WorldWideScience

Sample records for acid deposition forest

  1. Simulated dry deposition of nitric acid near forest edges

    NARCIS (Netherlands)

    DeJong, JJM; Klaassen, W; Jong, J.J.M. de

    1997-01-01

    Dry deposition is simulated to understand and generalize observations of enhanced deposition of air pollution near forest edges. Nitric acid is taken as an example as its deposition velocity is often assumed to be determined by turbulent transport only. The simulations are based on the

  2. Acid deposition and water use efficiency in Appalachian forests

    Science.gov (United States)

    Malcomb, J.

    2017-12-01

    Multiple studies have reported increases in forest water use efficiency in recent decades, but the drivers of these trends remain uncertain. While acid deposition has profoundly altered the biogeochemistry of Appalachian forests in the past century, its impacts on forest water use efficiency have been largely overlooked. Plant ecophysiology literature suggests that plants up-regulate transpiration in response to soil nutrient limitation in order to maintain sufficient mass flow of nutrients. To test the impacts of acid deposition on forest eco-hydrology in central Appalachia, we integrated dendrochronological techniques, including tree ring δ13C analysis, with catchment water balance data from the Fernow Experimental Forest in West Virginia. Tree cores from four species were collected in Fernow Watershed 3, which has received experimental ammonium sulfate additions since 1989, and Watershed 7, an adjacent control catchment. Initial results suggest that acidification treatments have not significantly influenced tree productivity compared to a control watershed, but the effect varies by species, with tulip poplar showing greatest sensitivity to acidification. Climatic water balance, defined as the difference between growing season precipitation and evapotranspiration, is significantly related to annual tree ring growth, suggesting that climate may be driving tree growth trends in chronically acidified Appalachian forests. Tree ring 13C analysis from Fernow cores is underway and these data will be integrated with catchment hydrology data from five other sites in central Appalachia and the U.S. Northeast, representing a range of forest types, soil base saturations, and acid deposition histories. This work will advance understanding of how climate and acid deposition interact to influence forest productivity and water use efficiency, and improve our ability to model carbon and water cycling in forested ecosystems impacted by acid deposition.

  3. Acid atmospheric deposition in a forested mountain catchment

    Czech Academy of Sciences Publication Activity Database

    Křeček, J.; Palán, L.; Stuchlík, Evžen

    2017-01-01

    Roč. 10, č. 4 (2017), s. 680-686 ISSN 1971-7458 Institutional support: RVO:60077344 Keywords : mountain water shed * spruce forests * acid atmospheric deposition * water resources recharge Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.623, year: 2016

  4. Effects of acid deposition on Dutch forest ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Leeters, E.E.J.M.; Hendriks, C.M.A.

    1995-01-01

    Effects of elevated sulphur and nitrogen deposition on the solution chemistry of Dutch forest soils are mainly manifested by increased aluminium concentrations, associated with increased concentrations of sulphate and nitrate. Critical aluminium/base cation ratios are often exceeded below 20 cm soil

  5. Effects of acidic deposition on forest and aquatic ecosystems in New York State

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Mitchell, Myron J.; Raynal, Dudley J

    2003-06-01

    Elevated inputs of acidic deposition have deleterious effects on forest and aquatic ecosystems in New York. - Acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from atmospheric emissions of sulfur dioxide, nitrogen oxides, and ammonia, respectively. Acidic deposition has altered soil through depletion of labile pools of nutrient cations (i.e. calcium, magnesium), accumulation of sulfur and nitrogen, and the mobilization of elevated concentrations of inorganic monomeric aluminum to soil solutions in acid-sensitive areas. Acidic deposition leaches essential calcium from needles of red spruce, making this species more susceptible to freezing injury. Mortality among sugar maples appears to result from deficiencies of nutrient cations, coupled with other stresses such as insect defoliation or drought. Acidic deposition has impaired surface water quality in the Adirondack and Catskill regions of New York by lowering pH levels, decreasing acid-neutralizing capacity, and increasing aluminum concentrations. Acidification has reduced the diversity and abundance of aquatic species in lakes and streams. There are also linkages between acidic deposition and fish mercury contamination and eutrophication of estuaries.

  6. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  7. The response of soil solution chemistry in European forests to decreasing acid deposition.

    Science.gov (United States)

    Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu

    2018-03-31

    Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+  + Mg 2+  + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons

  8. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S

    Science.gov (United States)

    Gregory B. Lawrence; Paul W. Hazlett; Ivan J. Fernandez; Rock Ouimet; Scott W. Bailey; Walter C. Shortle; Kevin T. Smith; Michael R. Antidormi

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been...

  9. Acidic deposition and its effects on forest productivity: a review of the present state of knowledge, research activities, and information needs

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, J.E.

    1981-01-01

    The present state of knowledge with regard to acid deposition is reviewed. Sources include the literature and direct contact with persons responsible for carrying out all completed, ongoing, and planned research activities, national and international, related to acidic deposition and its effects, with emphasis on forest productivity. In addition, a list of information needs in seven areas was developed, these include: a characterization of forest soils to define their sensitivity to acidic deposition; effects on forest soil chemical and biological processes; development of improved dry deposition measurement methods; changes in precipitation composition due to forest canopies; more extensive monitoring of acidic deposition in industry owned forest lands; expansion of long-term greenhouse and controlled field experiments; and the relationship of acidic deposition and intensive forestry management practices. 85 references. (MDF)

  10. The impact of acid deposition and forest harvesting on lakes and their forested catchments in south central Ontario: a critical loads approach

    Directory of Open Access Journals (Sweden)

    S. A. Watmough

    2002-01-01

    Full Text Available The impact of acid deposition and tree harvesting on three lakes and their representative sub-catchments in the Muskoka-Haliburton region of south-central Ontario was assessed using a critical loads approach. As nitrogen dynamics in forest soils are complex and poorly understood, for simplicity and to allow comparison among lakes and their catchments, CLs (A for both lakes and forest soils were calculated assuming that nitrate leaching from catchments will not change over time (i.e. a best case scenario. In addition, because soils in the region are shallow, base cation weathering rates for the representative sub-catchments were calculated for the entire soil profile and these estimates were also used to calculate critical loads for the lakes. These results were compared with critical loads obtained by the Steady State Water Chemistry (SSWC model. Using the SSWC model, critical loads for lakes were between 7 and 19 meq m-2yr-1 higher than those obtained from soil measurements. Lakes and forests are much more sensitive to acid deposition if forests are harvested, but two acid-sensitive lakes had much lower critical loads than their respective forested sub-catchments implying that acceptable acid deposition levels should be dictated by the most acid-sensitive lakes in the region. Under conditions that assume harvesting, the CL (A is exceeded at two of the three lakes and five of the six sub-catchments assessed in this study. However, sulphate export from catchments greatly exceeds input in bulk deposition and, to prevent lakes from falling below the critical chemical limit, sulphate inputs to lakes must be reduced by between 37% and 92% if forests are harvested. Similarly, sulphate leaching from forested catchments that are harvested must be reduced by between 16 and 79% to prevent the ANC of water draining the rooting zone from falling below 0 μeq l-1. These calculations assume that extremely low calcium leaching losses (9–27 μeq l-1 from

  11. Effect of acid deposition on Nanshan forest at Chongging in China

    International Nuclear Information System (INIS)

    Xu Xiaolei; Ogura, Norio

    1992-01-01

    Chongqing is the city where atmospheric pollution is severest in China, and the pH of rainwater has been measured every year since 1981, which is close to 4.0 now. In 1982, the decline of Pinus massoniana in Nanshan district in southeast Chongqing has occurred. The decline phenomena of this forest attracted attention also in foreign countries, and the various studies on its causes have been carried out, consequently, the main cause was presumed to be the compound effect of acid rain, acid mist and the damage by insects. It was clarified by the recent research that the dry and wet acid fallouts mainly composed of SO 2 are one of the important causes that brought about the decline of Pinus massoniana in Nanshan. The forest area in Nanshan is about 2000 ha, and almost the simple forest of Pinus massoniana that distributes at the elevation from 400 to 1400 m. The withering of a small number began to occur in 1982, but thereafter, the area of withering increased rapidly, and reached 41.8% of the total forest area in July, 1983. The decline still continues now. The direct effect of acid fallout to Nanshan forest and the indirect effect through soil are reported in this paper. (K.I.)

  12. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  13. High frequency and large deposition of acid fog on high elevation forest.

    Science.gov (United States)

    Igawa, Manabu; Matsumura, Ko; Okochi, Hiroshi

    2002-01-01

    We have collected and analyzed fogwater on the mountainside of Mt. Oyama (1252 m) in the Tanzawa Mountains of Japan and observed the fog event frequency from the base of the mountain with a video camera. The fog event frequency increased with elevation and was observed to be present 46% of the year at the summit. The water deposition via throughfall increased with elevation because of the increase in fogwater interception and was about twice that via rain at the summit, where the air pollutant deposition via throughfall was several times that via rainwater. The dry deposition and the deposition via fogwater were dominant factors in the total ion deposition at high elevation sites. In a fog event, nitric acid, the major acid component on the mountain, is formed during the transport of the air mass from the base of the mountain along the mountainside, where gases including nitric acid deposit and are scavenged by fogwater. Therefore, high acidity caused by nitric acid and relatively low ion strength are observed in the fogwater at high elevation sites.

  14. Dendrochemical evidence for soil recovery from acidic deposition in forests of the northeastern U.S. with comparisons to the southeastern U.S. and Russia

    Science.gov (United States)

    Walter C. Shortle; Kevin T. Smith; Andrei G. Lapenis

    2017-01-01

    A soil resampling approach has detected an early stage of recovery in the cation chemistry of spruce forest soil due to reductions in acid deposition. That approach is limited by the lack of soil data and archived soil samples prior to major increases in acid deposition during the latter half of the 20th century. An alternative approach is the dendrochemical analysis...

  15. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    Science.gov (United States)

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  16. The response of soil solution chemistry in European forests to decreasing acid deposition

    DEFF Research Database (Denmark)

    Johnson, James; Pannatier, Elisabeth Graf; Carnicelli, Stefano

    2018-01-01

    to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots...... with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000...... over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base...

  17. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  18. An Evaluation of the Role of Ozone, Acid Deposition, and other Airborne Pollutants in the Forests of Eastern North America

    Science.gov (United States)

    J.H.B. Garner; Terry Pagano; Ellis B. Cowling

    1989-01-01

    Existing knowledge on air pollutants that occur in the forests of eastern North America is summarized and interpreted.Resolution is sought to the conflict between the prevailing scientific judgment that ozone and other oxidants are most likely to be damaging eastern forests and the prevailing public perception that acidic and acidifying substances are the most likely...

  19. Influence of acidic atmospheric deposition on soil solution composition in the Daniel Boone National Forest, Kentucky, USA

    Science.gov (United States)

    C.D. Barton; A.D. Karathanasis; G. Chalfant

    2002-01-01

    Acid atmosperic depositoin may enter an environmental ecosystem in a variety of forms and pathways, but the most common components include sulfuric and nitric acids formed when rainwater interacts with sulfur (SO3) and nitrogen (NO3) emmissions. For many soils and watersheds sensitive to acid deposition, the predominant...

  20. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient

    International Nuclear Information System (INIS)

    Burton, A.J.; Pregitzer, K.S.; Reed, D.D.

    1991-01-01

    The canopies of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) were examined at five locations spanning 800 km along an acid deposition and climatic gradient in the Great Lakes region. Leaf area index (LAI) calculated from litterfall ranged from 6.0 to 8.0 in 1988, from 4.9 to 7.9 in 1989, and from 5.3 to 7.8 in 1990. The data suggest that maximum LAI for the sites is between 7 and 8. Insect defoliation and the allocation of assimilates to reproductive parts in large seed years reduced LAI by up to 34%. Allometric equations for leaf area and foliar biomass were not significantly different among sites. They predicted higher LAI values than were estimated from litterfall and could not account for the influences of defoliation and seed production. Canopy transmittance was a viable alternative for estimating LAI. Extinction coefficients (K) of 0.49 to 0.65 were appropriate for solar elevations of 63 degree to 41 degree. Patterns of specific leaf area (SLA) were similar for the sites. Average sugar maple SLA increased from 147 cm 2 g -1 in the upper 5 m of the canopy to 389 cm 2 g -1 in the seeding layer. Litterfall SLA averaged 196 cm 2 g -1 for all species and 192 cm 2 g -1 for sugar maple. Similarity among the sites in allometric relationships, maximum LAI, canopy transmittance, and patterns of SLA suggests these characteristics were controlled primarily by the similar nutrient and moisture availability at the sites. A general increasing trend in litter production along the gradient could not be attributed to N deposition or length of growing season due to year to year variability resulting from insect defoliation and seed production

  1. Urban acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, D.E.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E.

    1991-07-01

    In this document results from the Greater Manchester Acid Deposition Survey (GMADS), an urban precipitation chemistry network, for 1990 are presented. Full analytical methods are described along with the precision and accuracy of the methods used. The spatial variability of precipitation chemistry and deposition over this urban region was investigated using a network of twenty collectors. Concentrations of non marine sulphate, ammonium, calcium and hydrogen, and nitrogen dioxide gas concentrations all show significant spatial variability. The spatial variability of the deposition rates of non marine sulphate, nitrate, ammonium, hydrogen and calcium were significant. (Author).

  2. Acid deposition. Origins, impacts and abatement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (Manchester Polytechnic, Acid Rain Information Centre (United Kingdom). Dept. of Environmental and Geographical Studies) (ed.)

    1991-01-01

    The subject of acid deposition is one of the most important of our contemporary environmental problems. Presenting and discussing new data on the sources and effects of such deposition, this book seeks to assist in the definition of our future research requirements and policy developments. It is divided into four broad themes: Emissions, Chemistry and Deposition, Ecosystem Effects (freshwater, soils and forest systems), Effects on Structural Materials, and Mitigation, Control and Management. (orig.) With 130 figs.

  3. Certified reference materials - beech leaves and spruce needles - for the quality control in monitoring damage in forests by acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maier, E A; Griepink, B [Commission of the European Communities, Brussels (Belgium). Community Bureau of Reference; Muntau, H [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    1989-12-01

    The chemical determination of various elements in leaves or needles allows to establish the damage caused by acid deposition. To control the quality of such determinations the Community Bureau of Reference (BCR) produced two Certified Reference Materials: Beech leaves (CRM No. 100) and Spruce needles (CRM No. 101). After a careful preparation procedure, a homogeneity study and a long term stability study, the materials were certified for: Cl, N, P and S in CRM No. 100, Al, Ca, Cl, Mg, Mn, N, P, S and Zn in CRM No. 101. Indicative values on the content of 19 majors and trace elements are also reported. (orig.).

  4. Acid deposition in the northern hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Green, S.E.; Lee, D.S.

    1987-02-01

    Examines the phenomenon of acid deposition: the distribution and magnitude of sources and its actual and potential direct and indirect effects on soils, forests and other vegetation; wildlife, freshwaters, materials and health. The wide range of technological and other controls that are available to reduce the emissions of pollutants contributing to the phenomenon is also examined and includes pre-combustion control of pollutants, removal during combustion and post-combustion control. Also considered are political responses to acidification, acid deposition monitoring in the United Kingdom and the treatment of acidified areas.

  5. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    Science.gov (United States)

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  6. Acid deposition: sources, effects and controls

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (ed.)

    1989-01-01

    The purpose of this collection of 19 papers is to review our understanding of the cause and effect of acid deposition, to present new data that assist in the provision of a fuller understanding of cause, process and implication and thus to assist in defining the research agenda of the future. The materials presented are European in perspective, drawn from the Federal Republic of Germany, Hungary, Norway, Sweden and the United Kingdom. The current position as regards deposition monitoring, ecological effects and control technologies is presented in five sections: acid deposition monitoring, freshwater acidification, soils and forest systems, structural materials and control technologies. Each section is introduced by an overview paper outlining the contemporary understanding and identifying areas requiring future work. Specialist papers presenting new data or re-interpretations of existing information comprise the remainder of each section. Four of the papers have been abstracted separately.

  7. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    Science.gov (United States)

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs. © 2014 John Wiley & Sons Ltd.

  8. Acid or N? Disentangling Nutrient- and pH Effects of Nitrogen and Sulfur Deposition to Forest Ecosystems

    Science.gov (United States)

    Goodale, C. L.

    2016-12-01

    Nitrogen deposition can act as both a nutrient and acidifying agent with sometimes synergistic and sometimes contradictory effects on ecosystem processes. However, these two roles are rarely separated. Similarly, deposition patterns of N and S often covary, making it difficult to correctly attribute their respective roles on the biogeochemistry of downwind ecosystems. In 2011, we initiated a N x pH (S) experiment in six mixed hardwood stands (3 primary, 3 secondary) in Central New York designed to separate nutrient and acidifying impacts of N and S deposition. Three treatments included two 50 N ha-1 yr-1 additions in forms intended to raise (NaNO3) or lower ((NH4)2SO4) soil pH as well as elemental S treatment to acidify without N. Five years of treatment shifted surface soil pH in the expected directions. Treatment effects on soil extract DOC correlated with pH, with lower DOC concentration and aromaticity in the acidifying treatments. Foliar litterfall did not vary by stand age or treatment, but N and S treatments enriched litterfall N and S concentrations, respectively. Wood production did not vary significantly by stand age or treatment but trended toward an increase in response to the N additions in both stand ages. The treatments did not affect early stages of litter decomposition, but both N additions and acidification suppressed decomposition in later stages, with largest effects from acidification alone. Soil respiration responses followed those of litter decomposition, except that the response of respiration to the NaNO3 addition depended on the stand's mycorrhizal composition, with greater suppression in stands with a higher fraction of ectomycorrhizal tree species. Together, these results show that both N addition and acidification can suppress decomposition rates, but likely for different reasons that may be linked to plant carbon allocation (for N) and microbial function (pH). Distinguishing these mechanisms will be important for projecting recovery of

  9. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H. [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1995-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  10. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1996-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  11. Geological aspects of acid deposition

    International Nuclear Information System (INIS)

    Bricker, O.P.

    1984-01-01

    The general pattern of rain falling on the earth and reacting with the materials of the lithosphere (the weathering reactions so familiar to every beginning geology student) began soon after the earth was formed and has continued to the present. Anthropogenic additions to the natural acidic components of the atmosphere have increased since the time of the industrial revolution until they now rival or exceed those of the natural system. The severity of the environmental perturbations caused by these anthropogenic additions to the atmosphere has become a hotly debated topic in scientific forums and in the political arena. The six chapters in this book address various aspects of the acid deposition phenomenon from a geological perspective. It is hoped that the geological approach will be useful in bringing the problem more clearly into focus and may shed light on the geochemical processes that modify the chemical composition of acid deposition after it encounters and reacts with the materials of the lithosphere

  12. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    Science.gov (United States)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  13. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications?

    Science.gov (United States)

    Herman Sievering; Ivan Fernandez; John Lee; John Hom; Lindsey Rustad

    2000-01-01

    Dry deposition determinations, along with wet deposition and throughfall (TF) measurements, at a spruce fir forest in central Maine were used to estimate the effect of atmospherically deposited nitrogen (N) uptake on forest carbon storage. Using nitric acid and particulate N as well as TF ammonium and nitrate data, the growing season (May-October) net canopy uptake of...

  14. Aquatic chemistry of acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Stumm, W; Sigg, L; Schnoor, J L

    1987-01-01

    The occurrence of acid precipitation in many regions of the Northern hemisphere is a consequnece of human interference in the cycles that unite land, water and atmosphere. The oxidation of carbon, sulfur and nitrogen, resulting mostly from fossil fuel burning, rivals oxidation processes induced by photosynthesis and respiration and disturbs redox conditions in the atmosphere. The paper discusses oxidation-reduction reactions, particularly those involving atmospheric pollutants that are important in the formation of acid precipitation. Topics covered are: a stoichiometric model of acid rain formation; sulfur dioxide and ammonia adsorption; acid neutralizing capacity. The paper concludes that explanations of simple chemical equilibria between gases and water aid our understanding of how acidifying gases become dissolved in cloud water, in droplets of falling rain, or in fog. Rigorous definitions of base- or acid-neutralizing capacities are prerequisites to measuring and interpreting residual acidity in dry and wet deposition and for assessing the disturbance caused by the transfer of acid to terrestrial and aquatic ecosystems. 20 references.

  15. Acidic deposition and global climate change

    International Nuclear Information System (INIS)

    Nikolaidis, N.P.; Ecsedy, C.; Olem, H.; Nikolaidis, V.S.

    1990-01-01

    A literature is presented which examines the research published on understanding ecosystem acidification and the effects of acidic deposition on freshwaters. Topics of discussion include the following: acidic deposition; regional assessments; atmospheric deposition and transport; aquatic effects; mathematical modeling; liming acidic waters; global climate change; atmospheric changes; climate feedbacks; and aquatic effects

  16. Does nitrogen and sulfur deposition affect forest productivity?

    Science.gov (United States)

    Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks

    2010-01-01

    We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...

  17. Nitrogen dynamics in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1995-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oakdominated, unmanaged forest stands in seven experimental forests ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia, U.S.A. Among these seven sites (that spanned 8.5º of longitude) soil pH and Ca...

  18. Acid precipitation and forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, C O; Cowling, E B

    1977-04-01

    Effects of acidic precipitation on forest vegetation may be classified as being either direct or indirect. Among the most important direct effects are damage to protective cuticular layers, interference with normal functioning of guard cells, poisoning of plant cells after diffusion of acidic substances through stomata or cuticle and interference with reproductive processes. Indirect effects include accelerated leaching of substances from foliar organs, increased susceptibility to drought and other environmental stress factors, and alteration of symbiotic associations and host-parasite interactions. The potential importance of nutrient uptake through foliage and the need to understand atmosphere-plant-soil interactions are stressed.

  19. Relative nitrogen mineralization and nitrification potentials in relation to soil chemistry in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1996-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oak-dominated, unmanaged forest stands in seven USDA Forest Service experimental forests (EF) ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia.

  20. Atmospheric mercury deposition to forests in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  1. Acid Deposition Maps in Spain

    International Nuclear Information System (INIS)

    Artinano, B.; Cabal, H.; Garcia, C.

    1998-01-01

    Animal and monthly deposition velocity and total sulfur deposition maps have been performed for the peninsular Spain for 1992 by using the inferential method. To do this, updated databases with high space and time resolution, for land uses (CORINE) and meteorological information from analysis modelling for the same year, have been utilized. The final result are deposition maps in a 5x5 Km 2 grid which allow to assess the methodology used in Europe to obtain the maps of excedances over the critical loads of pollutants. (Author) 32 refs

  2. Urban acid deposition in Greater Manchester

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E. (Manchester Polytechnic, Manchester (UK). Acid Rain Information Centre)

    1989-08-01

    Data are presented from a monitoring network of 18 bulk precipitation collectors and one wet-only collector in the urban area of Greater Manchester, in the north west of England. Weekly samples were analysed for all the major ions in precipitation along with gaseous nitrogen dioxide concentrations from diffusion tubes. Statistical analysis of the data shows significant spatial variation of non marine sulphate, nitrate, ammonium, acidity and calcium concentrations, and nitrogen dioxide concentrations. Calcium is thought to be responsible for the buffering of acidity and is of local origin. Wet deposition is the likely removal process for calcium in the atmosphere and probably by below cloud scavenging. Nitrate and ammonium concentrations and depositions show close spatial, temporal and statistical association. Examination of high simultaneous episodes of nitrate and ammonium deposition shows that these depositions cannot be explained in terms of trajectories and it is suggested that UK emissions of ammonia may be important. Statistical analysis of the relationships between nitrate and ammonium depositions, concentrations and precipitation amount suggest that ammonia from mesoscale sources reacts reversibly with nitric acid aerosol and is removed by below cloud scavenging. High episodes of the deposition of non marine sulphate are difficult to explain by trajectory analysis alone, perhaps suggesting local sources. In a comparison between wet deposition and bulk deposition, it was shown that only 15.2% of the non marine sulphur was dry deposited to the bulk precipitation collector. 63 refs., 86 figs., 31 tabs.

  3. Effects of climate, land management, and sulfur deposition on soil base cation supply in national forests of the southern Appalachian mountains

    Science.gov (United States)

    T.C. McDonnell; T.J. Sullivan; B.J. Cosby; W.A. Jackson; K.J. Elliott

    2013-01-01

    Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees...

  4. Chemical vapor deposition of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Zhong, G.; Esconjauregui, S.; Zhang, C.; Fouquet, M.; Hofmann, S. [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2012-12-15

    We review the growth mechanisms of vertically aligned carbon nanotube forests, in terms of what controls the growth rate and control of the catalyst lifetime. We also review the production of very high-density forests, in terms of increasing the catalyst particle density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Chemical vapor deposition of carbon nanotube forests

    International Nuclear Information System (INIS)

    Robertson, J.; Zhong, G.; Esconjauregui, S.; Zhang, C.; Fouquet, M.; Hofmann, S.

    2012-01-01

    We review the growth mechanisms of vertically aligned carbon nanotube forests, in terms of what controls the growth rate and control of the catalyst lifetime. We also review the production of very high-density forests, in terms of increasing the catalyst particle density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...... as N export in soil water in tropical forests. Total annual atmospheric deposition of N to the forest in the study period was 51 kg N ha-1yr-1. Nitrogen deposition was dominated by NH4-N due to intensive agricultural NH3 emissions in nearby areas. Nitrate dominated leaching loss from the soil...... after the last addition and by monitoring leaching of 15N in soil water on a monthly basis. The result showed that deposited N is effectively retained in plant and soil pools resembling and exceeding that observed for temperate forests. Furthermore, increased N input decreased the N retention efficiency...

  7. Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation

    International Nuclear Information System (INIS)

    Erisman, Jan Willem; Draaijers, Geert

    2003-01-01

    The influence of forest characteristics on deposition can be modelled reasonably well; forest edge effects and dynamical processes are still uncertain. - Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed

  8. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  9. Measurements of dry-deposition parameters for the California acid-deposition monitoring program. Final report

    International Nuclear Information System (INIS)

    Watson, J.G.; Chow, J.C.; Egami, R.T.; Bowen, J.L.; Frazier, C.A.

    1991-06-01

    The State of California monitors the concentrations of acidic gases and particles at 10 sites throughout the state. Seven sites represent urban areas (South Coast Air Basin - three sites, San Francisco Bay Area, Bakersfield, Santa Barbara, and Sacramento) and three represent forested areas (Sequoia National Park, Yosemite National Park, and Gasquet). Several sites are collocated with monitoring instruments for other air quality and forest response networks. Continuous monitors for the dry deposition network collect hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation. A newly-designed gas/particle sampler collects daytime (6 a.m. to 6 p.m.) and nighttime (6 p.m. to 6 a.m.) samples every sixth day for sulfur dioxide, ammonia, nitrogen dioxide, and nitric acid. Particles are collected on the same day/night schedule in PM(10) and PM(2.5) size ranges, and are analyzed for mass, sulfate, nitrate, chloride, ammonium, sodium, magnesium, potassium, and calcium ions. The sampling schedule follows the regulatory schedule adopted by the EPA and ARB for suspended particulate matter. Wet deposition data are collected at or nearby the dry deposition stations. The first year of the monitoring program included installation of the network, training of technicians, acquisition and validation of data, and transfer of the sampling and analysis technology to Air Resources Board operating divisions. Data have been validated and stored for the period May, 1988 through September, 1989

  10. Reduced European emissions of S and N - Effects on air concentrations, deposition and soil water chemistry in Swedish forests

    Energy Technology Data Exchange (ETDEWEB)

    Pihl Karlsson, Gunilla, E-mail: gunilla.pihl.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Akselsson, Cecilia, E-mail: cecilia.akselsson@nateko.lu.se [Department of Earth and Ecosystem Sciences, Lund University, Soelvegatan 12, SE-223 62 Lund (Sweden); Hellsten, Sofie, E-mail: sofie.hellsten@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden); Karlsson, Per Erik, E-mail: pererik.karlsson@ivl.se [IVL Swedish Environmental Research Institute, Box 5302, SE-400 14 Gothenburg (Sweden)

    2011-12-15

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO{sub 2} and NO{sub 2}, have decreased. The SO{sub 4}-deposition has decreased in parallel with the European emission reductions. Soil water SO{sub 4}-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO{sub 3}-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters. - Highlights: > S deposition to Swedish forests has decreased in parallel with European emissions. > Soil water pH, ANC and inorganic Al-concentrations indicated a slow recovery. > The bulk deposition of inorganic nitrogen over Sweden has not decreased. > Continued N deposition to Swedish forests may cause leaching of N to surface waters. - Reduced European emissions have led to decreased acidic deposition and a slow recovery of soil water but nitrogen deposition remains the same in Swedish forests.

  11. Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China

    Science.gov (United States)

    Jia, Junjie; Gao, Yang

    2017-12-01

    Atmospheric acidic deposition in subtropical watersheds poses an environmental risk of causing acidification of aquatic ecosystems. In this study, we evaluated the frequency of acid deposition in a subtropical forest ecosystem and the associated critical loads of acidity for a sensitive aquatic ecosystem. We found that out of 132 rainfall events, 33(25%) were acidic rainfall occurrences. Estimated wet acid deposition (2282.78 eq·ha-1·yr-1), consistent with SO42- and NH4+ deposition, was high in spring and summer and low in autumn and winter. Waterbodies surrounded by mixed wood and citrus orchard experience severe acidification, mostly from S deposition because acidic deposition exceeds the corresponding critical loads of acidity. Modifications that take acid rain deposition into consideration are needed for land-use and agricultural management strategies to improve the environmental health of waterbodies in subtropical watersheds.

  12. Atmospheric mercury deposition to forests in the eastern USA.

    Science.gov (United States)

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  13. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Science.gov (United States)

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  14. Acidic precipitation and forest vegetation

    Science.gov (United States)

    Carl Olof Tamm; Ellis B. Cowling

    1976-01-01

    Most plants can take up nutrients from the atmosphere as well as from the soil solution. This capacity is especially important in natural ecosystems such as forests and bogs where nutrients from other sources are scarce and where fertilization is not a normal management procedure. Trees develop very large canopies of leaves and branches that extend high into the air....

  15. The deposition of gold nanoparticles in MWCNT forests

    Science.gov (United States)

    de Jong, Franciscus; Buffet, Adeline; Schlueter, Michael

    2015-11-01

    The deposition, i.e. transport and attachment, of small-sized particles is a basic process, on which many applications are based. The innumerable applications range from biology and medicine to engineering. Due to their promising mechanical properties multi-walled carbon nanotubes (MWCNTs) have gained increasing popularity in the past decade. A large number of dense packed vertically aligned MWCNTs form a so-called MWCNT forest. In our study we functionalized the MWCNT forest to filter gold nanoparticles from a colloidal suspension. An experimental investigation was carried out in which the particle deposition kinetics was locally determined with small-angle X-ray scattering (SAXS). Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to verify the local observations. It was concluded that both, SAXS and ICP-AES investigations shows very good agreement. Furthermore, an analytical deposition model was developed based on the DLVO-theory. The experimental and theoretical investigation presented here give insight in the deposition kinetics within a MWCNT forest. The results open up pathways to optimize MWCNT forests for filtering purposes.

  16. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada: BC DEPOSITION FROM FOREST FIRES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. L. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Polashenski, C. M. [USACE-CRREL, Fort Wainwright Alaska USA; Thayer School of Engineering, Dartmouth College, Hanover New Hampshire USA; Soja, A. J. [National Institute of Aerospace, NASA Langley Research Center, Hampton Virginia USA; Marelle, L. [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Casey, K. A. [Thayer School of Engineering, Dartmouth College, Hanover New Hampshire USA; Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Choi, H. D. [National Institute of Aerospace, NASA Langley Research Center, Hampton Virginia USA; Raut, J. -C. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Wiedinmyer, C. [National Center for Atmospheric Research, Boulder Colorado USA; Emmons, L. K. [National Center for Atmospheric Research, Boulder Colorado USA; Fast, J. D. [Pacific Northwest National Laboratory, Richland Washington USA; Pelon, J. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Law, K. S. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Flanner, M. G. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor Michigan USA; Dibb, J. E. [Earth Systems Research Center, EOS, University of New Hampshire, Durham New Hampshire USA

    2017-08-05

    We identify an important Black Carbon (BC) aerosol deposition event that was observed in snow stratigraphy and dated to between 27 July 2013 – 2 August 2013. This event comprises a significant portion (~60%) of total deposition over a 10 month period (July 2013 – April 2014). Here we link this event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the CALIOP and MODIS instruments during transport between Canada and Greenland, confirming that this event involved emissions from forest fires in Canada. We use high-resolution regional chemical transport mod-eling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model accurately captures the timing of the BC deposition event and shows that the major contribution to deposition during this event is emissions originating from fires in Canada. However, the model under-predicts aerosol deposition compared to measurements at all sites by a factor of 2–100. Under-prediction of modeled BC deposition originates from uncertainties in fire emissions combined with uncertainties in aerosol scavenging by clouds. This study suggests that it is possible to describe the transport of an exceptional smoke event on regional and continental scales. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  17. Microbial activities in forest soils exposed to chronic depositions from a lignite power plant

    Energy Technology Data Exchange (ETDEWEB)

    Klose, S.; Wernecke, K.D.; Makeschin, F. [Technical University of Dresden, Tharandt (Germany)

    2004-12-01

    Atmospheric emissions of fly ash and SO{sub 2} from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant, representing high, moderate and low emission rates. An additional site at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO{sub 2} emissions. Soil microbial biomass C and N, CO{sub 2} evolved and activities of L-asparaginase, L-glutaminase, beta-glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). It is concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.

