpm agitation speed and 50 degree C temperature. Whereas for Sunset Yellow optimized conditions were: 30 minute contact time, 2.0 pH, 2.5 g adsorbent dose, 20-40 microns mesh sized particles, 50 rpm agitation speed and 30 degree C temperature. Suitability of equilibrium data was modulated with Langmuir, Freundlich and Temkin models and found that both physisorption and chemisorption processes play important role in adsorption of these dyes by Lady Finger stem. The results demonstrated that Lady Finger stem can be efficiently employed on larger scale wastewater treatment. (author)

  12. Removal of toxic Congo red dye from water employing low-cost coconut residual fiber.

    Science.gov (United States)

    Rani, K C; Naik, Aduja; Chaurasiya, Ram Saran; Raghavarao, K S M S

    2017-05-01

    The coconut residual fiber (CRF) is the major byproduct obtained during production of virgin coconut oil. Its application as a biosorbent for adsorption of Congo red was investigated. The CRF was subjected to different pretreatments, namely, pressure cooking, hexane treatment, acid treatment and their combinations. The pretreatment of CRF with the combination of hexane, acid, and pressure cooking resulted in the highest degree of adsorption. The equilibrium data were analyzed and found to fit best to both Langmuir and Freundlich isotherms. Thermodynamic parameters such as standard free energy (ΔG 0 kJ mol -1 ), standard enthalpy (ΔH 0 , kJ mol -1 ) and standard entropy (ΔS 0 , kJ mol -1 K -1 ) of the systems were calculated by using the Langmuir constant. The ΔG 0 , ΔH 0 and ΔS 0 were found to be 16.51 kJ mol -1 , -19.39 kJ mol -1 and -0.12 kJ mol -1 K -1 , respectively, at 300 K. These thermodynamic parameters suggest the present adsorption process to be non-spontaneous and exothermic. The adsorption process was observed to follow pseudo-second-order kinetics. The results suggest that CRF has potential to be a biosorbent for the removal of hazardous material (Congo red dye) with a maximum adsorption capacity of 128.94 mg g -1 at 300 K.

  13. optimization of coagulation-flocculation process for colour removal

    African Journals Online (AJOL)

    user

    2DEPARTMENT OF CHEMICAL ENGINEERING, NNAMDI AZIKIWE UNIVERSITY, AWKA, ANAMBRA STATE. ... The ability of organic polymer rich coagulants for colour removal from acid dye was studied. ... Response surface methodology (RSM) using face-centered ...... successfully applied for modeling and optimizing the.

  14. Synthesis and Application of Acid Dyes Based on 3-(4-Aminophenyl-5-benzylidene-2-substituted phenyl-3, 5-dihydroimidazol-4-one

    Directory of Open Access Journals (Sweden)

    Devang N. Wadia

    2008-01-01

    Full Text Available A series of eight novel heterocyclic based monoazo acid dyes were synthesized using various substituted imidazol-4-one as diazo component and coupled with various amino-napthol sulphonic acids. The resultant dyes were characterized using standard spectroscopic methods and then dyeing performance on wool fabric was assessed. Final results concluded that exhaustion (%E of the dyes on wool fibers increased with decreasing pH of application and that fixation (%F of the dyes on wool fibers increased with increasing pH of application and the highest total fixation efficiency was achieved at pH 5. Wash and light fastness properties of prepared dyes showed encouraging results.

  15. Boron complexing with H-resorcinol and acidic hydroxyxanthene dyes

    International Nuclear Information System (INIS)

    Nazarenko, V.A.; Flyantikova, G.V.; Chekirda, T.N.

    1984-01-01

    Complex formation of boron with H-resorcinol (hr; 2,4-dihydroxybenzene-azo -8-hydroxynaphtalene-3,6-disulfonic acid) and acidic hydroxyxanthene dyes (hxd: fluorescein, eosine, erathrosine). Mixed-ligand complexes with a ratio of r:hr:hxd=1:1:1 are formed at pH=5-6. The chemism of the complex formation of boron with H-resorcinol and fluorescein has been studied. The stability consta nt of the complex is 1.12x10 21 , the conditional molar absorptivitis 1.80x10 0 . This complex formation reaction was used for photometric determination of boron in natural water

  16. Removal of Reactive Red 141 Dye from Synthetic Wastewater by Electrocoagulation Process: Investigation of Operational Parameters

    Directory of Open Access Journals (Sweden)

    Elham Rahmanpour Salmani

    2016-01-01

    Full Text Available Release of textile industries waste especially their dying effluent impose a serious pollution on the environment. Reactive dyes are one of the most used dyes which are recalcitrant to conventional treatment processes. In the performed project, the effectiveness of electrocoagulation process was studied on decolorization. RR141 was selected as model dye and treatment process was performed in a simple batch of electrocoagulation (EC cell using iron electrodes. Central Composite Design (CCD was used to plan study runs. Experiments were done under 5 levels of various operational parameters at bench scale. Initial concentration of dye was varied among 50 and 500ppm, pH ranging from 4-12; retention time was ranged between 3-30 minutes, 1-3cm was selected as the distance between electrodes, and current intensity studied under the range of 5-30 mA/cm2. EC treatment process of dyestuff wastewater was satisfactory at high levels of current density, pH, and retention time. While increasing the initial dye concentration and electrodes gap had a negative effect on decolorization performance. Determined optimal conditions to treat 200ml of sample were including pH: 9.68, electrode gap: 1.58cm, dye concentration: 180ppm, retention time: 10.82 minutes, and current intensity: 22.76mA/cm2. Successful removal of the model dye about 99.88% was recorded in the mentioned values of variables. Simple design and operation of the experiments can be an interesting option for implementation and applying of inexpensive electrocoagulation treatment process which was successful to reach nearly a complete decolorization.

  17. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Directory of Open Access Journals (Sweden)

    C. Parvathi

    2011-01-01

    Full Text Available The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

  18. In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone

    Directory of Open Access Journals (Sweden)

    Irfan Ahmed Shaikh

    2014-12-01

    Full Text Available In this study, a new idea of decolourization was investigated in which residual dyeing effluent from textile dyeing process was treated using O3 in the same machine where it was generated. The novelty comes from the idea of doing dyeing and treatment simultaneously. At the completion of dyeing process, O3 gas was injected directly into the machine to remove colour and COD from the wastewater. To evaluate the effectiveness of new method, pilot-scale studies were performed, and decolourization of residual dyeing effluents containing C.I. Reactive Orange 7, C.I. Reactive Blue 19, and C.I. Reactive Black 5 was carried out in specially built textile jet dyeing machine. The results showed that almost 100% colour removal and 90% COD reduction were achieved when process conditions such as pH, dye concentration (mg/L, ozone production rate (g/hr, and temperature were optimized. The study concludes that new method has a great potential to eliminate the need of a separate end-of-the-pipe wastewater treatment system, thus offering an on-site and cost-effective solution.

  19. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  20. Bismuth Basic Nitrate as a Novel Adsorbent for Azo Dye Removal

    Directory of Open Access Journals (Sweden)

    E. A. Abdullah

    2012-01-01

    Full Text Available Bismuth basic nitrate (BBN and its TiO2-Ag modified sorbent, PTBA were successfully synthesized via a precipitation method. The structural characteristics of prepared sorbents were determined through different analytical techniques. The potential use of prepared sorbents for organic compounds' removal was evaluated using Methyl Orange and Sunset Yellow dyes as model pollutants in aqueous solutions. The experimental results showed that the presence of TiO2 and Ag particles during the crystal growth of bismuth basic nitrate has an effect on the crystal structure, point of zero charge (pHpzc, pore volume and diameter. The lower binding energy of Ti 2p core level peak indicates the octahedral coordination of TiO2 particles on the PTBA surface. The alteration of hydrophilic-hydrophobic characteristics of sorbent's surface improves the adsorptive performance of the modified sorbent and provides an efficient route for organic contaminants' removal from aqueous solutions.

  1. Phytoextraction potential of water fern (Azolla pinnata) in the removal of a hazardous dye, methyl violet 2B: Artificial neural network modelling.

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee-Hoon; Malik, Owais Ahmed

    2018-04-16

    This study investigated the potential of Azolla pinnata (AP) in the removal of toxic methyl violet 2B (MV) dye wastewater using the phytoextraction approach with the inclusion of an Artificial Neural Network (ANN) modelling. Parameters examined included the effects of dye concentration, pH and plant dosage. The highest removal efficiency was 93% which was achieved at a plant dosage of 0.8 g (dye volume = 200 mL, initial pH = 6.0, initial dye concentration = 10 mg L -1 ). A significant decrease in relative frond number (RFN), a growth rate estimator, observed at a dye concentration of 20 mg L -1 MV indicated some toxicity, which coincided with the plant pigments studies where the chlorophyll a content was lower than the control. There were little differences in the plant pigment contents between the control and those in the presence of dye (5 to 15 mg L -1 ) indicating the tolerance of AP to MV at lower concentrations. A three-layer ANN model was optimized (6 neurons in the hidden layer) and successfully predicted the phytoextraction of MV (R = 0.9989, RMSE = 0.0098). In conclusion, AP proved to be a suitable plant that could be used for the phytoextraction of MV while the ANN modelling has shown to be a reliable method for the modelling of phytoextraction of MV using AP.

  2. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC

  3. Adsorption of a textile dye from aqueous solutions by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Fernando M.; Bergmann, Carlos P., E-mail: fernando.machado@hotmail.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Dept. de Materiais; Lima, Eder C.; Adebayo, Matthew A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Quimica; Fagan, Solange B. [Centro Universitario Franciscano (UNIFRA), Santa Maria, RS (Brazil). Area de Ciencias Tecnologicas

    2014-08-15

    Multi-walled and single-walled carbon nanotubes were used as adsorbents for the removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N{sub 2} adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, agitation time and temperature on adsorption capacity were studied. In the acidic pH region, the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. For Reactive Blue 4 dye, Liu isotherm model gave the best fit for the equilibrium data. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g{sup -1} for MWCNT and SWCNT, respectively. (author)

  4. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    Science.gov (United States)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  5. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  6. Acidity Constants Determination of Triazine Dye Derivative in the presence of some Surfactants by Multiwavelength Spectrophotometric and Spectrofluorimetric

    Directory of Open Access Journals (Sweden)

    Ali Yeganeh Faal

    2014-03-01

    Full Text Available In this work, acidity constants protonated form of 4.4'-bis astilbene-2,2'-disulfonic-disodium salts (TRIAZ have been determined spectrophotometrically and spectrofluorimetrically at 25◦C and ionic strength of 0.1M KNO3. A program based on MCR-ALS applied for determination of acidity constants. The results show that the peak values of dye are influenced by the presence of anionic, cationic, and nonionic surfactants. The effects of sodium dodecyl sulfate (SDS, Triton X-100 (TX-100 and cetyl trimethyl ammonium bromide (CTAB as a surface-active agent on the acidic and basic forms, and the spectral properties of dye were studied. Also, we determined the critical micelle concentration (CMC for these surfactants by spectrophotometric and spectrofluorimetric triazine dye probes. In addition, by using of evolving factor analysis (EFA and multivariate curve resolution alternative least squares (MCR-ALS methods, acidity constants were acquired.

  7. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge

    Directory of Open Access Journals (Sweden)

    Daizong Cui

    2016-10-01

    Full Text Available An anaerobic sludge (AS, capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N,N-dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N,N-dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes.

  9. The Comparative Study on the Rapid Decolorization of Azo, Anthraquinone and Triphenylmethane Dyes by Anaerobic Sludge.

    Science.gov (United States)

    Cui, Daizong; Zhang, Hao; He, Rubao; Zhao, Min

    2016-10-28

    An anaerobic sludge (AS), capable of decolorizing a variety of synthetic dyes, was acclimated and is reported here. The sludge presented a much better dye decolorizing ability than that of different individual strains. A broad spectrum of dyes could be decolorized by the sludge. Continuous decolorization tests showed that the sludge exhibited the ability to decolorize repeated additions of dye. The chemical oxygen demand (COD) removal rate of the dye wastewater reached 52% after 12 h of incubation. Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that the microbial community changed as a result of varying initial concentrations of dyes. Phylogenetic analysis indicated that microbial populations in the sludge belonged to the phyla Acidobacteria, Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria. The degradation products of the three types of dye were identified. For azo dyes, the anaerobic sludge converted Methyl Orange to N , N -dimethylbenzene-1,4-diamine and 4-aminobenzenesulfonic acid; for triphenylmethane dyes, after Malachite Green was decolorized, the analyzed products were found to be a mixture of N , N -dimethylbenzenamine, 3-dimethyl-aminophenol and 4-dimethylaminobenzophenone; for anthraquinone dyes, two products (acetophenone and 2-methylbenzoic acid) were observed after Reactive Blue 19 decolorization. Together, these results suggest that the anaerobic sludge has promising potential for use in the treatment of industrial wastewater containing various types of dyes.

  10. Influence of ɣ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications

    Science.gov (United States)

    Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.

    2018-04-01

    In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.

  11. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Removal of Lead from Wastewater Contaminated with Chemical Synthetic Dye by Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Lamyai Neeratanaphan

    2015-07-01

    Full Text Available Novel isolated microorganisms have been demonstrated to efficiently remove lead from wastewater contaminated with chemical synthetic dye. In this study, the physical and chemical parameters of wastewater samples (including Pb concentrations were analyzed before and after treatment with microorganisms. The highest Pb concentration detected in wastewater was 0.788 mg/l. Investigations of the Pb tolerance and removal capacities of microorganism strains isolated from the wastewater sediment resulted in the selection of three fungal isolates (F102, F203 and F302. Interestingly, isolate F203 had a Pb tolerance of up to 100 mg/l. Using DNA barcoding and morphological characteristics, fungal isolate F203 was identified as Aspergillus terreus. Wastewater characteristics before treatment included a grayish black color with pH, TDS, BOD, COD and Pb concentrations higher than the Thailand standard values. Wastewater qualities after treatment with A. terreus showed definite improvement; however, the values of certain parameters were still higher than the allowed values based on the Thailand standard. The only improvement that fell within the allowed standard was the Pb concentration. Next, A. terreus was used for Pb adsorption in wastewater with an initial Pb concentration of 0.788 mg/l at time points corresponding to 0, 24, 48, 72, 96, 120, 144 and 168 h of incubation. The results showed that A. terreus could adsorb and remove higher amounts of Pb from wastewater than the other fungal isolates. Time course adsorption analysis showed the remaining Pb concentrations as 0.788, 0.213, 0.162, 0.117, 0.100, 0.066, 0.042 and 0.032 mg/l, respectively; the percentage of Pb removal could be estimated as 0, 72.97, 79.44, 85.15, 87.31, 91.62, 94.67 and 95.94%, respectively. In conclusion, A. terreus possessed the ability to adsorb up to 96% of Pb from chemical synthetic dye within 168 h. Thus, A. terreus might be suitable for adaptation and use in Pb treatment.

  13. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    International Nuclear Information System (INIS)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-01-01

    Highlights: → Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. → AuNps were capped successfully in one step by mefenamic acid (MA). → MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. → AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  14. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Syeda Sara [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sirajuddin, E-mail: drsiraj03@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Solangi, Amber Rehana [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Agheem, Mohammad Hassan [Center for Pure and Applied Geology, University of Sindh, Jamshoro 76080 (Pakistan); Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    Highlights: {yields} Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. {yields} AuNps were capped successfully in one step by mefenamic acid (MA). {yields} MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. {yields} AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  15. Removal of odorous materials in carbonization process of dyeing wastewater sludge

    International Nuclear Information System (INIS)

    Bae, Sung-Keun; Woo, Byung-Kyu; Nam, In-Sick; Lee, Joo-Yong; Kim, Gi-Sun

    2010-01-01

    From drying process in a carbonization facility of dyeing wastewater sludge, noxious and odorous materials such as NH 3 , H 2 S, and Volatile Organic Compound (VOCs) contained in the sludge are emitted. In previous studies Regenerative Thermal Oxidizer (RTO) was verified as the most efficient method to eliminate them; nevertheless, it was very expensive to establish and operate because of fuel consumption. To estimate the feasibility of a water spray tower and bio-filter system, laboratory scale experiments for NH 3 , H 2 S, and toluene gas carried out. In case of water spray experiment for the single gas, the removal rate of NH 3 and H 2 S increased as decreasing the concentration, increasing the liquid/ gas ratio, and increasing the retention time. Toluene was eliminated as low as 20% regardless of the above operating parameters. The removal rates of NH 3 and H 2 S were 88∼98% and 80∼83%, respectively. For the mixed gas, the removal rates of NH 3 and toluene was a little dropped, but H 2 S was eliminated slightly more as compared with single gas experiment. Water spray system was not effective for toluene, but it was removed over 90% in bio-filter system. Retention time of gas in bio-filter bed might be an important operating parameter and its optimal condition was considered to 60 seconds. It is experimentally verified that odorous material was very effectively removed by a water spray tower and bio-filter combined system. (author)

  16. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Pham Phan, Thu Anh

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (

  17. Removal of Azo Dye from Synthetic Wastewater Using Immobilized Nano-Diatomite Within Calcium Alginate

    Directory of Open Access Journals (Sweden)

    AA Khodabandelou

    2016-03-01

    Full Text Available Introduction: The presence of organic dyes, discharged by textile industries, in aqueous environments can cause detrimental effects on aquatic life and subsequently human health. Therefore, the decolorization of aquatic environments is mandatory to protect the environment. For this reason, in the present study, nano-sized diatomite was immobilized within calcium alginate as a nanocomposite adsorbent for removing organic azo dye (Direct blue 15 from aqueous solutions.  Methods: First of all, Iranian diatomite was grinded in a planetary ball mill equipped with tungsten carbide cup for 20 h to achieve nanoparticles of the diatomite. For the immobilization of nanostructured diatomite, a 2% sodium alginate solution was used. Scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier transform infra-red (FT-IR spectroscopy were used to characterize immobilized nano-diatomite. Fifty milliliter Erlenmeyer flasks were used as batch flow mode experimental reactors. Working solutions were prepared by the dilution of stock solution (1 g/L to desired concentrations. The effect of different operational parameters including contact time, initial pH, adsorbent dosage and initial dye concentration along with kinetic and isotherm of the adsorption were evaluated. After each experiment, the residual concentration of the dyes was measured spectrophotometrically. Results: As results, the adsorption of organic dye increased with increasing contact time and adsorbent dosage, while increasing initial dye concentrations resulted in decreasing the adsorption. The adsorption of DB-15 was favored at basic PH. The immobilization of diatomite led to enhancing the adsorption of  DB-15 compared to diatomite alone. According to the obtained correlation coefficient, the adsorption of DB-15 obeyed pseudo-second order kinetic model and Langmuir isotherm model. The maximum adsorption capacity of diatomite/alginate nanocomposite for the adsorption of DB-15 were found

  18. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    Science.gov (United States)

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  19. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2016-10-01

    Full Text Available In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES for removal of methylene blue (MB dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent’s properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V2O5 nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  20. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants.

