WorldWideScience

Sample records for acid doped polyaniline

  1. synthesis and optical characterization of acid-doped polyaniline thin

    African Journals Online (AJOL)

    HOD

    SYNTHESIS AND OPTICAL CHARACTERIZATION OF ACID-DOPED. POLYANILINE THIN .... MATERIALS AND METHODS .... Characterization of Se Doped Polyaniline”,Current. Applied ... with Silver Nanoparticles”, Advances in Materials.

  2. Dielectric loss property of strong acids doped polyaniline (PANi)

    Science.gov (United States)

    Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar

    2018-04-01

    In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.

  3. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    Science.gov (United States)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  4. Molecular modeling of protonic acid doping of emeraldine base polyaniline for chemical sensors

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Ye, H.; Leung, S.Y.Y.; Zhang, G.

    2012-01-01

    We proposed a molecular modeling methodology to study the protonic acid doping of emeraldine base polyaniline which can used in gas detection. The commercial forcefield COMPASS was used for the polymer and protonic acid molecules. The molecular model, which is capable of representing the polyaniline

  5. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  6. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  7. Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles—Water Based Nanofluid

    OpenAIRE

    Chew, Tze; Daik, Rusli; Hamid, Muhammad

    2015-01-01

    Nanofluid has attracted great attention due to its superior thermal properties. In this study, chemical oxidative polymerization of aniline was carried out in the presence of dodecylbenzenesulfonic acid (DBSA) as a dopant. Particles of DBSA-doped polyaniline (DBSA-doped PANI) with the size range of 15 to 50 nm were obtained, as indicated by transmission electron microscope (TEM). Results of ultra violet-visible (UV-Vis) absorption and Fourier transform infrared (FTIR) spectroscopies as well ...

  8. Molecular modeling of the conductivity changes of the emeraldine base polyaniline due to protonic acid doping

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.

    2012-01-01

    We propose a molecular modeling strategy, which is capable of predicting the conductivity change of emeraldine base polyaniline polymer due to different degree of protonic acid doping. The method is comprised of two key steps: (1) generating the amorphous unit cells with given number of polymer

  9. Influence of dopant on dielectric properties of polyaniline weakly doped with dichloro and trichloroacetic acids

    International Nuclear Information System (INIS)

    Fattoum, A; Arous, M; Gmati, F; Dhaoui, W; Mohamed, A Belhadj

    2007-01-01

    We report the results of dielectric measurements over the frequency range10 Hz-1 MHz and the temperature range 150-300 K on polyaniline subjected to doping with dichloroacetic acid (DCA) and trichloroacetic acid (TCA) with various doping levels (6.1%, 8.2%, 13.3% and 4.1%, 6.15%, 13.5%, respectively). Conductivity is increased when the doping level or temperature is increased and samples doped with TCA are more conductive than those doped with DCA. A high frequency relaxation peak is observed in the loss factor curves attributed to the motion of charge carriers in the bulk polymer. A second loss peak appears in the low frequency range when we use the dielectric modulus representation and is attributed to electrode polarization. Both relaxations are well fitted by the Havriliak-Negami function, and the fitting parameters are determined. The characteristic relaxation frequency is described by the Arrhenius law. The activation energy for both relaxations is decreased by increasing the doping level and it is lower in the case of TCA doping acid

  10. Ionic liquid-doped polyaniline and its redox activities in the zwitterionic biological buffer MOPS

    International Nuclear Information System (INIS)

    Qu, Ke; Zeng, Xiangqun

    2016-01-01

    The electropolymerization of aniline in several common imidazolium-based ionic liquids has been accomplished successfully with the potentiodynamic method. Considering the fact that imidazolium-based ionic liquids are acidic, they have been selected as the electrolyte for the electropolymerization of aniline, eliminating the usage of extra inorganic or organic acids. The ionic liquids not only serve as the reaction media, exerting the unique favorable π-π interactions between the imidazolium rings and benzene rings of aniline monomer or the growing polymer, but also act as the dopants to render different properties to the resulting polyaniline. Among the tested imidazolium-based ionic liquids, [BMIM][BF_4], [BMIM][PF_6], [BMIM][NTf_2], [EMIM][ES] and [HMIM][FAP], polyaniline doped by the hydrophilic ionic liquid [BMIM][BF_4] displays the good electrochemical responses in the biologically important MOPS (3-(N-Morpholino)-propanesulfonic acid) solution with 2.34 × 10"−"3 M of sulfuric acid additive. NMR, UV–vis and electrochemical impedance experiments were performed to further characterize the polyaniline/[BMIM][BF_4] composite. In contrast, polyaniline that is doped by the hydrophobic ionic liquid [BMIM][PF_6] is electroactive in the MOPS solution in the absence of the acid additive, with a pH of 5, extending the working pH range of polyaniline, which is typically electroactive in the solutions with the pH values less than 3. It is suggested that the effective hydrogen bonding interactions between BF_4 anion and water facilitate its hydrolysis in the microenvironment of the polymer backbone to provide the acidic protons, which are beneficial to the adjustment of the microenvironments of the polyaniline system and thus renders its observed well-resolved reversible pair of redox peaks in the MOPS solution. PF_6 anion, on the other hand, with its larger size and less basicity, has the weaker interaction with water, thus releasing the protons in a relatively slow

  11. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Science.gov (United States)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  12. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  13. Defluoridation of water via doping of polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, M.; Satheeshkumar, K.K. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302 (India); Elango, K.P. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302 (India)], E-mail: drkpelango@rediffmail.com

    2009-04-30

    The potentiality of polyaniline and poly (m-methyl aniline) to remove fluoride from water via doping was investigated. The influence of pH, dosage of polyanilines, initial fluoride concentration and temperature on the amount of fluoride removed by the polyanilines were studied. The amount of fluoride removed at pH 7.0 by 50 mg/50 ml dose was found to be 0.78 mg/g. The data of fluoride removal fitted well with Langmuir and Freundlich isotherms. Thermodynamic parameters computed show that the adsorption process is endothermic in nature. FT-IR, X-ray and EDAX patterns of the polyanilines before and after exposure to fluoride ions suggest that the defluoridation occurs via doping of fluoride ions onto these polymers.

  14. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  15. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Energy Technology Data Exchange (ETDEWEB)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India); Methattel Raman, Shijeesh [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India)

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  16. Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles—Water Based Nanofluid

    Directory of Open Access Journals (Sweden)

    Tze Siong Chew

    2015-07-01

    Full Text Available Nanofluid has attracted great attention due to its superior thermal properties. In this study, chemical oxidative polymerization of aniline was carried out in the presence of dodecylbenzenesulfonic acid (DBSA as a dopant. Particles of DBSA-doped polyaniline (DBSA-doped PANI with the size range of 15 to 50 nm were obtained, as indicated by transmission electron microscope (TEM. Results of ultra violet-visible (UV-Vis absorption and Fourier transform infrared (FTIR spectroscopies as well as thermogravimetric analysis showed that PANI nanoparticles were doped with DBSA molecules. The doping level found was 36.8%, as calculated from elemental analysis data. Thermal conductivity of water was enhanced by 5.4% when dispersed with 1.0 wt% of DBSA-PANI nanoparticles. Specific heat capacity of water-based nanofluids decreased with increasing amount of DBSA-PANI nanoparticles.

  17. High yield and facile microwave-assisted synthesis of conductive H_2SO_4 doped polyanilines

    International Nuclear Information System (INIS)

    Gizdavic-Nikolaidis, Marija R.; Jevremovic, Milutin M.; Milenkovic, Maja; Allison, Morgan C.; Stanisavljev, Dragomir R.; Bowmaker, Graham A.; Zujovic, Zoran D.

    2016-01-01

    The microwave-assisted synthesis of polyaniline (PANI) was performed using ammonium persulphate (APS) as oxidizing agent in 0.5 M–2.5 M concentration range of aqueous sulphuric acid (H_2SO_4) at 93 W applied microwave power of 10 min duration. The microwave (MW) synthesized PANIs had 3 times higher yield in comparison to PANI samples prepared using a classical method, CS (0 W MW power) at the same temperature for 10 min synthesis duration period. Fourier Transform Infrared (FTIR) and UV–Vis spectroscopies confirmed the formation of PANI structure in all products. The influence of H_2SO_4 acid dopant on the spin concentration of MW and CS H_2SO_4 doped PANI samples were examined by EPR spectroscopy, while the morphological characteristics were investigated by using scanning electron microscopy (SEM). XRD results showed amorphous phases in both MW and CS H_2SO_4 doped PANI samples. Conductivity measurements revealed ∼1.5 times higher conductivity values for MW H_2SO_4 doped PANI samples in comparison with PANI samples prepared by the CS method under same condition. The influence of sulfate anion in comparison to chloride anion as a dopant on morphological, dopant levels and conductivity properties of MW PANI samples were also investigated. - Highlights: • Nanoporous microwave synthesized doped polyanilines as chemical sensor material. • Morphology and physical properties of polyanilines depend on acid concentration. • Spin concentration is determined by the nature of the polyaniline synthesis.

  18. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g-1 is realized for the optimised case of binary doping over the entire range of 1 A g-1 to 40 A g-1 with stability of 500 cycles at 40 A g-1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  19. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance.

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-12

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  20. Construction and Study of Hetreojunction Solar Cell Based on Dodecylbenzene Sulfonic Acid-Doped Polyaniline/n-Si

    Directory of Open Access Journals (Sweden)

    I. Morsi

    2012-01-01

    Full Text Available Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag structure was investigated by using current-voltage (I-V, capacitance-voltage (C-V, and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (oc, short-circuit current density (sc, fill factor (FF, and energy conversion efficiency (η were calculated. The highest sc, oc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is 3.5×1014 and 1.0×1015/cm3 for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.

  1. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells.

    Science.gov (United States)

    Murthy, Arun; Manthiram, Arumugam

    2011-06-28

    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  2. Secondary doping in polyaniline layers coated on multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2015-01-01

    Full Text Available HC1 doped coaxial polyaniline/multiwalled carbon nanotubes (MWCNTs nanocomposites were first prepared by in–situ chemical polymerization of aniline monomers in the presence of MWCNTs with less structural defects. P-toluene sulfonic acid (TSA and 5-sulfosalicylic acid dihydrate (SSA redoped PANI/MWCNT nanocomposites were achieved after the as-prepared nanocomposites were treated by ammonia respectively. The redoped nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, Raman, X–ray diffraction, thermogravimetric analysis and cyclic voltammetry, respectively. The results indicated that the thermal stability and electrochemical behaviour of TSA doped PANI/MWCNT nanocomposites were better than that of SSA doped PANI/MWCNT nanocomposites.

  3. High yield and facile microwave-assisted synthesis of conductive H{sub 2}SO{sub 4} doped polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Gizdavic-Nikolaidis, Marija R., E-mail: m.gizdavic@auckland.ac.nz [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Jevremovic, Milutin M. [Public Company Nuclear Facilities of Serbia, 12-14 Mike Petrovica Alasa, Vinca, 11351, Belgrade (Serbia); Milenkovic, Maja [Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Allison, Morgan C. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Stanisavljev, Dragomir R. [Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Bowmaker, Graham A. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Zujovic, Zoran D. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140 (New Zealand); Institute of General and Physical Chemistry, Studentski Trg 12-16, 11001, Belgrade (Serbia)

    2016-04-15

    The microwave-assisted synthesis of polyaniline (PANI) was performed using ammonium persulphate (APS) as oxidizing agent in 0.5 M–2.5 M concentration range of aqueous sulphuric acid (H{sub 2}SO{sub 4}) at 93 W applied microwave power of 10 min duration. The microwave (MW) synthesized PANIs had 3 times higher yield in comparison to PANI samples prepared using a classical method, CS (0 W MW power) at the same temperature for 10 min synthesis duration period. Fourier Transform Infrared (FTIR) and UV–Vis spectroscopies confirmed the formation of PANI structure in all products. The influence of H{sub 2}SO{sub 4} acid dopant on the spin concentration of MW and CS H{sub 2}SO{sub 4} doped PANI samples were examined by EPR spectroscopy, while the morphological characteristics were investigated by using scanning electron microscopy (SEM). XRD results showed amorphous phases in both MW and CS H{sub 2}SO{sub 4} doped PANI samples. Conductivity measurements revealed ∼1.5 times higher conductivity values for MW H{sub 2}SO{sub 4} doped PANI samples in comparison with PANI samples prepared by the CS method under same condition. The influence of sulfate anion in comparison to chloride anion as a dopant on morphological, dopant levels and conductivity properties of MW PANI samples were also investigated. - Highlights: • Nanoporous microwave synthesized doped polyanilines as chemical sensor material. • Morphology and physical properties of polyanilines depend on acid concentration. • Spin concentration is determined by the nature of the polyaniline synthesis.

  4. Use of Cu+1 dopant and it's doping effects on polyaniline conducting system in water and tetrahydrofuran

    Science.gov (United States)

    Ali, Vazid; Kaur, Raminder; Kamal, Neel; Singh, Sukhmehar; Jain, S. C.; Kang, H. P. S.; Zulfequar, M.; Husain, M.

    2006-04-01

    The structural modification and properties of polymeric materials are of utmost importance in deciding their applications. In the present study, the synthesis of polyaniline (PANI) has been carried out via chemical oxidation in acidic medium by potassium-dichromate and the yield of synthesized polyaniline was found to be 75 80%. The copper per chlorate tetrabenzonitrile salt (CuClO4·4BN) used for chemical doping in synthesized polyaniline is stable in organic solvent like acetonitrile (AN) and benzonitrile (BN). The effect of Cu+1 oxidation state (dopant) in polyaniline has been characterized by FTIR. Electrical and dielectric measurements show the decrease in the intensity of the Cu+1 salt signal and the appearance of a radical signal due to the formation of oxidative coupled in polymeric species. Electrical and dielectric properties of doped polyaniline samples show significant changes due to the effect of dopant (CuClO4·4BN). It is observed that the conductivity is contributing both by formation of ionic complex and particularly dominated by electronic due to the mobility of charge carriers along the polyaniline chain.

  5. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films

    International Nuclear Information System (INIS)

    Rizzo, G.; Arena, A.; Donato, N.; Latino, M.; Saitta, G.; Bonavita, A.; Neri, G.

    2010-01-01

    A stable chlorobenzene dispersion of conducting polyaniline (PANI) has been obtained by doping emeraldine base with dodecylbenzene sulfonic acid (DBSA) and studied by spectrophotometric measurements in the UV-vis-IR range. The electrical properties of PANI: DBSA films obtained from the above dispersion have been investigated under different temperature and relative humidity conditions. All-organic chemoresistive devices have been developed by spin-coating the PANI: DBSA dispersion on flexible substrates, and then by depositing electrodes on the top, from a carbon nanotube conducting ink. Sensing tests performed under exposition to calibrated amounts of ammonia reveal that these simple and inexpensive sensors are able to detect ammonia at room temperature in a reliable way, with a sensitivity linearly related to concentration in the range between 5 ppm and 70 ppm.

  6. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  7. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids

    International Nuclear Information System (INIS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Mohamed, Abdellatif Belhadj

    2007-01-01

    We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-10 6 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T 0 , density of states at the Fermi level (N(E F )), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σ ac (ω,T) A(T)ω s(T,ω) , which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems

  8. Electrical conductivity of polyaniline doped PVC–PMMA polymer ...

    Indian Academy of Sciences (India)

    which has now become one of the hot topics of research. (Radhakrishnan 2001). ... and sensitive methods for studying the polymer structure. (Ferraro and Walkar ... acceptor mixed polymers doped with polyaniline, was measured to identify ...

  9. Graphenated tantalum(IV) oxide and poly(4-styrene sulphonic acid)-doped polyaniline nanocomposite as cathode material in an electrochemical capacitor

    International Nuclear Information System (INIS)

    Njomo, Njagi; Waryo, Tesfaye; Masikini, Milua; Ikpo, Chinwe O.; Mailu, Stephen; Tovide, Oluwakemi; Ross, Natasha; Williams, Avril; Matinise, Nolubabalo; Sunday, Christopher E.; Mayedwa, Noluthando; Baker, Priscilla G.L.; Ozoemena, Kenneth I.; Iwuoha, Emmanuel I.

    2014-01-01

    Nanostructured poly(4-styrene sulphonic acid) and tantalum (IV) oxide-doped polyaniline nanocomposite were synthesised and their electro-conductive properties were determined. The oxide was synthesized using a modified sol-gel method and then dispersed in acidic media through sonication and entrapped in-situ into the polymeric matrix during the oxidative chemical polymerization of aniline doped with poly(4-styrene sulphonic acid). The oxides and novel polymeric nanocomposite were characterised with TEM, SEM, EDX, XRD, FTIR, UV-visible to ascertain elemental and phase composition, successful polymerization, doping, morphology and entrapment of the metal oxide nanoparticles. The electro-conductivity of the nanomaterial was interrogated using scanning electrochemical microscopy (SECM) and cyclic voltammetry (CV). The material was then anchored on activated graphitic carbon and used in the design of an asymmetric supercapacitor cell using 6 M KOH aqueous electrolyte. Characteristically high specific capacitance values of 318.4 F/g with a corresponding energy and power densities of 1.57 kWh/kg and 0.435 kW/kg, respectively, were demonstrated. The cell also showed high coulombic efficiency of 94.9% with a long cycle life and good cycle stability making the nanomaterial suitable for constructing supercapacitor cell electrodes

  10. Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors.

    Science.gov (United States)

    Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K

    2012-03-01

    Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.

  11. Preparation of Polyaniline-Doped Fullerene Whiskers

    Directory of Open Access Journals (Sweden)

    Bingzhe Wang

    2013-01-01

    Full Text Available Fullerene C60 whiskers (FWs doped with polyaniline emeraldine base (PANI-EB were synthesized by mixing PANI-EB/N-methyl pyrrolidone (NMP colloid and FWs suspension based on the nature of the electron acceptor of C60 and electron donor of PANI-EB. Scanning electron microscopy (SEM, Fourier transform infrared (FT-IR, and ultraviolet-visible (UV-Vis spectra characterized the morphology and molecular structure of the FWs doped with PANI-EB. SEM observation showed that the smooth surface of FWs was changed to worm-like surface morphology after being doped with PANI-EB. The UV-Vis spectra suggested that charge-transfer (CT complex of C60 and PANI-EB was formed as PANI-EBδ+-C60δ-. PANI-EB-doped FWs might be useful as a new type of antibacterial and self-cleaning agent as well as multifunctional material to improve the human health and living environment.

  12. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    During the past two decades, both fundamental and applied research in conducting polymers has grown enormously [1]. Polyaniline (PANI) owing to its ease of synthe- sis, remarkable environmental stability, and high conductivity in the doped form, has remained one of the most thoroughly studied conducting polymers.

  13. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  14. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate

    International Nuclear Information System (INIS)

    Ameen, Sadia; Ali, Vazid; Zulfequar, M.; Mazharul Haq, M.; Husain, M.

    2008-01-01

    Polyaniline is doped with sodium thiosulphate in aqueous tetrahydrofuran (THF) and the blended films have been prepared by changing the amount of doped polyaniline (PANI) in the fixed amount of polyvinyl chloride (PVC). The electrical conductivity of various samples of polyaniline-polyvinyl chloride (PANI-PVC) blends has been studied to see the effect of dopant in the temperature range 300-400 K. Mott's parameters are used to explain the conduction mechanism. Different parameters such as pre-exponential factor (σ 0 ), activation energy (ΔE) and T 0 have also been calculated to see the effect of chemical doping. The crystallinity of the blends is explained on the basis of T 0 . The calculated values of T 0 show that crystallinity increases with an increase of doped PANI in PANI-PVC blends. Fourier transform-infrared (FTIR) spectroscopy is done to explore the nature and interaction of dopant into the polymeric chain

  15. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    Science.gov (United States)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Enhanced Supercapacitor Performance Using Electropolymerization of Self-Doped Polyaniline on Carbon Film

    Directory of Open Access Journals (Sweden)

    Po-Hsin Wang

    2018-03-01

    Full Text Available In this work, we electrochemically deposited self-doped polyanilines (SPANI on the surface of carbon-nanoparticle (CNP film, enhancing the superficial faradic reactions in supercapacitors and thus improving their performance. SPANI was electrodeposited on the CNP-film employing electropolymerization of aniline (AN and o-aminobenzene sulfonic acid (SAN comonomers in solution. Here, SAN acts in dual roles of a self-doped monomer while it also provides an acidic environment which is suitable for electropolymerization. The performance of SPANI−CNP-based supercapacitors significantly depends upon the mole ratio of AN/SAN. Supercapacitor performance was investigated by using cyclic voltammetry (CV, galvanostatic charge and discharge (GCD, and electrochemical impedance spectroscopy (EIS. The optimal performance of SPANI−CNP-based supercapacitor exists at AN/SAN ratio of 1.0, having the specific capacitance of 273.3 Fg−1 at the charging current density of 0.5 Ag−1.

  17. Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, James [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Kim, Miso [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Fapyane, Deby; Chang, In Seop [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • Nanofibrous structured polyaniline (PANI) was prepared by simple ultrasonication. • PANI nanofibers prepared at 5 °C are uniform with an average diameter of 50 nm. • The conductivity is increased by 2 × 10{sup 8} times after doping with LiClO{sub 4}. • The cell with PANI-LiClO{sub 4} shows good cycle performance at high current densities. - Abstract: Polyaniline nanofibers have been successfully prepared by applying ultrasonic irradiation during oxidative polymerization of aniline in dilute hydrochloric acid and evaluated for suitability in lithium cells after doping with lithium perchlorate salt. Polyaniline nanofibers are confirmed by Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, and transmission electron microscopy, and the efficiency of doping is confirmed by DC conductivity measurements at different temperatures. Electrochemical properties of nanofibers are evaluated, of which a remarkable increase in cycle stability is achieved when compared to polyaniline prepared by simple oxidative polymerization of aniline. The cell with nanofibrous polyaniline doped with LiClO{sub 4} delivers an initial discharge capacity value of 86 mA h g{sup −1} at 1 C-rate which is about 60% of theoretical capacity, and the capacity is slightly lowered during cycle and reaches 50% of theoretical capacity after 40 cycles. The cell delivers a stable and higher discharge capacity even at 2 C-rate compared to that of the cell prepared with bulk polyaniline doped with LiClO{sub 4}.

  18. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  19. Electrocatalytic activity of self-doped polyaniline

    International Nuclear Information System (INIS)

    Shieh, Yeong-Tarng; Jung, Jeng-Ji; Lin, Rong-Hsien; Yang, Chien-Hsin; Wang, Tzong-Liu

    2012-01-01

    Self-doped conducting polyaniline-modified indium tin oxide (ITO) electrodes were prepared by cyclic voltammetry on ITO substrates in aniline (AN) and o-aminobenzene sulfonic acid (OSA) mixed monomer solutions with AN/OSA mole ratios of 25/75, 50/50, and 75/25, followed by investigations on electrocatalytic activities of the copolymers to redox reactions of Fe(CN) 6 3−/4− as a probe in aqueous solutions of different pH using cyclic voltammetry. For a given pH, the P(25AN-co-75OSA)-modified ITO electrode demonstrated the highest current density, followed by the P(50AN-co-50OSA)- and by the P(75AN-co-25OSA)-modified ITO electrodes. It can be concluded that a higher content of OSA (sulfonate) in the copolymer exhibited a higher extent of self-doping in the copolymer, leading to a higher electrocatalytic activity to redox reactions of the probe. The electrocatalytic activities of the copolymers decreased with increasing pH. The P(25AN-co-75OSA)-modified ITO electrode was electroactive for sensing the redox reactions of the probe in aqueous solutions of up to pH 7, the P(50AN-co-50OSA)-modified ITO electrode was electroactive for up to only pH 5, but the P(75AN-co-25OSA)-modified ITO electrode was not electroactive in aqueous solution of pH even as low as 2.

  20. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization.

    Science.gov (United States)

    Wu, Xianna; Qian, Xueren; An, Xianhui

    2013-01-30

    Polyaniline-deposited paper composites doped with three inorganic acids were prepared via in situ polymerization, and their flame-retardant properties were investigated. Both the conductivity and flame retardancy of the composite increased with the increase of the amount of the polyaniline deposited. The doping acid played a very key role in both the conductivity and flame retardancy of the composite. The comprehensive properties of the composite could be improved when codoped with an equimolar mixture of H(3)PO(4) and H(2)SO(4) or H(3)PO(4) and HCl. The decay of the flame retardancy of the composite in atmosphere was due to the dedoping of the polyaniline deposited on cellulose fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Direct measurement of colloidal interactions between polyaniline surfaces in a uv-curable coating formulation

    DEFF Research Database (Denmark)

    Jafarzadeh, Shadi; Claesson, Per M.; Pan, Jinshan

    2014-01-01

    cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast...

  2. Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Junior, Jose Humberto Santos; Meneguzzi, Alvaro; Ferreira, Carlos Arthur, E-mail: jhsajunior@globomail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegtre, RS (Brazil). Dept. de Engenharia de Materiais; Bertuol, Daniel Assumpcao [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Engenharia Quimica; Amado, Franco Dani Rico [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologia

    2013-11-01

    The study of conducting polymeric membranes is decisive in some areas, as in fuel cells and electrodialysis. This work aims the study of membranes using conventional and conductive polymers blends. Two types of polyurethane were used as conventional polymers, commercial thermoplastic polyurethane and polyurethane synthesized from castor oil and 4-4-dicyclohexylmethane isocyanate. Two kinds of conducting polymers were used, polyaniline doped with organic acid and a self doped polyaniline. The polymers and the membranes were characterized by electrical conductivity, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The synthesis of the membranes produced was proper, featuring a complete reaction, analyzed by FTIR. The membranes also showed good mechanical properties and thermal stability ( Almost-Equal-To 220 Degree-Sign C). Among the membranes studied, the polyaniline doped with p-toluenesulphonic acid obtained higher thermal and viscoelastic properties. Thus they can be used in separation techniques using membranes. (author)

  3. Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors

    Science.gov (United States)

    Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi

    2017-10-01

    Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L-1 was found to be 1266 F g-1 at a scan rate of 3 mV s-1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g-1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.

  4. Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Youhong [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhao, Faqiong [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zeng, Baizhao, E-mail: bzzeng@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2015-06-23

    Graphical abstract: The novel proton-type ionic liquid (1-sulfobutyl-3-methylimidazolium hydrosulfate) doped polyaniline coating showed granular porous nanostructure and it had high self-EF values and extraction efficiency for amines. - Highlights: • A proton-type ionic liquid-doped polyaniline was fabricated by electrodeposition. • It showed porous granular nanostructure and had large specific surface. • It had high extraction capacity to aromatic amines. • A reasonable self-enrichment factor of SPME fiber has been proposed. - Abstract: A novel proton-type ionic liquid doped polyaniline (HIL-doped PANI) coating was presented, which was prepared on a stainless steel wire by electrodeposition in an aqueous solution containing aniline and 1-sulfobutyl-3-methylimidazolium hydrosulfate. The HIL-doped PANI coating showed granular nanostructure and had large specific surface. When it was applied to the headspace solid-phase microextraction of several amines (i.e., aniline, N-methylaniline, 3-methylaniline, 2-chloroaniline and 3-chloroaniline), it showed high extraction efficiency. The enrichment factors were 191.8–343.9 for different amines, much higher than those of common PANI and commercial polydimethylsiloxane/divinylbenzene coatings. Coupled with gas chromatographic analysis, the linear ranges were 0.097–100 μg/L with correlation coefficients above 0.9942, and the detection limits were 0.012–0.048 μg/L (S/N = 3) for different amines. The relative standard deviations (RSD) were smaller than 8.1% for five successive measurements with single fiber and the fiber-to-fiber RSDs were 8.6–13.8% (n = 5) for these amines. The proposed method was successfully applied to the extraction and determination of amines in organic waste water samples, and the recoveries were 78.3–112.8% for different analytes.

  5. Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines

    International Nuclear Information System (INIS)

    Ai, Youhong; Zhao, Faqiong; Zeng, Baizhao

    2015-01-01

    Graphical abstract: The novel proton-type ionic liquid (1-sulfobutyl-3-methylimidazolium hydrosulfate) doped polyaniline coating showed granular porous nanostructure and it had high self-EF values and extraction efficiency for amines. - Highlights: • A proton-type ionic liquid-doped polyaniline was fabricated by electrodeposition. • It showed porous granular nanostructure and had large specific surface. • It had high extraction capacity to aromatic amines. • A reasonable self-enrichment factor of SPME fiber has been proposed. - Abstract: A novel proton-type ionic liquid doped polyaniline (HIL-doped PANI) coating was presented, which was prepared on a stainless steel wire by electrodeposition in an aqueous solution containing aniline and 1-sulfobutyl-3-methylimidazolium hydrosulfate. The HIL-doped PANI coating showed granular nanostructure and had large specific surface. When it was applied to the headspace solid-phase microextraction of several amines (i.e., aniline, N-methylaniline, 3-methylaniline, 2-chloroaniline and 3-chloroaniline), it showed high extraction efficiency. The enrichment factors were 191.8–343.9 for different amines, much higher than those of common PANI and commercial polydimethylsiloxane/divinylbenzene coatings. Coupled with gas chromatographic analysis, the linear ranges were 0.097–100 μg/L with correlation coefficients above 0.9942, and the detection limits were 0.012–0.048 μg/L (S/N = 3) for different amines. The relative standard deviations (RSD) were smaller than 8.1% for five successive measurements with single fiber and the fiber-to-fiber RSDs were 8.6–13.8% (n = 5) for these amines. The proposed method was successfully applied to the extraction and determination of amines in organic waste water samples, and the recoveries were 78.3–112.8% for different analytes

  6. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absorbing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunming; Jiang, Junjun; Liu, Xiaohua; Yin, Chengjie; Deng, Cuifen

    2016-04-15

    Polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites were successfully synthesized by a novel coordination-oxidative polymerization-hydrothermal method, and doped by sulfosalicylic acid. The resultant nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and electromagnetic measurements. The composites mainly showed nanofibers with a diameter of ca. 70 nm and a length longer than 2 μm. The surface of composites was uniformly covered with numerous nanoparticles with an average size of ca. 10–20 nm. Microwave absorption properties of polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites doped with La ion were found to be better than those doped with Ce and Y ions. For the polyaniline/CoLa{sub x}Fe{sub 2−x}O{sub 4} nanocomposite, the optimal microwave absorption performance is at x=0.15, that is, the mass ratio of La in CoLa{sub x}Fe{sub 2−x}O{sub 4} is 7.5%, with the conductivity of the composite about 0.833 S/cm. Furthermore, when the layer thickness is 2 mm, the maximum reflection loss achieves the maximum number of −42.65 dB at 15.91 GHz with a bandwidth of 6.14 GHz above −10 dB loss, suggesting that these nanocomposites are excellent in microwave absorbing capacity. - Graphical abstract: Scheme PAn/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites prepared via a novel coordination-oxidative polymerization-hydrothermal route. - Highlights: • An organic–inorganic hybrid―polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites was prepared via a novel coordination-oxidative polymerization-hydrothermal route. • The as-prepared polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites exhibit excellent microwave absorbing performance compared with the composites prepared by using conventional method. • The novel method reported in this work could

  7. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absorbing properties

    International Nuclear Information System (INIS)

    Yang, Chunming; Jiang, Junjun; Liu, Xiaohua; Yin, Chengjie; Deng, Cuifen

    2016-01-01

    Polyaniline/CoRE_xFe_2_−_xO_4 (RE=La, Ce, Y, x=0.05–0.25) nanocomposites were successfully synthesized by a novel coordination-oxidative polymerization-hydrothermal method, and doped by sulfosalicylic acid. The resultant nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and electromagnetic measurements. The composites mainly showed nanofibers with a diameter of ca. 70 nm and a length longer than 2 μm. The surface of composites was uniformly covered with numerous nanoparticles with an average size of ca. 10–20 nm. Microwave absorption properties of polyaniline/CoRE_xFe_2_−_xO_4 nanocomposites doped with La ion were found to be better than those doped with Ce and Y ions. For the polyaniline/CoLa_xFe_2_−_xO_4 nanocomposite, the optimal microwave absorption performance is at x=0.15, that is, the mass ratio of La in CoLa_xFe_2_−_xO_4 is 7.5%, with the conductivity of the composite about 0.833 S/cm. Furthermore, when the layer thickness is 2 mm, the maximum reflection loss achieves the maximum number of −42.65 dB at 15.91 GHz with a bandwidth of 6.14 GHz above −10 dB loss, suggesting that these nanocomposites are excellent in microwave absorbing capacity. - Graphical abstract: Scheme PAn/CoRE_xFe_2_−_xO_4 nanocomposites prepared via a novel coordination-oxidative polymerization-hydrothermal route. - Highlights: • An organic–inorganic hybrid―polyaniline/CoRE_xFe_2_−_xO_4 (RE=La, Ce, Y, x=0.05–0.25) nanocomposites was prepared via a novel coordination-oxidative polymerization-hydrothermal route. • The as-prepared polyaniline/CoRE_xFe_2_−_xO_4 nanocomposites exhibit excellent microwave absorbing performance compared with the composites prepared by using conventional method. • The novel method reported in this work could be employed to prepare other conductive polymers/inorganic nanocomposites as well.

  8. A doped activated carbon prepared from polyaniline for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Limin; Liu, Enhui; Li, Jian; Yang, Yanjing; Shen, Haijie; Huang, Zhengzheng; Xiang, Xiaoxia; Li, Wen [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105 (China)

    2010-03-01

    A novel doped activated carbon has been prepared from H{sub 2}SO{sub 4}-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l{sup -1} KOH. The specific capacitance of the carbon is as high as 235 F g{sup -1}, the specific capacitance hardly decreases at a high current density 11 A g{sup -1} after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors. (author)

  9. Radiation effects on polyaniline

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kondo, Kenjiro; Suzuki, Takenori; Numajiri, Masaharu; Miura, Taichi; Doi, Shuji; Ohnishi, Toshihiro.

    1992-01-01

    Effects of γ-irradiation on electrical conductivity of polyaniline were investigated. A drastic increase of the conductivity due to radiation-induced doping was observed in combined systems of polyaniline films and halogen-containing polymers. This effect can be applied to measure an integrated radiation dose. (author)

  10. Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum

    Science.gov (United States)

    Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui

    2018-01-01

    Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer. PMID:29438304

  11. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Ghosh, Amrita; Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal (India); Ganguly, Saibal [Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17 B Bypass Road, Zuarinagar, Sancoale, Goa 403726 (India); Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-30

    Graphical abstract: The present work focuses on the synergistic effect of a novel hybrid hetero structure (n-type aluminum doped zinc oxide and p-type polyaniline), combining both sol-gel and in-situ oxidative polymerization method and studying its photoluminescence (PL), photocatalytic, electrochemical impedance spectroscopy (EIS), linear scan voltammetry (LSV) and photocurrent properties. - Highlights: • Aluminium doped zinc oxide-polyaniline (PAZ) hybrids were prepared by polymerization of aniline using aluminium doped zinc oxide nanorod templates. • The hybrids were used as visible light photocatalysts for methyl orange (MO) and rose bengal (RB) dye degradation. • First order rate constants of the photocatalytic process were evaluated as 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes respectively. • Photoluminescence and electrochemical properties were in accord with the photocatalytic performance of the hybrid. - Abstract: The emergence of organic-inorganic photoactive materials has led to marked progress in the field of heterogeneous visible-light photocatalysis. Visible-light active aluminium doped zinc oxide-polyaniline (PAZ) hybrid was prepared employing in-situ oxidative polymerization of polyaniline (PANI) in the presence of aluminium doped zinc oxide (AlZnO) nanorods, synthesized via sol-gel route. The compositions, structural and optical properties of the synthesized hybrids were characterized. Among various samples, the 22 wt% aluminium doped zinc oxide-polyaniline (PAZ 3) hybrid show the best photocatalytic action for the degradation of methyl orange (MO) and rose bengal (RB) dyes under visible-light illumination, even after repeated use. The performance of the photocatalytic process was determined by the first order rate constant, 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes, respectively. Scavenger test was used to determine the role of active

  12. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid–glycine co-doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Xi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Yang, Zhao-hui, E-mail: yzh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-04-09

    Highlights: • RVC/PANI-SA-GLY electrode was applied as a novel electrode material for accelerated removal of Cr(VI). • Faster reduction kinetics of Cr(VI) was observed by RVC/PANI-SA-GLY electrode when compared with RVC/PANI-SA and RVC electrode. • Cr(VI) removal experienced an adsorption-reduction system built by RVC/PANI-SA-GLY electrode. • The stability of RVC/PANI-SA-GLY electrode was relatively satisfactory. - Abstract: Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption–electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid–glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption–reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO{sub 4}{sup −}. Eventually, the

  13. Fractal like charge transport in polyaniline nanostructures

    International Nuclear Information System (INIS)

    Nath, Chandrani; Kumar, A.

    2013-01-01

    The structural and electrical properties of camphorsulfonic acid (CSA) doped nanotubes, and hydrochloric acid (HCl) doped nanofibers and nanoparticles of polyaniline have been studied as a function of doping level. The crystallinity increases with doping for all the nanostructures. Electrical transport measurements in the temperature range of 5–300 K show an increase in conductivity with doping for the nanostructures. All the nanostructures exhibit metal to insulator (MIT) transition below 40 K. The metallic behavior is ascribed to the electron–electron interaction effects. In the insulating regime of the nanotubes conduction follows the Mott quasi-1D variable range hopping model, whereas the conduction in the nanofibers and nanoparticles occur by variable range hopping of charge carriers among superlocalized states without and with Coulomb interaction, respectively. The smaller dopant size in case of HCl makes the polymer fractal resulting in superlocalization of electronic wave-functions. The confined morphology of the nanoparticles results in effective Coulomb interaction dominating the intersite hopping

  14. Electronic properties of junctions between aluminium and polyaniline doped with dodecylbenzene sulphonate

    International Nuclear Information System (INIS)

    Bantikassegn, W.

    1997-07-01

    Polyaniline (PANI) doped with dodecylbenzene sulphonate (DBS) anions forms a conducting organic sold. Aluminium contacts to PANI (DBS) polymer are studied using complex impedance spectroscopy and current-voltage characteristics measurements. The I-V characteristic is asymmetric and non-ohmic and shows rectification. The complex impedance spectra show two practically overlapping semi-circles which reveal the existence of two distinct regions at the metal/doped polymer interface. They are modelled by an equivalent circuit consisting of two parallel RC circuits in series representing a thin interfacial insulating (S') layer and a depletion (S) region. The device is therefore an MS'S type, where S' and S are the same chemical compounds in which the S' layer has very low doping content than the S layer. (author). 32 refs, 2 figs, 1 tab

  15. Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate

    International Nuclear Information System (INIS)

    Haspulat, Bircan; Gülce, Ahmet; Gülce, Handan

    2013-01-01

    Highlights: • The PANI/Fe film as photocatalyst was used for the first time. • It was possible to modify the surface roughness and wettability of the PANI films. • The photocatalytic decolorization of four dyes has been investigated. • The photocatalytical activity of the PANI matrix was increased by adding Fe ions. -- Abstract: In this study, the photocatalytic decolorization of four commercial textile dyes with different structures has been investigated using electrochemically synthesized polyaniline and Fe ions doped polyaniline on ITO coated glass substrate as photocatalyst in aqueous solution under UV irradiation for the first time. Scanning electron microscopy, atomic force microscopy, FT-IR spectra, UV–vis spectroscopy measurements were used to characterize the electrochemically synthesized polymer film photocatalyst. Film hydrophilicity was assessed from contact angle measurements. The results show that both of the polymer films exhibit good photocatalytic performance. Surprisingly, it was determined that by using Fe(II) ions during polymerization, it is possible to modify the surface roughness and wettability of the produced polyaniline films which favors their photocatalytic activity in water-based solutions. All four of the used dyes (methylene blue, malachite green, methyl orange and methyl red) were completely decolorizated in 90 min of irradiation under UV light by using Fe ions doped polyaniline at the dye concentration of 1.5 × 10 −5 M, while the decolorization of those dyes were between 43% and 83% by using polyaniline as photocatalyst. Hence, it may be a viable technique for the safe disposal of textile wastewater into waste streams

  16. Polyaniline-polypyrrole composites with enhanced hydrogen storage capacities.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-06-13

    A facile method for the synthesis of polyaniline-polypyrrole composite materials with network morphology is developed based on polyaniline nanofibers covered by a thin layer of polypyrrole via vapor phase polymerization. The hydrogen storage capacity of the composites is evaluated at room temperature exhibits a twofold increase in hydrogen storage capacity. The HCl-doped polyaniline nanofibers exhibit a storage capacity of 0.46 wt%, whereas the polyaniline-polypyrrole composites could store 0.91 wt% of hydrogen gas. In addition, the effect of the dopant type, counteranion size, and the doping with palladium nanoparticles on the storage properties are also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Yang Xiaoling; Li Chunzhong

    2007-01-01

    A class of hybrid organic-inorganic composite for application in electrorheological (ER) fluid was prepared by using a simple one-pot method. Transmission electron microscopy (TEM) image shows that the synthesized material had a mesoporous structure. X-ray diffraction (XRD) further proves that the pore size is about 7.4 nm with an anatase TiO 2 framework. Fourier transform infrared (FT-IR) and nitrogen sorption curve reveal polyaniline (PANI) is doped in mesochannels. The ER behaviors of PANI/TiO 2 in silicone oil are invesigated with different doping degrees under different electric fields. The results obtained provide more insight into the role of proper doping in ER fluid

  18. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  19. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Wang, Liuding; Wu, Hongjing; Shen, Zhongyuan; Guo, Shaoli; Wang, Yiming

    2012-01-01

    Highlights: ► OMC-Ni/PANI nanocomposites were prepared by in situ polymerization method. ► The effective absorption bandwidth was 4.7 GHz for OMC-Ni0.15/PANI. ► OMC-Ni/PANI showed excellent microwave absorption with respect to OMC-Ni. ► This effect could be mainly attributed to the improvement of impendence matching. - Abstract: We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) ≤ −10 dB) of 4.7 GHz and an absorption peak of −51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.