  18. Acid deposition study in the Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Ting-Kueh [Tunku Abdul Rahman College, Kuala Lumpur (Malaysia); Lau, Wai-Yoo [Malaysian Scientific Association, Kuala Lumpur (Malaysia)

    1996-12-31

    The Association of South East Asian Nations or ASEAN is a regional association of seven countries, namely Indonesia, Malaysia, Philippines, Singapore, Thailand, Brunei and Vietnam, located at the south eastern part of the Asian continent. Together with the East Asian States of Japan, China, Korea and Taiwan, this part of the world is experiencing rapid economic growth, especially in the last decade. Rapid industrialization has resulted in an increased demand for energy in the manufacturing and transport sectors, and also for infrastructure development. This has led to a significant increase in gaseous emissions and a corresponding increase in atmospheric acidity. Acid deposition study in the ASEAN countries began in the mid-70s when Malaysia first started her acid rain monitoring network in 1976. This was followed closely by Singapore and the other ASEAN countries in the 80s. By now all ASEAN countries have their own acid rain monitoring networks with a number of these countries extending the monitoring to dry deposition as well.

  19. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States

    Science.gov (United States)

    Steven G. McNulty; Erika C. Cohen; Jennifer A. Moore Myers; Timothy J. Sullivan; Harbin Li

    2007-01-01

    Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A...

  20. Acidic deposition in California: findings from a program of monitoring and effects research

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, B.K.; Croes, B.E.; Brown, S.M.; Motallebi, N.; Westerdahl, F.D.; Margolis, H.G.; Cahill, B.T.; Mueller, M.D.; Holmes, J.R. [California Environmental Protection Agency, Sacramento, CA (United States). Research Division

    1995-12-01

    California`s 14-year, 25 million dollar acidic deposition program has studied the causes and effects of acidic air pollutants. In contrast to the eastern United States where sulfur-derived (S-derived) by-products from coal combustion dominate precipitation chemistry, nitrogen-derived (N-derived) acids predominate in wet and dry deposition in California. Adverse effects on the human lung have not been observed after short-term exposures to acidity, but extended exposures to ambient acidity may pose a chronic risk. No irreversible, adverse effects on surface waters in the Sierra Nevada mountain range or to the state`s forests have been found due to extent acidic inputs. The longer-term outlook for forests is less certain because the impacts observed elsewhere occurred after decades of S and N deposition, but at lower ambient ozone levels. Ozone is the major air pollutant stressor for forests, but atmospheric N has the potential to cause adverse changes in soil nutrient cycling. Impacts on man-made materials in southern California (e.g. galvanized steel) were found to be minor. While California does not have an ambient air quality standard for acidic air pollutants, emission of precursors have declined since the 1960s due to changes in industrial practices, improvements in technology and adoption of control measures for ozone. Lowering emission from motor vehicles will be emphasized to prevent future increases in N deposition. 67 refs., 4 figs., 2 tabs.

  1. Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea

    Science.gov (United States)

    Kumar Gautam, Mukesh; Lee, Kwang-Sik; Song, Byeong-Yeol

    2017-07-01

    Chemistry and deposition fluxes in the rainfall and throughfall of red pine (Pinus densiflora), black locust (Robinia pseudoacacia), and chestnut (Castanea crenata) monocultures, and mixed red pine-black locust-chestnut stands were examined in a nutrient-limited cool temperate forest of central South Korea. Throughfall was enriched in both basic and acidic constituents relative to rainfall, suggesting that both dry deposition and canopy leaching are important sources of throughfall constituents. Net throughfall fluxes (NTFs) of cations and anions significantly differed among four different stands as well as seasonally. Red pine exhibited highest fluxes (TF and NTF) for Ca2+, black locust for K+, mixed stands for Mg2+, and chestnut for Na+. In contrast, NTF of SO42-, NO3-, and NH4+was highest in the red pine, intermediate in the chestnut and mixed stands, and lowest in the black locust. In general, canopy uptake of H+ and NH4+ for all stands was higher in summer than in winter. Dry deposition appears to play a major role in atmospheric deposition to this cool temperate forest, especially in summer. Dry deposition for both cations and anions displayed high spatial variability, even though stands were adjacent to one another and experienced identical atmospheric deposition loads. Canopy leaching of K+ (95-78% of NTF), Mg2+ (92-23% of NTF), and Ca2+ (91-12% of NTF) was highest for the black locust, lowest for chestnut, and intermediate for the red pine and mixed stands. The present study documented significant changes in throughfall chemistry and NTF among different forest stands, which presumably be related with the differences in the canopy characteristics and differences in their scavenging capacity for dry deposition and canopy exchange. Difference in the canopy retention of H+ and base cation leaching suggests that canopy exchange was mainly driven by weak acid excretion and lesser by H+ exchange reaction. Our results indicate that despite a high base cation

  2. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  3. A conceptual framework: Redefining forest soil's critical acid loads under a changing climate

    International Nuclear Information System (INIS)

    McNulty, Steven G.; Boggs, Johnny L.

    2010-01-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  4. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Science.gov (United States)

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  5. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  6. Separation of gaseous and particulate dry deposition of sulfur at a forest edge in Denmark

    International Nuclear Information System (INIS)

    Beier, C.

    1991-01-01

    Throughfall deposition of SO 4 -2 and Na + to a spruce [Picea abies (L.) Karst.] forest edge in Denmark was measured during 1 yr. The deposition of both SO 4 -2 and Na + was highly elevated at the forest edge with Na + showingthe steepest gradient. Using Na + as a model-substance for the deposition of particles and assuming that 6 to 24% of the SO 4 -2 deposition in throughfall inside the stand originated from particles, the relative contribution of particulate and gaseous S to the throughfall deposition at the forest edge could be estimated. The deposition of particulate S showed a strong dependence on the distance to the forest edge. Thus, particulate S contributed 25 to 100% of the net throughfall deposition under the front tree, whereas particulate S only contributed 6 to 24% inside the stand. The gaseous deposition showed a more moderate dependence on the forest edge and did not exceed the change in leaf area index

  7. OZONE AND SULFUR DIOXIDE DRY DEPOSITION TO FORESTS: OBSERVATIONS AND MODEL EVALUATION

    Science.gov (United States)

    Fluxes and deposition velocities of O3 and SO2 were measured over both a deciduous and a mixed coniferous-deciduous forest for full growing seasons. Fluxes and deposition velocities of O3 were measured over a coniferous forest for a month. Mean deposition velocities of 0.35 t...

  8. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  9. Measurement of forest condition and response along the Pennsylvania atmospheric deposition gradent

    Science.gov (United States)

    D.D. David; J.M. Skelly; J.A. Lynch; L.H. McCormick; B.L. Nash; M. Simini; E.A. Cameron; J.R. McClenahen; R.P. Long

    1991-01-01

    Research in the oak-hickory forest of northcentral Pennsylvania is being conducted to detect anomalies in forest condition that may be due to atmospheric deposition, with the intent that such anomalies will be further studied to determine the role, if any, of atmospheric deposition. This paper presents the status of research along a 160-km gradient of sulfate/nitrate...

  10. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  11. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    Science.gov (United States)

    Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...

  12. Acid formic effect in zinc coatings obtained by galvanostatic deposition

    International Nuclear Information System (INIS)

    Lopes, C.; David, M.; Souza, E.C.

    2016-01-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  13. The contribution of nitrogen deposition to the eutrophication signal in understorey plant communities of European forests

    NARCIS (Netherlands)

    Dobben, van H.F.; Vries, de W.

    2017-01-01

    We evaluated effects of atmospheric deposition of nitrogen on the composition of forest understorey vegetation both in space and time, using repeated data from the European wide monitoring program ICP-Forests, which focuses on normally managed forest. Our aim was to assess whether both spatial and

  14. Ancillary effects of selected acid deposition control policies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  15. Acid-base status and changes in Swedish forest soils

    International Nuclear Information System (INIS)

    Karltun, Erik; Stendahl, Johan; Lundin, Lars

    2003-01-01

    In this paper we use data from the Swedish National Survey of Forest Soils and Vegetation (NSFSV) to evaluate the present acid-base status of forest soils to try to answer the following questions. Which role do anthropogenic and biological acidification play for the present acid-base status of the soil profile? What is the present acid-base status of Swedish forest soils and how large areas may be considered as severely acidified? Do the current tendencies in soil acid-base status correspond with the positive development in surface waters?

  16. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  17. Economic valuation of acidic deposition damages: Preliminary results from the 1985 NAPAP [National Acid Precipitation Assessment Program] damage assessment

    International Nuclear Information System (INIS)

    Callaway, J.M.; Darwin, R.F.; Nesse, R.J.

    1985-01-01

    This paper identifies methods used to evaluate the economic damages of acid deposition in the 1985 Damage Assessment being coordinated by the National Acid Precipitation Program. It also presents the preliminary estimates of economic damages for the Assessment. Economic damages are estimated for four effect areas: commercial agriculture and forests, recreational fishing and selected types of materials. In all but the last area, methods are used which incorporate the behavioral responses of individuals and firms or simulated physical damages to resources at risk. The preliminary nature of the estimated damages in each area is emphasized. Over all, the damage estimates should be interpreted with caution. 44 refs., 6 figs., 5 tabs

  18. Susceptibility of forests in the northeastern USA to nitrogen and sulfur deposition: critical load exceedance and forest health

    Science.gov (United States)

    N. Duarte; L.H. Pardo; M.J. Robin-Abbott

    2013-01-01

    The objectives of this study were to assess susceptibility to acidification and nitrogen (N) saturation caused by atmospheric deposition to northeastern US forests, evaluate the benefits and shortcomings of making critical load assessments using regional data, and assess the relationship between expected risk (exceedance) and forest health. We calculated the critical...

  19. Altitude dependence of trace substance deposition from clouds to forests. Final report; Hoehenabhaengigkeit der Spurenstoffdeposition durch Wolken auf Waelder. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, S.; Winkler, P.

    1995-12-31

    Novel forest decline is particularly pronounced in the area of the ridges of medium-range mountains. Whereas acid precipitation was viewed as its sole cause early on in the discussions, it turned out later that the impact of trace gases, too, contributes to the damaging of forests. This report wants to point out the importance of fog interception, which equally plays a part in the pollutant receipts of forests. The deposition of fog water to a forest stand depends very much on altitude, so that trace substance deposition, too, is to be expected to be dependent on altitude. By attempting to quantify this effect, the report helps to pinpoint areas of relevance of this deposition pathway (orig./KW) [Deutsch] Die neuartigen Waldschaeden sind in den Kammlagen der Mittelgebirge besonders ausgepraegt. Waehrend in der anfaenglichen Diskussion die sauren Niederschlaege als alleinige Ursache angesehen wurden, zeigte sich spaeter, dass auch Einwirkungen von Spurengasen zur Schaedigung des Waldes beitragen. Dieser Bericht soll auf die Bedeutung der Nebelinterzeption aufmerksam machen, die ebenfalls zum Schadstoffeintrag in den Wald beitraegt. Die Deposition von Wolkenwasser auf einen Waldbestand ist stark abhaengig von der Hoehenlage, in der sich der Waldbestand befindet, so dass auch eine Hoehenabhaengigkeit des Spurenstoffeintrages zu erwarten ist. Durch den Versuch der Quantifizierung traegt dieser Bericht dazu bei, Gebiete zu erkennen, in denen dieser Eintragspfad eine Rolle spielt. (orig./KW)

  20. A simple tool for estimating throughfall nitrogen deposition in forests of western North America using lichens

    Science.gov (United States)

    Heather T. Root; Linda H. Geiser; Mark E. Fenn; Sarah Jovan; Martin A. Hutten; Suraj Ahuja; Karen Dillman; David Schirokauer; Shanti Berryman; Jill A. McMurray

    2013-01-01

    Anthropogenic nitrogen (N) deposition has had substantial impacts on forests of North America. Managers seek to monitor deposition to identify areas of concern and establish critical loads, which define the amount of deposition that can be tolerated by ecosystems without causing substantial harm. We present a new monitoring approach that estimates throughfall inorganic...

  1. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA

    Science.gov (United States)

    Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter

    2010-01-01

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...

  2. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    Science.gov (United States)

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  3. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  4. Acidic precipitation. Volume 3: Sources, deposition, and canopy interactions. Advances in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Page, A.L.; Norton, S.A. (eds.)

    1990-01-01

    As has been the case with many environmental issues of the twentieth century, acidic precipitation has its origin in emissions to the atmosphere of numerous compounds from both natural and man-made sources. This volume emphasizes the atmospheric aspects of acidic precipitation and all that this term has come to include (e.g. toxic gases such as ozone, trace metals, aluminum, and oxides of nitrogen). It progresses from emissions of the precursors of acidic precipitation to their eventual deposition on environmental surfaces. The chapters describe the sources of acidic and basic airborne substances, their interactions in the atmosphere and with rain droplets, and their reactions with other airborne constituents such as aluminum and other metals. Also discussed are the use of metals as tracers of sources of the precursors of acidic precipitation and as tracers of historical deposition rates, the processes controlling the removal of airborne material as dry deposition and deposition interactions with the forest canopy, and past and future trends in atmospheric emissions and options for their abatement.

  5. Inferred effects of cloud deposition on forest floor nutrient cycling and microbial properties along a short elevation gradient

    International Nuclear Information System (INIS)

    Lavoie, M.; Bradley, R.L.

    2003-01-01

    Higher cloud cover significantly decreases forest floor pH, decrease exchangeable cations, modifies mineral-N speciation and increases physiological stress within microbial communities. - Cloud water deposition often increases with elevation, and it is widely accepted that this cloud water increases acid loading to upland forest ecosystems. A study was undertaken in south-eastern Quebec to determine if a 250 m elevation gradient (i.e. 420-665 m), along a uniform sugar-maple stand on the slope of Mount Orford, corresponded to a pH gradient in the forest floor and to predictable changes in soil nutrient availability and microbial properties. Precipitation data from a nearby study, and a photographic survey, provided presumptive evidence that this elevation gradient corresponded to a strong gradient in cloud water deposition. Forest floor temperature did not differ significantly across elevations. Forest floor moisture content was significantly higher, whereas pH and exchangeable Ca and Mg were significantly lower, at the higher elevations. Average seasonal net nitrification rates, determined by long-term laboratory incubations, did not differ significantly across elevations, whereas average seasonal net ammonification rates were significantly higher at higher elevations. Basal respiration rates and microbial biomass did not differ significantly across elevations, but metabolic quotient was significantly higher at higher elevations indicating possible environmental stress on forest floor microbial communities due to cloud water deposition. Anaerobic N mineralisation rates were significantly higher at higher elevations suggesting that N-limited microbial communities frequently exposed to cloud cover can be important short-term sinks for atmospheric N, thereby contributing to increase the active-N fraction of forest floors. We conclude that, where no significant changes in vegetation or temperature occur, elevation gradients can still be used to understand the spatial

  6. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1999-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  7. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1998-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  8. Acid rain and nitrogen deposition in a sub-tropical watershed (Piracicaba): ecosystem consequences

    International Nuclear Information System (INIS)

    Krusche, A.V.; Camargo, P.B. de; Cerri, C.E.; Ballester, M.V.; Lara, L.B.L.S.; Victoria, R.L.; Martinelli, L.A.

    2003-01-01

    Poorly buffered sandy soils may result in acidification problems for forests in this basin. - High levels of wet N and acidic deposition were measured in southeast Brazil. In this study we addressed the sensitivity of water bodies and soils to acidification and N deposition in the Piracicaba River basin (12,400 km 2 ). Average acid neutralization capacity (ANC) at 23 river sampling sites varied from 350 to 1800 μeq l -1 . Therefore, rivers and streams in the Piracicaba basin are well buffered, if the lower limit of 200 μeq l -1 is assumed as an indication of poorly buffered waters. ANC is increased by untreated wastewaters discarded into rivers and streams of the region. Average NO 3 concentrations varied from 20 to 70 μeq l -1 . At the most polluted river sites, NO 3 concentration is not highest, however, probably due to NO 3 reduction and denitrification. Most of the nitrogen in streams is also provided by wastewaters and not by wet deposition. The majority of the soils in the basin, however, are acidic with a low base cation content and high aluminum concentration. Therefore, soils in this basin are poorly buffered and, in areas of forest over sandy soils, acidification may be a problem

  9. Measurement of the dry deposition flux of NH3 on to coniferous forest

    NARCIS (Netherlands)

    Duyzer, J.H.; Verhagen, H.L.M.; Weststrate, J.H.; Bosveld, F.C.

    1992-01-01

    The dry deposition flux of NH3 to coniferous forest was determined by the micrometeorological gradient method using a 36m high tower. Aerodynamic characteristics of the site were studied, using a second tower erected in the forest 100m from the first. Fluxes and gradients of heat and momentum

  10. An overview of a 5-year research program on acid deposition in China

    Science.gov (United States)

    Wang, T.; He, K.; Xu, X.; Zhang, P.; Bai, Y.; Wang, Z.; Zhang, X.; Duan, L.; Li, W.; Chai, F.

    2011-12-01

    Despite concerted research and regulative control of sulfur dioxide in China, acid rain remained a serious environmental issue, due to a sharp increase in the combustion of fossil fuel in the 2000s. In 2005, the Ministry of Science and Technology of China funded a five-year comprehensive research program on acid deposition. This talk will give an overview of the activities and the key findings from this study, covering emission, atmospheric processes, and deposition, effects on soil and stream waters, and impact on typical trees/plants in China. The main results include (1) China still experiences acidic rainfalls in southern and eastern regions, although the situation has stabilized after 2006 due to stringent control of SO2 by the Chinese Government; (2) Sulfate is the dominant acidic compound, but the contribution of nitrate has increased; (3) cloud-water composition in eastern China is strongly influenced by anthropogenic emissions; (4) the persistent fall of acid rain in the 30 years has lead to acidification of some streams/rivers and soils in southern China; (5) the studied plants have shown varying response to acid rain; (6) some new insights have been obtained on atmospheric chemistry, atmospheric transport, soil chemistry, and ecological impacts, some of which will be discussed in this talk. Compared to the situation in North America and Europe, China's acid deposition is still serious, and continued control of sulfur and nitrogen emission is required. There is an urgent need to establish a long-term observation network/program to monitor the impact of acid deposition on soil, streams/rivers/lakes, and forests.

  11. Response of Nitrogen Leaching to Nitrogen Deposition in Disturbed and Mature Forests of Southern China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-Ting; M. YOH; MO Jiang-Ming; P. GUNDERSEN; ZHOU Guo-Yi

    2009-01-01

    Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition.

  12. Nitrogen deposition's role in determining forest photosynthetic capacity; a FLUXNET synthesis

    Science.gov (United States)

    Fleischer, K.; Rebel, K.; van der Molen, M.; Erisman, J.; Wassen, M.; Dolman, H.

    2011-12-01

    There is growing evidence that nitrogen (N) deposition stimulates forest growth, as many forest ecosystems are N-limited. However, the significance of N deposition in determining the strength of the present and future terrestrial carbon sink is strongly debated. We investigated and quantified the effect of N deposition on ecosystem photosynthetic capacity (Amax) with the FLUXNET database, including 80 forest sites, covering the major forest types and climates of the world. The relative effect of climate and N deposition on photosynthesis was assessed with regression models. We found a significant positive correlation of Amax and N deposition for evergreen needleleaf forests in our dataset. We further found indications that foliar N and LAI scale positively with N deposition, reflecting the 2 mechanisms at which N is believed to cause an increase in carbon gain. We can support the hypothesis that foliar N is the principal scaling factor for canopy Amax across all forest types. Deciduous forests are less diverse in terms of climate and nutritional conditions for the included sites and these forests exhibited weak to no correlations with the included climate and N predictor variables. Quantifying the effect of N deposition on photosynthetic rates at the canopy level is an essential step for quantifying its contribution to the terrestrial carbon sink and for predicting vegetation response to N fertilization and global change in the future. The approach shows that eddy-covariance measurements of carbon fluxes at the canopy scale allow us to test hypotheses with respect to the expected nitrogen-photosynthesis relationships at the canopy scale.

  13. Urban acid deposition. Results from the GMADS network, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, D.E.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E.

    1991-07-01

    This fourth annual data report of the Greater Manchester Acid Deposition Survey (GMADS) gives results from the urban precipitation chemistry network across Greater Manchester and Warrington for 1990. Full analytical methods are described along with precision and accuracy of the methods used. The spatial variability of precipitation chemistry and deposition over this urban region was investigated using a network of twenty collectors. Concentrations of non marine sulphate, ammonium, calcium and hydrogen, and nitrogen dioxide gas concentrations all show significant spatial variability. The spatial variability of the deposition rates of non marine sulphate, nitrate, ammonium, hydrogen and calcium were significant. 40 refs., 13 figs., 9 tabs., 1 app.

  14. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests

    International Nuclear Information System (INIS)

    Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel

    2014-01-01

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1–0.2 g m −2 year −1 with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m −2 year −1 is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO 3 − /SO 4 2− and NH 4 + /SO 4 2− in precipitation show significantly increasing trends in time similarly to those of pH. -- Highlights: • Significant decrease of sulphur deposition at most of sites has been recorded. • Nitrogen deposition still represents a considerable stress in Czech forests. • Significantly increasing trends of NO 3 − /SO 4 2− , NH 4 + /SO 4 2− , and pH in precipitation. -- While sulphur deposition significantly decreased with the highest improvement in formerly most affected areas, nitrogen deposition still represents a considerable stress in Czech forests

  15. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  16. Catchment hydrochemical processes controlling acidity and nitrogen in forest stream water

    International Nuclear Information System (INIS)

    Foelster, Jens

    2001-01-01

    Atmospheric deposition of air pollutants has been a severe threat to terrestrial and forest ecosystems for several decades. In Sweden sulphur deposition has caused acidification of soils and runoff, while nitrogen deposition only had a minor or local impact on runoff quality so far. During the last three decades, emission control has caused a decline in sulphur deposition, whereas nitrogen deposition on the other hand, has continued to increase to a rate several times above the natural background level. Long term changes in runoff acidity and nitrogen chemistry after these changes in deposition are of great concern. Monitoring of small, well-defined catchments including hydrochemistry of precipitation, soil and runoff, is a valuable tool for addressing this concern. When interpreting runoff data from such sites, the near-stream zone has been identified to be of crucial importance. The main objective for this thesis was to explain how catchment processes were related to short-term variation and long-term trends in the hydrochemistry of forest stream water. The field work was conducted on the strongly acidified and nitrogen limited Kindla catchment, with a special emphasis on the relationship between the near-stream zone and both stream acidity and nitrogen leaching. Furthermore, time series of hydrochemistry in forest stream water from 13 catchments were analysed for changes in acidity and nitrogen leaching. In three of these sites, soil water from E- and B-horizons was also analysed with regards to these questions. The investigations revealed that the near-stream zone was a net source of acidity in runoff at Kindla due to leaching of organic acids, although this contribution was overshadowed by sulphate from upland soils and deposition. The near-stream zone was also the main source for both organic nitrogen and nitrate to the stream, but the leaching rate was low, especially for inorganic nitrogen. In the 13 reference streams, sulphate concentrations declined in

  17. Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, R. [Water Research Institute, Brugherio (Italy); Tagliaferri, A. [Regional Forestry Board (Italy)

    2001-07-01

    Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg{sup 2+}, while the throughfall concentrations differed in the measured values of H{sup +}, N-NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO{sub 3}{sup -}, N-NH{sub 4}{sup +} and H{sup +} at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca{sup 2+}, K{sup +} and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO{sub 4}{sup 2-} deposition fluxes (21.3kg ha{sup -1}yr{sup -1} at Val Masino and 23.6kgha{sup -1}yr{sup -1} at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1kgha{sup -1}yr{sup -1} in the bulk input, and 15.0 and 18.0kgha{sup -1}yr{sup -1} in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kgNha{sup -1} at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values. (author)

  18. Acidic deposition: State of science and technology. Report 11. Historical changes in surface-water acid-base chemistry in response to acidic deposition. Final report

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Small, M.J.; Kingston, J.C.; Bernert, J.A.; Thomas, D.R.

    1990-09-01

    The objectives of the analyses reported in the State of Science report are to: identify the lake and stream populations in the United States that have experienced chronic changes in biologically significant constituents of surface water chemistry (e.g. pH, Al) in response to acidic deposition; quantify biologically meaningful historical changes in chronic surface water chemistry associated with acidic deposition, with emphasis on ANC, pH, and Al; estimate the proportion of lakes nor acidic that were not acidic in pre-industrial times; estimate the proportional response of each of the major chemical constituents that have changed in response to acidic deposition using a subset of statistically selected Adirondack lakes for which paleolimnological reconstructions of pre-industrial surface water chemistry have been performed; evaluate and improve, where appropriate and feasible, empirical models of predicting changes in ANC; and evaluate the response of seepage lakes to acidic deposition

  19. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  20. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  1. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia

    DEFF Research Database (Denmark)

    Hovmand, Mads Frederik; Kemp, Kaare; Kystol, J.

    2008-01-01

    Thirty-three years of measurements of atmospheric heavy metal (HM) deposition (bulk precipitation) in Denmark combined with European emission inventories form the basis for calculating a 50-year accumulated atmospheric input to a remote forest plantation on the island of Laesoe. Soil samples taken...... in atmospheric deposition and in soils. The accumulated atmospheric deposition is of the same magnitude as the increase of these metals in the top soil....

  2. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  3. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  4. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity

    International Nuclear Information System (INIS)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-01-01

    A dynamic coupled biogeochemical–ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. - Highlights: • The effects of N atmospheric deposition and climate change on vegetation were simulated. • The model ForSAFE-Veg was calibrated and validated carefully for three forests in France. • Climate has a greater influence on vegetation than N deposition in conifer forests. • N-poor ecosystems are, however, more sensitive to N deposition than to climate change. - Compared to nitrogen atmospheric deposition, climate appears to be the main driver of change in forest plant biodiversity on a century scale, except in N-poor ecosystems.

  5. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  6. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Rothenberg, S.; Yao Heng; Zhang Hui

    2010-01-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m -3 and 30.7 pg m -3 , respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m -2 yr -1 . Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m -2 yr -1 , respectively. - Upland forest ecosystem is a great sink of atmospheric mercury in southwest China.

  8. Erosion and deposition in a field/forest system estimated using cesium-137 activity

    International Nuclear Information System (INIS)

    Lowrance, R.; McIntyre, S.; Lance, C.

    1988-01-01

    Soil erosion and deposition were estimated using Cs-137 activity within a 7.25-ha field/forest system in the southeastern coastal plain. Sol eroded from the field was deposited both in the riparian forest ecosystem and in downslope areas of the field. Total activity, depth to peak activity, and depth to zero activity increased downslope from field to stream. Erosion and deposition rates, estimated by changes in activity per unit area from a reference undisturbed forest site, showed that about twice as much total deposition had taken place as total erosion. Excess deposition was attributed to deposition from the upstream portions of the watershed. Erosion and deposition rates estimated with this method were about 63 and 256 Mg/ha/yr, respectively. Erosion and deposition rates estimated by two different calculation techniques were nearly identical. These rates were considerably higher than rates estimated in an earlier study. The rates may be overestimated because the differential rates of Cs-137 movement on clay particles were not considered. The riparian ecosystem acted as a very efficient sediment trap. 19 refs., 5 figs., 3 tabs

  9. Free amino acids and 5'-nucleotides in Finnish forest mushrooms.

    Science.gov (United States)

    Manninen, Hanna; Rotola-Pukkila, Minna; Aisala, Heikki; Hopia, Anu; Laaksonen, Timo

    2018-05-01

    Edible mushrooms are valued because of their umami taste and good nutritional values. Free amino acids, 5'-nucleotides and nucleosides were analyzed from four Nordic forest mushroom species (Lactarius camphoratus, Boletus edulis, Cantharellus cibarius, Craterellus tubaeformis) using high precision liquid chromatography analysis. To our knowledge, these taste components were studied for the first time from Craterellus tubaeformis and Lactarius camphoratus. The focus was on the umami amino acids and 5'-nucleotides. The free amino acid and 5'-nucleotide/nucleoside contents of studied species differed from each other. In all studied samples, umami amino acids were among five major free amino acids. The highest concentration of umami amino acids was on L. camphoratus whereas B. edulis had the highest content of sweet amino acids and C. cibarius had the highest content of bitter amino acids. The content of umami enhancing 5'-nucleotides were low in all studied species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Imbalanced phosphorus and nitrogen deposition in China's forests

    NARCIS (Netherlands)

    Du, Enzai; Vries, de Wim; Han, Wenxuan; Liu, Xuejun; Yan, Zhengbing; Jiang, Yuan

    2016-01-01

    Acceleration of anthropogenic emissions in China has substantially increased nitrogen (N) deposition during the last 3 decades and may result in an imbalance of atmospheric N and phosphorus (P) inputs in terrestrial ecosystems. However, the status of P deposition in China is poorly understood.

  11. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  12. Forest vegetation as a sink for atmospheric particulates: Quantitative studies in rain and dry deposition

    International Nuclear Information System (INIS)

    Russel, I.J.; Choquette, C.E.; Fang, S.; Dundulis, W.P.; Pao, A.A.; Pszenny, A.A.P.

    1981-01-01

    Radionuclides in the atmosphere are associated with nonradioactive air particulates and hence serve to trace the fluxes of air particulates to various surfaces. Natural and artificial radioactivities found in the atmosphere have been measured in vegetation for 10 years to elucidate some of the mechanisms of acquirement by forest trees of atmospheric particulates. Whole tree analysis, in conjunction with soil assay, have served to establish the fraction of the flux of radionuclides retained by above-ground tissues of a forest stand. Interpretation is facilitated because most radionuclides in the atmosphere are superficially acquired. Typically 5--20% of the total open field flux is retained by the forest canopy in a moderately rainy climate (120 cm/year). Short-lived daughters of radon give a dry deposition velocity of particulates in the Aitken size range of 0.03--0.05 cm/s, thus permitting an estimate of transient removal by forest canopies by dry deposition of this size fraction

  13. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...... at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...

  14. Nitrogen Dynamics in European Forest Ecosystems: Considerations regarding Anthropogenic Nitrogen Depositions

    OpenAIRE

    Agren, G.I.; Kauppi, P.

    1983-01-01

    This study deals with the nutrient cycle of forest ecosystems over large geographic regions in Europe as affected by nitrogen deposition. The view is taken that the nitrogen cycle of a forest ecosystem has a maximum capacity for circulating nitrogen. Two different cases are defined: case (1) in which the nutrient cycle functions below its maximum capacity, and case (2) in which the circulation operates at the maximum level.

  15. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, Linda H., E-mail: lgeiser@fs.fed.u [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Jovan, Sarah E. [US Forest Service Forest Inventory and Analysis Program, Pacific Northwest Research Station, 620 SW Main St, Suite 400, Portland, OR 97205 (United States); Glavich, Doug A. [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Porter, Matthew K. [Laboratory for Atmospheric Research, Washington State University, Pullman, WA 99164 (United States)

    2010-07-15

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha{sup -1} y{sup -1} in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. - Lichen-based critical loads for N deposition in western Oregon and Washington forests ranged from 3 to 9 kg ha{sup -1} y{sup -1}, increasing with mean annual precipitation.

  16. The impact of atmospheric deposition and climate on forest growth in Europe using two empirical modelling approaches

    Science.gov (United States)

    Dobbertin, M.; Solberg, S.; Laubhann, D.; Sterba, H.; Reinds, G. J.; de Vries, W.

    2009-04-01

    Most recent studies show increasing forest growth in central Europe, rather than a decline as was expected due to negative effects of air pollution. While nitrogen deposition, increasing temperature and change in forest management are discussed as possible causes, quantification of the various environmental factors has rarely been undertaken. In our study, we used data from several hundreds of intensive monitoring plots from the ICP Forests network in Europe, ranging from northern Finland to Spain and southern Italy. Five-year growth data for the period 1994-1999 were available from roughly 650 plots to examine the influence of environmental factors on forest growth. Evaluations focused on the influence of nitrogen, sulphur and acid deposition, temperature, precipitation and drought. Concerning the latter meteorological variables we used the deviation from the long-term (30 years) mean. The study included the main tree species common beech (Fagus sylvatica), sessile or pedunculate oak (Quercus petraea and Q. robur), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Two very different approaches were used. In the first approach an individual tree-based regression model was applied (Laubhahn et al., 2009), while in the second approach a stand-based model was applied (Solberg et al., 2009). The individual tree-based model had measured basal area increment of each individual tree as a growth response variable and tree size (diameter at breast height), tree competition (basal area of larger trees and stand density index), site factors (e.g. soil C/N ratio, temperature), and environmental factors (e.g. temperature change compared to long-term average, nitrogen and sulphur deposition) as influencing parameters. In the stand-growth model, stem volume increment was used as the growth response variable, after filtering out the expected growth. Expected growth was modelled as a function of site productivity, stand age and a stand density index. Relative volume

  17. Simulation of soil response to acidic deposition scenarios in Europe

    International Nuclear Information System (INIS)

    Vries, W. de; Reinds, G.J.; Posch, M.; Kaemaera, J.