    Science.gov (United States)

    Homaeigohar, Shahin; Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Hedayati, Mehdi Keshavarz; Elbahri, Mady

    2016-10-19

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent's properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V₂O₅) nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  1. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications.

    Science.gov (United States)

    Capanema, Nádia S V; Mansur, Alexandra A P; Mansur, Herman S; de Jesus, Anderson C; Carvalho, Sandhra M; Chagas, Poliane; de Oliveira, Luiz C

    2017-08-28

    In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g -1 depending on the dye concentration (from 100 to 500 mg L -1 ), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L -1 , 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.

  2. Batch Scale Removal of an Organic Pollutant Amaranth Dye from Aqueous Solution using Pisum sativum Peels and Arachis hypogaea Shells as Adsorbents

    International Nuclear Information System (INIS)

    Rehman, R.; Afzal, A.

    2015-01-01

    The goal of this study was to utilize low cost and environmentally friendly adsorbents for batch scale removal of Amaranth dye from aqueous medium. Peels of Pisum sativum (Pea) and Arachis hypogaea (Peanut) were utilized to investigate their dye removing capacity. The optimized adsorption conditions for Pisum sativum (P.S.P) and Arachis hypogaea (A.H.S) were: adsorbent dose; 0.6 and 0.4 g, contact time; 45 and 10 minutes, pH; 2.0 for both, agitation speed; 150 and 100 rpm and temperature; 60 and 50 degree C for P.S.P and A.H.S respectively. The adsorption data well suited to Langmuir isotherm. Maximum adsorption capacities were found to be 144.93 and 10.53 mg/g for P.S.P and A.H.S respectively. Feasibility of the process was indicated by negative values of thermodynamic parameters delta G/sup 0/ for both adsorbents. Kinetic studies indicated that adsorption of Amaranth dye from aqueous medium by Pisum sativum peels and Arachis hypogaea shells followed pseudo-seconder order kinetics. It was concluded that Pisum sativum peels are more effective adsorbent for removal of Amaranth from aqueous solution as compared to Arachis hypogaea shells. (author)

  3. Radiation degradation-adsorption treatment of some toxic dyes present in wastewater

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.; Dessouki, A.M.; Amer, S.I.

    2002-01-01

    The radiolysis or three toxic dyes, viz. Reactive Yellow 3, Reactive Black 39, and Basic Blue 26, was investigated as a function of the dye concentration, pH, irradiation dose and dose rate. The radiolytic degradation was more pronounced with Reactive yellow 3 and Reactive Black 39 than with Basic Blue 26. The degree of degradation could be increased by combining the irradiation procedure with the conventional treatment, such as addition of oxygen or hydrogen peroxide; addition of nitrogen, on the other hand, resulted in no change. A pH drop was observed and tentatively attributed to the degradation of the dye molecules to lower molecular weight compounds such as organic acids. The primary radiolysis products as well as the secondary products are responsible for the degradation of the dye chromophore. Experiments with the adsorption or exchange of the dyes on GAC, some ion exchange resins and polymeric membranes were carried out to find that the polymeric membranes have the highest adsorption capacity for the pollutants except the basic dye. The combined treatment by irradiation and adsorption resulted in a complete removal of the toxic dyes in question

  4. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium

    International Nuclear Information System (INIS)

    Somasekhara Reddy, M.C.; Sivaramakrishna, L.; Varada Reddy, A.

    2012-01-01

    Highlights: ► We have introduced a low-cost, abundantly locally available non-conventional adsorbent in place of activated carbons. ► The kinetic data were well described by second order kinetic model and intra-particle diffusion model. ► The Langmuir and generalized isotherm models were the best fitting for the isotherm results. ► Removal capacity of Jujuba seeds is more than so many agricultural wastes. ► Relative cost of Jujuba seeds for the removal of Congo red can be compared with activated carbons - Abstract: The feasibility of using Indian Jujuba Seeds (IJS) (Zizyphus maruritiana), abundantly available in and around the Nallamalla forest in Andhra Pradesh, for the anionic dye (Congo red, CR) adsorption from aqueous solution, has been investigated as low cost and eco-friendly adsorbent. Adsorption studies were conducted on a batch process, to study the effects of contact time, initial concentration of CR, pH and temperature. Maximum colour removal was observed at pH 2. The equilibrium data was analyzed by the Langmuir, the Freundlich and the General isotherms. The data fitted well with the Langmuir model, with a maximum adsorption capacity of 55.56 mg g −1 . The pseudo-second-order kinetics was the best for the adsorption of CR, by IJS (Z. maruritiana) with good correlation. Thermodynamic parameters, such as standard free energy change (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°), were analyzed. The results suggest that IJS (Z. maruritiana) is a potential low-cost adsorbent for the CR dye removal from synthetic dye wastewater.

  5. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles

    Science.gov (United States)

    Elsayed, M. A.; Gobara, Mohamed

    2016-08-01

    HCl-doped polyaniline (HCl-PANI) and titanium dioxide decorated with polyaniline (TiO2-decorated PANI) with different TiO2:PANI ratios were chemically prepared and utilized for the removal of tartrazine (TZ) dye from a synthetic aqueous solution. The mechanism of preparation of the sample suggested that aniline was adsorbed on the TiO2 surface before the polymerization process took place. Samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. The results showed that HCl-PANI and TiO2-decorated PANI have an amorphous structure. The thermal stability of the prepared samples was characterized using thermo-gravimetric (TG) analysis. HCl-PANI is stable up to 200 °C and the relative weight per cent of PANI in the TiO2-decorated PANI was 20, 25, 40 and 45%. The removal activity of TiO2-decorated PANI via TZ azo dye was investigated under UV light irradiations and compared with HCl-PANI and TiO2 particles. The results indicated the superiority of the TiO2-decorated PANI over pure HCl-PANI and TiO2. However, the excessive PANI percentage tends to form a relatively thick layer, and even aggregates on the surface of TiO2. This hinders the migration of excited electrons from the outer PANI layer to the inner TiO2 particles, which consequently leads to a decrease in the removal efficiency. A possible mechanism for the removal oxidative degradation is also mentioned.

  6. Data on performance of air stripping tower- PAC integrated system for removing of odor, taste, dye and organic materials from drinking water-A case study in Saqqez, Iran

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2018-06-01

    Full Text Available Unpleasant taste or smell are more importantly constituents of drinking-water, lead to complaints from consumers. Dye and organic matter as well change in disinfection practice may generate taste and an odorous compound in treated water. According to low efficiency of conventional methods to remove taste and odor compounds, present study was aimed to evaluate the performance of air stripping tower- Poly Aluminum Chloride (PAC integrated system to remove odor and taste, dye and organic materials from drinking water. Different air to water ratio and PAC doses were used to remove considered parameters in certain condition. The results of this study indicated that the maximum removal efficiency of 86.2, 76.47, 58.46 and 41.27% of taste and odor, dye, COD and TOC were achieved by the air stripping tower- PAC integrated system, respectively. However, the physico-chemical characteristics of water and adsorbent effect on the of substances removal efficiency considerably. It can be stated that the air striping tower - PAC integrated system is able to reduce the odor and taste-causing substances and organic matter to a level which is recommended by the Institute of Standards and Industrial Research of Iran. Keywords: Air stripping tower, PAC, Odor and Taste, Dye, Organic materials, Drinking water, Saqqez city

  7. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina

    Science.gov (United States)

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-01

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t = 50 min, sorbent dose = 0.036 g, CBG (Initial BG concentration) = 215 mg/L and CCV (Initial CV concentration) = 170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored.

  8. Removing the residual cellulase by graphene oxide to recycle the bio-polishing effluent for dyeing cotton fabrics.

    Science.gov (United States)

    Wang, Rui; Yang, Chao; Fang, Kuanjun; Cai, Yuqing; Hao, Longyun

    2018-02-01

    In this research, a stable graphene oxide (GO) suspension was prepared by chemical reduction method from graphite powder. By TEM, the irregular GO sheets with single-atom-layered structure could be observed. The zeta potentials measurement indicated the surface charges of GO were strongly related to pH. BET analysis showed the GO had a specific surface area of 30.7 m 2 /g and pore volume of 0.10 cm 3 /g. When the GO was used to remove the residual cellulase in bio-polishing effluent, it was found the removal capacity reached its maximum value at the pH 4-5. The kinetics studies showed that the removal process of cellulase followed a pseudo-second-order kinetic model with a rate constant (k 2 ) of 0.276 × 10 -3  g/mg min and equilibrium adsorption capacity of 278.55 mg/g, respectively. By plotting the adsorption isotherms, it was found the Langmuir model fitted the experimental data well with a cellulase adsorption capacity of 574.71 mg/g, indicating the adsorption of cellulase by GO in a monolayer manner. When dyeing the cotton fabrics with reactive dyes, it was found that the cotton fabrics could acquire similar color properties in the recycled bio-polishing effluent as in fresh water, meaning the effectiveness of removing cellulase by GO and the feasibility of recycling the bio-polishing effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Acid-Base Properties of Azo Dyes in Solution Studied Using Spectrophotometry and Colorimetry

    Science.gov (United States)

    Snigur, D. V.; Chebotarev, A. N.; Bevziuk, K. V.

    2018-03-01

    Colorimetry and spectrophotometry with chemometric data processing were used to study the acid-base properties of azo dyes in aqueous solution. The capabilities of both methods were compared. Ionization constants of all the functional groups of the azo compounds studied could be determined relative to the change in the specific color difference depending on the acidity of the medium. The colorimetric functions of ion-molecular forms of azo compounds used as an analytical signal allow us to obtain complete information on the acid-base equilibrium in a wide acidity range.

  10. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  11. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent.

    Science.gov (United States)

    Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz

    2018-03-01

    The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.

  12. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal

    Directory of Open Access Journals (Sweden)

    Rachid Elmoubarki

    2017-07-01

    Full Text Available In this study, Mg/Fe and Ni/Fe layered double hydroxides (LDHs with molar ratio (M2+/Fe3+ of 3 and intercalated with carbonate ions were synthesized by co-precipitation method. The as-synthesized materials and their calcined products (CLDHs were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermo-gravimetric and differential thermal analyses (TGA–DTA, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX, inductively coupled plasma (ICP and elemental chemical analysis CHNSO. The materials were used as adsorbents for the removal availability of textile dyes from aqueous solution. Methylene blue (MB and malachite green (MG, representative of cationic dyes, and methyl orange (MO representative of anionic dyes were used as model molecules. Adsorption experiments were carried out under different parameters such as contact time, temperature, initial dyes concentration and solution pH. Experimental results indicate that CLDHs had much higher adsorption capacities compared to LDHs. Adsorption kinetic data fitted well the pseudo-second order kinetic model. The process was spontaneous, endothermic for cationic dyes and exothermic for the anionic dye. Equilibrium sorption data fitted the Langmuir model instead of Freundlich model.

  13. Modified Multiwalled Carbon Nanotubes for Treatment of Some Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    M. I. Mohammed

    2014-01-01

    Full Text Available In Iraq, a large quantity of basic orange and methyl violet dyes contaminated wastewater from textile industries is discharged into Tigris River. So the aim of this work is to found an efficient and fast technique that can be applied directly for removal of such dyes from the wastewater before discharging into river. Accordingly, CNTs as a new approach prepared by CCVD technique were purified, functionalized, and used as adsorption material to remove dyes from wastewater. The effect of pH, contact time, CNTs dosage, and dyes concentration on removal of pollutants was studied. The removal percentage of both dyes was proportional to the contact time, CNTs dosage, and pH and inversely proportional to the dyes concentration. The results show that the equilibrium time was 20 and 30 min for basic orange and methyl violet dyes, respectively, and the maximum removal percentage for all dyes concentrations was at pH = 8.5 and CNTs dosage of 0.25 g/L and 0.3 g/L for methyl violet and basic orange dye, respectively. The adsorption isotherm shows that the correlation coefficient of Freundlich model was higher than Langmuir model for both dyes, indicating that the Freundlich model is more appropriate to describe the adsorption characteristics of organic pollutants.

  14. Organic dyes removal using magnetically modified rye straw

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2015-04-15

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid–NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green. - Highlights: • Rye derivatives can be considered as efficient adsorbents for organic dyes. • Magnetic modification of straw by microwave-synthesized magnetic iron oxides. • Citric acid–NaOH modification increased the maximum adsorption capacities.

  15. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Singh, A.K. [Department of Applied Chemistry, University Institute of Technology, RGPV, Bhopal 462036 (India)

    2006-11-02

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered.

  16. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    International Nuclear Information System (INIS)

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha; Singh, A.K.

    2006-01-01

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered

  17. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  18. Column studies for biosorption of dyes from aqueous solutions on ...

    African Journals Online (AJOL)

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye wastewaters. Based on the results of batch studies on biosorption of the dyes on powdered fungal biomass, Aspergillus niger, an immobilised fungal biomass was used in column studies for removal of four ...

  19. Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane.

    Science.gov (United States)

    Ibrahim, G P Syed; Isloor, Arun M; Inamuddin; Asiri, Abdullah M; Ismail, Norafiqah; Ismail, Ahmed Fauzi; Ashraf, Ghulam Md

    2017-11-21

    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As  far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m 2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.

  20. Eco-Friendly Chitosan Production by Syncephalastrum racemosum and Application to the Removal of Acid Orange 7 (AO7 from Wastewaters

    Directory of Open Access Journals (Sweden)

    Aline Elesbão Nascimento

    2013-07-01

    Full Text Available Due to the existence of new methodologies that have reduced the production costs of microbiological chitosan, this paper puts forward the use of agro-industrial residues in order to produce microbiological chitosan and to apply chitosan as an innovative resource for removing acid orange 7 (AO7 from wastewaters. The best culture conditions were selected by a full 24 factorial design, and the removal of the dye was optimized by a 23 central composite rotational design. The results showed that corn steep liquor (CSL is an agro-industrial residue that can be advantageously used to produce microbiological chitosan with yields up to 7.8 g/kg of substrate. FT-IR spectra of the product showed typical peak distributions like those of standard chitosan which confirmed the extracted product was chitosan-like. The efficiency of removing low concentrations of AO7 by using microbiological chitosan in distilled water (up to 89.96% and tap water (up to 80.60% was significantly higher than the efficiency of the control (chitosan obtained from crustaceans, suggesting that this biopolymer is a better economic alternative for discoloring wastewater where a low concentration of the dye is considered toxic. The high percentage recovery of AO7 from the microbiological chitosan particles used favors this biopolymer as a possible bleaching agent which may be reusable.

  1. MODELING OF TUBULAR ELECTROCHEMICAL REACTOR FOR DYE REMOVAL

    Directory of Open Access Journals (Sweden)

    V. VIJAYAKUMAR

    2017-06-01

    Full Text Available The aim of the present investigation is to model a tubular electrochemical reactor for the treatment of synthetic dye wastewater. The tubular reactor was modeled and solved by finite difference method. For the model solution, the column was divided into 11 nodes in the axial direction and the variation in the radial direction has been neglected. An initial dye concentration of 200 mg L-1was taken in the reservoir. The reactor was operated in a batch with recirculation operation. Based on preliminary experiments all parameters have been optimized. The model simulation is compared with the experimental value and it is observed that the model fairly matches well with the experiment. The modeling of tubular electrochemical reactors for dye waste water treatment could be useful in the design and scale up of electrochemical process.

  2. Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.