  20. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    Science.gov (United States)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  1. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shihui [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Chen, Cheng; Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Li, Wei [Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2017-06-15

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  2. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    International Nuclear Information System (INIS)

    Qiu, Shihui; Chen, Cheng; Cui, Mingjun; Li, Wei; Zhao, Haichao; Wang, Liping

    2017-01-01

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  3. Biodegradable conductive composites of poly(3-hydroxybutyrate and polyaniline nanofibers: Preparation, characterization and radiolytic effects

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available Poly(3-hydroxybutyrate is a biodegradable polyester produced by microorganisms under nutrient limitation conditions. We obtained a biodegradable poly(3-hydroxybutyrate composite having 8 to 55% of chemically in situ polymerized hydrochloric acid-doped polyaniline nanofibers (70-100 nm in diameter. Fourier transform infrared spectroscopy and X-rays diffractometry data did not show evidence of significant interaction between the two components of the nanocomposite, and polyaniline semiconductivity was preserved in all studied compositions. Gamma-irradiation at 25 kGy absorbed dose on the semiconductive composite presenting 28% of doped polyaniline increased its conductivity from 4.6*10-2 to 1.1 S/m, while slightly decreasing its biodegradability. PANI-HCl biodegradation is negligible when compared to PHB biodegradability in an 80 day timeframe. Thus, this unprecedented all-polymer nanocomposite presents, at the same time, semiconductivity and biodegradability and was proven to maintain these properties after gamma irradiation. This new material has many potential applications in biological science, engineering, and medicine.

  4. Synthesis of water dispersible polyaniline/poly(styrenesulfonic acid) modified graphene composite and its electrochemical properties

    International Nuclear Information System (INIS)

    Luo, Jing; Jiang, Sisi; Liu, Ren; Zhang, Yongjie; Liu, Xiaoya

    2013-01-01

    A novel water-dispersible polyaniline (PANI)/graphene composite was prepared by the in situ polymerization of aniline on the surface of poly(styrenesulfonic acid) (PSS) coated graphene nanosheets (PSS-GR). The characterization of atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy confirmed the successful synthesis of PANI/PSS-GR composites and strong interaction between PANI and PSS-GR. The as-synthesized PANI/PSS-GR composite is readily dispersible in water and forms a homogeneous aqueous dispersion which is stable for more than one month. More interestingly, PSS-GR can dope PANI effectively and shift its electroactivity to a neutral or even alkaline environment, making them promising candidates for biological application. In addition, the PANI/PSS-GR composite shows improved electrical conductivity and electrochemical stability compared to the neat polyaniline. Furthermore, the potential use of this composite for detection of ascorbic acid (AA) was investigated. A low detection limit of 5 × 10 −6 M and a linear detection range between 1 × 10 −4 M and 1 × 10 −3 M was attained, indicating the high electrocatalytic ability of this composite. Anticipatedly, the synthesized composite will find promising applications as a novel electrode material in sensors and other devices in virtue of their outstanding characteristics of water-dispersibility, good cycle stability, electroactivity in neutral solution and excellent electrocatalytic ability

  5. Synthesis of polyaniline-based inks for inkjet printed devices: electrical characterization highlighting the effect of primary and secondary doping

    International Nuclear Information System (INIS)

    Chiolerio, Alessandro; Bocchini, Sergio; Porro, Samuele; Perrone, Denis; Fabrizio Pirri, Candido; Scaravaggi, Francesco; Beretta, Davide; Caironi, Mario

    2015-01-01

    Engineering applications for printed electronics demand solution processable electrically conductive materials, in the form of inks, to realize interconnections, piezoresistive pressure sensors, thermoresistive temperature sensors, and many other devices. Polyaniline is an intrinsically conductive polymer with modest electrical properties but clear advantages in terms of solubility and stability with temperature and in time. A comprehensive study, starting from its synthesis, primary doping, inkjet printing and secondary doping is presented, with the aim of elucidating the doping agent effects on its morphology, printability and electronic performance. (paper)

  6. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  7. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  8. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    Science.gov (United States)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  9. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    Science.gov (United States)

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-01-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179

  10. Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Somik; Kumar, A [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Saikia, Jyoti P; Konwar, B K, E-mail: ask@tezu.ernet.in [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India)

    2010-01-29

    Polyaniline (PAni) nanofibers have been synthesized by interfacial polymerization using hydrochloric acid (HCl) and camphor sulfonic acid (CSA) as dopants. The powder x-ray diffraction pattern of bulk polyaniline reveals ES I structure and has been indexed in a pseudo-orthorhombic lattice. The broadening of (110) reflection in the nanofiber samples has been analysed in terms of domain length and strain using a convolution method employing a Voigt function. The increase in d spacing for the (110) reflection in HCl-doped PAni nanofibers have been assigned to the change in structural conformation due to the increase in the tilt angle of the polymer chain, which is also evident from microRaman spectra. UV-vis spectra of the PAni nanofibers exhibit a remarkable blueshift in the absorption bands attributed to {pi}-{pi}{sup *} and {pi}-polaron band transitions indicating a reduction in particle size, which is also observed in TEM micrographs. The antioxidant activity of the polyaniline nanofiber samples has been investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-visible spectroscopy. It has also been observed that polyaniline nanofibers are able to protect the haemolysis of red blood cells (RBCs) from cytotoxic agents, namely H{sub 2}O{sub 2}. The observed enhancement in the antioxidant and haemolysis prevention activity of the PAni nanofibers as compared to bulk has been attributed to the reduction in particle size and changes in structural conformation, as evident from TEM, XRD and microRaman spectroscopy.

  11. Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Yi; Ji, Hui; Shi, Huan; Zhang, Ting; Xia, TianDong

    2015-01-01

    Highlights: • Stearic acid/polyaniline composite PCM with electrical conductivity was fabricated. • Stearic acid acted as thermal energy storage media and doping acid. • Latent heats of SA/PANI are as high as the same type composites. • Improved electrical conductivity of capsules is 0.7042 S cm −1 . - Abstract: This paper presents the experimental investigation on the thermal properties and electrical conductivity of the new microencapsulated phase change material by entrapping of stearic acid (SA) into PANI (polyaniline) shell through self-assembly method. Experimental results reveal that PANI nuclei grew on the surface of SA, and then copied its original morphological structure and finally exhibited peony flower-like morphology. The two components have good compatibility and have no chemical reaction both in the process of fabrication and subsequent use, while hydrogen bondings between the imino groups and carboxyl groups exist. The maximum mass fraction of stearic acid loaded in SA/PANI is determined as high as 62.1 wt% without seepage of melted SA from capsules. Due to the secondary doping with carboxyl group, the composite phase change material embedded with SA exhibits improved electrical conductivity from 0.3968 S cm −1 to 0.7042 S cm −1 when compared to PANI. The phase change temperatures and latent heats of SA/PANI are measured to be 55.6 °C and 113.02 J/g for melting and, 50.8 °C and 112.58 J/g for freezing, respectively. TG analysis test revealed that the prepared SA/PANI composite PCM has high thermal durability in working temperature range. Moreover, the results of DSC, FT-IR, TG, conductivity investigation and thermal cycling test are all show that the thermal reliability and electrical conductivity of the SA/APNI have imperceptible changes. In total, the additional electrical conductivity, high heat storage potential and good thermal reliability and stability facilitated SA/PANI to be considered as a viable candidate for thermal

  12. An electron conductive polymer, poly-aniline, in gas separation: optimisation of transport properties by alternated acid-base treatment

    International Nuclear Information System (INIS)

    Rebattet, Laurence

    1994-01-01

    The objective of this research thesis is to study the variation of gas permeation properties of poly-aniline during a doping/de-doping/re-doping cycle, and to study the evolution of the separation power of this polymer. Scanning electronic microscopy is used to study the microstructure and more particularly how the doping agent is distributed within the polymer. Permeabilities, diffusion coefficients, sorption solubilities and interaction energies are measured by using coupled permeation and micro-gravimetry-calorimetry methods. A range of gases (H 2 , O 2 , CO 2 , N 2 , CH 4 ) is analysed [fr

  13. One-step synthesis of polyaniline fibers with double-soft templates and evaluation of their doping process

    Science.gov (United States)

    Chen, Yong; Zhao, Hui; Han, Bing

    2014-12-01

    In this paper, we have developed a simple, facile, and efficient approach to synthesize polyaniline fibers (PANI fibers) from aniline in the presence of (NH4)2S2O8 with sodium dodecyl benzene sulfonate (SDBS) and L-camphorsulfonic acid (L-CSA) as double templates. The chemical constituents of the composites are characterized by Fourier transformation infrared spectroscopy (FTIR). The results demonstrate that the PANI fibers were synthesized successfully. The morphology of the composites was characterized by scanning electron microscopy (SEM). The SEM and UV-Vis images show an interesting growth and doping process. Moreover, cyclic voltammetry (CV) was used to characterize the electrochemical properties of PANI microfibers. They also give a pair of redox peaks and have better operation stability, which indicates that the composites show distinct electrochemical performance. So the PANI microfibers would have potential applications in the fields of analytical chemistry, bioanalysis, etc.

  14. Pressure Dependence of the Electrical Resistivity in Polymer Polyaniline

    Directory of Open Access Journals (Sweden)

    Daihui Huang

    2013-01-01

    Full Text Available Polyaniline (PAN was prepared by using a technique of chemical synthesis to obtain the insulating emeraldine base form. And then PAN was doped with toluenesulfonic acid (TSA, HCl, or camphor sulfonic acid (CSA to protonate it into conducting salt form. The morphologies and electrical property of PAN under atmospheric pressure were investigated. Subsequently, the high pressure using a Bridgman anvil cell was applied on the doped PAN, and the effect of high pressure on the properties of doped PAN was analyzed. At normal pressure, the conductivity of PAN increases as the PH value increases. While at high pressures, the conductivity of PAN increases, and then it becomes independent of pressure. The results indicate that the conductivity of PAN is related to the presence of the polaron band, and the doped PAN under high pressure will be enhanced strongly in conductivity because of overlap of polaron band and π band. However, with the further increase of the applied pressure, scattering mechanisms of carriers limit the conductivity of PAN.

  15. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  16. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hui; Zhu, Wencai; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China); Liu, Xiuyu [Shandong Academy of Sciences, Jinan, 250114 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)

    2016-12-01

    The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd{sup 2+} and Pb{sup 2+} using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd{sup 2+} in a range of 0.05–60 μg L{sup −1}, with the detection limit (S/N = 3) of 0.02 μg L{sup −1}, and for Pb{sup 2+} in a range of 0.1–60 μg L{sup −1}, with the detection limit (S/N = 3) of 0.05 μg L{sup −1}. The new electrode was successfully applied to real water samples for simultaneous detection of Cd{sup 2+} and Pb{sup 2+} with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions. - Highlights: • One-dimensional phytic acid doped polyaniline nanofibers were prepared. • Phytic acid based nanocomposite was used to detect metal ions for the first time. • Detection limits for Cd and Pb using DPASV were 0.02 and 0.05 μg L{sup −1}, respectively. • Cd and Pb in real water samples were measured with satisfactory results.

  17. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    Science.gov (United States)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  18. A united event grand canonical Monte Carlo study of partially doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Byshkin, M. S., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it; Correa, A. [Modeling Lab for Nanostructure and Catalysis, Dipartimento di Chimica e Biologia and NANOMATES, University of Salerno, 84084, via Ponte don Melillo, Fisciano Salerno (Italy); Buonocore, F. [ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome (Italy); Di Matteo, A. [STMicroelectronics, Via Remo de Feo, 1 80022 Arzano, Naples (Italy); IMAST Scarl Piazza Bovio 22, 80133 Naples (Italy); Milano, G., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it [Modeling Lab for Nanostructure and Catalysis, Dipartimento di Chimica e Biologia and NANOMATES, University of Salerno, 84084, via Ponte don Melillo, Fisciano Salerno (Italy); IMAST Scarl Piazza Bovio 22, 80133 Naples (Italy)

    2013-12-28

    A Grand Canonical Monte Carlo scheme, based on united events combining protonation/deprotonation and insertion/deletion of HCl molecules is proposed for the generation of polyaniline structures at intermediate doping levels between 0% (PANI EB) and 100% (PANI ES). A procedure based on this scheme and subsequent structure relaxations using molecular dynamics is described and validated. Using the proposed scheme and the corresponding procedure, atomistic models of amorphous PANI-HCl structures were generated and studied at different doping levels. Density, structure factors, and solubility parameters were calculated. Their values agree well with available experimental data. The interactions of HCl with PANI have been studied and distribution of their energies has been analyzed. The procedure has also been extended to the generation of PANI models including adsorbed water and the effect of inclusion of water molecules on PANI properties has also been modeled and discussed. The protocol described here is general and the proposed United Event Grand Canonical Monte Carlo scheme can be easily extended to similar polymeric materials used in gas sensing and to other systems involving adsorption and chemical reactions steps.

  19. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    Science.gov (United States)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  20. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  1. Modification of conductive polyaniline with carbon nanomaterials

    Science.gov (United States)

    Sedaghat, Sajjad; Alavijeh, Mahdi Soleimani

    2014-08-01

    The synthesis of polyaniline/single-wall nanotube, polyaniline/multi-wall nanotube and polyaniline/single-wall nanotube/graphen nanosheets nanocomposites by in situ polymerization are reported in this study. The substrates were treated with a mixture of concentrated sulfuric acid and concentrated nitric acid before usage to functionalize with carboxylic and hydroxyl groups. Aniline monomers are adsorbed and polymerized on the surface of these fillers. Structural analysis using scanning electron microscopy showed that nanomaterials dispersed into polymer matrix and made tubular structures with diameters several tens to hundreds nanometers depending on the polyaniline content. These nanocomposites can be used for production of excellent electrode materials applications in high-performance supercapacitors.

  2. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  3. Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors

    Science.gov (United States)

    Zhu, Jun; Kong, Lirong; Shen, Xiaoping; Chen, Quanrun; Ji, Zhenyuan; Wang, Jiheng; Xu, Keqiang; Zhu, Guoxing

    2018-01-01

    Three-dimensional (3D) graphene aerogel and its composite with interconnected pores have aroused continuous interests in energy storage field owning to its large surface area and hierarchical pore structure. Herein, we reported the preparation of 3D nitrogen-doped graphene/polyaniline (N-GE/PANI) composite foam for supercapacitive material with greatly improved electrochemical performance. The 3D porous structure can allow the penetration and diffusion of electrolyte, the incorporation of nitrogen doping can enhance the wettability of the active material and the number of active sites with electrolyte, and both the N-GE and PANI can ensure the high electrical conductivity of total electrode. Moreover, the synergistic effect between N-GE and PANI materials also play an important role on the electrochemical performance of electrode. Therefore, the as-prepared composite foam could deliver a high specific capacitance of 528 F g-1 at 0.1 A g-1 and a high cyclic stability with 95.9% capacitance retention after 5000 charge-discharge cycles. This study provides a new idea on improving the energy storage capacity of supercapacitors by using 3D graphene-based psedocapacitive electrode materials.

  4. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    Science.gov (United States)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml-1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml-1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml-1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity, wide

  5. Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2017-11-01

    Full Text Available Although polymerized aniline (polyaniline, PANI with and without iodine (I2 doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP deposition. Therefore, this study characterized pure and I2-doped PANI films synthesized using an advanced APP polymerization system. The I2 doping was conducted ex-situ and using an I2 chamber method following the APP deposition. The pure and I2-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM, atomic force microscope (AFM, X-ray Diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and time of flight secondary ion mass spectrometry (ToF-SIMS studies. When increasing the I2 doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C–N and C–H bonds when increasing the I2 doping time due to the reduction of hydrogen in the PANI films via the I2. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I2 doping time.

  6. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  7. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.

    Science.gov (United States)

    Khan, Asif Ali; Baig, Umair; Khalid, Mohd

    2011-02-28

    In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO

    International Nuclear Information System (INIS)

    Densakulprasert, Nataporn; Wannatong, Ladawan; Chotpattananont, Datchanee; Hiamtup, Piyanoot; Sirivat, Anuvat; Schwank, Johannes

    2005-01-01

    The effects of zeolite content, pore size and ion exchange capacity on electrical conductivity response to carbon monoxide (CO) of polyaniline/zeolite composites were investigated. Zeolite Y, 13X, and synthesized AlMCM41, all having the common cation Cu 2+ , were dry mixed with synthesized maleic acid (MA) doped polyaniline and compressed to form polyaniline (PANI)/zeolite pellet composites. The Y, 13X and AlMCM41 zeolite have the nominal pore sizes of 7, 10, 36 A, and the Cu 2+ exchange capacities of 0.161, 0.087, and 0.044 mol/g, respectively. With an addition of 13X zeolite to pristine polyaniline, the electrical conductivity sensitivity to CO/N 2 gas increases with zeolite content. For the effect of zeolite type, the highest electrical conductivity sensitivity is obtained with the 13X zeolite, followed by the Y zeolite, and the AlMCM41 zeolite, respectively. Poor sensitivity of zeolite AlMCM41 is probably due to its very large pore size and its lowest Cu 2+ exchange capacity. Y zeolite and 13X zeolite have comparable pore sizes but the latter has a greater pore free volume and a more favorable location distribution of the Cu 2+ ions within the pore. The temporal response time increases with the amount of zeolite in the composites but it is inversely related to the amount of ion exchange capacity

  9. The electrochemical synthesis of polyaniline/polysulfone composite films and electrocatalytic activity for ascorbic acid oxidation

    International Nuclear Information System (INIS)

    Hu Zhongai; Shang Xiuli; Yang Yuying; Kong Chao; Wu Hongying

    2006-01-01

    Polyaniline (PANI)/polysulfone (PSF) composite films with asymmetric porous structure were successfully prepared by electropolymerization. The back face (in contact with the electrode) of the freestanding composite film is green while the outer face is white. The chemical component and the morphology of the surfaces were characterized by FTIR spectra and scanning electron microscopy, respectively. It was shown that replicate films gave reproducible voltammetry in 0.5 M H 2 SO 4 . The influence of the electrolyte and the acidic concentration on the redox peak currents of polyaniline were investigated in detail. The composite film electrode showed good electrocatalytic activity for ascorbic acid, which the anodic overpotential was evidently reduced compared with that obtained at bare Pt electrode. The diffusion coefficient of ascorbic acid was 1.38 x 10 -6 cm 2 s -1

  10. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal [Chemical Engineering department, Universiti Teknology Petronas, Tronoh (Malaysia)

    2015-06-24

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  11. p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties

    Directory of Open Access Journals (Sweden)

    ASHOK K. SHARMA

    2013-04-01

    Full Text Available Composites of polyaniline and carbon nanotube (CNT were prepared by in-situ chemical polymerization method using various aniline concentrations in the initial polymerization solution with p-toluene sulfonic acid (PTS as secondary dopant and mechanical mixing of the PANI and CNT using different weight ratios of PANI and CNTs. The structural characterizations of the composites were done by Fourier transform infrared (FTIR and Ultra violet visible spectroscopy (UV-Visible. Scanning electron microscopy (SEM was used to characterize the surface morphology of the composites. It was found that the composites prepared by in-situ chemical polymerization had smoother surface morphology in comparison to the composites obtained by mechanical mixing. The capacitive studies reveal that the in-situ composite has synergistic effect and the specific capacitance of the composite calculated from cyclic voltammogram (CV was 385.1 F/g. Thermal studies indicate that the composites are stable as compared to PANI alone showing that the CNT contributes towards thermal stability in the PANI-CNT composites.

  12. Adsorption of Chromium from Aqueous Solution Using Polyaniline

    Directory of Open Access Journals (Sweden)

    Majid Riahi Samani

    2011-10-01

    Full Text Available New group of polymers have been synthesized that are conductive of electricity so they are called conducting polymers. One of the most conducting polymers is "polyaniline". In the present study, polyaniline was synthesized by oxidizing aniline monomer under strongly acidic conditions using potassium iodate as an initiator of oxidative polymerization. Synthesized polyaniline as a powder used as an adsorbent to remove chromium from aqueous solution. Experiments were conducted in batch mode with variables such as amount of polyaniline, chromium solution pH and adsorbtion isotherms. Due to presence of Cr (III in solution after using polyaniline, removal mechanism is the combination of surface adsorption and reduction. It seems that polyaniline reduces the Cr(VI to Cr(III and adsorbs the Cr(III and a part of remaining  Cr(VI. It is well known that nitrogen atom in compounds of amine derivative makes co-ordinate bond with positive charge of metals due to the presence of electron in sp3 orbital of nitrogen. The majority of total chromium removal  occurred at 30minute for polyaniline  and the optimum  time for  hexavalent chromium  removal was about 5 min. Polyaniline has the maximum total cheomiume removal at pH, 3-9. The maximum hexavalent chromium removal occurred at acidic pH for polyanilines. The equilibrium adsorption data for polyaniline fitted both Freundlich’s and Langmuir’s isotherms. This research shows that polyaniline can be used as an adsorbent  for removal chromium from aqueous solution.

  13. Novel ammonia sensor based on polyaniline/polylactic acid composite films

    International Nuclear Information System (INIS)

    Sotirov, S; Bodurov, I; Marudova, M

    2017-01-01

    We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al 2 O 3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected. (paper)

  14. Novel ammonia sensor based on polyaniline/polylactic acid composite films

    Science.gov (United States)

    Sotirov, S.; Bodurov, I.; Marudova, M.

    2017-01-01

    We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al2O3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected.

  15. Magnetic and electromagnetic properties of Pr doped strontium ferrite/polyaniline composite film

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Yuqing; Wang, Yan, E-mail: wangyan287580632@126.com

    2014-11-15

    This paper reported three acid (including hydrochloric acid HCl, p-toluenesulfonic acid PTS and D-camphor-10-acid CSA) doped SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}/PANI composite film and the HCl–PANI film prepared by a sol–gel method and in-situ oxidative polymerization. The characteristics of the film phase structure, surface morphology, conductivity and magnetic and electromagnetic properties were studied by using XRD, XPS, FESEM, four-probe tester, VSM and Vector Network Analyzer. The resistivity of organic acid doped composite films is higher than that of the HCl doped one. The saturation and remanent magnetization of PTS and HCl doped composite films are greater than the CSA-doped one; however, the coercivity of the three acid doped composite films is basically 5546 Oe. The saturation magnetization, remanent magnetization and coercivity of SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film are greater than those of the SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}–PANI composite film. In the frequency range of 8–12 GHz, the dielectric loss of HCl–PANI film is the maximum, and the dielectric loss of SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film is the minimum; the magnetic loss of the four films is in descending order as SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film, PrSrM/(HCl–PANI) composite film, PrSrM/(CSA–PANI) and HCl–PANI film. - Highlights: • Synthesizing three acid doped SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}/PANI composite films. • By sol–gel method and in-situ oxidative polymerization. • With excellent magnetic and electromagnetic properties. • The particular coating structure of PANI and Sr-ferrite. • Great interest for magnetic material and microwave absorbers.

  16. Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors

    Science.gov (United States)

    Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin

    2017-12-01

    In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.

  17. Electrical bistability in conductive hybrid composites of doped polyaniline nanofibers-gold nanoparticles capped with dodecane thiol.

    Science.gov (United States)

    Borriello, A; Agoretti, P; Cassinese, A; D'Angelo, P; Mohanraj, G T; Sanguigno, L

    2009-11-01

    A novel electrical bistable hybrid nanocomposite based on doped Polyaniline nanofibers with 1-Dodecanethiol-protected Gold nanoparticle (PAni.AuDT), 3-4 nm in size, as the conductive component and polystyrene as polymer matrix was prepared. The structural morphology of the composite and the dispersion of nanoparticles inside it were evaluated using Transmission Electron Microscopy (TEM). The thermal stability and the ratio Polyaniline/Gold nanoparticles in the composite were determined by using thermogravimetric analysis. The electrical bistability of the PAni.AuDT-PS composite, the influence of the dispersion of the PAni.AuDT conductive network and the basic operation mechanism, have been assessed by measuring the electrical response of planar device architectures, also as a function of the environmental temperature (in the range 200 K K). The basic operation mechanism of the hybrid compound has been then correlated to the combined action of the thermally-induced scattering of charge carriers and the thermal contraction of the hosting polymeric matrix. Moreover, the right compromise between these two effects in terms of the most efficient bistability has been studied, founding the concentration of the conductive component which optimizes the device on-off ratio (I(on)/ I(off)).

  18. One-Step Electrochemical Polymerization of Polyaniline Flexible Counter Electrode Doped by Graphene

    Directory of Open Access Journals (Sweden)

    Qi Qin

    2016-01-01

    Full Text Available To improve the photoelectric property of polyaniline (PANI counter electrode using for flexible dye-sensitized solar cell (DSSC, graphene (GN was doped in PANI films covered on flexible conducting substrate by one-step electrochemical method, and then GN/PANI composites are characterized by scanning electron microscope (SEM, fourier transform infrared spectroscopy (FTIR, four probe instrument, and so on. The results show that PANI particles can be electrodeposited on the surface of GN sheets as the potential rising to 2.0 V. This formed unique PANI-GN-PANI lamellar structure owing to the strong interaction of conjugated π electron between GN and PANI results in the superior conductivity and catalytic performance of GN/PANI electrode. The maximum conversion efficiency of dye-sensitized solar cell with this counter electrode reaches 4.31%, which is much higher than that of GN-free PANI counter electrode.

  19. Characteristics of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids

    Directory of Open Access Journals (Sweden)

    Venancio Everaldo C.

    2001-01-01

    Full Text Available In the present work the characterization of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids was performed using different techniques. The electrochemical response by cyclic voltammetry showed redox processes due to the formation of polaron and bipolaron and polymer degradation. The characterization by infrared and UV-visible spectroscopies indicated that the polymers are in the emeraldine salt form with perchlorate anions incorporated. The films produced with both acids in propylene carbonate media presented a compact morphology as observed by scanning electron microscopy. By testing the polyaniline film produced in selected conditions in a lithium battery environment it was found that it presents a high coulombic efficiency, promising for battery applications.

  20. Thermoelectric properties of conducting polyaniline/BaTiO3 nanoparticle composite films

    Science.gov (United States)

    Anno, H.; Yamaguchi, K.; Nakabayashi, T.; Kurokawa, H.; Akagi, F.; Hojo, M.; Toshima, N.

    2011-05-01

    Conducting polyaniline (PANI)/BaTiO3 nanoparticle composite films with different molar ratio values R=1, 5, 10, and 100 have been prepared on a quartz substrate by casting the m-cresol solution of PANI, (±)-10-camphorsulfonic acid (CSA) and BaTiO3 nanoparticle with an average diameter of about 20 nm. The CSA-doped PANI/BaTiO3 composite films were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis transmission spectroscopy. The Seebeck coefficient and the electrical conductivity of the films with different R values, together with CSA-doped PANI films, were measured in the temperature range from room temperature to ~400 K. The relation between the Seebeck coefficient and the electrical conductivity in the composite films are discussed from a comparison of them with those of CSA-doped PANI films and other PANI composite films.

  1. Gamma- and electron dose response of the electrical conductivity of polyaniline based polymer blends

    International Nuclear Information System (INIS)

    Sevil, U.A.; Gueven, O.; Slezsak, I.

    2002-01-01

    Complete text of publication follows. Conducting polymers, also known as 'synthetic metals' have been the subject of widespread investigations over the past decade due to their very promising characteristics. Polyaniline (PANI) holds a special position among conducting polymers in that its most highly conducting doped form can be reached by protonic acid doping or oxidative doping. It was published earlier, that the electrical conductivity of some polyaniline based polymer composites increases to a significant extent when irradiated to gamma, electron or UV radiation. The aim of the present study was to measure the high frequency conductivity of blended films of PANI with poly(vinylchloride), PVC, and chlorinated poly(propylene) irradiated in air to different doses. In order to find the most suitable composition od these composites the mass percentage of PANI within the PPCl and PVC matrix was changed between 5 - 30%. These samples were then gamma irradiated and the induced electrical conductivity was measured in the 1 kHz - 1 MHz frequency range to determine the most sensitive evaluation conditions. After selecting both the most suitable measuring conditions as well as the blend compositions the dose response of the chosen samples was determined in the dose range of 10 - 250 kGy. With respect to potential dosimetry application the effect of electron irradiation, the effect of irradiation temperature and the stability of the irradiated samples have also been investigated

  2. Novel microstructure in spin coated polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Deepak; Dutta, V [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India)

    2007-05-08

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at {approx}0 deg. C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at {approx}900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm.

  3. Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Alan R., E-mail: alan.r.hopkins@aero.org [Aerospace Corporation, Space Materials Lab, Micro/Nano Technology Dept, Polymers Section, M2/242, Los Angeles, CA 90009-2957 (United States); Tomczak, Sandra J. [AFRL/RZSM Materials Application Branch, Space and Missile Propulsion Division 10 East Saturn Blvd., Bldg. 8451, Edwards Air Force Base, CA 93524 (United States); Vij, Vandana [ERC. Inc., AFRL/PRSM, Edwards AFB, CA (United States); Jackson, Andrew J. [National Institute of Standards and Technology (NIST) Center for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899-6102 (United States)

    2011-12-30

    Nanocomposites of polyaniline nanofibers and polyimide were fabricated and studied using small angle neutron scattering (SANS). The immiscible nature of the conformationally dissimilar polyaniline nanofiber and polyimide host is established by a series of experiments involving neutron scattering. Based on these techniques, we conclude that the crystal structure of the polyimides is not disrupted, and that there is no mixing between the two components on a molecular level. The morphology of the conducting salt component was analyzed by SANS data and was treated by two common models: Debye-Bueche (D-B) and inverse power law (IPL). Due to deviations in the linear curve fitting over a large scattering range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2% concentration, the D-B model suggested salt domains between 20 and 70 A with fractal geometries implied by the IPL model. As salt concentrations increased to 5%, the structures were observed to change, but there is no simple structural model that provides a suitable basis for comparison.

  4. Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid

    International Nuclear Information System (INIS)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Graphical abstract: Polyaniline (PANI)/TiO 2 composites were prepared by in situ polymerization using para-toluenesulfonic acid (p-TSA). The composites showed different morphology and specific capacitances as a function of aniline concentration, which are related to the morphology (shape or size) of particles. Scheme of the formation of composites consisting of PANI film and the micelle structures is shown. Highlights: ► PANI/TiO 2 composite were prepared with a different concentration of monomer and dopant. ► Aniline/acid ratio influenced the morphological and electrochemical properties. ► The composites showed different capacitances as a function of aniline concentrations. ► Aniline/acid ratio could influence on the dispersion and surface roughness of particles. - Abstract: Polyaniline (PANI)/titanium dioxide (TiO 2 ) composites were prepared with a chemical oxidation polymerization of aniline monomer (ANI) with various molar ratios between ANI and para toluenesulfonic acid (p-TSA). To find an effect of the [ANI]:[p-TSA] molar ratio on the electrochemical properties of the prepared PANI/TiO 2 composites, the composites were synthesized under same conditions except the p-TSA concentrations. The prepared composite films had more homogeneous TiO 2 dispersion with changing [ANI]:[p-TSA] molar ratios from 6:1 to 1:1. p-TSA surfactant-like doping acid helped the dispersion of TiO 2 particles in the PANI matrix. PANI covering the TiO 2 surfaces was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Prepared PANI films on the TiO 2 particles had the smoothest surface when the ANI and p-TSA had 1:1 molar ratio in the reaction solution. The composite prepared with molar ratio [ANI]:[p-TSA] of 3:1 had the highest capacitance (800 F g −1 ) among the prepared composites.

  5. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst.

    Science.gov (United States)

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications.

  6. Synthesis and Characterization of Processable Polyaniline Salts

    International Nuclear Information System (INIS)

    Gul, Salma; Bilal, Salma; Shah, Anwar-ul-Haq Ali

    2013-01-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltam-metry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA.

  7. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  8. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.

  9. Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors

    Science.gov (United States)

    Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang

    2013-11-01

    Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.

  10. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Chandrani; Kumar, Ashok, E-mail: ask@tezu.ernet.in, E-mail: okram@csr.res.in [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784 028 (India); Kuo, Yung-Kang [Department of Physics, National Dong-Hwa University, Hualien 974, Taiwan (China); Okram, Gunadhor Singh, E-mail: ask@tezu.ernet.in, E-mail: okram@csr.res.in [Electrical Transport Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India)

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  11. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  12. A Conductive Porous Structured Chitosan-grafted Polyaniline Cryogel for use as a Sialic Acid Biosensor

    International Nuclear Information System (INIS)

    Fatoni, Amin; Numnuam, Apon; Kanatharana, Proespichaya; Limbut, Warakorn; Thavarungkul, Panote

    2014-01-01

    Highlights: • A novel chitosan grafted polyaniline cryogel was used as support for a highly stable and sensitive biosensor. • The use of two enzymes mediated with ferrocene showed a high selectivity for sialic acid. • The biosensor provided a rapid sialic acid detection in blood. - Abstract: A porous conductive supporting material base on chitosan grafted polyaniline (CPANI) cryogel was developed for the fabrication of a sialic acid biosensor. Two enzymes, N-acetylneuraminic acid aldolase (NAL) and pyruvate oxidase (PYO), were employed together with an electrochemical detector. The electron transfer was further enhanced by using multiwalled carbon nanotubes (MWCNTs) and mediated by ferrocene (Fc) entrapped in the cryogel pores wall. A sialic acid derived electroactive product was detected amperometrically in a flow injection system. The fabricated sialic acid biosensor provided excellent analytical performances with a wide linear range of 0.025 to 15.0 mM and a limit of detection of 18 μM. Under the low applied potential of 0.20 V versus a Ag/AgCl, common electroactive interfering compounds such as ascorbic acid, uric acid and pyruvic acid were not detected and they have no effect on the analysis of sialic acid. The fabricated sialic acid biosensor also demonstrated a high stability after up to 100 injections. The reliability of the biosensor to detect sialic acid in blood plasma was in good agreement (P > 0.05) with a standard periodic-resorcinol spectrophotometric method. This easy to prepare conductive and biocompatible porous structure should be a prospective supporting material for biosensor development

  13. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia

    International Nuclear Information System (INIS)

    Pandey, Indu; Jha, Shashank Shekhar

    2015-01-01

    Highlights: • Pencil graphite electrode was non-covalently functionalized by C-dots. • Electrochemically synthesized ferrocene-sulfonic acid doped PANI film was used as chiral recognition element. • Electrochemical chiral sensing of L-ascorbic acid and D-ascorbic acid was carried out. • L-ascorbic acid determination was done in aqueous, biological and pharmaceutical samples at nM level. - Abstract: A simple and novel method is proposed for chiral separation of L-ascorbic acid and D-ascorbic acid in human cerebrospinal fluids and blood plasma samples. Electro-polymerized molecularly imprinted poly-aniline ferrocenesulfonic acid-C-dots modified pencil graphite electrodes was successfully applied for separation and quantification of D-/L-ascorbic acid in aqueous and some biological samples. Parameters, important to control the performance of the electrochemical sensor were investigated and optimized, including the effects of pH, monomer- template ratios, electropolymerization cycles and scan rates. The molecularly imprinted film exhibited a high chiral selectivity and sensitivity towards D-ascorbic acid and L-ascorbic acid respectively. The surface morphologies and electrochemical properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry, chrono-amperometry and electrochemical impedance spectroscopy. L-ascorbic acid selective sensor shows excellent selectivity towards the L-ascorbic acid in comparison to D- ascorbic acid vice versa for D- ascorbic acid selective sensor. Under optimal conditions the linear range of the calibration curve for L- ascorbic acid and D- ascorbic acid was 6.0–165.0 nM and 6.0–155.0 nM, with the detection limit of 0.001 nM and 0.002 nM. Chiral detection of L-ascorbic acid was successfully carried out in pharmaceuticals and human plasma samples (pregnant women and non pregnant women) via proposed sensor with good selectivity and sensitivity.

  14. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Science.gov (United States)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  15. Self-doping of polyaniline prepared with the FeCl3/H2O2 system and the origin of the Raman band of emeraldine salt at around 1375 cm−1

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Zedník, J.; Vohlídal, J.

    2015-01-01

    Roč. 64, č. 12 (2015), s. 1801-1807 ISSN 0959-8103 R&D Projects: GA ČR(CZ) GAP205/12/0911 Institutional support: RVO:61389013 Keywords : polyaniline * partial self-doping * polarons Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.414, year: 2015

  16. Optical band gap tuning and electrical properties of polyaniline and its nanocomposites for hybrid solar cell application

    Science.gov (United States)

    Singh, R.; Choudhary, R. B.; Kandulna, R.

    2018-05-01

    Hcl doped conducting polyaniline-CdS nanocomposite has been prepared via In-situ polymerization in which cadmium nitrate was used as a source for cadmium. The structural morphology was investigated using FESEM and the presence of fibrous polyaniline and CdS nanoparticles. The synthesis of CdS and polyaniline was confirmed using the XRD analysis. I-V characteristic was used to explore the electrical behavior of PANI and its nanocoposites. Optical properties were studied and minimum band gap with highest band absorbance was found for synergistic concentration PANI-CdS (10%) for solar cells application.

  17. Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes

    International Nuclear Information System (INIS)

    Janosevic, Aleksandra; Ciric-Marjanovic, Gordana; Marjanovic, Budimir; Holler, Petr; Trchova, Miroslava; Stejskal, Jaroslav

    2008-01-01

    Conducting polyaniline 5-sulfosalicylate nanotubes and nanorods were synthesized by the template-free oxidative polymerization of aniline in aqueous solution of 5-sulfosalicylic acid, using ammonium peroxydisulfate as an oxidant. The effect of the molar ratio of 5-sulfosalicylic acid to aniline on the molecular structure, molecular weight distribution, morphology, and conductivity of polyaniline 5-sulfosalicylate was investigated. The nanotubes, which have a typical outer diameter of 100-250 nm, with an inner diameter of 10-60 nm, and a length extending from 0.4 to 1.5 μm, and the nanorods, with a diameter of 80-110 nm and a length of 0.5-0.7 μm, were observed by scanning and transmission electron microscopies. The presence of branched structures and phenazine units besides the ordinary polyaniline structural features was revealed by infrared and Raman spectroscopies. The stacking of low-molecular-weight substituted phenazines appears to play a major role in the formation of polyaniline nanorods. The precipitation-dissolution of oligoaniline templates as a key element in the formation of polyaniline nanotubes is proposed to explain the crucial influence of the initial pH of the reaction mixture and its decrease during the course of polymerization

  18. Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Janosevic, Aleksandra; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11001 Belgrade (Serbia); Marjanovic, Budimir [Centrohem, Vuka Karadzica bb, 22300 Stara Pazova (Serbia); Holler, Petr; Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.yu

    2008-04-02

    Conducting polyaniline 5-sulfosalicylate nanotubes and nanorods were synthesized by the template-free oxidative polymerization of aniline in aqueous solution of 5-sulfosalicylic acid, using ammonium peroxydisulfate as an oxidant. The effect of the molar ratio of 5-sulfosalicylic acid to aniline on the molecular structure, molecular weight distribution, morphology, and conductivity of polyaniline 5-sulfosalicylate was investigated. The nanotubes, which have a typical outer diameter of 100-250 nm, with an inner diameter of 10-60 nm, and a length extending from 0.4 to 1.5 {mu}m, and the nanorods, with a diameter of 80-110 nm and a length of 0.5-0.7 {mu}m, were observed by scanning and transmission electron microscopies. The presence of branched structures and phenazine units besides the ordinary polyaniline structural features was revealed by infrared and Raman spectroscopies. The stacking of low-molecular-weight substituted phenazines appears to play a major role in the formation of polyaniline nanorods. The precipitation-dissolution of oligoaniline templates as a key element in the formation of polyaniline nanotubes is proposed to explain the crucial influence of the initial pH of the reaction mixture and its decrease during the course of polymerization.