    1994-01-01

    The chemical response of European forest soils to three emission-deposition scenarios for the year 1960-2050, i.e. official energy pathways (OEP), current reduction plans (CRP) and maximum feasible reductions (MFR), was evaluated with the SMART model (Simulation Model for Acidification's Regional Trends). Calculations were made for coniferous and deciduous forests on 80 soil types occurring on the FAO soil map of Europe, using a gradient of 1.0 degree C longitude x 0.5 degree latitude. Results indicated that the area with nitrogen saturated soils, i.e. soils with elevated NO 3 concentrations (>0.02 mol c m -3 ) will increase in the future for all scenarios, even for the MFR scenario. The area with acidified soils, with a high Al concentration (> 0.2 mol c m -3 ) and Al/BC ratio (>1 mol -1 ) and a low pH ( 3 and Al concentrations mainly occurred in western, central and eastern Europe. Uncertainties in the initial values of C/N ratios and base saturation, and in the description of N dynamics in the SMART model had the largest impact on the temporal development of forested areas exceeding critical parameter values. Despite uncertainties involved, predicted general trends are plausible and reliable. 61 refs., 11 figs., 10 tabs

  18. Deposition and conversion in soil of acids, acid-forming substances and nutrients

    International Nuclear Information System (INIS)

    Mayer, R.

    1990-01-01

    Balancing of material depositions entries is the basis for their evaluation. The acid depositions must be put in relation to the acid neutralization capacity and to the buffer rate of the soil. Every 'excess' in depositons leads to an acid supply into the sub-soil and/or into the groundwater system. On the one hand, the nutrient depositions are interpreted in relation to the nutrient supplies of the soil and their availability to the plants; and on the other hand with a view to the nutrient depletion through the polants. Excesses can also lead to a (non-desirable) pollution of aquatic systems, or else to an enhanced nutrient supply in the soil. Balancing is therefore a necessary aid for the evaluation of material depositions from the atmosphere. (orig./EF) [de

  19. Plant-cover influence on the spatial distribution of radiocaesium deposits in forest ecosystems

    International Nuclear Information System (INIS)

    Guillitte, Olivier; Andolina, Jean; Koziol, Michel; Debauche, Antoine

    1990-01-01

    Since the Chernobyl nuclear accident, a major campaign of radioactive deposit measurements has been carried out on forest soils in Belgium and the Grand Duchy of Luxemburg. Three types of forest ecosystems have systematically been taken into account in each region: coniferous forests (mainly spruce stands), deciduous forests (mainly beech stands) and in clearings. Sampling and field measurements have been carried out in different places with regard to the plant cover: near the trunks, under the foliage, in a small gap, on soil with or without herbaceous or moss stratum. The samples have been collected and measured according to the different recognizable soil layers in order to evaluate the vertical deposit distribution. From overall measurements, one may observe a high spatial soil deposit variation which is mainly explained by the nature, structure and age of the forest stands and by the thickness and the nature of holorganic horizons. A particular interest of this study is the identification of the influence of stem flow and impluvium on forest-cover gaps and edges. (author)

  20. Deposition of nitrogen oxides and ozone to Danish forest sites

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    of the influence of meteorological factors. The viscous sub-layer resistance is derived by a new theory, taking the bluff roughness elements of the forest and the dimension of the needles/leaves as well as the LAI into account. The fluxes of nitrogen dioxide and ozone are related to the fluxes of water vapour...

  1. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    Marty, C.; Houle, D.; Duchesne, L.; Gagnon, C.

    2012-01-01

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO 4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ 18 O–SO 4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha −1 yr −1 , representing 30–40% of annual wet S deposition) which contributed to the decreased δ 18 O–SO 4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO 4 ha −1 yr −1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO 4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO 4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  2. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  3. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.; Marquardt, Allison B.

    2009-01-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  4. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  5. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    Science.gov (United States)

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  6. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  7. Comparing i-Tree modeled ozone deposition with field measurements in a periurban Mediterranean forest

    Science.gov (United States)

    A. Morani; D. Nowak; S. Hirabayashi; G. Guidolotti; M. Medori; V. Muzzini; S. Fares; G. Scarascia Mugnozza; C. Calfapietra

    2014-01-01

    Ozone flux estimates from the i-Tree model were compared with ozone flux measurements using the Eddy Covariance technique in a periurban Mediterranean forest near Rome (Castelporziano). For the first time i-Tree model outputs were compared with field measurements in relation to dry deposition estimates. Results showed generally a...

  8. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  9. Evaluating Ammonia Deposition Rates for Deciduous Forest using Measurements and Modelling

    DEFF Research Database (Denmark)

    Hansen, Kristina; Geels, Camilla; Hertel, Ole

    ). However, there are relatively few datasets of atmospheric NH3 fluxes available for forests which can contribute verifying model results. The atmospheric dry deposition of NH3 for the beech (Fagus sylvatica) forest, Lille Bøgeskov, in Sorø, Denmark, is investigated using the high resolution...... these impacts, quantifying the magnitude of the NH3 flux in the biosphere atmosphere system is essential. Model simulations using the Danish Ammonia Modelling System (DAMOS) have recently indicated that particular forest ecosystems are exposed to critical load exceedances of N (Geels et al., not yet submitted......-agricultural areas (Skjøth et al. 2011, ACPD). New atmospheric NH3 flux measurements for Lille Bøgeskov have been conducted throughout 2011 and these data are presented and discussed in relation to the 2010 data of atmospheric NH3. Future studies aim to improve the description of dry deposition of NH3 for vegetative...

  10. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    Directory of Open Access Journals (Sweden)

    U. Rummel

    2007-10-01

    Full Text Available Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH, we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday maximum deposition velocity of 2.3 cm s−1, and a corresponding O3 flux of −11 nmol m−2 s−1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s−1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified.

    Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3

  11. Soil N chemistry in oak forests along a nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Nilsson, Lars Ola; Wallander, Håkan; Bååth, Erland

    2006-01-01

    values of grass and uppermost soil layers indicate increased nitrification rates in high N deposition sites, but no large downward movements of NO3 in these soils. Only a few sites had NO-3 concentrations exceeding 1 mg N l-¹ in soil solution at 50 cm depth, which showed that N deposition to these acid...

  12. Bulk deposition of base cationic nutrients in China's forests: Annual rates and spatial characteristics

    Science.gov (United States)

    Enzai Du; Wim de Vries; Steven McNulty; Mark E. Fenn

    2018-01-01

    Base cations, such as potassium (K+), calcium (Ca2+) and magnesium (Mg2+), are essential nutrients for plant growth and their atmospheric inputs can buffer the effect of acid deposition by nitrogen (N) and sulphur (S) compounds. However, the spatial variation in atmospheric deposition of these base...

  13. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition.

    Science.gov (United States)

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-04-10

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO 2 (atm. CO 2 ) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO 2 concentration, and SO 4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO 2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO 2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.

  14. Quantifying Black Carbon Deposition Over the Greenland Ice Sheet from Forest Fires in Canada

    Science.gov (United States)

    Thomas, J. L.; Polashenski, C. M.; Soja, Amber J.; Marelle, L.; Casey, K. A.; Choi, H. D.; Raut, J.-C.; Wiedinmyer, C.; Emmons, L. K.; Fast, J. D.; hide

    2017-01-01

    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57 on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  15. A conceptual framework: redifining forests soil's critical acid loads under a changing climate

    Science.gov (United States)

    Steven G. McNulty; Johnny L. Boggs

    2010-01-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it...

  16. The nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Kurbonov, A.S.; Mamatov, E.D.; Suleymani, M.; Borudzherdi, A.; Mirsaidov, U.M.

    2011-01-01

    Present article is devoted to nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit of Tajikistan. The obtaining of boric acid from pre backed danburite concentrate by decomposition of nitric acid was studied. The chemical composition of danburite concentrate was determined. The laboratory study of danburite leaching by nitric acid was conducted. The influence of temperature, process duration, nitric acid concentration on nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit was studied as well. The optimal conditions of nitric acid decomposition of calcined danburite concentrate of Ak-Arkhar Deposit, including temperature, process duration, nitric acid concentration and particle size were proposed.

  17. High Upward Fluxes of Formic Acid from a Boreal Forest Canopy

    Science.gov (United States)

    Schobesberger, Siegfried; Lopez-Hilifiker, Felipe D.; Taipale, Ditte; Millet, Dylan B.; D'Ambro, Emma L.; Rantala, Pekka; Mammarella, Ivan; Zhou, Putian; Wolfe, Glenn M.; Lee, Ben H.; hide

    2016-01-01

    Eddy covariance fluxes of formic acid, HCOOH, were measured over a boreal forest canopy in spring/summer 2014. The HCOOH fluxes were bidirectional but mostly upward during daytime, in contrast to studies elsewhere that reported mostly downward fluxes. Downward flux episodes were explained well by modeled dry deposition rates. The sum of net observed flux and modeled dry deposition yields an upward gross flux of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative soil emissions nor by efficient chemical production from other volatile organic compounds, suggesting missing or greatly underestimated HCOOH sources in the boreal ecosystem. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux and evaluated the updated model against airborne and spaceborne observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, but biases in the free troposphere remain unexplained.

  18. The radiocesium dynamics in the Fukushima forests at the late stage after deposition

    Science.gov (United States)

    Yoschenko, Vasyl; Takase, Tsugiko; Nanba, Kenji; Konoplev, Alexei; Onda, Yuichi

    2017-04-01

    Forests cover about 2/3 of the territory of Areas 2 and 3 in the Fukushima prefecture. This territory was heavily contaminated with radiocesium released from the Fukushima Dai-Ichi Nuclear Power Plant in March 2011. The extensive decontamination measures aimed to prepare the return of population have been scheduled and are being implemented at the agricultural and residential lands at this territory. However, these measures will be not applied in the large scale in the Fukushima forests. The current radiocesium levels in wood at this territory exceed the Japanese standards for wood; thus, after return of population, the Fukushima forests may remain excluded from the economical use. Understanding of the further dynamics of radiocesium in the forest ecosystems is necessary for elaboration of the strategy concerning the radioactive contaminated Fukushima forests. In March 2011 radiocesium was intercepted by the tree canopies and then, at the early stage after the accident, was effectively transported to the soil surface with precipitation and litterfall, and partly translocated to wood forming the current levels. The general trend was the decrease of the radiocesium inventory in the aboveground forest biomass. After redistribution in the root-inhabited soil layer radiocesium became available for uptake into the trees through the roots. From the Chernobyl experience, the further levels of radiocesium in the forest ecosystem compartments at the late stage may increase or decrease depending on the intensities of the root uptake and removal fluxes. In the Fukushima forests, the stage of the root uptake has begun recently, and the parameters of the root uptake have not been studied well for the varieties of species, forest types and soil conditions. Our study is aimed to monitoring and modelling of the radiocesium redistribution in the Fukushima forests after the removal of its initial deposition from the tree canopies. The study has been performed since May 2014 at

  19. A Long-term Forest Fertilization Experiment to Understand Ecosystem Responses to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Baron, J.; Advani, S. M.; Allen, J.; Boot, C.; Denef, K.; Denning, S.; Hall, E.; Moore, J. C.; Reuth, H.; Ryan, M. G.; Shaw, E.

    2016-12-01

    Long-term field experiments can reveal changes in ecosystem processes that may not be evident in short-term studies. Short-term measurements or experiments may have narrower objectives or unrealistic treatments in order to see a change, whereas long-term studies can reveal complex interactions that take longer to manifest. We report results from a long-term experiment (1996 to present) in subalpine forests to simulate the consequences of sustained atmospheric nitrogen (N) deposition. Loch Vale watershed in Rocky Mountain National Park, the location of the experiment, has received an order of magnitude greater atmospheric N deposition than estimated background since mid-20th Century. Augmenting that, in 1996 we began adding 25 kg NH4NO3 ha-1 yr-1 to three 30m x 30m old-growth Engelmann spruce and subalpine fir plots. Treated stands were matched by nearby controls. N addition caused rapid leaching of nitrate and cations from soils, and increased N mineralization and nitrification rates. These observations in the fertilized plots have been sustained over time. Soluble aluminum concentrations do not differ significantly between fertilized and control plots, but treated soils are now markedly more acidic (pH of 4.7) than original soil and controls (pH of 5.1); further acidification might increase aluminum leaching. Effects on soil carbon were complex, mediated by reductions in total microbial biomass, decreases in arbuscular mychorrizal and saprotropic fungi, and increased potential rates of N enzyme degrading activities. Initial soil C:N of 24 was lower than similar soils in low N deposition stands (C:N of 36). The C:N declined to 22 with treatment. Fertilized plots lost 11% soil C, but the mechanism is unclear. We did not measure changes in C inputs from litter, microbial biomass, or plant uptake, but there was no change in summer CO2 flux, measured in 2003, 2004, and 2014. Leaching of DOC from fertilized plots was elevated throughout the experiment, providing one

  20. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    Angehrn-Bettinazzi, C.; Hertz, J.

    1990-01-01

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the L n and L v horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.) [de

  1. Preliminary Response of Soil Fauna to Simulated N Deposition in Three Typical Subtropical Forests

    Institute of Scientific and Technical Information of China (English)

    XU Guo-Liang; MO Jiang-Ming; ZHOU Guo-Yi; FU Sheng-Lei

    2006-01-01

    A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4+ and NO3- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type,and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition.

  2. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    Directory of Open Access Journals (Sweden)

    Sarah E Pabian

    Full Text Available Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  3. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dry deposition of O_3 and SO_2 estimated from gradient measurements above a temperate mixed forest

    International Nuclear Information System (INIS)

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-01-01

    Vertical profiles of O_3 and SO_2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O_3 and SO_2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (V_d) were 0.35 (0.27) and 0.59 (0.54) cm s"−"1, respectively, for O_3 and SO_2. V_d(O_3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s"−"1 in August and the lowest of 0.09 cm s"−"1 in February. In contrast, seasonal variations of V_d(SO_2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s"−"1 (December). The different seasonal variations between O_3 and SO_2 were caused by the enhanced SO_2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of V_d in early morning in summer months for both O_3 and SO_2. Canopy wetness increased the non-stomatal uptake of O_3 while decreasing the stomatal uptake. This also applied to SO_2, but additional factors such as surface acidity also played an important role on the overall uptake. - Highlights: • Application of a modified gradient-method for quantifying dry deposition is demonstrated. • A five-year dry deposition database is developed for O_3 and SO_2 over a mixed forest. • Canopy wetness enhances non-stomatal O_3 uptake while inhibits stomatal uptake. • High surface acidity reduces SO_2 dry deposition. - Capsule: A five-year dataset of O_3 and SO_2 dry deposition velocities was generated from concentration gradient measurement data using a modified gradient method.

  5. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  6. Atmospheric deposition of nitrogen at five subtropical forested sites in South China

    International Nuclear Information System (INIS)

    Chen, Xi Yun; Mulder, Jan

    2007-01-01

    Elevated concentrations of reactive nitrogen (N) in precipitation have been reported for many cities in China. Due to increased use of fossil fuels and expansion in agriculture, further increases in deposition of ammonia (NH x ) and reactive N oxides (NO y ) are predicted. Increased deposition of reactive N is likely to affect N dynamics and N runoff in forest ecosystems. Yet, in China little work has been done to quantify the levels of atmospheric N deposition in such systems. Here, we assess the deposition of inorganic N (ammonium, NH 4 + and nitrate, NO 3 - ) for five subtropical forest ecosystems in remote and urban areas of South China. Annual volume-weighted concentrations in bulk precipitation range from 0.18 to 1.55 mg NH 4 + -N L - 1 and from 0.12 to 0.74 mg NO 3 - -N L - 1 . These values are large and several times greater than those reported for remote sites of the world. The fluxes of total inorganic N (TIN) in wet-only deposition range from 0.8 to 2.3 g N m - 2 yr - 1 , with NH 4 + -N contributing 54% to 77%. Both the tree canopy and the ground vegetation layer are important in determining the net N flux reaching the forest floor, but the net effect varies from site to site. At TieShanPing (TSP), close to Chongqing city, and at CaiJiaTang (CJT), near Shaoshan (Hunan province), the canopy represents a net source of N, probably due to dry deposition. At the other three sites (LiuChongGuan (LCG), LeiGongShan (LGS), both in Guizhou province, and LiuXiHe (LXH) in Guangdong), a net loss of reactive N from precipitation water occurs in the canopy, probably due to uptake processes. The total annual atmospheric TIN load is estimated to range from at least 0.8 g N m - 2 yr - 1 to 4.0 g N m - 2 yr - 1 , with a considerable contribution from dry deposition. Concentrations and fluxes of inorganic N in tree canopy throughfall are greater than those in North America. Also the contribution of NH 4 + -N to TIN fluxes in throughfall (40% to 70%) is greater than in North

  7. Dry deposition of sulfur: a 23-year record for the Hubbard Brook Forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Likens, G E; Eaton, J S [Inst. of Ecosystem Studies, The New York Botanical Garden, NY (US); Bormann, F H [School of Forestry and Environmental Studies Yale Univ., New Haven, CT (US); Hedin, L O [Dept. of Biology, Yale Univ., New Haven, CT (US); Driscoll, C T [Dept. of Civil and Environmental Engineering, Syracuse, NY (US)

    1990-01-01

    Dry deposition of S was estimated for watershed-ecosystems of the Hubbard Brook Experimental Forest from 1964-65 through 1986-87. Two approaches, a regression analysis of bulk precipitation inputs and stream outputs and a mass-balance method, gave similar average values for Watershed 6 430 and 410 eq SO{sub 4}{sup =}/ha-yr, respectively, for this 23-year period. Dry deposition contributed about 37% of total S deposition, varying from 12% in 1964-65 to 61% in 1983-84. Long-term data from 'replicated' watershed-ecosystems showed that temporal variability in estimates of dry deposition was considerably greater than spatial (between watersheds) variability.

  8. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests

    International Nuclear Information System (INIS)

    Fenn, M.E.; Jovan, S.; Yuan, F.; Geiser, L.; Meixner, T.; Gimeno, B.S.

    2008-01-01

    Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO 3 - leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1 kg ha -1 year -1 is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO 3 - leaching were 17 kg N ha -1 year -1 . DayCent estimated that elevated NO 3 - leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance. - Critical loads for N deposition effects on lichens, trees and nitrate leaching provide benchmarks for protecting California forests

  9. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, M.E. [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)], E-mail: mfenn@fs.fed.us; Jovan, S. [USDA Forest Service, Pacific Northwest Research Station, 620 SW Main, Suite 400, Portland, OR 97205 (United States); Yuan, F. [Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721 (United States); Geiser, L. [USDA Forest Service, Pacific Northwest Air Resource Management Program, PO Box 1148, Corvallis, OR 97339 (United States); Meixner, T. [Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721 (United States); Gimeno, B.S. [Ecotoxicology of Air Pollution, CIEMAT (ed. 70), Avda. Complutense 22, 28040 Madrid (Spain)

    2008-10-15

    Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO{sub 3}{sup -} leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1 kg ha{sup -1} year{sup -1} is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO{sub 3}{sup -}leaching were 17 kg N ha{sup -1} year{sup -1}. DayCent estimated that elevated NO{sub 3}{sup -} leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance. - Critical loads for N deposition effects on lichens, trees and nitrate leaching provide benchmarks for protecting California forests.

  10. Leaching of cell wall components caused by acid deposition on fir needles and trees

    Energy Technology Data Exchange (ETDEWEB)

    Shigihara, Ado [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: r200670202@kanagawa-u.ac.jp; Matsumoto, Kiyoshi [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan); Sakurai, Naoki [Faculty of Integrated Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, 739-8521 (Japan); Igawa, Manabu [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)

    2008-07-15

    Virgin fir forests have been declining since the 1960s at Mt. Oyama, which is located at the eastern edge of the Tanzawa Mountains and adjacent to the Kanto plain in Japan. An acid fog frequently occurs in the mountains. We collected throughfall and stemflow under fir trees and rainfall every week during January-December 2004 at Mt. Oyama to clarify the influence of acid fog on the decline of fir (Abies firma) needles. In relation to throughfall and stemflow, D-mannose, D-galactose, and D-glucose are the major neutral sugar components; only D-glucose is a major component of rainfall. The correlation coefficient between the total neutral sugars and uronic acid (as D-galacturonic acid), which is a key component of the cross-linking between pectic polysaccharides, was high except for rainfall. The leached amount of calcium ion, neutral sugars, uronic acid, and boron is related to the nitrate ion concentration in throughfall. Results of a laboratory exposure experiment using artificial fog water simulating the average composition of fog water observed at Mt. Oyama (simulated acid fog: SAF) on the fir seedling needles also shows a large leaching of these components from the cell walls of fir needles. The leaching amount increased concomitantly with decreasing pH of the SAF solution. We also observed that a dimeric rhamnogalacturonan II-borate complex (dRG-II-B) that exists in the cell wall as pectic polysaccharide was converted to monomeric RG-II (mRG-II) by the leaching of calcium ion and boron. Results not only of field observations but also those of laboratory experiments indicate a large effect of acid depositions on fir needles.

  11. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Evans, C. D.; Hofmeister, J.; Krejci, R.; Tahovská, K.; Persson, T.; Cudlín, Pavel; Hruška, J.

    2011-01-01

    Roč. 17, č. 10 (2011), 3115–3129 ISSN 1354-1013 R&D Projects: GA MŠk OC10022 Institutional research plan: CEZ:AV0Z60870520 Keywords : acidification * carbon * deposition * DOC * forest floor * leaching * nitrogen * nitrogen saturation * soil * sulphur Subject RIV: DD - Geochemistry Impact factor: 6.862, year: 2011 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02468.x/pdf

  12. Seasonal measurements of organic acid fluxes over a ponderosa pine forest

    Science.gov (United States)

    Fulgham, S. R.; Brophy, P.; Link, M.; Ortega, J. V.; Farmer, D.

    2016-12-01

    The biosphere acts as both a source and a sink of oxidized organic compounds. Ignoring dry deposition leads to overestimation of secondary organic aerosols by aerosol models, while ignoring emission sources underestimates the budget of organic acids. Developing parameterizations for oxidized organic dry deposition and emission requires observational constraints. Although biosphere parameters are impacted by seasonal variability, most reactive, trace-gas exchange measurements are made for only short periods of time in the main growing season. Here we make fast (5 - 10 Hz) and sensitive (e.g. 0.73 ppt mean limit of detection for formic acid with 10 s averaging) eddy covariance measurements of gas-phase organic acids and other oxidized organic species with a high resolution Time-of-Flight Chemical Ionization Mass Spectrometer with acetate and iodide reagent ions. Measurements were made in 4 - 6 week campaigns over five seasons from summer 2015 to fall 2016 as part of the Seasonal Particles in Forests Flux studY (SPIFFY) at the Manitou Experimental Forest Observatory near Woodland Park, Colorado. Permeation tubes were used for online calibration of carboxylic acids including formic (C1), propionic (C3), butyric (C4), methacrylic (CH2C(CH3)COOH), valeric (C5), and heptanoic (C7) acids. Average daytime mixing ratios for formic acid were 100 ± 100 ppt in winter and 1500 ± 1000 ppt in summer 2016. Upward fluxes of formic acid were observed throughout the experiment, daytime averages and standard deviations ranging from 1900 ± 1000 ppt cm s-1 in winter to 170 ± 130 ppt cm s-1 in spring. Propionic (22 ± 22 ppt cm s-1), butyric (17 ± 16 ppt cm s-1), and methacrylic (3.5 ± 6.1 ppt cm s-1) acids exhibit a mix of upward, near-zero, and downward fluxes. Fluxes were exponentially correlated to temperature, suggesting an ecosystem-scale source of these acids. We also measure exchange velocities of a broad suite of other oxidized organic compounds (31.99 m/z to 311.523 m/z in

  13. Cycling of acid and base cations in deciduous stands of Huntington Forest, New York, and Turkey Lakes, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Foster, N W; Morrison, I K [Forestry Canada, Sault Ste. Marie, ON (Canada); Mitchell, M J [State Univ. of New York, Syracuse, NY (USA); Shepard, J P [National Council of the Paper Industry for Air and Stream Improvement, Gainesville, FL (USA)

    1992-01-01

    Annual nutrient fluxes within two forests exposed to acidic deposition were compared for a 1-year period. Calcium (Ca{sup 2+}) was the dominant cation in throughfall and soil solutions from tolerant hardwood dominated Spodosols (Podzols) at both Huntington Forest (HF), New York, and the Turkey Lakes watershed (TLW), Ontario. There was a net annual export of Ca{sup 2+} and Mg{sup 2+} from the TLW soil, whereas base cation inputs in precipitation equalled outputs at HF. In 1986, leaching losses of base cations were five times greater at TLW than at HF. A higher percentage of the base cation reserves was leached from the soil at TLW (5%) than at HF (1%). Relative to throughfall, aluminum concentrations increased in forest-floor and mineral-soil solutions, especially at HF. The TLW soil appears more sensitive to soil acidification. Deposited atmospheric acidity, however, was small in comparison with native soil acidity (total and exchangeable) and the reserves of base cations in each soil. Soil acidity and base saturation, therefore, are likely only to change slowly. 57 refs., 1 fig., 5 tabs.

  14. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    Directory of Open Access Journals (Sweden)

    Ü. Rannik

    2016-03-01

    Full Text Available A 1-D atmospheric boundary layer (ABL model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading us to assume well-mixed properties of air, the fluxes at the canopy top frequently deviated from deposition inside the forest. This was due to transformation of aerosol concentration throughout the ABL and resulting complicated pattern of vertical transport. Therefore we argue that the comparison of timescales of aerosol dynamics and deposition defined for the processes below the flux measurement level do not unambiguously describe the importance of aerosol dynamics for vertical transport above the canopy. We conclude that under dynamical conditions reported in the current study the micrometeorological particle flux measurements can significantly deviate from the dry deposition into the canopy. The deviation can be systematic for certain size ranges so that the

  15. The role of forest type in the variability of DOC in atmospheric deposition at forest plots in Italy.

    Science.gov (United States)

    Arisci, S; Rogora, M; Marchetto, A; Dichiaro, F

    2012-06-01

    Dissolved organic carbon (DOC) was studied in atmospheric deposition samples collected on a weekly basis in 2005-2009 at 10 forest plots in Italy. The plots covered a wide range of geographical attributes and were representative of the main forest types in Italy. Both spatial and temporal variations in DOC concentrations and fluxes are discussed, with the aim of identifying the main factors affecting DOC variability. DOC concentration increased from bulk to throughfall and stemflow water samples at all sites, as an effect of leaching from leaves and branches, going from 0.7-1.7 mg C L(-1) in bulk samples to 1.8-15.8 mg C L(-1) in throughfall and 4.2-10.7 mg C L(-1) in stemflow, with striking differences among the various plots. Low concentrations were found in runoff (0.5-2.0 mg C L(-1)), showing that the export of DOC via running waters was limited. The seasonality of DOC in throughfall samples was evident, with the highest concentration in summer when biological activity is at a maximum, and minima in winter due to limited DOC production and leaching. Statistical analysis revealed that DOC had a close relationship with organic and total nitrogen, and with nutrient ions, and a negative correlation with precipitation amount. Forest type proved to be a major factor affecting DOC variability: concentration and, to a lesser extent, fluxes were lower in stands dominated by deciduous species. The character of evergreens, and the size and shape of their leaves and needles, which regulate the interception mechanism of dry deposition, are mainly responsible for this.

  16. Steady-state critical loads of acidity for forest soils in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Shaun A. WATMOUGH

    2010-08-01

    Full Text Available There has been growing interest in acid rain research in western Canada where sulphur (S and nitrogen (N emissions are expected to increase during the next two decades. One region of concern is southern British Columbia, specifically the Georgia Basin, where emissions are expected to increase owing to the expansion of industry and urban centres (Vancouver and Victoria. In the current study, weathering rates and critical loads of acidity (S and N for forest soils were estimated at nineteen sites located within the Georgia Basin. A base cation to aluminium ratio of 10 was selected as the critical chemical criterion associated with ecosystem damage. The majority of the sites (58% had low base cation weathering rates (≤50 meq m–2 y–1 based on the PROFILE model. Accordingly, mean critical load for the study sites, estimated using the steady-state mass balance model, ranged between 129–168 meq m–2 y–1. Annual average total (wet and dry S and N deposition during the period 2005–2006 (estimated by the Community Multiscale Air Quality model, exceeded critical load at five–nine of the study sites (mean exceedance = 32–46 meq m–2 y–1. The high-elevation (>1000 m study sites had shallow, acid sensitive, soils with low weathering rates; however, critical loads were predominantly exceeded at sites close to Vancouver under higher modelled deposition loads. The extent of exceedance is similar to other industrial regions in western and eastern Canada.

  17. Spatio-temporal variability of the deposited radioactive materials in forest environments after the Fukushima Daiichi NPP accident

    Science.gov (United States)

    Kato, H.; Onda, Y.; Komatsu, Y.; Yoda, H.

    2012-12-01

    Soil, vegetation and other ecological compartments are expected to be highly contaminated by the deposited radionuclides after the Fukushima Daiichi nuclear power plant (NPP) accident triggered by a magnitude 9.1 earthquake and the resulting tsunami on Marchi 11, 2011. Study site have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. The total deposition of radioactive materials at the study site ranged from 0.02to >10 M Bq/m2 for Cs-137. The mature cedar, young cedar, and broad-leaf stands were selected as experimental site for the monitoring of spatio-temporal variability of the deposited radionuclides after the accidental release of radioactive materials. In order to measure the vertical distribution of radioactivity in forest, a tower with the same height of tree have been established at each experimental site. The measurement of radioactivity by using a portable Ge gamma-ray detector (Detective-DX-100, Ortec) and radionuclide analysis of leaf samples at different height revealed that a large proportion of radionuclides which deposited on forest were trapped by canopies of the cedar forests. In contrast, in the broad-leaf forest highest radioactivity was found at the forest floor. Furthermore, spatio-temporal variability of radioactivity at the forest floor indicated that huge amount of caesium still remains on the canopy of coniferous forest, and subsequently transfers to forest floor in association with throughfall, stemflow, and litter fall.

  18. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    DEFF Research Database (Denmark)

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian

    2016-01-01

    of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport...... of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded...... the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading...

  19. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    International Nuclear Information System (INIS)

    Boggs, Johnny L.; McNulty, Steven G.; Pardo, Linda H.

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling. - Data from the 1999 remeasurement of the red spruce forests suggest that N deposition, to some extent, is continuing to influence red spruce across the northeastern US as illustrated by a significant correlation between N deposition and red spruce foliar %N. Our data also suggest that the decrease in forest floor %N and net nitrification potential across sites from 1987 to 1999 may be due to factors other than N deposition, such as climatic factors and N immobilization in fine woody material (<5 cm diameter)

  20. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    Science.gov (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  1. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis

    International Nuclear Information System (INIS)

    Chapman, Pippa J.; Clark, Joanna M.; Reynolds, Brian; Adamson, John K.

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. - Seasonal variations in soil solution ANC is controlled by seasonal variations in seasalt deposition and production of dissolved organic acids

  2. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  3. Effects of air pollution and simulated acid rain on the ground vegetation of coniferous forests

    International Nuclear Information System (INIS)

    Rodenkirchen, H.

    1993-01-01

    Descriptive and experimental studies on the ground vegetation of coniferous forests in Bavaria indicated the following phenomena: a. In N-limited pine forests recent eutrophication effects occur. b. The structure of the moss layer in coniferous forests sensitively reacts to very acid throughfall water (pH [de

  4. Atmospheric dry and wet deposition of sulphur and nitrogen species and assessment of critical loads of acidic deposition exceedance in South Africa

    Directory of Open Access Journals (Sweden)

    Stuart J. Piketh

    2011-03-01

    Full Text Available We tested the hypothesis that acidic atmospheric pollution deposition, originating from the South African central industrial area, poses an environmental threat across a larger region within the dispersal footprint. A network of 37 passive monitoring sites to measure SO2 and NO2 was operated from August 2005 to September 2007. The area extended over the entire northern and eastern interior of South Africa. Monitoring locations were chosen to avoid direct impacts from local sources such as towns, mines and highways. Dry deposition rates of SO2 and NO2 were calculated from the measured concentrations. Concentrations of sulphur and nitrogen species in wet deposition from a previous study were used in conjunction with measured rainfall for the years 2006 and 2007 to estimate the wet deposition over the region. The calculated total (non-organic acidic deposition formed the basis for an assessment of exceedance of critical loads based on sensitivity of the regional soils. Regional soil sensitivity was determined by combining two major soil attributes available in the World Inventory of Soil Emission Potentials (International Soil Reference and Information Centre. Results indicate that certain parts of the central pollution source area on the South African Highveld have the potential for critical load exceedance, while limited areas downwind show lower levels of exceedance. Areas upwind and remote areas up and downwind, including forested areas of the Drakensberg escarpment, do not show any exceedance of the critical loads.