    Science.gov (United States)

    Binupriya, Arthur R; Sathishkumar, Muthuswamy; Dhamodaran, Kavitha; Jayabalan, Rasu; Swaminathan, Krishnaswamy; Yun, Sei Eok

    2007-08-01

    The live and pretreated mycelial pellets/biomass of Trametes versicolor was used for the biosorption of a textile dye, reactive blue MR (RBMR) from aqueous solution. The parameters that affect the biosorption of RBMR, such as contact time, concentration of dye and pH, on the extent of RBMR adsorption were investigated. To develop an effective and accurate design model for removal of dye, adsorption kinetics and equilibrium data are essential basic requirements. Lagergren first-order, second-order and Bangham's model were used to fit the experimental data. Results of the kinetic studies showed that the second order kinetic model fitted well for the present experimental data. The Langmuir, Freundlich and Temkin adsorption models were used for the mathematical description of the biosorption equilibrium. The biosorption equilibrium data obeyed well for Langmuir isotherm and the maximum adsorption capacities were found to be 49.8, 51.6, 47.4 and 46.7 mg/g for live, autoclaved, acid- and alkali-pretreated biomass. The dye uptake capacity order of the fungal biomass was found as autoclaved > live > acid-treated > alkali-pretreated. The Freundlich and Temkin models were also able to describe the biosorption equilibrium on RBMR on live and pretreated fungal biomass. Acidic pH was favorable for the adsorption of dye. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. On comparison with fixed bed adsorption, batch mode adsorption was more efficient in adsorption of RBMR.

  3. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.

    Science.gov (United States)

    Nautiyal, Piyushi; Subramanian, K A; Dastidar, M G

    2016-11-01

    The primary aim of this present study was to utilize the residual biomass (DB) of Spirulina platensis algae, left after in-situ transesterification, for biochar preparation. This is a solid waste residue of biodiesel industry. The biochar (BC) prepared was examined for its capacity to adsorb congo red dye from the aqueous solution. The results were compared with other adsorbents used in the study such as commercial activated carbon (AC), original algae biomass (AB) and DB. The results of proximate analysis of BC showed the decrease in the percentage of volatile matter and an increase in fixed carbon content compared to DB. The physico-chemical properties of BC were studied using elemental analysis, SEM, FTIR and XRD techniques. The AC and BC adsorbents showed better performance in removing 85.4% and 82.6% of dye respectively from solution compared to AB (76.6%) and DB (78.1%). The effect of initial dye concentration, adsorbent dosage and pH of solution on the adsorption phenomena was studied by conducting the batch adsorption experiments. The highest specific uptake for biochar was observed at acidic pH of 2 with 0.2 g/100 ml of adsorbent dosage and 90 mg/l of initial concentration. The equilibrium adsorption data were fitted to three isotherms, namely Langmuir, Freundlich and Temkin. Freundlich model proved to show the best suited results with value of correlation coefficient of 99.12%. Thus, the application of DB for production of biochar as potential adsorbent supports sustainability of algae biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Adsorption of Reactive Red Dye from Wastewater Using Modified Citrulluscolosynthis Ash

    Directory of Open Access Journals (Sweden)

    Mohammadreza Rezaei Kahkha

    2016-07-01

    Full Text Available Dye-bearing wastes pose serious risks to and leave harmful effects on the environment. Increasing wastewater color intensity leads to reduced light reaching the aquatic environment, which adversely affects the life and growth of aquatic plants and invertebrates. Among the many methods available for dye removal from wastewater, membrane separation, oxidation, coagulation, and anaerobic treatment are more common but they are all costly and involve complex processes. Biosorption, in contrast, enjoys both ease of application and simple design so that it is widely used for removing dyes, heavy metals, and phenolic compounds from both water and wastewater. In this paper, the ability of citrulluscolosynthis ash as a bioadsorbent for the removal of reactive red dye is investigated for the first time. Sodium hydroxide is also used to modify the plant ash surface which expectedly enhances its dye removal efficiency. Measurements and removal levels are determined using a UV-vis spectrophotometer. Finally, the effects of pH, adsorbent dosage, dye concentration, and reaction time on dye removal efficiency are also explored. Results show that the optimum conditions to achieve maximum dye removal are as follows: A pH level of 2, an adsorbant dosage of 1.75 g l-1, an initial concentration equal to 90 mg L-1, and A reaction time of 70 min. Adsorption isotherm is found to obey the Ferundlich isotherm. Also, an adsorption capacity of 36 mg g‒1 is achieved under the best conditions. It may thus be concluded that modified citrulluscolosynthis ash can be used as an effective adsorbent to treat colored wastewaters.

  5. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  6. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  7. Preparation of 2-acrylamido-2 methyl propane-1-sulfonic acid/bentonite composite by radiation polymerization for adsorption of basic violet dye from aqueous solution

    International Nuclear Information System (INIS)

    Sokker, H.H.; Younes, M.M.; Abdel-Kareem, M.; Zohdy, K.

    2010-01-01

    Water uptake and the sorption properties of composite made by radiation polymerization of 2-acrylamido-2- methyl propane -1-sulfonic acid (AMPS) and a clay such as bentonite were investigated as a function of composition (2,6 and 10% w.t %) of bentonite and radiation dose. The prepared composite was characterized by FTIR and SEM. Swelling experiments were performed in water at 25 degree C. The prepared composite was applied for adsorption of basic violet dye at different ph values and the results showed that the prepared composite of composition (10% wt % of bentonite) showed the highest removal percent of basic violet dye at ph=9 compared with other compositions. Also, the adsorption capacity of basic violet at ph 3,7 and 9 were 3.5, 9 and 50 mg/g, respectively. The adsorption process of basic violet follows both Freundlich and Langmuir models and followed pseudo second order kinetic model

  8. Characterization and biological treatment of colored textile wastewaters from the typical Tunisian hat Chechia dyeing using newly isolated Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Hajer Barouni

    2016-09-01

    Full Text Available This study aimed to characterize and investigate, for the first time, the treatment of real colored wastewaters from the artisanal dyeing of the typical Tunisian hat Chechia, using a newly isolated fungal strain. This textile effluent was a mixture called Mix of colored wastewaters from the three main types of Chechia. The major pollutant of the Mix was the toxic Azo dye Amaranth Acid or Acid Red 27. The fungal strain that made the cleanup was discovered in a Chechia dyeing wastewater’s container and identified by ITS rDNA gene sequencing. This isolated Aspergillus niger showed interesting performances on the demonstration of Chechia wastewater’s biodegradation in batch cultures. In order to understand the effect of agitation, Mix dilution and inoculum size on decolourisation and pollution removal, a full factorial experimental design 23 was set up. At the optimal conditions which were 20% inoculum size, 25% Chechia Mix dilution and an agitation of 100 rpm, Aspergillus niger was able to remove color as high as 70.18±2.84% at an initial dye concentration of 1346.6±0.01 mg/L, and to reduce COD to 74.17±14.52% at an initial COD of 4157±422 mg/L. FT-IR spectra analysis confirmed the decolourisation by biodegradation and transformation of the dyes. The treatment by the isolated Aspergillus niger could be successfully applied as a sustainable method to solve one of handicraft dyeing plants environmental management issues.

  9. Performance of Fluidized bed Fenton process in Degrading Acid Blue 113

    Science.gov (United States)

    Bello, M. M.; Raman, A. A.

    2017-06-01

    The performance of a fluidized bed Fenton process in degrading Acid Blue 113 (AB 113) was investigated. Fluidized bed Fenton process is a modification of conventional Fenton oxidation, aimed at reducing sludge generation and improving process performance. Response surface methodology was used to study the effects of operational parameter on the color removal from the dye. Dimensionless factors, Dye/Fe2+, H2O2/Fe2+ and pH were used as the independent variables in Box-Behnken Design (BDD). Reduced quadratic model was developed to predict the color removal. The process could remove up to 99 % of the initial color. The most significant factor for color removal was found to be Dye/Fe2+, followed by H2O2/Fe2+. Unlike conventional Fenton, the initial pH of the solution does not have a significant effect on the color removal.

  10. Time-resolved fluorescence of cationic dyes covalently bound to poly(methacrylic acid) in rigid media

    Energy Technology Data Exchange (ETDEWEB)

    Paulo Moises de Oliveira, Hueder [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil); Gehlen, Marcelo Henrique [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP (Brazil)]. E-mail: marcelog@iqsc.usp.br

    2006-12-15

    Atactic poly(methacrylic acid) labeled with acridine and Nile blue (NB) were studied by photophysical techniques in bulk solid state and in solution-cast films over different surfaces (glass, ITO, and polymethylmethacrylate). In the systems with both dyes, energy transfer from acridine to NB occurs with an efficiency depending on the type of substrate (solid or film). The films are more disordered fluorescent rigid media than the bulk chromophoric or bichromophoric polymers, and this effect is ascribed to inhomogeneous distribution of the dyes in the film. This effect enhances dye bimolecular interactions and increases the energy transfer rates between acridine donor and NB acceptor. Bimodal distributions of donor fluorescence lifetimes are observed.

  11. Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium.

    Science.gov (United States)

    Bassyouni, D G; Hamad, H A; El-Ashtoukhy, E-S Z; Amin, N K; El-Latif, M M Abd

    2017-08-05

    In this study, a laboratory scale for the treatment of a recalcitrant and toxic synthetic wastewater containing diazo dye, acid brown 14 (AB-14) has been comparatively performed by two electro-catalytic treatment processes, namely anodic oxidation (AO) and electrocoagulation (EC) using a new batch electrochemical cell. Additionally, the influence of several operating parameters such as; current density (j), initial dye concentration (C o ), NaCl concentration (C N ), and pH on the color removal efficiency and chemical oxygen demand (COD) are evaluated. The powerful capability of the AO and EC of AB-14 which related to the mechanistic reaction pathway is shown. The poor degradation is ascribed to higher C o and pH, while the enhancement of j and C N is responsible for better degradation of AB-14 dye. The results indicate that the EC is more effective than AO under the same operational condition. A kinetic model is developed for evaluation of the pseudo-first-order-rate constant (k app ) as a function of various operational parameters. The results emphasize the high efficiency of AO and EC and the clean processes which are hopeful alternative for the treatment of the large volume wastewater of the textile industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.

    Science.gov (United States)

    Arunarani, A; Chandran, Preethy; Ranganathan, B V; Vasanthi, N S; Sudheer Khan, S

    2013-02-01

    Basic Violet 3 and Acid Blue 93 are the most important group of synthetic colourants extensively used in textile industries for dyeing cotton, wool, silk and nylon. Release of these dye pollutants in to the environment adversely affects the human health and aquatic organisms. The present study we used Pseudomonas putida MTCC 4910 for the adsorptive removal of Basic Violet 3 and Acid Blue 93 from the aqueous solutions. The pH (4-9) and NaCl concentrations (1mM-1M) did not influence the adsorption process. The equilibrium adsorption process fitted well to Freundlich model than Langmuir model. The kinetics of adsorption fitted well by pseudo-second-order. Thus in the present study an attempt has been made to exploit the dye removal capability of P. putida MTCC 4910, and it was found to be an efficient microbe that could be used for bio removal of dyes from textile effluents. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaoming, E-mail: pengxiaoming70@126.com [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Hu, Xijun [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China); Fu, Dafang, E-mail: fdf@seu.edu.cn [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Lam, Frank L.Y. [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China)

    2014-03-01

    Highlights: • Ordered mesoporous carbon was prepared using template. • Ordered mesoporous carbon was introduced of N-containing group by Chemical vapor deposition method. • Modified CMK-3 have better adsorption capacity and efficiency than virgin CMK-3 to removal AB1 dye. - Abstract: A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT–IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  14. Time resolved fluorescence anisotropy of basic dyes bound to poly(methacrylic acid in solution

    Directory of Open Access Journals (Sweden)

    Oliveira Hueder Paulo M. de

    2003-01-01

    Full Text Available Solutions of atactic poly(methacrylic acid, PMAA, with molecular weights in the range of (1.6 to 3.4 x 10(5 g mol-1, and labeled with the fluorescent dyes 9-aminoacridine or Nile blue were studied by photophysical measurements as a function of solvent viscosity and polarity. The conformational behavior of the PMAA chain segments around the fluorescent probe was reported by the change in the rotational diffusion of the dyes. Ethylene glycol swells the polymer chain compared with the more contracted conformation of PMAA in 50% water/ethylene glycol. The change in the rotational relaxation time of the dye bound to PMAA with the decrease of water content in the solvent mixture indicates a progressive expansion of polymer chain to a more open coil form in solution.

  15. Removal of Pb(II ions and malachite green dye from wastewater by activated carbon produced from lemon peel

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2014-06-01

    Full Text Available In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were �tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II ions from wastewaters.

  16. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    Science.gov (United States)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  17. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    International Nuclear Information System (INIS)

    Shen Yongjun; Ding Jiandong; Lei Lecheng; Zhang Xingwang

    2014-01-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10 −9 mol/L and 0.61 × 10 −9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10 −2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10 −2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation

  18. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    Science.gov (United States)

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    Science.gov (United States)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  20. Efficiency of Polymeric Membrane Graphene Oxide-TiO2 for Removal of Azo Dye

    Directory of Open Access Journals (Sweden)

    Elahe Dadvar

    2017-01-01

    Full Text Available Achieving the desired standard of drinking water quality has been one of the concerns across water treatment plants in the developing countries. Processes such as grid chamber, coagulation, sedimentation, clarification, filtration, and disinfection are typically used in water purification plants. Among these methods, unit filtration which employs polymers is one of the new technologies. There have been many studies about the use of semiconductive TiO2 with graphene oxide (GO on the base of different polymeric membranes for the removal of azo dyes, especially methylene blue (MB. Polymeric GO-TiO2 membranes have high photocatalytic, antifouling property and permeate the flux removal of organic pollutants. The aim of this study was to investigate the characteristics of different polymeric membranes such as anionic perfluorinated polymer (Nafion, cellulose acetate, polycarbonate (PC, polysulfone fluoride (PSF, and polyvinylidene fluoride (PVDF. The result of this study showed that the GO-TiO2 membrane can be used in the field of water treatment and will be used for the removal of polycyclic aromatic hydrocarbons (PAHs from wastewater.

  1. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  2. Color pollution control in textile dyeing industry effluents using tannery sludge

    Directory of Open Access Journals (Sweden)

    Sajjala Sreedhar Reddy

    2008-12-01

    Full Text Available Effective treatment of dyestuff containing textile dyeing industry effluents require advanced treatment technologies such as adsorption for the removal of dyestuffs. Powdered commercial coal based activated carbon has been the most widely used adsorbent for the removal of dyestuffs from dyeing industry effluents. As an alternative to commercial coal based activated carbon, activated carbon prepared from dried tannery sludge was used as an adsorbent for dyestuff removal from simulated textile dying industry effluent in this study. The color removal performance of tannery sludge derived activated carbon and commercial coal based activated carbon has been investigated using parameters such as adsorbent dosage, initial dye concentration, pH and temperature. It was found that tannery sludge derived activated carbon exhibits dye removal efficiency that is about 80–90 % of that observed with commercial coal based activated carbon. The amount of dye adsorbed on to tannery sludge derived activated carbon is lower compared with commercial activated carbon at equilibrium and dye adsorption capacity increased with increase of initial dye concentration and temperature, and deceasing pH. It was found that the Langmuir isotherm appears to fit the isotherm data better than the Freundlich isotherm. The leachate of heavy metals from tannery sludge derived activated carbon to the environment is very low, which are within the standard limit of industrial effluent and leachable substances.

  3. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid

    International Nuclear Information System (INIS)

    Ekka, Basanti; Nayak, Soumitra Ranjan; Dash, Priyabrat; Patel, Raj Kishore

    2016-01-01

    In this research, mesoporous silica was synthesized via a modified sol-gel route using 1-octyl-3-methylimidazolium chloride and was employed to remove malachite green (MG) dye from aqueous solution. Subsequently, this material was characterized and identified by different techniques such as Fourier transform infrared spectroscopy (FT-IR), N_2 adsorption-desorption method, scanning electron microscopy (SEM), and thermosgravimetric analysis (TGA). Unique properties such as high surface area and pore diameter, in addition to highly reactive atoms and presence of various functional groups make the mesoporous silica possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by mesoporous silica was attained by varying different variables such as adsorbent dosage, initial dye concentration, contact time, and pH. Optimum values were set as pH of 8.0, 0.5 g of adsorbent at contact time of 120 min. The adsorption of MG follows the pseudo-second-order rate equation. Equilibrium data fitted well with the Freundlich model at all amount of adsorbent, while maximum adsorption capacity was 5.981 mg g"−1 for 0.5 g mesoporous silica synthesized in IL.

  4. Advanced treatments for the removal of a textile dye; Tratamientos avanzados para la remocion de un colorante de origen textil

    Energy Technology Data Exchange (ETDEWEB)

    Almazan S, P. T.