  19. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  20. Synthesis of polyaniline nanotubes through UV light catalytic method

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    2015-03-01

    Full Text Available In this study, nitrocellulose (NC fiber blanket prepared by electrostatic spinning method has been used as a template, and copper nitrate (Cu(NO32 as an oxidant to synthesise polyaniline nanotubes doped with heteropolyacid (H4SiW12O40, SiW12 using UV light catalytic method. Infrared spectroscopy (IR, X-ray powder diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM technologies were applied to characterize the prepared samples of polyaniline nanotubes. The results show that the external diameter of the tube is about 200 nm, and the internal diameter about 170 nm. We also give a reasonable speculation and explanation about the formation mechanism of the nanotubes.

  1. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  2. Facile synthesis of palladium nanoparticle doped polyaniline nanowires in soft templates for catalytic applications

    Science.gov (United States)

    Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.

    2017-02-01

    Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29  ×  10-3 s-1 and 20  ×  10-3 s-1 respectively with an actual Pd catalyst loading of 2.665  ×  10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.

  3. Processible conducting nanoscale cylinders due to self-organized polyaniline supra molecules

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Ruokolainen, J; Knaapila, M; Torkkeli, M; Serimaa, R; Monkman, AP; ten Brinke, G; Ikkala, O

    2003-01-01

    Polyaniline sulphonates contain hydrogen bonding acceptor sites, which allow construction of supramolecules and self-organized structures. Here we have characterized the phase behavior of complexes of polyaniline, camphorsulphomc acid (CSA) and 4-hexylresorcinol (tires), PANI(CSA)(x)(Hres)(y), using

  4. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes

    Science.gov (United States)

    Liu, Zhisen; Li, Dehao; Li, Zesheng; Liu, Zhenghui; Zhang, Zhiyuan

    2017-11-01

    A facile strategy for the fabrication of a nitrogen-doped 3D reduced graphene oxide (N-3D-rGO) macroporous structure is proposed in this paper. The proposed strategy used polystyrene microspheres as the templates and melamine as the nitrogen source. Using β-MnO2 as the oxidant, the as-prepared N-3D-rGO was then composited with polyaniline (PANI) nanowires (denoted as N-3D-rGO/PANI-B). The structure, morphology, and electrochemical properties of the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, charge-discharge test, and electrochemical impedance spectroscopy. Results revealed that the N-3D-rGO/PANI-B composite has a better specific capacity than the composites prepared with 3D-rGO as the support material and peroxydisulfate as the oxidant. These results suggested that N-3D-rGO/PANI-B has potential applications in supercapacitors.

  5. Preparation of maghemite and polyaniline nanocomposites assisted by ultrasound

    International Nuclear Information System (INIS)

    Costa, Renata Cerruti da; Souza Junior, Fernando Gomes de

    2014-01-01

    The study of systems constituted by iron oxide nanoparticles and polyaniline has increased in the last years. However, few studies are related to the sonication effect on the preparation of these hybrid materials. In this work the effect of sonication on the properties of maghemite/polyaniline hybrids was studied using experimental design techniques. The materials obtained were studied by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. Samples were also characterized by measuring the electric resistivity and by magnetic force tests. Obtained results show that the increase of the sonication power produces the increase of the doping process and the decrease of the electrical resistivity. The same sonication power produced the destruction of a large amount of the maghemite, leading to lower magnetic forces. (author)

  6. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles

    Science.gov (United States)

    Elsayed, M. A.; Gobara, Mohamed

    2016-08-01

    HCl-doped polyaniline (HCl-PANI) and titanium dioxide decorated with polyaniline (TiO2-decorated PANI) with different TiO2:PANI ratios were chemically prepared and utilized for the removal of tartrazine (TZ) dye from a synthetic aqueous solution. The mechanism of preparation of the sample suggested that aniline was adsorbed on the TiO2 surface before the polymerization process took place. Samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. The results showed that HCl-PANI and TiO2-decorated PANI have an amorphous structure. The thermal stability of the prepared samples was characterized using thermo-gravimetric (TG) analysis. HCl-PANI is stable up to 200 °C and the relative weight per cent of PANI in the TiO2-decorated PANI was 20, 25, 40 and 45%. The removal activity of TiO2-decorated PANI via TZ azo dye was investigated under UV light irradiations and compared with HCl-PANI and TiO2 particles. The results indicated the superiority of the TiO2-decorated PANI over pure HCl-PANI and TiO2. However, the excessive PANI percentage tends to form a relatively thick layer, and even aggregates on the surface of TiO2. This hinders the migration of excited electrons from the outer PANI layer to the inner TiO2 particles, which consequently leads to a decrease in the removal efficiency. A possible mechanism for the removal oxidative degradation is also mentioned.

  7. Conducting carbonized polyaniline nanotubes

    International Nuclear Information System (INIS)

    Mentus, Slavko; Ciric-Marjanovic, Gordana; Trchova, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min -1 up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 μm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 μm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm -1 , increased to 0.7 S cm -1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  8. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  9. Polyaniline emeraldine base nanofibers as a radiostabilizing agent for PMMA

    International Nuclear Information System (INIS)

    Araujo, Patricia L.B.; Ferreira, Carlas C.; Araujo, Elmo S.

    2007-01-01

    Polyaniline (PANI) presents antioxidant and radical-scavenging properties. Substances having these characteristics are good candidates for radioprotecting agents. Some studies have also shown results pointing out to biocompatibility and biodegradability of PANI. These characteristics are desirable for substances in contact with biological tissues and have important implications for inclusion of PANI in physical mixtures with conventional radiosterilizable polymers. In this work, nanofibers of polyaniline emeraldine doped with (±)-camphor-10-sulfonic acid (PANI-(±)-CSA) were prepared by self-assembly method. Polyaniline emeraldine base (PANI-EB) nanofibers were obtained after dedoping with NH 4 OH and used as additives in films of commercial poly (methyl methacrylate) (PMMA). In order to assess possible radiostabilizing effects of PANI-EB and its aniline monomer (An) on the PMMA matrix, films containing 0.075 and 0.15% (wt/wt) of these substances were submitted to gamma irradiation from 25 to 75 kGy doses. Variation on viscosity-average molar mass (Mv) of the PMMA matrix at 25 kGy dose showed that samples containing An and PANI-EB nanofibers in amounts of 0.15% (wt/wt) underwent less degradation than control sample. When nanofibers were used as additives, no measurable variation of Mv could be detected in PMMA samples at this dose. At 75 kGy, all composites containing PANI-EB nanofibers underwent less degradation than control samples, suggesting that these additives are able to retain their action at doses higher than standard sterilization dose. These evidences show that PANI-EB nanofibers could be useful additives in commercial PMMA used in medical applications. FTIR spectroscopic characterization and scanning electron microscopy (SEM) of PANI samples were also performed. (author)

  10. Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.

    Science.gov (United States)

    Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin

    2009-06-17

    In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A nanostructured graphene/polyaniline hybrid material for supercapacitors

    Science.gov (United States)

    Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin

    2010-10-01

    A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g-1 was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.

  12. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2011-08-01

    Full Text Available This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 mm Complimentary Metal Oxide Semiconductor (CMOS process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C.

  13. Pd and polyaniline nanocomposite on carbon fiber paper as an efficient direct formic acid fuel cell anode

    Science.gov (United States)

    Pandey, Rakesh K.

    2018-03-01

    Direct formic acid fuel cells are advantageous as portable power generating devices. In the present work, an anode catalyst for direct formic acid fuel cell (DFAFC) is presented which has good catalytic activity for formic acid oxidation. The catalyst is composed of Pd and conducting polymer polyaniline (Pd-PANI) nanocomposite. The catalyst was prepared by using a single step galvanostatic electrochemical deposition method. The Pd-PANI catalyst was electrodeposited at different time durations and a comparison of the catalytic activity at each deposition time was carried out and optimized.

  14. Synthesis, Property Characterization and Photocatalytic Activity of the Novel Composite Polymer Polyaniline/Bi2SnTiO7

    Directory of Open Access Journals (Sweden)

    Yunjun Yang

    2012-03-01

    Full Text Available A novel polyaniline/Bi2SnTiO7 composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi2SnTiO7 have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi2SnTiO7 was found to be a = 10.52582(8 Å. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi2SnTiO7 as catalyst. The results showed that novel polyaniline/Bi2SnTiO7 possessed higher catalytic activity compared with Bi2InTaO7 or pure TiO2 or N-doped TiO2 for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi2SnTiO7 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min−1. After visible light irradiation for 220 minutes with novel polyaniline/Bi2SnTiO7 as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.

  15. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  16. Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures

    International Nuclear Information System (INIS)

    Amarnath, Chellachamy A.; Chang, Jin Ho; Kim, Doyoung; Mane, Rajaram S.; Han, Sung-Hwan; Sohn, Daewon

    2009-01-01

    Electrochemical supercapacitive behaviour of polyaniline nanostructures, i.e., nanorods and nanospheres fabricated on aniline-primed conducting indium-tin oxide substrate via electroless surface polymerization using ammonium persulfate as initiator and selenious acid as efficient dopant is investigated. The self-assembled monolayer of urea derivative in presence of 3-(triethoxysilyl)-propyl isocyanate and aniline plays role of aniline-primed substrate. Polyaniline electrode composed of nanorods of excess surface area responsible for large redox reactions has shown 592 F g -1 specific capacitance which is significantly greater than closely compact polyaniline nanospheres, i.e., 214 F g -1

  17. Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors

    Science.gov (United States)

    Wang, Wenjuan; Hao, Qingli; Lei, Wu; Xia, Xifeng; Wang, Xin

    2014-12-01

    The electrochemical property of graphene can be significantly enhanced due to the incorporating of heteroatoms into graphene. In this article, the ternary nitrogen-doped graphene/nickel ferrite/polyaniline (NGNP) nanocomposite is synthesized by a facile two-step approach and its electrochemical properties as electrodes for supercapacitors are studied by various electrochemical measurements. The specific capacitance of NGNP is 645.0 F g-1 at 1 mV s-1 and 667.0 F g-1 at 0.1 A g-1 in a three- and two-electrode system, respectively, much higher than other binary electrodes. In a two-electrode symmetric system, the energy density of the NGNP electrode is 92.7 W h kg-1 at a power density of 110.8 W kg-1, moreover, that of the supercapacitor based on NGNP can also reach 23.2 W h kg-1 at a power density of 27.7 W kg-1. In addition, the capacitance loses only 5% after repeating test for 5000 cycles, and about 10% after 10,000 cycles at a high current density 5 A g-1. The results demonstrate the novel ternary NGNP electrode produced by the current economical method will gain promising applications in supercapacitors and other devices by virtue of its outstanding characteristics (high specific capacitance, high power and energy density, excellent cycle life).

  18. Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes.

    Science.gov (United States)

    Zhou, Tianzhu; Li, Cuiping; Jin, Huiling; Lian, Yangyang; Han, Wenmei

    2017-02-22

    Halloysite@polyaniline (HA@PANI) hybrid nanotubes are synthesized by the in situ chemical polymerization of aniline on halloysite clay nanotubes. By facilely tuning the dopant acid, pH, and apparent weight proportion for aniline (ANI) and halloysite (HA) nanotubes in the synthesis process, PANI with tuned oxidation state, doping extent, and content are in situ growing on halloysite nanotubes. The reaction system's acidity is tuned by dopant acid, such as HCl, H 2 SO 4 , HNO 3 , and H 3 PO 4 . The adsorption result shows the fabricated HA@PANI hybrid nanotubes can effectively adsorb Cr(VI) oxyanion and the adsorption ability changes according to the dopant acid, pH, and apparent weight proportion for ANI and HA in the synthesis process. Among them, the HA@PANI fabricated with HCl as dopant acid tuning the pH at 0.5 and 204% apparent weight proportion for ANI and HA (HP/0.5/204%-HCl) shows the highest adsorption capacity. The adsorption capacity is in accordance well with the doping extent of PANI in HA@PANI. Furthermore, when HP/0.5/204%-HCl is redoped with HNO 3 , H 2 SO 4 , and H 3 PO 4 , the adsorption capacity declines, implying the dopant acid in the process of redoping exhibits a marked effect on Cr(VI) oxyanion adsorption for the HA@PANI hybrid nanotubes. HP/0.5/204%-HCl and HP/0.5/204%-H 3 PO 4 have demonstrated good regenerability with an above 80% removal ratio after four cycles. Moreover, the HA@PANI adsorbent has better sedimentation ability than that of pure PANI. The adsorption behavior is in good agreement with Langmuir and pseudo second-order equations, indicating the adsorption of HA@PANI for Cr(VI) oxyanion is chemical adsorption. FT-IR and XPS of HA@PANI after Cr(VI) oxyanion adsorption indicate that the doped amine/imine groups (-NH + /═N + - groups) are the main adsorption sites for the removal of Cr(VI) oxyanion by electrostatic adsorption and reduction of the adsorbed Cr (VI) oxyanion to Cr(III) simultaneously.

  19. A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A

    International Nuclear Information System (INIS)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Jiang, Yuhang; Jiao, Kui; Li, Weihua

    2015-01-01

    Thin-layered molybdenum disulfide (MoS 2 ) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM. (author)

  20. Polyaniline/Carbon nanotube Electrochromic Films: Electrochemical Polymerization and characterization

    Science.gov (United States)

    Li, Xiao-Xia; Zhao, Liang; Ma, De-Yue; Zeng, Yu-Run

    2018-02-01

    Polyaniline/Carbon nanotube (PANI/CNT) composite films doped with dodecyl-benzene sulfonic acid were synthesized by cyclic voltammetry on an ITO-coated glass substrate. FTIR, XRD and electrochemical analyzer were used to characterize the micro-morphology, chemical structure, crystallinity and electrochromic behavior of the films, respectively. The effect of CNT content on the properties of the films was investigated. Results show that the introducing CNTs make aniline polymerize easier than before. Within a range, the conductivity and crystallinity of PANI/CNT composites improves with CNT content increasing. The electrochromic device made from the PAN/CNT film with a CNT content of 2.5wt% presents a reflectance contrast of 38.8%, a mean response time of 2.3s and a coloration efficiency of 386.4cm2/C at 540nm. The PAN/CNT film shows better electrochromic behaviors due to some interaction between CNTs and the PANI backbones than PANI film.

  1. Tracking polaron generation in electrochemically doped polyaniline thin films

    Science.gov (United States)

    Kalagi, S. S.; Patil, P. S.

    2018-04-01

    Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.

  2. Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils

    Science.gov (United States)

    Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) re...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this article, we report on the results obtained for the efforts we made to bring processability to the conducting polyaniline and substituted polyanilines by designing and synthesizing a new disulphonic acid with a biphenyl moiety as spacer group, viz. 4,4'-biphenyldisulphonic acid (BPSA). When doped, the disulphonic acid ...

  4. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing

    Directory of Open Access Journals (Sweden)

    Changqing Yin

    2017-10-01

    Full Text Available Based on hydrogen bonding, the highly uniform polyaniline (PANI nanotubes were synthesized by self-assembly method using citric acid (CA as the dopant and the structure-directing agent by optimizing the molar ratio of CA to aniline monomer (Ani. Synthesis conditions like reaction temperature and mechanical stirring were considered to explore the effects of hydrogen bonding on the morphologies. The effects of CA on the final morphology of the products were also investigated. The as-synthesized CA doped polyaniline (PANI nanomaterials were further deposited on the plate electrodes for the test of gas sensing performance to ammonia (NH3. The sensitivity to various concentrations of NH3, the repeatability, and the stability of the sensors were also tested and analyzed. As a result, it was found that the PANI nanomaterial synthesized at the CA/Ani molar ratio of 0.5 has highly uniform tubular morphology and shows the best sensing performance to NH3. It makes the PANI nanotubes a promising material for high performance gas sensing to NH3.

  5. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  6. Conducting polymers doped with a mineral phase: structural and electrical study

    International Nuclear Information System (INIS)

    González, C P; Montaño, A M; Estrada, S; Ortiz, C

    2013-01-01

    This work reports the results obtained of a series of novel doped conducting polymers (CPs) of polyaniline/hematite (PANI/HEM), which were synthesized in acidic aqueous solution by the in situ chemical oxidative polymerization, using ammonium peroxydisulfate as oxidant reagent. The synthesis was carried out with 20, 40 y 60 % (weight percent) contents of hematite (HEM) at 8 and 14 h of polymerization times (tP). These composites were structurally characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). An electrochemical analysis was made by Electrochemical impedance spectroscopy (EIS). Results of this study allow to evaluate the influence of hematite on the improvement of the structural properties and in the increase of the electric conductivity (sac) of the doped polymers compared to CPs without dopant agents

  7. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films.

    Science.gov (United States)

    Zhang, Sihang; Sun, Gang; He, Yongfeng; Fu, Runfang; Gu, Yingchun; Chen, Sheng

    2017-05-17

    On the basis of nanocellulose obtained by acidic swelling and ultrasonication, rodlike nanocellulose/polyaniline nanocomposites with a core-shell structure have been prepared via in situ polymerization. Compared to pure polyaniline, the nanocomposites show superior film-forming properties, and the prepared nanocomposite films demonstrate excellent electrochemical and electrochromic properties in electrolyte solution. Nanocomposite films, especially the one prepared with 40% polyaniline coated nanocomposite, exhibited faster response time (1.5 s for bleaching and 1.0 s for coloring), higher optical contrast (62.9%), higher coloration efficiency (206.2 cm 2 /C), and more remarkable switching stability (over 500 cycles). These novel nanocellulose-based nanorod network films are promising novel electrochromic materials with excellent properties.

  8. Electrorheology of polyaniline, carbonized polyaniline, and their core-shell composites

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Mrlik, M.; Morávková, Zuzana; Hajná, Milena; Trchová, Miroslava; Stejskal, Jaroslav

    2013-01-01

    Roč. 101, 15 June (2013), s. 90-92 ISSN 0167-577X R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * carbonization * carbonized polyaniline Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  9. Self assembled polyaniline 12-tungstophosphate micro/nanostructures

    Czech Academy of Sciences Publication Activity Database

    Ciric-Marjanovic, G.; Holclajtner-Antunovic, I.; Mentus, S.; Bajuk-Bogdanovic, D.; Jesic, D.; Manojlovic, D.; Trifunovic, S.; Stejskal, Jaroslav

    2010-01-01

    Roč. 160, 13/14 (2010), s. 1463-1473 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * 12-Tungstophosphoric acid * nanorods Subject RIV: BK - Fluid Dynamics Impact factor: 1.871, year: 2010

  10. In situ polymerization of polyaniline in wood veneers.

    Science.gov (United States)

    Trey, Stacy; Jafarzadeh, Shadi; Johansson, Mats

    2012-03-01

    The present study describes the possibility to polymerize aniline within wood veneers to obtain a semi-conducting material with solid wood acting as the base template. It was determined that it is possible to synthesize the intrinsically conductive polymer (ICP) polyaniline in situ within the wood structure of Southern yellow pine veneers, combining the strength of the natural wood structure with the conductivity of the impregnated polymer. It was found that polyaniline is uniformly dispersed within the wood structure by light microscopy and FT-IR imaging. A weight percent gain in the range of 3-12 wt % was obtained with a preferential formation in the wood structure and cell wall, rather than in the lumen. The modified wood was found to be less hydrophilic with the addition of phosphate doped polyaniline as observed by equilibrium water swelling studies. While wood itself is insulating, the modified veneers had conductivities of 1 × 10(-4) to 1 × 10(-9) S cm(-1), demonstrating the ability to tune the conductivity and allowing for materials with a wide range of applications, from anti-static to charge-dispersing materials. Furthermore, the modified veneers had lower total and peak heat releases, as determined by cone calorimetry, because of the char properties of the ICP. This is of interest if these materials are to be used in building and furniture applications where flame retardance is of importance. © 2012 American Chemical Society

  11. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  12. Synthesis of nanostructured polyaniline

    Science.gov (United States)

    Surwade, Sumedh P.

    The organization of my thesis is as follows: (a) Chapter III describes the synthesis of bulk quantities of polyaniline nanofibers in one step using a simple and versatile high ionic strength aqueous system (HCl/NaCl) that permits the use of pure H2O2 as a mild oxidant without any added metal or enzyme catalyst. Polyaniline nanofibers obtained are highly conducting, sigma˜1--5 S/cm, and spectroscopically similar to conventional polyaniline synthesized using stronger oxidants. The synthesis method is further extended to the synthesis of oligoanilines of controlled molecular weight, e.g., aniline tetramer, octamer, and hexadecamer. Microns long tetramer nanofibers are synthesized using this method. (b) Chapter IV describes the mechanism of nanofiber formation in polyaniline. It is proposed that the surfaces such as the walls of the reaction vessel and/or intentionally added surfaces play a dramatic role in the evolution of nanofibrillar morphology. Nucleation sites on surfaces promote the accumulation of aniline dimer that reacts further to yield aniline tetramer, which (surprisingly) is entirely in form of nanofibers and whose morphology is transcribed to the bulk by a double heterogeneous nucleation mechanism. This unexpected phenomenon could form the basis of nanofiber formation in all classes of precipitation polymerization systems. (c) Chapter V is the mechanistic study on the formation of oligoanilines during the chemical oxidation of aniline in weakly acidic, neutral or basic media using peroxydisulfate oxidant. It is proposed that the reaction proceeds via the intermediacy of benzoquinone monoimine that is formed as a result of a Boyland-Sims rearrangement of aniline. The initial role of peroxydisulfate is to provide a pathway for the formation of benzoquinone monoimine intermediate that is followed by a conjugate Michael-type addition reaction with aniline or sulfated anilines. The products isolated in pH 2.5--10.0 buffers are intermediate species at various

  13. New composites of polyaniline and polysaccharides with applications as biomaterials: one review

    Directory of Open Access Journals (Sweden)

    Eliana França

    2007-03-01

    Full Text Available In this revision we will show some results involving composites made with polyaniline and polysaccharides and their properties as promising biomaterials. Studies about the biomedical application of conducting polymers have being considered due the electric stimulation, decrease citotoxicity, good biocompatibility, and others. Polyaniline and polymers derived from the aniline has received attention in the last years by chemical stability in environmental conditions, processibility, facility of polymerization and doping, short cost and particular properties. The botryospheran is an exopolysaccharide (EPS classified in the group of the beta-(1 -3 glucans, produced by the fungus botryosphaeria sp.. EPS has being investigated in parallel about the variability of biological answers of defense. The potential of interaction between conducting polymers with biological environment has been considered, once the application possibilities like development of artificial muscles, nerves regeneration stimulation and medicines delivery control.

  14. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Passador, F. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Pessan, L. A., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br [Dep. de Engenharia de Materiais, Federal University of São Carlos (Brazil)

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  15. An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film

    Directory of Open Access Journals (Sweden)

    Fatma Arslan

    2008-09-01

    Full Text Available A new amperometric uric acid biosensor was developed by immobilizing uricase by a glutaraldehyde crosslinking procedure on polyaniline-polypyrrole (pani-ppy composite film on the surface of a platinum electrode. Determination of uric acid was performed by the oxidation of enzymatically generated H2O2 at 0.4 V vs. Ag/AgCl. The linear working range of the biosensor was 2.5×10-6 – 8.5×10-5 M and the response time was about 70 s. The effects of pH, temperature were investigated and optimum parameters were found to be 9.0, 55 oC, respectively. The stability and reproducibility of the enzyme electrode have been also studied.

  16. Effect of iodine solutions on polyaniline films

    International Nuclear Information System (INIS)

    Ayad, M.M.; Amer, W.A.; Stejskal, J.

    2009-01-01

    Polyaniline (PANI) emeraldine-base films have been exposed to iodine solutions. The interaction between the films and the iodine solution was studied using the quartz-crystal microbalance (QCM) technique and the UV-visible absorption spectroscopy. The iodine-treated film of emeraldine base was subjected to dedoping process using 0.1 M ammonia solution. The resulting film was exposed again to the previously used iodine solution. Iodine was found to play multiple roles: the ring-iodination of PANI film, the oxidation of PANI to pernigraniline base, and iodine doping to PANI salt. A sensor based on PANI-coated electrode of QCM was developed to monitor the presence of iodine in solution.

  17. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    Science.gov (United States)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  18. Chemical modification of polyaniline by N-grafting of polystyrenic chains synthesized via nitroxide-mediated polymerization

    International Nuclear Information System (INIS)

    Hatamzadeh, Maryam; Mahyar, Ali; Jaymand, Mehdi

    2012-01-01

    This study aims to explore an effective route for the preparation of conductive N-substituted polyaniline (PANI) by the incorporation of brominated poly(styrene-co-p-methylstyrene) onto the emeraldine form of polyaniline. For this purpose, at first, poly(styrene-co-p-methylstyrene) was synthesized via nitroxide-mediated polymerization (NMP), and then, N-bromosuccinimide was used as brominating agent to obtain a copolymer with bromine. Thereafter, deprotonated polyaniline was reacted with brominated poly(styrene-co-p-methylstyrene) to prepare the poly(styrene-co-p-methylstyrene)-graft-polyaniline [(PSt-co-PMSt)-g-PANI] terpolymer through N-grafting reaction. The terpolymer was characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Optical properties of (PSt-co-PMSt)-g-PANI in the undoped and doped states were obtained by ultraviolet-visible spectroscopy (UV-Vis), and electrical conductivity at room temperature was measured using samples in which the conductive materials was sandwiched between two Ni electrodes. Moreover, electroactivity of the synthesized terpolymer was verified under cyclic voltammetric conditions on the surface of the working glassy carbon electrode (GCE). The solubility of (PSt-co-PMSt)-g-PANI terpolymer was examined in common organic solvents, such as, tetrahydrofuran (THF), chloroform and xylene. (author)

  19. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Long [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Tingmei [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu Peng [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: pliu@lzu.edu.cn

    2008-12-30

    Polyaniline coated halloysite nanotubes (PANI/HNTs) were prepared by the in-situ soapless emulsion polymerization of the anilinium chloride adsorbed halloysite nanotubes (HNTs), obtained by the dispersion of HNTs in acidic aqueous solution of aniline with magnetic stirring and ultrasonic irradiation, by using ammonium persulfate (APS) as oxidant. The effect of the acidities of the polymerizing media on the crystal structure of the nanotubes was investigated with X-ray diffraction (XRD) technique. The surface conducting coatings of the hybrids were characterized with X-ray photoelectron spectroscopy (XPS). The morphological analyses showed that the polyaniline coated halloysite nanotubes via the in-situ chemical oxidation polymerization with ultrasonic irradiation had the better well-defined structures, by the transmission electron microscopy (TEM). The conductivities of the PANI/HNTs hybrids increased with the increasing of the amounts of HCl dopant added in the emulsion polymerization.

  20. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization

    International Nuclear Information System (INIS)

    Zhang Long; Wang Tingmei; Liu Peng

    2008-01-01

    Polyaniline coated halloysite nanotubes (PANI/HNTs) were prepared by the in-situ soapless emulsion polymerization of the anilinium chloride adsorbed halloysite nanotubes (HNTs), obtained by the dispersion of HNTs in acidic aqueous solution of aniline with magnetic stirring and ultrasonic irradiation, by using ammonium persulfate (APS) as oxidant. The effect of the acidities of the polymerizing media on the crystal structure of the nanotubes was investigated with X-ray diffraction (XRD) technique. The surface conducting coatings of the hybrids were characterized with X-ray photoelectron spectroscopy (XPS). The morphological analyses showed that the polyaniline coated halloysite nanotubes via the in-situ chemical oxidation polymerization with ultrasonic irradiation had the better well-defined structures, by the transmission electron microscopy (TEM). The conductivities of the PANI/HNTs hybrids increased with the increasing of the amounts of HCl dopant added in the emulsion polymerization.

  1. Growth and characterization of KDP crystals doped with L-aspartic acid.

    Science.gov (United States)

    Krishnamurthy, R; Rajasekaran, R; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Polyaniline in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Quadrat, Otakar; Stejskal, Jaroslav

    2006-01-01

    Roč. 12, č. 3 (2006), s. 352-361 ISSN 1226-086X R&D Projects: GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * suspensions of polyaniline * polyaniline derivatives Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.957, year: 2006

  3. Determination of uric acid level by polyaniline and poly (allylamine: Based biosensor

    Directory of Open Access Journals (Sweden)

    Nasrul Wathoni

    2014-01-01

    Full Text Available The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI and poly (allylamine (PAA respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm. The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H 2 O 2 -selective film. Standard of deviation, coefficient of variation (CV and coefficient of correlation (r analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor.

  4. Activated polyaniline-based carbon nanoparticles for high performance supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhu, Tingting; Xing, Wei; Li, Zhaohui; Shen, Honglong; Zhuo, Shuping

    2015-01-01

    Polyaniline (PANI) nanoparticles have been prepared by disperse polymerization of aniline in the presence of poly(4-styrenesulfonate). The PANI nanoparticles are further subjected to pyrolysis treatment and chemical-activation to prepare the activated nitrogen-doped carbon nanoparticles (APCNs). The porosity, structure and nitrogen-doped surface chemistry are analyzed by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, X-ray diffraction and X-ray photoelectron spectroscopy. The capacitive performance of the APCNs materials are test in 6 M KOH electrolyte. Benefitting from the abundant micropores with short length, large specific surface area, hierarchical porosity and heteroatom-doped polar pore surface, the APCNs materials exhibit v exhibit very high specific capacitance up to 341 F g −1 , remarkable power capability and excellent long-term cyclic stability (96.6% after 10 000 cycles). At 40 A g −1 , APCN-2 carbon shows a capacitance of 164 F g −1 , responding to a high energy and power densities of 5.7 Wh kg −1 and 10 000 W kg −1

  5. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect

    Science.gov (United States)

    Bongiovanni Abel, Silvestre; Yslas, Edith I.; Rivarola, Claudia R.; Barbero, Cesar A.

    2018-03-01

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer’s nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  6. Blood coagulation and platelet adhesion on polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Kuceková, Z.; Kašpárková, V.; Pelková, J.; Modic, M.; Junkar, I.; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, M.

    2015-01-01

    Roč. 133, 1 September (2015), s. 278-285 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * poly(2-acrylamido-2-methyl-1-propanesulfonic acid) * hemocompatibility Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.902, year: 2015

  7. Enhanced CO2 Adsorption by Nitrogen-Doped Graphene Oxide Sheets (N-GOs Prepared by Employing Polymeric Precursors

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ali Alghamdi

    2018-04-01

    Full Text Available Nitrogen-doped graphene oxide sheets (N-GOs are prepared by employing N-containing polymers such as polypyrrole, polyaniline, and copolymer (polypyrrole-polyaniline doped with acids such as HCl, H2SO4, and C6H5-SO3-K, which are activated using different concentrations of KOH and carbonized at 650 °C; characterized using SEM, TEM, BET, TGA-DSC, XRD, and XPS; and employed for the removal of environmental pollutant CO2. The porosity of the N-GOs obtained were found to be in the range 1–3.5 nm when the KOH employed was in the ratio of 1:4, and the XRD confirmed the formation of the layered like structure. However, when the KOH employed was in the ratio of 1:2, the pore diameter was found to be in the range of 50–200 nm. The SEM and TEM analysis reveal the porosity and sheet-like structure of the products obtained. The nitrogen-doped graphene oxide sheets (N-GOs prepared by employing polypyrrole doped with C6H5-SO3-K were found to possess a high surface area of 2870 m2/g. The N-GOs displayed excellent CO2 capture property with the N-GOs; PPy/Ar-1 displayed ~1.36 mmol/g. The precursor employed, the dopant used, and the activation process were found to affect the adsorption property of the N-GOs obtained. The preparation procedure is simple and favourable for the synthesis of N-GOs for their application as adsorbents in greenhouse gas removal and capture.

  8. Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties

    International Nuclear Information System (INIS)

    Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

    2011-01-01

    Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

  9. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation.

    Science.gov (United States)

    Li, Xiukai; Kikugawa, Naoki; Ye, Jinhua

    2009-01-01

    A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb(3)O(8) and H(2)Ti(4)O(9)) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb(3)O(8) sample than for the less acidic H(2)Ti(4)O(9). Compared with the nitrogen-doped KNb(3)O(8) and K(2)Ti(4)O(9) samples, the nitrogen-doped HNb(3)O(8) and H(2)Ti(4)O(9) solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb(3)O(8) sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

  10. A novel H(2)O(2) amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers.

    Science.gov (United States)

    Chen, Xiaojun; Chen, Zixuan; Zhu, Jinwei; Xu, Chenbin; Yan, Wei; Yao, Cheng

    2011-10-01

    A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H(2)O(2) in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H(2)O(2) were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N=3) under the optimum conditions. The response showed Michaelis-Menten behavior at larger H(2)O(2) concentrations, and the apparent Michaelis-Menten constant K(m) was estimated to be 2.21 mM. The detection of H(2)O(2) concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst

    Directory of Open Access Journals (Sweden)

    Ufana Riaz

    2014-01-01

    Full Text Available Microwave-assisted photocatalytic degradation of dyes is one of the emerging technologies for waste water remediation. Microwave effectively accelerates photocatalytic degradation, when microwave electrodeless lamp (MEL substitutes traditional UV lamp as light source. This setup can be extremely simplified if MEL and photocatalyst can be replaced by a catalyst which can work under microwave irradiation in the absence of any light source. The present work reports for the first time degradation of acid orange 7 (AO under microwave irradiation using polyaniline (PANI as catalyst in the absence of any UV lamp as light source. The degradation/decolourization was carried out in neutral acidic and basic media and was monitored spectrophotometrically to evaluate the ability of microwave irradiation to degrade AO. Microwave irradiation showed excellent performance as it completely decolourizes AO dye solution in 10 min. With the advantages of low cost and rapid processing, this novel catalyst is expected to gain promising application in the treatment of various dyestuff wastewaters on a large scale.

  12. Synergistic Enhancement of Microwave Absorption Using Hybridized Polyaniline@helical CNTs with Dual Chirality.

    Science.gov (United States)

    Tian, Xin; Meng, Fanbin; Meng, Fanchen; Chen, Xiangnan; Guo, Yifan; Wang, Ying; Zhu, Wenjun; Zhou, Zuowan

    2017-05-10

    In this study, we designed a dual-chirality hierarchical structure to achieve a synergistically enhanced effect in microwave absorption via the hybridization of nanomaterials. Herein, polyaniline (PANi) nanorods with tunable chirality are grown on helical carbon nanotubes (HCNTs), a typical nanoscale chiral structure, through in situ polymerization. The experimental results show that the hierarchical hybrids (PANi@HCNTs) exhibit distinctly dual chirality and a significant enhancement in electromagnetic (EM) losses compared to those of either pure PANi or HCNTs. The maximum reflection loss of the as-prepared hybrids can reach -32.5 dB at 8.9 GHz. Further analysis demonstrates that combinations of chiral acid-doped PANi and coiled HCNTs with molecular and nanoscale chirality lead to synergistic effects resulting from the dual chirality. The so-called cross-polarization may result in additional interactions with induced EM waves in addition to multiscaled relaxations from functional groups and interfacial polarizations, which can benefit EM absorption.

  13. Role of mesoscopic morphology in charge transport of doped ...

    Indian Academy of Sciences (India)

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain conformation and charge delocalization.

  14. Composite polyaniline/calixarene Langmuir - Blodgett films for gas sensing

    Science.gov (United States)

    Lavrik, N. V.; DeRossi, D.; Kazantseva, Z. I.; Nabok, A. V.; Nesterenko, B. A.; Piletsky, S. A.; Kalchenko, V. I.; Shivaniuk, A. N.; Markovskiy, L. N.

    1996-12-01

    Mixtures of the polyaniline (emeraldine base) and phosphorylated calix[4]resorcinolarene derivative (CA) are proposed to prepare LB films for conductometric gas sensors. They are quite stable at the air - water interface and give LB films of high quality. The average thickness of the mixed monolayers is found to be 1.6 nm. The as-deposited films are insulating. Doping with HCl increases the conductivity up to between 0957-4484/7/4/002/img12 and 0957-4484/7/4/002/img13 which depends on the component ratio. The films containing more than 20 wt% of CA are doped reversibly in part. Thus, the films which are highly sensitive to either 0957-4484/7/4/002/img14 or HCl films are prepared by choosing the component ratio. Detection of 0957-4484/7/4/002/img14 and HCl in the ppm range is demonstrated.

  15. Micro-Raman studies of swift heavy ion irradiation induced structural and conformational changes in polyaniline nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Somik [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Kumar, A., E-mail: ask@tezu.ernet.i [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2010-09-15

    Polyaniline (PAni) nanofibers doped with camphor sulfonic acid have been irradiated with 90 MeV O{sup 7+} ions at different fluences (3 x 10{sup 10}-1 x 10{sup 12} ions/cm{sup 2}) using a 15UD Pelletron accelerator under ultra-high vacuum. XRD studies reveal a decrease in the domain length and an increase in the strain upon SHI irradiation. The increase in d-spacing corresponding to the (1 0 0) reflection of PAni nanofibers with increasing irradiation fluence has been attributed to the increase in the tilt angle of the chains with respect to the (a, b) basal plane of PAni. Decrease in the integral intensity upon SHI irradiation indicates amorphization of the material. Micro-Raman ({mu}R) studies confirm amorphization of the PAni nanofibers and also show that the PAni nanofibers get de-doped upon SHI irradiation. {mu}R spectroscopy also reveals a benzenoid to quinoid transition in the PAni chain upon SHI irradiation. TEM results show that the size of PAni nanofibers decreases with the increase in irradiation fluence, which has been attributed to the fragmentation of PAni nanofibers in the core of amorphized tracks caused by SHI irradiation.

  16. Partially sulfonated polyaniline: conductivity and spectroscopic study

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Suchánková, A.; Watzlová, E.; Prokeš, J.; Pop-Georgievski, Ognen

    2017-01-01

    Roč. 71, č. 2 (2017), s. 329-338 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polyaniline * aniline * orthanilic acid Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  17. Immobilization of xanthine oxidase on a polyaniline silicone support.

    Science.gov (United States)

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  18. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Howrah-711103 (India); Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal, E-mail: gangulysaibal2011@gmail.com [Chemical Engineering department, Universiti Teknologi Petronas, Perak, Tronoh (Malaysia)

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  19. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    International Nuclear Information System (INIS)

    Syed Draman, Sarifah Fauziah; Daik, Rusli; El-Sheikh, Said M.; Latif, Famiza Abdul

    2013-01-01

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electrical and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level

  20. Doping optimization of polypyrrole with toluenesulfonic acid using Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Syed Draman, Sarifah Fauziah; Daik, Rusli [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); El-Sheikh, Said M. [Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute,11421 Cairo (Egypt); Latif, Famiza Abdul [Faculty of Applied Sciences, Universiti Teknologi MARA Malaysia 40450 Shah Alam, Selangor (Malaysia)

    2013-11-27

    A three-level Box-Behnken design was employed in doping optimization of polypyrrole with toluenesulfonic acid (TSA-doped PPy). The material was synthesized via chemical oxidative polymerization using pyrrole, toluenesulfonic acid (TSA) and ammonium persulfate (APS) as monomer, dopant and oxidant, respectively. The critical factors selected for this study were concentration of dopant, molar ratio between dopant to monomer (pyrrole) and concentration of oxidant. Obtaining adequate doping level of TSA-doped PPy is crucial because it affects the charge carriers for doped PPy and usually be responsible for electronic mobility along polymeric chain. Furthermore, the doping level also affects other properties such as electrical and thermal conductivity. Doping level was calculated using elemental analysis. SEM images shows that the prepared TSA-doped PPy particles are spherical in shape with the diameters of about. The range of nanoparticles size is around 80-100 nm. The statistical analysis based on a Box–Behnken design showed that 0.01 mol of TSA, 1:1 mole ratio TSA to pyrrole and 0.25 M APS were the optimum conditions for sufficient doping level.