  5. Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars

    Science.gov (United States)

    Battler, Melissa M.; Osinski, Gordon R.; Lim, Darlene S. S.; Davila, Alfonso F.; Michel, Frederick A.; Craig, Michael A.; Izawa, Matthew R. M.; Leoni, Lisa; Slater, Gregory F.; Fairén, Alberto G.; Preston, Louisa J.; Banerjee, Neil R.

    2013-06-01

    Surficial deposits of the OH-bearing iron sulfate mineral jarosite have been observed in several places on Mars, such as Meridiani Planum and Mawrth Vallis. The specific depositional conditions and mechanisms are not known, but by comparing martian sites to analogous locations on Earth, the conditions of formation and, thus, the martian depositional paleoenvironments may be postulated. Located in a cold semi-arid desert ˜100 km east of Norman Wells, Northwest Territories, Canada, the Golden Deposit (GD) is visible from the air as a brilliant golden-yellow patch of unvegetated soil, approximately 140 m × 50 m. The GD is underlain by permafrost and consists of yellow sediment, which is precipitating from seeps of acidic, iron-bearing groundwater. On the surface, the GD appears as a patchwork of raised polygons, with acidic waters flowing from seeps in troughs between polygonal islands. Although UV-Vis-NIR spectral analysis detects only jarosite, mineralogy, as determined by X-ray diffraction and inductively coupled plasma emission spectrometry, is predominantly natrojarosite and jarosite, with hydronium jarosite, goethite, quartz, clays, and small amounts of hematite. Water pH varies significantly over short distances depending on proximity to acid seeps, from 2.3 directly above seeps, to 5.7 several m downstream from seeps within the deposit, and up to 6.5 in ponds proximal to the deposit. Visual observations of microbial filament communities and phospholipid fatty acid analyses confirm that the GD is capable of supporting life for at least part of the year. Jarosite-bearing sediments extend beneath vegetation up to 70 m out from the deposit and are mixed with plant debris and minerals presumably weathered from bedrock and glacial till. This site is of particular interest because mineralogy (natrojarosite, jarosite, hematite, and goethite) and environmental conditions (permafrost and arid conditions) at the time of deposition are conceivably analogous to jarosite

  6. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also

  7. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  8. Long-term changes in acidity and DOC in throughfall and soil water in Finnish forests.

    Science.gov (United States)

    Ukonmaanaho, Liisa; Starr, Mike; Lindroos, Antti-Jussi; Nieminen, Tiina M

    2014-11-01

    The main objective of this study was to examine if any detectable trends in dissolved organic carbon (DOC), sulphate (SO4-S) concentrations and acid neutralizing capacity (ANC) in throughfall (TF) and soil water (SW) could be found during 1990-2010 and to relate them to recent changes in decreased acid deposition. The study was conducted in seven boreal coniferous forest sites: four of which are managed and three unmanaged forests sites. Generally, temporal trend showed a significant decrease in SO4-S concentrations in bulk precipitation (BP), TF and SW. At some of the sites, there was an increasing tendency in BP and TF in the DOC concentrations. This feature coincides with decreasing SO4-S concentration, indicating that SO4-S may be an important driver of DOC release from the canopy. However, a slightly increased temperature, larger senescing needle mass and consequently increased decaying activity in the canopy may partly explain the increasing trend in DOC. In SW, no consistent DOC trend was seen. At some sites, the decreased base cation concentrations mostly account for the decrease in the ANC values in SW and TF.

  9. Just passing through --- high Hg deposition to Puerto Rico forest moves quickly off the landscape

    Science.gov (United States)

    Shanley, J. B.; Willenbring, J. K.; Kaste, J. M.; Occhi, M.; McDowell, W. H.

    2012-12-01

    Atmospheric mercury (Hg) in wet deposition at the Luquillo Experimental Forest in northeastern Puerto Rico, averages 28 μg m-2 yr-1, higher than any site in the USA Mercury Deposition Network. Despite the high deposition, Hg content of soils, vegetation, and biota are below global averages. The low Hg content of watershed surfaces, coupled with exceptionally high stream total Hg flux, suggest that most of the Hg passes through the watershed with minimal retention. We assessed Hg dynamics in two adjacent watersheds, Rio Icacos underlain by quartz diorite, and Rio Mameyes underlain by volcaniclastic rocks. At both sites, high-flow Hg concentrations approached 100 ng L-1, dominated by particulate Hg. In order to assess the apparent pass-through nature of Hg in this tropical forest, we measured 7Be and 10Be isotopes from natural, cosmogenic fallout adsorbed on stream suspended particles to constrain the Hg age /residence time and source (atmospheric vs. geogenic or legacy Hg from 19th century gold mining). Ubiquitous 7Be (half-life 53 days) and relatively high 7Be/10Be ratios on suspended particles suggest that stream Hg was dominated by erosion from exposed surfaces, supporting a short residence time. The low watershed retention of the high Hg throughput limits adverse biological effects in this tropical ecosystem.

  10. Expanding atmospheric acid deposition in China from the 1990s to the 2010s

    Science.gov (United States)

    Yu, Haili; Wang, Qiufeng

    2017-04-01

    Atmospheric acid deposition is considered a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to be more serious with the country's economic development and increasing consumption of fossil fuels in recent decades. By collecting nationwide data on pH and concentrations of sulfate (SO42-) and nitrate (NO3-) in precipitation between 1980 and 2014 in China, we explored the spatiotemporal variations of precipitation acid deposition (bulk deposition) and their influencing factors. Our results showed that average precipitation pH values were 4.86 and 4.84 in the 1990s and 2010s, respectively. This suggests that precipitation acid deposition in China has not seriously changes. Average SO42- deposition declined from 30.73 to 28.61 kg S ha-1 yr-1 but average NO3- deposition increased from 4.02 to 6.79 kg N ha-1 yr-1. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of decreasing pollutant emissions, whereas the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Significant positive correlations have been found between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and reduce pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.

  11. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    Science.gov (United States)

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺.

  12. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  13. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    Science.gov (United States)

    Johnny L. Boggs; Steven G. McNulty; Linda H. Pardo

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999...

  14. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    Science.gov (United States)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  15. Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest.

    Science.gov (United States)

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-03-01

    Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s(-1), respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s(-1) in August and the lowest of 0.09 cm s(-1) in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s(-1) (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Litterfall mercury deposition in Atlantic forest ecosystem from SE – Brazil

    International Nuclear Information System (INIS)

    Teixeira, Daniel C.; Montezuma, Rita C.; Oliveira, Rogério R.; Silva-Filho, Emmanoel V.

    2012-01-01

    Litterfall is believed to be the major flux of Hg to soils in forested landscapes, yet much less is known about this input on tropical environment. The Hg litterfall flux was measured during one year in Atlantic Forest fragment, located within Rio de Janeiro urban perimeter, in the Southeastern region of Brazil. The results indicated a mean annual Hg concentration of 238 ± 52 ng g −1 and a total annual Hg deposition of 184 ± 8.2 μg m −2 y −1 . The negative correlation observed between rain precipitation and Hg concentrations is probably related to the higher photosynthetic activity observed during summer. The total Hg concentration in leaves from the most abundant species varied from 60 to 215 ng g −1 . Hg concentration showed a positive correlation with stomatal and trichomes densities. These characteristics support the hypothesis that Tropical Forest is an efficient mercury sink and litter plays a key role in Hg dynamics. - Highlights: ► The litter production from an Atlantic Forest was measured by one year. ► Concentration and flux of mercury was measured from these litter samples. ► The Hg concentrations from 5 trees were taken. ► Correlations between the data found and meteorological and anatomical plant parameters were confronted. ► The high Hg values found and their distribution points to a great sequester potential from this biome. - Hg high values in litter are a pattern found at Tropical Forest, it seems to be correlated with physio-anatomical plant characteristics from this biome.

  17. The dependence of natural regeneration of forest trees on upper soil conditions and acidity at damaged sites in the Black Forest, Germany

    International Nuclear Information System (INIS)

    Littek, T.

    1993-06-01

    It was the goal of this study to investigate the influence of different upper soil conditions on the germination and establishment, as well as the growth, of young plants of various tree species. For this purpose, four test plots in the region of the Black Forest were laid out, in which, by various means of site preparation and fertilization, the upper soils were changed. Natural seeding of common spruce, European silver-fir, beech, sycamore maple, European mountainash, and grey alder was simulated by means of controlled sowing. For comparison, a greenhouse experiment was carried out, examining the germination and development of the same tree species in various soil substrata, using different fertilizers, and under the influence of artificial acid rain. The most important results - with a high level of variation depending on the tree species examined - can be summarized as follows: Based on the results of field and greenhouse experiments, as well as on the investigations of other authors, it can be concluded that natural regeneration of forest stands is considerably impeded under conditions of increasing soil acidity and by high acid depositions. This is seen directly as the result of unfavorable chemical conditions in the upper soil, as well as indirectly due to deteriorating competitiveness against other vegetation. Site preparation and lime or dolomite fertilization can be important measures in the practice of forestry, to encourage natural regeneration in highly acidic sites with an unfavourable humus layer and a high presence of competing vegetation. (orig./UWA). 2 figs., 85 tabs., 269 refs [de

  18. Nitrogen retention in contrasting temperate forests exposed to high nitrogen deposition

    Science.gov (United States)

    Staelens, J.; Adriaenssens, S.; Wuyts, K.; Verheyen, K.; Boeckx, P. F.

    2011-12-01

    A better understanding of factors affecting nitrogen (N) retention is needed to assess the impact of changing anthropogenic N emissions and climatic conditions on N cycling and N loss by terrestrial ecosystems. Retention of N has been demonstrated for a wide range of forests, including ecosystems exposed to chronically enhanced N deposition, but it is still unclear which factors determine this N retention capacity. Therefore, we examined the possible effects of forest type on N retention using stable N isotopes. The study was carried out in adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) stands with a similar stand history and growing on a well-drained sandy soil in a region with enhanced N deposition (Belgium). The N input-output budgets and gross soil N transformation rates differed significantly between the two stands. The forest floor was exposed to a high inorganic N input from atmospheric deposition, which was nearly twice as high in the pine stand (33 ± 2 kg N ha-1 yr-1; mean ± standard error) as in the oak stand (18 ± 1 kg N ha-1 yr-1). The N input was reflected in the soil solution under the rooting zone, but the mean nitrate concentration was eight times higher under pine (19 ± 5 mg N L-1) than under oak (2.3 ± 0.9 mg N L-1). Gross N dynamics in the mineral topsoil were determined by in situ 15N labelling of undisturbed soil cores combined with numerical data analysis. Gross N mineralization was two times faster in the oak soil while nitrate production was two times faster in the pine soil, indicating a dominant effect of vegetation cover on soil N cycling. The higher gross nitrification, particularly due to oxidation of organic N, in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, was in line with the higher nitrate leaching under the pine forest. On a larger spatial and temporal scale, the fate of dissolved inorganic N within these forests

  19. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    Science.gov (United States)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  20. Microbial activity in an acid resin deposit: Biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination

    International Nuclear Information System (INIS)

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-01-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. - Acidity is the major toxic factor of the extremely hydrophobic and acidic mixed contamination found in an acid resin deposit

  1. Development of atmospheric acid deposition in China from the 1990s to the 2010s

    International Nuclear Information System (INIS)

    Yu, Haili; He, Nianpeng; Wang, Qiufeng; Zhu, Jianxing; Gao, Yang; Zhang, Yunhai; Jia, Yanlong; Yu, Guirui

    2017-01-01

    Atmospheric acid deposition is a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to become more severe with the country's economic development and increasing consumption of fossil fuels in recent decades. We explored the spatiotemporal variations of acid deposition (wet acid deposition) and its influencing factors by collecting nationwide data on pH and concentrations of sulfate (SO 4 2− ) and nitrate (NO 3 − ) in precipitation between 1980 and 2014 in China. Our results showed that average precipitation pH values were 4.59 and 4.70 in the 1990s and 2010s, respectively, suggesting that precipitation acid deposition in China has not seriously worsened. Average SO 4 2− deposition declined from 40.54 to 34.87 kg S ha −1 yr −1 but average NO 3 − deposition increased from 4.44 to 7.73 kg N ha −1 yr −1 . Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of controlling the pollutant emissions; but the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Furthermore, we found significant positive correlations between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a relatively comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and control pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions. - Highlights: • Explore spatial and temporal dynamics of wet acid deposition during three decades in China. • Acid

  2. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong [School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Boo, Jin-Hyo, E-mail: byunghee@skku.edu, E-mail: boong33@skku.edu [Department of Chemistry, RIAN and Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-03-04

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  3. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Hyeongkeun; Park, Young Chul; Chun, Kyoung-Yong; Kim, Young-Jin; Choi, Jae-Boong; Kim, Keun Soo; Kang, Junmo; Hong, Byung Hee; Boo, Jin-Hyo

    2011-01-01

    We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.

  4. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle.

    Science.gov (United States)

    Gundale, Michael J; From, Fredrik; Bach, Lisbet H; Nordin, Annika

    2014-01-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr ) deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr deposition are scarce. Using a long-term (14-year) stand-scale (0.1 ha) N addition experiment (three levels: 0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit nonlinear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A (15) N labeling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (ca. 8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg(-1)  N. While canopy retention of Nr deposition may cause C sequestration rates to be slightly different than this estimate, our data suggest that a minor quantity of annual anthropogenic CO2 emissions are sequestered into boreal forests as a result of Nr deposition. © 2013 John Wiley & Sons Ltd.

  5. Nitrogen Deposition and Leaching from Two Forested Catchments in Southwest China — Preliminary Data and Research Needs

    Directory of Open Access Journals (Sweden)

    T. Larssen

    2001-01-01

    Full Text Available Increased nitrogen deposition has resulted in increased nitrogen pools and nitrogen leaching in European and North American forest soils. The development in Asia in general, and China in particular, suggests increased deposition of reduced nitrogen from changes in agricultural practices and of oxidized nitrogen from rapid growth of the transportation sector. Decreased nitrogen retention in forested areas in the future may cause increased NO3– leaching and, thus, acidification and eutrophication in surface waters. The differences in climate, ecosystems, land use, and deposition history make direct application of knowledge from studies in Europe and North America difficult. In Southwest China the potential for nitrogen mobilization from forest soils may be high because of the warm and humid climate, resulting in high decomposition rates of soil organic matter. However, there are very few data available for quantifying the suspected potential for increased nitrogen leaching in forest ecosystems. Here we present data from two forested catchments, dominated by Masson pine (Pinus massoniana, near Guiyang and Chongqing, respectively, in Southwest China. The present nitrogen deposition is moderate, estimated in the range from 10 to 40 kg N ha–1 year–1. The C/N ratios of the soils are generally below 15. Nitrate concentrations in soil water are rather variable in space, with highest values of several hundred microequivalents per liter. The turnover rate of nitrogen in the forest ecosystem is quite high compared to the atmospheric deposition rate. At present, nitrate runoff from the catchments is low and intermediate in Guiyang and Chongqing, respectively. More research is needed to improve our ability to predict future nitrogen leaching from subtropical Asian coniferous forests.

  6. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    International Nuclear Information System (INIS)

    Stevens, Carly J.; Dupre, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Gowing, David J.G.; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J. Owen; Vandvik, Vigdis

    2011-01-01

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha -1 yr -1 ) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: → N deposition is negatively correlated with forb richness as a proportion of species richness. → Soil C:N ratio increased with increasing N deposition. → Soil extractable nitrate and ammonium were not related to nitrogen deposition. → Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  7. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Carly J., E-mail: c.j.stevens@open.ac.uk [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Dupre, Cecilia [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Dorland, Edu [Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, PO Box 80.058, 3508 TB Utrecht (Netherlands); Gaudnik, Cassandre [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Gowing, David J.G. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bleeker, Albert [Department of Air Quality and Climate Change, Energy Research Centre of the Netherlands, PO Box 1, 1755 ZG Petten (Netherlands); Diekmann, Martin [Institute of Ecology, FB 2, University of Bremen, Leobener Str., DE-28359 Bremen (Germany); Alard, Didier [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Bobbink, Roland [B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen (Netherlands); Fowler, David [NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Corcket, Emmanuel [University of Bordeaux 1, UMR INRA 1202 Biodiversity, Genes and Communities, Equipe Ecologie des Communautes, Batiment B8 - Avenue des Facultes, F-33405 Talence (France); Mountford, J. Owen [NERC Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Vandvik, Vigdis [Department of Biology, University of Bergen, Box 7800, N-5020 Bergen (Norway)

    2011-10-15

    A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha{sup -1} yr{sup -1}) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate. - Highlights: > N deposition is negatively correlated with forb richness as a proportion of species richness. > Soil C:N ratio increased with increasing N deposition. > Soil extractable nitrate and ammonium were not related to nitrogen deposition. > Plant-tissue N content was not a good indicator of N deposition. - Atmospheric nitrogen deposition affects soils, plant-tissue chemistry and plant species composition in acid grasslands in the Atlantic biogeographic region of Europe.

  8. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  9. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Science.gov (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  10. Effects of decreasing acid deposition and climate change on acid extremes in an upland stream

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2008-03-01

    Full Text Available This study assesses the major chemical processes leading to acid extremes in a small, moorland stream in mid-Wales, UK, which has been monitored since 1979. Results suggest that base cation (mainly calcium dilution, the "sea-salt effect", and elevated nitrate pulses, are the major causes of seasonal/episodic minima in acid neutralising capacity (ANC, and that the relative importance of these drivers has remained approximately constant during 25 years of decreasing acid deposition and associated long-term chemical recovery. Many of the chemical variations causing short-term reductions in stream acidity, particularly base cation dilution and organic acid increases, are closely related to changes in water-flowpath and therefore to stream discharge. Changes in the observed pH-discharge relationship over time indicate that high-flow pH has increased more rapidly than mean-flow pH, and therefore that episodes have decreased in magnitude since 1980. However a two-box application of the dynamic model MAGIC, whilst reproducing this trend, suggests that it will not persist in the long term, with mean ANC continuing to increase until 2100, but the ANC of the upper soil (the source of relatively acid water during high-flow episodes stabilising close to zero beyond 2030. With climate change predicted to lead to an increase in maximum flows in the latter half of the century, high-flow related acid episodes may actually become more rather than less severe in the long term, although the model suggests that this effect may be small. Two other predicted climatic changes could also detrimentally impact on acid episodes: increased severity of winter "sea-salt" episodes due to higher wind speeds during winter storms; and larger sulphate pulses due to oxidation of reduced sulphur held in organic soils, during more extreme summer droughts. At the Gwy, the near-coastal location and relatively small extent of peat soils suggest that sea-salt episodes may have the

  11. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    Science.gov (United States)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its

  12. Proceedings from the conference on the ecology and management of high-elevation forests in the central and southern Appalachian Mountains

    Science.gov (United States)

    James S. Rentch; Thomas M. Schuler

    2010-01-01

    The proceedings includes 18 peer-reviewed papers and 41 abstracts pertaining to acid deposition and nutrient cycling, ecological classification, forest dynamics, avifauna, wildlife and fisheries, forests pests, climate change, old-growth forest structure, regeneration, and restoration.

  13. Handbook of methods for acid-deposition studies. Laboratory analyses for soil chemistry

    International Nuclear Information System (INIS)

    Blume, L.J.; Schumacher, P.W.; Schaffer, K.A.; Cappo, K.A.; Papp, M.L.

    1990-09-01

    The handbook describes methods used to process and analyze soil samples. It is intended as a guidance document for groups involved in acid deposition monitoring activities similar to those implemented by the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. These methods were developed for use in the Direct/Delayed Response Project, a component project of the Aquatic Effects Research Program within the Office of Ecological Processes and Effects Research. The program addresses the following issues relating to the effects of acid deposition on aquatic ecosystems: The extent and magnitude of past change; The change to be expected in the future under various deposition scenarios; The maximum rates of deposition below which further change is not expected; and The rate of change or recovery of aquatic ecosystems if deposition rates are decreased. Chemical and physical parameters were measured during the Direct/Delayed Response Project and are described in the document

  14. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria; Livi, Sebastien; Hayrapetyan, Suren; Wang, Yue; Estevez, Luis; Vittoria, Vittoria; Giannelis, Emmanuel P.

    2013-01-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged

  15. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    Science.gov (United States)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  16. Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees

    Science.gov (United States)

    Pamela E. Padgett; Hillary Cook; Andrzej Bytnerowicz; Robert L. Heath

    2009-01-01

    Dry deposition of nitric acid vapor (HNO(3)) is a major contributor to eutrophication of natural ecosystems. Although soil fertilization by nitrogen deposition is considered to be the primary pathway for changes in plant nutrient status and shifts in ecological structure, the aerial portion of plants offer many times the surface area in which to...

  17. Interferon Action on Parental Semliki Forest Virus Ribonucleic Acid

    Science.gov (United States)

    Friedman, Robert M.; Fantes, Karl H.; Levy, Hilton B.; Carter, William B.

    1967-01-01

    Actinomycin D-treated chick fibroblasts were infected with purified 32P-labeled Semliki forest virus, and ribonucleic acid (RNA) was extracted after 1 or 2 hr. Within 1 hr, viral RNA forms sedimenting in sucrose gradients at 42S, 30S, and 16S were present. The 42S form corresponded to the RNA of the virion. The 16S form appeared to be a double-stranded template for the formation of new viral RNA, since nascent RNA was associated with it and the molecule could be heat-denatured and subsequently reannealed by slow cooling. Interferon treatment before infection, or puromycin (50 μg/ml) or cycloheximide (200 μg/ml) added at the time of virus infection, had no effect on the formation of the 30S RNA but inhibited the production of the 16S form. Several findings made it unlikely that these results were due to breakdown of parental RNA and reincorporation of 32P into progeny structures. The results suggested that the mechanism of interferon action involves inhibition of protein synthesis by parental viral RNA, since a specific viral RNA polymerase had previously been demonstrated to be necessary for production of 16S RNA. No protein synthesis appears necessary for formation of 30S RNA from parental virus RNA. PMID:5621488

  18. Proportion of root-derived acid phosphomonoesterase in total soil acid phosphomonoesterase in different forests

    Directory of Open Access Journals (Sweden)

    Ladislav Holík

    2011-01-01

    Full Text Available Enzyme acid phosphomonoesterase (APM plays an important role in phosphorus mineralization in different type of terrestrial ecosystems. This enzyme is of great agronomic significance because it hydrolyses organic phosphorus to different forms of inorganic phosphorus which are assimilable by plants. APM may also indicate changes in the quantity and quality of phosphorylated substrates in soil and is a good indicator of its biological state as well as presence of pollutants. APM may be produced by plant roots and soil microorganisms and both of these sources may play different role in phosphorus mineralization in different ecosystems. The aim of this work was determine acid phosphomonoesterase (APM activity location in soil of different forest ecosystems. The APM activity location determination was performed on the basis of root-derived and soil-derived APM and expression of proportion of those root-derived in total soil APM up to 13 cm depth. The results of this preliminary study showed that root-derived APM formed 21–34 % of total soil APM in pine and oak forest.

  19. Air Pollution, Acid Rain, and the Future of Forests. Worldwatch Paper 58.

    Science.gov (United States)

    Postel, Sandra

    This book traces centuries of human use and abuse of forest ecosystems by discussing past decades of intense burning, grazing, and timber cutting that added to the natural acidification of the soil. Air pollutants and acids generated by industrial activities worldwide are also considered. Many forests in Europe and North America now receive as…

  20. Respiration rates in forest soil organic horizon materials treated with simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Salonius, P O

    1990-01-01

    The entire organic horizon above the mineral soil was collected under a mature black spruce (Picea mariana) stand in central New Brunswick. The organic horizon consisted of litter, fermentation, and humus layers of 1.5, 4.0, and 1.0 cm depths respectively. In concert with a series of simulated rain experiments, which dealt with the effects of acid precipitation of pH 4.6, 3.6, and 2.6 compared with controls at pH 5.6 on germination and early growth of forest tree seedlings, 30 randomly distributed, unplanted tubes in each rain chamber were exposed to treatment during each of the 5-week treatments of the various tree species. During the experiments, ca 315 mm of simulated rain was deposited on the soil surfaces in the tube containers. Marked decreases in soil microbial activity were found only with pH 2.6 rain, but responsiveness to increasing temperature was lower as rain of greater acidity was applied to the soil. Ammonium nitrogen mineralization rates were not affected by treatment of soil with acidified precipitation. 26 refs., 3 figs., 1 tab.

  1. Acidic deposition along the Appalachian Trail corridor and its effects on acid-sensitive terrestrial and aquatic resources

    Science.gov (United States)

    Lawrence, Gregory B.; Sullivan, Timothy J.; Burns, Douglas A.; Bailey, Scott W.; Cosby, Bernard J.; Dovciak, Martin; Ewing, Holly A.; McDonnell, Todd C.; Minocha, Rakesh; Riemann, Rachel; Quant, Juliana; Rice, Karen C.; Siemion, Jason; Weathers, Kathleen C.

    2015-01-01

    The Appalachian National Scenic Trail (AT), a unit of the National Park Service (NPS), spans nearly 2,200 miles from Georgia to Maine, encompassing a diverse range of ecosystems. Acidic deposition (acid rain) threatens the AT’s natural resources. Acid rain is a result of sulfur (S) and nitrogen (N) compounds produced from fossil fuel combustion, motor vehicles, and agricultural practices. The AT is particularly vulnerable to S and N because it passes along ridgetops that receive higher levels of acid rain than lower valley terrain, and these ridges are often underlain by bedrock with minimal ability to buffer acidic inputs. Further, there are numerous S and N emission sources across the region. In the environment, acidic deposition can lower the pH of streams and soils which can ultimately affect fish, invertebrates, and vegetation that inhabit these areas. To address this concern, the MegaTransect Deposition Effects Study evaluated the condition and sensitivity of the AT corridor with respect to acidic deposition, and defined air pollution thresholds (critical and target loads) and recovery rates. Findings indicate that additional S emission

  2. Validation of chemical analyses of atmospheric deposition in forested European sites

    Directory of Open Access Journals (Sweden)

    Erwin ULRICH

    2005-08-01

    Full Text Available Within the activities of the Integrated Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests and of the EU Regulation 2152/2003, a Working Group on Quality Assurance/Quality Control of analyses has been created to assist the participating laboratories in the analysis of atmospheric deposition, soil and soil solution, and leaves/needles. As part of the activity of the WG, this study is a statistical analysis in the field of water analysis of chemical concentrations and relationships between ions, and between conductivity and ions for different types of samples (bulk or wet-only samples, throughfall, stemflow considered in forest studies. About 5000 analyses from seven laboratories were used to establish relationships representative of different European geographic and climatic situations, from northern Finland to southern Italy. Statistically significant differences between the relationships obtained from different types of solutions, interacting with different types of vegetation (throughfall and stemflow samples, broad-leaved trees and conifers and with varying influence of marine salt were tested. The ultimate aim is to establish general relationships between ions, and between conductivity and ions, with relative confidence limits, which can be used as a comparison with those established in single laboratories. The use of such techniques is strongly encouraged in the ICPF laboratories to validate single chemical analyses, to be performed when it is still possible to replicate the analysis, and as a general overview of the whole set of analyses, to obtain an indication of the laboratory performance on a long-term basis.

  3. Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi; Hisadome, Keigo; Loffredo, Nicolas; Kawamori, Ayumi

    2017-01-01

    In this study, we investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Dai-ichi Nuclear Power Plant accident. The 137 Cs content of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantations of Japanese cedar) and a deciduous mixed broad-leaved forest stand (oak with red pine) from July 2011 to December 2012. The forest floor of cedar stands had received higher levels of additional 137 Cs deposition compared with the mixed broad-leaved stand during the sampling period. The cumulative 137 Cs deposition during the study period was 119 kBq m -2 for the mature cedar stand, 105 kBq m -2 for the young cedar stand, and 41.5 kBq m -2 for the broad-leaved stand. The deposition of 137 Cs to the forest floor occurred mainly in throughfall during the first rainy season, from July to September 2011 (<200 d after the initial fallout); thereafter, the transfer of 137 Cs from the canopy to forest floor occurred mainly through litterfall. A double exponential field-loss model, which was used to simulate the removal of 137 Cs from canopies, was the best fit for the temporal changes in the canopy 137 Cs inventory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Potential research money available from the Acid Deposition Program and Alberta Environment

    International Nuclear Information System (INIS)

    Primus, C.L.

    1992-01-01

    It is exceedingly difficult to demonstrate definitive long-term changes in animal health as a result of acid-forming emissions from sour gas wells. A summary is presented of current research in Alberta, followed by the potential for research funding by the Alberta Government/Industry Acid Deposition Program (ADRP). The Alberta Environment research budget consists of four programs in addition to the ADRP: acid deposition effects research in the Athabasca oil sands; western and northern Canada long-range transport of air pollutants; departmental monitoring; and inhalation toxicology and animal health. Animal health research, although a component of the acid deposition issue, is beyond the mandate of Alberta Environment, and the ADRP members committee does not forsee becoming involved in the long-term and complex research required to address the effects of acid-forming emissions on livestock. Funds for additional animal health research must come from other government departments and agencies whose mandate covers this area

  5. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  6. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  7. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition

    International Nuclear Information System (INIS)

    Xu Guoliang; Schleppi, Patrick; Li Maihe; Fu Shenglei

    2009-01-01

    The response of specific groups of organisms, like Collembola to atmospheric nitrogen (N) deposition is still scarcely known. We investigated the Collembola community in a subalpine forest (Alptal, Switzerland) as subjected for 12 years to an experimentally increased N deposition (+25 on top of ambient 12 kg N ha -1 year -1 ). In the 0-5 cm soil layer, there was a tendency of total Collembola densities to be lower in N-treated than in control plots. The density of Isotomiella minor, the most abundant species, was significantly reduced by the N addition. A tendency of lower Collembola group richness was observed in N-treated plots. The Density-Group index (d DG ) showed a significant reduction of community diversity, but the Shannon-Wiener index (H') was not significantly affected by the N addition. The Collembola community can be considered as a bioindicator of N inputs exceeding the biological needs, namely, soil N saturation. - Collembola community, which was significantly affected by a long-term N addition experiment, can be considered as a bioindicator of N saturation.

  8. Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guoliang, E-mail: xugl@scbg.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Schleppi, Patrick; Li Maihe [Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf (Switzerland); Fu Shenglei, E-mail: sfu@scib.ac.c [Institute of Ecology, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 (China)

    2009-07-15

    The response of specific groups of organisms, like Collembola to atmospheric nitrogen (N) deposition is still scarcely known. We investigated the Collembola community in a subalpine forest (Alptal, Switzerland) as subjected for 12 years to an experimentally increased N deposition (+25 on top of ambient 12 kg N ha{sup -1} year{sup -1}). In the 0-5 cm soil layer, there was a tendency of total Collembola densities to be lower in N-treated than in control plots. The density of Isotomiella minor, the most abundant species, was significantly reduced by the N addition. A tendency of lower Collembola group richness was observed in N-treated plots. The Density-Group index (d{sub DG}) showed a significant reduction of community diversity, but the Shannon-Wiener index (H') was not significantly affected by the N addition. The Collembola community can be considered as a bioindicator of N inputs exceeding the biological needs, namely, soil N saturation. - Collembola community, which was significantly affected by a long-term N addition experiment, can be considered as a bioindicator of N saturation.

  9. Input-output balances of acids, heavy metals and nutrients, and compartments of accumulation and depletion in forest ecosystems

    International Nuclear Information System (INIS)

    Mayer, R.

    1989-01-01

    Forest damage and decline are the consequence of several stress factors acting upon forest ecosystems in various combinations and degrees. Impact of atmospheric pollutants is certainly one of the most prominent of these factors. Regional comparion is facilitated by considering groups of atmospheric substances. We distinguish: 1. Acids and acidifying substances, 2. Heavy metals and 3. Nutrients: N, P, K, Ca, Mg, S. Forest decline has to be recognized as an expression of changes within the forest ecosystem, changes which must be accompanied by a non-steady state of the material balance. The best way to investigate changes in the material balance is to look at input and output of matter to the ecosystems. A positive balance (input > output) over a period of more than one year means accumulation, negative balance (input < output) means depletion of a substance. Based upon several case studies (Subjects I, K), we come to a typification of the material balance at any individual site which is defined by the immission/deposition situation on the one hand, by the geological-pedological site characteristics on the other hand. (orig.VT)

  10. The smog-fog-smog cycle and acid deposition

    Science.gov (United States)

    Pandis, Spyros N.; Seinfeld, John H.; Pilinis, Christodoulos

    1990-10-01

    A model including descriptions of aerosol and droplet microphysics, gas and aqueous-phase chemistry, and deposition is used to study the transformation of aerosol to fog droplets and back to aerosol in an urban environment. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium and well as in the total aerosol mass concentration. The sulfate produced during fog episodes favors the aerosol particles that have access to most of the fog liquid water which are usually the large particles. Aerosol scavenging efficiencies of around 80 percent are calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition and can introduce errors in the reported values of the ionic species deposition velocities. Differences in the major ionic species deposition velocities can be explained by their distribution over the droplet size spectrum and can be correlated with the species average diameter. Two different expressions are derived for use in fog models for the calculation of the liquid water deposition velocity during fog growth and dissipation stages.