    2016-07-01

    In this work, the remove a dye from aqueous solution and the treatment of textile wastewater using natural and iron and copper modified materials and advanced oxidation by Fenton and photo-Fenton heterogeneous processes are presented. Clay and activated carbon were modified using Fe and Cu electrodes at ph values of 7 and 2 respectively. The materials were characterized by scanning electronic microscopy (Sem), electron X-ray dispersive spectroscopy (EDS), X-ray diffraction and specific area (Bet), the optimum ph for clay modifications with Fe and Cu was 7, whereas for copper modified activated carbon was 2, because de elemental analysis indicated that under the above conditions the content of evaluated metals is highest. The specific area for natural and iron and copper modified clay samples was 5.97, 131.30 and 78.44 m{sup 2}/g, whereas for natural and copper modified activated carbon at ph 2 was 654.85 and 647.61 m{sup 2}/g. Dye and wastewater used in this study were obtained from a laundry where jeans are manufactured in Almoloya del Rio in Mexico State. Dye was characterized by infrared spectrophotometry and UV-Vis and it was compared with a standard of potassium indigo trisulfonate and it was observed that both spectra were identical, whereby the dye used in this study is an indigo dye with a maximum absorption band at 591 nm. The characterization of wastewater shows a low biodegradability index (0.25) indicating the presence of non-biodegradability organic matter, and a high concentration of phosphorous was found (93.7 mg/L). A compound parabolic concentrator (CPC-2D) was built to concentrate UV radiation from sunlight and applied in photo-Fenton heterogeneous process obtaining concentrated UV-A and UV-B radiation of 54.29±0.71 and 1.65±0.37 W/m{sup 2} respectively. Iron modified clay (Mt-Fe-7) and copper modified activated carbon (Ac-Cu-2) was used as catalyst in the photo-Fenton process with hydrogen peroxide. The results show that using 1.5 g of catalyst

  5. Box-Behnken design for optimizing the acid blue dye adsorption on flower wastes Diseño Box-Behnken para la optimización de la adsorción del colorante azul ácido sobre residuos de flores

    Directory of Open Access Journals (Sweden)

    Ana Cristina Jaramillo Madrid

    2013-11-01

    Full Text Available In this paper we identified the best conditions for the removal of Acid Blue 9 dye (AB9 using ower wastes (FW as an adsorbent were determined using a full factorial 23 and a Box-Behnken design for further optimization. Adsorbent dose (D, dye concentration (C and contact time (t, were the assessed variables. The dye content was quantied by UV-Vis spectrometry. The statistical model presented an adequate adjustment coecient (R2 = 99,18%, allowing to achieve a removal of 98,5% with a dosage of 7,8 gL-1, dye concentration of 7,11 mgL-1 and contact time of 104 min. These results suggest that owers wastes are an alternative and potential adsorbent material for the treatment of dissolved acid dyes. En este artículo se determinaron las mejores condiciones para la remoción del colorante Azul Ácido 9 (AA9 a través de un diseño factorial completo 23 y su posterior optimización mediante un diseño de superficie Box-Behnken utilizando tallos de flores (TF como material adsorbente. Las variables evaluadas fueron dosis de adsorbente (D, concentración de colorante (C y tiempo de contacto (t. El contenido del colorante se cuantificó por espectrometría UV-Vis. El modelo estadístico presentó un adecuado coeficiente de ajuste (R2 = 99,18 %, permitiendo alcanzar una remoción del 98,5% con una dosificación de 7,8 gL-1, concentración de colorante de 11,7 mgL-1 y tiempo de contacto de 104 min. Estos resultados sugieren que los residuos de flores constituyen un material adsorbente alternativo y potencial para el tratamiento de colorantes ácidos disueltos.

  6. Low cost removal of reactive dyes using wheat bran

    International Nuclear Information System (INIS)

    Cicek, Fatma; Ozer, Dursun; Ozer, Ahmet; Ozer, Ayla

    2007-01-01

    In this study, the adsorption of Reactive Blue 19 (RB 19), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145) onto wheat bran, generated as a by-product material from flour factory, was studied with respect to initial pH, temperature, initial dye concentration, adsorbent concentration and adsorbent size. The adsorption of RB 19, RR 195 and RY 145 onto wheat bran increased with increasing temperature and initial dye concentration while the adsorbed RB 19, RR 195 and RY 145 amounts decreased with increasing initial pH and adsorbent concentration. The Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data depending on temperature and the isotherm constants were determined by using linear regression analysis. The monolayer covarage capacities of wheat bran for RB 19, RR 195 and RY 145 dyes were obtained as 117.6, 119.1 and 196.1 mg/g at 60 deg. C, respectively. It was observed that the reactive dye adsorption capacity of wheat bran decreased in the order of RY 145 > RB 19 > RR 195. The pseudo-second order kinetic and Weber-Morris models were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contributed to the actual adsorption processes of RB 19, RR 195 and RY 145. Regression coefficients (R 2 ) for the pseudo-second order kinetic model were higher than 0.99. Thermodynamic studies showed that the adsorption of RB 19, RR 195 and RY 145 dyes onto wheat bran was endothermic in nature

  7. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye

    OpenAIRE

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-01-01

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe3O4 nanoparticles were simultaneously achieved via a one...

  8. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  9. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  10. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push-Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Fernandes, Sara S M; Castro, M Cidália R; Pereira, Ana Isabel; Mendes, Adélio; Serpa, Carlos; Pina, João; Justino, Licínia L G; Burrows, Hugh D; Raposo, M Manuela M

    2017-12-31

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push-pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO 2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine-thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO 2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20-64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%.

  11. Optical and Photovoltaic Properties of Thieno[3,2-b]thiophene-Based Push–Pull Organic Dyes with Different Anchoring Groups for Dye-Sensitized Solar Cells

    Science.gov (United States)

    2017-01-01

    The effect of anchoring groups on the optical and electrochemical properties of triphenylamine-thienothiophenes, and on the photovoltaic performance of DSSCs photosensitized with the prepared dyes, was studied using newly synthesized compounds with cyanoacetic acid or rhodanine-3-acetic acid groups. Precursor aldehydes were synthesized through Suzuki cross-coupling, whereas Knoevenagel condensation of these with 2-cyanoacetic acid or rhodanine-3-acetic acid afforded the final push–pull dyes. A comprehensive photophysical study was performed in solution and in the solid state. The femtosecond time-resolved transient absorption spectra for the synthesized dyes were obtained following photoexcitation in solution and for the dyes adsorbed to TiO2 mesoporous films. Information on conformation, electronic structure, and electron distribution was obtained by density functional theory (DFT) and time-dependent DFT calculations. Triphenylamine–thienothiophene functionalized with a cyanoacetic acid anchoring group displayed the highest conversion efficiency (3.68%) as the dye sensitizer in nanocrystalline TiO2 solar cells. Coadsorption studies were performed for this dye with the ruthenium-based N719 dye, and they showed dye power conversion efficiencies enhanced by 20–64%. The best cell performance obtained with the coadsorbed N719 and cyanoacetic dye showed an efficiency of 6.05%. PMID:29302638

  12. Use of dyes in cariology.

    Science.gov (United States)

    van de Rijke, J W

    1991-04-01

    The property of dyes to enhance contrast by their colour can be used in clinical dentistry and in investigations in vitro or in vivo. They have been used for indication of affected dental tissues, improvement of diagnostic methods, enhancement of patient awareness and information about specific processes. The development of particular dye systems, aimed at clinical application, is often laborious because of toxic effects, lack of specificity, irreversible staining or difficulties with removal of the dye. Clinically used dyes are often visually observed, which means a qualitative assessment of the staining, while quantification of the staining, if performed at all, is confined mostly to laboratory experiments. In this paper the application of dyes, arranged according to their specific purpose in cariology, is discussed, and a brief historical overview is given of the development of two particular dye applications for which commercial dye systems are now available. If certain requirements are met, dyes can be of great help in detection and quantification when used with several diagnostic methods.

  13. Removal of blue 1 dye of aqueous solutions with a modified clay with iron chloride

    International Nuclear Information System (INIS)

    Hernandez H, K. A.

    2012-01-01

    At the present time, several technologies have been proposed to remove dyes from water, adsorption is one of the most feasible methods and adsorbents with different properties, such as activated carbon, zeolites, clays and hydrogels among others. In this work, the sorption behavior of blue 1 dye by a natural clay from a site located in the Center-East of Mexico, and other modified with iron chloride were determined. The materials were characterized by X-ray diffraction to analyze its crystal structure, by scanning electron microscopy and elemental microanalysis of energy dispersive X-ray spectrometry to determine the composition and morphology, and the zero point charges were also determined to know the charge distribution on the surface of the clay. The ph effect, contact time, dye concentration and temperature were the parameters considered in this study. The results showed that clay does not suffer any important changes in its structure after the chemical treatments (modification with ferric chloride and contact with blue 1 solutions). The ph influences lightly the adsorption of the dye with natural clay, but the same effect is not observed in the ferric modified clay among the factor ph 6 and 8. The equilibrium time and the sorption capacity for natural clay were 48 hours and 6.16 mg/g, while for the ferric clay were 24 hours and 14.22 mg/g. Adsorption kinetics results were best adjusted to the pseudo first and pseudo second order models. Adsorption isotherms were best adjusted to the Langmuir model, indicating that both clays have a homogeneous surface. Thermodynamic parameters (E, ΔS and ΔG and ΔH) were calculated for the dye adsorption by the natural clay using data of the adsorption kinetics at temperatures between 20 and 50 C, indicating that the adsorption process is exothermic. For the case of ferric clay, it was not possible to calculate these thermodynamic parameters because the adsorption capacities were similar in the range of selected

  14. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    Science.gov (United States)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  15. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  16. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  17. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  18. Removal of Malachite Green dye from aqueous solution using MnFe2O4/Al2O3 Nanophotocatalyst by UV/H2O2 process

    Directory of Open Access Journals (Sweden)

    Davood Kaviani

    2016-04-01

    Full Text Available Background & Aims of the Study: Malachite Green (MG is the most commonly used substance for dying cotton, food & pharmacy industries, paper, leather and silk. On inhalation it can cause difficult breathing, while on the direct contact it may cause permanent injury of the eyes of human and animals, burning sensations, nausea, vomiting, profuse sweating, mental confusion and methemoglobinemia; also it can causes cancer in livers. The aim of this study is  the removal of Malachite Green (MG dye from aqueous solutions, using MnFe2O4/Al2O3 nanophotocatalyst by UV/H2O2 process which was used as a low cost method. Materials & Methods: In this research, photocatalytic decomposition of malachite green in water was done by nanocatalyst MnFe2O4/Al2O3 in discontinuous photoreactor under UV light and the injection of H2O2. In order to identify and analyze the provided catalyst, SEM image and XRD diffraction pattern were used. The effect of operational factors in the photocatalytic decomposition of the desired pollutant such as pH, the initial thickness of the dye, the thickness of H2O2 and the quantity of the catalyst were investigated. Results: The finding showed that the right conditions for the elimination of the pollutant included pH equals 4, the initial thickness of the dye being 10 ppm, the thickness of H2O2 being 250ppm, the amount of catalyst being 50mg, the Correlation Coefficient being 0.998 and the dye removal was 94 percent at the end of the experiment. the reaction of Malachite green decomposition was in terms of kinetics investigated through integral method as well; also it showed the kinetic reaction is the first type and the constant speed rate is K=0.047 min-1 . Conclusions: According to the results, because of the complexity of dye structure, biological system was not able to remove the dye as efficient as hybrid system of advanced oxidation processes UV/H2O2 with nanophotocatalyst as an efficient way to remove the Malachite green dye

  19. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes

    Science.gov (United States)

    Chaúque, Eutilério F. C.; Dlamini, Langelihle N.; Adelodun, Adedeji A.; Greyling, Corinne J.; Ngila, J. Catherine

    2017-08-01

    The manipulation of nanofibers' surface chemistry could enhance their potential application toward the removal of ionic dyes in wastewater. For this purpose, surface modification of electrospun polyacrylonitrile (PAN) nanofibers with ethylenediaminetetraacetic acid (EDTA) and ethylenediamine (EDA) crosslinker was experimented. The functionalized EDTA-EDA-PAN nanofibers were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) technique. The impregnation of EDA and EDTA chelating agents on the surface of PAN changed the distribution of nanofibers as proximity is increased (accompanied by reduced softness), but the nanofibrous structure of the pristine PAN nanofibers was not substantially altered. Adsorption equilibrium studies were performed with Freundlich, Langmuir and Temkin isotherm models with the former providing better correlation to the experimental data. The modified PAN nanofibers showed efficient sorption of methyl orange (MO) and reactive red (RR) from aqueous synthetic samples, evinced by the maximum adsorption capacities (at 25 °C) of 99.15 and 110.0 mg g-1, respectively. The fabricated nanofibers showed appreciable removal efficiency of the target dye sorptives from wastewater. However, the presence of high metal ions content affected the overall extraction of dyes from wastewater due to the depletion of the adsorbent's active adsorptive sites.

  20. Removal of the blue 1 dye of aqueous solutions using ferric zeolite; Remocion del colorante azul 1 de soluciones acuosas utilizando zeolita ferrica

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo H, S. Y.

    2010-07-01

    Water is essential to all life forms, including humans. In recent years water use has increased substantially, also has been altered in its capacity as a result of various human activities, such as domestic, industrial and agricultural, also by natural activity. Undoubtedly one of the main pollutants today are the waste generated by the food industry, due to the use of dyes for the production of their products. So it is necessary to restore water quality through treatment systems to remove contaminants, and thus prevent disease and imbalance of ecosystems. Due to the above, it is important to conduct research directed towards finding new ways to remove dyes such as blue 1 used in the food industry, using low cost materials and abundant in nature as zeolites. To accomplish the above, the present study has the purpose to evaluate the adsorption capacity of the blue dye 1 in aqueous solutions. To accomplish that objective, the zeolite material was reconditioned to improve its sorption properties of the material and provide the ability to adsorb pollutants such as this dye. The zeolite material was characterized by scanning electron microscopy and elemental analysis, X-ray diffraction and infrared spectroscopy. To evaluate the ability of blue 1 dye sorption the kinetics and sorption isotherms were determined; the experimental results were adjusted to mathematical models such as pseudo-first order, pseudo second order and Elovich to describe the kinetic process, and the Langmuir, Freundlich and Langmuir-Freundlich to describe sorption isotherms. The results showed that ferric zeolite surface is a heterogeneous material and has a considerable adsorption capacity, which makes it a potential adsorbent for removing color from aqueous streams. Also the sorption of the dye was evaluated at different ph values; the most sorption was carried out at ph values 1, 3 and 11. We also evaluated the change in mass where the sorption capacities for the blue 1 increase by increasing

  1. Phytoremediation of textile dyes and effluents: Current scenario and future prospects.

    Science.gov (United States)

    Khandare, Rahul V; Govindwar, Sanjay P

    2015-12-01

    Phytoremediation has emerged as a green, passive, solar energy driven and cost effective approach for environmental cleanup when compared to physico-chemical and even other biological methods. Textile dyes and effluents are condemned as one of the worst polluters of our precious water bodies and soils. They are well known mutagenic, carcinogenic, allergic and cytotoxic agents posing threats to all life forms. Plant based treatment of textile dyes is relatively new and hitherto has remained an unexplored area of research. Use of macrophytes like Phragmites australis and Rheum rhabarbarum have shown efficient removal of Acid Orange 7 and sulfonated anthraquinones, respectively. Common garden and ornamental plants namely Aster amellus, Portulaca grandiflora, Zinnia angustifolia, Petunia grandiflora, Glandularia pulchella, many ferns and aquatic plants have also been advocated for their dye degradation potential. Plant tissue cultures like suspension cells of Blumea malcolmii and Nopalea cochenillifera, hairy roots of Brassica juncea and Tagetes patula and whole plants of several other species have confirmed their role in dye degradation. Plants' oxidoreductases such as lignin peroxidase, laccase, tyrosinase, azo reductase, veratryl alcohol oxidase, riboflavin reductase and dichlorophenolindophenol reductase are known as key biodegrading enzymes which break the complex structures of dyes. Schematic metabolic pathways of degradation of different dyes and their environmental fates have also been proposed. Degradation products of dyes and their fates of metabolism have been reported to be validated by UV-vis spectrophotometry, high performance liquid chromatography, high performance thin layer chromatography, Fourier Transform Infrared Spectroscopy, gas chromatograph-mass spectroscopy and several other analytical tools. Constructed wetlands and various pilots scale reactors were developed independently using the plants of P. australis, Portulaca grandiflora, G. pulchella

  2. Coconut Husk Adsorbent for the Removal of Methylene Blue Dye from Wastewater

    Directory of Open Access Journals (Sweden)

    Hasfalina Che bt Man

    2015-03-01

    Full Text Available A study to assess the efficiency of coconut husks (CHs in removing methylene blue (MB dye from wastewaters in Malaysia was carried out. A fixed bed column adsorber was set up using flow rates of 40 and 80 mL/min, and the adsorbent (CH was prepared using the base treatment method with NaOH as activating agent. Three different column bed depths (10, 20, and 25 cm and unit weights of adsorbent (103, 213, and 260 g were used. Two models, the bed depth service time (BDST and Thomas models, were used to validate the adsorption capacity results and breakthrough curve. Changing the bed depth from 20 to 25 cm did not result in a significant change in adsorption capacity, therefore a 20-cm bed depth is recommended as the most efficient. Similarly, adsorption capacity increased as flow rates increased from 40 to 80 mL/min, indicating that a flow rate of 80 mL/min yielded optimum efficiency. The two models also provided predictions with good fits of the bed depth effect, the adsorption capacity, and the breakthrough curve of CH for MB removal.

  3. Photocatalytic Removal of Azo Dye and Anthraquinone DyeUsing TiO2 Immobilised on Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    P. N. Palanisamy

    2011-01-01

    Full Text Available The photocatalytic activity of TiO2 immobilized on different supports; cement and ceramic tile, was studied to decolorize two commercial dyes. The catalyst was immobilised by two different techniques, namely, slurry method on ceramic tile and powder scattering on cement. The degradation of the dyes was carried out using UV and solar irradiation. The comparative efficiency of the catalyst immobilised on two different supports was determined. The photodegradation process was monitored by UV-Vis spectrophotometer. The catalyst immobilised on ceramic tile was found to be better than the catalyst immobilised on cement. Experimental results showed that both illumination and the catalyst were necessary for the degradation of the dyes and UV irradiation is more efficient compared to solar irradiation.