  1. Voltabsorptometric study of 'structural memory' effects in polyaniline

    International Nuclear Information System (INIS)

    Nekrasov, A.A.; Ivanov, V.F.; Gribkova, O.L.; Vannikov, A.V.

    2005-01-01

    This study is aimed at clarifying the role of the counter anions used in the electrochemical synthesis of polyaniline (PAn) on the spectroelectrochemical properties of the resulting film (so-called ''structural memory'' effect). Polyaniline films were synthesized in aqueous solutions of different acids: HCl, HClO 4 and H 2 SO 4 ('parent' acids). Further spectroelectrochemical studies were performed in aqueous solutions of the above-mentioned acids for each of the films synthesized in the above 'parent' acids. Differential voltabsorptometric curves (dA/dt versus potential (DCVA)) were measured at certain characteristic wavelengths corresponding to the individual absorption bands separated from the spectra using Alentsev-Fock method. These are the bands of the radical cations (435 nm), quinoid fragments (570 nm), dimers of radical cations (presumably 665 nm) and 'localized polarons' (755 nm). Particular attention has been paid to the formation of the dimers of radical cations and their role in the redox transitions in the film. Comparing our results with the literature data, we suppose that such dimers may facilitate electron exchange between adjacent polymer chains contributing to the conductivity increase. Complex nature of the first voltammetric peak was discovered, which is probably due to the heterogeneous structure of PAn. Results of molecular modeling of the interchain dimers of the radical cations using semi-empirical PM3 calculations are reported and their electronic spectrum was simulated

  2. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal [Department of Applied Sciences, Chandigarh University, Gharuan, Mohali (India); Kumar, Sanjeev [Applied Sciences Department, PEC University of Technology, Chandigarh (India); Sharma, Amit L. [Central Scientific Instrumentation Organization, Sector 30, Chandigarh (India)

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study of electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.

  3. 3,5-Dinitrosalicylic acid-assisted synthesis of self-assembled polyaniline nanorods

    Czech Academy of Sciences Publication Activity Database

    Janoševic, A.; Ciric-Marjanovic, G.; Marjanovic, B.; Trchová, Miroslava; Stejskal, Jaroslav

    2010-01-01

    Roč. 64, č. 21 (2010), s. 2337-2340 ISSN 0167-577X R&D Projects: GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : FTIR spectroscopy * nanorods * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.120, year: 2010

  4. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Prokeš, J.; Stejskal, Jaroslav

    2017-01-01

    Roč. 194, 15 June (2017), s. 206-218 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aniline * oxidants * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.084, year: 2016

  5. Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline

    Directory of Open Access Journals (Sweden)

    Yuanzhao Wu

    2017-08-01

    Full Text Available The present study is primarily designed to develop an environmentally-benign approach for the recovery of precious metals, especially gold, from the ever increasingly-discarded electronic wastes (e-waste. By coupling the metal reduction process with an increase in the intrinsic oxidation state of the aniline polymers, and the subsequent re-protonation and reduction of the intrinsically oxidized polymer to the protonated emeraldine (EM salt, polyaniline (PANi films and polyaniline coated cotton fibers are able to recover metallic gold from acid/halide leaching solutions of electronic wastes spontaneously and sustainably. The current technique, which does not require the use of extensive extracting reagents or external energy input, can recover as much as 90% of gold from the leaching acidic solutions. The regeneration of polyaniline after gold recovery, as confirmed by the X-ray photoelectron spectroscopy measurements, promises the continuous operation using the current approach. The as-recovered elemental gold can be further concentrated and purified by incineration in air.

  6. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  7. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions

    International Nuclear Information System (INIS)

    Liu Qiongyan; Wang Fei; Qiao Yonghui; Zhang Shusheng; Ye Baoxian

    2010-01-01

    A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag + . UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag + at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag + concentration over the range from 6.0 x 10 -10 mol L -1 to 1.0 x 10 -6 mol L -1 , with a detection limit of 4.0 x 10 -10 mol L -1 . The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag + in water samples.

  8. Synthesis and characterization of polyaniline/activated carbon composites and preparation of conductive films

    International Nuclear Information System (INIS)

    Zengin, Huseyin; Kalayci, Guellue

    2010-01-01

    Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV-vis, FTIR and photoluminescence. UV-vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.

  9. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration

    Directory of Open Access Journals (Sweden)

    Bogdan Butoi

    2017-12-01

    Full Text Available This work is focused on the structural and morphological investigations of polyaniline and poly(o-anisidine polymers generated in a direct current glow discharge plasma, in the vapors of the monomers, without a buffer gas, using an oblique angle-positioned substrate configuration. By atomic force microscopy and scanning electron microscopy we identified the formation of worm-like interlinked structures on the surface of the polyaniline layers, the layers being compact in the bulk. The poly(o-anisidine layers are flat with no kind of structures on their surfaces. By Fourier transform infrared spectroscopy we identified the main IR bands characteristic of polyaniline and poly(o-anisidine, confirming that the polyaniline chemical structure is in the emeraldine form. The IR band from 1070 cm−1 was attributed to the emeraldine salt form of polyaniline as an indication of its doping with H+. The appearance of the IR band at 1155 cm−1 also indicates the conducting protonated of polyaniline. The X-ray diffraction revealed the formation of crystalline domains embedded in an amorphous matrix within the polyaniline layers. The interchain separation length of 3.59 Å is also an indicator of the conductive character of the polymers. The X-ray diffraction pattern of poly(o-anisidine highlights the semi-crystalline nature of the layers. The electrical conductivities of polyaniline and poly(o-anisidine layers and their dependence with temperature are also investigated.

  10. UV Light Induces Dedoping of Polyaniline

    Directory of Open Access Journals (Sweden)

    Yuki Kaitsuka

    2016-01-01

    Full Text Available UV (Ultra-Violet light-driven change in optical absorption of polyaniline (PANI is reported. Irradiation of UV light to PANI/camphor sulfonic acid prepared by electrochemical polymerization allows dedoping of the PANI. Especially, UV light irradiation in the presence of a radical trap agent effectively reduces (dedoping the PANI. The result in this study is quite simple; however, this may be a first report for light-induced dedoping (color change of a conductive polymer.

  11. The stability of polyaniline in strongly alkaline and acidic aqueous media

    Czech Academy of Sciences Publication Activity Database

    Brožová, Libuše; Holler, Petr; Kovářová, Jana; Stejskal, Jaroslav; Trchová, Miroslava

    2008-01-01

    Roč. 93, č. 3 (2008), s. 592-600 ISSN 0141-3910 R&D Projects: GA MPO FT-TA2/098; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * stability * conducting polymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.320, year: 2008

  12. Enhanced pH stability of conducting polyaniline by reprotonation with perfluorooctanesulfonic acid

    Czech Academy of Sciences Publication Activity Database

    Bober, P.; Lindfors, T.; Pesonen, M.; Stejskal, Jaroslav

    2013-01-01

    Roč. 178, 15 August (2013), s. 52-55 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : hydrophobicity * polyaniline * reprotonation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.222, year: 2013

  13. The effect of carbon nanofillers on the performance of electromechanical polyaniline-based composite actuators

    International Nuclear Information System (INIS)

    García-Gallegos, J C; Martín-Gullón, I; Conesa, J A; Vega-Cantú, Y I; Rodríguez-Macías, F J

    2016-01-01

    Different types of crystalline carbon nanomaterials were used to reinforce polyaniline for use in electromechanical bilayer bending actuators. The objective is to analyze how the different graphitic structures of the nanocarbons affect and improve the in situ polymerized polyaniline composites and their subsequent actuator behavior. The nanocarbons investigated were multiwalled carbon nanotubes, nitrogen-doped carbon nanotubes, helical-ribbon carbon nanofibers and graphene oxide, each one presenting different shape and structural characteristics. Films of nanocarbon-PAni composite were tested in a liquid electrolyte cell system. Experimental design was used to select the type of nanocarbon filler and composite loadings, and yielded a good balance of electromechanical properties. Raman spectroscopy suggests good interaction between PAni and the nanocarbon fillers. Electron microscopy showed that graphene oxide dispersed the best, followed by multiwall carbon nanotubes, while nitrogen-doped nanotube composites showed dispersion problems and thus poor performance. Multiwall carbon nanotube composite actuators showed the best performance based on the combination of bending angle, bending velocity and maximum working cycles, while graphene oxide attained similarly good performance due to its best dispersion. This parallel testing of a broad set of nanocarbon fillers on PAni-composite actuators is unprecedented to the best of our knowledge and shows that the type and properties of the carbon nanomaterial are critical to the performance of electromechanical devices with other conditions remaining equal. (paper)

  14. Direct ink writing of 3D conductive polyaniline structures and rheological modelling

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2018-01-01

    The intractable nature of conjugated polymers (CP) leads to practical limitations in the fabrication of CP-based transducers having complex three-dimensional geometries. Conventional CP device fabrication processes have focused primarily on thin-film deposition techniques; this study explores novel additive manufacturing processes specifically developed for CP with the ultimate goal of increasing the functionality of CP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures was enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder to fabricate high-resolution 3D conductive PANI structures. The required processability of PANI was achieved by means of a counterion-induced thermal doping method. The effect of thermal doping on the PANI-DBSA paste by means of a constitutive relationship to describe the paste flow as a function of the thermal doping time is explored. This relationship is incorporated within a flow model to predict the extruded track width as a function of various process parameters including: print speed, gauge pressure, nozzle diameter, and pre-extrusion thermal doping time.

  15. Preparation of maghemite and polyaniline nanocomposites assisted by ultrasound; Preparo de nanocompositos de maghemita e polianilina assistido por ultrassom

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Renata Cerruti da; Souza Junior, Fernando Gomes de, E-mail: fernando_gomes@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano. Lab. de Biopolimeros e Sensores

    2014-06-01

    The study of systems constituted by iron oxide nanoparticles and polyaniline has increased in the last years. However, few studies are related to the sonication effect on the preparation of these hybrid materials. In this work the effect of sonication on the properties of maghemite/polyaniline hybrids was studied using experimental design techniques. The materials obtained were studied by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. Samples were also characterized by measuring the electric resistivity and by magnetic force tests. Obtained results show that the increase of the sonication power produces the increase of the doping process and the decrease of the electrical resistivity. The same sonication power produced the destruction of a large amount of the maghemite, leading to lower magnetic forces. (author)

  16. One-pot electrochemical growth of sponge-like polyaniline-intercalated phosphorous-doped graphene oxide on nickel foam as binder-free electrode material of supercapacitor

    Science.gov (United States)

    Bigdeli, Hadise; Moradi, Morteza; Borhani, Saeid; Jafari, Elnaz Abbasi; Hajati, Shaaker; Kiani, Mohammad Ali

    2018-06-01

    In this work, phosphor-doped graphene oxide (PGO) was synthesized by chemical technique. Also, the sponge-like PGO@polyaniline nanocomposite (PGO@PANI) film was coated on the nickel foam by one-step electropolymerization. The active materials were then characterized by Fourier transforms infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller technique. When PANI/PGO was used as supercapacitor electrode, under current density of 1 A/g, the specific capacitance of the prepared PGO@PANI was measured as 603 F/g, which is 6.0 times higher than that of pure PANI (102 F/g). Moreover, capacity stability of the PANI/PGO increased significantly as compared to PANI (65% vs. 44%) after increasing the current density from 1 to 15 A/g. The clear electrochemical performance of PANI/PGO was enhanced owing to the synergistic effect of PGO and PANI. Our results demonstrate that PANI/PGO nanosheet arrays are promising candidate for electrode supercapacitor applications.

  17. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode

    International Nuclear Information System (INIS)

    Wu, Wenling; Pan, Duo; Li, Yanfeng; Zhao, Guanghui; Jing, Lingyun; Chen, Suli

    2015-01-01

    At present, the in situ synthesis of polyaniline (PANI) nanotubes via self-assembly of organic dopant acid is a particularly charming task in supercapacitors. Herein, we report the formation of uniform PANI nanotubes doped with malic acid (MA) and other organic acids, such as propionic acid (PA), succinic acid (SA), tartaric acid (TA) and citric acid (CA), which simultaneously acts as a dopant acid as well as a structure-directing agent. The morphology, structure and thermal stability of PANI nanotubes were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectra, Ultraviolet-visible spectra (UV–vis), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Meanwhile, the electrochemical performance of the fabricated electrodes was evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). Furthermore, the PANI-MA and PANI-CA nanotubes, with [aniline]/[acid] molar ratio of 4:1, possessed highest specific capacitance of 658 F/g and 617 F/g at the current density of 0.1 A/g in 1.0 M H 2 SO 4 electrolyte due to their unique nanotubular structures. It makes PANI nanotubes a promising electrode material for high performance supercapacitors

  18. Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; He, R.; Berg, Rolf W.

    2004-01-01

    Acid-doped polybenzimidazole (PBI) membranes have been demonstrated for fuel cell applications with advanced features such as high operating temperatures, little humidification, excellent CO tolerance, and promising durability. The water uptake and acid doping of PBI membranes have been studied...

  19. Electrochemical synthesis of polyaniline in the presence of poly(amidosulfonic acid)s with different rigidity of polymer backbone and characterization of the films obtained

    International Nuclear Information System (INIS)

    Nekrasov, A.A.; Gribkova, O.L.; Eremina, T.V.; Isakova, A.A.; Ivanov, V.F.; Tverskoj, V.A.; Vannikov, A.V.

    2008-01-01

    We have studied electrochemical matrix polymerization of aniline in the presence of poly(amidosulfonic acid)s of different nature: poly(2-acrylamido-2-methyl-1-propanosulfonic acid) (PAMPSA, flexible backbone); poly(p,p'-(2,2'-disulfoacid)-diphenylene-iso-phthalamid) (i-PASA, semi-rigid backbone); poly(p,p'-(2,2'-disulfoacid)-diphelylene-tere-phthalamid) (t-PASA, rigid backbone). Also, we have investigated spectral and electrochemical properties of the films obtained, as well as their surface morphology. The matrix polymerization results in the formation of interpolymer complexes of polyaniline (PANI) and the above-cited polyacids. The acceleration of aniline electropolymerization in the presence of poly(amidosulfonic acid)s was observed due to association of aniline molecules to sulfonic groups of the polyacid and higher local concentration of protons near the polyacid backbone. The rigid-chain polyacids interfere with the normal course of the electropolymerization, which manifests itself in the changes of the shape of time dependences of absorbance and charge. Cyclic voltammetry and spectroelectrochemical experiments showed that the formation of interpolymer complex with rigid-chain polyacids distorts spectroelectrochemical characteristics of PANI. This evidently results from steric hindrances in the formation of quinoid units

  20. One-step synthesis of gold-polyaniline core-shell particles

    International Nuclear Information System (INIS)

    Wang Zhijuan; Yuan Junhua; Han Dongxue; Niu Li; Ivaska, Ari

    2007-01-01

    A one-step method has been developed for synthesizing gold-polyaniline (Au-PANI) core-shell particles by using chlorauric acid (HAuCl 4 ) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au-PANI particles was also proposed based on the results of control experiments

  1. Flexible diode of polyaniline/ITO heterojunction on PET substrate

    Science.gov (United States)

    Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.

    2017-10-01

    Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.

  2. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    Science.gov (United States)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  3. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  4. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  5. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    Science.gov (United States)

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  6. Synthesis and characterization of completely soluble polyaniline salts via inverse emulsion polymerization using a mixture of chloroform and 2- butanol as a dispersing medium

    International Nuclear Information System (INIS)

    Gul, S.; Bilal, S.

    2011-01-01

    Polyaniline (PANI) is one of the most promising candidates for possible technological applications. PANI has potential applications in batteries, anion exchanger, tissue engineering, inhibition of steel corrosion, fuel cell, sensors and so on. However, its insolubility in common organic solvents limits its range of applications. In the present study an attempt has been made to synthesize soluble polyaniline salt via inverse polymerization pathway using benzoyl peroxide as oxidant and dodecylbenzenesulfonic acid (DBSA) as dopant as well as a surfactant. A mixture of chloroform and 2-butanol was used as dispersion medium for the first time. The influence of synthesis parameters such as concentration of aniline, benzoyl peroxide and DBSA on the yield and other properties of the resulting PANI salt was studied. The synthesized PANI salt was found to be completely soluble in DMSO, DMF, chloroform and in a mixture of toluene and 2-propanol. The synthesized polymer salt was also characterized with cyclic voltammetry, SEM, XRD, UV-Vis spectroscopy and viscosity measurements. TGA was used to analyze the thermal properties of synthesized polymer. The extent of doping of the PANI salt was determined from UV-Vis spectra and TGA analysis. The activation energy for the degradation of the polymer was calculated with the help of TGA. (author)

  7. Patterned polyaniline encapsulated in titania nanotubes for electrochromism.

    Science.gov (United States)

    Lv, Haiming; Wang, Yi; Pan, Lei; Zhang, Leipeng; Zhang, Hangchuan; Shang, Lei; Qu, Huiying; Li, Na; Zhao, Jiupeng; Li, Yao

    2018-02-21

    In this article, we report the preparation of a TiO 2 nanotube array (TNA) film used as a transparent electrochromic material and a TNA/polyaniline patterned hybrid electrochromic film utilized as an information display material. The TNA film was fabricated by an anodizing process, and a surface patterned TNA with extreme wettability contrast (hydrophilic/hydrophobic) on a TNA surface through self-assembly (SAM) and photocatalytic lithography is fabricated. Then the TNA/polyaniline hybrid film was prepared by electrodeposition of aniline in an aqueous solution. Finally, the electrochromic properties of the TNA film and the TNA/polyaniline hybrid film were investigated. Compared with neat TNA film and polyaniline (PANI) films, the hybrid film shows a much higher optical contrast in the near infrared range. The TNA/polyaniline hybrid film shows higher coloration efficiencies of 24.4 cm 2 C -1 at a wavelength of 700 nm and 17.1 cm 2 C -1 at a wavelength of 1050 nm compared to the TNA coloration efficiency. The color switching time (20.9 s or 22.9 s) of TNA/polyaniline is faster than TNA.

  8. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors

    Science.gov (United States)

    Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa

    2017-02-01

    A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.

  9. Study of growth of polyaniline chain by EPR method

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, A V [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Kogan, Ya L [Inst. of Chemical Physics, Chernogolovka (Russian Federation); Fokeeva, L S [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-22

    Chemical aniline polymerization has been studied by the EPR method. After a long delay a weak EPR signal I is appeared and transformed rapidly into a strong Lorentzian line. Constants of spin exchange of signals I and II with paramagnetic probes Fe(CN)[sub 6][sup 3-], Co[sup 2+] and O[sub 2], freely diffusing in solution, have been determined. Effect of ferricyanide ions and urea, a breaker of hydrogen bonds, has been measured for signals I and II. Data obtained show the formation of an array of positive charges in PANI at early stage of doping. Constants of spin exchange depend on prehistory of samples. Averaging of EPR line widths of different paramagnetic centers in polyaniline was found. (orig.)

  10. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    Science.gov (United States)

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  11. Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Zengyuan Pang

    2014-11-01

    Full Text Available Camphor sulfonic acid (CSA-doped polyamide 6/polyaniline (PA6/PANI composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, four-point probe techniques, X-ray diffraction (XRD and a home-made gas sensing test system. All the results indicated that the CSA concentration had a great influence on the sensing properties of CSA-doped PA6/PANI composite nanofibers. The composite nanofibers doped with 0.02 M CSA showed the best ammonia sensing properties, with a significant sensitivity toward ammonia (NH3 at room temperature, superior to that of the composite nanofibers doped with 0.04–0.10 mol/L CSA. It was found that for high concentrations of CSA, the number of PANI–H+ reacted with NH3 would not make up a high proportion of all PANI–H+ within certain limits. As a result, within a certain range even though higher CSA-doped PA6/PANI nanofibers had better conductivity, their ammonia sensing performance would degrade.

  12. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  13. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Micić, Darko; Šljukić, Biljana; Zujovic, Zoran; Travas-Sejdic, Jadranka; Ćirić-Marjanović, Gordana

    2014-01-01

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO 2 − oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  14. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf

    2007-01-01

    Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...... different types of sites in PBI for the acid doping. The protonation constants of PBI by phosphoric acid are found to be 12.7 L mol(-1) (K-1) for acid complexing sites with higher affinity, and 0.19 L mol(-1) (K-2) for the sites with lower affinity. The dissociation constants for the complexing acid onto...... these two types of PBI sites are found to be 5.4 X 10(-4) and 3.6 X 10(-2), respectively, that is, about 10 times smaller than that of aqueous phosphoric acid in the first case but 5 times higher in the second. The proton conducting mechanism is also discussed....

  15. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    International Nuclear Information System (INIS)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-01-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10 −4 to 1.2×10 −3 M with the detect limit of 5×10 −6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept electroactivity in

  16. One–pot synthesis and electrochemical properties of polyaniline nanofibers through simply tuning acid–base environment of reaction medium

    International Nuclear Information System (INIS)

    Li, Tao; Zhou, Yi; Liang, Banglei; Jin, Dandan; Liu, Na; Qin, Zongyi; Zhu, Meifang

    2017-01-01

    Highlights: •Presenting a facile one–pot approach to prepare polyaniline nanofibers through simply tuning acid–base environment of reaction medium. •Determining the role of aniline oligomers play in the formation of polyaniline nanofibers. •Demonstrating the feasibility of polyaniline nanofibers as high–performance electrode materials for supercapacitors. -- Abstract: A facile and efficient one–pot approach was presented to prepare polyaniline (PANi) nanofibers through simply tuning acid–base environment of reaction medium without the assistance of templates or use of organic solvents, in which aniline oligomers formed in the alkaline solution were used as “seeds” for the oriented growth of PANi chains under acidic conditions. The as–prepared PANi nanofibers were investigated by field–emission scanning electron microscopy, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy and X–ray diffraction technology. Furthermore, the electrochemical properties were evaluated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. More attentions were paid to the influence of aniline concentrations in alkaline and acidic reaction medium on the morphology, microstructure and properties of PANi nanofibers. It can be found that aniline concentration in alkaline medium has a stronger impact on the electrical and electrochemical properties of final products, however, their morphologies obviously depend on aniline concentration in acidic solution. Moreover, PANi nanofibers prepared at aniline concentrations of 48 mM in alkaline medium and 0.2 M in acidic medium exhibits the largest specific capacitance of 857.2 F g −1 at the scan rate of 5 mV s −1 , and capacitance retention of 63.8% after 500 cycles. It is demonstrated that such one–pot approach can present a low cost and environmental friendly route to fabricate PANi nanofibers in fully aqueous solution as high

  17. Hybrid polyaniline/bentonite-vanadium(V) oxide nanocomposites

    International Nuclear Information System (INIS)

    Anaissi, F.J.; Demets, G.J.-F.; Timm, R.A.; Toma, H.E.

    2003-01-01

    This work focuses on the preparation and properties of novel ternary composites generated from the redox polymerization of aniline inside the lamellar bentonite-vanadium(V) oxide (BV) matrix. These materials are stable in water and usual organic solvents, and their good electrical conductivity ensures potential applications as electrode modifiers, for analytical and sensor purposes. The incorporation of polyaniline (pani) into the BV matrices, leads to the decay of the charge transfer band at 450 nm and to the rise of a strong band around 650 nm, reflecting the reduction of V V sites, concomitant with the formation of polyaniline, in the emeraldine form. The modest expansion (∼2.5 A) observed in the pani intercalated composites, is consistent with the orientation of the polyaniline chains parallel with the interlamellar planes. On the other hand, the presence of intercalated polymer seems to stabilize the BV framework, minimizing the structural reorganization usually required for the insertion of lithium ions into the matrix. Interestingly, in small amounts, e.g. in BV(pani) 0.7 , polyaniline dramatically increases the conductivity and charge-capacity of the BV matrix; while, increasing amounts of polyaniline lead to an opposing effect

  18. Thermal, dielectric studies on pure and amino acid ( L-glutamic acid, L-histidine, L-valine) doped KDP single crystals

    Science.gov (United States)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-05-01

    Amino acids ( L-glutamic acid, L-histidine, L-valine) doped potassium dihydrogen phospate crystals are grown by solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mol% to 10 mol%. The solubility data for all dopants concentration were determined. There is variation in pH value and hence, there is habit modification of the grown crystals were characterized with UV-VIS, FT-IR studies, SHG trace elements and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. UV-Visible spectra confirm the improvement in the transparency of these crystals on doping metal ions. FT-IR spectra reveal strong absorption band between 1400 and 1600 cm -1 for metal ion doped crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material and it also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  19. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  20. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He; Zhang, Haitao; Fei, Linfeng; Ma, Hongbin; Zhao, Guoying; Mak, CheeLeung; Zhang, Xixiang; Zhang, Suojiang

    2017-01-01

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  1. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  2. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  3. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    Science.gov (United States)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  4. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  5. Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials

    Science.gov (United States)

    Fan, Xin; Chen, Weiliang; Pang, Shuhua; Lu, Wei; Zhao, Yu; Liu, Zheng; Fang, Dong

    2017-12-01

    In the present work, asymmetric supercapacitors (ASCs) are assembled using a highly conductive N-doped nanocarbon (NDC) material derived from a polyaniline hydrogel as a cathode, and Ni foam covered with flower-like Co3O4 nanosheets (Co3O4-Ni) prepared from a zeolitic imidazolate metal-organic framework as a single precursor serves as a high gravimetric capacitance anode. At a current of 0.2 A g-1, the Co3O4-Ni electrode provides a gravimetric capacitance of 637.7 F g-1, and the NDC electrode provides a gravimetric capacitance of 359.6 F g-1. The ASC assembled with an optimal active material loading operates within a wide potential window of 0-1.1 V, and provides a high areal capacitance of 25.7 mF cm-2. The proposed ASC represents a promising strategy for designing high-performance supercapacitors.

  6. Thermal and Electrical Properties of Polyaniline-glycine Composites

    Science.gov (United States)

    Mathavan, T.; Umapathy, S.; Jothirajan, M. A.; Vivekanandam, T. S.; Okram, G. S.

    2011-07-01

    Polymer-amino acid composites were prepared by combining the synthesized polyaniline and glycine in solid state. The samples were characterized by modulated DSC and AFM. Modulated DSC thermogram showed the structural changes occurred while composite formation. D.C electrical conductivity measurements were carried out on the samples in the temperature range of 310 K-85 K by using two-probe method. Analysis of D.C conductivity results revealed that the conductivity was governed by Mott's 2-dimensional variable range hopping.

  7. Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures

    KAUST Repository

    Chen, Wei

    2013-07-25

    Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%-78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. © 2013 American Chemical Society.

  8. Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures

    KAUST Repository

    Chen, Wei; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2013-01-01

    Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%-78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. © 2013 American Chemical Society.

  9. One-step electrochemically-codeposited polyaniline-platinum for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiangkaew, Anongnad; Keothongkham, Khamsone; Maiaugree, Wasan; Jarernboon, Wirat [Khon Kaen University, Khon Kaen (Thailand); Kamwanna, Teerasak; Pimanpang, Samuk; Amornkitbamrung, Vittaya [Khon Kaen University, Khon Kaen (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen (Thailand)

    2014-05-15

    Platinum, polyaniline and composite polyaniline-platinum films were coated on conductive glass by using electrochemical deposition. They were then used as dye-sensitized solar cell counter electrodes. The efficiencies of platinum, polyaniline and composite polyaniline-platinum cells were 2.47, 4.47 and 6.62%, respectively. The improvement of composite polyaniline-platinum solar cell efficiency over pure polyaniline and platinum cells is because of an increase in the film's catalytic activity and a decrease in charge-transfer resistance between its counter electrode and electrolyte, as observed by using cyclic voltammogram and electrochemical impedance spectroscopy measurements, respectively. Co-deposition of polyaniline and Pt catalysts was confirmed by the presence of Pt and N peaks in the X-ray photoelectron spectroscopy spectrum.

  10. Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline

    Science.gov (United States)

    Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong

    2017-12-01

    Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.

  11. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors

    Science.gov (United States)

    Cao, Hailiang; Zhou, Xufeng; Zhang, Yiming; Chen, Liang; Liu, Zhaoping

    2013-12-01

    Polyaniline/graphene nanocomposites with microspherical morphology and porous structure are prepared as electrode materials for supercapacitors. Using few-layer graphene obtained by liquid phase exfoliation of graphite as the raw material, porous graphene microspheres are produced by spray drying, and are then employed as the substrates for the growth of polyaniline nanowire arrays by in situ polymerization. In the composite, interconnected graphene sheets with few structural defects constitute a high-efficient conductive network to improve the electrical conductivity of polyaniline. Furthermore, the microspherical architecture prevents restacking of polyaniline/graphene composite nanosheets, thus facilitates fast diffusion of electrolytes. Consequently, the nanocomposite exhibits excellent electrochemical performance. A specific capacitance of 338 F g-1 is reached in 1 M H2SO4 at a scan rate of 20 mV s-1, and a high capacity retention rate of 87.4% after 10,000 cycles at a current density of 3 A g-1 can be achieved, which suggests that the polyaniline/graphene composite with such kind of 3D architecture is a promising electrode material for high-performance supercapacitors.

  12. FLEXIBLE PH SENSOR WITH POLYANILINE LAYER BASED ON IMPEDANCE MEASUREMENT

    OpenAIRE

    Chuang, Cheng-Hsin; Wu, Hsun-Pei; Chen, Cheng-Ho; Wu, Peng-Rong

    2012-01-01

    A flexible sensor with conducting polyaniline layer for detecting pH value based on the impedance measurement is fabricated and demonstrated in this study. The pH sensor consists of an interdigital electrode array on a flexible printed circuit and a thin-film polyaniline as the sensing layer. As the conductivity of polyaniline depends on the redox state, the impedance change of the polyaniline after it has reacted with different pH value solutions works as the sensing mechanism. In order to o...

  13. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  14. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    International Nuclear Information System (INIS)

    Abdul Rahman, Norizah; Feisst, Vaughan; Dickinson, Michelle E.; Malmström, Jenny; Dunbar, P. Rod; Travas-Sejdic, Jadranka

    2013-01-01

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h max max >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells

  15. Fabrication of nanostructured graphene/polyaniline hybrid material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hao, Q.L.; Wang, X.; Lu, L.D.; Yang, X.J. [Nanjing Univ. of Science and Technology (China). Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education

    2010-07-01

    In this study, a flexible graphene/polyaniline hybrid material was prepared using an in situ polymerization-reduction/dedoping-redoping process for use as a supercapacitor electrode. Graphene oxide and a single layer of graphite oxide were used as a substrate material for the graphene oxide-polyaniline composite using an in situ polymerization method. The composite was then treated with a hot sodium hydroxide solution in order to produce a reduced graphene oxide/polyaniline hybrid material. The sodium hydroxide was also used as a dedoping reagent for the polyaniline in the composite. A thin, uniform and flexible conducting graphene/polyaniline product with an unchanged morphology was obtained using the process. Analyses of the material demonstrated that the composite showed an improved electrochemical performance than the pure individual components, with a specific capacitance of 1126 F per g and a retention life of 84 per cent after 1000 cycles. 4 refs., 1 fig.

  16. A nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties

    International Nuclear Information System (INIS)

    Venditti, Iole; Fratoddi, Ilaria; Russo, Maria Vittoria; Bearzotti, Andrea

    2013-01-01

    Nanostructured composite materials based on polyaniline (PANI) and gold nanoparticles have been prepared by means of an osmosis based method. Several morphologies have been obtained for the pristine nanoPANI and for nanoPANI–Au composite, ranging from amorphous to sponge-like and spherical shapes. On the basis of this morphological investigation, different materials with high surface area have been selected and tested as chemical interactive materials for room temperature gas and vapor sensing. The resistive sensor devices have been exposed to different vapor organic compounds (VOCs) of interest in the fields of environmental monitoring and biomedical applications, such as toluene, acetic acid, ethanol, methanol, acetonitrile, water, ammonia and nitrogen dioxide. The effect of doping with H 2 SO 4 has been studied for both nanoPANI and nanoPANI–Au samples. In particular, nanoPANI–Au showed sensitivity to ammonia (up to 10 ppm) higher than that to other VOCs or interfering analytes. The facile preparation method and the improved properties achieved for the polyaniline–gold composite materials are significant in the nanomaterials field and have promise for applications in ammonia vapor monitoring. (paper)

  17. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles

    International Nuclear Information System (INIS)

    Khosrozadeh, A.; Xing, M.; Wang, Q.

    2015-01-01

    Highlights: • The solid-state supercapacitor has high energy density and good cyclic stability. • The electrode is a freestanding composite film of polyaniline and carbon particles. • The impregnation of electrodes with gel electrolyte facilitates high capacitance. • The supercapacitor is lightweight, thin, flexible, and environmental friendly. - Abstract: Polyaniline tends to degrade with cycling in aqueous electrolytes and it can be alleviated using gel electrolytes. A low-cost solid-state supercapacitor of high energy density and good cyclic stability is fabricated with a facile method. The electrodes of the supercapacitor are made of a freestanding composite film of polyaniline and acid-treated carbon particles using phytic acid as a crosslinker, and the gel electrolyte is composed of sulfuric acid and polyvinyl alcohol. The electrochemical performances of the as-fabricated supercapacitor are investigated with cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Our results show that a maximum capacitance of 272.6 F/g (3.63 F/cm 2 ) at a current density of 0.63 A/g can be achieved by the supercapacitor, which is significantly higher than most solid-state ones reported in the literature. The ability to achieve a high-capacitance supercapacitor with good cyclic stability is mainly attributed to excellent infiltration of the gel electrolyte into the electrodes. The developed lightweight, thin, flexible, and environmental friendly supercapacitor would have potential applications in various energy storage devices, such as wearable electronics and hybrid electric vehicles

  18. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Kunzo, P.; Kováčová, E.; Vávra, I.; Križanová, O.; Smatko, V.; Stejskal, Jaroslav; Konyushenko, Elena; Omastová, M.; Špitálský, Z.; Mičušík, M.; Krupa, I.

    2011-01-01

    Roč. 519, č. 12 (2011), s. 4123-4127 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas sensor * polyaniline thin film * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2011

  19. Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites.

    Science.gov (United States)

    Vega-Rios, Alejandro; Olmedo-Martínez, Jorge L; Farías-Mancilla, Bárbara; Hernández-Escobar, Claudia A; Zaragoza-Contreras, E Armando

    2014-09-22

    Polyaniline/iota-carrageenan (ι-CGN) biocomposites were synthesized via in situ methodology using ammonium persulfate as the oxidizing agent. Both ionic (band at 1131 cm(-1)) and hydrogen bond (bands at 2500 and 3500 cm(-1)) interactions between polyaniline and ι-CGN were determined by infrared spectroscopy. Such intermolecular interactions provided the biocomposites with a cross-linked structure that provided the materials with hydrogel behavior. Biocomposite electro-conductivity, determined by the 4-probe technique, was in the range of semiconductors (10(-3) to 10(-2) S cm(-1)); whereas electro-activity, assessed by cyclic voltammetry, showed the oxidation-reduction transitions typical of polyaniline. Based on the properties of polyaniline and ι-CGN, some applications for the new materials in the field of biosensor design, electrochemical capacitors, or tissue engineering scaffolds are possible. It is worth saying that both electro-conductive and electro-active properties of polyaniline/ι-CGN biocomposites are reported here for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.

    Science.gov (United States)

    Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming

    2012-10-05

    It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.

  1. Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Sumana, G.; Arora, Kavita [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012 (India)], E-mail: bansi.malhotra@gmail.com

    2008-05-01

    DNA biosensor based on polyaniline (PANI)-polyvinyl sulphonate (PVS) has been fabricated using electrochemical entrapment technique for detection of organophosphorus pesticides (chlorpyrifos and malathion). These double stranded calf thymus DNA (dsCT-DNA) entrapped PANI-PVS/indium-tin-oxide (ITO) bioelectrodes have been characterized using square wave voltammetry (SWV), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and electrochemical impedance techniques, respectively. These dsCT-DNA entrapped PANI-PVS/ITO bioelectrodes have been found to have response time of 30 s, stability of about 6 months and detection limit for chlorpyrifos and malathion as 0.5 ppb and 0.01 ppm, respectively.

  2. Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate

    International Nuclear Information System (INIS)

    Prabhakar, Nirmal; Sumana, G.; Arora, Kavita; Singh, Harpal; Malhotra, B.D.

    2008-01-01

    DNA biosensor based on polyaniline (PANI)-polyvinyl sulphonate (PVS) has been fabricated using electrochemical entrapment technique for detection of organophosphorus pesticides (chlorpyrifos and malathion). These double stranded calf thymus DNA (dsCT-DNA) entrapped PANI-PVS/indium-tin-oxide (ITO) bioelectrodes have been characterized using square wave voltammetry (SWV), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and electrochemical impedance techniques, respectively. These dsCT-DNA entrapped PANI-PVS/ITO bioelectrodes have been found to have response time of 30 s, stability of about 6 months and detection limit for chlorpyrifos and malathion as 0.5 ppb and 0.01 ppm, respectively

  3. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  4. In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid

    Czech Academy of Sciences Publication Activity Database

    Šeděnková, Ivana; Trchová, Miroslava; Blinova, Natalia V.; Stejskal, Jaroslav

    2006-01-01

    Roč. 515, č. 4 (2006), s. 1640-1646 ISSN 0040-6090 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * thin films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.666, year: 2006

  5. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  6. Humidity Response of Polyaniline Based Sensor

    Directory of Open Access Journals (Sweden)

    Mamta PANDEY

    2010-02-01

    Full Text Available Abstract: This paper presents hitherto unreported humidity sensing capacity of emeraldine salt form of polyaniline. Humidity plays a major role in different processes in industries ranging from food to electronic goods besides human comfort and therefore its monitoring is an essential requirement during various processes. Polyaniline has a wide use for making sensors as it can be easily synthesized and has long stability. Polyaniline is synthesized here by chemical route and is found to sense humidity as it shows variation in electrical resistance with variation in relative humidity. Results are presented here for a range of 15 to 90 RH%. The resistance falls from 5.8 to 0.72 Giga ohms as RH varies from 15 to 65 % and then falls to 13.9 Mega ohms as RH approaches 90 %. The response and recovery times are also measured.

  7. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, Norizah, E-mail: norizah@science.putra.edu.my [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Department of Chemistry, University of Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan (Malaysia); Feisst, Vaughan [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dickinson, Michelle E. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Malmström, Jenny [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Dunbar, P. Rod [School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Maurice Wilkins Centre, Private Bag 92019, Auckland (New Zealand); Travas-Sejdic, Jadranka, E-mail: j.travas-sejdic@auckland.ac.nz [Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 600, Wellington 6140 (New Zealand)

    2013-02-15

    Conductive polymer poly(aniline-co-m-aminobenzoic acid) (P(ANI-co-m-ABA)) and polyaniline (PANI) were blended with a biodegradable, biocompatible polymer, poly(L-lactic acid) and were electrospun into nanofibres to investigate their potential application as a scaffold for human adipose-derived stem cells (hASCs). These polymers, in both conductive and non-conductive form, were electrospun with average fibre diameters of less than 400 nm. Novel nanoindentation results obtained on the individual nanofibres revealed that the elastic moduli of the nanofibres are much higher at the surface (4–10 GPa, h{sub max} <75 nm) than in the inner fibre core (2–4 GPa, h{sub max} >75 nm). The composite nanofibres showed great promise as a scaffold for hASCs as they supported the cell adhesion and proliferation. After 1 week of cell culture hASCs were well spread on the substrates with abundant focal adhesions. The electrospun mats provide the cells with comparably stiff, sub-micron sized fibres as anchoring points on a substrate of high porosity. The conductive nature of these composite nanofibres offers exciting opportunities for electrical stimulation of the cells. - Highlights: ► Polyaniline and its copolymer's nanofibres were prepared by electrospinning. ► The elastic modulus of a single polyaniline composite nanofibres were determined. ► Elastic moduli of the nanofibres are much higher at the surface than the inner core. ► The electrospun mats supported the cell adhesion and proliferation. ► The nanofibres show great promise as a scaffold for adipose derived stem cells.