  11. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  12. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  13. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  14. Influence of containing of asphaltenes and naphthenic acids over organic deposition inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Geiza E.; Mansur, Claudia R.E.; Pires, Renata V.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Alvares, Dellyo R.S.; Gonzalez, Gaspar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Organic deposition is a serious problem confronted by the petroleum industry in Brazil and worldwide. Among the main petroleum components that may cause deposition problems are waxes and asphaltenes. This work aims at evaluating the influence of petroleum fractions (asphaltenes and naphthenic acids) on the organic deposition phenomenon as well as on organic deposition inhibitors performance. The influence of the organic fractions was evaluated by their ability to change wax crystals, to lower the pour point and to alter the initial wax appearance temperature. The efficiency of the additives was tested by pour point measurements. The results show that asphaltenes seem to act as organic deposition inhibitors, while naphthenic acids do not significantly change the system. Moreover, employing both of them produces no synergic effect. Among polymeric inhibitors, all of the chemically modified EVA copolymer presented better results than the non-modified commercial EVA copolymer. The best result was observed for EVA28C{sub 16}. (author)

  15. Impact of acid atmosphere deposition on soils : field monitoring and aluminum chemistry

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions

  16. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest

    OpenAIRE

    Odigie, Kingsley O.; Flegal, A. Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlation...

  17. [Current situation and impact factors of acid deposition in main cites of Shandong Province].

    Science.gov (United States)

    Jia, Hong-yu; Zhang, Qiao-xian; Deng, Hong-bing; Zhao, Jing-zhu; Mu, Jin-bo; Zhang, De-zhi

    2006-12-01

    Based on the monitoring data for years in Shandong Province, current situation of acid rain in every city was assessed, and the temporal distribution of the dry, wet and total sulfur deposition in Jinan and Qingdao were studied. The results showed that Qingdao which had the largest precipitation acidity was the single city whose annul average precipitation pH was below 5. 60. The precipitation acidities in the main cities of Shandong Province were in a descent tendency. The total sulfur desposition in Jinan and Qingdao was basically stable or in a descent tendency, but also reached 10 t/(km(2)x a) or so. Among the total sulfur deposition flux, the dry deposition of sulfur had the greater contribution, and the contribution of SO2 dry deposition was higher than that of SO42- dry deposition. By analyzing the relation between the precipitation acidity and the SO2 discharge intensity, soil acidity and meteorological condition, the impact factors of acid precipitation in the cities of Shandong Province were revealed.

  18. Effect of acids and bases on electrophoretic deposition of

    Czech Academy of Sciences Publication Activity Database

    Cihlář, J.; Drdlík, D.; Cihlářová, Z.; Hadraba, Hynek

    2013-01-01

    Roč. 33, č. 10 (2013), s. 1885-1892 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GD106/09/H035 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Zirconia * Alumina * 2-Propanol * Electrosteric stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  19. Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network

    Directory of Open Access Journals (Sweden)

    Marchetto A

    2014-04-01

    Full Text Available Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Since 1997, atmospheric deposition was sampled and analyzed in the permanent plots of the Italian network for the evaluation of forest health (CONECOFOR, under the coordination of the Italian Forest Service. This paper presents the results of the activity carried out in 2009, when the EU-funded LIFE+ “FutMon” project allowed to extend the sampling network to 22 sites. Long-term trends will also be evaluated for the sampling sites with the longest time series. The sampling of open field bulk deposition was performed in a clearance close to the CONECOFOR permanent plots, while throughfall deposition and stemflow (in beech stand, only were sampled in the plot. Deposition samples were collected weekly and sent to the laboratories, where they were analyzed for pH, conductivity, major ions, and total carbon and nitrogen. Most measured variables showed a strong geographical gradient. For example, nitrogen deposition was relatively high in the Po plain (where the emissions of nitrogen oxides and ammonia are the highest and surrounding hills, reaching 10-20 kgN ha-1 y-1 in the open field and 13-25 kgN ha-1 y-1 in the throughfall. Sulphate deposition also showed a marked geographical gradient. Deposition of marine aerosol also had an important impact on the chemical composition of atmospheric deposition in Italy, together with the episodic deposition of Saharan dust, which showed a marked gradient, with highest values in the southernmost plots. Trend analysis was carried out on 10 sites running since the beginning of the program. A general negative trend in sulphate concentration was detected, paralleled in most plots by a positive trend in deposition pH, in good agreement with the strong reduction in the emission of sulphur dioxide recorded in the last decades. Nitrogen concentration also showed a significant decrease

  20. Theory of acid deposition and its application to the dew-point meter

    Energy Technology Data Exchange (ETDEWEB)

    Land, T.

    1977-06-01

    The theory of convective mass transfer is used to calculate the rate of deposition of sulphuric acid on cooled surfaces in boiler flues. The mass deposited per unit area per second is ah/c (p/sub Ag/ - p/sub As/) where h is the coefficient of convective heat transfer, c is the specific heat of the gas and a is a factor having a value of about 1.9; p/sub Ag/ and p/sub As/ are the partial pressures of sulphuric acid in the bulk of the gas and in saturated gas at the temperature of the surface. Values of p/sub A/ are tabulated against dew-point temperature and water vapour content. The theory explains how fog formation in the gas reduces the rate of acid deposition within a certain band of temperature between the acid dew-point and the water dew-point. The rate of deposition on a probe is shown to depend on the local mass flow as well as on the acid content. By contrast the dew-point depends only on the acid content. The sensitivity of the dew-point meter to changes in acid content is not very high but it is adequate for the control of combustion. A continuously recording dew-point meter is being successfully used on industrial boilers.

  1. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  2. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  3. The Contribution from Shipping Emissions to Air Quality and Acid Deposition in Europe

    International Nuclear Information System (INIS)

    Derwent, Richard G.; Stevenson, David S.; Doherty, Ruth M.; Cofala, Janusz; Mechler, Reinhard; Amann, Markus; Dentener, Frank J.

    2005-01-01

    A global three-dimensional Lagrangian chemistry-transport model STOCHEM is used to describe the European regional acid deposition and ozone air quality impacts along the Atlantic Ocean seaboard of Europe, from the SO 2 , NO x , VOCs and CO emissions from international shipping under conditions appropriate to the year 2000. Model-derived total sulfur deposition from international shipping reaches over 200 mg S m-2 yr-1 over the southwestern approaches to the British Isles and Brittany. The contribution from international shipping to surface ozone concentrations during the summertime, peaks at about 6 ppb over Ireland, Brittany and Portugal. Shipping emissions act as an external influence on acid deposition and ozone air quality within Europe and may require control actions in the future if strict deposition and air quality targets are to be met

  4. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  5. Wet and Occult Ion Deposition To An Elevated Forest Ecosystem In Switzerland

    Science.gov (United States)

    Buetzberger, P.; Burkard, R.; Eugster, W.

    and rain water nutrient deposition on vegetation and soil, we measured throughfall precipitation close to the forest floor. Whereas fog water showed pH values as low as 3, throughfall water was between pH 6 and 7, indicating an important buffering capacity of this ecosystem mainly due to potassium leaching and probably calcium compounds. High ionic concentrations and low pH values seem to act mostly on the leaves.

  6. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    Directory of Open Access Journals (Sweden)

    C. van der Salm

    1998-01-01

    Full Text Available In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N and sulphur (S deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent spatial variability. Statistical analyses of the concentrations on both subplots showed small but significant effects of the reduction in deposition on nitrate (NO3 sulphate (SO4 and aluminum (Al concentrations. The statistical significance of the effects was minimised by the large spatial variability within the plots. Despite these shortcomings, simulated concentrations were generally within the 95% confidence interval of the measurements although the effect of a reduction in N deposition on soil solution chemistry was underestimated due to a marked decline in N-uptake by the vegetation.

  7. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  8. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    International Nuclear Information System (INIS)

    Deen, I.; Zhitomirsky, I.

    2014-01-01

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties

  9. Influence of Humic Acid on the Transport and Deposition of Colloidal Silica under Different Hydrogeochemical Conditions

    Directory of Open Access Journals (Sweden)

    Jingjing Zhou

    2016-12-01

    Full Text Available The transport and deposition of colloids in aquifers plays an important role in managed aquifer recharge (MAR schemes. Here, the processes of colloidal silica transport and deposition were studied by displacing groundwater with recharge water. The results showed that significant amounts of colloidal silica transport occurred when native groundwater was displaced by HA solution. Solution contains varying conditions of ionic strength and ion valence. The presence of humic acid could affect the zeta potential and size of the colloidal silica, which led to obvious colloidal silica aggregation in the divalent ion solution. Humic acid increased colloidal silica transport by formation of non-adsorbing aqueous phase silica–HA complexes. The experimental and modeling results showed good agreement, indicating that the essential physics were accurately captured by the model. The deposition rates were less than 10−8 s−1 in deionized water and monovalent ion solution. Moreover, the addition of Ca2+ and increase of IS resulted in the deposition rates increasing by five orders of magnitude to 10−4 s−1. In all experiments, the deposition rates decreased in the presence of humic acid. Overall, the promotion of humic acid in colloidal silica was strongly associated with changes in water quality, indicating that they should receive greater attention during MAR.

  10. 4.3. Decomposition of danburite concentrate of Ak-Arkar Deposit by nitric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of danburite concentrate of Ak-Arkar Deposit by nitric acid. The influence of temperature on reaction process was studied. The dependence of extraction rate of oxides (B 2 O 3 , Al 2 O 3 , Fe 2 O 3 and Ca O) at nitric acid processing on temperature ranges from 25 to 95 deg C was defined. The dependence of extraction rate of oxides (B 2 O 3 , Al 2 O 3 , Fe 2 O 3 and Ca O) at nitric acid processing on process duration (5-60 minutes) was defined as well. The optimal conditions of decomposition of danburite concentrate by nitric acid were proposed.

  11. Properties of soils and tree-wood tissue across a Lake States sulfate-deposition gradient. Forest Service resource bulletin

    International Nuclear Information System (INIS)

    Ohmann, L.F.; Grigal, D.F.

    1991-01-01

    There is general concern that atmospheric pollutants may be affecting the health of forests in the USA. The hypotheses tested were that the wet sulfate deposition gradient across the Lake States: (1) is reflected in the amount of accumulated sulfur in the forest floor-soil system and tree woody tissue and (2) is related to differences in tree radial increment. The authors present the properties of the soil and tree woody tissue (mostly chemical) on the study plots. Knowledge of the properties of soil and woody tree tissue is needed for understanding and interpreting relations between sulfate deposition, sulfur accumulation in the ecosystem, soil and tree chemistry, and tree growth and climatic variation. The report provides a summary of those data for study, analysis, and interpretation

  12. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  13. Factors affecting the long-term response of surface waters to acidic deposition: state-of-the-science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.S.; Johnson, D.W.; Elwood, J.N.; Van Winkle, W.; Clapp, R.B.; Jones, M.L.; Marmarek, D.R.; Thornton, K.W.; Gherinig, S.A.; Schnoor, J.L.

    1986-01-01

    Recent intensive study of the causes of surface water acidification has led to numerous hypothesized controlling mechanisms. Among these are the salt-effect reduction of alkalinity, the base cation buffering and sulfate adsorption capacities of soils, availability of weatherable minerals (weathering rates), depth of till, micropore flow, and type of forest cover. Correlative and predictive models have been developed to show the relationships (if any) between hypothesized controlling mechanisms and surface water acidity, and to suggest under what conditions additional surface water might become acid. This document (Part A) is a review of our current knowledge of factors and processes controlling soil and surface water acidification, as well as an assessment of the adequacy of that knowledge for making predictions of future acidification. Section 2 is a data extensive, conceptual overview of how watersheds function. Section 3 is a closer look at the theory and evidence for the key hypotheses. Section 4 is a review of existing methods of assessing system response to acidic deposition.

  14. Mangrove forests submitted to depositional processes and salinity variation investigated using satellite images and vegetation structure surveys

    OpenAIRE

    Cunha-Lignon, M.; Kampel, M.; Menghini, R.P.; Schaeffer-Novelli, Y.; Cintrón, G.; Dahdouh-Guebas, F.

    2011-01-01

    The current paper examines the growth and spatio-temporal variation of mangrove forests in response to depositional processes and different salinity conditions. Data from mangrove vegetation structure collected at permanent plots and satellite images were used. In the northern sector important environmental changes occurred due to an artificial channel producing modifications in salinity. The southern sector is considered the best conserved mangrove area along the coast of São Paulo State, Br...

  15. Soil amino acid composition across a boreal forest successional sequence

    Science.gov (United States)

    Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone

    2009-01-01

    Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...

  16. Acidity of tree bark as a bioindicator of forest pollution in southern Poland

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinska, K

    1977-05-01

    pH values and buffering capacity were determined for bark samples of five deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (scots pine) in the Cracow Industrial Region (southern Poland) and, for comparison, in the Bialowieza Forest (northeastern Poland). The correlation was found between acidification of tree bark and air pollution by SO/sub 2/ in these areas. All trees showed the least acidic reaction in the control area (Bialowieza Forest), more acidic in Niepolomice Forest and the most acidic in the center of Cracow. The buffering capacity of the bark against alkali increased with increasing air pollution. The seasonal fluctuations of pH values and buffering capacity were found. Tree bark is recommended as a sensitive and simple indicator of air pollution.

  17. Acidity of tree bark as a bioindicator of forest pollution in southern Poland

    Energy Technology Data Exchange (ETDEWEB)

    Grodznska, K

    1976-01-01

    PH values and buffering capacity were determined for bark samples of 5 deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (scots pine) in the Cracow industrial region (southern Poland) and for comparison in the Bialowieza Forest (north-eastern Poland). The correlation was found between acidification of tree bark and air pollution by SO/sub 2/ in these areas. All trees showed the least acidic reaction in the control area (Bialowieza Forest), more acidic in Niepolomice Forest and the most acidic in the center of Cracow city. The buffering capacity of the bark against alkali increased with increasing air pollution. The seasonal fluctuations of pH values is recommended as a sensitive and simple indicator of air pollution.

  18. 1.6. The kinetics of hydrochloric acid decomposition of argillite of Chashma-Sang Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to kinetics of hydrochloric acid decomposition of argillite of Chashma-Sang Deposit. It was defined that with temperature increasing the extraction rate of Al_2O_3 and Fe_2O_3 increases. The dependence of extraction rate of Al_2O_3 and Fe_2O_3 on process duration at hydrochloric acid decomposition of argillite was studied. The activation energy of the process was defined.

  19. Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes.

    Science.gov (United States)

    Gross, A; Turner, B L; Goren, T; Berry, A; Angert, A

    2016-02-02

    Atmospheric dust deposition can be a significant source of phosphorus (P) in some tropical forests, so information on the origins and solubility of atmospheric P is needed to understand and predict patterns of forest productivity under future climate scenarios. We characterized atmospheric dust P across a seasonal cycle in a tropical lowland rain forest on Barro Colorado Nature Monument (BCNM), Republic of Panama. We traced P sources by combining remote sensing imagery with the first measurements of stable oxygen isotopes in soluble inorganic phosphate (δ(18)OP) in dust. In addition, we measured soluble inorganic and organic P concentrations in fine (1 μm) aerosol fractions and used this data to estimate the contribution of P inputs from dust deposition to the forest P budget. Aerosol dry mass was greater in the dry season (December to April, 5.6-15.7 μg m(-3)) than the wet season (May to November, 3.1-7.1 μg m(-3)). In contrast, soluble P concentrations in the aerosols were lower in the dry season (980-1880 μg P g(-1)) than the wet season (1170-3380 μg P g(-1)). The δ(18)OP of dry-season aerosols resembled that of nearby forest soils (∼19.5‰), suggesting a local origin. In the wet season, when the Trans-Atlantic Saharan dust belt moves north close to Panama, the δ(18)OP of aerosols was considerably lower (∼15.5‰), suggesting a significant contribution of long-distance dust P transport. Using satellite retrieved aerosol optical depth (AOD) and the P concentrations in aerosols we sampled in periods when Saharan dust was evident we estimate that the monthly P input from long distance dust transport during the period with highest Saharan dust deposition is 88 ± 31 g P ha(-1) month(-1), equivalent to between 10 and 29% of the P in monthly litter fall in nearby forests. These findings have important implications for our understanding of modern nutrient budgets and the productivity of tropical forests in the region under future climate scenarios.

  20. Do uric acid deposits in zooxanthellae function as eye-spots?

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamashita

    2009-07-01

    Full Text Available The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100-150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot.

  1. Do uric acid deposits in zooxanthellae function as eye-spots?

    Science.gov (United States)

    Yamashita, Hiroshi; Kobiyama, Atsushi; Koike, Kazuhiko

    2009-07-17

    The symbiosis between zooxanthellae (dinoflagellate genus Symbiodinium) and corals is a fundamental basis of tropical marine ecosystems. However the physiological interactions of the hosts and symbionts are poorly understood. Recently, intracellular crystalline deposits in Symbiodinium were revealed to be uric acid functioning for nutrient storage. This is the first exploration of these enigmatic crystalline materials that had previously been misidentified as oxalic acid, providing new insights into the nutritional strategies of Symbiodinium in oligotrophic tropical waters. However, we believe these deposits also function as eye-spots on the basis of light and electron microscopic observations of motile cells of cultured Symbiodinium. The cells possessed crystalline deposit clusters in rows with each row 100-150 nm thick corresponding to 1/4 the wavelength of light and making them suitable for maximum wave interference and reflection of light. Crystalline clusters in cells observed with a light microscope strongly refracted and polarized light, and reflected or absorbed short wavelength light. The facts that purines, including uric acid, have been identified as the main constituents of light reflectors in many organisms, and that the photoreceptor protein, opsin, was detected in our Symbiodinium strain, support the idea that uric acid deposits in Symbiodinium motile cells may function as a component of an eye-spot.

  2. Poly(aniline-co-m-aminobenzoic acid) deposited on poly(vinyl ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have deposited poly(aniline-co-m-aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ ... along the polyaniline (PANI) chain results in self dop- ing of PANI and ..... The value of electrical conductivity is found to be ...

  3. Impact of acid atmospheric deposition on soils : quantification of chemical and hydrologic processes

    NARCIS (Netherlands)

    Grinsven, van J.J.M.

    1988-01-01

    Atmospheric deposition of SO x , NOx and NHx will cause major changes in the chemical composition of solutions in acid soils, which may affect the biological functions of the soil. This thesis deals with quantification of soil acidification by means of chemical

  4. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-01-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate

  5. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  6. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes

    Science.gov (United States)

    Barbara A. Richardson; Michael J. Richardson; Grizelle Gonzalez; Aaron B. Shiels; Diane S. Srivastava

    2010-01-01

    Hurricanes cause canopy removal and deposition of pulses of litter to the forest floor. A Canopy Trimming Experiment (CTE) was designed to decouple these two factors, and to investigate the separate abiotic and biotic consequences of hurricane-type damage and monitor recovery processes. As part of this experiment, effects on forest floor invertebrate communities were...

  7. Nitrate Leaching From a Mountain Forest Ecosystem with Gleysols Subjected to Experimentally Increased N Deposition

    International Nuclear Information System (INIS)

    Schleppi, Patrick; Hagedorn, Frank; Providoli, Isabelle

    2004-01-01

    Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha -1 a -1 ). Two forested catchments (1500 m 2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH 4 NO 3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15 N. Additionally, soil N transformations were studied in replicated plots. Pre-treatment NO 3 - -N leaching was 4 kg ha -1 a -1 from both catchments, and remained between 2.5 and 4.8 kg ha -1 a -1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha -1 , almost 90% of which was labelled with 15 N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO 3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO 3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO 3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO 3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated

  8. Forest die-back modified plankton recovery from acidic stress

    Czech Academy of Sciences Publication Activity Database

    Vrba, J.; Kopáček, Jiří; Fott, J.; Nedbalová, L.

    2014-01-01

    Roč. 43, č. 2 (2014), s. 207-217 ISSN 0044-7447 R&D Projects: GA ČR(CZ) GA206/07/1200; GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : atmospheric acidification * Bohemian Forest * lake recovery * phytoplankton * zooplankton Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.289, year: 2014

  9. Aluminium release from acidic forest soil following deforestation and ...

    African Journals Online (AJOL)

    Acidic tropical soils often have high Al3+ concentrations in soil solutions, which can be toxic to plants and, thereby, reduce agricultural yields. This study focuses on the impact of deforestation and cultivation on the short and long-term Al geochemistry of acidic soils in Ghana, West Africa. Site-specific investigations were ...

  10. Analysis of leachability for a sandstone uranium deposite with high acid consumption and sensitivities in Inner Mongolia

    International Nuclear Information System (INIS)

    Cheng Wei; Miao Aisheng; Li Jianhua; Zhou Lei; Chang Jingtao

    2014-01-01

    In-situ Leaching adaptability of a ground water oxidation zone type sandstone uranium deposit from Inner Mongolia is studied. The ore of the uranium deposit has high acid consumption and sensitivities in in-situ leaching. The leaching process with agent of CO_2 + O_2 and adjusting concentration of HCO_3"- can be suitable for the deposit. (authors)

  11. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    Science.gov (United States)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of

  12. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    Science.gov (United States)

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  13. Acid deposition: a select review 1852-1990. 2. Effects on materials and health; abatement strategies and programmes

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Raper, D.W.; Lee, D.S.; Heath, B.A.; Conlan, B.; King, H.J. (Manchester Metropolitan University, Manchester (United Kingdom). Atmospheric Research and Information Centre)

    1993-10-01

    Part 2 of this review is concerned with the impact of acid deposits and their precursors on materials and human health, and with the control technologies and programmes introduced as a consequence of the environmental impacts of acid deposition. 269 refs., 8 figs., 8 tabs.

  14. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  15. Effects of acid deposition on ecosystems: Advances in the state of the science

    Science.gov (United States)

    Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.

    2011-01-01

    Chapter 2 focused on the environmental results of the ARP, presenting data from national monitoring networks on SO2 and NOx emissions, air quality, atmospheric deposition, surface water chemistry, and visibility. This chapter expands on this information by examining the most recent research into how ecosystems respond to acid deposition, especially the processes that control the recovery of ecosystems as acid deposition decreases. In Chapter 2, two general trends were discussed regarding the current recovery status of affected ecosystems: (1) these ecosystems are trending generally towards recovery, but improvements in ecosystem condition shown by surface water chemistry monitoring data thus far have been less than the improvements in deposition; and (2) ecosystem impacts and trends vary widely by geographic region, but the evidence of improvement is strongest and most evident in the Northeast. These trends are not uniform across the United States, however, and in some regions (e.g., central Appalachian Mountain region), trends in improved water quality are generally not evident. Despite the strong link in many areas between reduced emissions and reduced acidity of atmospheric deposition, the link is less clear between reduced acidity and recovery of the biological communities that live in aquatic and terrestrial ecosystems that have experienced deleterious effects from acid deposition. The recovery of these communities is proceeding at a slower pace than, for example, the improvements in stream and lake ANC would indicate. The goal of this chapter is to synthesize the science in a weightof-evidence manner to provide policy makers with tangible evidence and likely causative factors regarding ecosystem status and recovery patterns to date. This chapter serves as an update to the 2005 NAPAP RTC (NSTC, 2005), with an emphasis on scientific studies and monitoring since 2003, which was the last year for consideration of research results in the 2005 report. Several

  16. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    Science.gov (United States)

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  17. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests

    Science.gov (United States)

    Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller

    2010-01-01

    Increased nitrogen (N) deposition caused by human activities has altered ecosystem functioning and biodiversity. To understand the effects of altered N availability, we measured the abundance of arbuscular mycorrhizal fungi (AMF) and the microbial community in northern hardwood forests exposed to long-term (12 years) simulated N deposition (30 kg N ha-1...

  18. The Tracking and Analysis Framework (TAF): A tool for the integrated assessment of acid deposition

    International Nuclear Information System (INIS)

    Bloyd, C.N.; Henrion, M.; Marnicio, R.J.

    1995-01-01

    A major challenge that has faced policy makers concerned with acid deposition is obtaining an integrated view of the underlying science related to acid deposition. In response to this challenge, the US Department of Energy is sponsoring the development of an integrated Tracking and Analysis Framework (TAF) which links together the key acid deposition components of emissions, air transport, atmospheric deposition, and aquatic effects in a single modeling structure. The goal of TAF is to integrate credible models of the scientific and technical issues into an assessment framework that can directly address key policy issues, and in doing so act as a bridge between science and policy. Key objectives of TAF are to support coordination and communication among scientific researchers; to support communications with policy makers, and to provide rapid response for analyzing newly emerging policy issues; and to provide guidance for prioritizing research programs. This paper briefly describes how TAF was formulated to meet those objectives and the underlying principals which form the basis for its development

  19. Reversible acid-induced inactivation of the membrane fusion protein of Semliki Forest virus

    NARCIS (Netherlands)

    Waarts, BL; Smit, JM; Aneke, OJC; McInerney, GM; Liljestrom, P; Bittman, R; Wilschut, J

    Previously, it has been shown that the exposure of Semliki Forest virus (SFV) to a mildly acidic environment induces a rapid and complete loss of the ability of the virus to bind and fuse to target membranes added subsequently. In the present study, incubation of SFV at low pH followed by a specific

  20. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  1. Chloroacetic acids - Degradation intermediates of organic matter in forest soil

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Schröder, P.; Forczek, Sándor; Uhlířová, H.; Fuksová, Květoslava; Rohlenová, Jana

    2007-01-01

    Roč. 39, č. 1 (2007), s. 382-385 ISSN 0038-0717 R&D Projects: GA ČR GA522/02/0874; GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Keywords : trichloroacetic acid * dichloroacetic acid * chlorination * soil organic matter Subject RIV: EF - Botanics Impact factor: 2.580, year: 2007

  2. Synoptic evaluation of modelled and bioindicated atmospheric deposition of heavy metals in forests; Synoptische Auswertung modellierter atmosphaerischer Eintraege von Schwermetallen und deren Indikation durch Biomonitore in Waeldern

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Stefan; Schroeder, Winfried [Vechta Univ. (Germany). Lehrstuhl fuer Landschaftsoekologie; Fries, Caroline [PlanWerk - Buero fuer oekologische Fachplanungen, Nidda (Germany)

    2017-03-15

    Heavy metals (HM) concentrations in moss, leaves and needles and organic surface soil layers, derived from the European Moss Survey, the German Environmental Specimen Bank (ESB) and the ICP Forests were compared with those from deposition modelling by use of LOTOS-EUROS (LE) and EMEP/MSCE-HM in terms of their spatial patterns and temporal trends. The total atmospheric deposition differs considerably between the two models. HM concentrations in biomonitors (moss, leaves, and needles) were found to be predominantly higher correlated to deposition modelled by LE compared to EMEP. For Cd, strongest correlations could be found between deposition data calculated by LE and concentrations in moss (Europe, geostatistically estimated) and in needles (Germany). Regarding Pb, the coefficients of correlation came out to be the highest for EMEP deposition and measured element concentrations in moss (Europe) as well as for LE deposition and needles from ICP Forests Level II (Germany) and, respectively, leaves from ESB (Germany).

  3. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  4. Modeling the influence of precipitation and nitrogen deposition on forest understory fuel connectivity in Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    M. Hurteau; M. North; T. Foines

    2009-01-01

    Climate change models for California’s Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition fromfossil fuel consumption are likely to result in increased productivity levels and significant increases in...

  5. Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest.

    Science.gov (United States)

    Aguillaume, Laura; Rodrigo, Anselm; Avila, Anna

    2016-02-15

    The abatement programs implanted in Europe to reduce SO2, NO2 and NH3 emissions are here evaluated by analyzing the relationships between emissions in Spain and neighboring countries and atmospheric deposition in a Mediterranean forest in the Montseny mountains (NE Spain) for the last 3decades. A canopy budget model was applied to throughfall data measured during a period of high emissions (1995-1996) and a period of lower emissions (2011-2013) to estimate the changes in dry deposition over this time span. Emissions of SO2 in Spain strongly decreased (77%) and that was reflected in reductions for nssSO4(2-) in precipitation (65% for concentrations and 62% for SO4(2)-S deposition). A lower decline was found for dry deposition (29%). Spanish NO2 emissions increased from 1980 to 1991, remained constant until 2005, and decreased thereafter, a pattern that was paralleled by NO3(-) concentrations in bulk precipitation at Montseny. This pattern seems to be related to a higher share of renewable energies in electricity generation in Spain in recent years. However, dry deposition increased markedly between 1995 and 2012, from 1.3 to 6.7 kg ha(-1) year(-)(1). Differences in meteorology between periods may have had a role, since the recent period was drier thus probably favoring dry deposition. Spanish NH3 emissions increased by 13% between 1980 and 2012 in Spain but NH4(+) concentrations in precipitation and NH4(+)-N deposition showed a decreasing trend (15% reduction) at Montseny, probably linked to the reduction ammonium sulfate and nitrate aerosols to be scavenged by rainfall. NH4(+)-N dry deposition was similar between the compared periods. The N load at Montseny (15-17 kg ha(-1)y ear(-1)) was within the critical load range proposed for Mediterranean sclerophyllous forests (15-17.5 kg ha(-1) year(-1)). The onset of N saturation is suggested by the observed increasing N export in streamwaters. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Spray drift and deposit pattern from a forest herbicide application. SRC publication No. E-2310-4-E-90

    Energy Technology Data Exchange (ETDEWEB)

    Shewchuk, S.R.; Wallace, K.; Maybank, J.

    1991-01-01

    In October 1989, a series of trials were carried out at Ruby Creek, British Columbia to compare the air sampling capability of a number of drift measuring devices in a forest pesticide spraying with a helicopter. Since this study was not designed for a mass balance, no attempt was made to fully bracket or define the drifting cloud, neither vertically nor horizontally. Because of the need for total accountability of the emitted material, the study was extended into a preliminary mass balance evaluation. This report presents the results of the mass balance evaluation, calculated using Kromekote card and Petri dish deposit samplers and two air samplers.

  7. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails

    Science.gov (United States)

    Spyra, Aneta

    2017-10-01

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  8. A two-layer application of the MAGIC model to predict the effects of land use scenarios and reductions in deposition on acid sensitive soils in the UK

    Directory of Open Access Journals (Sweden)

    R. C. Helliwell

    1998-01-01

    Full Text Available A two-layer application of the catchment-based soil and surface water acidification model, MAGIC, was applied to 21 sites in the UK Acid Waters Monitoring Network (AWAMN, and the results were compared with those from a one-layer application of the model. The two-layer model represented typical soil properties more accurately by segregating the organic and mineral horizons into two separate soil compartments. Reductions in sulphur (S emissions associated with the Second S Protocol and different forestry (land use scenarios were modelled, and their effects on soil acidification evaluated. Soil acidification was assessed in terms of base saturation and critical loads for the molar ratio of base cations (CA2+ + MG 2+ + K+ to aluminium (Al in soil solution. The results of the two-layer application indicate that base saturation of the organic compartment was very responsive to changes in land use and deposition compared with the mineral soil. With the two- layer model, the organic soil compartment was particularly sensitive to acid deposition, which resulted in the critical load being predicted to be exceeded at eight sites in 1997 and two sites in 2010. These results indicate that further reductions in S deposition are necessary to raise the base cation (BC:Al ratio above the threshold which is harmful to tree roots. At forested sites BC:Al ratios were generally well below the threshold designated for soil critical loads in Europe and forecasts indicate that forest replanting can adversely affect the acid status of sensitive term objectives of protecting and sustaining soil and water quality. Policy formulation must seek to protect the most sensitive environmental receptor, in this case organic soils. It is clear, therefore, that simply securing protection of surface waters, via the critical loads approach, may not ensure adequate protection of low base status organic soils from the effects of acidification.

  9. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    This project had three major objectives. The first objective was to develop a fossil fuel combustion source inventory (NO/sub x/, SO/sub x/, and hydrocarbon emissions) that would be relatively easy to use and update for analyzing the impact of combustion emissions on acid deposition in the eastern United States. The second objective of the project was to use the inventory data as a basis for selection of a number of areas that, by virtue of their importance in the acid rain issue, could be further studied to assess the impact of local and intraregional combustion sources. The third objective was to conduct an analysis of wet deposition monitoring data in the areas under study, along with pertinent physical characteristics, meteorological conditions, and emission patterns of these areas, to investigate probable relationships between local and intraregional combustion sources and the deposition of acidic material. The combustion source emissions inventory has been developed for the eastern United States. It characterizes all important area sources and point sources on a county-by-county basis. Its design provides flexibility and simplicity and makes it uniquely useful in overall analysis of emission patterns in the eastern United States. Three regions with basically different emission patterns have been identified and characterized. The statistical analysis of wet deposition monitoring data in conjunction with emission patterns, wind direction, and topography has produced consistent results for each study area and has demonstrated that the wet deposition in each area reflects the characteristics of the localized area around the monitoring sites (typically 50 to 150 miles). 8 references, 28 figures, 39 tables.