  4. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon.

    Science.gov (United States)

    Tovar-Gómez, R; Rivera-Ramírez, D A; Hernández-Montoya, V; Bonilla-Petriciolet, A; Durán-Valle, C J; Montes-Morán, M A

    2012-01-15

    We report the simultaneous adsorption of acid blue 25 dye (AB25) and heavy metals (Zn(2+), Ni(2+) and Cd(2+)) on a low-cost activated carbon, whose adsorption properties have been improved via a surface chemistry modification using a calcium solution extracted from egg shell wastes. Specifically, we have studied the removal performance of this adsorbent using the binary aqueous systems: AB25-Cd(2+), AB25-Ni(2+) and AB25-Zn(2+). Multi-component kinetic and equilibrium experiments have been performed and used to identify and characterize the synergic adsorption in the simultaneous removal of these pollutants. Our results show that the presence of AB25 significantly favors the removal of heavy metals and may increase the adsorption capacities up to six times with respect to the results obtained using the mono-cationic metallic systems, while the adsorption capacities of AB25 are not affected by the presence of metallic ions. It appears that this anionic dye favors the electrostatic interactions with heavy metals or may create new specific sites for adsorption process. In particular, heavy metals may interact with the -SO(3)(-) group of AB25 and to the hydroxyl and phosphoric groups of this adsorbent. A response surface methodology model has been successfully used for fitting multi-component adsorption data. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones.

    Science.gov (United States)

    Dollinger, Jeanne; Dagès, Cécile; Voltz, Marc

    2017-04-01

    The performance of buffer zones for removing pesticides from runoff water varies greatly according to landscape settings, hydraulic regime, and system design. Evaluating the performance of buffers for a range of pesticides and environmental conditions can be very expensive. Recent studies suggested that the fluorescent dyes uranine and sulforhodamine B could be used as cost-effective surrogates of herbicides to evaluate buffer performance. However, while transformation mechanisms in buffers have been extensively documented, sorption processes of both dyes have rarely been investigated. In this study, we measured the adsorption, desorption, and kinetic sorption coefficients of uranine and sulforhodamine B for a diverse range of buffer zone materials (soils, litters, plants) and compared the adsorption coefficients (Kd) to those of selected herbicides. We also compared the global sorption capacity of 6 ditches, characterized by varying proportions of the aforementioned materials, between both dyes and a set of four herbicides using the sorption-induced pesticide retention indicator (SPRI). We found that both the individual Kd of uranine for the diverse buffer materials and the global sorption capacity of the ditches are equivalent to those of the herbicides diuron, isoproturon, and metolachlor. The Kd of sulforhodamine B on plants and soils are equivalent to those of glyphosate, and the global sorption capacities of the ditches are equivalent for both molecules. Hence, we demonstrate for the first time that uranine can be used as a proxy of moderately hydrophobic herbicides to evaluate the performance of buffer systems, whereas sulforhodamine B can serve as a proxy for more strongly sorbing herbicides.

  6. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available Porous regenerated cellulose (RC membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR, elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO and cationic (methylene blue (MB dyes, making them suitable bioadsorbents for wastewater treatment.

  7. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Balla, Wafaa; Essadki, A.H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M.

    2010-01-01

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm -2 and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E dye ) in optimal conditions for real effluent was calculated. 170 kWh/kg dye was required for a reactive dye, 120 kWh/kg dye for disperse and 50 kWh/kg dye for the mixture.

  8. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Balla, Wafaa [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Essadki, A.H., E-mail: essadki@est-uh2c.ac.ma [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Dassaa, A. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Chenik, H. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Azzi, M. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco)

    2010-12-15

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm{sup -2} and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E{sub dye}) in optimal conditions for real effluent was calculated. 170 kWh/kg{sub dye} was required for a reactive dye, 120 kWh/kg{sub dye} for disperse and 50 kWh/kg{sub dye} for the mixture.

  9. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    International Nuclear Information System (INIS)

    Liu Guangfei; Wang Jing; Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long

    2009-01-01

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L -1 , the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  10. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    Science.gov (United States)

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  11. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye.

    Science.gov (United States)

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-07-13

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.

  12. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese

    International Nuclear Information System (INIS)

    Adebayo, Matthew A.; Prola, Lizie D.T.; Lima, Eder C.; Puchana-Rosero, M.J.; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S.; Vaghetti, Julio C.P.; Silva, Leandro G. da; Ruggiero, Reinaldo

    2014-01-01

    Graphical abstract: - Highlights: • Complexes of carboxy-methylated lignin with Al and Mn were used as adsorbents. • The optimum adsorption conditions were achieved at pH 2 and 298 K. • Maximum adsorption capacities are 73.52 mg g −1 (CML-Al) and 55.16 mg g −1 (CML-Mn). • CML-Al could remove ca. 95.83% of dye-contaminated industrial effluents. • CML-Al and CML-Mn are effective for treatment of simulated dye-house effluents. - Abstract: A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al 3+ (CML-Al) and Mn 2+ (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pH PZC . The established optimum pH and contact time were 2.0 and 5 h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16 mg g −1 at 298 K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone + 50% of 0.05 mol L −1 NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents

  13. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    International Nuclear Information System (INIS)

    Bouberka, Z.; Khenifi, A.; Belkaid, N.; Ait Mahamed, H.; Haddou, B.; Derriche, Z.

    2009-01-01

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  14. Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye.

    Science.gov (United States)

    Zhang, Zidong; Li, Wei; Li, Haichao; Zhang, Jing; Zhang, Yuebin; Cao, Yufeng; Ma, Jianzhang; Li, Zhengqiang

    2015-09-01

    Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (λSoret = 413 nm) relative to that of wild-type VHb (λSoret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90°C. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions.

  15. The development of CotA mediator cocktail system for dyes decolorization.

    Science.gov (United States)

    Luo, S; Xie, T; Liu, Z; Sun, F; Wang, G

    2018-05-01

    The increasing use of dyes leads to serious environmental concerns, it is significant to explore eco-friendly and economic approaches for dye decolorization. This study aimed to develop mediator cocktail (AS and ABTS) for enhancing the capability of laccase-mediator system in the removal of dyes. By mediator screening, the mediators of ABTS and AS (ABTS, 2, 2'-azino-bis-(3-ethylbenzothiazo-thiazoline-6-sulphonic acid); AS, acetosyringone) were combined for dyes decolorization. The Box-Behnken Design and response surface analysis was performed to optimize experiment conditions. Comparing the CotA-ABTS-AS cocktail system with CotA-single mediator system showed that the coupling of ABTS and AS could increase the decolorization rate 15 times higher, save a third of the cost and shorten the reaction time by 50%. In addition, our studies revealed that sequential oxidation may occur in CotA-ABTS-AS system. Compared with CotA laccase-single mediator system, the CotA-ABTS-AS cocktail system showed advantages including higher efficiency, lower cost and shorter reaction time. This was the first report on the dyes decolorization by laccase mediator cocktail system. These results paved the curb for the application of laccase mediator system in various industrial processes. © 2018 The Society for Applied Microbiology.

  16. Adsorption of metal ions and acid dyes on brewer's refuse and its crosslinked products; Biru shikomikasu oyobi sono kashikaketai ni taisuru kinzoku ion oyobi sansei senryo no kyuchaku

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Kubota, Y.; Higashimura, T. [The University of Shiga Prefecture, Shiga (Japan). Department of Materials Sceince; Kawaguchi, M. [Seisui Kogyo Ltd., Osaka (Japan)

    2000-01-10

    To use brewer's refuse as adsorbent adsorption of metal ions and acid dyes on them and their reaction products with 1,3,5-triacryloylhexahydro-1,3,5-triazine(TAF) were examined. The refuse samples used in the present study are protein rich fraction(Pr) and cellulosics rich fraction(Hr) obtained by sifting brewer's refuse. Adsorptive experiments were conducted by a batchwise method at 303 K. Pr adsorbed more metal ions such as Cr{sup 6+}, Ni{sup 2+}, Co{sup 2+}, especially Fe{sup 3+}, Hg{sup 2+} and Cu{sup 2+} than Hr. But both refuses hardly adsorbed Ca{sup 2+}. Also Pr adsorbed more acid dyes, especially more hydrophobic C. I. Acid Red 88 than C. I. Acid Orange 7- than Hr at pH 5. By crosslinking Pr and Hr using TAF adsorption of acid dyes increased markedly, but adsorption of metal ions decreased. Therefore Pr can be used as adsorbent for acid dyes and metal ions as it is. Moreover the crosslinked products are excellent adsorbents for acid dyes. (author)

  17. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  18. Americium removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve americium removal from nitric acid (7M) waste streams generated by plutonium purification operations. Partial neutralization of the acid waste followed by solid supported liquid membranes (SLM) are useful in transferring and concentrating americium from nitrate solutions. Specifically, DHDECMP (dihexyl-N,N-diethylcarbamoylmethylphosphonate) supported on Accurel polypropylene hollow fibers assembled in modular form transfers >95% of the americium from high nitrate (6.9M), low acid (0.1M) feeds into 0.25M oxalic acid stripping solution. Maximum permeabilities were observed to be 0.001 cm/sec, consistent with typical values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution. Furthermore, O0D (iB)CMPO (or CMPO) (octylphenyl-N-N-diisobutylcarbamoylmethylphosphine oxide) has been tested in an extraction chromatography mode. Preliminary results show CMPO to be effective in removing americium if the feed is neutralized to 1.0M acidity and iron(III) is complexed with 0.20M oxalic acid. 3 figs

  19. Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

    Directory of Open Access Journals (Sweden)

    Elaheh Madrakian

    2016-12-01

    Full Text Available This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phase extraction and removal of five cationic dyes including methyl violet (MV, methylene blue (MB, malachite green (MG, crystal violet (CV, and neutral red (NR from aqueous solution as a model application. Different important factors affecting the adsorption process were optimized, and the results showed that under the optimized conditions (pH 10 for CV, MV, MB, and MG; pH 6 for NR; adsorbent dosage, 20 mg; agitation time, 25 min efficient removal of the investigated dyes (adsorption capacities between of 89-133 mg g-1 is achievable using the synthesized adsorbent. Furthermore, the reusability experiments showed that the adsorbent could be reused at least ten cycles without any significant loss in its sorption behavior.

  20. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Soeda, Shin [Tokyo Metropolitan Industrial Technology Research Institute, KFC Bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2011-02-15

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  1. Graft polymerization using radiation-induced peroxides and application to textile dyeing

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Soeda, Shin

    2011-01-01

    To improve the dyeing affinity of ultra high molecular weight polyethylene (UHMWPE) fiber, surface treatment by radiation-induced graft polymerization was performed. Methyl methacrylate (MMA), acrylic acid (AA) and styrene (St) were used as the monomers. The grafting yields as a function of storage time after irradiation were examined. Although the grafting yield of St after the sulfonation processing was quite low compared with those of MMA and AA, it was successfully dyed to a dark color with a cationic dye. Some acid dyes can dye the grafted fiber with AA. The acid dye is distributed to the amorphous domains of the AA grafted fiber. The dyeing concentration depended on the grafting yield, and the higher the grafting yield the darker the dye color.

  2. Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads

    International Nuclear Information System (INIS)

    Wang, B.-E.; Hu Yongyou

    2008-01-01

    The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5 ± 2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time

  3. Removal of Malachite Green Dye from Aqueous Solution Using Multi-Walled Carbon Nano tubes: An Application of Experimental Design

    International Nuclear Information System (INIS)

    Siti Aminah Zulkepli; Md Pauzi Abdullah; Md Pauzi Abdullah; Wan Mohd Afiq Wan Mohd Khalik

    2016-01-01

    An experimental design methodology was performed in the optimization of removal of malachite green dye by multi-walled carbon nano tubes. A Central Composite Design (25) was chosen to develop a mathematical model and determine the optimum condition for adsorption of malachite green by carbon nano tubes. Five experimental factors, namely initial dye concentration, mass of adsorbent, pH, contact time and agitation speed were studied. Maximum adsorption of malachite green was achieved at the suggested optimum conditions: initial dye concentration (20 ppm), weight of adsorbent (0.03 g), pH solution (7) contact time (17 min) and agitation speed (150 strokes per min). The experimental value of adsorption by multi-walled carbon nano tubes were found to be in good agreement with the predicted value (R"2 = 0.922).The experimental equilibrium data were best fitted to isotherm model (Langmuir) and kinetic model (pseudo second-order) respectively. Maximum adsorption by carbon nano tubes at monolayer for malachite green was obtained at 112.36 mg/ g while kinetic rate constant was calculated to be 0.0017 g mg"-"1 min"-"1. (author)

  4. Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes

    Science.gov (United States)

    Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu

    2017-07-01

    Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.

  5. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process

    Science.gov (United States)

    Abidin, Che Zulzikrami Azner; Fahmi, Muhammad Ridwan; Fazara, Md Ali Umi; Nadhirah, Siti Nurfatin

    2014-10-01

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV / H2O2 experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV / H2O2 process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H2O2 photolysis.

  6. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H2O2 process

    International Nuclear Information System (INIS)

    Abidin, Che Zulzikrami Azner; Fahmi, Muhammad Ridwan; Fazara, Md Ali Umi; Nadhirah, Siti Nurfatin

    2014-01-01

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H 2 O 2 process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV/H 2 O 2 experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV/H 2 O 2 process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H 2 O 2 photolysis

  7. Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane

    Science.gov (United States)

    Karisma, Doni; Febrianto, Gabriel; Mangindaan, Dave

    2017-12-01

    Followed by rapid development of the textile industries since 19th century the dyeing technology is thriving ever since. However, its progress is followed by lack of responsibility and knowledge in treating the dye-containing wastewater. There are some emerging technologies in treating such kind of wastewater, where membrane technology is one of those technologies that has uniqueness in the performance of separating dyes from wastewater, accompanied with small amount of energy. The development of membrane technology is one of several eco-engineering developments for sustainability in water resource management. However, there are a lot of rooms for improvement for this membrane technology, especially for the application in treating textile wastewater in Indonesia. Based on the demand in Indonesia for clean water and further treatment of dye-containing wastewater, the purpose of this research is to fabricate nanofiltration (NF) membranes to accommodate those problems. Furthermore, the fabricated NF membrane will be modified by interfacial polymerization to impart a new selective layer on top of NF membrane to improve the performance of the separation of the dyes from dye-containing wastewater. This research was conducted into two phases of experiments. In the first phase the formulation of polymeric dope solution of PEI/Acetone/NMP (N-methyl-pyrollidone), using the variation of 15/65/20, 16/64/20, and 17/63/20. This research show that many areas still can be explored in textile wastewater treatment using membrane in Indonesia.

  8. Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides.

    Science.gov (United States)

    Padmesh, T V N; Vijayaraghavan, K; Sekaran, G; Velan, M

    2005-10-17

    The biosorption of Acid red 88 (AR88), Acid green 3 (AG3) and Acid orange 7 (AO7) by deactivated fresh water macro alga Azolla filiculoides was investigated in batch mode. Langmuir and Freundlich adsorption models were used for the mathematical description of the batch biosorption equilibrium data and model constants were evaluated. The adsorption capacity was pH dependent with a maximum value of 109.0 mg/g at pH 7 for AR88, 133.5 mg/g at pH 3 for AG3 and 109.6 mg/g at pH 3 for AO7, respectively, was obtained. The pseudo first and second order kinetic models were also applied to the experimental kinetic data and high correlation coefficients favor pseudo second order model for the present systems. The ability of A. filiculoides to biosorb AG3 in packed column was also investigated. The column experiments were conducted to study the effect of important design parameters such as initial dye concentration (50-100 mg/L), bed height (15-25 cm) and flow rate (5-15 mL/min) to the well-adsorbed dye. At optimum bed height (25 cm), flow rate (5 mL/min) and initial dye concentration (100 mg/L), A. filiculoides exhibited 28.1mg/g for AG3. The Bed Depth Service Time model and the Thomas model were used to analyze the experimental data and the model parameters were evaluated.

  9. Functionalization of Microcrystalline Cellulose with N,N-dimethyldodecylamine for the Removal of Congo Red Dye from an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dongying Hu

    2014-08-01

    Full Text Available Microcrystalline cellulose (MCC was functionalized with quaternary amine groups for use as an adsorbent to remove Congo Red dye (CR from aqueous solution. The ultrasonic pretreatment of MCC was investigated during its functionalization. Characterization was conducted using infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The batch adsorption of the functionalized MCC was studied to evaluate the effects of dye concentration, pH of solution, temperature, and NaCl concentration on the adsorption CR. The adsorbent (FM-1 obtained using ultrasonic pretreatment of MCC under 10.8 kJ•g–1 exhibited an adsorption capacity of 304 mg•g–1 at initial pH under a dose of 0.1 g•L–1 and initial concentration of 80 mg•L–1. After functionalization, the FT-IR and XPS results indicated that the quaternary amine group was successfully grafted onto the cellulose, the surface was transformed to be coarse and porous, and the crystalline structure of the original cellulose was disrupted. FM-1 has been shown to be a promising and efficient adsorbent for the removal of CR from an aqueous solution.