  8. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  9. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    International Nuclear Information System (INIS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting

    2014-01-01

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric

  10. Effect of malic acid doping on the structural and superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N.; Sudesh; Stuti Rani; Varma, G.D.

    2010-01-01

    The samples have been prepared via standard solid state reaction route with nominal compositions MgB 2 + x wt% malic acid (x = 0, 5 and 10) by sintering at two different temperatures: 800 and 850 deg C in argon atmosphere. Improvement in upper critical fields (H c2 ) and irreversibility field (H irr ) of doped samples as compared to undoped samples have been observed. At 10 K, critical current densities (J c ) of the 5 and 10 wt% malic acid doped MgB 2 samples sintered at 850 deg C have higher values as compared to undoped sample sintered at the same temperature in the fields greater than 3 T. However, J c values of 5 wt% malic acid doped sample are higher than 10 wt% doped sample in the entire applied field region (0 - 7 T). In case of the samples sintered at 800 deg C improvement in J c values of 5 wt% doped sample have been found in entire field region as compared to undoped sample. On the other hand we see deterioration in J c values of 10 wt% doped samples sintered at 800 deg C as compared to undoped samples sintered at same temperature. The correlations between structural and superconducting properties will be described and discussed in this paper. (author)

  11. Fabrications of Polyaniline Films by Pulse Electrodeposition in Acidic Solutions with Different Anions and Their Thermoelectric Performances

    Science.gov (United States)

    Yang, Weifang; Xu, Han; Li, Yuanyuan; Wang, Wei

    2017-08-01

    Polymerization of aniline was prepared by the pulse potentiostatic method in H3PO4, HClO4 and H2SO4 acidic solutions. The morphologies and thermoelectric performances were analyzed by scanning electron microscopy, Seebeck coefficient ( S) and resistivity ( R) measurements. The results show that flake polyaniline (PANI) films can be obtained in H3PO4 and HClO4 acidic solutions, and porous PANI films with nanofiber-overlapped structures can be prepared in H2SO4 solution under the same pulse parameters. PANI films prepared in the three solutions are all p-type thermoelectric materials. PANI films polymerized in H2SO4 solution possess the highest S (30.2 μV K-1) and lowest R (1.6 × 10-3 Ω m) compared with those prepared in H3PO4 and HClO4 solutions, indicating that nanofiber-overlapped structures formed in H2SO4 solution contribute better thermoelectric performance. In addition, the effects of pulse parameters (anodic potential φ a, anodic pulse duration t a and cathodic pulse duration t c) on the surface morphologies and thermoelectric performances of PANI films were systematically investigated.

  12. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    They have wide applications in devices such as solar cells, rechargeable batteries, light emitting diodes, micro- actuators, electrochromic displays, field effect transistors, sensors etc (Saraswathi et al 1999). In polymers, doping can be carried out by different pro- cesses such as chemical and electrochemical. Recently, metal.

  13. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  14. Green Synthesis of Novel Polyaniline Nanofibers: Application in pH Sensing

    Directory of Open Access Journals (Sweden)

    Shivani Tanwar

    2015-10-01

    Full Text Available An optically active polyaniline nanomaterial (PANI-Nap, doped with (S-naproxen, was developed and evaluated as a potent pH sensor. We synthesized the material in one pot by the addition of the dopant, (S-naproxen, prior to polymerization, followed by the addition of the oxidizing agent (ammonium persulfate that causes polymerization of the aniline. This green chemistry approach allowed us to take only 1 h to produce a water-soluble and stable nanomaterial. UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS were used to characterize the designed nanomaterial. This nanomaterial exhibited excellent pH sensing properties and showed long term stability (up to one month without loss of sensor performance.

  15. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qiang; Yau, Siu-Tung [Department of Electrical and Computer Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Nayfeh, Munir H. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2010-06-15

    A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg{sup -1}) and energy-storage (30 Wh kg{sup -1}) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles. (author)

  16. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping

    2015-01-01

    We have developed a new class of organic–inorganic hybrid nanostructures based on the use of reduced graphene oxide (rGO), polyaniline, and a nickel metal nanostructure. It was applied to efficient non-enzymatic sensing of glucose based on its electrocatalytic oxidation. Scanning electron microscopy and energy-dispersive X-Ray were employed to characterize the material. It is shown that the doped polyaniline plays an important role in the formation of the hybrid nanostructures. Improved analytical performance is found when the hybrid nanostructures were placed on a glassy carbon electrode and used for non-enzymatic sensing of glucose at a typical working potential of +450 mV and a pH value of 13. Features include a fast response (∼2 s), high sensitivity (6,050 μA mM −1 cm −2 ), a linear range from 0.1 μM to 1.0 mM, and a low detection limit (0.08 μM). The response to glucose follows a Michaelis-Menten kinetic behavior, and the K M value was determined to be 0.241 μM. Reproducibility and specificity are acceptable. Fructose and maltose do not interfere significantly. Importantly, the methodology was validated and evaluated for the analysis of 15 spiked human serum specimens, receiving in a good accordance with the results obtained by the non-enzymatic glucose sensing and the commercialized personal glucose meter. (author)

  17. COVALENT IMMOBILIZATION OF INVERTASE ON EPOXY-ACTIVATED POLYANILINE FILMS

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2013-08-01

    Full Text Available The growing interest in manufacturing and use of biosensors is their rapid and selective detection of the target analyte. The immobilization of the enzymes, onto the appropriate matrix is the key-step in the construction of biosensing devices, considerably affecting its performance. In this study, new polyaniline bearing epoxy groups was synthesized by electrochemical polymerization reactions, as adherent, green film deposited on electrode surface, and was further used as immobilization matrix for invertase enzyme. The immobilization was carried out by condensation reactions between the amino groups of the enzyme molecules and the epoxy groups of polyaniline film. The covalent attachment was achieved by simple immersing the epoxy-activated polyaniline in acetate buffer solution (10 mM, pH 6.0 containing 2mg/mL invertase, for 24 h at 4 ºC, by continuous stirring. The polyaniline films thus obtained were analyzed before and after the invertase attachment, by using FT-IR spectroscopy and SEM microscopy. The presence of the invertase was evaluated by measuring their activity, using UV-Vis spectroscopy, in the presence of a known amount of sucrose as a substrate. These tests, performed for three times under the same conditions, revealed that even after five washes of the polyaniline /invertase electrode to remove the unbounded enzyme, the enzyme remain attached on the polyaniline film, being able to hydrolyze the sucrose presented in the assay solutions.

  18. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Zhang, Qiuxiang; Zhao, Junfeng; Lu, Hongbin; Meng, Xiangkang

    2017-12-01

    Conductive polymer coating doped with large molecular organic acid is an alternative method used to protect stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). However, it is difficult to select the proper doping acid, which improves the corrosion resistance of the coating without affecting its conductivity. In this study, large spatial molecular group camphorsulfonic acid (CSA) doped polypyrrole (PPY) conductive coating was prepared by galvanostatic electropolymerization on 304SS. The electrochemical properties of the coating were evaluated in 0.1 M H2SO4 solution in order to simulate the PEMFC service environment. The results indicate that the coating increased the corrosion potential and shifted Ecorr towards more positive value, particularly the jcorr value of PPY-CSA coated 304SS was dropped from 97.3 to 0.00187 μA cm-2. The long-term immersion tests (660 h) show that the PPY-CSA coating exhibits better corrosion resistance in comparison with the small acid (SO42-) doped PPY-SO42- or PPY/PPY-SO42- coatings. Moreover, the PPY-CSA coating presents low contact resistance and maintains strong corrosion resistance during the prolonged exposure time due to barrier effect and anodic protection.

  19. Preparation and characterization of polyaniline-copper composites by electrical explosion of wire.

    Science.gov (United States)

    Liu, Aijie; Bac, Luong Huu; Kim, Jin-Chun; Liu, Lizhu

    2012-07-01

    Polyaniline-copper composites with a polyacrylic acid (PAA) were synthesized by electrical explosion of wire. Polyaniline (PANI) and PAA were put into the explosion medium, deionized water (DIW) and ethanol, stirred for 24 hrs and sonicated for 2 hrs. These solutions were used as base liquids for explosion process to fabricate Cu nanoparticle. Optical absorption in the UV-visible region of PANI and PANI/PAA-Cu composites was measured in a range of 200-900 nm. X-ray diffraction was used to analyze the phase of the composites. XRD pattern showed the PANI was amorphous and copper was polycrystalline. Two phases of Cu and Cu2O were formed in aqueous solution while single Cu phase was obtained in ethanol solution. Field emission scanning electron microscope was used to observe the microstructure of the composites. The synthesized composites were extensively characterized by Fourier Transform Infrared (FTIR) spectroscopy and electrical measurements.

  20. Application of poly(aniline) as an ion exchanger for the separation of palladium, iridium, platinum and gold prior to their determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Kumar, S.; Verma, R.; Gangadharan, S.

    1993-01-01

    The distribution coefficients of Pd II , Ir IV , Pt IV and Au III on poly(aniline) in 0.1-10 mol 1 -1 HCl were determined. They are strongly adsorbed at low acidities and the extent of adsorption decreases with increase in acidity, except for Au III , Palladium, Pt and Au are quantitatively eluted with 5% thiourea in 0.05 mol -1 HCl whereas the recovery of Ir is > 90% with 1% ascorbic acid followed by 10 mol -1 HCl. It was found that Cr, Fe, Co, Ni, Zn, Ga and Ge are not retained on poly(aniline) at low acidities. This separation procedure was applied prior to the determination of Pd, Ir, Pt and Au in iron meteorite and PCC-1 standard rock by neutron activation analysis. (author)

  1. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    International Nuclear Information System (INIS)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.; Jayavel, R.

    2008-01-01

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresis measurements reveal an increase of coercive field due to the formation of single domain pattern

  2. A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors.

    Science.gov (United States)

    Gao, Zhaodongfang; Yang, Junwei; Huang, Jing; Xiong, Chuanxi; Yang, Quanling

    2017-11-23

    Conducting polymer based supercapacitors usually suffer from the difficulty of achieving high specific capacitance and good long-term stability simultaneously. In this communication, a long-chain protonic acid doped solvent-free self-suspended polyaniline (S-PANI) fluid and reduced graphene oxide (RGO) were used to fabricate a three-dimensional RGO/S-PANI aerogel via a simple self-assembled hydrothermal method, which was then applied as a supercapacitor electrode. This 3D RGO/S-PANI composite exhibited a high specific capacitance of up to 480 F g -1 at a current density of 1 A g -1 and 334 F g -1 even at a high discharge rate of 40 A g -1 . An outstanding cycling performance, with 96.14% of the initial capacitance remaining after 10 000 charging/discharging cycles at a rate of 10 A g -1 , was also achieved. Compared with the conventional conducting polymer materials, the 3D RGO/S-PANI composite presented more reliable rate capability and cycling stability. Moreover, S-PANI possesses excellent processability, thereby revealing its enormous potential in large scale production. We anticipate that the solvent-free fluid technique is also applicable to the preparation of other 3D graphene/polymer materials for energy storage.

  3. Synthesis, characterization and thermogravimetric study of zinc and cadmium acetates-polyaniline hybrids

    International Nuclear Information System (INIS)

    Fernandes de Farias, Robson

    2004-01-01

    By dissolution of respective acetates and conducting polymer in dimethylformamide, homogeneous zinc acetate and cadmium acetate-polyaniline (PANI) hybrids were synthesized and characterized by infrared spectroscopy, thermogravimetry and SEM microscopy. The infrared spectra suggests that there are interactions between PANI and the metal cations involving both, imine and amine nitrogens in a typical Lewis acid-base reaction. The thermogravimetric degradation profile of the synthesized hybrids resembles those exhibited by PANI samples

  4. Biocompatibility of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Kašpárková, V.; Saha, P.; Stejskal, Jaroslav

    2012-01-01

    Roč. 162, 7/8 (2012), s. 722-727 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: BK - Fluid Dynamics Impact factor: 2.109, year: 2012

  5. Thermal, Dielectric Studies on Pure and Amino Acid L-Glutamic Acid, L-Histidine L-Valine Doped Potassium Dihydrogen Phosphate Single Crystals

    Science.gov (United States)

    Kumaresan, P.; Babu, S. Moorthy; Anbarasan, P. M.

    Amino acids (L-Glutamic acid, L-Histidine, L-Valine) doped potassium dihydrogen phosphate crystals were grown by the solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mole % to 10 mole %. The solubility data for all dopant concentrations were determined. The variation in pH and the corresponding habit modification of the grown crystals were characterized with UV - VIS, FT-IR and SHG trace elements, and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material, which also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  6. Synthesis and characterization of polyaniline-hexaferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Khursheed, Tooba [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U., E-mail: dr.misbahulislam@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E & ME, National University of Science and Technology, Islamabad (Pakistan); Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Shakoor, Abdul [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Awan, M.S. [Center for Micro and Nano Devices Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Iftikhar, Aisha [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Naeem Ashiq, Muhammad [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2015-11-01

    Polyaniline was synthesized by chemical polymerization using aniline as monomer, and Y-type hexaferrite with composition (Co{sub 2}Mn{sub 2}Sr{sub 1.66}Nd{sub 0.4}Fe{sub 10}O{sub 22}) was prepared by co-precipitation assisted by surfactant. Three composites of Polyaniline with different ferrite ratios were prepared by mechanical blending. The synthesized samples were characterized by X-Ray diffraction, Scanning electron microscopy and electrical measurements. The XRD analysis reveals that no second phase was observed in Y-type hexagonal ferrite. In PANI-Ferrite composites, significant changes in resistivity, real and imaginary part of complex permittivity were observed with the increase of ferrite in the polyaniline matrix. At low frequencies the magnitude of dielectric constant and complex permittivity is high with few relaxation peaks. AC conductivity of PANI-Ferrite composites increase with the increase of frequency following Jonscher law. The resistivity and activation energy were found to show similar behavior. - Highlights: • Co{sub 2}Mn{sub 2}Sr{sub 1.66}Nd{sub 0.4}Fe{sub 10}O{sub 22} was prepared by co-precipitation. • Polyaniline was synthesized by chemical polymerization. • AC conductivity increase with the increase of frequency. • The resistivity and activation energy were found to show similar behavior.

  7. Improved electrochemical performance of hierarchical porous carbon/polyaniline composites

    International Nuclear Information System (INIS)

    Hu Juan; Wang Huanlei; Huang Xiao

    2012-01-01

    Highlights: ► Polyaniline-coated hierarchical porous carbon (HPC) composites have been synthesized by in situ polymerization. ► The HPC/polyaniline composite has significantly better electrochemical capacitance performance than pure HPC and polyaniline. ► The amount of polyaniline loading has a significant effect on the composites’ electrochemical performances. - Abstract: Polyaniline (PANI)-coated hierarchical porous carbon (HPC) composites (HPC/PANI) for use as supercapacitor electrodes were prepared by in situ chemical oxidation polymerization at 273 K of an aniline solution containing well-dispersed HPC particles. After polymerization, a thin layer of PANI was coated on the surface of the HPC particles, which was confirmed by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and scanning electron microscopy (SEM). Compared to pure PANI and HPC, the electrochemical capacitance performance of the composites was significantly improved. The highest specific capacitance of the composites obtained is 478 F g −1 at 1 mV s −1 , which is more than twice as that of pure PANI and three times as that of pure HPC. Because of the influence from the hierarchical pore structure of the carbon material, the calculated specific capacitance of PANI in the composite (pseudocapacitance contribution from PANI) is almost one magnitude higher than that of pure PANI.

  8. Optical and Electrical Studies of Polyaniline/ZnO Nanocomposite

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Polyaniline (Pani/ZnO nanocomposite with diameter 40–50 nm was successfully fabricated by coprecipitation method of ZnO via in situ polymerization of Pani. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, fourier transformation infrared (FT-IR, UV-Vis absorption spectra, thermogravimetric analysis (TGA, and electrical properties were studied. HRTEM studies showed that the prepared ZnO nanoparticles were uniformly dispersed and highly stabilized throughout the polymer chain and formed uniform metal oxide-conducting polymer nanocomposite material. UV-Vis spectra of Pani/ZnO nanocomposite were studied to investigate the optical behavior after doping the ZnO nanoparticle into the polymer matrix. The inclusion of ZnO nanoparticle gives rise to the red shift of π-π* transition of Pani. The nanocomposite was found to be thermally stable upto 130°C and showed conductivity value of 3.0×10−2 Scm−1.

  9. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  10. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Directory of Open Access Journals (Sweden)

    Avanish Pratap Singh

    2011-06-01

    Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  11. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces: obtaining spherical particles, wires, and ribbons.

    Science.gov (United States)

    Zhong, Wenbin; Wang, Yongxin; Yan, Yan; Sun, Yufeng; Deng, Jianping; Yang, Wantai

    2007-04-19

    A novel strategy was developed in order to prepare various micro/nanostructured polyanilines (PANI) on polymer substrates. The strategy involved two main steps, i.e., a grafting polymerization of acrylate acid (AA) onto the surface of a polypropylene (PP) film and subsequently an oxidative polymerization of aniline on the grafted surface. By tuning the conformation of the surface-grafted poly acrylate acid (PAA) brushes, as well as the ratio of AA to aniline, the shape of the PANIs fixated onto the surfaces of the polymer substrate could be controlled to go from spherical particles to nanowires and eventually to nanoribbons. In these structures, the PAA brushes not only acted as templates but also as dopants of PANI, and thereby, the nanostructured PANIs could be strongly bonded with the substrate. In addition, the surface of the PP films grafted with polyaniline nanowires and nanoribbons displayed superhydrophobicity with contact angles for water of approxiamtely 145 and 151 degrees , respectively.

  12. Phase-Separated Polyaniline/Graphene Composite Electrodes for High-Rate Electrochemical Supercapacitors.

    Science.gov (United States)

    Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei

    2016-12-01

    Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 300...... doping level. At 160 degrees C a conductivity as high as 0.13 S cm/sup -1/ is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 degrees C, fuel cells...... based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide....

  14. Dielectric and conductivity properties of composite polyaniline/polyurethane network

    Science.gov (United States)

    Liang, C.; Gest, J.; Leroy, G.; Carru, J.-C.

    2013-09-01

    In this work, we present the dielectric characterization of polyaniline/polyurethane composite. The samples consisting of 0.5%, 1%, and 5% of polyaniline were deposited on glass fiber, and the measurements were performed in a frequency range of 20 Hz to 20 GHz. The results showed a dielectric relaxation strongly dependent on the concentration of polyaniline. This phenomenon is explained by a theoretical model. In this model, we assume that the alternative conductivity of the polymer network systems is due to conducting clusters whose lengths followed a Gaussian distribution. Depending on their size and the frequency of the excitation signal, the clusters showed a resistive or capacitive effect.

  15. Electrical and thermal properties of graphite/polyaniline composites

    Energy Technology Data Exchange (ETDEWEB)

    Bourdo, Shawn E., E-mail: sxbourdo@ualr.edu [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Warford, Brock A.; Viswanathan, Tito [Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States)

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  16. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eaton, Peter [UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto (Portugal); Alves da Silva, Durcilene [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: eiras@cnpq.br [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2015-10-15

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  17. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    International Nuclear Information System (INIS)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de; Eaton, Peter; Alves da Silva, Durcilene; Eiras, Carla

    2015-01-01

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  18. Nickel coated flyash (Ni-FAC) cenosphere doped polyaniline composite film for electromagnetic shielding

    International Nuclear Information System (INIS)

    Bora, Pritom J; Ramamurthy, Praveen C; Madras, Giridhar; Vinoy, K J; Kishore

    2015-01-01

    A solid waste material fly ash cenosphere (FAC) was nickel coated and polyaniline in situ polymerized at −30 ± 2 °C in nitrogen atmosphere. A thin film of this composite material was prepared by solution processing and surface morphology/topography was studied. High electromagnetic shielding effectiveness (SE) was obtained for this film; 59 ± 4 μm and 133 ± 4 μm films show an average of 38 and 60 dB SE, respectively, in the frequency range 8.2–12.4 GHz (X-band). Unlike PANI film, the SE of these composite films is high at high frequency. The presence of magneto dielectric microsphere (Ni-FAC) increases the heterogeneity of the composite film in an efficient way for EMI shielding by changing film topography and increasing ac conductivity and permeability. (paper)

  19. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors.

    Science.gov (United States)

    Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua

    2013-09-24

    A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.

  20. Polyaniline on surface modification of diatomite: a novel way to obtain conducting diatomite fillers

    International Nuclear Information System (INIS)

    Li Xingwei; Bian Chaoqing; Chen Wei; He Jinbo; Wang Zhaoquen; Xu Ning; Xue Gi

    2003-01-01

    A conducting diatomite was obtained by polyaniline on surface modification of diatomite, and was characterized via Fourier-transform Raman spectra, UV-Vis absorption spectra, thermogravimetric analysis and scanning electron microscope, as well as conductivity. The results of spectroanalysis illustrate that polyaniline is not simply blended with diatomite. An interaction exists at the interface of diatomite and polyaniline, which may associate with hydrogen bond formed between the surface of diatomite with electronegativity and N-H bond in polyaniline macromolecule. The results of thermogravimetric analysis suggest that the conducting diatomite only contains 8% polyaniline by mass, but its conductivity has reached 2.8x10 -2 S cm -1 at 20 deg. C

  1. Phosphoric acid doped AB-PBI membranes and its applications in high temperature PEMFC

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Bjerrum, Niels

    2005-01-01

    Poly(2,5-benzimidazole) (ab-PBI) was prepared from 3,4-diaminobenzoic acid via a polymerisation reaction. The obtained polymer exhibits excellent thermal stability in a temperature range ….. The membrane of ab-PBI when doped with phosphoric acid at room temperaturepresents high proton conductivity...

  2. Modulation of the acidity of niobic acid by ion-doping: Effects of nature and amount of the dopant ions

    Energy Technology Data Exchange (ETDEWEB)

    Carniti, Paolo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Gervasini, Antonella, E-mail: antonella.gervasini@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Marzo, Matteo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, (IRCELYON), Villeurbanne (France)

    2013-09-10

    Highlights: ► Mitigation of the surface acidity of niobic acid was pursued by K-, Ba-, and Nd-doping. ► Thermal techniques of study were effective for the acidity study. ► The nature of the dopant influences the effectiveness of the acidity tuning of niobic acid. ► The acidity of the doped surfaces decreased with increasing the dopant species added to niobic acid. ► The samples showed different acidity when measured in gas–solid phase (intrinsic acidity) and water (effective acidity). - Abstract: The acidity of niobic acid (NBO) has been successfully mitigated and tuned by addition of K{sup +}, Ba{sup 2+} and Nd{sup 3+} dopant species in amounts from 1 to 15 atom nm{sup −2}. The characterization of the intrinsic acid properties of the samples was performed by adsorption of NH{sub 3} in a volumetric–microcalorimetric coupled line and by temperature programmed desorption (TPD) of 2-phenylethylamine in a thermogravimetric apparatus. The K-dopant was more effective in decreasing the acidity of niobic acid than the Ba- and Nd-dopants. Complementary measurements of the effective acidity of the samples in water by base titrations with 2-phenylethylamine completed the study and revealed a different picture of the effect of the three dopants on the NBO acidity in water. All the results indicated that the K-dopant targeted more selectively the Brønsted acid sites, acting as an ion-exchanger, while Ba- and Nd-species predominantly acted on the Lewis acid sites of the NBO surface.

  3. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    Science.gov (United States)

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.

  4. A Possibility for Construction of an Iodine Cleaning System Based on Doping for π-Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Hiromasa Goto

    2011-05-01

    Full Text Available An iodine accumulation method using polyaniline (PANI and a textile composite is proposed. PANI/pulp paper sheets prepared by a paper making technique are suitable for iodine adsorption, because of good processability. The PANI-based paper sheets can be applied for iodine cleanup as air filters, water filters, and floorcloth. This concept may lead to a development of an iodine cleaning machine or iodine shield cloth based on π-conjugated polymer composites. In-situ vapor phase doping of iodine, observation of surface images, and IR measurements are carried out to examine iodine doping function for the PANI/pulp paper sheets.

  5. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.

    Science.gov (United States)

    Garai, Ashesh; Nandi, Arun K

    2008-04-01

    The melt rheology of polyaniline (PANI)-dinonylnaphthalenedisulfonic acid (DNNDSA) gel nanocomposites (GNCs) with organically modified (modified with cetyl trimethylammonium bromide)-montmorillonite (om-MMT) clay has been studied for three different clay concentrations at the temperature range 120-160 degrees C. Field emission scanning electron microscopy (FE-SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and dc-conductivity data (approximately 10(-3) S/cm) indicate that the PANI-DNNDSA melt is in sol state and it is not de-doped at that condition. The WAXS data indicate that in GNC-1 sol clay tactoids are in exfoliated state but in the other sols they are in intercalated state. The zero shear viscosity (eta0), storage modulus (G') and loss modulus (G") increase than that of pure gel in the GNCs. The pure sol and the sols of gel nanocomposites (GNCs) exhibit Newtonian behavior for low shear rate (clay concentration and the power law index (n) decreases with increase in clay concentration in the GNCs indicating increased shear thinning for the clay addition. Thus the sols of om-clay nanocomposites of PANI-DNNDSA system are easily processible. The storage modulus (G') of GNC sols are higher than that of pure PANI-DNNDSA sol, GNC1 sol shows a maximum of 733% increase in storage modulus and the percent increase decreases with increase in temperature. Exfoliated nature of clay tactoids has been attributed for the above dramatic increase of G'. The PANI-DNNDSA sol nanocomposites behave as a pseudo-solid at higher frequency where G' and loss modulus (G") show a crossover point in the frequency sweep experiment at a fixed temperature. The crossover frequency decreases with increase in clay concentration and it increases with increase in temperature for GNC sols. The pseudo-solid behavior has been explained from jamming or network formation of clay tactoids under shear. A probable explanation of the two apparently contradictory phenomena

  6. Synthesis, transport and dielectric properties of polyaniline/Co3O4 ...

    Indian Academy of Sciences (India)

    TECS

    Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites ... Initial increment in conductivity is due to extended chain length of polyaniline where polarons possess .... Figure 3 displays the scanning electron micrograph of.

  7. Polyaniline/Fe3O4-RGO Nanocomposites for Microwave Absorption

    Science.gov (United States)

    Mathew, Jithin; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.; Sabarish Narayanan, B.

    2018-02-01

    Fe3O4 nanoparticles were synthesized by co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2). Reduced graphene oxide (RGO) was prepared by reducing the graphene oxide, which was synthesized by Hummer’s method, using hydrazine hydrate. Three nanocomposites based on sodium dodecyl benzene sulphonate (SDBS)-doped polyaniline were synthesized through in situ polymerization in the presence of the fillers (i) Fe3O4, (ii) reduced graphene oxide (RGO) and (iii) Fe3O4-decorated RGO respectively. The synthesized PANI and the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Their microstructures, electrical conductivities, and EMI shielding effectiveness were studied. The nanocomposite containing 10 % RGO showed the maximum electrical conductivity and the one with 10 % RGO and 10 % Fe3O4 showed the maximum EMI shielding effectiveness of 7.5 dB for a 1 mm thick sample.

  8. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  9. Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain

    Czech Academy of Sciences Publication Activity Database

    Gribkova, O. L.; Nekrasov, A. A.; Trchová, Miroslava; Ivanov, V. F.; Sazikov, V. I.; Razova, A. B.; Tverskoy, V. A.; Vannikov, A. V.

    2011-01-01

    Roč. 52, č. 12 (2011), s. 2474-2484 ISSN 0032-3861 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * UV–Vis–NIR * FTIR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  10. Graphenated polyaniline-doped tungsten oxide nanocomposite sensor for real time determination of phenanthrene

    International Nuclear Information System (INIS)

    Tovide, Oluwakemi; Jaheed, Nazeem; Mohamed, Nurali; Nxusani, Ezo; Sunday, Christopher E.; Tsegaye, Abebaw; Ajayi, Rachel F.; Njomo, Njagi; Makelane, Hlamulo; Bilibana, Mawethu; Baker, Priscilla G.; Williams, Avril; Vilakazi, Sibulelo; Tshikhudo, Robert; Iwuoha, Emmanuel I.

    2014-01-01

    A graphenated polyaniline/tungsten oxide (PANI/WO 3 /GR) nanocomposite sensor was prepared by electropolymerisation of a mixture of aniline monomer and tungsten oxide on a graphene-modified glassy carbon electrode (GCE). The PANI/WO 3 /GR/GCE nanocomposite electrode was tested as a sensor for the determination of phenanthrene. The direct electro-oxidation behaviour of phenanthrene on the PANI/WO 3 /GR modified GCE was carefully investigated by cyclic voltammetry. The results indicated that the PANI/WO 3 /GR/GCE sensor was more sensitive to phenanthrene (with a dynamic linear range of 1.0 - 6.0 pM and a detection limit of 0.123 pM.) than GCE, PANI/GCE or PANI/WO 3 /GCE. The sensor exhibited excellent reproducibility and long-term stability. The sensor exhibits lower detection sensitivity than the WHO permissible level of 1.12 nM phenanthrene in wastewater

  11. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    Science.gov (United States)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  12. Electrical and Dielectric Properties of Polyaniline and Polyaniline/Montmorillonite Nanocomposite Prepared by Solid Reaction Using Spectroscopy Impedance

    Directory of Open Access Journals (Sweden)

    Imene Bekri-Abbes

    2015-01-01

    Full Text Available The combination of two components with uniform distribution in nanoscale is expected to facilitate wider applications of the material. In this study, polyaniline (PAn and polyaniline/montmorillonite (Mt nanocomposite were prepared by solid reaction using persulfate of ammonium as oxidant. The phase composition and morphology of the nanocomposite were characterized by FTIR, UV-visible spectroscopy, X-ray diffractometer, thermal gravimetric analysis, and scanning electron microscopy. The electrical and dielectric properties were determined using spectroscopy impedance. The analysis of UV-visible and FTIR spectroscopy demonstrated that aniline chloride has been polymerized into PAn in its conducting emeraldine form. Thermogravimetric analysis suggested that PAn chains intercalated in the clay host are more thermally stable than those of free PAn prepared by solid-solid reaction. Electrical measurements were carried out using the complex impedance technique in the frequency range of 10−2 to 104 Hz at different temperatures. The ac conductivity data of different nanocomposites were analyzed as a function of frequency and temperature. It has been found that the incorporation of inorganic clay phase into polyaniline matrix has an effect on the electrical and dielectric properties of the nanomaterial.

  13. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    Science.gov (United States)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  14. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Gang, Xiao

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  16. Mechanical properties of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Valentová, H.; Stejskal, Jaroslav

    2010-01-01

    Roč. 160, 7-8 (2010), s. 832-834 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * conductivity Subject RIV: BK - Fluid Dynamics Impact factor: 1.871, year: 2010

  17. High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor

    International Nuclear Information System (INIS)

    Wang, Jin; Wu, Zongchao; Hu, Kunhong; Chen, Xiangying; Yin, Huabing

    2015-01-01

    Highlights: • A facile synthesis method of MoS 2 /PANI intercalated nanocomposites is developed. • There is synergistic effect between PANI and MoS 2 layer in the MoS 2 /PANI composites. • Intercalation is benefit for electrons transportation and conductivity increase. • The well-defined MoS 2 /PANI have good specific capacitances and long cyclic life. - Abstract: High conductivity nanocomposites of molybdenum disulfide (MoS 2 )/polyaniline (PANI) were prepared via direct intercalation of aniline monomer and doped with dodecyl benzene sulfonic acid (DBSA). The intercalated interaction between PANI and MoS 2 improves the conductivity and thermal stability of MoS 2 /PANI nanocomposites with the increasing fraction of MoS 2 . The conductivity and maximum weight loss velocity temperature of PANI/MoS 2 -38 sample are 2.38 S cm −1 and 353 °C, respectively. This architecture is also advantageous for enhancing the capacitance properties and cyclic stabilities of MoS 2 /PANI electrodes. In comparison to the specific capacitance of 131 F/g and 42% retained capacitance over 600 cycles of PANI electrode, the MoS 2 /PANI-38 electrode provides a specific capacitance up to 390 F/g and 86% retained capacitance over 1000 cycles. Thus it provides an improved capacitance method which synergistically combines pseudocapacitance and double-layer capacitance for supercapacitor electrodes

  18. Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder

    Science.gov (United States)

    Bilal, Salma; Fahim, Muhammad; Firdous, Irum; Ali Shah, Anwar-ul-Haq

    2018-03-01

    The behaviour of gold electrode modified with polyaniline/graphene oxide composites (PGO) was studied for electrochemical and charge storage properties in aqueous acidic media. The surface of gold electrode was modified with aqueous slurry of PGO by using Carboxymethyl cellulose (CMC) as binder. The intercalation of polyaniline in the GO layers, synthesized by in situ polymerization was confirmed by scanning electron microscopy (SEM). The electrochemical behaviour and charge storing properties were investigated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). A high specific capacitance of 1721 F g-1 was obtained for PGO with 69.8% retention of capacitance even after 1000 voltammetric cycles in the potential range of 0-0.9 V at 20 mV s-1. EIS indicated low charge transfer resistance (Rct) and solution resistance (Rs) values of 0.51 Ω and 0.07 Ω, respectively. This good performance of PGO coated electrode is attributed to the use of CMC binder which generate a high electrode/ electrolyte contact area and short path lengths for electronic transport and electrolyte ion.

  19. Synthesis and characterization of polyaniline as emeraldine salt

    International Nuclear Information System (INIS)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K.

    2016-01-01

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI –ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  20. Synthesis and characterization of polyaniline as emeraldine salt

    Energy Technology Data Exchange (ETDEWEB)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI –ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  1. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P. [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, Saint Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg (Russian Federation); Ortiz, Genaro Gabriel [Laboratorio Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano de Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents.

  2. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids

    International Nuclear Information System (INIS)

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P.; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-01-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488 nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. - Highlights: • Hydroxyapatite functionalized with glucuronic acid reduced oxidative stress in rats. • Functionalization with folic acid reduced oxidative stress in rats. • Dysprosium doping does not affect the crystalline structure of hydroxyapatite. • Dysprosium doped particles are visible in fluorescent microscope. • Dysprosium doped particles act as MRI contrast agents

  3. Structural and electrical properties of polyaniline/silver nanocomposites

    International Nuclear Information System (INIS)

    Afzal, Asma B; Akhtar, M J; Nadeem, M; Ahmad, M; Hassan, M M; Yasin, T; Mehmood, M

    2009-01-01

    Polyaniline (PANI)/Ag nanocomposites were prepared by separate synthesis of silver nanoparticles by inert gas condensation, incorporating in the 1-methyl-2-pyrrolidinone (NMP) solution of polyaniline emeraldine base (PANIEB) and then cast into films at 120 deg. C. X-ray diffraction confirmed the presence of ∼67 nm silver nanoparticles in the polyaniline matrix. From the thermogravimetric analysis it is observed that the nanocomposite films have a higher degradation temperature than the pure PANI film. Scanning electron microscopy showed a uniform distribution, with spherical and granular morphology for low concentration of Ag nanoparticles, whereas for higher concentration (1.0% Ag) nanorods are formed. The impedance spectroscopic studies of NMP plasticized nanocomposite films suggest microphase separation into reduced and oxidized repeat units. Incorporation of silver nanoparticles in PANI reduces the charge trapping centres and increases the conducting channels, which causes a tenfold decrease in the real part of impedance.

  4. Structural and electrical properties of polyaniline/silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Asma B; Akhtar, M J; Nadeem, M; Ahmad, M [Physics Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Hassan, M M; Yasin, T [Department of Chemical and Material Engineering, PIEAS, Islamabad 45650 (Pakistan); Mehmood, M [National Centre for Nanotechnology, PIEAS, Islamabad 45650 (Pakistan)], E-mail: javeda@pinstech.org.pk, E-mail: javed06@yahoo.com

    2009-01-07

    Polyaniline (PANI)/Ag nanocomposites were prepared by separate synthesis of silver nanoparticles by inert gas condensation, incorporating in the 1-methyl-2-pyrrolidinone (NMP) solution of polyaniline emeraldine base (PANIEB) and then cast into films at 120 deg. C. X-ray diffraction confirmed the presence of {approx}67 nm silver nanoparticles in the polyaniline matrix. From the thermogravimetric analysis it is observed that the nanocomposite films have a higher degradation temperature than the pure PANI film. Scanning electron microscopy showed a uniform distribution, with spherical and granular morphology for low concentration of Ag nanoparticles, whereas for higher concentration (1.0% Ag) nanorods are formed. The impedance spectroscopic studies of NMP plasticized nanocomposite films suggest microphase separation into reduced and oxidized repeat units. Incorporation of silver nanoparticles in PANI reduces the charge trapping centres and increases the conducting channels, which causes a tenfold decrease in the real part of impedance.

  5. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic protontic conductors

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    contain inorganic protonic conductors including zirconium phosphate (ZrP), (Zr(HPO4)2. nH2O); phosphotungstic acid (PWA), (H3PW12O40. nH2O); and silicotungstic acid (SiWA), (H4SiW12O40 . nH2O). The conductivity of phosphoric acid doped PBI and PBI composite membranes was found to be dependent on the acid...

  6. Characterizations and Cr (VI) adsorption properties of polyaniline/filter-paper composite

    DEFF Research Database (Denmark)

    Li, Xiaoqiang; Liu, Wanwan; Li, Mengjuan

    2014-01-01

    Polyaniline/filter-paper (PANI/FP) composite was prepared by in situ polymerization of polyaniline onto FP and subsequently evaluated for the removal of Cr (VI) from aqueous solution. Scanning electron microscopy and Fourier-transform infrared were used to investigate the morphology...

  7. Nanostructured metal-polyaniline composites

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  8. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  9. The preparation, characterization and actuation behavior of polyaniline and cellulose blended electro-active paper

    International Nuclear Information System (INIS)

    John, Amalraj; Mahadeva, Suresha K; Kim, Jaehwan

    2010-01-01

    This paper reports polyaniline and cellulose blended electro-active paper (EAPap) that can produce large bending displacement at ambient humidity conditions with long lifetime durability. A novel solution processable polyaniline-p-toluene sulfonate (PANI–PTSA) salt was prepared by an inverted emulsion polymerization technique using benzoyl peroxide and p-toluene sulfonic acid. Cellulose solution prepared by dissolving cotton with lithium chloride/N, N-dimethylacetamide was mixed with the PANI emaraldine salt solution and a cellulose–PANI blended film was obtained. The obtained cellulose–PANI film was characterized by ultraviolet–visible (UV–visible), x-ray diffraction, scanning electron microscopy and tensile test methods. A cellulose–PANI EAPap actuator was made by depositing very thin gold electrodes on both sides of the cellulose–PANI film. When the actuator performance of the cellulose–PANI EAPap was evaluated in terms of bending displacement with respect to the actuation frequencies, voltages and relative humidity levels, a large bending displacement was shown at ambient humidity conditions with long lifetime durability

  10. Fabrication of folic acid sensor based on the Cu doped SnO2 nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Lavanya, N; Radhakrishnan, S; Sudhan, N; Sekar, C; Leonardi, S G; Neri, G; Cannilla, C

    2014-01-01

    A novel folic acid biosensor has been fabricated using Cu doped SnO 2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO 2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO 2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO 2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO 2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO 2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10 −10 to 6.7 × 10 −5 M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery. (paper)

  11. Efficient in situ synthetic routes of polyaniline/poly(vinyl alcohol)/TiO2 nanocomposites using gamma irradiation

    Science.gov (United States)

    Afify, T. A.; Ghazy, O. A.; Saleh, H. H.; Ali, Z. I.