  10. Changing public interest in, and awareness of, acid deposition: some evidence from the UK

    International Nuclear Information System (INIS)

    Longhurst, J.W.S.; Bantock, J.; Hare, S.E.; Conlan, D.E.

    1995-01-01

    It is fundamental that the general public have access to usable environmental information on which they can base their decisions. Since 1984 the Atmospheric Research and Information Centre (ARIC) has operated a public information programme for the UK on the subject of acid deposition. The objective of the programme is to disseminate information on acid deposition without advocacy. ARIC provides enquiries with a broad range of authoritative and accurate facts and opinions from a wide range of parties from all sides of the debate. These sources include pressure groups, governmental bodies and industrialists from the UK and overseas. By deconstructing complex technical material and reassembling it for dissemination in a user friendly form, ARIC assists those receiving information to obtain a balanced perspective. This enables personal decision making within the context of the fullest information resource ARIC is able to provide. 8 refs., 4 tabs

  11. Changing public interest in, and awareness of, acid deposition: some evidence from the UK

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S.; Bantock, J.; Hare, S.E.; Conlan, D.E. [Manchester Metropolitan University, Manchester (United Kingdom). Dept. of Environmental and Geographical Sciences

    1995-12-01

    It is fundamental that the general public have access to usable environmental information on which they can base their decisions. Since 1984 the Atmospheric Research and Information Centre (ARIC) has operated a public information programme for the UK on the subject of acid deposition. The objective of the programme is to disseminate information on acid deposition without advocacy. ARIC provides enquiries with a broad range of authoritative and accurate facts and opinions from a wide range of parties from all sides of the debate. These sources include pressure groups, governmental bodies and industrialists from the UK and overseas. By deconstructing complex technical material and reassembling it for dissemination in a user friendly form, ARIC assists those receiving information to obtain a balanced perspective. This enables personal decision making within the context of the fullest information resource ARIC is able to provide. 8 refs., 4 tabs.

  12. The role of urban forest to reduce rain acid in urban industrial areas

    Science.gov (United States)

    Slamet, B.; Agustiarni, Y.; Hidayati; Basyuni, M.

    2018-03-01

    Urban forest has many functions mainly on improving the quality of the urban environment. One of the functions is to increase pH and reduce dangerous chemical content. The aim of the research is to find out the role of vegetation density of urban forest around the industrial area in reducing the acid rain. The condition of land cover was classified into four classes which are dense, medium, sparse and open area. The water of the throughfall and stemflow was taken from each type of land cover except in the open area. Parameters measured in this study are water acidity (pH), anion content (SO4 2- and NO3 -), cation content (Ca2+, Mg2+, and NH4 +) and electrical conductivity (EC). The results indicated that urban forest vegetation was able to increase the pH of rain water from 5.42 which is in an open area without vegetation to be 7.13 and 7.32 in dense and moderate vegetation cover by throughfall mechanism, respectively. Rain water acidity also decreased through stemflow mechanism with a pH ranged from 5.92 - 6.43. Urban forest vegetation decreased sulfate content (SO42-) from 528.67 mg/l in open area to 44 - 118 mg/l by throughfall mechanism and ranged from 90 to 366.67 mg/l through stemflow mechanism. Urban forest vegetation significantly decreased the rainwater nitrate content from 27 mg/l to 0.03 - 0.70 mg/l through the mechanism of throughfall and between 1.53 - 8.82 mg/l through the stemflow mechanism. Urban forest vegetation also increased the concentration of cations (NH4+, Ca2+, Mg2+, Na+) compared with open areas. Urban forest vegetation showed increased the electrical conductivity (EC) from 208.12 μmhos/cm to 344.67 - 902.17 μmhos/cm through the through fall mechanism and 937.67 - 1058.70 μmhos/cm through the stemflow mechanism. The study suggested that urban forests play a significant role in reducing rainwater acidity and improving the quality of rainwater that reached the soil surface.

  13. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure

    OpenAIRE

    Michael Arthur Cuiffo; Jeffrey Snyder; Alicia M. Elliott; Nicholas Romero; Sandhiya Kannan; Gary P. Halada

    2017-01-01

    Polylactic acid (PLA) is an organic polymer commonly used in fused deposition (FDM) printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR) spectroscopy and pho...

  14. Sulfuric acid dissolution of the Chashma-Sang deposit's green clays

    International Nuclear Information System (INIS)

    Mirzoev, D.Kh.; Boboev, Kh.E.; Pulatov, M.S.; Mirsaidov, U.M.

    2005-01-01

    Present article is presenting the results of the roentgen phase, thermodynamic and physical-chemical investigations of the green clays of the Chashma-Sang deposit of the Republic of Tajikistan. It is presented mineralogical and chemical composition of the mineral raw materials. Kinetic of decomposition of the oxides of aluminum and iron on temperature, time and concentration of the sulfuric acid has been investigated

  15. Tracing the fate of atmospheric nitrate deposited onto a forest ecosystem in Eastern Asia using Δ17O

    Directory of Open Access Journals (Sweden)

    I. Noguchi

    2010-02-01

    Full Text Available The stable isotopic compositions of nitrate in precipitation (wet deposition and groundwater (spring, lake, and stream water were determined for the island of Rishiri, Japan, so as to use the 17O anomalies (Δ17O to trace the fate of atmospheric nitrate that had deposited onto the island ecosystem, which is a representative background forest ecosystem for eastern Asia. The deposited nitrate had large 17O anomalies with Δ17O values ranging from +20.8‰ to +34.5‰ (n = 32 with +26.2‰ being the annual average. The maximum Δ17O value of +34.5‰, obtained for precipitation on the 23rd to 24th of February 2007, was an extraordinarily large value among values for all samples of precipitation in Rishiri. Most nitrate in the sample might have been produced via NO3 radical in a highly polluted air mass that had been supplied from megacities on the eastern coast of the Asian continent. On the other hand, nitrate in groundwater had small Δ17O values ranging from +0.9‰ to 3.2‰ (n = 19, which corresponds to an mixing ratio of atmospheric nitrate to total nitrate of (7.4±2.6%. Comparing the inflow and outflow of atmospheric nitrate in groundwater within the island, we estimated that the direct drainage accounts for (8.8±4.6% of atmospheric nitrate that has deposited on the island and that the residual portion has undergone biological processing before being exported from the forest ecosystem.

  16. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Zhang, Xiaoshan; Chen, Jian

    2015-01-01

    Tieshanping catchment in southwest China was supposed to a large pool of atmospheric mercury. This work was aimed to examine THg (total mercury) concentrations, pools and influence factors in the acidic forest. THg concentrations were highly elevated in the study area, which was significantly depended on TOM (total organic matter) concentrations and altitudinal elevation, whereas negatively correlated with soil pH. The pools of mercury accumulated in soils were correlated strongly with the stocks of TOM and altitude, ranged from 5.9 to 32 mg m −2 and averaged 14.5 mg m −2 , indicating that the acidic forest was a great sink of atmospheric mercury in southwest China. THg concentrations in stream waters decreased with altitude increasing and regression analyses showed that soil/air exchange flux would be increased with the decrease of altitude. Present results suggest that elevation increasing decreases THg losses as low THg concentrations in runoffs and volatilization from soils. - Highlights: • Soil THg pools and influence factors were studied at an acidic catchment in southwestern China. • THg concentrations was increased significantly with TOM concentrations and altitude increasing, decreased with pH. • THg pools in soils were highly elevated and deepened on TOM pools and altitude. • Difference in THg output by volatilization and runoff was a major reason for THg distribution at different altitudes. - Mercury pools increased with altitude increasing as mercury lost more at low elevation area in acidic subtropical forest

  17. Transport of acid forming emissions and potential effects of deposition in northeastern Alberta and northern Saskatchewan: a problem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shewchuk, S.R.; Abouguendia, Z.M.; Atton, F.M.; Dublin, J.; Godwin, R.C.; Holowaychuk, N.; Hopkinson, R.; Liaw, W.K.; Maybank, J.; Padbury, G.A.

    1981-01-01

    The purpose of this report is to study the potential effects of acid rain in northeastern Alberta and northern Saskatchewan. A problem analysis was conducted of the transport, transformations and deposition of emissions in this region. Studied are the atmospheric processes, geology and soils, natural vegetation, and the aquatic systems. At present, no environmental damage attributable to acidic deposition has been detected in this region. Field surveys in the region have detected no effects of industrial emissions on vegetation except within a few kilometers of industrial operations. The earliest effects of acid deposition tend to appear within aquatic systems. Ten recommendations based on these findings are discussed. 109 references, 22 figures, 10 tables.

  18. Acidic deposition: State of science and technology. Report 15. Liming acidic surface waters. Final report

    International Nuclear Information System (INIS)

    Olem, H.; Thornelof, E.; Sandoy, S.; Schreiber, R.K.

    1990-09-01

    The document describes the science and technology of aquatic liming--a method for improving the water quality of acidic surface waters to restore or enhance fisheries. The report is a comprehensive compilation of years of research in North America and Europe by dozens of scientists. Several mitigation technologies--including those that have only been proposed--are critically evaluated along with the effects of liming on water chemistry and aquatic biota. Through these evaluations, the state of the science and technology of aquatic liming is identified for the reader. Whole-lake liming is now recognized as a valuable management tool for acidic surface waters and their fisheries. However, some liming technologies are considered experimental and will need further evaluation. Distinctions between technologies are included--as is the distinction between liming acidic surface waters and reducing acidifying emissions

  19. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose; Wayne T. Swank

    2008-01-01

    We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-...

  20. Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China

    Science.gov (United States)

    Zhang, Qi; Chang, Ming; Zhou, Shengzhen; Chen, Weihua; Wang, Xuemei; Liao, Wenhui; Dai, Jianing; Wu, ZhiYong

    2017-11-01

    There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer "big leaf" model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.

  1. Acidic deposition: State of science and technology. Report 14. Methods for projecting future changes in surface water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Thornton, K.W.; Marmorek, D.; Ryan, P.F.; Heltcher, K.; Robinson, D.

    1990-09-01

    The objectives of the report are to: critically evaluate methods for projecting future effects of acidic deposition on surface water acid-base chemistry; review and evaluate techniques and procedures for analyzing projection uncertainty; review procedures for estimating regional lake and stream population attributes; review the U.S. Environmental Protection Agency (EPA) Direct/Delayed Response Project (DDRP) methodology for projecting the effects of acidic deposition on future changes in surface water acid-base chemistry; and present the models, uncertainty estimators, population estimators, and proposed approach selected to project the effects of acidic deposition on future changes in surface water acid-base chemistry in the NAPAP 1990 Integrated Assessment and discuss the selection rationale

  2. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  3. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    Science.gov (United States)

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  4. Characterization of soil fauna under the influence of mercury atmospheric deposition in Atlantic Forest, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Buch, Andressa Cristhy; Correia, Maria Elizabeth Fernandes; Teixeira, Daniel Cabral; Silva-Filho, Emmanoel Vieira

    2015-06-01

    The increasing levels of mercury (Hg) found in the atmosphere arising from anthropogenic sources, have been the object of great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of strong importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transference to the soil through litter, playing an important role as sink of this element. Soil microarthropods are keys to understanding the soil ecosystem, and for such purpose were characterized by the soil fauna of two Units of Forest Conservation of the state of the Rio de Janeiro, inwhich one of the areas suffer quite interference from petrochemicals and industrial anthropogenic activities and other area almost exempts of these perturbations. The results showed that soil and litter of the Atlantic Forest in Brazil tend to stock high mercury concentrations, which could affect the abundance and richness of soil fauna, endangering its biodiversity and thereby the functioning of ecosystems. Copyright © 2015. Published by Elsevier B.V.

  5. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M; Kitunen, V [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  6. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M.; Kitunen, V. [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J. [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  7. Forests

    International Nuclear Information System (INIS)

    Melin, J.

    1997-01-01

    Forests have the capacity to trap and retain radionuclides for a substantial period of time. The dynamic behaviour of nutrients, pollution and radionuclides in forests is complex. The rotation period of a forest stand in the Nordic countries is about 100 years, whilst the time for decomposition of organic material in a forest environment can be several hundred years. This means that any countermeasure applied in the forest environment must have an effect for several decades, or be reapplied continuously for long periods of time. To mitigate the detrimental effect of a contaminated forest environment on man, and to minimise the economic loss in trade of contaminated forest products, it is necessary to understand the mechanisms of transfer of radionuclides through the forest environment. It must also be stressed that any countermeasure applied in the forest environment must be evaluated with respect to long, as well as short term, negative effects, before any decision about remedial action is taken. Of the radionuclides studied in forests in the past, radiocaesium has been the main contributor to dose to man. In this document, only radiocaesium will be discussed since data on the impact of other radionuclides on man are too scarce for a proper evaluation. (EG)

  8. Phospholipid fatty acid composition of microorganisms in pine forest soils of Central Siberia

    Czech Academy of Sciences Publication Activity Database

    Evgrafova, S.Yu.; Šantrůčková, H.; Shibistova, O.B.; Elhottová, Dana; Černá, B.; Zrazhevskaya, G.K.; Lloyd, D.

    2008-01-01

    Roč. 35, č. 5 (2008), s. 452-458 ISSN 1062-3590 Grant - others:Evropská unie(XE) 03-55-1344; Ministry of Education and Science of the Russian Federation(RU) RUX0-002-KR-06 Institutional research plan: CEZ:AV0Z60660521 Keywords : phospholipid fatty acid * microorganisms * pine forest soils Subject RIV: EH - Ecology, Behaviour Impact factor: 0.082, year: 2008

  9. Assessing future economic impacts of acidic deposition on the recreational fishery of eastern Canada

    International Nuclear Information System (INIS)

    1990-01-01

    A study was carried out to assess the socio-economic impacts and net economic value effects related to potential reduction in acidic deposition on the sports fishery of eastern Canada. Impacts and net economic effects that would have occurred from 1950 to 1985 if emission/deposition controls were in place are measured. Impacts and net economic effects that will occur from 1986 to 2021 if controls are put in place in the future are also measured. The study incorporated the latest data describing the relationship of acidic deposition to lake pH levels and ultimate impact on fish survival, and applies a spatial analysis system to model changes in sport fish availability with respect to pH changes and fish survival responses. It was found that if emission controls were put in place beginning in 1950 the Canadian economy would have accrued $4.3 billion in net economic value from 1950 to 1985 inclusive. The 1986 value of the historical stream of losses that occurred because controls were not put in place is $24 billion assuming a 10% rate of return. If controls were put in place in the future, net economic value to Canada due to increased angler activity would be $4.2 billion for the period 1986-2021. The value in 1986 would be $925 million. 9 figs., 34 tabs

  10. Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest

    NARCIS (Netherlands)

    Wyers, G.P.; Duyzer, J.H.

    1997-01-01

    Dry deposition fluxes of sulphate and nitrate have been determined over a coniferous canopy using the aerodynamic gradient technique. Vertical concentration gradients of sulphate and nitrate were measured with filters; the gradient of ammonium bisulphate was measured with thermodenuders. Filter

  11. Mechanisms and rates of atmospheric deposition of selected trace elements and sulfate to a deciduous forest watershed. [Roles of dry and wet deposition concentrations measured in Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Harriss, R.C.; Turner, R.R.; Shriner, D.S.; Huff, D.D.

    1979-06-01

    The critical links between anthropogenic emissions to the atmosphere and their effects on ecosystems are the mechanisms and rates of atmospheric deposition. The atmospheric input of several trace elements and sulfate to a deciduous forest canopy is quantified and the major mechanisms of deposition are determined. The study area was Walker Branch Watershed (WBW) in eastern Tennessee. The presence of a significant quantity of fly ash and dispersed soil particles on upward-facing leaf and flat surfaces suggested sedimentation to be a major mechanism of dry deposition to upper canopy elements. The agreement for deposition rates measured to inert, flat surfaces and to leaves was good for Cd, SO/sub 4//sup =/, Zn, and Mn but poor for Pb. The precipitation concentrations of H/sup +/, Pb, Mn, and SO/sub 4//sup =/ reached maximum values during the summer months. About 90% of the wet deposition of Pb and SO/sub 4//sup =/ was attributed to scavenging by in-cloud processes while for Cd and Mn, removal by in-cloud scavenging accounted for 60 to 70% of the deposition. The interception of incoming rain by the forest canopy resulted in a net increase in the concentrations of Cd, Mn, Pb, Zn, and SO/sub 4//sup =/ but a net decrease in the concentration of H/sup +/. The source of these elements in the forest canopy was primarily dry deposited aerosols for Pb, primarily internal plant leaching for Mn, Cd, and Zn, and an approximately equal combination of the two for SO/sub 4//sup =/. Significant fractions of the total annual elemental flux to the forest floor in a representative chestnut oak stand were attributable to external sources for Pb (99%), Zn (44%), Cd (42%), SO/sub 4//sup =/ (39%), and Mn (14%), the remainder being related to internal element cycling mechanisms. On an annual scale the dry deposition process constituted a significant fraction of the total atmospheric input. (ERB)

  12. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails.

    Science.gov (United States)

    Spyra, Aneta

    2017-08-22

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH landscape management and planning.

  13. Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

    Directory of Open Access Journals (Sweden)

    Heidi N. Bagley

    2013-01-01

    Full Text Available Intrauterine growth restriction (IUGR predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2 in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA, a PPARγ agonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI- induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1 normalizes IUGR-induced changes in adipose deposition and visceral PPARγ expression in male rats and (2 increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  14. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    Science.gov (United States)

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  15. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    Science.gov (United States)

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is

  16. Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark

    DEFF Research Database (Denmark)

    Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard; Hovmand, M.F.

    1998-01-01

    In this study CO(2) and H(2)O flux measurements made above a spruce forest was compared with the ozone flux to the canopy during growing season 1995. The fluxes were determined by micro meteorological gradient methods using a 36-m tall meteorological mast. The trees were about 12 m high and air s...

  17. Sediment deposition from forest roads at stream crossings as influenced by road characteristics

    Science.gov (United States)

    A.J. Lang; W.M. Aust; M.C. Bolding; K.J. McGuire

    2015-01-01

    Recent controversies associated with ditched forest roads and stream crossings in the Pacific Northwest have focused national attention on sediment production and best management practices (BMPs) at stream crossings. Few studies have quantified soil erosion rates at stream crossings as influenced by road characteristics and compared them to modeled rates. Soil erosion...

  18. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Du, E.; Butterbach-Bahl, K.

    2014-01-01

    The carbon to nitrogen response of forest ecosystems depends on the possible occurrence of nitrogen limitation versus possible co-limitations by other drivers, such as low temperature or availability of phosphorus. A combination of nitrogen retention estimates and stoichiometric scaling is used to

  19. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Science.gov (United States)

    Odigie, Kingsley O; Flegal, A Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g-1), [Cu] (15 to 69 µg g-1), [Ni] (6 to 15 µg g-1), [Pb] (7 to 42 µg g-1), and [Zn] (65 to 500 µg g-1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  20. Trace metal inventories and lead isotopic composition chronicle a forest fire's remobilization of industrial contaminants deposited in the angeles national forest.

    Directory of Open Access Journals (Sweden)

    Kingsley O Odigie

    Full Text Available The amounts of labile trace metals: [Co] (3 to 11 µg g-1, [Cu] (15 to 69 µg g-1, [Ni] (6 to 15 µg g-1, [Pb] (7 to 42 µg g-1, and [Zn] (65 to 500 µg g-1 in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change.

  1. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest

    Science.gov (United States)

    Odigie, Kingsley O.; Flegal, A. Russell

    2014-01-01

    The amounts of labile trace metals: [Co] (3 to 11 µg g−1), [Cu] (15 to 69 µg g−1), [Ni] (6 to 15 µg g−1), [Pb] (7 to 42 µg g−1), and [Zn] (65 to 500 µg g−1) in ash collected from the 2012 Williams Fire in Los Angeles, California attest to the role of fires in remobilizing industrial metals deposited in forests. These remobilized trace metals may be dispersed by winds, increasing human exposures, and they may be deposited in water bodies, increasing exposures in aquatic ecosystems. Correlations between the concentrations of these trace metals, normalized to Fe, in ash from the fire suggest that Co, Cu, and Ni in most of those samples were predominantly from natural sources, whereas Pb and Zn were enriched in some ash samples. The predominantly anthropogenic source of excess Pb in the ash was further demonstrated by its isotopic ratios (208Pb/207Pb: 206Pb/207Pb) that fell between those of natural Pb and leaded gasoline sold in California during the previous century. These analyses substantiate current human and environmental health concerns with the pyrogenic remobilization of toxic metals, which are compounded by projections of increases in the intensity and frequency of wildfires associated with climate change. PMID:25259524

  2. Interpreting the deposition and vertical migration characteristics of 137Cs in forest soil after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan

    2017-08-01

    We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.

  3. Characterization of heavy metal desorption from road-deposited sediment under acid rain scenarios.

    Science.gov (United States)

    Zhao, Bo; Liu, An; Wu, Guangxue; Li, Dunzhu; Guan, Yuntao

    2017-01-01

    Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals. Dissolved heavy metals that come from RDS influenced by acid rain, are more harmful to urban receiving water than particulate parts. RDS and its associated heavy metals were investigated at typical functional areas, including industrial, commercial and residential sites, in Guangdong, Southern China, which was an acid rain sensitive area. Total and dissolved heavy metals in five particle size fractions were analyzed using a shaking method under acid rain scenarios. Investigated heavy metals showed no difference in the proportion of dissolved fraction in the solution under different acid rain pHs above 3.0, regardless of land use. Dissolved loading of heavy metals related to organic carbon content were different in runoff from main traffic roads of three land use types. Coarse particles (>150μm) that could be efficiently removed by conventional street sweepers, accounted for 55.1%-47.1% of the total dissolved metal loading in runoff with pH3.0-5.6. The obtained findings provided a significant scientific basis to understand heavy metal release and influence of RDS grain-size distribution and land use in dissolved heavy metal pollution affected by acid rain. Copyright © 2016. Published by Elsevier B.V.

  4. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    Science.gov (United States)

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.

  5. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    OpenAIRE

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian; Gierens, Rosa; Mammarella, Ivan; Sogachev, Andrey; Boy, Michael

    2016-01-01

    A 1-D atmospheric boundary layer (ABL) model coupled with a detailed atmospheric chemistry and aerosol dynamical model, the model SOSAA, was used to predict the ABL and detailed aerosol population (characterized by the number size distribution) time evolution. The model was applied over a period of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transforma...

  6. Growth and nutrition of coniferous forests on acidic mineral soils - status and effects of liming and fertilization

    International Nuclear Information System (INIS)

    Sikstroem, Ulf

    2001-01-01

    Deposited air-borne S- and N- containing pollutants acidify forest soils in southern Sweden. It has been suggested that this may severely affect forest yield. Liming and/or application of specific nutrients, e.g. phosphorus (P) and potassium (K), have been proposed as countermeasures. The influence of such measures, and of nitrogen (N) addition, was investigated in two experimental series over 5-10 years. Stem growth and needle element concentrations were assessed, predominantly in high-yielding Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands, 30-60 years old, growing on acidic mineral soils in southern Sweden. The effect on crown transparency was also evaluated in some of the Norway spruce stands. The treatments included liming (500-6,000 kg ha -1 ), and N addition at low annual doses (2x10 kg N ha -1 ) and in single shots (150 kg N ha -1 ). Combinations of lime+N, lime+PK and lime+PKN were also tested. The effects were generally weak or negligible, except that growth was significantly increased by N fertilization in the Scots pine stands, and by lime+PKN in some of the Norway spruce stands. In another study, the survival and growth of Norway spruce seedlings were found to be more or less unaffected when planted in pre-harvest acidified, limed or N fertilized soil, although the Ca and Zn concentrations in their needles rose after liming, while those of Mn and Al declined. In closed-canopy stands of Norway spruce and Scots pine with N concentrations of more than 15-16 mg (g DM) -1 in current-year needles, N fertilization was indicated to not necessarily stimulate increased growth. Other indicators of highly N-rich forests (e.g. elevated arginine levels) also start to appear above this level. The closed-canopy stands growing on the most acidic soils showed no signs of severe damage or nutrient deficiencies. These findings, together with the small or negligible effects of the tested countermeasures against soil acidification

  7. Modelling nutrient cycling in forest ecosystems; Modellering av naeringssyklus i skogoekosystemer

    Energy Technology Data Exchange (ETDEWEB)

    Kvindesland, Sheila H.S.B.

    1997-12-31

    Acid deposition`s threat to fresh water and forest environments became an issue in the late 1960s. Acid deposition and forest nutrient cycling then began to be researched in greater co-operation. This thesis studies nutrient cycling processes in Norway spruce forests, emphasizing the effects on soil chemical properties, soil solution chemistry and streamwater chemistry. It investigates the effects of different aged stands on nutrient cycling and sets up nutrient budgets of the base cations and nitrogen at two sites in Norway. It also selects, documents, calibrates, tests and improves nutrient cycling models for use in Norwegian forests. 84 refs., 44 figs., 46 tabs.

  8. Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid Deposited on Poly (Vinyl Alcohol

    Directory of Open Access Journals (Sweden)

    S. ADHIKARI

    2011-02-01

    Full Text Available Poly (aniline-co-m-aminobenzoic acid was deposited on poly (vinyl alcohol film by in situ oxidative polymerization of the monomers aniline and m-aminobenzoic acid. Sensing experiments were performed on the composite film with the injection of various concentrations of hexenyl acetate and hexenyl butyrate at room temperature. The sensor responded rapidly and reversibly in the presence of hexenyl acetate and hexenyl butyrate vapors which was detected by resistance change of the composite film upon exposure to the vapor. Selectivity tests revealed that the sensor selectively responded to hexenyl butyrate compared to hexenyl acetate. The sensing response has been explained on the basis of FT-IR spectroscopic analysis of the polymer film before and after exposure to the ester vapor.

  9. Effects of Nitrogen Deposition on Greenhouse-Gas Fluxes for Forests and Grasslands of North America

    Science.gov (United States)

    Human activities have substantially elevated the atmospheric deposition of reactive nitrogen (N) onto terrestrial ecosystems of North America. Some of this N can stimulate carbon (C) storage in terrestrial ecosystems, but the fertilization effect of added N can be diminished by e...

  10. Comparisons of measured and modelled ozone deposition to forests in northern Europe

    DEFF Research Database (Denmark)

    Touvinen, J. P.; Simpson, D.; Mikkelsen, Teis Nørgaard

    2001-01-01

    The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce...

  11. Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: simulation modelling approach

    Directory of Open Access Journals (Sweden)

    A. S. Komarov

    2012-11-01

    Full Text Available An individual-based simulation model, EFIMOD, was used to simulate the response of forest ecosystems to climate change and additional nitrogen deposition. The general scheme of the model includes forest growth depending on nitrogen uptake by plants and mineralization of soil organic matter. The mineralization rate is dependent on nitrogen content in litter and forest floor horizons. Three large forest areas in European Central Russia with a total area of about 17 000 km2 in distinct environmental conditions were chosen. Simulations were carried out with two climatic scenarios (ambient climate and climate change and different levels of nitrogen deposition (ambient value and increase by 6 and 12 kg N ha−1 yr−1. The simulations showed that increased nitrogen deposition leads to increased productivity of trees, increased organic matter content in organic soil horizons, and an increased portion of deciduous tree species. For the climate change scenario, the same effects on forest productivity and similar shifts in species composition were predicted but the accumulation of organic matter in soil was decreased.

  12. The distribution of common construction materials at risk to acid deposition in the United States

    Science.gov (United States)

    Lipfert, Frederick W.; Daum, Mary L.

    Information on the geographic distribution of various types of exposed materials is required to estimate the economic costs of damage to construction materials from acid deposition. This paper focuses on the identification, evaluation and interpretation of data describing the distributions of exterior construction materials, primarily in the United States. This information could provide guidance on how data needed for future economic assessments might be acquired in the most cost-effective ways. Materials distribution surveys from 16 cities in the U.S. and Canada and five related databases from government agencies and trade organizations were examined. Data on residential buildings are more commonly available than on nonresidential buildings; little geographically resolved information on distributions of materials in infrastructure was found. Survey results generally agree with the appropriate ancillary databases, but the usefulness of the databases is often limited by their coarse spatial resolution. Information on those materials which are most sensitive to acid deposition is especially scarce. Since a comprehensive error analysis has never been performed on the data required for an economic assessment, it is not possible to specify the corresponding detailed requirements for data on the distributions of materials.

  13. Environmental stress in German forests; assessment of critical deposition levels and their exceedances and meteorological stress for crown condition monitoring sites in Germany

    NARCIS (Netherlands)

    Klap, J.M.; Reinds, G.J.; Bleeker, A.; Vries, de W.

    2000-01-01

    Site-specific estimations of meteorological stress and atmospheric deposition were made for the systematic 8 x 8 km2 forest condition monitoring network in Germany for the years 1987-1995. Winter cold and late frost were important temperature stress variables and relative transpiration was a good

  14. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Science.gov (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  15. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-10-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium (Ca) and potassium (K) to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes; solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 references.

  16. Neutralization of acidic raindrops on leaves of agricultural crop and boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, T.C.; Adams, C.M.; Gaber, B.A.

    1986-11-01

    The abilities of foliage of selected agricultural crop and native boreal forest species to neutralize acidic raindrops were compared. The species differed widely in their responses. Neutralization was influenced to a large extent by leaf wettability and was poorly related with species' susceptibility to foliar injury from acid rain sprayings. Little neutralization of pH 3.0 droplets occurred on very waxy leaves, e.g. cabbage (Brassica oleracea L.), due to the small contact area between the leaf surface and raindrops. In contrast, on sunflower (Helianthus annuus L.) and radish (Raphanus sativus L.) leaves, which are pubescent and easily wettable, neutralization was considerable. For all agricultural crop species examined, the pH of droplets drying on cotyledons was consistently higher than on the leaves. The pH values of raindrops were also higher when the foliage was injured by the acid rain, probably due to leakage of cellular contents. Among boreal forest species examined, bunchberry (Cornus canadensis L.) was particularly good at neutralizing natural acid rain, increasing the pH from 3.9 to 6.6 after 9 hr of foliar contact, while the response of other boreal species ranged from a final pH of 4.8 to 5.7 under the same conditions. Simulated raindrops on wild sarsaparilla (Aralia nudicaulis L.) were never neutralized but increased in acidity as they evaporated. Chemical analyses of droplets collected from foliage showed calcium and potassium to be the major cations entering the neutralized droplets. Neutralization of acidic raindrops appears to occur through two processes: solubilization of alkaline dusts and exudates on the leaf surface, and ion exchange removal of H/sup +/ by the foliage. 14 refs.