  10. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  11. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    Science.gov (United States)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2017-07-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  12. Uptake of Cationic Dyes from Aqueous Solution by Biosorption Using Granulized Annona squmosa Seed

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2009-01-01

    Full Text Available A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A sample of granulized Annona squmosa seeds had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB, methylene red (MR and malachite green (MG. The effects of various experimental parameters (e.g., contact time, dye concentration, adsorbent dose and pH were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 5, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of MB sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo first order rate kinetics. The results in this study indicated that granulized Annona squmosa seed was an attractive candidate for removing cationic dyes from the dye wastewater.

  13. Magnetically modified spent grain for dye removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Šafaříková, Miroslava

    2011-01-01

    Roč. 53, č. 1 (2011), s. 78-80 ISSN 0733-5210 R&D Projects: GA MŠk OC09052; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : Spent grain * Magnetic fluid * Adsorption * Dyes Subject RIV: GM - Food Processing Impact factor: 2.073, year: 2011

  14. Use of metallurgical dust for removal chromium ions from aqueous solutions

    Science.gov (United States)

    Pająk, Magdalena; Dzieniszewska, Agnieszka; Kyzioł-Komosińska, Joanna; Chrobok, Michał

    2018-01-01

    The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions - Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin-Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 - 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  15. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangfei [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Wang Jing, E-mail: wangjingbio@yahoo.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China)

    2009-11-15

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L{sup -1}, the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  16. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization.

    Science.gov (United States)

    Azad, F Nasiri; Ghaedi, M; Dashtian, K; Hajati, S; Pezeshkpour, V

    2016-07-01

    Activated carbon (AC) composite with HKUST-1 metal organic framework (AC-HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L(-1) were obtained for pH, AC-HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC-HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g(-1) which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment

    International Nuclear Information System (INIS)

    Tantak, Nilesh P.; Chaudhari, Sanjeev

    2006-01-01

    A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye

  18. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Adebayo, Matthew A. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Chemical Sciences, Ajayi Crowther University, PMB 1066 Oyo, Oyo State (Nigeria); Prola, Lizie D.T. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Puchana-Rosero, M.J.; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S.; Vaghetti, Julio C.P. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Silva, Leandro G. da; Ruggiero, Reinaldo [Institute of Chemistry, Federal University of Uberlândia (UFU), AV. João Naves de Ávila 2121 block 1D—Campus Santa Mônica, 38400-902 Uberlândia, MG (Brazil)

    2014-03-01

    Graphical abstract: - Highlights: • Complexes of carboxy-methylated lignin with Al and Mn were used as adsorbents. • The optimum adsorption conditions were achieved at pH 2 and 298 K. • Maximum adsorption capacities are 73.52 mg g{sup −1} (CML-Al) and 55.16 mg g{sup −1} (CML-Mn). • CML-Al could remove ca. 95.83% of dye-contaminated industrial effluents. • CML-Al and CML-Mn are effective for treatment of simulated dye-house effluents. - Abstract: A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al{sup 3+} (CML-Al) and Mn{sup 2+} (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pH{sub PZC}. The established optimum pH and contact time were 2.0 and 5 h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16 mg g{sup −1} at 298 K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone + 50% of 0.05 mol L{sup −1} NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents.

  19. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R"2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  20. Removal of cationic dye from water by activated pine cones

    Directory of Open Access Journals (Sweden)

    Momčilović Milan Z.

    2012-01-01

    Full Text Available Adsorption of a cationic phenothyazine dye methylene blueonto activated carbon prepared from pine cones was investigated with the variation in parameters of contact time, dye concentration and pH. The kinetic data were found to follow the pseudo-second-order kinetic modelclosely. The equilibrium data were best represented by the Langmuir isotherm with maximum adsorption capacity of 233.1 mg g-1. Adsorption was favored by using a higher solution pH. Textural analysis by nitrogen adsorption was used to determine specific surface area and pore structure of the obtained carbon. Boehm titrations revealed that carboxylic groups are present in the highest degree on the carbon surface. The results indicate that the presented method for activation of pine cones could yield activated carbon with significant porosity, developed surface reactivity and considerable adsorption affinity toward cationic dye methylene blue.

  1. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.

    Science.gov (United States)

    Daneshvar, N; Oladegaragoze, A; Djafarzadeh, N

    2006-02-28

    Electrocoagulation (EC) is one of the most effective techniques to remove color and organic pollutants from wastewater, which reduces the sludge generation. In this paper, electrocoagulation has been used for the removal of color from solutions containing C. I. Basic Red 46 (BR46) and C. I. Basic Blue 3 (BB3). These dyes are used in the wool and blanket factories for fiber dyeing. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration and solution conductivity were studied in an attempt to reach higher removal efficiency. The findings in this study shows that an increase in the current density up to 60-80 A m(-2) enhanced the color removal efficiency, the electrolysis time was 5 min and the range of pH was determined between 5.5 and 8.5 for two mentioned dye solutions. It was found that for, the initial concentration of dye in solutions should not be higher than 80 mg l(-1) in order to achieve a high color removal percentage. The optimum conductivity was found to be 8 mS cm(-1), which was adjusted using proper amount of NaCl with the dye concentration of 50 mg l(-1). Electrical energy consumption in the above conditions for the decolorization of the dye solutions containing BR46 and BB3 were 4.70 kWh(kgdye removed)(-1) and 7.57 kWh(kgdye removed)(-1), respectively. Also, during the EC process under the optimized conditions, the COD decreased by more than 75% and 99% in dye solutions containing BB3 and BR46, respectively.

  2. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Efficacy of fungal decolorization of a mixture of dyes belonging to different classes

    Directory of Open Access Journals (Sweden)

    Wioletta Przystas

    2015-06-01

    Full Text Available Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w - by Pleurotus ostreatus (BWPH and MB, Gloeophyllum odoratum (DCa, RWP17 (Polyporus picipes and Fusarium oxysporum (G1 was studied. Zootoxicity (Daphnia magna and phytotoxicity (Lemna minor changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH, which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the

  4. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  5. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  6. Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available Activated carbon prepared from tamarind fruit shells by direct carbonization was used for the removal of rhodamine B and malachite green dyes from aqueous solutions. Adsorption studies were performed by varying such parameters as dye concentration, pH of the dye solution, time and temperature. The equilibrium adsorption data obtained were used to calculate the Freundlich, Langmuir and Redlich-Peterson isotherm parameters. Increase in pH of the solution pH resulted in increased adsorption of both the dyes. Kinetic studies indicate that the pseudo-second order model can be used for describing the dynamics of the sorption processes. Film diffusion of the dyes was the rate determining step at low dye concentrations while diffusion of dyes through the pores the carbon particles determined the overall uptake at high concentrations. Thermodynamic parameters of the endothermic sorptions were evaluated using van’t Hoff equation. Desorption studies with acids were also performed in order to regenerate the used carbons.

  7. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  8. Fluoride removal performance of phosphoric acid treated lime ...

    African Journals Online (AJOL)

    Fluoride in drinking water above permissible levels is responsible for dental and skeletal fluorosis. In this study, removal of fluoride ions from water using phosphoric acid treated lime was investigated in continuous and point-of-use system operations. In the continuous column operations, fluoride removal performance was ...

  9. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  10. [1,10]Phenanthroline based cyanine dyes as fluorescent probes for ribonucleic acids in live cells

    Science.gov (United States)

    Kovalska, Vladyslava; Kuperman, Marina; Varzatskii, Oleg; Kryvorotenko, Dmytro; Kinski, Elisa; Schikora, Margot; Janko, Christina; Alexiou, Christoph; Yarmoluk, Sergiy; Mokhir, Andriy

    2017-12-01

    A series of monomethine, trimethine- and styrylcyanine dyes based on a [1,10]phenanthroline moiety was synthesized, characterized and investigated as potential fluorescent probes for nucleic acids in cell free settings and in cells. The dyes were found to be weakly fluorescent in the unbound state, whereas upon the binding to dsDNA or RNA their emission intensity raised up to 50 times (for monomethine benzothiazole derivative FT1 complexed with RNA). The strongest fluorescence intensity in assemblies with dsDNA and RNA was observed for the trimethine benzothiazole derivative FT4. The quantum yield of FT4 fluorescence in its complex with dsDNA was found to be 1.5% and the binding constant (K b) was estimated to be 7.9 × 104 M-1 that is a typical value for intercalating molecules. The FT4 dye was found to be cell membrane permeable. It stains RNA rich components—the nucleoli and most probably the cytoplasmic RNA. FT4 bound to RNAs delivers a very strong fluorescence signal, which makes this easily accessible dye a potentially useful alternative to known RNA stains, e.g. expensive SYTO® 83. The advantage of FT4 is its easy synthetic access including no chromatographic purification steps, which will be reflected in its substantially lower price.

  11. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process

    Energy Technology Data Exchange (ETDEWEB)

    Abidin, Che Zulzikrami Azner, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Fahmi, Muhammad Ridwan, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Fazara, Md Ali Umi, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com; Nadhirah, Siti Nurfatin, E-mail: zulzikrami@unimap.edu.my, E-mail: drfahmi@unimap.edu.my, E-mail: umifazara@unimap.edu.my, E-mail: fatinnadhirah89@gmail.com [School of Environmental Engineering, University Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia)

    2014-10-24

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV/H{sub 2}O{sub 2} experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV/H{sub 2}O{sub 2} process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H{sub 2}O{sub 2} photolysis.

  12. Bio-based thermosetting epoxy foam: Tannic acid valorization toward dye-decontaminating and thermo-protecting applications.

    Science.gov (United States)

    Esmaeili, N; Salimi, A; Zohuriaan-Mehr, M J; Vafayan, M; Meyer, W

    2018-05-23

    Bio-resourced thermosetting epoxy foam was synthesized from tannic acid toward two different applications e.g., dye-decontaminating and thermo-insulating. Epoxidized tannic acid (ETA) foam was produced without using of organic volatile compounds or flammable foaming gases. The foam density, thermal conductivity and closed-cell content were studied. Besides, TGA showed high char yield (49% in N 2 and 48.3% in air) at 600 °C accompanied by high LOI (37.1 in N 2 and 36.8 in air). The high thermo-stability and intumescent char yield along with low thermal conductivity recommends the foam suitability for being used as an insulating material. Additionally, sorption of methylene blue onto ETA foam was kinetically investigated. The study of contact time, ionic strength, solution pH, initial sorbate concentration and desorption revealed the dependency of the sorption process to pH and initial sorbate concentration. The experimental data fitted well with the Langmuir isotherm (R 2  = 0.997), yielding maximum sorption capacity of 36.25 mg/g (ETA foam = 0.05 g, pH = 7, MB concentration = 50 ppm, Volume = 25 mL). The kinetic data verified that MB sorption could be represented by the pseudo second-order model. Overall, the ETA foam can be introduced as a candidate for removing cationic pollutants, thermal insulator, and self-extinguishing/intumescent materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers.

    Science.gov (United States)

    Murray, Audrey; Örmeci, Banu

    2018-04-01

    Natural organic matter (NOM), present in natural waters and wastewater, decreases adsorption of micropollutants, increasing treatment costs. This research investigated mechanisms of competition for non-imprinted polymers (NIPs) and activated carbon with humic acid and wastewater. Three different types of activated carbons (Norit PAC 200, Darco KB-M, and Darco S-51) were used for comparison with the NIP. The lower surface area and micropore to mesopore ratio of the NIP led to decreased adsorption capacity in comparison to the activated carbons. In addition, experiments were conducted for single-solute adsorption of Methylene Blue (MB) dye, simultaneous adsorption with humic acid and wastewater, and pre-loading with humic acid and wastewater followed by adsorption of MB dye using NIP and Norit PAC 200. Both the NIP and PAC 200 showed significant decreases of 27% for NIP (p=0.087) and 29% for PAC 200 (p=0.096) during simultaneous exposure to humic acid and MB dye. There was no corresponding decrease for NIP or PAC 200 pre-loaded with humic acid and then exposed to MB. In fact, for PAC 200, the adsorption capacity of the activated carbon increased when it was pre-loaded with humic acid by 39% (p=0.0005). For wastewater, the NIP showed no significant increase or decrease in adsorption capacity during either simultaneous exposure or pre-loading. The adsorption capacity of PAC 200 increased by 40% (p=0.001) for simultaneous exposure to wastewater and MB. Pre-loading with wastewater had no effect on MB adsorption by PAC 200. Copyright © 2017. Published by Elsevier B.V.

  14. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    Counce, Robert M.; Watson, Jack S.

    2009-01-01

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  15. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  16. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.

    Science.gov (United States)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-06-15

    We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Acidity removal from Lusatian mining lakes through eutrophication

    Energy Technology Data Exchange (ETDEWEB)

    Fyson, A.; Nixdorf, B.; Steinberg, C.F.W. [Brandenburg University of Technology, Cottbus (Germany)

    2001-07-01

    The flooded, disused lignite pits of Lusatia in north-eastern Germany are characterised by low pH (2 - 3.5) and high concentrations of iron which contribute to high acidity. Removal of acidity from these lakes using low-cost, environmentally acceptable technologies is being investigated. One option is the enhancement of biologically mediated, alkalinity generating processes, through controlled eutrophication to sustainably increase nutrient cycling and carbon inputs. Although the primary production of these waters is potentially high and diverse algae grow in these lakes, the growth of autotrophic organisms is usually limited by extremely low concentrations of P and inorganic C. Theoretical considerations and laboratory mesocosm results are used to demonstrate the potential productivity of these acid waters and the direct and indirect role of controlled eutrophication in removing acidity. Such data are being used to generate self-sustaining, environmentally friendly, affordable remediation strategies to develop these lakes for recreation and wildlife. 14 refs., 1 tab.

  18. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A., E-mail: armina_84@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Maknoon, R., E-mail: rmaknoon@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Kowsari, E., E-mail: kowsarie@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • Three combined advanced SBR and enhanced Fenton process as post treatment was compared. • Higher biomass concentration, dye, COD and metabolites removal was presented together. • Pseudo zero and pseudo first-order bio-decolorization kinetics were observed in all SBRs. • High reduction of AR18 to intermediate metabolites was monitored by HPLC. - Abstract: The purpose of this research was to compare three combined sequencing batch reactor (SBR) – Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD = 3270 mg/L) at the end of alternating anaerobic–aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10 mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV–vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  19. Use of metallurgical dust for removal chromium ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Pająk Magdalena

    2018-01-01

    Full Text Available The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III and Cr(VI in the form of simple and complex ions – Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin–Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III and Cr(VI ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III-Cl pH=5.0> Cr(III-SO4 pH=5.0> Cr(III-Cl pH=3.0> Cr(III-SO4 pH=3.0> Cr(VI pH=5.0> Cr(VI pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 – 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  20. Evaluation of Fenton Process in Removal of Direct Red 81

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2016-01-01

    Full Text Available Background: Dyes are visible materials and are considered as one of the hazardous components that make up the industrial waste. Dye compounds in natural water, even in very low concentrations, will lead to environmental problems. Azo dyes are compounds with one or more –N=N– groups and are used in textile industry. Because of its low price, solubility, and stability, azo dyes are widely used in the textile industry. Direct Red 81 (DR81 is one of the azo dyes, which is removed from bodies of water, using various methods. This study aimed to assess DR81 dye removal by Fenton oxidation and the effects of various parameters on this process. Methods: Decolorization tests by Fenton oxidation were performed at dye concentrations of 50, 500, 100 and 1000 mg/L; hydrogen peroxide concentrations of 0, 10, 30, 60 and 120 mg/L; iron (II sulfate heptahydrate concentrations of 0, 3, 5, 20 and 50 mg/L; and pH levels of 3, 5, 7 and 10 for durations of 5, 10, 20, 30, 60 and 180 minutes. Results: The optimal condition occurred at a dye concentration of 20 mg/L, hydrogen peroxide concentration of 120 mg/L, bivalent iron concentration of 100 mg/L, pH of 3, and duration of 30 minutes. Under such conditions, the maximum dye removal rate was 88.98%. Conclusion: The results showed that DR81 could be decomposed and removed by Fenton oxidation. In addition, the removal of Direct Red 81 (DR81 depends on several factors such as dye concentration, reaction time, concentrations of hydrogen peroxide and iron, and pH

  1. Removal of plutonium from nitric acid-oxalic acid solutions using anion exchange method

    International Nuclear Information System (INIS)

    Kasar, U.M.; Pawar, S.M.; Joshi, A.R.

    1999-01-01

    An anion exchange method using Amberlyst A-26 (MP) resin was developed for removal of Pu from nitric acid-oxalic acid solutions without destroying oxalate. The method consists of sorption of Pu(IV) on Amberlyst A-26, a macroporous anion exchange resin, from nitric acid-oxalic acid medium in the presence of Al(NO 3 ) 3 . Pu(IV) breakthrough capacity of Amberlyst A-26 using synthetic feed solution was determined. (author)

  2. The structure optimization of gas-phase surface discharge and its application for dye degradation

    Science.gov (United States)

    Ying, CAO; Jie, LI; Nan, JIANG; Yan, WU; Kefeng, SHANG; Na, LU

    2018-05-01

    A gas-phase surface discharge (GSD) was employed to optimize the discharge reactor structure and investigate the dye degradation. A dye mixture of methylene blue, acid orange and methyl orange was used as a model pollutant. The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48, screw pitch between a high-voltage electrode of 9.7 mm, high-voltage electrode wire diameter of 0.8 mm, dielectric tube thickness of 2.0 mm and tube inner diameter of 16.13 mm presented a better ozone (O3) generation efficiency. Furthermore, a larger screw pitch and smaller wire diameter enhanced the O3 generation. After the dye mixture degradation by the optimized GSD system, 73.21% and 50.74% of the chemical oxygen demand (COD) and total organic carbon removal rate were achieved within 20 min, respectively, and the biochemical oxygen demand (BOD) and biodegradability (BOD/COD) improved.