    2018-02-01

    Gamma radiation was used to prepare nanocomposites based on polyaniline/titanium dioxide (PANI/TiO2) or polyaniline/poly (vinyl alcohol)/titanium dioxide (PANI/PVA/TiO2). It was found that PANI/TiO2 in the form of nanocomposite as shown by the UV/vis spectroscopy. This was through the appearance and shift of two absorption peaks at 340 and 598 nm. The SEM micrographs of the PANI/TiO2 nanocomposites showed a fibrous morphology before the treatment with HCl. The TiO2 nanoparticles are clearly seen to be precipitated on the PANI fibers and the morphology changed towards the sheets shape with highly distribution on PANI surface. The transmission electron microscopy (TEM) image confirms the fibrous shape of the PANI and spherical shape of TiO2 nanoparticles. The XRD study showed a several diffraction patterns of TiO2 nanoparticles confirming the PANI/TiO2 and PANI/PVA/TiO2 nanocomposites. The FT-IR analysis indicated that there is an interfacial interaction existed between the PANI and its inorganic counterpart of TiO2 nanoparticles. The dielectric constant of the PANI/PVA showed the lowest values and was increased by either doping with TiO2 or increasing irradiation dose.

  12. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  13. Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids

    Czech Academy of Sciences Publication Activity Database

    Gribkova, O. L.; Omelchenko, O. D.; Trchová, Miroslava; Nekrasov, A. A.; Ivanov, V. F.; Tverskoy, V. A.; Vannikov, A. V.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 952-960 ISSN 0366-6352 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : conducting polymers * polyaniline * UV-VIS-NIR Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  14. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    Science.gov (United States)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  15. Study of sodium clay modification through polyaniline polymerization

    International Nuclear Information System (INIS)

    Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla

    2015-01-01

    The synthesis of hybrids nanocomposites, such as polyaniline/montmorillonite (Pani/MMT), combines the processability and electrical conductivity of this polymer with the mechanical properties of a ceramic material bringing a multitude of new possibilities for use in high-tech, consumer and industry. With this in mind, we sought to characterize and modify sodium clay through polymerization of polyaniline. The characterization was carried out by X-ray diffraction, infrared spectroscopy by Fourier transformed (FTIR) and spectroscopy by impedance. Through the XRD analysis, it could be inferred that there was a interplanar displacement from 12,4Å (pure sodium montmorillonite) to 15,6Å due to the cation exchange of Na + ions by the anilinium ions, allowing the polymerization interspersed with Pani MMT platelets. By FTIR analysis, presences of the characteristic functional groups of both compounds are detected in the synthesized nanocomposite. Through conductivity and impedance tests it is concluded that the addition of polyaniline decreases the resistive behavior of clay and the electrical conduction becomes possible. (author)

  16. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Wei, Tong; Fan, Zhuangjun; Zhang, Milin; Shen, Xiande [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Qian, Weizhong; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-05-01

    Graphene nanosheet/carbon nanotube/polyaniline (GNS/CNT/PANI) composite is synthesized via in situ polymerization. GNS/CNT/PANI composite exhibits the specific capacitance of 1035 F g{sup -1} (1 mV s{sup -1}) in 6 M of KOH, which is a little lower than GNS/PANI composite (1046 F g{sup -1}), but much higher than pure PANI (115 F g{sup -1}) and CNT/PANI composite (780 F g{sup -1}). Though a small amount of CNTs (1 wt.%) is added into GNS, the cycle stability of GNS/CNT/PANI composite is greatly improved due to the maintenance of highly conductive path as well as mechanical strength of the electrode during doping/dedoping processes. After 1000 cycles, the capacitance decreases only 6% of initial capacitance compared to 52% and 67% for GNS/PANI and CNT/PANI composites. (author)

  17. Acid-doped Polybenzimidazole Membranes as Electrolyte for Fuel Cells Operating Above 100°C

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; He, Ronhuan

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development in the field is alternative polymer electrolytes for operation above 100°C. As one of the successful approaches...... to high operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests. A high temperature PEMFC system operational at up to 200°C is demonstrated with no gas...... humidification and high CO-tolerance up to 10 vol%. This high CO tolerance allows for a direct use of reformed hydrogen without further CO removal, which opens the possibility for an integrated reformer-fuel cell system. The content of this review is to a large extent based on research performed by the authors...

  18. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance

    Science.gov (United States)

    Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin

    2014-11-01

    A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.

  19. Preparation and characterization of exfoliated polyaniline/montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Narayanan, Binitha N.; Koodathil, Ranjana; Gangadharan, Tripti; Yaakob, Zahira; Saidu, Femina K.; Chandralayam, Soumini

    2010-01-01

    Transition metal ions were exchanged with the interlamellar cations of montmorillonite clays and polymerization of aniline was done within the layers. The delaminated clay layers upon ion exchange resulted in exfoliated polyaniline/clay nanocomposite formation which has profound effects on polymer structure, properties and electrical conduction mechanisms. Here we offer polyaniline (PANI)/montmorillonite exfoliated nanocomposite synthesized through a simple, cheap route which need not require complicated and less economical organophilic modification. The prepared composites were characterized using XRD, FTIR, and TG/DTA to prove exfoliation.

  20. Preparation and characterization of exfoliated polyaniline/montmorillonite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Binitha N., E-mail: binithann@yahoo.co.i [Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679306, Kerala (India); Department of Chemical and Process Engineering, Faculty of Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Koodathil, Ranjana; Gangadharan, Tripti [Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679306, Kerala (India); Yaakob, Zahira [Department of Chemical and Process Engineering, Faculty of Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Saidu, Femina K.; Chandralayam, Soumini [Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679306, Kerala (India)

    2010-04-15

    Transition metal ions were exchanged with the interlamellar cations of montmorillonite clays and polymerization of aniline was done within the layers. The delaminated clay layers upon ion exchange resulted in exfoliated polyaniline/clay nanocomposite formation which has profound effects on polymer structure, properties and electrical conduction mechanisms. Here we offer polyaniline (PANI)/montmorillonite exfoliated nanocomposite synthesized through a simple, cheap route which need not require complicated and less economical organophilic modification. The prepared composites were characterized using XRD, FTIR, and TG/DTA to prove exfoliation.

  1. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  2. Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

    International Nuclear Information System (INIS)

    Sarker, Ashis K.; Hong, Jongdal

    2014-01-01

    In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layerby-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at 100 .deg. C, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-RGO 30 /PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-RGO 30 /PET electrode was found to be 529 F/cm 3 at a current density of 3 A/cm 3 , which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-RGO 30 /PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode

  3. Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers

    International Nuclear Information System (INIS)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Xin; Liu, Yichun

    2015-01-01

    Highlights: • Three-dimensional PAN@PANI nanofiberous networks as freestanding electrodes. • The novel architecture exhibits high specific capacitance of 577 F/g. • Influence of acid doping and mass loading of PANI on electrochemical properties. • Capacitor: an energy density of 12.6 Wh/kg at the power density of 2.3 kW/kg. • Excellent cycling stability: 98% capacitance retention after 1000 cycles - Abstract: Three-dimensional porous polyacrylonitrile/polyaniline core-shell (PAN@PANI) nanofibers are fabricated by electrospinning technique combining in situ chemical polymerization of aniline monomers. The obtained PAN@PANI nanofibers possess unique continuous and homogeneous core-shell nanostructures and high mass loading of PANI (∼60 wt%) as active materials, which have greatly improved the electrochemical performance with a specific capacitance up to 577 F/g at a scan rate of 5 mV/s. Moreover, the porous networks of randomly arrayed PAN@PANI nanofibers provide binder-free and freestanding electrodes for flexible solid-state supercapacitors. The obtained devices based on PAN@PANI networks present excellent electrochemical properties with an energy density of 12.6 Wh/kg at a power density of 2.3 kW/kg and good cycling stability with retaining more than 98% of the initial capacitance after 1000 charge/discharge cycles, showing the possibility for practical applications in flexible electronics

  4. Study on Electrochromic Effect of Polyaniline Film

    Directory of Open Access Journals (Sweden)

    Lienda Handojo

    2010-10-01

    Full Text Available The light transmission factor of an electrochromic film changes reversibly with the application of an electrical voltage. Thereby the transparent film becomes reversibly opaque so that it may be used to control light transmission. In this paper the results of a study on polyaniline film as an electrochromic active material is reported. Polyaniline looks yellow transparent in the reduced state and turns to green-blue at its oxidized state. The electrochromic device considered in this paper was fabricated in planar configuration of ITO glass - polyaniline film - electrolyte - ITO glass which involved 1.0M H2SO4 solution. The measurement of the current density yields voltamograms for several values of the rate of voltage change, while the optical  characteristics were measured with ultraviolet-visible spectroscopy. To inspect the light control properties, the intensity of solar radiation propagating through the device was derived. It is found that in its reduced state, the device transmits 70% of the incoming radiation, while in the oxidized state only 11% of the radiation is left. The result of recycling test indicated that film is stable over 5,000 cycles.

  5. Conductive cotton prepared by polyaniline in situ polymerization using laccase.

    Science.gov (United States)

    Zhang, Ya; Dong, Aixue; Wang, Qiang; Fan, Xuerong; Cavaco-Paulo, Artur; Zhang, Ying

    2014-09-01

    The high-redox-potential catalyst laccase, isolated from Aspergillus, was first used as a biocatalyst in the oxidative polymerization of water-soluble conductive polyaniline, and then conductive cotton was prepared by in situ polymerization under the same conditions. The polymerization of aniline was performed in a water dispersion of sodium dodecylbenzenesulfonate (SDBS) micellar solution with atmospheric oxygen serving as the oxidizing agent. This method is ecologically clean and permits a greater degree of control over the kinetics of the reaction. The conditions for polyaniline synthesis were optimized. Characterizations of the conducting polyaniline and cotton were carried out using Fourier transform infrared spectroscopy, UV-vis spectroscopy, cyclic voltammetry, the fabric induction electrostatic tester, and the far-field EMC shielding effectiveness test fixture.

  6. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    Science.gov (United States)

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  7. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    International Nuclear Information System (INIS)

    Deb, K.; Bera, A.; Saha, B.; Bhowmik, K. L.; Chattopadhyay, K. K.

    2016-01-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  8. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Bhowmik, K. L. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Department of Chemistry, Bir Bikram Memorial College, Agartala, West Tripura 799004 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  9. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Science.gov (United States)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  10. Preparation of Polyaniline/Filter-paper Composite for Removal of Coomassie Brilliant Blue

    DEFF Research Database (Denmark)

    Liu, Wanwan; Li, Xiaoqiang; Li, Mengjuan

    2015-01-01

    Polyaniline/filter-paper (PANI/FP) composite was prepared by in-situ polymerization of polyaniline onto filter-paper and subsequently evaluated for the removal of Coomassie brilliant blue (CBB) from aqueous solution. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier...

  11. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    International Nuclear Information System (INIS)

    Akhilesan, S; Lakshmana Rao, C; Varughese, S

    2014-01-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior. (papers)

  12. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.A.; Niconov, A.; Chmieliewska, D.; Spadaro, G.

    2011-01-01

    Complete text of publication follows. Objective of this research is to develop a functional soft nanocomposites platform that combines the electro-optic properties of conjugated polymer nanoparticles with process flexibility, highly hydrophilic character, 3D structure and biocompatibility of hydrogels, to yield novel soft materials with multi-application potential in diagnostic, therapeutic and regenerative medicine. PANI aqueous nanocolloids in their acid doped, inherently conductive form, are synthesised by means of suitable polymeric stabilisers, i.e. water soluble polymers, that may prevent irreversible PANI particles coalescence and precipitation during synthesis and upon storage. Depending on the nature nad concentration of the polymeric stabiliser, e.g. polyvinyl pyrrolidone (PVP), polyvinylalcohol (PVA) or chitosan (CT), PANI has been synthesised in form of nanoscalar rods, spherical particles or rice grains, respectively. In the present work, e-beam irradiation with a 12 MeV Linac accelerator has been tested, in alternative to gamma-rays, as a viable industrial methodology to generate hydrogel nanocomposites via in-situ crosslinking of the polymers already used to stabilise polyaniline nanocolloids, at low temperature, with no recourse to further addition of molecular weight chemicals and in a few minutes. In these conditions nanoparticles morphology of PANI should be preserved and interesting electro-optical properties can be imparted. The swelling properties of the different hydrogel nanocomposites have been investigated at the variance of the chemical structure of the matrix material and of the pH of the swelling medium. UV-visible absorption and fluorescence spectroscopies demonstrate the retained optical activity of the dispersed PANI nanoparticles when incorporated in the hydrogels. Selected formulations have been also subjected to MTT assays and absence of cytotoxicity has been ascertained as the first necessary step to assess their biocompatibility.

  13. Oxidative stability of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Exnerová, Milena; Morávková, Zuzana; Trchová, Miroslava; Hromádková, Jiřina; Prokeš, J.

    2012-01-01

    Roč. 97, č. 6 (2012), s. 1026-1033 ISSN 0141-3910 R&D Projects: GA ČR GA202/09/1626; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * nanotubes * oxidation stability Subject RIV: BK - Fluid Dynamics Impact factor: 2.770, year: 2012

  14. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection

    Science.gov (United States)

    Cho, Sunghun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2014-11-01

    This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets.This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was

  15. Synthesis and Characterization of Polyaniline Nanofibers%聚苯胺纳米纤维的合成及表征

    Institute of Scientific and Technical Information of China (English)

    赵海沨; 韩冰; 赵辉

    2014-01-01

    With D-camphor sulfonic acid as a dopant , sodium dodecyl benzene sulfate as soft template , ammonium persulfate as the oxidant in the aqueous system , PANI nanofiber was prepared in situ polymerization of aniline and were characterized by UV, IR and SEM.Further research results showed that camphorsulfonic acid doped polyaniline nanofibers can promote the formation of PANI nanofiber , and also played the dual role of a dopant and a soft template .By controlling the reaction time , the product can be adjusted morphologies .%以D-樟脑磺酸为掺杂剂,十二烷基苯磺酸钠为软模板,过硫酸铵为氧化剂,在水溶液体系中通过苯胺原位聚合制备得到聚苯胺纳米纤维,对其进行了紫外和红外的表征,并使用SEM对其形貌进行了观测。进一步研究结果表明,樟脑磺酸的掺杂可促进聚苯胺纳米纤维的形成,并同时起到掺杂剂和软模板的双重作用;通过控制反应的时间,可调节产物的形貌结构。

  16. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  17. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    Science.gov (United States)

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL -1 NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg -1 , respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO 4 3- significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    Science.gov (United States)

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  19. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  20. Studies on biphenyl disulphonic acid doped polyanilines: Synthesis ...

    Indian Academy of Sciences (India)

    In the present communication, we report the ... performed on a AUTOLAB 302 electrochemical system ... This is partly because the proton exchange sites on nitrogen ..... AFM pictures of electrochemically synthesized polymer samples on Pt.

  1. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    Science.gov (United States)

    Goto, Hiromasa

    2014-03-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms.

  2. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2014-01-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms

  3. Explosive hazards in polyaniline chemistry

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Prokeš, J.

    2017-01-01

    Roč. 71, č. 2 (2017), s. 387-392 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * oxidation of aniline * safety hazards Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  4. Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, P. R.; Pusawale, S. N.; Shinde, N. M.; Lokhande, C. D. [Shivaji University, Kolhapur (India)

    2014-07-15

    We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F·g{sup -1} at a scan rate of 5 mV·s{sup -1} is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW·kg{sup -1} and specific energy of 64 Wh·kg{sup -1}. The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.

  5. Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Deshmukh, P. R.; Pusawale, S. N.; Shinde, N. M.; Lokhande, C. D.

    2014-01-01

    We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F·g -1 at a scan rate of 5 mV·s -1 is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW·kg -1 and specific energy of 64 Wh·kg -1 . The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.

  6. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline

    International Nuclear Information System (INIS)

    Shao Yawei; Huang Hui; Zhang Tao; Meng Guozhe; Wang Fuhui

    2009-01-01

    The protective ability of epoxy coating containing polyaniline (PANI coating) on Mg-5Li alloy in 3.5% NaCl aqueous solution has been studied by means of EIS and electrochemical noise measurements (EN). The results of EN and EIS revealed that the PANI coating protected Mg-5Li alloy from corrosion perfectly. XPS results indicated that the presence of polyaniline changed the chemical structure of the corrosion film on the alloy surface. An analysis of the electrochemical noise data based on stochastic analysis indicated that the corrosion growth probability of Mg-5Li alloy beneath the coating was decreased by the addition of polyaniline.

  7. Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films

    Science.gov (United States)

    Patil, U. V.; Ramgir, Niranjan S.; Bhogale, A.; Debnath, A. K.; Muthe, K. P.; Gadkari, S. C.; Kothari, D. C.

    2017-05-01

    The nature of contact between the electrode and the sensing material plays a crucial role in governing the sensing mechanism. Thin films of polyaniline (PANI) and copper-polyaniline nanocomposite (NC) have been deposited at room temperatures by in-situ oxidative polymerization of aniline in the presence of Cu nanoparticles. For sensing applications a thin film Au (gold) ˜100 nm is deposited and used as a conducting electrode. To understand the nature of contact (i.e., ohmic or Schottky) the work function of the conducting polyaniline and nanocomposite films were measured using Kelvin Probe method. I-V characteristics of PANI and NC films investigated at room temperatures further corroborates and confirms the formation of Ohmic contact as evident from work function measurements.

  8. Synthesis and Performance of Highly Stable Star-Shaped Polyaniline Electrochromic Materials with Triphenylamine Core

    Science.gov (United States)

    Xiong, Shanxin; Li, Shuaishuai; Zhang, Xiangkai; Wang, Ru; Zhang, Runlan; Wang, Xiaoqin; Wu, Bohua; Gong, Ming; Chu, Jia

    2018-02-01

    The molecular architecture of conducting polymers has a significant impact on their conjugated structure and electrochemical properties. We have investigated the influence of star-shaped structure on the electrochemical and electrochromic properties of polyaniline (PANI). Star-shaped PANI (SPANI) was prepared by copolymerization of aniline with triphenylamine (TPA) using an emulsion polymerization method. With addition of less than 4.0 mol.% TPA, the resulting SPANI exhibited good solubility in xylene with dodecylbenzenesulfonic acid (DBSA) as doping acid. The structure and thermal stability of the SPANI were characterized using Fourier-transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis, and the electrochemical behavior was analyzed by cyclic voltammetry (CV). The electrochromic properties of SPANI were tested using an electrochemical workstation combined with an ultraviolet-visible (UV-Vis) spectrometer. The results show that, with increasing TPA loading, the thermal stability of SPANI increased. With addition of 4.0 mol.% TPA, the weight loss of SPANI was 36.9% at 700°C, much lower than the value of 71.2% for PANI at the same temperature. The low oxidation potential and large enclosed area of the CV curves indicate that SPANI possesses higher electrochemical activity than PANI. Enhanced electrochromic properties including higher optical contrast and better electrochromic stability of SPANI were also obtained. SPANI with 1.6 mol.% TPA loading exhibited the highest optical contrast of 0.71, higher than the values of 0.58 for PANI, 0.66 for SPANI-0.4%, or 0.63 for SPANI-4.0%. Overdosing of TPA resulted in slow switching speed due to slow ion transport in short branched chains of star-shaped PANI electrochromic material. Long-term stability testing confirmed that all the SPANI-based devices exhibited better stability than the PANI-based device.

  9. Aniline oligomers versus polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava

    2012-01-01

    Roč. 61, č. 2 (2012), s. 240-251 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * anilin e oligomers * anilin e Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  10. Preparation of high surface area and high conductivity polyaniline nanoparticles using chemical oxidation polymerization technique

    Science.gov (United States)

    Budi, S.; Yusmaniar; Juliana, A.; Cahyana, U.; Purwanto, A.; Imaduddin, A.; Handoko, E.

    2018-03-01

    In this work, polyaniline nanoparticles were synthesized using a chemical oxidation polymerization technique. The ammonium peroxydisulfate (APS)/aniline ratio, APS dropping time, and polymerization temperature were optimized to increase the surface area and conductivity of the polyaniline.The Fourier-transform infrared (FTIR) spectrum confirmed the formation of emeraldine salt polyaniline. X-ray diffraction (XRD) patterns indicated that amorphous and crystalline phases of the polyaniline were formed with crystallinity less than 40%. Scanning electron microscope (SEM) micrographs showed that the finest nanoparticles with uniform size distribution were obtained at the polymerization temperature of 0°C. A surface area analyzer (SAA) showed that the highest Brunauer-Emmett-Teller surface area (SBET ) of 42.14 m2/gwas obtained from an APS/aniline ratio of 0.75 with a dropping time of 0 s at a polymerization temperature of 0°C. A four-point probe measurement conducted at 75–300K indicated relatively high conductivity of the semiconductor characteristic of the polyaniline.

  11. Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors

    Science.gov (United States)

    Huo, Silu; Liu, Mingquan; Wu, Linlin; Liu, Mingjie; Xu, Min; Ni, Wei; Yan, Yi-Ming

    2018-05-01

    Nitrogen and sulfur co-doped carbons are considered as electrode materials for high performance supercapacitors, while their further development is still limited by complicated synthesis procedure, unsatisfied structure and low energy density. Developing a simple synthetic strategy to obtain rationally structured carbon materials and high supercapacitor performance is remaining a grand challenge. Herein, we describe the synthesis of nitrogen and sulfur co-doped hierarchical porous carbons as high performance supercapacitors electrode by a methanesulfonic acid-assisted one-step carbonization and activation of the freeze-dried precursors mixture. The as-prepared carbon material not only exhibits ideally hierarchical pores, but also realizes uniform nitrogen and sulfur co-doping. In 6.0 M KOH electrolyte, the material can achieve a high specific capacitance of 272 F g-1 at 1.0 A g-1 and a promising rate performance retaining 172 F g-1 even at 100 A g-1. Moreover, a fabricated symmetric supercapacitor based on as-prepared nitrogen and sulfur co-doped hierarchical porous carbon delivers high energy densities of 12.4 W h kg-1 and 8.0 W h kg-1 in 6.0 M KOH liquid and KOH/PVA solid-state electrolytes, respectively. This work presents a simple and effective methanesulfonic acid-assisted approach for mass production of heteroatomic doping hierarchical porous carbons for future energy storage applications.

  12. Electrical conductivity retention and electrochemical activity of CSA doped graphene/gold nanoparticle@ polyaniline composites

    Directory of Open Access Journals (Sweden)

    Md. Akherul Islam

    2016-08-01

    Full Text Available This paper reports the synthesis of CTAB mediated CSA doped PANI and GN/GNP@ PANI composite nanofibers. The as synthesized composite nanofibers were examined by TEM, SEM, XRD, Raman spectroscopy; UV–visible diffused reflectance spectroscopy and TGA. The CTAB mediated CSA doped composite nanofibers showed 59% higher DC electrical conductivity at ambient temperature than that of PANI, which might be due to the enhancement in the mobility of the charge carriers and reduction in hopping distance in the composite system. The CTAB mediated CSA doped composite nanofibers compared to PANI was observed to be showing enhanced DC electrical conductivity retention after various cycles of heating, suggesting an enhancement in thermal stability of the composite structure, which could be attributed to the synergistic effect of GN, GNP and PANI. Additionally, the composite nanofibers showed greater electrochemical activity and better capacitive performance and reduced optical bandgap than that of PANI.

  13. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Ivanova, V T; Ilyna, M V; Kurochkina, Y E; Katrukha, G S; Timofeeva, A V; Baratova, L A; Sapurina, I Yu; Ivanov, V F

    2011-01-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  14. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, V T; Ilyna, M V; Kurochkina, Y E [D.I. Ivanovsky Research Institute of Virology RAMS, Gamaleya st, 16, Moscow 123098 (Russian Federation); Katrukha, G S [G.F.Gause Institute of New Antibiotics RAMS, Moscow 119021 (Russian Federation); Timofeeva, A V; Baratova, L A [A.N. Belozersky Research Institute for Physico-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sapurina, I Yu [Institute of Macromolecular Compounds RAS, 199004, St. Petersburgr. Bolshoy Pr.31 (Russian Federation); Ivanov, V F, E-mail: valivanova1946@mail.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky prospect, 31, Moscow 119991 (Russian Federation)

    2011-04-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  15. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism

    International Nuclear Information System (INIS)

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Viswanath, A. Kasi

    2005-01-01

    Silver/polyaniline nanocomposites are prepared via in situ reduction of silver salt in aniline by mild photolysis performed with 8 W long wavelength (365 nm) and short wavelength (254 nm) radiation from UV lamp. Reduction of the silver salt in aqueous aniline leads to the formation of silver nanoparticles which in turn catalyze oxidation of aniline to polyaniline. Systematic observation of the progress of the reaction by means of absorption spectroscopy revealed that the reaction completes faster under the UV light of 254 nm wavelength than the visible source of 365 nm. The absorption bands of the reaction solution revealed that the bands at about 400-420 nm due to benzonoid ring of the polyaniline are overlapped and red-shifted due to the presence of nano-silver in powdered state. A slightly broadened X-ray diffraction (XRD) pattern indicating, small particle size (∼30 nm), is consistent with cubic silver. Scanning electron microscopy (SEM) of the nanocomposite showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis (TGA) showed that the composites have a higher degradation temperature than polyaniline alone

  16. Electrochemical nitrite nanosensor developed with amine- and sulphate-functionalised polystyrene latex beads self-assembled on polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Muchindu, Munkombwe; Waryo, Tesfaye; Arotiba, Omotayo [SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Kazimierska, Ewa; Morrin, Aoife; Killard, Anthony J.; Smyth, Malcolm R. [School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Jahed, Nazeem; Kgarebe, Boitumelo; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Iwuoha, Emmanuel I., E-mail: eiwuoha@uwc.ac.z [SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2010-05-30

    Aniline doped with polyvinyl sulphonate (PV-SO{sub 3}{sup -}) was electropolymerised on screen printed carbon (SPCE) and glassy carbon (GCE) electrodes. Then nano-structured polystyrene (PS{sub NP}) latex beads functionalised with amine (PS{sub NP}-NH{sub 2}) and sulphate (PS{sub NP}-OSO{sub 3}{sup -}) were self-assembled on the modified SPCE and GCE. The resultant polyaniline nanocomposites (PANI|PS{sub NP}-NH{sub 2} or PANI|PS{sub NP}-OSO{sub 3}{sup -}) were characterised by cyclic voltammetry (CV), UV-vis spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations of the order of 10{sup -8} mol cm{sup -2}. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid pi-pi* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that are <100 nm in diameter. When applied as electrochemical nitrite sensor, sensitivity values of 60, 40 and 30 muA/mM were obtained for electrode systems containing PANI|PS{sub NP}-NH{sub 2}, PANI and PANI|PS{sub NP}-SO{sub 3}{sup -}, respectively. The corresponding limits of detection of the sensors were 7.4, 9.2 and 38.2 muM NO{sub 2}{sup -}.

  17. Antibacterial properties of polyaniline-silver films

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Kašpárková, V.; Humpolíček, P.; Ševčíková, P.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1103-1108 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * silver * antibacterial properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  18. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method

    International Nuclear Information System (INIS)

    Li Xingwei; Li Xiaoxuan; Wang Gengchao

    2005-01-01

    A fibrillar polyaniline/diatomite composite was prepared by one-step in situ polymerization of aniline in the dispersed system of diatomite, and was characterized via Fourier-transform infrared spectra (FT-IR), UV-vis-NIR spectra, wide-angle X-ray diffraction (WXRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), as well as conductivity. Morphology of the composite is uniform nanofibers, which the diameters of nanofibers are about 50-80 nm. The conductivity of polyaniline/diatomite composite contained 28% polyaniline is 0.29 S cm -1 at 25 deg. C, and temperature of thermal degradation has reached 493 deg. C in air. The composite has potential commercial applications as fillers for electromagnetic shielding materials and conductive coatings

  19. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  20. An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film.

    Science.gov (United States)

    Bartlett, P N; Birkin, P R; Wang, J H; Palmisano, F; De Benedetto, G

    1998-09-01

    An enzyme switch, or microelectrochemical enzyme transistor, responsive to hydrogen peroxide was made by connecting two carbon band electrodes (∼10 μm wide, 4.5 mm long separated by a 20-μm gap) with an anodically grown film of poly(aniline). Horseradish peroxidase (EC 1.11.1.7) was either adsorbed onto the poly(aniline) film or immobilized in an insulating poly(1,2-diaminobenzene) polymer grown electrochemically on top of the poly(aniline) film to complete the device. In the completed device, the conductivity of the poly(aniline) film changes from conducting (between - 0.05 and + 0.3 V vs SCE at pH 5) to insulating (>+0.3 V vs SCE at pH 5) on addition of hydrogen peroxide. The change in conductivity is brought about by oxidation of the poly(aniline) film by direct electrochemical communication between the enzyme and the conducting polymer. This was confirmed by measuring the potential of the poly(aniline) film during switching of the conductivity in the presence of hydrogen peroxide. The devices can be reused by rereducing the poly(aniline) electrochemically to a potential below +0.3 V vs SCE. A blind test showed that the device can be used to determine unknown concentrations of H(2)O(2) in solution and that, when used with hydrogen peroxide concentrations below 0.5 mmol dm(-)(3), the same device maybe reused several times. The possible development of devices of this type for use in applications requiring the measurement of low levels of hydrogen peroxide or horseradish peroxidase is discussed.

  1. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2017-01-01

    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  2. Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials

    International Nuclear Information System (INIS)

    Nand, Ashveen V.; Ray, Sudip; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2012-01-01

    Highlights: ► Successful incorporation of particulate polyaniline, consisting of nanorods, in PET was achieved. ► Interactions between PET and polyaniline in the blends were characterized using FTIR, XPS, DSC and DMTA. ► Polyaniline introduced free radical scavenging capacity in PET. - Abstract: Polyethylene terephthalate (PET) blends with a nanorod form of polyaniline (NR-PANI), formed by a falling pH synthesis, were prepared by dispersion in a melt of PET at 265 °C. Blends with 1, 2 and 3 wt% NR-PANI loading were prepared. Optical microscopy revealed an even distribution of NR-PANI particles within the PET matrix. The blends were characterized using FTIR, XPS, DSC and DMTA. Melt flow index values suggested hydrolysis of PET chains to lower molecular weight units when NR-PANI was blended. Some PET hydrolysis was also evident from the increasing oxygen to carbon ratios with an increased NR-PANI content in the blends. While the PET glass transition temperature remained relatively unaffected, the degree of PET crystallinity was increased with the addition of NR-PANI. The electrical conductivity as well as the free radical scavenging capacity of PET increased with greater NR-PANI loading in the matrix. The mechanical properties of PET, however, declined with NR-PANI loading suggesting a lack of adequate interfacial adhesion between the NR-PANI particles and the PET matrix.

  3. Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Han, Xuebin; Qiu, Feilong [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Junhe, E-mail: hxqiu@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-15

    Highlights: • A novel synthetic approach to graphene/polyaniline composite is developed. • Covalently bonds are introduced between graphene and polyaniline. • The composite exhibits great electrochemical property with capacitance of 489 F g{sup −1}. - Abstract: A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g{sup −1} at 0.5 A g{sup −1}, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  4. Electrospun poly(lactic acid) based conducting nanofibrous networks

    International Nuclear Information System (INIS)

    Patra, S N; Bhattacharyya, D; Ray, S; Easteal, A J

    2009-01-01

    Multi-functionalised micro/nanostructures of conducting polymers in neat or blended forms have received much attention because of their unique properties and technological applications in electrical, magnetic and biomedical devices. Biopolymer-based conducting fibrous mats are of special interest for tissue engineering because they not only physically support tissue growth but also are electrically conductive, and thus are able to stimulate specific cell functions or trigger cell responses. They are effective for carrying current in biological environments and can thus be considered for delivering local electrical stimuli at the site of damaged tissue to promote wound healing. Electrospinning is an established way to process polymer solutions or melts into continuous fibres with diameter often in the nanometre range. This process primarily depends on a number of parameters, including the type of polymer, solution viscosity, polarity and surface tension of the solvent, electric field strength and the distance between the spinneret and the collector. The present research has included polyaniline (PANi) as the conducting polymer and poly(L-lactic acid) (PLLA) as the biopolymer. Dodecylbenzene sulphonic acid (DBSA) doped PANi and PLLA have been dissolved in a common solvent (mixtures of chloroform and dimethyl formamide (DMF)), and the solutions successfully electrospun. DMF enhanced the dielectric constant of the solvent, and tetra butyl ammonium bromide (TBAB) was used as an additive to increase the conductivity of the solution. DBSA-doped PANi/PLLA mat exhibits an almost bead-free network of nanofibres that have extraordinarily smooth surface and diameters in the range 75 to 100 nm.

  5. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode

    International Nuclear Information System (INIS)

    Sumboja, Afriyanti; Wang Xu; Yan Jian; Lee, Pooi See

    2012-01-01

    Highlights: ► Preparation of organic/inorganic coaxial nanowires. ► Modifying current collector to improve both capacitance and rate capability simultaneously. ► Improvement in the charge transport process resulted in the superior rate capability. - Abstract: Indium tin oxide (ITO) nanowires array was used as current collector and building block for polyaniline based supercapacitor. Thin polyaniline coating was deposited on the nanowires and resulted in the formation of polyaniline ITO coaxial nanowires. This hybrid heterostructure design improved the specific capacitance, rate capability, and cycling stability of the supercapacitor electrode. Good conductivity harnessed by these directly grown ITO nanowires is useful to improve the charge transport during the charge discharge processes which were confirmed by the electrochemical impedance spectroscopy measurement. Electrochemical test in 1 M H 2 SO 4 at 4 A g −1 delivered specific capacitance as high as 738 F g −1 . In addition, sub-micron size of the intercoaxial nanowires spacing ensures the fast penetration of electrolyte ions which resulted in the superior rate capability (98% capacitance retention when applied current was varied from 4 to 25 A g −1 ). The capacitance retention is significantly higher as compared to other polyaniline composite electrodes and it is one of the best reported performances to date for polyaniline based supercapacitor electrodes. This work illustrates a promising platform that can be adopted for other redox nanocomposite materials while reaping the benefit as low cost and binder free electrode material for supercapacitor application.

  6. Effect of displacement on resistance and capacitance of polyaniline film

    International Nuclear Information System (INIS)

    Karimov, Khasan Sanginovich; Saeed, Muhammad Tariq; Khalid, Fazal Ahmad; Moiz, Syed Abdul

    2011-01-01

    This paper investigates the properties of displacement sensors based on polyaniline (PANI) films. About 1 wt% of PANI micropowder is mixed and stirred in a solution of 90 wt% water and 10 wt% alcohol at room temperature. The films of PANI are deposited from solution by drop-casting on Ag electrodes, which are preliminary deposited on glass substrates. The thicknesses of the PANI films are in the range of 20 μm–80 μm. A displacement sensor with polyaniline film as an active material is designed and fabricated. The investigations showed that, on average, the AC resistance of the sensor decreases by 2 times and the capacitance accordingly increases by 1.6 times as the displacement changes in the range of 0 mm–0.5 mm. The polyaniline is the only active material of the displacement sensor. The resistance and capacitance of the PANI changes under the pressure of spring and elastic rubber, and this pressure is created by the downward movement of the micrometer. (general)

  7. Sorption and Diffusion of Water Vapor and Carbon Dioxide in Sulfonated Polyaniline as Chemical Sensing Materials

    Directory of Open Access Journals (Sweden)

    Qiuhua Liang

    2016-04-01

    Full Text Available A hybrid quantum mechanics (QM/molecular dynamics (MD simulation is performed to investigate the effect of an ionizable group (–SO3−Na+ on polyaniline as gas sensing materials. Polymers considered for this work include emeraldine base of polyaniline (EB-PANI and its derivatives (Na-SPANI (I, (II and (III whose rings are partly monosubstituted by –SO3−Na+. The hybrid simulation results show that the adsorption energy, Mulliken charge and band gap of analytes (CO2 and H2O in polyaniline are relatively sensitive to the position and the amounts of –SO3−Na+, and these parameters would affect the sensitivity of Na-SPANI/EB-PANI towards CO2. The sensitivity of Na-SPANI (III/EB-PANI towards CO2 can be greatly improved by two orders of magnitude, which is in agreement with the experimental study. In addition, we also demonstrate that introducing –SO3−Na+ groups at the rings can notably affect the gas transport properties of polyaniline. Comparative studies indicate that the effect of ionizable group on polyaniline as gas sensing materials for the polar gas molecule (H2O is more significant than that for the nonpolar gas molecule (CO2. These findings contribute in the functionalization-induced variations of the material properties of polyaniline for CO2 sensing and the design of new polyaniline with desired sensing properties.

  8. Investigation of the Parameters affecting CO2 —assisted Polyaniline Polymerization

    Directory of Open Access Journals (Sweden)

    Noby H.

    2016-01-01

    Full Text Available Specific Polyaniline (PANI morphologies such as nanotubes and nanofiber are required for enhancing its performance in the various applications. CO2 —assisted Polyaniline polymerization is a method recently used to produce these anticipated morphologies. In this study, polyaniline nanotube was prepared successfully in the presence of compressed CO2 utilizing Aniline as a monomer and Ammonium peroxydisulfate (APS as an oxidizing agent. The effect of both reaction temperature and the oxidizing agent feed rate on the morphology and surface area of the produced PANI was investigated. The synthesized PANI was examined by FT-IR, XRD, and BET surface area analysis. Furthermore, SEM was carried out to figure out the morphology of the prepared PANI. It was indicated that Polyaniline nanotubes PANNTs size and homogeneity were affected by the reaction temperature. The averages of the outer and inner diameters of the PANNTs at 25 °C, 45 °C, 65 °C were found to be about (120, 60 nm, (140, 65 nm, and (175, 75 nm respectively. Also, the produced surface area was slightly augmented with the increase of the temperature. In addition, it was observed that increasing the feeding rate of the APS was associated with the reduction of the size and the surface area of the produced PANI nanotubes.

  9. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  10. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties

    Science.gov (United States)

    Chen, Xiangnan; Meng, Fanchen; Zhou, Zuowan; Tian, Xin; Shan, Liming; Zhu, Shibu; Xu, Xiaoling; Jiang, Man; Wang, Li; Hui, David; Wang, Yong; Lu, Jun; Gou, Jihua

    2014-06-01

    A new method is introduced for the preparation of graphene/polyaniline hybrids using a one-step intercalation polymerization of aniline inside the expanded graphite. The structural and morphological characterizations were performed by X-ray diffraction analysis, transmission electron microscopy and field emission scanning electron microscopy. Both the experimental and first-principles simulated results show that the aniline cation formed by aniline and H+ tends to be drawn towards the electron-enriched zone and to intercalate into the interlayer of graphite. Subsequently, an in situ polymerization leads to the separation of graphite into graphene sheet, resulting from the exothermic effect and more vigorous movements of the chain molecules of polyaniline. The interactions between polyaniline and graphene were confirmed by Fourier transform infrared spectroscopy and Raman spectra. In addition, the graphene/polyaniline hybrid exhibited a breakthrough in the improvement of microwave absorption.A new method is introduced for the preparation of graphene/polyaniline hybrids using a one-step intercalation polymerization of aniline inside the expanded graphite. The structural and morphological characterizations were performed by X-ray diffraction analysis, transmission electron microscopy and field emission scanning electron microscopy. Both the experimental and first-principles simulated results show that the aniline cation formed by aniline and H+ tends to be drawn towards the electron-enriched zone and to intercalate into the interlayer of graphite. Subsequently, an in situ polymerization leads to the separation of graphite into graphene sheet, resulting from the exothermic effect and more vigorous movements of the chain molecules of polyaniline. The interactions between polyaniline and graphene were confirmed by Fourier transform infrared spectroscopy and Raman spectra. In addition, the graphene/polyaniline hybrid exhibited a breakthrough in the improvement of

  11. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  12. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond

  13. Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique

    Science.gov (United States)

    Pamatmat, J. K.; Gillado, A. V.; Herrera, M. U.

    2017-05-01

    Polyaniline molecules are embedded on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique. The infrared spectrum shows the existence of molecular vibrational modes associated with the presence of polyaniline molecules on the sample. With the addition of polyaniline molecules, the conductivity of adhesive tape increases. Surface conductivity increases with number of dipping cycle until it reaches a certain value. Beyond this value, surface conductivity begins to decrease. The surface conductivity of the sample is associated with the connectivity of the embedded polyaniline molecules. The connectivity increases as the number of dipping cycle progresses. Meanwhile, the decrease in surface conductivity is attributed to the eroding of existing embedded structure at higher number of dipping cycle.