  17. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    Science.gov (United States)

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  18. Diffusion and export dynamics of 137Cs deposited on the forested area in Fukushima after the nuclear power plant accident in March 2011. Preliminary results

    International Nuclear Information System (INIS)

    Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Murakami, Masashi; Suzuki, Takahiro; Ishii, Nobuyoshi

    2012-01-01

    A massive amount of radioactive substances, including cesium-137 ( 137 Cs), emitted from the disabled nuclear power plant, has been deposited on the forested areas in the northeastern region of Honshu Island, Japan after the Fukushima Daiichi nuclear power plant accident. Forests in these regions are particularly important, not only for the forest products industry but also for source areas of drinking water and for residential environments. To clarify the mechanisms of diffusion and export of 137 Cs deposited on the forested ecosystem, we initiated intensive field observations in a small catchment that included forest and farmlands. Specifically, we were interested in the Kami-Oguni River catchment that is located in the northern part of Fukushima Prefecture. The following expected major pathways of 137 Cs export and diffusion were investigated: 1) transportation of dissolved and particulate or colloidal forms via hydrological processes within a forested catchment and export dynamics through the stream, and 2) diffusion through the food web in terrestrial and aquatic ecosystems of forests. Preliminary findings indicated the following: 1) Most of the 137 Cs was discharged as suspended matter. High water flow generated by storm acted to accelerate the transportation of 137 Cs from the forested catchments. Thus, the estimation of 137 Cs export requires precise evaluation of the high flow acceleration during storm events; 2) Because litter and its detritus may form the biggest pool of 137 Cs in the forested ecosystem, 137 Cs diffusion occurs more rapidly through the detritus food chain than the grazing food chain. Most predators have already ingested 137 Cs, particularly in aquatic environments. An urgent question that needs to be addressed is when and how 137 Cs diffuses through grazing food chains and how rapidly this process occurs. To elucidate or to be able to predict these phenomena, the mechanisms of 137 Cs release from litter and soil's organic matter

  19. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  20. Late Holocene swampy forest of Loango Bay (Congo). Sedimentary environments and organic matter deposition

    Science.gov (United States)

    Malounguila-Nganga, Dieudonné; Giresse, Pierre; Boussafir, Mohammed; Miyouna, Timothée

    2017-10-01

    This region, comprised between the Kouilou estuary and Pointe-Noire, is characterised by a very specific morphological setting. On the continental side, the coastal sector is dominated by cliffs of sand over 100 m high, referred to as the Série des Cirques, whereas, on the ocean side, very active erosion is presently taking place which has resulted in a retreat of the shoreline of more than 100 m over the last hundred years. New 14C datings and different analyses of organic matter and clay minerals (X-Ray data) were performed in order to reconstruct the geological and ecological evolution of the area during the Late Holocene and replace it in the palaeoclimatic scheme deduced from previous regional studies. From 7 to 6000 yr cal BP, the accumulation of important beach barriers by the oceanic drift allowed the definition of a narrow swamp depression several tens of kilometres long. A dense ombrophile and hydromorphic forest, in spite of being very close to the oceanic coast, remained sheltered from any brackish influence and fed accumulations of peat and organic muds. The emersive trend of 3000-2000 yr BP, i.e. the passage from a vast forest swamp with a water body several metres deep to a wet zone with some emersions, is expressed by a large colluvial accumulation. High primary production is not clearly attested in this wet area. High HI values would indicate rather long-lasting conservation in a swampy environment, the lowest values indicating alternating episodes of emersion and immersion. In such peatlands, OM preservation is favoured by an anoxic environment and rapid burial. The δ 13C values of older peats dated ca. 7000 yr cal BP are -28 to -26‰, typical of a C3 origin. Thus, the ca. -16‰ value indicates the greatest opening of the cover, suggesting a forest-savanna mosaic ca. 2500 yr cal BP. At Kivesso, several proxies suggest a wetter trend towards 500 yr cal BP. An ultimate drier trend is observed during the last two centuries, which has been

  1. U(VI) speciation and reduction in acid chloride fluids in hydrothermal conditions: from transport to deposition of uranium in unconformity-related deposits

    International Nuclear Information System (INIS)

    Dargent, Maxime

    2014-01-01

    Circulations of acidic chloride brines in the earth's crust are associated with several types of uranium deposits, particularly unconformity-related uranium (URU) deposits. The spectacular high grade combined with the large tonnage of these deposits is at the origin of the key questions concerning the geological processes responsible for U transport and precipitation. The aim of this work is to performed experimental studies of U(VI) speciation and its reduction to U(IV) subsequently precipitation to uraninite under hydrothermal condition. About uranium transport, the study of U(VI) speciation in acidic brines at high temperature is performed by Raman and XAS spectroscopy, showing the coexistence of several uranyl chloride complexes UO 2 Cl n 2-n (n = 0 - 5). From this study, complexation constants are proposed. The strong capability of chloride to complex uranyl is at the origin of the transport of U(VI) at high concentration in acidic chloride brines. Concerning uranium precipitation, the reactivity of four potential reductants under conditions relevant for URU deposits genesis is investigated: H 2 , CH 4 , Fe(II) and the C-graphite. The kinetics of reduction reaction is measured as a function of temperature, salinity, pH and concentration of reductant. H 2 , CH 4 , and the C-graphite are very efficient while Fe(II) is not able to reduce U(VI) in same conditions. The duration of the mineralizing event is controlled by (i) the U concentration in the ore-forming fluids and (ii) by the generation of gaseous reductants, and not by the reduction kinetics. These mobile and efficient gaseous reductant could be at the origin of the extremely focus and massive character of ore in URU deposits. Finally, first partition coefficients uraninite/fluid of trace elements are obtained. This last part opens-up new perspectives on (i) REE signatures interpretation for a given type of uranium deposit (ii) and reconstruction of mineralizing fluids composition. (author) [fr

  2. Role of soil acidification in forest decline: Long-term consequences and silvicultural possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, B

    1986-10-01

    The causes of soil acidification are discussed. The strong and deep reaching acidification which has been found in case studies on all sites (with the exception of soils containing limestone or marl) is traced back to acid deposition. The possibilities of forest management to reduce eco-system-internal acid production, to eliminate acute malnutrition, to increase deep rooting, and to establish forest ecosystems which can be stable with high elasticity without acid deposition, are discussed.

  3. Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

    Directory of Open Access Journals (Sweden)

    Rachela G. Milazzo

    2017-01-01

    Full Text Available The morphology of gold nanoparticles (AuNPs deposited on a (100 silicon wafer by simple immersion in a solution containing a metal salt and hydrofluoric acid (HF is altered by HF treatment both before and after deposition. The gold clusters are characterized by the presence of flat regions and quasispherical particles consistent with the layer-by-layer or island growth modes, respectively. The cleaning procedure, including HF immersion prior to deposition, affects the predominantly occurring gold structures. Flat regions, which are of a few tens of nanometers long, are present after immersion for 10 s. The three-dimensional (3D clusters are formed after a cleaning procedure of 4 min, which results in a large amount of spherical particles with a diameter of ≈15 nm and in a small percentage of residual square layers of a few nanometers in length. The samples were also treated with HF after the deposition and we found out a general thickening of flat regions, as revealed by TEM and AFM analysis. This result is in contrast to the coalescence observed in similar experiments performed with Ag. It is suggested that the HF dissolves the silicon oxide layer formed on top of the thin flat clusters and promotes the partial atomic rearrangement of the layered gold atoms, driven by a reduction of the surface energy. The X-ray diffraction investigation indicated changes in the crystalline orientation of the flat regions, which partially lose their initially heteroepitaxial relationship with the substrate. A postdeposition HF treatment for almost 70 s has nearly the same effect of long duration, high temperature annealing. The process presented herein could be beneficial to change the spectral response of nanoparticle arrays and to improve the conversion efficiency of hybrid photovoltaic devices.

  4. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  5. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  6. Seasonal and diurnal variation in the deposition velocity of ozone over a spruce forest in Denmark

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    The flux of O-3 was measured by the eddy-correlation method over Norway spruce in periods when the trees had a very low activity, periods with optimum growth, and periods with water stress. The aerodynamic resistance (tau(a)), viscous sub-layer resistance (tau(b)) and surface resistance (tau...... the activity of the trees was low. The surface resistance increased when the trees were subject to water stress. It is concluded that stomatal uptake is an important parameter for the deposition of O-3. However, other processes such as destruction of O-3 at surfaces, reaction with NO emitted from the soil......(c)) to O-3 were calculated from meteorological parameters and the deposition velocity. The canopy stomatal resistance to O-3 was calculated from measurements of the water vapour flux. The deposition velocities showed a diurnal pattern with night-time values of 3.5 mm s(-1) and day-time values of 7 mm s(-1...

  7. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests

    Science.gov (United States)

    M.B. Adams; J.A. Burger; A.B. Jenkins; L. Zelazny

    2000-01-01

    The eastern hardwood forests of the US may be threatened by the changing atmospheric chemistry and by changes in harvesting levels. Many studies have documented accelerated base cation losses with intensive forest harvesting. Acidic deposition can also alter nutrient cycling in these forests. The combination of increased harvesting, shorter rotations, and more...

  8. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  9. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change

  10. Behavior of 7Be and 210Pb deposited via rainwater on a coniferous forest, a broad-leaved forest, and grassland

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    Fall water, stem flow water and falling litter in a coniferous forest (C. japonica) and a broad-leaved forest (L. edulis), and rainwater on a grassland near the forests were collected, and their 7 Be and 210 Pb contents were measured. The average residence times of 7 Be and 210 Pb in the forest crowns were calculated from the balances of their radionuclides, those in the forest crown of C. japonica were 88 days for 7 Be and 9.2 years for 210 Pb, and those in the forest crown of L. edulis were 52 days and <1 year, respectively. (author)

  11. Assessment of soil acidification effects on forest growth in Sweden

    International Nuclear Information System (INIS)

    Sverdrup, H.; Warfvinge, P.; Nihlgaard, B.

    1994-01-01

    The results of mapping critical loads, areas where they have been exceeded and steady state (Ca+Mg+K)/Al ratios of soils in Sweden, has been used to assess the order of magnitude of the ecological and economic risks involved with acid deposition for Swedish forests. The results of the calculations indicate that 81% of the Swedish forested area received acid deposition in excess of the critical load at present. Under continued deposition at 1990 level, forest die-back is predicted to occur on approximately 1% of the forested area, and significant growth rate reductions are predicted for 80% of the Swedish forested area. For Sweden, growth losses in the order of 17.5 million m -3 yr -1 are predicted, equivalent to approximately 19% of current growth. Comparable losses can be predicted for other Nordic countries. The soil acidification situation is predicted to deteriorate significantly during the next 5-15 years, unless rapid emission reductions can be achieved. A minimum deposition reduction over Sweden of 95% on sulphur deposition and 30% on the N deposition in relation to 1990 level is required in order to protect 95% of the Swedish forest ecosystems from adverse effects of acidification. A minimum reduction of 60% on sulphur deposition and 30% on the N deposition is required to keep forest harvest at planned levels. 148 refs., 9 figs., 9 tabs

  12. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  13. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U. S. National Acid Precipitation Assessment Program (NAPAP)

    Energy Technology Data Exchange (ETDEWEB)

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A. (US Geological Survey, Reston, VA (USA))

    1992-06-01

    Test briquettes and slabs of freshly quarried limestone and marble have been exposed to the environment to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulphur dioxide, and nitrogen oxides on stone erosion. Erosion due to grain loss did not seem to be influenced by rainfall acidity, but may be influenced by dry deposition of sulphur dioxide between rainfall events. Chemical analyses of the run-off solutions suggest that around 30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulphur dioxide and nitric acid between rain events. The remaining 70% of erosion by dissolution is accounted for by the solubility of carbonate stone in 'clean' rain. 17 refs., 4 figs., 7 tabs.

  14. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield

    International Nuclear Information System (INIS)

    Vinebrooke, R.D.; Dixit, S.S.; Graham, M.D.; Gunn, J.M.; Chen, Y.-W.; Belzile, N.

    2002-01-01

    A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors. (author)

  15. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  16. Stability of sputter deposited ZnO:Cr films against acids

    International Nuclear Information System (INIS)

    Shinoda, Makoto; Nishide, Toshikazu; Sawada, Yutaka; Hosaka, Masato; Matsumoto, Toshihiko.

    1993-01-01

    ZnO:Cr films were deposited on water-cooled soda-lime glass substrates at room temperature in an Ar atmosphere by rf magnetron sputtering of a ZnO target on which Cr chips were placed. The films exhibited extraordinary stability against acids such as HCl or HNO 3 , and also high resistivities similar to those of ZnO films. The addition of Cr suppressed the growth of ZnO grains which resulted in the formation of a dense film with a smooth surface. The stability and high resistivity displayed by the ZnO:Cr films can be attributed to the formation of a chromium-oxide-rich grain boundary. (author)

  17. Extreme nitrogen deposition can change methane oxidation rate in moist acidic tundra soil in Arctic regions

    Science.gov (United States)

    Lee, J.; Kim, J.; Kang, H.

    2017-12-01

    Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.

  18. Effects of reforestation on ammonia-oxidizing microbial community composition and abundance in subtropical acidic forest soils.

    Science.gov (United States)

    Wu, Ruo-Nan; Meng, Han; Wang, Yong-Feng; Gu, Ji-Dong

    2018-06-01

    Forest ecosystems have great ecological values in mitigation of climate change and protection of biodiversity of flora and fauna; re-forestry is commonly used to enhance the sequestration of atmospheric CO 2 into forest storage biomass. Therefore, seasonal and spatial dynamics of the major microbial players in nitrification, ammonia-oxidizing archaea (AOA) and bacteria (AOB), in acidic soils of young and matured revegetated forests were investigated to elucidate the changes of microbial communities during forest restoration, and compared to delineate the patterns of community shifts under the influences of environmental factors. AOA were more abundant than AOB in both young and matured revegetated forest soils in both summer and winter seasons. In summer, however, the abundance of amoA-AOA decreased remarkably (p < 0.01), ranging from 1.90 (± 0.07) × 10 8 copies per gram dry soil in matured forest to 5.04 (± 0.43) × 10 8 copies per gram dry soil in young forest, and amoA-AOB was below detection limits to obtain any meaningful values. Moreover, exchangeable Al 3+ and organic matter were found to regulate the physiologically functional nitrifiers, especially AOA abundance in acidic forest soils. AOB community in winter showed stronger correlation with the restoration status of revegetated forests and AOA community dominated by Nitrosotalea devanaterra, in contrast, was more sensitive to the seasonal and spatial variations of environmental factors. These results enrich the current knowledge of nitrification during re-forestry and provide valuable information to developmental status of revegetated forests for management through microbial analysis.

  19. Effects of acid rain and liming on the enchytraeid fauna in forest soils

    International Nuclear Information System (INIS)

    Graefe, U.

    1989-01-01

    The development of the enchytraeid community has been observed in a Solling beech forest over a period of 11 years. Eight out of 18 formerly established species have disappeared in one decade. The connection to soil chemical changes due to atmospheric deposition is discussed. A comparison of adjoining beech and spruce stands revealed considerably lower species numbers under spruce. The community under beech is developing in the direction of the species community in the spruce stand. Liming affects changes in the dominance structure. Mesophilic species are favoured, acidophilic are repressed. In an oak-beech stand near Hamburg even the recolonization by previously absent species was observed. Liming experiments with 25, 50 and 100 dt CaCO 3 /ha showed decreasing total abundance of enchytraeids proportional to the amount of lime. Species number, diversity and evenness increased with lime treatments up to 50 dt/ha. (orig.)

  20. Acidic deposition: State of science and technology. Report 10. Watershed and lake processes affecting surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Turner, R.S.; Cook, R.B.; Miegroet, H.V.; Johnson, D.W.; Elwood, J.W.

    1990-09-01

    The acid-base chemistry of surface waters is governed by the amount and chemistry of deposition and by the biogeochemical reactions that generate acidity or acid neutralizing capacity (ANC) along the hydrologic pathways that water follows through watersheds to streams and lakes. The amount of precipitation and it chemical loading depend on the area's climate and physiography, on it proximity to natural or industrial gaseous or particulate sources, and on local or regional air movements. Vegetation interacts with the atmosphere to enhance both wet and dry deposition of chemicals to a greater or lesser extent, depending on vegetation type. Vegetation naturally acidifies the environment in humid regions through processes of excess base cation uptake and generation of organic acids associated with many biological processes. Natural acid production and atmospheric deposition of acidic materials drive the acidification process. The lake or stream NAC represents a balance between the acidity-and ANC-generating processes that occur along different flow paths in the watershed and the relative importance of each flow path

  1. Uranium deposits associated to tertiary acid volcanism of the Pena Blanca Sierra (Chihuahua, Mexico)

    International Nuclear Information System (INIS)

    Aniel, B.

    1986-12-01

    The uraniferous deposits located in the Sierra de Pena Blanca (Chihuahua, Mexico) are the consequence of successive events that modified acid volcanic rocks. The devitrification of the Nopal Formation, vitroclastic tuffs, is esential in the cooling history because it releases uranium that becomes available. The uranium present in fluids as uranylcarbonate complexes, precipitate along the lamellea of hematite (exsolutions of the ilmenites). The presence of sulfur causes the destabilization of the ilmenites with uranium oxide (pitchblende - titanium oxide - pyrite), the pseudomorph of magnetites (pitchblende - pyrite) and the transformation of hematite into pyrite. The silice coming from the kaolinization of feldspars recristallizes as microcristalline quartz so that the rock appears compact. Fractures cause the uplifting of the lower unit of Nopal formation. It has been altered to montmorillonite. A carbonatation of this tuff has been observed and these two types of alteration occur after kaolinization. The Escuadra formation overlies the Nopal formation. The deposition takes place on an eroded basement where a soil developed. The two formations will together undergo transformations due to the saturation level and the primary ore will be only oxidized or oxidized, transported and reconcentrated. Late and localized thermal activities have been observed and may be the result of tectonic movements occurring after the supergene modification [fr

  2. Treatment of acid drainage in uranium deposit by means of a natural wetland

    International Nuclear Information System (INIS)

    Grudeva, V.I.; Stoyanova, A.D.; Grudev, S.N.

    2004-01-01

    Acid drainage waters generated in the uranium deposit G-1, Western Bulgaria, were treated by means of a natural wetland located in the deposit. The waters had a pH in the range of about 2.4-3.9 and contained uranium and radium radionuclides, heavy metals (copper, zinc , cadmium, iron, manganese) arsenic and sulfates in concentrations usually much higher than the relevant permissible levels for waters intended for use in agriculture and/or industry. The wetland was characterized by abundant and emergent vegetation and a diverse microflora. Typha latifolia, Typha augustifolia and Potamogeton australis were the main plant species in the wetland but representatives of the genera Scirpus, Juncus, Elepchoris, Potamogeton, Carex and Poa as well as different algae were also present. The water flows through the wetland varied in the range at about 0.2-1,2 l/s reflecting water residence times in the wetland of about 10-50 hours. An efficient water cleanup took place in the wetland even during the cold winter months at ambient temperatures close to 0 o C. The removal of pollutants was due to different processes but the microbial dissimilatory sulphate reduction and the sorption of pollutants on organic matter (living and dead plant and microbial biomass) and clays present in the wetland played the main role. (author)

  3. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    International Nuclear Information System (INIS)

    Sievering, H.; Tomaszewski, T.; Torizzo, J.

    2007-01-01

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO 3 and NH 3 as well as inferred (NO x and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes ∼1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO 2 uptake) correlated with CNU. Multiple regression indicates ∼20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU

  4. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.

    Science.gov (United States)

    Padgett, Pamela E; Parry, Sally D; Bytnerowicz, Andrzej; Heath, Robert L

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric acid follow? We investigated the effects of dry deposition of nitric acid on the foliage of four tree species native to the western United States. A novel controlled environment, fumigation system enabled a four-week exposure at concentrations consistent with ambient diurnal patterns. Scanning electron microscopy and automated image analysis revealed changes in the epicuticular wax layer during fumigation. Exposure to nitric acid resulted in a reproducible suite of damage symptoms that increased with increasing dose. Each tree species tested exhibited a unique set of damage features, including cracks, lesions, and conformation changes to epicuticular crystallite structures. Dry deposition of atmospheric nitric acid caused substantial perturbation to the epicuticular surface of all four tree species investigated, consistent with the chemical oxidation of epicuticular waxes. Automated image analysis eliminated many biases that can trouble microscopy studies. Trade names and commercial enterprises or products are mentioned solely for information. No endorsements by the U.S. Department of Agriculture are implied.

  5. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  6. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi [Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 (United States); Knesting, Kristina M. [Department of Chemistry, University of Washington, Seattle, WA 98195-1700 (United States); Bulusu, Anuradha [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Sigdel, Ajaya K. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Giordano, Anthony J.; Marder, Seth R. [School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Berry, Joseph J. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Graham, Samuel [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Ginger, David S. [Department of Chemistry, University of Washington, Seattle, WA 98195-1700 (United States); Pemberton, Jeanne E., E-mail: pembertn@email.arizona.edu [Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 (United States)

    2016-12-15

    Highlights: • Deposition of phosphonic acid monolayers on oxides from ethanol solutions occurs by rapid adsorption within 10 s with slower equilibration complete in 48 h. • The slower equilibration step involves molecular reorientation and vacancy filling on the oxide surface. • Soak-free deposition by spray coating and microcontact printing do not provide reproducible, fully-covered, uniform monolayers without substrate etching. • Adjustments to exposure time, substrate temperature, and solution/substrate contact efficiency are necessary to optimize soak-free methods. - Abstract: Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F{sub 5}BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F{sub 13}-octylphosphonic acid (F{sub 13}OPA), and pentafluorinated benzyl phosphonic acid (F{sub 5}BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48–168 h solution

  7. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Sapkal, R.T.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I sc = 0.357 mA) and open circuit voltage (V oc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  8. 4.2. The kinetics of nitric acid decomposition of calcined borosilicate raw material of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of nitric acid decomposition of calcined borosilicate raw material of Ak-Arkhar Deposit. The dependence of nitric acid decomposition of calcined boric raw material for extraction of boron oxide on temperature (20-100 deg C) and process duration (15-60 minutes) was defined. It was defined that at temperature increasing the extraction rate of boron oxide increases from 20.8 to 78.6%.

  9. Determination of dry and wet deposition in forest areas in the Federal Republic of Germany. Final report. Pt. A. Feststellung der Schadstoffbelastung von Waldgebieten in der Bundesrepublik Deutschland durch trockene und nasse Deposition. Abschlussbericht. T. A

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, H.W.; Grosch, S.; Schmitt, G.

    1986-08-01

    A network of 7 forest stations was maintained during the period of 1982-1985. The investigation included the evaluation of the dry and wet deposition of the following compounds: H/sup +/, SO/sub 4//sup 2-/, NO/sub 3//sup -/, Cl/sup -/, Pb, Mn, Fe, Cd, Na, K, Ca and Mg. During a certain period of time also the compounds Al, Cu, Cr and NH/sub 4//sup +/ were analyzed. Measurements of the aerosols and bulk deposition in different levels of the forest stands give information about the influence of spruce stands on the distribution of deposition. Detailed investigation on the composition of fogwater show the importance of fog with respect to the atmospheric input into forest ecosystems. Investigations of ozone at stations in the Taunus area show increasing concentrations with increasing altitudes. The sudden release of accumulated pollutants in snow appearing in the spring time during the thaw is shown. Sequential rain sampling at stations at different altitudes gives information about the contribution of 'rain-out' and 'wash-out'-processes with respect of the chemical composition of the rain. (orig.) With 55 refs., 20 tabs., 99 figs.

  10. Effect of acid deposition on soil animals and microorganisms: influence on structures and processes

    International Nuclear Information System (INIS)

    Schaefer, M.

    1989-01-01

    Principal effects of acid stress on the soil subsystem are increase or decrease in faunal and microfloral populations, changes in species assemblages and overall reductions in several soil microbiological processes. Little is known about the effects on nitrogen transformation (ammonification, nitrification, denitrification). Some possible but hypothetical scenarios for the effect of acidification stress on the forest ecosystem level are: (1) Inhibition of decomposition leads to an accumulation of litter. Immission and other disturbances may lead to humus disintegration and nitrate leaching; (2) Inhibition of mineralization reduces the availability of plant nutrients; (3) Decrease of the microfauna may cause disturbances of matter microcycling in the root zone; (4) Increase of the mesofauna may enhance the gracing pressure on mycorrhizal mycelia for even fine roots; (5) Decrease of the macrofauna (especially earthworms) lead to less bioturbation which impairs the buffer capacity of the litter and topsoil. A general outcome of liming experiments is stimulation of decomposition and mineralization: (1) Increased in nutrient arailability could lead to increased productivityin nutrient limited stands; (2) More irregular effects of animals on microbial activity may result in low stability of the soil-litter system and high liability to perturbations. (orig./vhe)

  11. Laboratory study on leaching of a sandstone-type uranium deposit for acid in-situ leaching

    International Nuclear Information System (INIS)

    Wen Zhenqian; Yao Yixuan; Zheng Jianping; Jiang Yan; Cui Xin; Xing Yongguo; Hao Jinting; Tang Huazhang

    2013-01-01

    Ore samples were took from in-situ leaching experiment boreholes in a sandstone-type uranium deposit. Technological mineralogy study, agitating leaching and column leaching experiments were carried. The results show that the content of minerals consuming acid and deoxidized minerals is low. When sulfuric acid concentration was 1O g/L, initial uranium content was 0.0224%, and liquid-to-solid ratio was l.91, leaching rate of column leaching experiments is 89.19%, acid consumption is 8.2 kg/t ore, acid consumption is 41.88 t/tU. Acid leaching, technology is recommend for field in-situ leaching experiment, sulfuric acid concentration in confecting solution is 10 g/L, and oxidizing agent is needless during leaching process. (authors)

  12. Effects of Acidic Deposition and Soil Acidification on Sugar Maple Trees in the Adirondack Mountains, New York

    Science.gov (United States)

    T. J. Sullivan; G. B. Lawrence; S. W. Bailey; T. C. McDonnell; C. M. Beier; K. C. Weathers; G. T. McPherson; D. A. Bishop

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been...

  13. Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe

    NARCIS (Netherlands)

    Kooijman, A.M.; van Til, M.; Noordijk, E.; Remke, E.; Kalbitz, K.

    We present an overview of high nitrogen deposition effects on coastal dune grasslands in NW-Europe (H2130), especially concerning grass encroachment in calcareous and acidic Grey Dunes. The problem is larger than previously assumed, because critical loads are still too high, and extra N-input from

  14. Protein and lipid deposition rates in male broiler chickens : separate responses to amino acids and protein-free energy

    NARCIS (Netherlands)

    Eits, R.M.; Kwakkel, R.P.; Verstegen, M.W.A.; Stoutjesdijk, P.; Greef, de K.H.

    2002-01-01

    Two experiments of similar design were conducted with male broiler chickens over two body weight ranges, 200 to 800 g in Experiment 1 and 800 to 1,600 g in Experiment 2. The data were used to test the hypothesis that protein deposition rate increases (linearly) with increasing amino acid intake,

  15. Long-term changes in soil and stream chemistry across an acid deposition gradient in the northeastern United States

    Science.gov (United States)

    Siemion, Jason; McHale, Michael; Lawrence, Gregory B.; Burns, Douglas A.; Antidormi, Michael

    2018-01-01

    Declines in acidic deposition across Europe and North America have led to decreases in surface water acidity and signs of chemical recovery of soils from acidification. To better understand the link between recovery of soils and surface waters, chemical trends in precipitation, soils, and streamwater were investigated in three watersheds representing a depositional gradient from high to low across the northeastern United States. Significant declines in concentrations of H+ (ranging from −1.2 to −2.74 microequivalents [μeq] L−1 yr−1), NO3− (ranging from −0.6 to −0.84 μeq L−1 yr−1), and SO42− (ranging from −0.95 to −2.13 μeq L−1 yr−1) were detected in precipitation in the three watersheds during the period 1999 to 2013. Soil chemistry in the A horizon of the watershed with the greatest decrease in deposition showed significant decreases in exchangeable Al and increases in exchangeable bases. Soil chemistry did not significantly improve during the study in the other watersheds, and base saturation in the Oa and upper B horizons significantly declined in the watershed with the smallest decrease in deposition. Streamwater SO42−concentrations significantly declined in all three streams (ranging from −2.01 to −2.87 μeq L−1 yr−1) and acid neutralizing capacity increased (ranging from 1.38 to 1.60 μeq L−1 yr−1) in the two streams with the greatest decreases in deposition. Recovery of soils has likely been limited by decades of acid deposition that have leached base cations from soils with base-poor parent material.

  16. Cascading Effects of Canopy Opening and Debris Deposition from a Large-Scale Hurricane Experiment in a Tropical Rain Forest

    Science.gov (United States)

    Aaron B. Shiels; Grizelle Gonzalez; D. Jean Lodge; Michael R Willig; Jess K. Zimmerman

    2015-01-01

    Intense hurricanes disturb many tropical forests, but the key mechanisms driving post-hurricane forest changes are not fully understood. In Puerto Rico, we used a replicated factorial experiment to determine the mechanisms of forest change associated with canopy openness and organic matter (debris) addition. Cascading effects from canopy openness accounted for...

  17. Phosphorus solubility in an acid forest soil as influenced by form of applied phosphorus and liming

    International Nuclear Information System (INIS)

    Fransson, Ann-Mari; Bergkvist, Bo; Tyler, Germund

    1999-01-01

    Sedimentary phosphorus, superphosphate, and wood-ash, as well as either sedimentary phosphorus. superphosphate or ash combined with lime, were distributed in selected plots in an 80-yr-old Norway spruce forest [Picea abies (L.) Karst]. After 2 yrs, the sedimentary phosphorus had increased the oxalate/oxalic acid-extractable P in the O-horizon, and the superphosphate had increased the oxalate/oxalic acid-extractable P in the E-horizon. At first, the percolation water from the superphosphate treatment showed high P concentrations. It soon returned to control levels, however. The percolation water from the sedimentary phosphorus treatment gradually showed increased phosphate concentrations. The wood-ash increased neither the amount of extractable P nor the P concentration in the percolation water. The oxalate/oxalic acid-extractable P from the sedimentary P treatment was reduced by liming. The P concentration in the percolation water also tended to be reduced. This was perhaps due to formation of Ca phosphates in the vicinity of the lime particles. In addition, if the solubility rate was similar to the uptake rate, it could account for the decreased P concentration

  18. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  19. Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: a 15 N tracer study.

    Science.gov (United States)

    Liu, Jun; Peng, Bo; Xia, Zongwei; Sun, Jianfei; Gao, Decai; Dai, Weiwei; Jiang, Ping; Bai, Edith

    2017-06-01

    Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited NH4+ and NO3- are still not fully understood. Here, we investigated the fates of deposited NH4+ and NO3-, respectively, via the application of 15 NH 4 NO 3 and NH 4 15 NO 3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most 15NH4+ was immobilized in litter layer (50 ± 2%), while a considerable amount of 15NO3- penetrated into 0-5 cm mineral soil (42 ± 2%), indicating that litter layer and 0-5 cm mineral soil were the major N sinks of NH4+ and NO3-, respectively. Broad-leaved trees assimilated more 15 N under NH 4 15 NO 3 treatment compared to under 15 NH 4 NO 3 treatment, indicating their preference for NO3--N. At 410 days after tracer application, 16 ± 4% added 15 N was found in aboveground biomass under 15NO3- treatment, which was twice more than that under 15NH4+ treatment (6 ± 1%). At the same time, approximately 80% added 15 N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited NH4+ and NO3-, which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen. © 2016 John Wiley & Sons Ltd.

  20. Diffusion and export dynamics of "1"3"7Cs deposited on the forested area in Fukushima after the nuclear power plant accident in March 2011. Preliminary results

    International Nuclear Information System (INIS)

    Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Murakami, Masashi; Suzuki, Takahiro; Ishii, Nobuyoshi

    2013-01-01

    A massive amount of radioactive substances, including cesium-137 ("1"3"7Cs), emitted from the disabled nuclear power plant, has been deposited on the forested areas in the northeastern region of Honshu Island, Japan after the Fukushima Daiichi nuclear power plant accident. Forests in these regions are particularly important, not only for the forest products industry but also for source areas of drinking water and for residential environments. To clarify the mechanisms of diffusion and export of "1"3"7Cs deposited on the forested ecosystem, we initiated intensive field observations in a small catchment that included forest and farmlands. Specifically, we were interested in the Kami-Oguni River catchment that is located in the northern part of Fukushima Prefecture. The following expected major pathways of "1"3"7Cs export and diffusion were investigated: 1) transportation of dissolved and particulate or colloidal forms via hydrological processes within a forested catchment and export dynamics through the stream, and 2) diffusion through the food web in terrestrial and aquatic ecosystems of forests. Preliminary findings indicated the following: 1) Most of the "1"3"7Cs was discharged as suspended matter. High water flow generated by storm acted to accelerate the transportation of "1"3"7Cs from the forested catchments. Thus, the estimation of "1"3"7Cs export requires precise evaluation of the high flow acceleration during storm events; 2) Because litter and its detritus may form the biggest pool of "1"3"7Cs in the forested ecosystem, "1"3"7Cs diffusion occurs more rapidly through the detritus food chain than the grazing food chain. Most predators have already ingested "1"3"7Cs, particularly in aquatic environments. An urgent question that needs to be addressed is when and how "1"3"7Cs diffuses through grazing food chains and how rapidly this process occurs. To elucidate or to be able to predict these phenomena, the mechanisms of "1"3"7Cs release from litter and soil

  1. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    Directory of Open Access Journals (Sweden)

    Emma Fernández-Crespo

    2017-10-01

    Full Text Available Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV and demonstrated the efficacy of hexanoic acid (Hx priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR to MNSV. Our data indicate important roles of salicylic acid (SA, 12-oxo-phytodienoic acid (OPDA, jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  2. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan

    2016-01-01

    Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m"−"2. Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m"−"2 and about 99.4% of the mercury resides in soil layers (0–40 cm). The remaining 0.6% (0.50 mg m"−"2) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g"−"1, respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. - Highlights: • Mercury in air, soil, biomass and insect were studied at a subtropical forest. • 99.4% of the total ecosystem mercury pools was resided in soil layers. • High mercury pools were large pulses to the atmosphere during potential wildfires. • High mercury deposition in forest pose an ecological stress to insect. - Large mercury pools in forest pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and ecological stress to insect.

  3. Liming Influences Growth and Nutrient Balances in Sugar Maple (Acer saccharum) Seedlings on an Acidic Forest Soil

    Science.gov (United States)

    Dudley J. Raynal

    1998-01-01

    Forests in the northeastern US have been limed to mitigate soil acidification and the acidity of surface waters and to improve soil base cation status. Much of the area considered for liming is within the range of sugar maple (Acer saccharum), but there is a poor understanding of how liming influences growth and nutrient balance of this species on...

  4. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    Science.gov (United States)

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  5. Critical Loads of Acid Deposition for Wilderness Lakes in the Sierra Nevada (California) Estimated by the Steady-State Water Chemistry Model

    Science.gov (United States)

    Glenn D. Shaw; Ricardo Cisneros; Donald Schweizer; James O. Sickman; Mark E. Fenn

    2014-01-01

    Major ion chemistry (2000-2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (...