  3. Preparation and Utilization of Kapok Hull Carbon for the Removal of Rhodamine-B from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    P. S. Syed Shabudeen

    2006-01-01

    Full Text Available A carbonaceous sorbent prepared from the indegeneous agricultural waste (which is facing solid waste disposal problem Kapok Hull, by acid treatment was tested for its efficiency in removing basic dyes. Batch kinetic and isotherm experiments were conducted to determine the sorption and desorption of the Rhodamine-B from aqueous solution with activated carbon. The factors affecting the rate processes involved in the removal of dye for initial dye concentration, agitation time, and carbon dose and particle size have been studied at ambient temperature. The adsorption process followed first order rate kinetics. The first-order rate equation by Lagergren was tested on the kinetic data, and isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherm equations. The intraparticle diffusion rate equation from which adsorption rate constants, diffusion rate constants and diffusion coefficients were determined. Intraparticle diffusion was found to be the rate-limiting step. The structural and morphological of activated carbon were characterized by XRD and SEM studies respectively.

  4. Synthesis and characterization of nanocomposite GO@α-Fe2O3:Efficient material for dye removal

    Science.gov (United States)

    Mandal, B.; Panda, J.; Tudu, B.

    2018-05-01

    In this work a composite of Graphene Oxide (GO) supported α-Fe2O3 nanoparticles (GF) has been synthesized via a simple co-precipitation method. Structural, and morphological study of nanocomposite (GF) are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). The XRD study indicates that Graphene oxide is implanted with well crystalline α-Fe2O3 which has pure rhombohedral phase. Surface morphological study of SEM depicts sphere-like shaped α-Fe2O3 particles with formation of clusters have been embedded on Graphene oxide nano sheet. TEM image reveals that GO sheet acts as a good supporting material for anchoring nano sized α -Fe2O3 particles. Efficiency of dye removal of the prepared GF composite has been measured by the degradation of methylene blue (MB) in an aqueous solution under visible light irradiation. The degradation of the dye has been evaluated by a UV-visible spectroscopy, by decrease in the intensity of absorbance and concentration. The degradation efficiency of GF is found to be 90% towards MB.

  5. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay

    International Nuclear Information System (INIS)

    Karim, A. Bennani; Mounir, B.; Hachkar, M.; Bakasse, M.; Yaacoubi, A.

    2009-01-01

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  6. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    Celik, Z. Ceylan; Can, B.Z.; Kocakerim, M. Muhtar

    2008-01-01

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  7. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Z. Ceylan [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)], E-mail: zcelik@atauni.edu.tr; Can, B.Z. [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, Atatuerk University, Faculty of Engineering, 25240 Erzurum (Turkey)

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  8. Application of natural dyes in textile industry and the treatment of dye solutions using electrolytic techniques

    OpenAIRE

    Abouamer, Karima Massaud

    2008-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 25/02/2008. Anodic oxidation of a commercial dye, methylene blue (MB), from aqueous solutions using an electrochemical cell is reported. Data are provided on the effects of eight different types of supporting electrolytes, concentration of electrolytes, initial dye concentration, current and electrolytic time on the percentage removal of methylene blue. Anodic oxidation was found to be effect...

  9. Soni-removal of nucleic acids from inclusion bodies.

    Science.gov (United States)

    Neerathilingam, Muniasamy; Mysore, Sumukh; Gandham, Sai Hari A

    2014-05-23

    Inclusion bodies (IBs) are commonly formed in Escherichia coli due to over expression of recombinant proteins in non-native state. Isolation, denaturation and refolding of these IBs is generally performed to obtain functional protein. However, during this process IBs tend to form non-specific interactions with sheared nucleic acids from the genome, thus getting carried over into downstream processes. This may hinder the refolding of IBs into their native state. To circumvent this, we demonstrate a methodology termed soni-removal which involves disruption of nucleic acid-inclusion body interaction using sonication; followed by solvent based separation. As opposed to conventional techniques that use enzymes and column-based separations, soni-removal is a cost effective alternative for complete elimination of buried and/or strongly bound short nucleic acid contaminants from IBs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.

    Science.gov (United States)

    Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min

    2016-04-01

    In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple shell as low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Ashish S. Sartape

    2017-05-01

    Full Text Available In the present study, the use of low-cost, abundantly available, highly efficient and eco-friendly adsorbent wood apple shell (WAS has been reported as an alternative to the current expensive methods of removing of malachite green (MG dye from aqueous solution. The effects of different variables, adsorbent dosage, initial dye concentration, pH, contact time, temperature etc. were investigated and optimal experimental conditions were ascertained. The Langmuir isotherm model has given a better conformity than the Freundlich model with 80.645 mg/g as maximum adsorption capacity at 299 K. The adsorption of MG on WAS was confirmed by FTIR, SEM study, as it showed the change in characterization before and after adsorption. It was found that the Lagergren’s model could be used for the prediction of the system’s kinetics, while intraparticle diffusion study and Boyd plot were used to furnish the mechanistic study. Thermodynamic study concluded the spontaneous and endothermic nature of the adsorption. Present investigation and comparison with other reported adsorbents concluded that, WAS may be applied as a low-cost attractive option for removal of MG from aqueous solution.

  12. Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    Plutonium metal can be readily dissolved in aqueous solutions of sulfamic acid. When the plutonium sulfamate--sulfamic acid solutions are added to normal purex process streams, the sulfamate ion is oxidized by addition of sodium nitrite. This generates sodium sulfate which must be stored as radioactive waste. When recovery of ingrown 241 Am or storage of the dissolved plutonium must be considered, the sulfamate ion poses major and undesirable precipitation problems in the process streams. The present studies show that 40 to 80% of the sulfamate present in the dissolver solutions can be removed by precipitation as sulfamic acid by the addition of concentrated nitric acid. Addition of 64% nitric acid allows precipitation of 40 to 50% of the sulfamate; addition of 72% nitric acid allows precipitation of 50 to 60% of the sulfamate. If the solutions are chilled, additional sulfamic acid will precipitate. If the solutions are chilled to -10 0 C, about 70 to 80% of the orginal sulfamic acid in the dissolver will precipitate. A single, low-volume wash of the sulfamic acid crystals with concentrated nitric acid will decontaminate the crystals to a plutonium content of 5 dis/(min-gram)

  13. Removal of hazardous dye Ponceau-S by using Chitin:

    African Journals Online (AJOL)

    Sr030111Bin Comp

    Key words: Chitin, Ponceau-S, organic bioadsorbent, colored organic, industrial effluents. ..... of cationic azo dye by TiO2/bentonite nanocomposite, J. Photochem. ... effluents to freshwater and estuarine algae, crustaceans and fishes. Environ.

  14. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  15. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    Science.gov (United States)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  16. Bio sorption of Reactive Dye from Textile Wastewater by Non-viable Biomass of Aspergillus niger and Spirogyra sp

    International Nuclear Information System (INIS)

    Khalaf, M.A.

    2008-01-01

    The Potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a bio sorbents for removal of reactive dye (Synazol) from its multi-component textile wastewater. Pre-treatment of fungal and algal biomass with autoclaving increased the removal of dye more than that pre-treated with gamma-irradiation. The heat dried autoclaved biomass for the 2 organisms exhibited maximum dye removal at ph 3, temperature 30 degree C and 8 g/l (w/v) biomass conc. after 18 h contact time. The results showed that the non-viable biomass possessed high stability and efficiency of dye removal over 3 repeated batches

  17. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.

    Science.gov (United States)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-03-05

    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m 2 , corresponding to current density of 120.24mA/m 2 . The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31 by moderately alkaliphilic bacterial consortium

    Directory of Open Access Journals (Sweden)

    Sylvine Lalnunhlimi

    2016-03-01

    Full Text Available Abstract Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151 and Direct Red 31 (DR 31. The decolorization of azo dyes was studied at various concentrations (100–300 mg/L. The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  19. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    Science.gov (United States)

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.

  20. Adsorption Properties of PVA/PAA/clay Composite Hydrogel Synthesized by Gamma Radiation and its Application in Removal of Crystal Violet Dye from Its Aqueous Solution

    International Nuclear Information System (INIS)

    Kamal, H.; El-Sayed, A. Hegazy; Mohamed, M.M.; Sabaa, M.W.; El-Dessouky, M.M.

    2014-01-01

    Copolymer hydrogels composed of Poly vinyl alcohol (PVA) and Poly acrylic acid (PAA) were prepared by γ-irradiation in the presence of N,N’ methylene bis acrylamide (MBAM) as crosslinking agent or bentonite clay. The copolymers were characterized by FTIR and SEM. The dye adsorption experiments for Crystal Violet dye (CV) were carried out by using bath procedure. UV-visible absorption spectroscopy was used to determine the adsorption behavior. The effect of different copolymer composition, clay concentration, ph, contact time, adsorbent dose, initial dye concentration, and adsorption temperature were investigated to obtain the best experimental conditions. The adsorption equilibrium was attained after about 24h. of contact time. It was found that the adsorption process was correlated with Freundlich isotherm equation. Kinetic and thermodynamic studies of CV dye onto the prepared hydrogels were also evaluated

  1. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Gohain, M. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Som, S.; Kumar, Vinod [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Bezuindenhoudt, B.C.B. [Department of Chemistry, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Swart, Hendrik C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2016-01-01

    In this study, we report on the synthesis of ZnO nanoparticles (NPs) via the microwave-assisted technique. The as-synthesized ZnO nanoparticles were annealed at 500 °C for three hours. The ZnO NPs were characterized by X-ray diffraction (XRD) and scanning electron microscopic techniques. XRD results confirmed the formation of as-synthesized ZnO powder oriented along the (101) direction. The Kubelka–Munk function has been employed to determine the band gap of the ZnO powder. ZnO powder has been studied by photoluminescence (PL) before and after annealing to identify the emission of defects in the visible range. The intensity of the PL emission has decreased after annealing. The synthesized ZnO samples were also studied for methyl orange dye removal from waste water. It has been found that the as-synthesized ZnO shows better adsorption behaviour as compared to the annealed sample.

  2. Removal of fluoride from aqueous nitric acid

    International Nuclear Information System (INIS)

    Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

    1981-06-01

    Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca 2+ -Al 3+ ) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10 3 (vs approx. 500 for the Ca 2+ -Al 3+ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO 3 vapors distilled through the columns; fluoride DFs on the order of 10 6 and 10 4 , respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO 3 solutions, producing a fluoride DF of approx. 10 4

  3. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye.

    Science.gov (United States)

    Roy, Sharmili; Mohd-Naim, Noor Faizah; Safavieh, Mohammadali; Ahmed, Minhaz Uddin

    2017-11-22

    Nucleic acid detection is of paramount importance in monitoring of microbial pathogens in food safety and infectious disease diagnostic applications. To address these challenges, a rapid, cost-effective label-free technique for nucleic acid detection with minimal instrumentations is highly desired. Here, we present paper microchip to detect and quantify nucleic acid using colorimetric sensing modality. The extracted DNA from food samples of meat as well as microbial pathogens was amplified utilizing loop-mediated isothermal amplification (LAMP). LAMP amplicon was then detected and quantified on a paper microchip fabricated in a cellulose paper and a small wax chamber utilizing crystal violet dye. The affinity of crystal violet dye toward dsDNA and positive signal were identified by changing the color from colorless to purple. Using this method, detection of Sus scrofa (porcine) and Bacillus subtilis (bacteria) DNA was possible at concentrations as low as 1 pg/μL (3.43 × 10 -1 copies/μL) and 10 pg/μL (2.2 × 10 3 copies/μL), respectively. This strategy can be adapted for detection of other DNA samples, with potential for development of a new breed of simple and inexpensive paper microchip at the point-of-need.

  4. Magnetically modified spent coffee grounds for dyes removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Svobodová, Barbora; Šafaříková, Miroslava

    2012-01-01

    Roč. 234, č. 2 (2012), s. 345-350 ISSN 1438-2377 R&D Projects: GA MŠk OC09052; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : coffee grounds * magnetic fluid * adsorption * dyes * magnetic solid-phase extraction Subject RIV: GM - Food Processing Impact factor: 1.436, year: 2012

  5. Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals.

    Science.gov (United States)

    Lu, Ting; Xiang, Tao; Huang, Xue-Lian; Li, Cheng; Zhao, Wei-Feng; Zhang, Qian; Zhao, Chang-Sheng

    2015-11-20

    Post-crosslinking as a new strategy to prepare sodium alginate (SA) beads with controllable swelling behavior, pH sensitivity and adsorption capacity was developed by using the solution of glutaraldehyde (GA), acetic acid and hydrochloric acid as the coagulating agent, for which could be used to fabricate polysaccharide beads in a large scale. Fourier transform infrared spectroscopy and thermogravimetric analysis convinced the successful cross-linking of SA by GA. The macro-porous structures of the beads were observed by scanning electron microscopy. Both acetic acid and hydrochloric acid had great effects on the swelling behavior and pH sensitivity of the SA beads. The SA beads could adsorb cationic dye (methylene blue) as high as 572mg/g and other metal ions (Cu(2+), Ag(+) and Fe(3+)). The adsorption processes fitted well with the pseudo-second-order kinetic model and the Freundlich isotherm. The large-scale production of SA beads with tunable properties opens a new route to industrially utilize polysaccharide beads in wastewater treatments, intelligent separation and so on. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2016-06-01

    Full Text Available The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates. Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range.

  7. Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: Chemometric optimization and modeling.

    Science.gov (United States)

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Hajati, Shaaker; Mehrabi, Fatemeh; Goudarzi, Alireza

    2017-01-01

    Copper oxide nanoparticle-loaded activated carbon (CuO-NP-AC) was synthesized and characterized using different techniques such as FE-SEM, XRD and FT-IR. It was successfully applied for the ultrasound-assisted simultaneous removal of Pb 2+ ions and malachite green (MG) dye in binary system from aqueous solution. The effect of important parameters was modeled and optimized by artificial neural network (ANN) and response surface methodology (RSM). Maximum simultaneous removal percentages (>99.0%) were found at 25mgL -1 , 20mgL -1 , 0.02g, 5min and 6.0 corresponding to initial Pb 2+ concentration, initial MG concentration, CuO-NP-AC amount, ultrasonication time and pH, respectively. The precision of the equation obtained by RSM was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of ultrasound-assisted simultaneous removal of the analytes. A good agreement between experimental and predicted values was observed. A feed-forward neural network with a topology optimized by response surface methodology was successfully applied for the prediction of ultrasound-assisted simultaneous removal of Pb 2+ ions and MG dye in binary system by CuO-NPs-AC. The number of hidden neurons, MSE, R 2 , number of epochs and error histogram were chosen for ANN modeling. Then, Langmuir, Freundlich, Temkin and D-R isothermal models were applied for fitting the experimental data. It was found that the Langmuir model well describes the isotherm data with a maximum adsorption capacity of 98.328 and 87.719mgg -1 for Pb 2+ and MG, respectively. Kinetic studies at optimum condition showed that maximum Pb 2+ and MG adsorption is achieved within 5min of the start of most experiments. The combination of pseudo-second-order rate equation and intraparticle diffusion model was applicable to explain the experimental data of ultrasound-assisted simultaneous removal of Pb 2+ and MG at optimum condition obtained from RSM

  8. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  9. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    Science.gov (United States)

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm 3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O 2 - /HO 2 , and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterisation of acid dyes in forensic fibre analysis by high-performance liquid chromatography using narrow-bore columns and diode array detection.

    Science.gov (United States)

    Laing, D K; Gill, R; Blacklaws, C; Bickley, H M

    1988-06-17

    A gradient elution high-performance liquid chromatographic (HPLC) system with a diode array detector and a short narrow-bore (40 x 1 mm I.D.) column has been used to characterise a number of acid dyes. The resolution and reproducibility of the HPLC system have been evaluated and the detection limits for various dyes have been estimated. Comparisons are made with current methods of fibre dyestuff examination used in forensic science. The system has been applied to the analysis of dye extracted from single fibres. Using diode array detection, both chromatographic and spectral data can be produced in a single operation from casework sized samples.

  11. Interface Modification of Dye-sensitized Solar Cells with Pivalic Acid to Enhance the Open-circuit Voltage

    KAUST Repository

    Li, Xin

    2009-01-01

    Pivalic acid (PVA) was used as a new coadsorbent to dye-sensitized solar cells (DSCs) to modify the interface between the TiO2 films and electrolyte. The addition of PVA improved the light-to-electricity conversion efficiency of devices by 8% by enhancing the open-circuit voltage. Copyright © 2009 The Chemical Society of Japan.