  14. Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qiuhua, E-mail: yuanqiuh@szu.edu.cn; Qin, Caoping; Wu, Jianbo; Xu, Anping; Zhang, Ziqiang; Liao, Junquan; Lin, Songxin; Ren, Xiangzhong; Zhang, Peixin

    2016-10-01

    Ce-doped hydroxyapatite/polylactic acid (HA/PLA) composites serving as implant coatings have rarely been studied by other researchers in recent years. This paper was focused to study the existence of Ce ions in structure, chemical composition and surface morphology of HA and its composite coatings. Ce-doped HA powders were synthesized by chemical precipitation method with different Ce molar fractions (0(pure HA), 0.5 mol%, 1 mol% and 2 mol%). And Ce-doped HA/PLA composite coatings were fabricated for the first time on stainless steel substrates by spin coating technique. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray detector (EDX), thermo gravimetric-differential thermal analysis (TG-DTA) and X-ray photoelectron spectroscopy (XPS). The results showed that Ce ions were doped into the crystal lattice of apatite successfully. The (Ce + Ca)/P atomic ratios in the doped HA/PLA samples ranged from 1.614 to 1.673, which were very close to the theoretical value of 1.67 for the stoichiometric HA. The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. TG-DTA analysis indicated that Ce-doped HA powder had high thermal stability, and the SEM micrographs revealed that the surface topography of Ce-doped HA/PLA composite coatings was uniform and dense when the Ce molar fraction was 2 mol%. XPS results indicated that the Ce ions doped in HA showed mixed valences of Ce{sup 3+} and Ce{sup 4+}. - Highlights: • Ce-doped HA composite coatings were synthesized by spin-coating technique for the first time. • Ce ions were demonstrated to dope into HA crystal lattice successfully. • The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. • XPS results showed that Ce ions doped in HA have mixed valences of Ce{sup 3+} and Ce{sup 4+}.

  15. Stem cell differentiation on conducting polyaniline

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Radaszkiewicz, K. A.; Kašpárková, V.; Stejskal, Jaroslav; Trchová, Miroslava; Kuceková, Z.; Vičarová, H.; Pacherník, Jiří; Lehocký, M.; Minařík, A.

    2015-01-01

    Roč. 5, č. 84 (2015), s. 68796-68805 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 ; RVO:68081707 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: CD - Macromolecular Chemistry; BO - Biophysics (BFU-R) Impact factor: 3.289, year: 2015

  16. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  17. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts

    Czech Academy of Sciences Publication Activity Database

    Kosydar, R.; Goral, M.; Drelinkiewicz, A.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1087-1095 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * palladium * hydrogenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  18. Fabrication and microwave shielding properties of free standing polyaniline-carbon fiber thin sheets

    International Nuclear Information System (INIS)

    Joon, Seema; Kumar, Rakesh; Singh, Avanish Pratap; Shukla, Rajni; Dhawan, S.K.

    2015-01-01

    Attempt has been made to synthesize polyaniline-carbon fiber (PANI-CF) composite via in-situ emulsion polymerization using β-naphthalene sulphonic acid (NSA) which acts as both surfactant as well as dopant. Free standing PANI-CF thin sheets are prepared which have electrical conductivity ∼1.02 S/cm with improved mechanical strength and thermal stability. The scanning electron microscopy is used to study the surface morphology of the composites. Structural characterization is done by using XRD. The dielectric attributes (ε* = ε′ − iε″) of PANI-CF sheets are calculated using experimental S parameters (S 11 , S 12 ) by Nicolson Ross Wier equations. It has been demonstrated that these sheets show maximum shielding effectiveness (SE) of 31.9 dB at 12.4 GHz frequency at a thickness of 1.5 mm. Free standing PANI-CF sheets so prepared have a potential for X-band microwave absorber application. - Highlights: • Free standing polyaniline-carbon fiber thin sheets fabricated for EMI shielding. • The mechanical strength of sheets improves with phenolic resin loading. • The dielectric parameters were calculated by Nicholson Ross Wier equations. • Sheets (1.5 mm thickness) demonstrate SE of 31.9 dB at 12.4 GHz frequency. • Sheets find potential application for X-band microwave absorption

  19. Determination of the dopant weight fraction in polyaniline films using a quartz-crystal microbalance

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Zaki, E. A.; Stejskal, Jaroslav

    2007-01-01

    Roč. 515, č. 23 (2007), s. 8381-8385 ISSN 0040-6090 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : dopant weight fraction * polyaniline * polyaniline film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.693, year: 2007

  20. Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Seungyoon Han

    2016-01-01

    Full Text Available High-temperature proton exchange membrane fuel cells (HT-PEMFCs utilize a phosphoric acid- (PA- doped polybenzimidazole (PBI membrane as a polymer electrolyte. The PA concentration in the membrane can affect fuel cell performance, as a significant amount of PA can leak from the membrane electrode assembly (MEA by dissolution in discharged water, which is a byproduct of cell operation. Spectrophotometric analysis of PA leakage in PA-doped polybenzimidazole membrane fuel cells is described here. This spectrophotometric analysis is based on measurement of absorption of an ion pair formed by phosphomolybdic anions and the cationoid color reagent. Different color reagents were tested based on PA detection sensitivity, stability of the formed color, and accuracy with respect to the amount of PA measured. This method allows for nondestructive analysis and monitoring of PA leakage during HT-PEMFCs operation.

  1. Tetramer model of leukoemeraldine-emeraldine electrochemistry in the presence of trihalogenoacetic acids. DFT approach.

    Science.gov (United States)

    Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert

    2015-01-15

    First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.

  2. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode.

    Science.gov (United States)

    Kašpárková, Věra; Humpolíček, Petr; Capáková, Zdenka; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, Petra; Junkar, Ita; Lehocký, Marián; Mozetič, Miran

    2017-09-01

    Conducting polyaniline can be prepared and modified using several procedures, all of which can significantly influence its applicability in different fields of biomedicine or biotechnology. The modifications of surface properties are crucial with respect to the possible applications of this polymer in tissue engineering or as biosensors. Innovative technique for preparing polyaniline films via in-situ polymerization in colloidal dispersion mode using four stabilizers (poly-N-vinylpyrrolidone; sodium dodecylsulfate; Tween 20 and Pluronic F108) was developed. The surface energy, conductivity, spectroscopic features, and cell compatibility of thin polyaniline films were determined using contact-angle measurement, the van der Pauw method, Fourier-transform infrared spectroscopy, and assay conducted on mouse fibroblasts, respectively. The stabilizers significantly influenced not only the surface and electrical properties of the films but also their cell compatibility. Sodium dodecylsulfate seems preferentially to combine both the high conductivity and good cell compatibility. Moreover, the films with sodium dodecylsulfate were non-irritant for skin, which was confirmed by their in-vitro exposure to the 3D-reconstructed human tissue model. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    Directory of Open Access Journals (Sweden)

    Rishi R. Parajuli

    2008-12-01

    Full Text Available Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to

  4. Synthesis and enhancing electrical properties of PANI and PPA composites

    Directory of Open Access Journals (Sweden)

    M. Yahia Abed

    2014-09-01

    Full Text Available Polyaniline (PANI was prepared by chemical method using FeCl3 as oxidizing agent. Emeraldine base (EB was prepared using 0.1 M ammonia solution, and redoped using HCl, (±-10-camphorsulfonic acid (CSA and p-toluenesulfonic acid (PTSA. The electrical conductivity of EB was increased by doping. Polyphenylacetylene (PPA and its complexes with KI and NaOEt were prepared and their electrical conductivities were studied. FTIR was used for characterizing the structures.

  5. Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source

    Science.gov (United States)

    Wang, Xiaoqin; Li, Qiaoqin; Zhang, Yong; Yang, Yufei; Cao, Zhi; Xiong, Shanxin

    2018-06-01

    A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9% through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at.%) and oxidized N (7.1 at.%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at.% Ni2O3 components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m2/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining high specific capacitance of 212.4 F/g (84.3% of the initial capacitance) at 5 A/g after 5000 cycles of charge and discharge, attributed to some honeycomb-shaped nanopores of carbon and large specific surface area of NiO nanosheets, and the synergistic effects between electric double-layer capacitance of NPC and pseudocapacitance of NiO. This study may provide a novel approach for the value-added applications of low-rank coal.

  6. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors

    International Nuclear Information System (INIS)

    Yu, Tao; Zhu, Pengfei; Xiong, Yachao; Chen, Hao; Kang, Shaohong; Luo, Hailan; Guan, Shiyou

    2016-01-01

    Microspherical polyaniline/graphene (PANI/G-MS) composites are synthesized using sheet-like polyaniline/graphene oxide (PANI/GO) composites as raw materials via spray-drying and chemical reduction process, in which the granulated polyaniline (PANI) is in-situ grown on the surface of graphene oxide. For PANI/G-MS composites, PANI uniformly coats on the surface of graphene which can constitute a high conductive network to accelerate electronic transmission in the composites electrode for supercapacitors. Moreover, PANI/G-MS composites form numerous channels among their spherical particles during random stacking of sheet-like PANI/GO composites via spray-drying process. Due to the special structure, the electrochemical capacitance of the as-synthesized PANI/G-MS composite reaches 596.2 and 447.5 F g −1 at a current density of 0.5 and 20 A g −1 , respectively, indicating superior rate capability. Additionally, after 1500 cycles at a current density of 2 A g −1 , 83.7% of the initial capacitance is retained.

  7. Fabrication and electrical characterization of polyaniline-silicon heterojunction for gamma radiation dosimetry application

    International Nuclear Information System (INIS)

    Laranjeira, Jane Maria Goncalves

    2004-08-01

    In this work a technique has been developed to fabricate high quality polyaniline-silicon heterojunction diodes for use as gas and/or ionizing radiation sensors. Polyaniline thin films (40 nm thick) produced by spin-coating on silicon substrates, were the active part of the junction structure. The devices presented excellent reproducibility of their electrical characteristics with high rectification ratio, 60,000 at ±1.0 V, and typical reverse current at - 1.0 V of 3 nA at 295 K. A G/I x G plot has been used to analyze the current-voltage characteristics, yielding typical series resistance of 4 kΩ ± 5% and ideality factor in a range of 1,9 ± 0.5%. The heterojunction diode presents high sensitivity to gamma radiation in the dose range of 3 x 10 -2 to 7 kGy with a linear response in the forward and reverse bias. The excellent electrical characteristics together with the linear response with the dose, strongly suggest the application of this device for spectrometry or dosimetry of high doses of gamma radiation. These devices presented high sensitivity to gas moistures such as ammonia, nitric acid and trichloroethylene. In both cases the sensitivity was observed through shifts of the current-voltage curves, which can be easily monitored to provide a calibration curve of the sensor either as a radiation dosimeter or as a gas sensor for use in applications for gas monitoring or radiation dosimetry. Several aspects of the reliability physics of silicon-polyaniline heterojunction, such as degradation effects induced by local heating, charge trapping and temperature changes, have been discussed. These results further confirm the quality of the devices electrical characteristics and their suitability for radiation and gas sensors applications. Another interesting results presented in this work was the use of polyemeraldine nanofilms (thickness in the range 30-50 nm) deposited by 'spin coating' on glass substrates as an optical dosimeter for gamma radiation based on the

  8. L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery

    Science.gov (United States)

    Liao, Qishu; Hou, Hongying; Liu, Xianxi; Yao, Yuan; Dai, Zhipeng; Yu, Chengyi; Li, Dongdong

    2018-04-01

    In this work, polypyrrole (PPy) was co-doped with L-lactic acid (LA) and sodium p-toluenesulfonate (TsONa) for high performance cathode in sodium ion battery (SIB) via facile one-step electropolymerization on Fe foil. The as-synthesized LA/TsONa co-doped PPy cathode was investigated in terms of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), galvanostatic charge/discharge and cyclic voltammetry (CV). The results suggested that some oval-bud-like LA/TsONa co-doped PPy particles did form and tightly combine with the surface of Fe foil; furthermore, LA/TsONa co-doped PPy cathode also delivered higher electrochemical performances than TsONa mono-doped PPy cathode. For example, the initial specific discharge capacity was as high as about 124 mAh/g, and the reversible specific capacity still maintained at about 110 mAh/g even after 50 cycles, higher than those of TsONa mono-doped PPy cathode. The synergy effect of multi components of LA/TsONa co-doped PPy cathode should be responsible for high electrochemical performances.

  9. Electrical transport and thermochromic properties of polyaniline/chitosan/Co3O4 ternary nano composite

    Science.gov (United States)

    V, Mini; Kamath, Archana; S, Raghu; Chapi, Sharanappa; H, Devendrappa

    2015-06-01

    A new Polyaniline/ chitosan/ Co3O4 (CPAESCO) ternary nanocomposite is prepared by in situ oxidation polymerization of aniline in the presence of (NH4)2S2O8, chitosan and Co3O4. The Structural, Thermal, Optical and Electrical features of Polyaniline (PANI), Polyaniline/ chitosan (CPANI) and CPAESCO were analyzed using FT-IR, TGA, UV-vis analysis and Impedance spectroscopy by varying temperature. The results show that the introduction of the Co3O4 nanoparticles into CPANI matrix enhanced its properties. Mott's parameters show 3D -VRH Type conduction in it.

  10. Studies on the high electronic energy deposition in polyaniline thin films

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Gudage, Y.G.; Vyas, J.C.; Singh, F.; Sharma, Ramphal

    2008-01-01

    We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au 7+ ion of 100 MeV energy at different fluences, namely, 5 x 10 11 ions/cm 2 and 5 x 10 12 ions/cm 2 , respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique

  11. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.

    Science.gov (United States)

    Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi

    2013-05-22

    Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

  12. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    Science.gov (United States)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  13. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  14. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  15. Subject Index 1207..1226

    Indian Academy of Sciences (India)

    Application of polyaniline/manganese dioxide composites for .... triaxial porcelain composition. 897 ... Analysis on insulator–metal transition in yttrium doped ... TiO2/polyaniline core-shell nanocomposite ..... filtration hollow fibre membranes.

  16. Electrosynthesis of Polyaniline-TiO2 Nanocomposite Films on Aluminum Alloy 3004 Surface and its Corrosion Protection Performance

    Directory of Open Access Journals (Sweden)

    M. Shabani-Nooshabadi

    2013-03-01

    Full Text Available The direct synthesis of polyaniline-TiO2 nanocomposite coatings on aluminum alloy 3004 (AA3004 surface has been investigated by using the galvanostatic method. The synthesized coatings were characterized by FT-IR, SEM-EDX, SEM and AFM. Optical absorption spectroscopy reveals the formation of the emeraldine oxidation state form of polyaniline-TiO2 nanocomposite. The corrosion performances of polyaniline-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by Tafel polarization and Electrochemical Impedance Spectroscopy (EIS methods. The corrosion rate of polyaniline-TiO2 nanocomposite coating on AA3004 was found ∼260 times lower than bare AA3004 and corrosion potentials of these coatings have shifted to more positive potentials (105 mV. The results of this study clearly ascertain that the polyaniline-TiO2 nanocomposite coating has outstanding potential to protect the AA3004 against corrosion in a chloride environment.

  17. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Electrical transport and EPR investigations: A comparative study for d.c. conduction ... Electron paramagnetic resonance (EPR); electrical conductivity; polyaniline; ... due to increased inter-chain transport in polyaniline at high doping levels.

  19. Polyaniline/TiO2/kaolinite: The composite material with high electrical anisotropy

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Neuwirthová, Lucie; Peikertová, Pavlína; Kulhánková, Lenka; Mamulová Kutláková, Kateřina; Matějka, Vlastimil; Čapková, Pavla

    2014-01-01

    Kaolinite–TiO 2 nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO 2 in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10 3 –10 4 ) in comparison with pure PANI tablet (α is of the order of 10 2 ). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO 2 /kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO 2 /polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO 2 helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO 2 matrix improves the sensing properties

  20. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  1. Lanthanum-doped mesostructured strontium titanates synthesized via sol–gel combustion route using citric acid as complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sukpanish, Polthep [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Lertpanyapornchai, Boontawee [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Yokoi, Toshiyuki [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2016-09-15

    In the present work, a series of lanthanum-doped mesostructured strontium titanate (LMST) materials with different La/Sr ratios were synthesized via a sol–gel combustion method in the presence of citric acid as a complexing agent and Pluronic P123 as a templating agent. The effects of the amount of doped La and calcination temperature on the physicochemical properties of the LMSTs were examined using various techniques. Powder X-ray diffraction confirmed the substitution of La{sup 3+} into the SrTiO{sub 3} lattice, generating cubic perovskite La{sub x}Sr{sub 1−x}TiO{sub 3}, for the LMST materials calcined at 600 °C. The purity and crystallinity of the desired perovskite phase were enhanced by citric acid addition. The solubility limit of La{sup 3+} substitution at an La/Sr ratio of 0.43 was determined by structural and morphological studies. Increasing the La doping amount decreased the crystallinity and compositional homogeneity, because an La-rich amorphous phase segregated on the surface, but improved the mesoporosity. N{sub 2} physisorption measurements indicated that the LMSTs had a bimodal pore size distribution, of which the larger one was characterized by the crystallite size of mixed oxides, and the specific surface area of 24.9–37.3 m{sup 2} g{sup −1}. The formation of mesopores in the LMST materials synthesized via sol–gel combustion was explained based on a combination of soft- and hard-templating chemistries. - Highlights: • La-doped mesoporous SrTiO{sub 3} (LMST) was prepared first time via sol-gel combustion. • Pluronic P123 triblock copolymer was used as a cheap templating agent. • Citric acid as a complexing agent enhanced the purity and crystallinity of SrTiO{sub 3}. • The textural properties of LMST were improved by increasing the La doping amount. • Mesopore formation was explained by a combined soft- and hard-templating route.

  2. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    2016-05-15

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.

  3. The carbonization of thin polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Exnerová, Milena; Stejskal, Jaroslav

    2012-01-01

    Roč. 520, č. 19 (2012), s. 6088-6094 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2012

  4. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  5. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  6. Metal oxide/polyaniline nanocomposites: Cluster size and ...

    Indian Academy of Sciences (India)

    Wintec

    Metal oxide/polyaniline nanocomposites; structural properties; magnetic properties. 1. Introduction ... The powder obtained was ground in a motor and pestle, sonicated in ... Figure 1. XRD of (a) iron oxide nanoparticles and (b) iron oxide/PANI (1 : 0⋅4) composite. .... shape of the particles and the anisotropy energy, as also.

  7. Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection.

    Science.gov (United States)

    Singh, Renu; Verma, Rachna; Sumana, G; Srivastava, Avanish Kumar; Sood, Seema; Gupta, Rajinder K; Malhotra, B D

    2012-08-01

    The nanocomposite based on polyaniline (PANI)-iron oxide nanoparticles (nFe(3)O(4)) and multi walled carbon-nanotubes (CNT) has been fabricated onto indium tin oxide (ITO) coated glass plate via facile electrochemical synthesis of polyaniline in presence of nFe(3)O(4) (~20 nm) and CNT (20-80 nm in diameter). The results of transmission electron microscopic studies show evidence of coating of PANI and nFe(3)O(4) onto the CNT. The PANI-nFe(3)O(4)-CNT/ITO nanoelectrode has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy studies. The biotinylated nucleic acid probe sequence consisting of 20 bases has been immobilized onto PANI-nFe(3)O(4)-CNT/ITO nanoelectrode using biotin-avidin coupling. It is shown that the PANI-nFe(3)O(4)-CNT platform based biosensor can be used to specifically detect bacteria (N. gonorrhoeae) at minute concentration as low as (1×10(-19) M) indicating high sensitivity within 45 s of hybridization time at 298 K by differential pulse voltammetry using methylene blue as electroactive indicator. This bacterial sensor has also been tested with 4 positive and 4 negative PCR amplicons of gonorrhoea affected patient samples. The results of these studies have implications towards the fabrication of a handheld device for Neisseria gonorrhoeae detection that may perhaps result in a decrease in the human immunodeficiency virus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Carbon-polyaniline nanocomposites as supercapacitor materials

    Science.gov (United States)

    Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.

    2018-04-01

    Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.

  9. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Al-Enizi, Abdullah M. [Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia); Elzatahry, Ahmed A., E-mail: aelzatahry@ksu.edu.sa [Materials Science and Technology Program, College of Arts and Science, Qatar University, Doha 2713 (Qatar); Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria 21934 (Egypt); Abdullah, Aboubakr M., E-mail: bakr@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Vinu, Ajayan [Future Industries Institute, University of South Australia, Building X-X2-09, Mawson Lakes Campus, Mawson Lakes 5095 SA (Australia); Iwai, Hideo [Materials Analysis Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan); Al-Deyab, Salem S. [Petrochemical Research Chair, Department of Chemistry, King Saud University, PO Box: 2455, Riyadh 11451 (Saudi Arabia)

    2017-04-15

    Highlights: • A mixture of Polyvinylpyrrolidone (PVP), graphene and emeraldine base polyaniline (PANi) was electrospun and used as starting materials to prepare a nitrogen-doped carbon nanofiber (N-CNF). • Nickel oxide was loaded on the N-CNF to form a nanocomposite which was calcined later at different temperatures. • The effect of calcination temperature on the electrocatalytic behavior of the nanocomposite was studied which shows that the nanocomposite calcined at 500 °C was proved to be very high compared to the other calcination temperatures. • The stability of catalyst was excellent and its resistance to the adsorption of the intermediates generated from the methanol oxidation was very high. - Abstract: Nitrogen-Doped Carbon Nanofiber (N-CNF)–supported NiO composite was prepared by electrospinning a sol-gel mixture of graphene and polyaniline (PANi) with aqueous solutions of Polyvinylpyrrolidone (PVP) followed by a high-temperature annealing process. The electrospun was stabilized for 2 h at 280 °C, carbonized for 5 h at 1200 °C then loaded by 10% NiO. The electrocatalytic activities of the produced nanocomposite have been studied using cyclic voltammetry, and chronoamperometry. Also, N-CNF was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning-electron microscopy (SEM). The obtained N-doped carbon nanofiber was found to have a nitrogen content of 2.6 atomic% with a diameter range of (140–160) nm, and a surface area (393.3 m{sup 2} g{sup −1}). In addition, it showed a high electrocatalytic behavior towards methanol oxidation reaction in alkaline medium and high stability and resistivity to the adsorption of intermediates.

  10. Molecular dynamics in conducting polyaniline protonated by camphor sulfonic acid as seen by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Djurado, D.; Combet, J.; Bee, M.; Rannou, P.; Dufour, B.; Pron, A.; Travers, J. P.

    2002-01-01

    Using incoherent quasielastic neutron scattering techniques, the molecular motions were investigated in fully hydrogenated and partially deuterated polyaniline protonated by camphor sulfonic acid (CSA) conducting samples. The obtained results show that on the 10 -9 -10 -12 s time scale the polymer chains do not exhibit any diffusive motions: the whole observed quasielastic scattering has accordingly to be attributed to motions of CSA ions. From our measurements two molecular movements could be differentiated. A rapid one has been attributed to the three-site rotation of methyl groups present on camphor moieties of CSA and a slower one that has been modeled as a rigid body motion of the whole CSA molecule. Due to the disordered character of the system, the methyl rotors appeared to be dynamically nonequivalent. Their dynamics was then described in terms of a log gaussian distribution of correlation times. This description allowed a good fitting of experimental data and gave an activation energy of 12.5 kJ mol-1. However, two different regimes in temperature could be distinguished. At high temperatures (T>280 K) the width of the distribution is nearly zero and thus, the methyl rotors are dynamically equivalent while it turned larger and larger when temperature is decreased below 250 K revealing that the rotors are more and more sensitive to their local environment. In the conducting samples the slowest motion clearly exists in the 280-330 K temperature range and is blocked at temperatures inferior to 250 K. This transition occurs in the temperature range in which the metal-insulator transition also happens

  11. Synthesis, characterization and AC conductivity studies of silver doped conducting polyaniline/graphene/SrTiO3 composites

    Science.gov (United States)

    Vinay, K.; Shivakumar, K.; Ravikiran, Y. T.; Revanasiddappa, M.

    2018-05-01

    The present work is an investigation of ac conduction behaviour and dielectric response of Polyaniline/Ag/Graphene/SrTiO3 (PAGS) composite prepared by in-situ chemical oxidative interfacial polymerization using (NH4)2S2O8 as an oxidising agent at 0-5°C. The structural characterization of the samples was examined using FT-IR and XRD techniques. The ac conductivity and dielectric response of synthesized polymer composites were investigated at room temperature in the frequency range varying from 5 × 101 - 5 × 106 Hz using HIOKI make 3532-50 LCR Hi-tester. The ac conductivity increases with increase in frequency and follows the regular trend, the real dielectric constant (ɛ') and imaginary dielectric constant (ɛ'') decreases with increase in frequency and exhibits almost zero dielectric loss at higher frequencies, which suggests that the composite is a lossless material at frequencies beyond 3Hz.

  12. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    Science.gov (United States)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  13. Polyaniline prepared in ethylene glycol or glycerol

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Reynaud, S.; Pellerin, V.; Trchová, Miroslava; Stejskal, Jaroslav; Sapurina, I.

    2011-01-01

    Roč. 52, č. 9 (2011), s. 1900-1907 ISSN 0032-3861 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  14. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    Keywords. Lithium ion batteries; polyaniline; LiMn1·95Al0·05O4; percolation theory; electrochemical performances. 1. ... (Coal Chemistry Institute, China) and a 34401A type 6 1/2 ... mixing LiMn1·95Al0·05O4 with PAn and AB and binder poly-.

  15. Conducting polyaniline-wrapped lithium vanadium phosphate nanocomposite as high-rate and cycling stability cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Haiyan; Chen, Weixing; Wu, Xinming; Li, Yongfei

    2014-01-01

    Highlights: • Li 3 V 2 (PO 4 ) 3 /polyaniline has been firstly synthesized and investigated. • Conducting polyaniline can remarkably enhance the conductivity of Li 3 V 2 (PO 4 ) 3 . • Polyaniline-coated Li 3 V 2 (PO 4 ) 3 exhibits superior rate capability and cyclability. - Abstract: This work introduces a facile strategy to improve the high-rate capability and cycling stability for carbon-free Li 3 V 2 (PO 4 ) 3 by coating with conducting polymer polyaniline. Core-shell Li 3 V 2 (PO 4 ) 3 /polyaniline nanocomposite with typical sizes of 200 nm has been synthesized via a microwave heating assisted sol-gel method followed by a self-assembly process. The highly conductive and uniform polyaniline layer coated on the surface of Li 3 V 2 (PO 4 ) 3 nanoparticles significantly enhances the electrochemical performance of the electrode, which exhibits better rate capability and excellent cycling stability compared with the pristine Li 3 V 2 (PO 4 ) 3 . The resultant nanocomposite exhibits a high initial discharge capacity of 130.7 mAhg −1 at 0.1 C within a voltage range of 3.0-4.3 V. When cycled at a rate of 10 C the capacity can reach up to 101.5 mAhg −1 , and the capacity retention is 87.3% after 500 cycles. The likely contributing factor to the excellent electrochemical performance of core-shell Li 3 V 2 (PO 4 ) 3 /polyaniline could be related to the uniform conducting polymer layer, which can improve the electrical conductivity of Li 3 V 2 (PO 4 ) 3

  16. The effect of citric and oxalic acid doping on the superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N; Singla, Rashmi; Varma, G D; Malik, V K; Bernhard, C

    2009-01-01

    In this paper we report the effect of carbon doping on the structural and superconducting properties of MgB 2 using citric and oxalic acids as carbon sources. The bulk polycrystalline samples have been synthesized via a standard solid state reaction route with composition MgB 2 +x wt% of citric and oxalic acids (x = 0, 5 and 10). The x-ray diffraction results reveal the formation of dominantly MgB 2 with only a small amount of impurity phase MgO and substitution of C at the B site of MgB 2 for both dopants. Improvements in the upper critical field (H C2 ), irreversibility field (H irr ) and high field (>2.5 T) critical current density (J C ) have been observed on C doping in the samples. The correlations between superconducting properties and structural characteristics of the samples are described and discussed in this paper.

  17. The reaction of polyaniline with iodine

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Blinova, Natalia V.; Konyushenko, Elena; Reynaud, S.; Prokeš, J.

    2008-01-01

    Roč. 49, č. 1 (2008), s. 180-185 ISSN 0032-3861 R&D Projects: GA MŠk ME 847; GA AV ČR IAA4050313; GA AV ČR IAA400500504 Grant - others:Eco-net project(FR) 16256SA Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * iodine Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.331, year: 2008

  18. Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation

    KAUST Repository

    Blinova, Natalia V.

    2012-04-21

    Composite membranes combining polyaniline as an active layer with a polypropylene support have been prepared using an in situ deposition technique. The protonated polyaniline layer with a thickness in the range of 90-200 nm was prepared using precipitation, dispersion, or emulsion polymerization of aniline with simultaneous deposition on top of the porous polypropylene support, which was immersed in the reaction mixture. Variables such as temperature, concentration of reagents, presence of steric stabilizers, surfactants, and heteropolyacid were found to control both the formation and the quality of the polyaniline layers. Both morphology and thickness of the layers were characterized using scanning electron microscopy. Selective separation of carbon dioxide from its mixture with methane is used to illustrate potential application of these composite membranes. © 2012 Wiley Periodicals, Inc.

  19. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz [Nanotechnology centre, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Kulhánková, Lenka [Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Neuwirthová, Lucie; Mamulová Kutláková, Kateřina [Nanotechnology centre, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Vallová, Silvie [Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Stýskala, Vítězslav [Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Čapková, Pavla [Faculty of Science, University of J.E. Purkyně, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic)

    2016-03-15

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  20. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Kulhánková, Lenka; Neuwirthová, Lucie; Mamulová Kutláková, Kateřina; Vallová, Silvie; Stýskala, Vítězslav; Čapková, Pavla

    2016-01-01

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  1. Irradiation effects on transport properties of polyaniline and polyaniline/bentonite composite

    Energy Technology Data Exchange (ETDEWEB)

    Tilki, T., E-mail: tahirtilki@sdu.edu.tr [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Chemistry, 32260 Isparta (Turkey); Karabulut, O. [Pamukkale University, Faculty of Arts and Sciences, Department of Physics, Denizli (Turkey); Yavuz, M. [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Chemistry, 32260 Isparta (Turkey); Kaplan, A. [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Physics, Isparta (Turkey); Cabuk, M. [Suleyman Demirel University, Faculty of Arts and Sciences, Department of Chemistry, 32260 Isparta (Turkey); Mus Alparslan University, Faculty of Arts and Sciences, Department of Chemistry, Mus (Turkey); Takanoglu, D. [Pamukkale University, Faculty of Arts and Sciences, Department of Physics, Denizli (Turkey)

    2012-08-15

    In this study, the effects of irradiation on pure polyaniline and polyaniline/bentonite composites synthesized chemically were investigated by means of thermogravimetric measurements, UV, SEM, XRD, absorption and temperature dependent electrical conductivity in the temperature range of 85-400 K. The irradiation process was carried out in air in a conventional gamma chamber, which uses a {sup 60}Co source and the samples were exposed to dose 40 kGy. The initial decomposition and first degradation temperatures of PAni/Bnt and Irradiated PAni/Bnt composites obtained from thermogravimetric measurements were higher than those of PAni and irradiated PAni. This could have been caused by the treatment with bentonite during aniline polymerization. The XRD patterns revealed that the peak positions of the as-prepared and irradiated samples were the same but the intensities of the peaks decreased with irradiation due to breaking of the polymer chain, which induces more amorphous regions in the polymer structure. It was found from temperature dependent conductivity measurements that the radiation significantly influenced the conductivity of PAni and PAni/Bnt composites. The conductivity results show that the dominant conduction mechanisms were hopping for all samples due to wide range of localized states present near the Fermi level. -- Highlights: Black-Right-Pointing-Pointer The effects of irradiation on PAni and PAni/Bnt composites were investigated. Black-Right-Pointing-Pointer We observed that irradiation increases the homogeneity of the samples. Black-Right-Pointing-Pointer The band edge is shifted toward lower photon energies in the irradiated samples. Black-Right-Pointing-Pointer The conductivity of PAni and PAni/Bnt composites were changed by the irradiation. Black-Right-Pointing-Pointer The dominant conduction mechanism was found to be Mott's variable range hopping.

  2. Fabrication and characterization of self-doped poly(aniline-co-anthranilic acid) nanorods in bundles

    International Nuclear Information System (INIS)

    Han Dongxue; Song Jixia; Ding Xuefeng; Xu Xiaoyu; Niu Li

    2007-01-01

    Poly(aniline-co-anthranilic acid) (PANANA) nanorods in bundles was prepared successfully in an alcohol/aqueous media without assistance of any other kinds of acids. Anthranilic acid played all roles of monomer, acid-media provider, and dopant in the reaction system, and ammonium persulfate (APS) served as the oxidant. The morphologies of PANANA nanorods in bundles were investigated by scanning electron microscopy (SEM). Influences of the monomer molar ratio on the resulting morphology were investigated. Moreover the formation mechanism of the nanostructured copolymer was proposed. FT-IR, UV-vis and X-ray diffraction (XRD) measurements were used to confirm the molecular and electrical structure of the self-doped PANANA. The intrinsic properties, such as conductivity, electrochemical redox activity and room-temperature solubility of the resulting copolymer were explored

  3. Raman spectroscopy of polyaniline and oligoaniline thin films

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Bláha, Michal; Stejskal, Jaroslav

    2014-01-01

    Roč. 122, 10 March (2014), s. 28-38 ISSN 0013-4686 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * anilin e oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.504, year: 2014

  4. Size variation of polyaniline nanoparticles dispersed in polyvinyl ...

    Indian Academy of Sciences (India)

    Administrator

    From SEM picture it is seen that the particle sizes vary from 100–20 nm. Also with increase ... report synthesis of polyaniline nano in PVA matrix for three different molar ..... research (eds) P N Prasad and J K Nigam (New York: Plenum) p. 419.

  5. Chemical studies on polyaniline titanotungstate as a new composite cation exchanger and its analytical applications for removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    Ibrahim, M.K.M.

    2012-01-01

    Polyaniline titanotungstate has been synthesized by incorporation of organic polymer polyaniline into the inorganic precipitate of titanotungstate. This material was characterized using IR, X-Ray, SEM and DTA-TGA analysis. The influences of initial concentration of metal ions, particle size and temperature have been reported. The material stability was investigated in water, acids, alkaline solutions, and at high temperature up to 850 degree C. Ion-exchange capacity and distribution coefficients (K d ) for ten metal ions have been determined. It was found that the polyaniline titanotungstate has high affinity and high selectivity for Cs + . The material has high separation for Cs + ion from other metal ions. The comparison of composite (PATiW) and inorganic material (TiW) was studied and indicated that the composite material is better than the inorganic one in selectivity of Cs + . Thermodynamic parameter of Cs + exchange process, such as changes in Gibbs free energy (δG o ), enthalpy (δH o ), and entropy (δS o ) have been calculated. It was found that numerical value of δG decrease with an increase in temperature,indicating that the sorption reaction of adsorbent was spontaneous and more favorable at higher temperature. The positive value of δH o corresponds to the endothermic nature of sorption processes and suggested that chemisorptions were the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of Cs + was evaluated for the pseudo first-order, pseudo second-order, homogeneous particle diffusion, shell model and intraparticle diffusion models. The results showed that Cs + is sorption onto PATiW and TiW with particle diffusion mechanism. Self diffusion coefficient (D i ), Activation energy (Ea) and entropy (δS * ) of activation were also computed from thelinearized form of Arrhenius equation. Column studies in acid and alkaline solutions were studied. A kinetic study for removal cesium from milk was investigated.

  6. Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cazorla, Claudio, E-mail: c.silva@ucl.ac.u

    2010-09-30

    We present a theoretical study of the binding of collagen amino acids (AA, namely glycine, Gly; proline, Pro; and hydroxyproline, Hyp) to graphene (Gr), Ca-doped graphene and graphane (Gra) using density functional theory calculations and ab initio molecular dynamics (AIMD) simulations. It is found that binding of Gly, Pro and Hyp to Gr and Gra is thermodynamically favorable yet dependent on the amino acid orientation and always very weak (adsorption energies E{sub ads} range from -90 to -20 meV). AIMD simulations reveal that room-temperature thermal excitations are enough to induce detachment of Gly and Pro from Gr and of all three amino acids from Gra. Interestingly, we show that collagen AA binding to Gr is enhanced dramatically by doping the carbon surface with calcium atoms (corresponding E{sub ads} values decrease by practically two orders of magnitude with respect to the non-doped case). This effect is result of electronic charge transfers from the Ca impurity (donor) to Gr (acceptor) and the carboxyl group (COOH) of the amino acid (acceptor). The possibility of using Gr and Gra as nanoframes for sensing of collagen amino acids has also been investigated by performing electronic density of states analysis. It is found that, whether Gr is hardly sensitive, the electronic band gap of Gra can be modulated by attaching different number and species of AAs onto it. The results presented in this work provide fundamental insights on the quantum interactions of collagen protein components with carbon-based nanostructures and can be useful for developments in bio and nanotechnology fields.

  7. Optimization of multiroute synthesis for polyaniline-barium ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ghzaiel, Tayssir, E-mail: tayssir.ben-ghzaiel@satie.ens-cachan.fr [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France); Dhaoui, Wadia [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); Pasko, Alexander; Mazaleyrat, Frédéric [SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France)

    2016-08-15

    -based polymerization manifested enhanced magnetic characteristics. The solventless reaction medium contributed to the increase of volume fraction of ferrite in the composite compared to the aqueous reaction medium. Moreover, the mechanical stirring during aqueous-based polymerization had an important influence on the volume fraction of ferrite since it prevented the dissolution of BaFe{sub 12}O{sub 19} particles. - Highlights: • Different pathways are compared for preparation of Polyaniline-barium ferrite composites. • Magnetic data are used to calculate the volume fraction and loading of ferrite in the composites. • Solid-based polymerization yielded to composites with the highest volume fraction and loading. • Mechanical stirring reduced the ferrite particles dissolution by acid-attack during aqueous-based polymerization.

  8. Polyaniline nanofibers as a new gamma radiation stabilizer agent for PMMA

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Polyanilines are reported to exhibit stabilizing effects in rubber mixtures submitted to gamma-irradiation and thermo-oxidative treatment. Such abilities may be explained by their action as radical scavengers. Since radical formation followed by main chain scission is a widely accepted mechanism for radiolytic degradation of PMMA, polyaniline is a promising additive for commercial plastics submitted to radiosterilization processing. In this work, we investigated the ability of polyaniline emeraldine salt nanofibers (PANF-HCl in preventing radiation damage on PMMA matrix. Effects of gamma-irradiation on PMMA/PANF-HCl composites films were assessed by comparison of the variation of viscosity-average molar mass (Mv of PMMA at 25 kGy dose when compared to commercial PMMA films. Samples containing 0.15% PANF-HCl (wt/wt retained 92% of the initial Mv after irradiation while control sample presented 42% of Mv retention. When exposed to 60-200 kGy doses, PANF-HCl embedded into PMMA matrix preserved their oxidation state but started to exhibit mild deprotonation. PANF-HCl nanofibers were characterized by Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS and Scanning Electronic Microscopy (SEM. PMMA/PANF-HCl composites films were characterized by SEM and UV-VIS spectroscopy.

  9. Application of polyaniline dispersions by means of screen printing

    Czech Academy of Sciences Publication Activity Database

    Držková, M.; Peřinka, N.; Hajná, Milena; Kaplanová, M.; Stejskal, Jaroslav

    2013-01-01

    Roč. 19, č. 2013 (2013), s. 257-268 ISSN 1211-5541 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * colloids * screen printing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1.95Al0.05O4 cathode for lithium ion batteries. Results show that LiMn1.95Al0.05O4 possesses stable structure and good performance. Percolation theory is used to optimize the content of conductive additive ...

  11. Smart polyaniline nanoparticles with thermal and photothermal sensitivity

    Science.gov (United States)

    Bongiovanni Abel, Silvestre; Molina, María A.; Rivarola, Claudia R.; Kogan, Marcelo J.; Barbero, Cesar A.

    2014-12-01

    Conductive polyaniline nanoparticles (PANI NPs) are synthesized by oxidation of aniline with persulfate in acid media, in the presence of polymeric stabilizers: polyvinilpyrrolidone (PVP), poly(N-isopropylacrylamide) (PNIPAM), and hydroxylpropylcellulose (HPC). It is observed that the size of the nanoparticles obtained depends on the polymeric stabilizer used, suggesting a mechanism where the aggregation of polyaniline molecules is arrested by adsorption of the polymeric stabilizer. Indeed, polymerization in the presence of a mixture of two polymers having different stabilizing capacity (PVP and PNIPAM) allows tuning of the size of the nanoparticles. Stabilization with biocompatible PVP, HPC and PNIPAM allows use of the nanoparticle dispersions in biological applications. The nanoparticles stabilized by thermosensitive polymers (PNIPAM and HPC) aggregate when the temperature exceeds the phase transition (coil to globule) temperature of each stabilizer (Tpt = 32 °C for PNIPAM or Tpt = 42 °C for HPC). This result suggests that an extended coil form of the polymeric stabilizer is necessary to avoid aggregation. The dispersions are reversibly restored when the temperature is lowered below Tpt. In that way, the effect could be used to separate the nanoparticles from soluble contaminants. On the other hand, the PANI NPs stabilized with PVP are unaffected by the temperature change. UV-visible spectroscopy measurements show that the nanoparticle dispersion changes their spectra with the pH of the external solution, suggesting that small molecules can easily penetrate the stabilizer shell. Near infrared radiation is absorbed by PANI NPs causing an increase of their temperature which induces the collapse of the thermosensitive polymer shell and aggregation of the NPs. The effect reveals that it is possible to locally heat the nanoparticles, a phenomenon that can be used to destroy tumor cells in cancer therapy or to dissolve protein aggregates of neurodegenerative diseases

  12. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO{sub 2} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo, E-mail: boyang@szu.edu.cn [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Jiang, Chaojin [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China); Yu, Gang, E-mail: yg-den@tsinghua.edu.cn [School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Zhuo, Qiongfang [South China Institute of Environmental Sciences, The Ministry of Environment Protection, Guangzhou 510655 (China); Deng, Shubo [School of Environment, POPs Research Center, Tsinghua University, Beijing 100084 (China); Wu, Jinhua [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zhang, Hong [Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060 (China)

    2015-12-15

    Highlights: • A novel SnO{sub 2} electrode is prepared by F doping instead of the traditional Sb doping. • SnF{sub 4} as single-source precursor is used to fabricate the long-life Ti/SnO{sub 2}–F anode. • F-doped Ti/SnO{sub 2} anode possesses high OEP and decomposition ability for PFOA. • Further mechanistic detail of PFOA degradation on Ti/SnO{sub 2}–F electrode is proposed. - Abstract: The novel F-doped Ti/SnO{sub 2} electrode prepared by SnF{sub 4} as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO{sub 2}–F electrode than Ti/SnO{sub 2}–X (X = Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L{sup −1}) within 30-min electrolysis. The property of Ti/SnO{sub 2}–F electrode and its electrooxidation mechanism were investigated by XRD, SEM–EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed ·OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F{sup −}, and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO{sub 2}–F electrode is promising for highly efficient treatment of PFOA in wastewater.

  13. The adsorption ability of Cr(VI) on sawdust–polyaniline nanocomposite

    International Nuclear Information System (INIS)

    Binh Phan, Thi; Que Do, Ngoc; Thanh Thuy Mai, Thi

    2010-01-01

    The results of this study of sawdust–polyaniline nanocomposite synthesized by a chemical method for Cr(VI) treatment in the environment are presented. Cr(VI) adsorption on a composite was determined by colorimetry. The results showed that sawdust–polyaniline composite synthesized with an aniline:sawdust ratio equal to 0.5 had an adsorption degree of 21.4 mg g −1 and adsorbed nearly 99% of the Cr(VI) after 2 h. The composite could be used for the adsorption of Cr(VI) from waste water. The Cr(VI) adsorption ability of the composite slightly depends on the pH value of the medium. The adsorption is fast during the first half hour and then the rate decreases

  14. Preparation of intercalated polyaniline/clay nanocomposite and its

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  15. Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    An, Yanling; Wei, Pan; Fan, Meiqiang, E-mail: fanmeiqiang@126.com; Chen, Da; Chen, Haichao; Ju, QiangJian; Tian, Guanglei; Shu, Kangying

    2016-07-01

    Highlights: • A dual core-shell hPANI/S/PANI composite was prepared in situ synthesis. • Cycle performance of the hPANI/S/PANI composite was enhanced. • The improvement was due to fine sulfur particles wrapped by two PANI films. • Some positive effects were elaborated. - Abstract: In this study, a dual-shell hollow polyaniline/sulfur-core/polyaniline (hPANI/S/PANI) composite was prepared by successively depositing PANI, S, and PANI on the surface of a template silicon sphere. The electrochemical properties of this composite were evaluated using a lithium plate as an anode in lithium/sulfur cells. The hPANI/S/PANI composite showed a discharge capacity of 572.2 mAh g{sup −1} after 214 cycles at 0.1 C, and the Coulombic efficiency was above 87% in the whole charge/discharge cycle. The improved cycle property of the hPANI/S/PANI composite can be ascribed to the fine sulfur particles homogeneously deposited on the PANI surface and sprawled inside the two PANI layers during the charge/discharge cycle. This behavior stabilized the nanostructure of sulfur and enhanced its conductivity.

  16. Thermal analysis of polyaniline poly(N-vinylpyrrolidone)-stabilized dispersions

    Czech Academy of Sciences Publication Activity Database

    Peřinka, N.; Držková, M.; Hajná, Milena; Jašúrek, B.; Šulcová, P.; Syrový, T.; Kaplanová, M.; Stejskal, Jaroslav

    2014-01-01

    Roč. 116, č. 2 (2014), s. 589-595 ISSN 1388-6150 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * poly(N-vinylpyrrolidone) * dispersion Subject RIV: CG - Electrochemistry Impact factor: 2.042, year: 2014

  17. Polyaniline/TiO{sub 2}/kaolinite: The composite material with high electrical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Neuwirthová, Lucie; Peikertová, Pavlína [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Kulhánková, Lenka [Faculty of Metallurgy and Materials Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Mamulová Kutláková, Kateřina; Matějka, Vlastimil [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Čapková, Pavla [Faculty of Science, J.E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic)

    2014-07-01

    Kaolinite–TiO{sub 2} nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO{sub 2} in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10{sup 3}–10{sup 4}) in comparison with pure PANI tablet (α is of the order of 10{sup 2}). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO{sub 2}/kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO{sub 2}/polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO{sub 2} helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO{sub 2} matrix improves the sensing properties.

  18. Synthesis, characterization and visible light photocatalytic activity of Cr 3+ , Ce 3+ and N co-doped TiO 2 for the degradation of humic acid

    KAUST Repository

    Rashid, S. G.; Gondal, M. A.; Hameed, A.; Aslam, M.; Dastageer, M. A.; Yamani, Z. H.; Anjum, Dalaver H.

    2015-01-01

    The synthesis, characterization and photocatalytic activity of Cr3+ and Ce3+ co-doped TiON (N-doped TiO2) for the degradation of humic acid with exposure to visible light is reported. The synthesized bimetal (Cr3+ + Ce3+) modified TiON (Cr-Ce/TiON), with an evaluated bandgap of 2.1 eV, exhibited an enhanced spectral response in the visible region as compared to pure and Ce3+ doped TiON (Ce/TiON). The XRD analysis revealed the insertion of Cr3+ and Ce3+ in the crystal lattice along with Ti4+ and N that resulted in the formation of a strained TiON anatase structure with an average crystallite size of ∼10 nm. Raman analysis also supported the formation of stressed rigid structures after bimetal doping. HRTEM confirmed the homogeneous distribution of both the doped metallic components in the crystal lattice of TiON without the formation of surface oxides of either Cr3+ or Ce3+. Electron energy loss spectroscopy (EELS) analysis revealed no change in the oxidation of either Cr or Ce during the synthesis. The synthesized Cr-Ce/TiON catalyst exhibited appreciable photocatalytic activity for the degradation of humic acid on exposure to visible light. Additionally, a noticeable mineralization of carbon rich humic acid was also witnessed. The photocatalytic activity of the synthesized catalyst was compared with pristine and Ce3+ doped TiON. © The Royal Society of Chemistry 2015.

  19. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    Science.gov (United States)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  20. Synthesis of polyaniline/ZrO 2 nanocomposites and their ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Synthesis of polyaniline/ZrO 2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. B P PRASANNA D N AVADHANI H B MURALIDHARA K CHAITRA VINNY ROSE THOMAS M REVANASIDDAPPA N ...

  1. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  2. Electrochemical model of the polyaniline based organic memristive device

    International Nuclear Information System (INIS)

    Demin, V. A.; Erokhin, V. V.; Kashkarov, P. K.; Kovalchuk, M. V.

    2014-01-01

    The electrochemical organic memristive device with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, including the neuromorphic networks capable for learning. In this work, a new theoretical model of the polyaniline memristive is presented. The developed model of organic memristive functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment but also the quantitative similarities of the resultant current values. It is shown how the memristive could behave at zero potential difference relative to the reference electrode. This improved model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices

  3. Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis

    Science.gov (United States)

    Hu, Chenglong; Chen, Shaoyun; Wang, Yuan; Peng, Xianghong; Zhang, Weihong; Chen, Jian

    2016-07-01

    In this article, we explore a novel route to fabricate cabbage-like polyaniline (PANI) by in situ polymerization of aniline using the hydroxylated poly (methyl methacrylate) nanospheres (i.e. PMMAsbnd OHsbnd NS) as a template. A maximum specific capacitance of 584 F/g (the current density is 0.1 A/g) is achieved at 10 mV s-1 as well as a high stability of over 3000 cycles (the decrease in the SC is ∼9.1%), which suggests the potential application of the cabbage-like polyaniline in supercapacitors. The predominant electrochemical performances of the cabbage-like polyaniline can be attributed to their large surface area and larger-scale π-π conjugated system present in the quinoid structure of the PANI molecular chain, which can drastically facilitate electron diffusion and improve the utilization of the electroactive PANI during the charge/discharge processes. Accordingly, the facility of charge transfer can decrease resistance along with the PANI molecular chain to improve the electrochemical stability and achieve high-capacitance response characteristics. The present study introduces a new synthesis method for the development of various morphology of other conducting polymer, which may find potential applications in a variety of high-performance electrochemical devices.

  4. Swift heavy ion irradiation induced modifications in the optical band gap and Urbach's tail in polyaniline nanofibers

    International Nuclear Information System (INIS)

    Banerjee, Somik; Kumar, A.

    2011-01-01

    Optical band gap and Urbach tail width of HCl and CSA doped polyaniline (PAni) nanofibers and the ion beam induced modifications in the band gap and Urbach's tail of the samples have been studied employing UV-Vis absorption spectroscopy. All the major bands appearing in the FTIR spectra exhibit a decrease in intensity and broadening in their band widths upon interaction with the highly energetic ion beams. This suggests that SHI irradiation induces chain-scissioning events in the PAni nanofibers. An interesting result that comes out from the FTIR analysis is a transition from the benzenoid to quinoid states in the PAni chains, which reveals that there is a decrease in the degree of conjugation in the polymer upon irradiation. Optical absorption studies indicate three direct allowed transitions at ∼2.64, 3.61 and 4.08 eV for HCl doped PAni nanofibers and at ∼2.62, 3.49 and 4.02 eV for the CSA doped PAni nanofibers. The optical band gap is found to increase with increasing ion fluence which may be attributed to the reduction in the fiber diameters upon irradiation, which is corroborated by TEM analysis. Increase in the optical band gap also points out to a decrease in the conjugation length due to the larger torsion angles between the adjacent phenyl rings of the polymer with respect to the plane of the nitrogen atoms, which is also supported by FTIR results. The Urbach tail width decreases with increasing ion fluence indicating that structural disorders are annealed out of the PAni nanofibers which is also observed from the plots of (αhν) 2 against photon energy (hν) for HCl doped PAni nanofibers. The quantum confinement effect is confirmed by fact that a band gap exhibits a linear dependence on the inverse of the square of the radius of the PAni nanofibers. Infact, the increase in the optical band gap may be a combined effect of the decrease in the Urbach band width and the quantum confinement effect.

  5. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Radaszkiewicz, K. A.; Capáková, Z.; Pacherník, J.; Bober, Patrycja; Kašpárková, V.; Rejmontová, P.; Lehocký, M.; Ponížil, P.; Stejskal, Jaroslav

    2018-01-01

    Roč. 8, 09 January (2018), s. 1-12, č. článku 135. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61389013 Keywords : polyaniline * cryogel * biocompatibility Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.259, year: 2016

  6. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    OpenAIRE

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2007-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenc...

  7. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    Science.gov (United States)

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  8. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, V.; Humpolíček, P.; Stejskal, Jaroslav; Kopecká, J.; Kuceková, Z.; Moučka, R.

    2016-01-01

    Roč. 27, č. 2 (2016), s. 156-161 ISSN 1042-7147 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * Soxhlet extraction * purification Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.907, year: 2016

  9. The influence of compression pressure on transport properties of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Prokeš, J.; Varga, M.; Křivka, I.; Rudajevová, A.; Stejskal, Jaroslav

    2011-01-01

    Roč. 21, č. 13 (2011), s. 5038-5045 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.968, year: 2011

  10. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  11. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  12. Undoped Polyaniline/Surfactant Complex for the Corrosion Prevention

    Science.gov (United States)

    Liu, Lo-Min; Levon, Kalle

    1998-01-01

    Due to the strict regulations on the usage of heavy metals as the additives in the coating industries, the search for effective organic corrosion inhibitors in replace of those metal additives has become essential. Electrically conducting polymers have been shown to be effective for corrosion prevention but the poor solubility of these intractable polymers has been a problem. We have explored a polyaniline/4-dodecylphenol complex (PANi/DDPh) to improve the dissolution and it has been shown to be an effective organic corrosion inhibitor. With the surfactant, DDPh, PANi could be diluted into the coatings and the properties of the coatings were affected. Emeraldine base (EB) form of PANi was also found to be oxidized by the hardener. The oxidized form of polyaniline provides improved corrosion protection of metals than that of emeraldine base since the value of the standard electrode potential for the oxidized form of PANi is higher than that of EB. Additionally, the surfactant improves the wet adhesion property between the coating and the metal surface.

  13. Green Nanotechnology from Waste Carbon-Polyaniline Composite: Generation of Wavelength-Independent Multiband Photoluminescence for Sensitive Ion Detection

    KAUST Repository

    Goswami, Sumita

    2017-12-11

    This study reports on the qualitative analysis of photoluminescence effect generated from waste carbon of cooking oven by facile cost-effective material engineering. The waste carbon product as a form of carbon nanoparticles (CNPs) is incorporated within a conjugate polymer, namely, polyaniline (PANI) to produce CNP-PANI composites that have shown excitation-wavelength-independent triple-band photoluminescence emission effect and highly sensitive Fe+3 ion detection ability. Herein the waste carbon material, while functionalized within the conjugated polymer, needs no further acid treatment or surface modification thus making the process cheaper, environmentally benign, and useful for green nanotechnology. The excitation-wavelength-independent unique triple-band photoluminescence spectrum is the direct consequence of carbon–polyaniline synergy in π–π transition and the surface passivation of CNPs by the [BOND]NH2 group rich aniline during in-situ polymerization. The current scenario has been studied for the samples prepared with different CNP concentrations for different reaction times and discussed in details with supportive physico-chemical characterizations. Moreover, the present study has demonstrated that the current material can be used as a fluorescent sensing platform for Fe+3 ions with high sensitivity and selectivity criteria where the detection limit of the sensing probe has a value as low as 12 × 10−9 nM.

  14. Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator

    Science.gov (United States)

    Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko

    2017-07-01

    In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.

  15. Structure and properties of polyaniline interacting with H-phosphonates

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Zujovic, Z. D.; Filippov, Sergey K.; Prokeš, J.; Pilař, Jan; Stejskal, Jaroslav

    2017-01-01

    Roč. 232, October (2017), s. 79-86 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : conducting polymers * polyaniline * H-phosphonate Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.435, year: 2016

  16. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  17. Effect of sorbic acid doping on flux pinning in bulk MgB2 with the percolation model

    International Nuclear Information System (INIS)

    Yang, Y.; Cheng, C.H.; Wang, L.; Sun, H.H.; Zhao, Y.

    2010-01-01

    In this paper, we study the doping effect of sorbic acid (C 6 H 8 O 2 ), from 0 to 20 wt.% of the total MgB 2 , on critical temperature (T c ), critical current density (J c ), irreversibility field (H irr ) and crystalline structure. The XRD patterns of samples show a slightly decrease in a-axis lattice parameter for doped samples, due to the partial substitution of carbon at boron site. On the other hand, we investigate the influence of doping on the behavior of flux pinning and J c (B) in the framework of percolation theory and it is found that the J c (B) behavior could be well fitted in high field region. The two key parameters, anisotropy and percolation threshold, play very important roles. It is believed that the enhancement of J c is due to the reduction of anisotropy in high field region.

  18. Electrochemical model of polyaniline-based memristor with mass transfer step

    International Nuclear Information System (INIS)

    Demin, V.A.; Erokhin, V.V.; Kashkarov, P.K.; Kovalchuk, M.V.

    2015-01-01

    The electrochemical organic memristor with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, such as the new field-programmable gate arrays or the neuromorphic networks capable for learning. In this work a new theoretical model of the polyaniline memristor is presented. The developed model of organic memristor functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device including the mass transfer step of ionic reactants. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment, but also quantitative similarities of the resultant current values. This model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices

  19. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  20. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China)

    2010-08-15

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm{sup -1} at 25 C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H{sub 2}SO{sub 4} aqueous solution. Its initial specific capacitance was 500 F g{sup -1} at a constant current density of 1.5 A g{sup -1}, and the capacitance still reached about 400 F g{sup -1} after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g{sup -1}, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors. (author)

  1. Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite

    Science.gov (United States)

    Ismail, Mukhils M.; Rafeeq, Sewench N.; Sulaiman, Jameel M. A.; Mandal, Avinandan

    2018-05-01

    Improvement of microwave-absorbing materials (MAMs) is the most important research area in various applications, such as in communication, radiation medical exposure, electronic warfare, air defense, and different civilian applications. Conducting polymer, polyaniline doped with para toluene sulphonic acid (PANI-PTSA) as well as cobalt ferrite (CoFe2O4) is synthesized by sol-gel method and intensely blends in different ratios. The characterization of the composite materials, CoFe2O4/PANI-PTSA (CFP1, CFP2, CFP3 and CFP4), was performed by X-ray diffraction (XRD), atomic force microscopy (AFM) and vibrating sample magnetometry (VSM). The microwave-absorbing properties' reflection loss (dB) and important parameters, such as complex relative permittivity ( ɛ r '- jɛ r ″) and complex relative permeability ( µ r '- jµ r ″) were measured in different microwave frequencies in the X-band (8.2-12.4 GHz) region. The composite material CFP3 showed a wider absorption frequency range and maximum reflection loss of - 28.4 dB (99.8% power absorption) at 8.1 GHz and - 9.6 dB (> 90% power absorption) at 11.2 GHz, and so the composite can be used as a microwave absorber; however, it can be more suitable for application in daily life for making cell phones above 9 GHz. Also the results showed that the thicker composites like CFP3 (4 mm) exhibit obviously better EMI SE as compared with the thinner ones (0.19, 0.19, 0.3 mm); this may be related to the low transmission of the EM wave from the composites.

  2. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid

    International Nuclear Information System (INIS)

    Zhang, X.; Lai, G.; Zhang, H.; Yu, A.

    2013-01-01

    We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N = 3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications. (author)

  3. Gravure-printed ammonia sensor based on organic polyaniline colloids

    Czech Academy of Sciences Publication Activity Database

    Syrový, T.; Kuberský, P.; Sapurina, Irina; Pretl, S.; Bober, Patrycja; Syrová, L.; Hamáček, A.; Stejskal, Jaroslav

    2016-01-01

    Roč. 225, 31 March (2016), s. 510-516 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LH14199; GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : ammonia gas * polyaniline * conducting polymer Subject RIV: CG - Electrochemistry Impact factor: 5.401, year: 2016

  4. Electrospun conducting polymer nanofibers as the active material in sensors and diodes

    International Nuclear Information System (INIS)

    Pinto, Nicholas J

    2013-01-01

    Polyaniline doped with camphorsulfonic acid (PANi-HCSA) and poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT-PSSA) were electrospun separately to obtain individual nanofibers which were captured on Si/SiO 2 substrates and electrically characterized. The fiber resistance was recorded as a function of time in the presence of vapours of aliphatic alcohols of varying sizes. Due to the large surface to volume ratio, uniform diameter and small quantity of active material used in the construction, these sensor responses are very quick. Sensors made from individual fibers also show true saturation upon exposure to and removal of the sensing gas. A Schottky diode was also fabricated using an n-doped Si/SiO 2 substrate and a single PANi-HCSA fiber and tested in vacuum and in ammonia gas. The diode response was instantaneous upon exposure to ammonia with nearly complete recovery of the current upon pumping out the ammonia, thereby making it a reusable sensor with rectifying behaviour i.e. multifunctional.

  5. Poly(aniline-co-m-aminobenzoic acid) deposited on poly(vinyl ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have deposited poly(aniline-co-m-aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ ... along the polyaniline (PANI) chain results in self dop- ing of PANI and ..... The value of electrical conductivity is found to be ...

  6. New routes of preparation of polyaniline films and dosimetric characterization for high-doses gamma radiation

    International Nuclear Information System (INIS)

    Pacheco, Ana Paula Lima

    2003-08-01

    This work presents a new conducting polymeric material based on polyaniline thin films that will be used in the confection of dosimetric devices. On preparation of the films a homogeneous and viscous solution of poly (acrylic acid) and MnO 2 is deposited on PMMA surface, which after dried, is immersed in an acid aniline solution. The films formed present low resistivity (6.10 2 Ωm), good mechanical resistance and adherence on the electrodes. The films were characterized by infrared spectroscopy, conductivity measurements and manganese elemental analyses. The resistance variations show linear correlation (r 2 = 0,9928) with gamma irradiation dose in the range of 1000 to 6000 Gy, with medium error less than 5% and sensitivity response. The dosimetric devices present as advantage real time measurements, low cost, use in calibration of industrial radioactive sources. Moreover, this composite could in future replace Fricke dosimeter and its applications. A calibration curve is showed for PANI dosimeter, here proposed, to use at high gamma doses. (author)

  7. Photo-catalytic Removal of Methyl Orange Dye by Polyaniline ...

    African Journals Online (AJOL)

    Photo-catalytic Removal of Methyl Orange Dye by Polyaniline Modified ZnO using Visible Radiation. ... The as-synthesized nano-ZnO, PANI and PANI/ZnO nanocomposite were characterized by X-ray diffraction (XRD), FT-IR, and UV-Vis spectroscopy. The UV–visible spectroscopy studies showed that the absorption peak ...

  8. Electrochromic Behaviors of Water-Soluble Polyaniline with Covalently Bonded Acetyl Ferrocene

    Science.gov (United States)

    Xiong, Shanxin; Wang, Ru; Li, Shuaishuai; Wu, Bohua; Chu, Jia; Wang, Xiaoqin; Zhang, Runlan; Gong, Ming

    2018-04-01

    A novel ferrocene-containing hybrid electrochromic material was synthesized via copolymerization of aniline with p-phenylenediamine functionalized acetyl ferrocene in the presence of poly (styrene sulfonate) dopant in an aqueous medium, and neat polyaniline (PANI) was prepared for comparison. The polymerization characteristics and the structure of the copolymer were systematically studied by Fourier-transform infrared, meanwhile, their electrochromic properties and electrochemical behaviors were tested by UV-vis spectra, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). It was found that the strong covalent bond and large conjugated system between PANI and ferrocene enhance the electron transfer rate and electron delocalization in the ferrocene-polyaniline (Fc-PANI) hybrid. In particular, the electrochromic device with Fc-PANI as the active layer shows significant enhancement in optical contrast over the PANI-based device.

  9. Electrical and optical studies in polyaniline nanofibre–SnO 2 ...

    Indian Academy of Sciences (India)

    Polyaniline nanofibre–tin oxide (PAni-SnO2) nanocomposites are synthesized and mixed with polyvinyl alcohol (PVA) as stabilizer to cast free-standing films. Composite films are characterized by X-ray diffraction studies (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ...

  10. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Romanova, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 972-978 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * morphology * photovoltaic s Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  11. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction

    International Nuclear Information System (INIS)

    Xu Qin; Zhu Junjie; Hu Xiaoya

    2007-01-01

    Ordered mesoporous polyaniline film has been fabricated by electrodepositing from the hexagonal lyotropic liquid crystalline (LCC). Horseradish peroxidase (HRP), as a symbol biomolecule, was successfully immobilized on the film to construct a new kind of hydrogen peroxide biosensor. The biosensor combined the advantages of the good conductivity of polyaniline and the higher surface area of the ordered mesoporous film. Polyaniline could be served as a wire to relay electron between HRP and the electrode. The high surface area of the film supplied more sites for HRP immobilization, therefore increased the catalytic activity of the biosensor. The ordered mesoporous character of the film increased the rate of mass transport, which resulted in the improvement of sensor response and linearity. The biosensor displayed excellent electrocatalytic response to the detection of H 2 O 2 in a concentration range from 1.0 μM to 2.0 mM with a detection limit of 0.63 μM. Good reproducibility, stability, high precision, wide linearity and low detection limit were assessed for the biosensor

  12. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    Science.gov (United States)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  13. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those ...

  14. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electro- chemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about. 75% lighter than ...

  15. Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Bach, Anders

    2006-01-01

    of the polymer, a level necessary to obtain high enough proton conductivity for fuel cell uses, the polymer membrane exhibits a volume swelling by 118%, resulting in separation of the polymer backbones. The separation in turn reduces the mechanical strength of the membrane especially at high temperatures....... Another consequence is the increased H2 and O2 permeability through the membrane. In the temperature range from 120 to 180 ◦C, the hydrogen permeability was found to be 1.6–4.3×10−17 and 1.2–4.0×10−15 mol cm cm−2 s−1 Pa−1 for pristine and acid doped PBI membranes, respectively, while for oxygen it was 5...

  16. Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Mosnáčková, K.; Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Fedorko, P.; Prokeš, J.

    2010-01-01

    Roč. 160, 7-8 (2010), s. 701-707 ISSN 0379-6779 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * polypyrrole base * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2010

  17. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    Science.gov (United States)

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  18. The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres

    International Nuclear Information System (INIS)

    Shi Jiahua; Wu Qiang; Li Runming; Zhu Yinxu; Qiao Congzhen; Qin Yujun

    2013-01-01

    To explore the dependences of polyaniline (PANI) morphology on the oxidant and the initial pH value (referred to as ‘pH-initial’) of the reaction system, a series of oxidative polymerization experiments on aniline using chloroaurate acid (HAuCl 4 ) as the oxidant are carried out in aqueous solutions with different values of pH-initial. The smooth morphology transition of PANI nanostructures from nanofibers to solid and hollow nanospheres can be controlled by simply changing pH-initial for the reaction solution using HAuCl 4 as the oxidant. In aqueous solutions with different values of pH-initial, the anilinium ions and neutral aniline molecules coexist in different proportions, leading to different PANI nanostructures under different nucleation mechanisms. In strongly acidic media (pH-initial < 2), the homogeneous nucleation of PANI will result in PANI nanofibers. When pH-initial is raised to 2 or above, the heterogeneous nucleation will lead to solid or hollow PANI nanospheres. The solid PANI nanospheres are obtained in mildly acidic media (pH-initial=2–4) and the diameter decreases as the initial pH value of the reaction solution increases from 2 to 4. However, in weakly acidic and neutral media (pH-initial=5–7), hollow PANI nanospheres are formed and the diameter increases with the increase of pH-initial for the solution from 5 to 7. (paper)

  19. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  20. Synthesis and Characterization of Self-assembled polyaniline nanotubes/silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Ciric-Marjanovic, G.; Dragičevic, L.; Milojevic, M.; Mojovic, M.; Mentus, S.; Dojčinovic, B.; Marjanovic, B.; Stejskal, Jaroslav

    2009-01-01

    Roč. 113, č. 20 (2009), s. 7116-7127 ISSN 1520-6106 R&D Projects: GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.471, year: 2009

  1. Electrochromic properties of polyaniline-coated fiber webs for tissue engineering applications.

    Science.gov (United States)

    Beregoi, Mihaela; Busuioc, Cristina; Evanghelidis, Alexandru; Matei, Elena; Iordache, Florin; Radu, Mihaela; Dinischiotu, Anca; Enculescu, Ionut

    2016-08-30

    By combining the electrospinning method advantages (high surface-to-volume ratio, controlled morphology, varied composition and flexibility for the resulting structures) with the electrical activity of polyaniline, a new core-shell-type material with potential applications in the field of artificial muscles was synthesized. Thus, a poly(methylmethacrylate) solution was electrospun in optimized conditions to obtain randomly oriented polymer fiber webs. Further, a gold layer was sputtered on their surface in order to make them conductive and improve the mechanical properties. The metalized fiber webs were then covered with a PANI layer by in situ electrochemical polymerization starting from aniline and using sulphuric acid as oxidizing agent. By applying a small voltage on PANI-coated fiber webs in the presence of an electrolyte, the oxidation state of PANI changes, which is followed by the device color modification. The morphological, electrical and biological properties of the resulting multilayered material were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis and characterization of intercalated polyaniline-clay nanocomposite using supercritical CO2

    Science.gov (United States)

    Abdelraheem, A.; El-Shazly, A. H.; Elkady, M. F.

    2018-05-01

    Lately, supercritical CO2 (SCCO2) have been getting great interest. It can be used in numerous applications because it is environmentally friendly, safe, comparatively low cost, and nonflammable. One of its applications is being a solvent in the synthesis of polymeric-clay nanocomposite. In this paper, intercalated polyaniline-clay nanocomposite (PANC) was prepared using SCCO2. The intercalation structure of polyaniline chains between clay layers was verified by various characterization techniques. Scanning electron microscope and transmission electron microscope (SEM-TEM) were used to show the morphology of the synthesized nanocomposite. The molecular structure of PANC nanocomposite was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The BET surface area and the conductivity of the nanocomposite were determined.

  3. PEM steam electrolysis at 130 °C using a phosphoric acid doped short side chain PFSA membrane

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar; Aili, David; Christensen, Erik

    2012-01-01

    Steam electrolysis test with a phosphoric acid doped Aquivion™ membrane was successfully conducted and current densities up to 775 mA cm-2 at 1.8 V was reached at 130 ºC and ambient pressure. A new composite membrane system using a perfluorosulfonic acid membrane (Aquivion™) as matrix and phospho...... implied that a new and highly corrosion resistant construction material was needed. Tantalum coated stainless steel felt was tested and found suitable as the anode gas diffusion layer. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  4. Construction of highly ordered polyaniline nanowires and their applications in DNA sensing.

    Science.gov (United States)

    Hao, Yuanqiang; Zhou, Binbin; Wang, Fangbin; Li, Juan; Deng, Liu; Liu, You-Nian

    2014-02-15

    A novel electrochemical active polyaniline (PANI) nanowire was fabricated and utilized for the construction of a highly sensitive and selective electrochemical sensor for hepatitis B virus gene. The uniform PANI nanowire was prepared by the enzymatic polymerization of aniline monomers on the amyloid-like nanofiber (AP nanowire), which was self-assembled from an aniline-attached nonapeptide, aniline-GGAAKLVFF (AP). The prepared PANI nanowires were characterized by electron microscopy, UV-vis absorption spectra, and cyclic voltammetry (CV). These ultra-thin nanowires displayed high electrochemical activity. Then the nucleic acid biosensor was constructed by modifying a glass carbon electrode with AP nanowires which were functionalized by a designed hair-pin loop DNA. Upon the presence of target nucleic acid and horseradish peroxidase (HRP) labeled oligonucleotide, the HRP will catalyze the polymerization of aniline monomers conjugated in AP nanowires, leading to the formation of PANI nanowires which can bring about a dramatical increase in the current response of the biosensor. The dynamic range of the sensor for hepatitis B virus gene is 2.0-800.0 fM with a low detection limit of 1.0 fM (3σ, n=10). The biosensor also displayed highly selectivity and stability. All these excellent performances of the developed biosensor indicate that this platform can be easily extended to the detection of other nucleic acids. © 2013 Elsevier B.V. All rights reserved.

  5. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application

    International Nuclear Information System (INIS)

    Mujawar, Sarfraj H.; Ambade, Swapnil B.; Battumur, T.; Ambade, Rohan B.; Lee, Soo-Hyoung

    2011-01-01

    Highlights: → Polyaniline (PANI)-Titanium nanotube template (TNT) composite for supercapacitors. → The mechanism of the controlled growth of hollow open ended PANI nanotubes using a TNT template is studied. → A rare effort to electropolymerise PANI on TNTs resulting into an appreciable capacitance of 740 F g -1 . - Abstract: Vertically aligned polyaniline (PANI) nanotubes have great potential application in supercapacitor electrode material. In this paper we have investigated facile growth of PANI nanotubes on a titanium nanotube template (TNT) using electrochemical polymerization. The morphology of PANI nanostructures grown over TNT is strongly influenced by the scan rate in the electrochemical polymerization. The growth morphology of PANI nanotubes has been carefully analyzed by field emission scanning electron microscopy. The detailed growth mechanism of PANI nanotubes has been put forward. Specific capacitance value of 740 F g -1 was obtained for PANI nanotube structures (measured at charge-discharge rate of 3 A g -1 ).

  6. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    Science.gov (United States)

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The fabrication and characterization of inkjet-printed polyaniline nanoparticle films

    International Nuclear Information System (INIS)

    Morrin, Aoife; Ngamna, Orawan; O'Malley, Eimer; Kent, Nigel; Moulton, Simon E.; Wallace, Gordon G.; Smyth, Malcolm R.; Killard, Anthony J.

    2008-01-01

    This paper reports on the fabrication and characterization of electrodes modified with conducting polymer nanoparticle films, produced via inkjet printing. The polyaniline nanoparticle formulations were deposited via a desktop inkjet printer onto screen-printed carbon-paste electrodes (SPE), polyethylene terephthalate (PET) and gold-PET and their morphology studied at a range of length scales using profilometry, scanning electron microscopy and atomic force microscopy. The deposited films were found to form continuous polymer films depending upon film thickness, which was in turn dependent on the number of prints performed. The inkjet-printed films exhibited a smooth morphology on the SPEs at the micro-dimensional scale, as a result of the aggradation and coalescing of the nanoparticles upon deposition. The resulting modified electrodes were both conductive and electroactive, possessing good reversible polyaniline electrochemistry. Such a combination of materials and processing offers the potential of producing a range of low cost, solid state devices such as sensors, actuators and electrochromic devices

  8. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.

    Science.gov (United States)

    Yan, Xingbin; Chen, Jiangtao; Yang, Jie; Xue, Qunji; Miele, Philippe

    2010-09-01

    In this work, we report a low-cost technique via simple rapid-mixture polymerization of aniline using graphene oxide (GO) and graphene papers as substrates, respectively, to fabricate free-standing, flexible GO-polyaniline (PANI) and graphene-PANI hybrid papers. The morphology and microstructure of the obtained papers were characterized by FESEM, FTIR, Raman, and XRD. As results, nanostructural PANI can be deposited on the surfaces of GO and graphene papers, forming thin, lightweight, and flexible paperlike hybrid papers. The hybrid papers display a remarkable combination of excellent electrochemical performances and biocompatibility, making the paperlike materials attractive for new kinds of applications in biosciences.

  9. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wei Di; Andrew, Piers; Ryhaenen, Tapani [Nokia Research Centre Cambridge, Broers Building, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Wang, Haolan; Hiralal, Pritesh; Amaratunga, Gehan A J [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Hayashi, Yasuhiko, E-mail: di.wei@nokia.com, E-mail: gaja1@cam.ac.uk [Department of Materials Science, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2010-10-29

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  10. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors

    Science.gov (United States)

    Wei, Di; Wang, Haolan; Hiralal, Pritesh; Andrew, Piers; Ryhänen, Tapani; Hayashi, Yasuhiko; Amaratunga, Gehan A. J.

    2010-10-01

    Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

  11. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    International Nuclear Information System (INIS)

    Pršić, S.; Savić, S.M.; Branković, Z.; Vrtnik, S.; Dapčević, A.; Branković, G.

    2015-01-01

    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo 2−x Cu x O 4 (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo 2−x Cu x O 4 (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo 2 O 4 and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu 2+ substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by the CAC method, and it was almost twice

  12. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pršić, S., E-mail: sanjaprsic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Savić, S.M., E-mail: slavicas@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Branković, Z., E-mail: zorica.brankovic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Vrtnik, S., E-mail: stane.vrtnik@ijs.si [Institute Jožef Stefan, Condensed Matter Physics, Jamova cesta 39, 1000 Ljubljana (Slovenia); Dapčević, A., E-mail: hadzi-tonic@tmf.bg.ac.rs [Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Branković, G., E-mail: goran.brankovic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia)

    2015-08-15

    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo{sub 2}O{sub 4} and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu{sup 2+} substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by

  13. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers

    CSIR Research Space (South Africa)

    Bhaumik, M

    2012-02-01

    Full Text Available Polypyrrole-polyaniline (PPy-PANI) nanofibers as adsorbent of Cr(VI) were prepared without template via coupling of propagating PPy+ and PANI+ free radicals by simultaneous polymerization of Py and ANI monomers in presence of FeCl3 oxidant...

  14. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    Science.gov (United States)

    An extremely simple single-step method is described for the bulk synthesis of nanofibers of the electronic polymer polyaniline in fully reduced state (leucoemarldine form) without using any reducing agents, surfactants, and/or large amounts of insoluble templates. Chemical oxida...

  15. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, V.; Humpolíček, P.; Capáková, Z.; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, P.; Junkar, I.; Lehocký, M.; Mozetič, M.

    2017-01-01

    Roč. 157, 1 September (2017), s. 309-316 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61389013 Keywords : polyaniline * conducting films * colloidal dispersions Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.887, year: 2016

  16. Effect of sorbic acid doping on flux pinning in bulk MgB{sub 2} with the percolation model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Key Laboratory of Magnetic Levitation and Maglev Train (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Wang, L.; Sun, H.H. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Key Laboratory of Magnetic Levitation and Maglev Train (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Key Laboratory of Magnetic Levitation and Maglev Train (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2010-11-01

    In this paper, we study the doping effect of sorbic acid (C{sub 6}H{sub 8}O{sub 2}), from 0 to 20 wt.% of the total MgB{sub 2}, on critical temperature (T{sub c}), critical current density (J{sub c}), irreversibility field (H{sub irr}) and crystalline structure. The XRD patterns of samples show a slightly decrease in a-axis lattice parameter for doped samples, due to the partial substitution of carbon at boron site. On the other hand, we investigate the influence of doping on the behavior of flux pinning and J{sub c}(B) in the framework of percolation theory and it is found that the J{sub c}(B) behavior could be well fitted in high field region. The two key parameters, anisotropy and percolation threshold, play very important roles. It is believed that the enhancement of J{sub c} is due to the reduction of anisotropy in high field region.

  17. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  18. Phase transitions of polyaniline induced by electrochemical treatment

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Konefal, Magdalena; Kohut, Olena; Ivanko, Iryna; Hromádková, Jiřina; Zhigunov, Alexander; Steinhart, Miloš

    2018-01-01

    Roč. 219, č. 7 (2018), s. 1-5, č. článku 1700627. ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA15-14791S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : pseudocapacitors * polyaniline * high charge-discharge rate Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.500, year: 2016

  19. In-situ prepared polyaniline-silver composites: single- and two-step strategies

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.

    2014-01-01

    Roč. 122, 10 March (2014), s. 259-266 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : composites * conducting polymer * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.504, year: 2014

  20. Structural and conductivity changes during the pyrolysis of polyaniline base

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Matějka, P.; Brodinová, J.; Kalendová, A.; Prokeš, J.; Stejskal, Jaroslav

    2006-01-01

    Roč. 91, č. 1 (2006), s. 114-121 ISSN 0141-3910 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.174, year: 2006