  12. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  13. Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes

    International Nuclear Information System (INIS)

    Xue, Ailian; Zhou, Shouyong; Zhao, Yijiang; Lu, Xiaoping; Han, Pingfang

    2011-01-01

    Highlights: → We prepared a new amine functionalized adsorbent derived from clay-based material. → Attapulgite surface was modified with 3-aminopropyltriethoxysilane. → Some modification parameters affecting the adsorption potential were investigated. → Enhance the attapulgite adsorptive capacity for reactive dyes from aqueous solutions. - Abstract: The amine moiety has an important function in many applications, including, adsorption, catalysis, electrochemistry, chromatography, and nanocomposite materials. We developed an effective adsorbent for aqueous reactive dye removal by modifying attapulgite with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified attapulgite were characterized by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. We evaluated the impact of solvent, APTES concentration, water volume, reaction time, and temperature on the surface modification. NH 2 -attapulgite was used to remove reactive dyes in aqueous solution and showed very high adsorption rates of 99.32%, 99.67%, and 96.42% for Reactive Red 3BS, Reactive Blue KE-R and Reactive Black GR, respectively. These powerful dye removal effects were attributed to strong electrostatic interactions between reactive dyes and the grafted NH 2 groups.

  14. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    Science.gov (United States)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  15. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    Science.gov (United States)

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  16. Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System

    Directory of Open Access Journals (Sweden)

    Shuanggen Wu

    2017-12-01

    Full Text Available The magnetic aqueous micellar two-phase system (MAMTPS has the advantages combined of magnetic solid phase extraction (MSPE and aqueous micellar two-phase system (AMTPS. Thus, MAMTPS based on Fe3O4 magnetic nanoparticles (MNPs and a nonionic surfactant Triton X-114 (TX-114 was developed for the extraction, enrichment and removal of three dyes (Congo red, methyl blue, and methyl violet from aqueous solutions in this study. The MNPs Fe3O4@NH2 was screened as the optimal MNPs benefiting the extraction. Then, the influencing factors of MNPs amount, TX-114 concentration, vibration time, and extraction temperature were investigated in detail. The results showed that the extraction efficiencies of three dyes almost reached 100% using MAMTPS under the optimal conditions; MAMTPS had higher extraction ability than the individual MSPE or AMTPS. Thus, MAMTPS had the advantages of simple operation, high extraction ability, easy recycling of MNPs, and short phase-separation time, which showspotential for use in the extraction and analysis of contaminants from water samples.

  17. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.

  18. Decolorization of the azo dye Acid Orange 51 by laccase produced in solid culture of a newly isolated Trametes trogii strain

    OpenAIRE

    Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Martínez, María Jesús; Nasri, M.; Mechichi, Tahar

    2013-01-01

    This study concerns the decolorization and detoxification of the azo dye Acid Orange 51 (AO51) by crude laccase from Trametes trogii produced in solid culture using sawdust as support media. A three-level Box?Behnken factorial design with four factors (enzyme concentration, 1-hydroxybenzotriazole (HBT) concentration, dye concentration and reaction time) combined with response surface methodology was applied to optimize AO51 decolorization. A mathematical model was developed showing the effect...

  19. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    Science.gov (United States)

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Preparation, Characterization of Coal Ash Adsorbent and Orthogonal Experimental Rsearch on Treating Printing and Dyeing Wastewater

    Science.gov (United States)

    Wang, Qingyu; He, Lingfeng; Shi, Liang; Chen, Xiaogang; Chen, Xin; Xu, Zizhen; Zhang, Yongli

    2018-03-01

    Using high temperature activated sodium flying ash and carboxymethyl chitosan as raw material to prepare carboxymethylchitosan wrapping fly-ash adsorbent (CWF), combined with iron-carbon micro-electrolysis treatment of simulated and actual printing and dyeing wastewater. The conditions for obtaining are from the literature: the best condition for CWF to treat simulated printing and dyeing wastewater pretreated with iron-carbon micro-electrolysis is that the mixing time is 10min, the resting time is 30 min, pH=6, and the adsorbent dosage is 0.75 g/L. The results showed that COD removal efficiency and decoloration rate were above 97 %, and turbidity removal rate was over 90 %. The optimum dyeing conditions were used to treat the dyeing wastewater. The decolorization rate was 97.30 %, the removal efficiency of COD was 92.44 %, and the turbidity removal rate was 90.37 %.

  1. Performance and microbial community structures of hydrolysis acidification process treating azo and anthraquinone dyes in different stages.

    Science.gov (United States)

    Liu, Na; Xie, Xuehui; Yang, Bo; Zhang, Qingyun; Yu, Chengzhi; Zheng, Xiulin; Xu, Leyi; Li, Ran; Liu, Jianshe

    2017-01-01

    In this study, performance of hydrolysis acidification process treating simulated dyeing wastewater containing azo and anthraquinone dyes in different stages was investigated. The decolorization ratio, COD Cr removal ratio, BOD 5 /COD Cr value, and volatile fatty acids (VFAs) production were almost better in stage 1 than that in stage 2. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) confirmed the biodegradation of Reactive Black 5 (RB5) and Remazol Brilliant Blue R (RBBR) in hydrolysis acidification process. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses revealed that significant difference of microbial community structures existed in stage 1 and 2. The dominant species in stage 1 was related to Bacteroidetes group, while the dominant species in stage 2 was related to Bacteroidetes and Firmicutes groups. From the results, it could be speculated that different dyes' structures might have significant influence on the existence and function of different bacterial species, which might supply information for bacteria screening and acclimation in the treatment of actual dyeing wastewater.

  2. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mahmoud

    2013-06-01

    Full Text Available The removal of pollutants from effluents by electrocoagulation has become an attractive method in recent years. The study deals with the enhancement of removal of Methylene Blue dye by using an electromagnetic field during the electrocoagulation process. Effects of electrolyte concentration, dye concentration, intensity and the direction of the electromagnet on the decolorization efficiency have been investigated. The formed ferric hydroxide flocs trap colloidal particles and make solid–liquid separation easier during the next stage. The electrocoagulation stages must be optimized in order to design an economically feasible process. The results showed that the optimum electrolysis was 10–20 min at a current density of 8 mA/cm2, while the optimum concentration of the electrolyte (NaOH was found to be 2 wt.% when the dye concentration was 50 mg/L. The utilization of an electromagnetic field enhanced the dye removal due to the induced motion of paramagnetic ions inside the solution. The power consumption required to remove the dye was reduced by 45% in the case of applying an electromagnetic field.

  3. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon

    Directory of Open Access Journals (Sweden)

    Aseel M. Aljeboree

    2017-05-01

    Full Text Available The preparation of activated carbon from coconut husk with H2SO4 activation (CSAC and its ability to remove textile dyes (maxilon blue GRL, and direct yellow DY 12, from aqueous solutions were reported in this study. The adsorbent was characterized with Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. Various physiochemical parameters such as, contact time, initial dye concentration, adsorbent dosage, particle size, pH of dye solution and temperature were investigated in a batch-adsorption technique. Result showed that the adsorption of both GRL and DY 12 dyes was favorable at acidic pH. The adsorption uptake was found to increase with increase in initial dye concentration, and contact time but decreases with the amount of adsorbent, particle size, and temperature of the system. The chemisorption, intra-particle diffuse, pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The pseudo-second order exhibited the best fit for the kinetic studies, which indicates that adsorption of (GRL, and DY 12 is limited by chemisorption process. The equilibrium data were evaluated using Langmuir, Freundlich, Temkin and Fritz–Schlunder isotherms. The Fritz–Schlunder model best describes the uptake of (GRL and DY 12 dye, which implies that the adsorption of textiles dyes in this study onto coconut husk activated carbon is heterogeneous with multi-layers. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that (GRL and DY 12 dye adsorption was spontaneous and endothermic.

  4. Physicochemical aspects of the liposome-wool interaction in wool dyeing.

    Science.gov (United States)

    Martí, Meritxell; Barsukov, Leonid I; Fonollosa, Jordi; Parra, José Luis; Sukhanov, Stanislav V; Coderch, Luisa

    2004-04-13

    Despite the promising application of liposomes in wool dyeing, little is known about the mechanism of liposome interactions with the wool fiber and dyestuffs. The kinetics of wool dyeing by two dyes, Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic), were compared in three experimental protocols: (1) without liposomes, (2) in the presence of phosphatidylcholine (PC) liposomes, and (3) with wool previously treated with PC liposomes. Physicochemical interactions of liposomes with wool fibers were studied under experimental dyeing conditions with particular interest in the liposome affinity to the fiber surface and changes in the lipid composition of the wool fibers. The results obtained indicate that the presence of liposomes favors the retention of these two dyes in the dyeing bath, this effect being more pronounced in case of the hydrophobic dye. Furthermore, the liposome treatment is accompanied by substantial absorption of PC by wool fibers with simultaneous partial solubilization of their polar lipids (more evident at higher temperatures). This may result in structural modification of the cell membrane complex of wool fibers, which could account for a high level of the dye exhaustion observed at the end of the liposome dyeing process.

  5. Novel acid mono azo dye compound: Synthesis, characterization, vibrational, optical and theoretical investigations of 2-[(E)-(8-hydroxyquinolin-5-yl)-diazenyl]-4,5-dimethoxybenzoic acid

    Science.gov (United States)

    Saçmacı, Mustafa; Çavuş, Hatice Kanbur; Arı, Hatice; Şahingöz, Recep; Özpozan, Talat

    2012-11-01

    Novel acid mono azo dye, 2-[(E)-(8-hydroxyquinolin-5yl)-diazenyl]-4,5-dimethoxybenzoic acid (HQD), was synthesized by coupling diazonium salt solution of 2-amino-4,5-dimethoxybenzoic acid (DMA) with 8-hydroxyquinoline (HQ). This dye was characterized by UV-vis, IR & Raman, 1H and 13C NMR spectroscopic techniques and elemental analysis. The normal coordinate analysis of HQD was also performed to assign each band in vibrational spectra. DFT (B3LYP and B3PW91) calculations were employed to optimize the geometry, to interpret NMR spectra, to calculate and to determine the stable tautomeric structure of the compound. Natural Bond Orbital (NBO) analysis was performed to investigate intramolecular interactions. The vibrational spectral data obtained from solid phase IR & Raman spectra were assigned based on the results of the theoretical calculations. UV-vis spectroscopic technique was employed to obtain the optical band gap of HQD. The analysis of the optical absorption data revealed the existence of direct and indirect transitions in the optical band gaps. The optical band gaps of HQD have been found 1.95 and 1.90 eV for direct and indirect transitions, respectively.

  6. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    Science.gov (United States)

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  7. Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box-Behnken design and ecotoxicity tests.

    Science.gov (United States)

    Fernandes, Neemias Cintra; Brito, Lara Barroso; Costa, Gessyca Gonçalves; Taveira, Stephânia Fleury; Cunha-Filho, Marcílio Sérgio Soares; Oliveira, Gisele Augusto Rodrigues; Marreto, Ricardo Neves

    2018-06-06

    The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box-Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H 2 O 2 [H 2 O 2residual ], and the ecotoxicity of the treated samples (lettuce seed, Artemia salina, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H 2 O 2residual ] was significantly affected by initial [H 2 O 2 ] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H 2 O 2 ] only. A. salina mortality was affected by different process factors in both processes, which suggests the formation of different toxic products in each process. The desirability function was applied to determine the best process parameters and predict the responses, which were confirmed experimentally. Optimal conditions facilitated the complete degradation of the dye without [H 2 O 2residual ] or toxicity for samples treated with the Fenton-like process, whereas the Fenton process induced significant mortality for A. salina. Results indicate that the Fenton-like process is superior to the Fenton reaction to degrade Disperse Red 343. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures.

    Science.gov (United States)

    Koparal, A S; Yavuz, Y; Bakir Ogütveren, U

    2002-01-01

    The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.

  9. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes

    Directory of Open Access Journals (Sweden)

    Hala F. Rizk

    2017-05-01

    Full Text Available 5-Amino-4-heterylazo-3-phenyl-1H-pyrazoles (2a–d were diazotized and coupled with malononitrile to give pyrazoloazo malononitrile which by heating in glacial acetic acid gave novel pyrazolo[5,1-c][1,2,4]triazine dyes (3a–d. Also, some diazopyrazolyl pyrazolone dyes (4a–h were synthesized by diazotization of 2a–d and coupled with some pyrazolone derivatives. The structure of the synthesized dyes was determined by elemental analysis and spectral data. All the synthesized compounds were applied as disperse dyes and their dyeing performance on polyester fabric was studied. The fastness and colorimetric properties were measured. The results revealed that the monoazo dyes have good fastness and good to moderate affinity to polyester fabric than diazo dyes. In addition, the synthesized dyes were screened for their antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa (Gram positive, Bacillus subtitles, Escherichia coli (Gram negative and Candida albicans, Aspergillus niger (Fungi. The results revealed that most of the prepared dyes have high antibacterial activity.

  10. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    Science.gov (United States)

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  11. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  12. MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.

    Science.gov (United States)

    Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong

    2015-09-01

    MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Novel diyne-bridged dyes for efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jing-Kun, E-mail: fjk@njust.edu.cn [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Sun, Tengxiao [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Tian, Yi [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Zhang, Yingjun, E-mail: ZhangYingjun@hec.cn [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Jin, Chuanfei [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Xu, Zhimin; Fang, Yu; Hu, Xiangyu; Wang, Haobin [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China)

    2017-07-01

    Three new metal free organic dyes (FSD101-103) were synthesized to investigate the influence of diyne unit on dye molecules. FSD101 and FSD102 with diyne unit and FSD103 with monoyne unit were applied as sensitizers in the dye-sensitized solar cells (DSSCs). The optical and electrochemical properties, theoretical studies, and photovoltaic parameters of DSSCs sensitized by these dyes were systematically investigated. By replacing the monoyne unit with a diyne unit, FSD101 exhibited broader absorption spectrum, lower IP, higher EA, lower band gap energy, higher oscillator strength, more efficient electron injection ability, broader IPCE response range and higher τ{sub e} in comparison with FSD103. Hence, DSSC sensitized by FSD101 showed higher J{sub sc} and V{sub oc} values, and demonstrated a power conversion efficiency of 3.12%, about 2-fold as that of FSD103 (1.55%). FSD102 showed similar results as FSD101, with a power conversion efficiency of 2.98%, despite a stronger electron withdraw cyanoacrylic acid group was introduced. This may be due to the lower efficiency of the electron injection from dye to TiO{sub 2} and lower τ{sub e} of FSD102 than that of FSD101. These results indicate that the performance of DSSCs can be significantly improved by introducing a diyne unit into this type of organic dyes. - Highlights: • Diyne-bridge was introduced into dye molecules by a transition-metal-free protocol. • Power conversion efficiency grows from 1.55% to 3.12% by replacing monoyne unit with diyne unit. • FSD101 with diyne unit shows the highest electron lifetime resulting in a higher V{sub oc}.

  14. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    Science.gov (United States)

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  15. Survey of Basic Red 18 Dye Removal Using Biofilm Formed on Granular Bagass in Continuous Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2015-12-01

    Full Text Available Dyes comprising a major pollutant in the effluent from textile plants are mostly toxic, carcinogenic, mutagenic, and non-biodegradable. This experimental-laboratory study was carried out using a biofilm formed on a granular bagass bed in a continuous aerobic reactor to investigate the kinetic coefficients of the aerobic reactor as well as the effects of color concentration (30-200 mg/l, hydraulic retention time (2-8 h, and BOD concentration (200-100 mg /l on the removal of Basic Red (18 from textile effluents. The results revealed a maximum removal efficiency of 90% for an initial color concentration of 30 mg/l and a hydraulic retention time of 8 hours. A color removal efficiency of 86% was recorded for an influent BOD concentration of 200 mg/l. Also, maximum substrate utilization rate (K for organic loadings of 100 and 200 mg/L were 0.23 and 1.41 while the half velocity constant values were 44.85 and 19.39, respectively. Moreover, for the same organic loadings, the values of 0.35 and 0.5 were recorded for decay coefficient (Kd and 37.36, 4.83 for maximum specific growth rate coefficient (μm, respectively. Based on the findings of this study, it may be claimed that the biofilm formed on a granular bagass bed in a continuous aerobic reactor has a good Basic Red (18 removal efficiency.

  16. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    International Nuclear Information System (INIS)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-01-01

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m"2, corresponding to current density of 120.24 mA/m"2. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  17. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Oon, Yoong-Sin [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ong, Soon-An, E-mail: ongsoonan@yahoo.com [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ho, Li-Ngee [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Nordin, Noradiba [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia)

    2017-03-05

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m{sup 2}, corresponding to current density of 120.24 mA/m{sup 2}. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  18. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  19. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  20. Assessment of molecularly imprinted polymers (MIPs) in the preconcentration of disperse red 73 dye prior to photoelectrocatalytic treatment.

    Science.gov (United States)

    Franco, Jefferson Honorio; Aissa, Alejandra Ben; Bessegato, Guilherme Garcia; Fajardo, Laura Martinez; Zanoni, Maria Valnice Boldrin; Pividori, María Isabel; Del Pilar Taboada Sotomayor, Maria

    2017-02-01

    Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles. Excellent encapsulation of magnetite was confirmed by transmission electron microscopy (TEM). A study of dye binding showed that the dye was retained more selectively in the MIP, compared to the NIP. The release of DR73 from the imprinted polymers into methanol and acetic acid was analyzed by UV-Vis spectrophotometry. The extracts showed higher absorbance values for MMIP, compared to MNIP, confirming greater adsorption of dye in the MMIP material. The extracts were then subjected to photoelectrocatalytic treatment. LC-MS/MS analysis following this treatment showed that the dye was almost completely degraded. Hence, the combination of MMIP extraction and photoelectrocatalysis offers an alternative way of selectively removing an organic contaminant, prior to proceeding with its complete degradation.