  6. A δ(15)N assessment of nitrogen deposition for the endangered epiphytic orchid Laelia speciosa from a city and an oak forest in Mexico.

    Science.gov (United States)

    Díaz-Álvarez, Edison A; Reyes-García, Casandra; de la Barrera, Erick

    2016-09-01

    Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ(15)N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ(15)N for plant from the oak forest amounted to -3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ(15)N values of pseudobulbs from the oak forest averaged ‒4.4 ± 0.1 ‰ for the entire series. The δ(15)N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ(15)N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.

  7. Projecting Soil Feedbacks to Atmospheric CO2 Following Erosion and Deposition on Centennial Timescales in Two Contrasting Forests: A Study of Critical Zone-Atmosphere Exchange

    Science.gov (United States)

    Billings, S. A.; Richter, D., Jr.; Ziegler, S. E.; Prestegaard, K. L.

    2016-12-01

    For almost 20 y there has been a growing recognition that erosion and associated lateral movement of SOC does not necessarily result in a net CO2 source from terrestrial sources to the atmosphere. Eroded SOC may undergo mineralization to CO2 at a more rapid pace than it would have in situ, but the eroding ecosystem continues to generate SOC at a potentially modified rate, and the eroding profile may also experience changing SOC mineralization rates. No one knows how these process rates may change upon erosion. Years ago, we introduced a model that computes the influence of erosion on biosphere-atmosphere CO2 exchange for any profile of interest. The model permits the user to test how assumptions of changing SOC production and mineralization can influence the degree to which erosion induces a net CO2 sink or source. Here we present an analogous model depicting how deposition of eroded SOC also can result in altered biosphere-atmosphere CO2 exchange. We employ both models to investigate how erosion and deposition in two contrasting forested regions may influence regional C budgets. Runoff-induced erosion in a boreal forest occurs at low rates, but removes C-rich, organic material; anthropogenically-enhanced erosion in a warm temperate forest removed both O- and mineral-rich A-horizons. Model runs (100 y) suggest that even though the great volume of mineral soil eroded from the temperate forest was relatively low-SOC, high erosion rates prompted greater potential for erosion to serve as a net CO2 sink compared to the boreal forest where C-rich material was lost but erosion rates remained low. The models further suggest that changes in SOC production and mineralization at eroding sites in both forest types are a greater influence on CO2 source or sink strength than analogous changes at depositional sites. The fate of eroded material and the influence of erosion and deposition on SOC dynamics remain knowledge gaps critical for projecting atmospheric CO2.

  8. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  9. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    Science.gov (United States)

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  10. Zirconia sol-gel coatings deposited on 304 stainless steel for chemical protection in acid media

    International Nuclear Information System (INIS)

    Luna, F. Perdomo; Atik, M.; Avaca, Luis A.; Aegerter, M.A.

    1995-01-01

    Zr O 2 thin films were prepared by sol-gel method and using dip-coating technique for deposition on 304 austenitic stainless steel, from sonocatalyzed sols of zirconia alkoxide, isopropanol (Zr(O C 3 H 7 )4/C 3 H 7 OH = 0.5), glacial acetic acid and water (C H 3 CO OH/H 2 O = 0.5). The films were dried at 40 deg C/15 min and thermally treated in the air with a linear variation of 5 deg C/min and two isothermal holdings at 400 deg C during 1 h and afterwards at 800 deg C during several periods of time (up to 20 h). The film thickness ranges between 0.6 and 0.8 μm. Structure and morphology were studied by x-ray diffraction and scanning electron microscopy. The corrosion potential, the corrosion current density, the polarization resistance and the corrosion rate (mpy) in 1,0 N aqueous solution of H 2 SO 4 at room temperature were determined using potentiometric polarization curves with a scanning velocity of 1 mV/s. These films act as a blocking physical layer in the corrosion media and increase the substrate life time in a factor of 7

  11. Zirconia sol-gel coatings deposited on 304 stainless steel for chemical protection in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Luna, F Perdomo; Atik, M; Avaca, Luis A; Aegerter, M A [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    1996-12-31

    Zr O{sub 2} thin films were prepared by sol-gel method and using dip-coating technique for deposition on 304 austenitic stainless steel, from sonocatalyzed sols of zirconia alkoxide, isopropanol (Zr(O C{sub 3} H{sub 7})4/C{sub 3} H{sub 7} OH = 0.5), glacial acetic acid and water (C H{sub 3} CO OH/H{sub 2} O = 0.5). The films were dried at 40 deg C/15 min and thermally treated in the air with a linear variation of 5 deg C/min and two isothermal holdings at 400 deg C during 1 h and afterwards at 800 deg C during several periods of time (up to 20 h). The film thickness ranges between 0.6 and 0.8 {mu}m. Structure and morphology were studied by x-ray diffraction and scanning electron microscopy. The corrosion potential, the corrosion current density, the polarization resistance and the corrosion rate (mpy) in 1,0 N aqueous solution of H{sub 2} SO{sub 4} at room temperature were determined using potentiometric polarization curves with a scanning velocity of 1 mV/s. These films act as a blocking physical layer in the corrosion media and increase the substrate life time in a factor of 7 16 refs., 3 figs., 1 tab.

  12. Impact of the Fused Deposition (FDM Printing Process on Polylactic Acid (PLA Chemistry and Structure

    Directory of Open Access Journals (Sweden)

    Michael Arthur Cuiffo

    2017-06-01

    Full Text Available Polylactic acid (PLA is an organic polymer commonly used in fused deposition (FDM printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR spectroscopy and photoacousitc FTIR spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS in order to characterize both the bulk and surface chemistry of the source material and printed samples. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC were used to characterize morphology, cold crystallinity, and the glass transition and melting temperatures following printing. Analysis revealed calcium carbonate-based additives which were reacted with organic ligands and potentially trace metal impurities, both before and following printing. These additives became concentrated in voids in the printed structure. This finding is important for biomedical applications as carbonate will impact subsequent cell growth on printed tissue scaffolds. Results of chemical analysis also provided evidence of the hygroscopic nature of the source material and oxidation of the printed surface, and SEM imaging revealed micro- and submicron-scale roughness that will also impact potential applications.

  13. Effects of sulphuric acid and acidifying ammonium deposition on water quality and vegetation of simulated soft water ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Schuurkes, J.A.A.R.; Heck, I.C.C; Hesen, P.L.G.M.; Leuven, R.S.E.W.; Roelofs, J.G.M.

    1986-11-01

    In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H/sub 2/SO/sub 4/ and nitrate, and rain water containing ammonium sulphate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulphate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulphate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH 3.8. Under acidified conditions, ammonium sulphate deposition led to a luxuriant growth of Juncus bulbosus and Agrostis canina. In the mini-ecosystems, H/sub 2/SO/sub 4/ deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr, the acidification of water appeared to be coupled with changes in alkalinity, sulphate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH/sub 3/-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulphate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters. 10 references.

  14. Effects of sulphuric acid and acidifying ammonium deposition on water quality and vegetation of simulated soft water ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Schuurkes, J.A.; Heck, I.C.; Hesen, P.L.; Leuven, R.S.; Roelofs, J.G.

    1986-11-01

    In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H/sub 2/SO/sub 4/ and nitrate, and rain water containing ammonium sulfate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulfate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulfate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH = 3.8. Under acidified conditions, ammonium sulfate deposition lead to a luxuriant growth of Juncus bulbosus and Agrostis canina. In the mini-ecosystems, H/sub 2/SO/sub 4/ deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr. The acidification of water appeared to be coupled with changes in alkalinity, sulfate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH/sub 3/-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulfate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters. 10 refs.

  15. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  16. Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.M. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of); Aashuri, H. [Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran (Iran, Islamic Republic of)

    2015-04-15

    Colloidal quantum dot solar cells have recently attracted significant attention due to their low-processing cost and surging photovoltaic performance. In this paper, a novel, reproducible, and simple solution-based process based on supercritical fluid toluene is presented for in situ growth and deposition PbS nanocrystals with oleic-acid passivation. A lead precursor containing sulfur was mixed with oleic acid in toluene and processed in a supercritical fluid condition at different temperatures of 140, 270 and 330 °C for 20 min. The quantum dots were deposited on a fluorine-doped tin oxide glass substrate inside the supercritical reactor. Transmission electron microscopy, X-ray diffraction, absorption and dynamic light scattering showed that the nanocrystals processed at the supercritical condition (330 °C) are fully crystalline with a narrow size distribution of ∼3 nm with an absorption wavelength of 915 nm (bandgap of 1.3 eV). Fourier transform infrared spectroscopy indicated that the PbS quantum dots are passivated by oleic acid molecules during the growth. Photovoltaic characteristics of Schottky junction solar cells showed an improvement over devices prepared by spin-coating. - Highlights: • Supercritical fluid processing and in situ deposition of PbS QDs are presented. • The prepared nanocrystals are mono-dispersed with an optical bandgap of 1.3 eV. • Photovoltaic performance of the in situ deposited nanocrystals is reported. • An improved PV performance compared to spin coated Schottky solar cells is shown.

  17. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA

    International Nuclear Information System (INIS)

    Vance, G.F.; David, M.B.

    1991-01-01

    The authors understanding of the chemistry, structure, and reactions of organic substances in forest floor leachates is limited and incomplete. Therefore, the authors examined the organic and inorganic chemistry of forest floor leachates collected from a hardwood forest in central Maine over a two-year period (1987-1989), including detailed study of dissolved organic carbon (DOC). Seasonal variations in NH 4 + , NO 3 - , K + , and total Al were believed due to organic matter decomposition and release. Leaching of other base cations closely followed that of NO 3 - . Total DOC ranged from 2,228 to 7,193 μmol L -1 with an average of 4,835 μmol L -1 . Monosaccharides and polyphenols constituted 3.9% (range of 3.4 to 4.4%) and 3.0% (2.2 to 3.7%) of the DOC, respectively, which suggests DOC may contain partially oxidized products that are possibly of a lignocellulose nature. Fractionation of the forest floor DOC indicated high organic acid contents (hydrophobic and hydrophilic acids) that averaged 92% of the total DOC. Organic acids were isolated and analyzed for elemental content (C, H, N, and S), and determination of UV absorptivity (E 4 /E 6 ) ratios, CuO oxidation products, FT-IR and 13 C-NMR spectra, and acidity by potentiometric titration. Their FT-IR and 13 C-NMR spectra suggest they are primarily carboxylic acids, with aliphatic and aromatic structure. An organic charge contribution model was developed using titration data, DOC fractionation percentages, and the total DOC in the forest floor leachates. Application of the model to all solutions accounted for 97% of the charge balance deficits

  18. Acidic deposition: State of science and technology. Report 9. Current status of surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Baker, L.A.; Kaufmann, P.R.; Brakke, D.F.; Herlihy, A.T.; Eilers, J.M.

    1990-09-01

    The report is based largely upon the National Surface Water Survey (NSWS), augmented by numerous smaller state and university surveys and many detailed watershed studies. In describing the current status of surface waters, the authors go far beyond the description of population statistics, although some of this is necessary, and direct their attention to the interpretation of these data. They address the question of the sources of acidity to surface waters in order to determine the relative importance of acidic deposition compared with other sources, such as naturally produced organic acids and acid mine drainage. They also examine in some detail what they call 'high interest' populations-the specific groups of lakes and streams most likely to be impacted by acidic deposition. The authors then turn to the general question of uncertainty, and finally examine low alkalinity surface waters in several other parts of the world to develop further inferences about the acid-base status of surface waters in the United States

  19. Meteorological effects on Hg wet deposition in a forested site in the Adirondack region of New York during 2000-2015

    Science.gov (United States)

    Mao, Huiting; Ye, Zhuyun; Driscoll, Charles

    2017-11-01

    An analysis of weekly measurement data of mercury (Hg) wet deposition was conducted for Huntington Wildlife Forest (HWF), a forest ecosystem in Upstate New York and a biological Hg hotspot, during 2000-2015. Annual accumulated Hg wet deposition flux was found to decrease at a rate of -0.13 μg m-2 yr-1 (2% yr-1) (p = 0.09), and volume weighted mean (VWM) Hg precipitation concentrations at -0.14 ng L-1 yr-1 (2.5% yr-1) (p = 0.00). In examining data by season, no trends were identified for the two variables. It was found that the North Atlantic Oscillation (NAO) affected Hg wet deposition predominantly in spring, as did the position of the U.S. East Coast trough in summer, which suggests different dominant mechanisms driving Hg wet deposition in different seasons. The impacts of such large scale circulation processes were facilitated via variations in precipitation amounts. This was manifested in spring 2011 with the strongest positive phase of NAO, resulting in the wettest spring with the largest Hg wet deposition flux, and in summer 2007 with the U.S. East Coast trough positioned the farthest out over the Atlantic Ocean, causing the driest summer with the lowest Hg wet deposition flux of the study period. Extreme precipitation amounts in spring could singularly drive the overall long-term trend in Hg wet deposition whereas in summer other factors could just be as important. Similar mechanisms were thought to control the long term variations of Hg wet deposition and precipitation concentrations in all seasons but summer as indicated in their significant correlation in all but summer. Atmospheric concentrations of gaseous oxidized mercury (GOM) and particulate borne mercury (PBM) at HWF over 2009-2015 hardly exhibited correlations with Hg wet deposition or precipitation concentrations. Chemical transport model simulations strongly supported efficient scavenging of oxidized Hg by precipitation resulting in the lowest concentration of GOM in the warm season despite the

  20. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  1. Responses of soil N-fixing bacteria communities to invasive plant species under different types of simulated acid deposition

    Science.gov (United States)

    Wang, Congyan; Zhou, Jiawei; Jiang, Kun; Liu, Jun; Du, Daolin

    2017-06-01

    Biological invasions have incurred serious threats to native ecosystems in China, and soil N-fixing bacteria communities (SNB) may play a vital role in the successful plant invasion. Meanwhile, anthropogenic acid deposition is increasing in China, which may modify or upgrade the effects that invasive plant species can cause on SNB. We analyzed the structure and diversity of SNB by means of new generation sequencing technology in soils with different simulated acid deposition (SAD), i.e., different SO4 2- to NO3 - ratios, and where the invasive ( Amaranthus retroflexus L.) and the native species ( Amaranthus tricolor L.) grew mixed or isolated for 3 months. A. retroflexus itself did not exert significant effects on the diversity and richness of SNB but did it under certain SO4 2- to NO3 - ratios. Compared to soils where the native species grew isolated, the soils where the invasive A. retroflexus grew isolated showed lower relative abundance of some SNB classes under certain SAD treatments. Some types of SAD can alter soil nutrient content which in turn could affect SNB diversity and abundance. Specifically, greater SO4 2- to NO3 - ratios tended to have more toxic effects on SNB likely due to the higher exchange capacity of hydroxyl groups (OH-) between SO4 2- and NO3 -. As a conclusion, it can be expected a change in the structure of SNB after A. retroflexus invasion under acid deposition rich in sulfuric acid. This change may create a plant soil feedback favoring future A. retroflexus invasions.

  2. Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen

    Science.gov (United States)

    John W. Coulston

    2009-01-01

    The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term “air pollution” encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...

  3. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  4. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  5. Characteristics of initial deposition and behavior of radiocesium in forest ecosystems of different locations and species affected by the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Komatsu, Masabumi; Kaneko, Shinji; Ohashi, Shinta; Kuroda, Katsushi; Sano, Tetsuya; Ikeda, Shigeto; Saito, Satoshi; Kiyono, Yoshiyuki; Tonosaki, Mario; Miura, Satoru; Akama, Akio; Kajimoto, Takuya; Takahashi, Masamichi

    2016-01-01

    After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, information about stand-level spatial patterns of radiocesium initially deposited in the surrounding forests was essential for predicting the future dynamics of radiocesium and suggesting a management plan for contaminated forests. In the first summer (approximately 6 months after the accident), we separately estimated the amounts of radiocesium ("1"3"4Cs and "1"3"7Cs; Bq m"−"2) in the major components (trees, organic layers, and soils) in forests of three sites with different contamination levels. For a Japanese cedar (Cryptomeria japonica) forest studied at each of the three sites, the radiocesium concentration greatly differed among the components, with the needle and organic layer having the highest concentrations. For these cedar forests, the proportion of the "1"3"7Cs stock in the aboveground tree biomass varied from 22% to 44% of the total "1"3"7Cs stock; it was 44% in highly contaminated sites (7.0 × 10"5 Bq m"−"2) but reduced to 22% in less contaminated sites (1.1 × 10"4 Bq m"−"2). In the intermediate contaminated site (5.0–5.8 × 10"4 Bq m"−"2), 34% of radiocesium was observed in the aboveground tree biomass of the Japanese cedar stand. However, this proportion was considerably smaller (18–19%) in the nearby mixed forests of the Japanese red pine (Pinus densiflora) and deciduous broad-leaved trees. Non-negligible amounts of "1"3"4Cs and "1"3"7Cs were detected in both the sapwood and heartwood of all the studied tree species. This finding suggested that the uptake or translocation of radiocesium had already started within 6 months after the accident. The belowground compartments were mostly present in the organic layer and the uppermost (0–5 cm deep) mineral soil layer at all the study sites. We discussed the initial transfer process of radiocesium deposited in the forest and inferred that the type of initial deposition (i.e., dry versus wet radiocesium deposition

  6. Pollutant deposition in forest ecosystems and characteristics of chemical properties of soils in the environs of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Lochman, V.; Bucek, J.; Biba, M.

    1994-01-01

    The paper describes the results of investigations of the chemistry of precipitation water and soil water in 1991-1992 on research plots in the nearer and farther environs of the building site of the Temelin nuclear power plant (about 25 km north of Ceske Budejovice). Research plots lie in spruce and beech stands. When the installations on research plots were built (1990 and 1991), soil samples were taken to determine the supply of biogenic elements in humus and soil. The objective of the program was to determine the current level of element deposition in forest ecosystems, dynamics of soil elements and chemistry; the program is a part of more extensive research into forest environment and stand condition. The research of investigation provide data for a forecast of the effect of the projected operation of the nuclear power plant on forest environment, basic factor of growth and stabilization and for fulfilment of their functions. They can be a basis for evaluation of the rate of changes in forest ecosystems after the nuclear power plant has been launched into operation. The results of research are currently applied to supply data to the network of plots with monitoring of pollutant loads in the forest ecosystem in Southern Bohemia. Two research plots in spruce stand (Hnevkovice and Strouha) and a plot in beech stand (Vsetec) were laid out at a distance of several kilometers from the built-up premises of the Temelin nuclear power plant. The soils on these plots are medium deep brown forest soils (Cambisol) with a large amount of mother rock skeleton (biotitic paragneiss). Moder is a soil humus form in the spruce and beech stands. To monitor pollutant deposition in the forest ecosystems and their effect of the soil properties Vojirov plots were laid out which lie in spruce stand and in a mixed stand of beech and spruce in the Jindrichuv Hradec forest district, near the frontier with Austria. Humus podzols with moder and mor forms were developed on eolian sand between

  7. Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: Recovery and surface morphology of the deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Sudha, R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Srinivasan, T.G., E-mail: tgs@igcar.gov.com [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-07-15

    Research highlights: {yields} Platinum group metals are man-made noble metals. {yields} Electrochemical recovery of fission platinoids. {yields} Recovery from nitric acid medium. {yields} Recovery from ionic liquid medium. {yields} Platinoids with exotic surface morphologies. - Abstract: Electrodeposition is a promising technique for the recovery of platinum group metals with unique surface morphologies. The electrodeposition of palladium, ruthenium and rhodium from aqueous nitric acid, and non-aqueous 1-butyl-3-methylimidazolium chloride ionic liquid medium was studied at stainless steel electrode. The surface morphology and elemental composition of the resultant deposit were probed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. Deposits with diverse surface morphologies and metal compositions were obtained by varying the composition of the electrolytic medium and applied potential. The results demonstrate the possibility of tailoring the morphologies of PGMs by controlling the composition and potential needed for electrodeposition.

  8. Approaches for estimating critical loads of N and S deposition for forest ecosystems on U.S. federal lands

    Science.gov (United States)

    Linda H. Pardo

    2010-01-01

    Projected emissions of sulfur and nitrogen are expected to have continuing negative impacts on forests, in spite of reductions in sulfur emissions as a result of SO2 control programs. Sulfur and nitrogen emissions present serious long-term threats to forest health and productivity in the United States. This report is intended to explain the...

  9. Intensive monitoring of forest ecosystems in Europe; 2: atmospheric deposition and its impacts on soil solution chemistry

    NARCIS (Netherlands)

    Vries, de W.; Reinds, G.J.; Vel, E.M.

    2003-01-01

    In order to gain a better understanding of the effects of air pollution and other stress factors on forests, a Pan-European programme for intensive and continuous monitoring of forest ecosystems has been implemented in 1994. Results of this intensive monitoring programme presented in this paper are

  10. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  11. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA.

    Science.gov (United States)

    McHale, Michael R; Burns, Douglas A; Siemion, Jason; Antidormi, Michael R

    2017-10-01

    The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. This study examines trends in acid deposition, stream-water chemistry, and soil chemistry in the southeastern Catskill Mountains. We measured significant reductions in acid deposition and improvement in stream-water quality in 5 streams included in this study from 1992 to 2014. The largest, most significant trends were for sulfate (SO 4 2- ) concentrations (mean trend of -2.5 μeq L -1 yr -1 ); hydrogen ion (H + ) and inorganic monomeric aluminum (Al im ) also decreased significantly (mean trends of -0.3 μeq L -1 yr -1 for H + and -0.1 μeq L -1 yr -1 for Al im for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased by a mean of 0.65 μeq L -1 yr -1 for all 5 sites, which was 4 fold less than the decrease in SO 4 2- concentrations. These upward trends in ANC were limited by coincident decreases in base cations (-1.3 μeq L -1 yr -1 for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO 3 - ) concentrations despite significant decreasing trends in NO 3 - wet deposition. We measured no recovery in soil chemistry which we attributed to an initially low soil buffering capacity that has been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (-0.2 μeq L -1 yr -1 ) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a decrease in the ionic strength of soil water and shallow groundwater may be the principal driver of this apparent decrease in the weathering rate. A decreasing weathering rate would help to explain the slow recovery of stream pH and ANC as well as that of soil base cations. Published by Elsevier Ltd.

  12. The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA

    Science.gov (United States)

    McHale, Michael; Burns, Douglas A.; Siemion, Jason; Antidormi, Michael

    2017-01-01

    The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. This study examines trends in acid deposition, stream-water chemistry, and soil chemistry in the southeastern Catskill Mountains. We measured significant reductions in acid deposition and improvement in stream-water quality in 5 streams included in this study from 1992 to 2014. The largest, most significant trends were for sulfate (SO42−) concentrations (mean trend of −2.5 μeq L−1 yr−1); hydrogen ion (H+) and inorganic monomeric aluminum (Alim) also decreased significantly (mean trends of −0.3 μeq L−1 yr−1 for H+ and −0.1 μeq L−1 yr−1 for Alim for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased by a mean of 0.65 μeq L−1 yr−1 for all 5 sites, which was 4 fold less than the decrease in SO42−concentrations. These upward trends in ANC were limited by coincident decreases in base cations (−1.3 μeq L−1 yr−1 for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO3−) concentrations despite significant decreasing trends in NO3− wet deposition. We measured no recovery in soil chemistry which we attributed to an initially low soil buffering capacity that has been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (−0.2 μeq L−1 yr−1) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a decrease in the ionic strength of soil water and shallow groundwater may be the principal driver of this apparent decrease in the weathering rate. A decreasing weathering rate would help to explain the slow recovery of stream pH and ANC as well as that of soil base cations.

  13. Trends of deposition fluxes and loadings of sulfur dioxide and nitrogen oxides in the artificial Three Northern Regions Shelter Forest across northern China

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Huang, Tao; Zhang, Leiming; Gao, Hong; Shen, Yanjie; Ma, Jianmin

    2015-01-01

    This study provides the first estimate of dry deposition fluxes of criteria air pollutants (SO_2 and NO_x) across the Three Northern Regions Shelter Forest (TNRSF) region in Northern China and their long-term trends from 1982 to 2010 using the inferential method. Dry deposition velocities of SO_2 and NO_x increased in many places of the TNRSF up to 118.2% for SO_2 and 112.1% for NO_x over the last three decades due to the increased vegetation coverage over the TNRSF. The highest atmospheric deposition fluxes of SO_2 and NO_x were found in the Central-North China region, followed by the Northeast and the Northwest China regions of the TNRSF. A total of 820,000 t SO_2 and 218,000 t NO_x was estimated to be removed from the atmosphere through dry deposition process over the TNRSF from 1982 to 2010. About 50% of the total removal occurred in the Central-North China region. The estimated total SO_2 and NO_x dry deposition fluxes from 1982 to 2010 between a TNRSF site in this region and an adjacent farmland outside the TNRSF showed that the fluxes of these two chemicals at the TNRSF site were the factors of 2–3 greater than their fluxes in the farmland. - Highlights: • We investigate removal of air pollutants by the Three-North Shelter Forest (Green Great Wall) in China. • The trend of SO_2 and NO_x dry deposition velocity and flux over the TNRSF increase over the last three decades. • Increasing trends of deposition fluxes of SO_2 and NO_x are more evident in Central-North and Northeast China. • We show higher deposition fluxes of SO_2 and NO_x within the TNSF than outside TNRSF. • Stronger removal of air pollutants by the TNRSF is expected when other criteria air pollutants are taken into account. - The TNRSF is demonstrated to be an effective sink for SO_2 and NO_x and has increased the removal of air pollutants from Northern China.

  14. Acid-deposition research program. Volume 2. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.; Parr, J.F.

    1987-02-01

    The interactions of soil physical, chemical, and biological processes are ultimately expressed in a soil's fertility and its capacity for plant production. Consequently, much of the research conducted to date regarding the impact of acid-forming pollutants on soil properties has been geared towards possible effects on plant productivity. This trend continues in this paper where the effects of acidic deposition on microbial communities are reviewed in relation to potential impact on plant growth. The objectives of the review are to discuss: (1) The effects of acid-forming emissions (primarily S-containing pollutants) on microbial community structure with emphasis on qualitative and quantitative aspects; (2) The effects of acidic deposition on microbially mediated processes (i.e., community functions); (3) Acidification effects of pollutants on symbiotic and disease-causing microorganisms. The symbionts discussed include ectomycorrhizal fungi, vesicular-arbuscular mycorrhizal fungi, and N/sub 2/-fixing bacteria, particularly Rhizobium, while the disease-causing microorganisms will include those responsible for foliage, stem, and root diseases.

  15. The effect of acid precipitation on tree growth in eastern North America

    Science.gov (United States)

    Charles V. Cogbill

    1976-01-01

    Detailed study of the history of forest tree growth by tree-ring analysis is used to assess the effect of acid precipitation. The pattern and historical trends of acid precipitation deposition are compared with growth trends from mature forest stands in New Hampshire and Tennessee. No clear indication of a regional, synchronized decrease in tree growth was found. The...

  16. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    Science.gov (United States)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative

  17. Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol.

    Science.gov (United States)

    Dunfield, Peter F; Khmelenina, Valentina N; Suzina, Natalia E; Trotsenko, Yuri A; Dedysh, Svetlana N

    2003-09-01

    Two strains of Gram-negative, aerobic, non-pigmented, non-motile, rod-shaped, methane-oxidizing bacteria were isolated from an acidic forest cambisol near Marburg, Germany, and were designated as strains BL2(T) and A1. These bacteria were morphologically and phenotypically similar to Methylocella palustris K(T). The cells possess a highly specific bipolar appearance. They lack the intracytoplasmic membranes common to all methane-oxidizing bacteria except Methylocella, but contain a vesicular membrane system connected to the cytoplasmic membrane. A soluble methane monooxygenase was present, but no particulate methane monooxygenase could be detected. These bacteria utilize the serine pathway for carbon assimilation. Strains BL2(T) and A1 are moderately acidophilic, mesophilic organisms capable of growth at pH values between 4.5 and 7 (with an optimum at pH 5.5) and at temperatures between 4 and 30 degrees C. Compared with Methylocella palustris K(T), these strains have greater tolerance of cold temperatures, dissolved salts and methanol. On the basis of 16S rRNA gene sequence identity, of species with validly published names, strain BL2(T) is most closely related to Methylocella palustris K(T) (97.3 % identity), Beijerinckia indica subsp. indica ATCC 9039(T) (97.1 %) and Methylocapsa acidiphila B2(T) (96.2 %). The DNA G+C content is 60 mol% and the major phospholipid fatty acid is 18 : 1omega7. Strain BL2(T) showed only 21-22 % DNA-DNA hybridization with Methylocella palustris K(T). The data therefore suggest that strains BL2(T) and A1 represent a novel species of Methylocella; the name Methylocella silvestris sp. nov. is proposed, with strain BL2(T) (=DSM 15510(T)=NCIMB 13906(T)) as the type strain.

  18. Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid deposition and hydrology

    NARCIS (Netherlands)

    Kros, J.; Reinds, G.J.; Vries, de W.

    1995-01-01

    Changes in vegetation are often caused by changes in abiotic site factors. The SMART2 model has been developed to evaluate the effects of changes in ion inputs by atmospheric deposition and seepage on these site factors. Linkage with the Multiple Stress Model for Vegetation (MOVE) enables evaluation

  19. Acid Deposition Maps in Spain; Mapas de Deposito Acido en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Artinano, B; Cabal, H; Garcia, C

    1998-07-01

    Animal and monthly deposition velocity and total sulfur deposition maps have been performed for the peninsular Spain for 1992 by using the inferential method. To do this, updated databases with high space and time resolution, for land uses (CORINE) and meteorological information from analysis modelling for the same year, have been utilized. The final result are deposition maps in a 5x5 Km{sup 2} grid which allow to assess the methodology used in Europe to obtain the maps of excedances over the critical loads of pollutants. (Author) 32 refs.

  20. Acid Deposition Maps in Spain; Mapas de Deposito Acido en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Artinano, B.; Cabal, H.; Garcia, C. [CIEMAT. Madrid (Spain)

    1998-12-31

    Annual and monthly deposition velocity and total sulfur deposition maps have been performed for the peninsular Spain for 1992 by using the inferential method. To de this, updated database with high space and time resolution, for land uses (CORINE) and meteorological information from analysis modelling for the same year, have been utilized. The final result are deposition maps in a 5 x 5 km``2 grid which allow to assess the methodology used in Europe to obtain the maps of excedance over the critical loads of pollutants. (Author) 32 refs.

  1. Effects of acidic deposition on the erosion of carbonate stone — experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, Philip A.; Reddy, Michael M.; Reimann, Karl J.; Sciammarella, Cesar A.

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30° to horizontal at the five NAPAP materials exposure sites range from ˜ 15 to ˜ 30 μm yr -1 for marble, and from ˜ 25 to ˜ 45 μm yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ˜ 30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ˜ 70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ("clean rain"). These results are for marble and limestone slabs exposed at an angle of 30° from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60° or 85°. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at

  2. Sedimentology of onshore tsunami deposits of the Indian Ocean tsunami, 2004 in the mangrove forest of the Curieuse Marine National Park, Seychelles

    Science.gov (United States)

    Nentwig, V.; Bahlburg, H.; Monthy, D.

    2012-12-01

    The Seychelles were severely affected by the December 26, 2004 tsunami in the Indian Ocean. Since the tsunami history of small islands often remains unclear due to a young historiography we conducted a study of onshore tsunami deposits on the Seychelles in order to understand the scale of impact of the 2004 Indian Ocean tsunami and potential predecessors. As part of this project we found and studied onshore tsunami deposits in the mangrove forest at Old Turtle Pond bay on the east coast of Curieuse Island. The 2004 Indian Ocean tsunami caused a change of habitat due to sedimentation of an extended sand sheet in the mangrove forest. We present results of the first detailed sedimentological study of onshore tsunami deposits of the 2004 Indian Ocean tsunami conducted on the Seychelles. The Curieuse mangrove forest at Old Turtle Pond bay is part of the Curieuse Marine National Park. It is thus protected from anthropogenic interference. Towards the sea it was shielded until the tsunami by a 500 m long and 1.5 m high causeway which was set up in 1909 as a sediment trap. The causeway was destroyed by the 2004 Indian Ocean Tsunami. The silt to fine sand sized and organic rich mangrove soil was subsequently covered by carbonate fine to medium sand (1.5 to 2.1 Φ) containing coarser carbonate shell debris which had been trapped outside the mangrove bay before the tsunami. The tsunami deposited a sand sheet which is organized into different lobes. They extend landwards to different inundation distances as a function of morphology. Maximum inundation distance is 200 m. The sediments often cover the pneumatophores of the mangroves. No landward fining trend of the sand sheet has been observed. On the different sand lobes carbonate-cemented sandstone debris ranging in size from 0.5 up to 12 cm occurs. Also numerous mostly fragmented shells of bivalves and molluscs were distributed on top of the sand lobes. Intact bivalve shells were mostly positioned with the convex side upwards

  3. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA

    Science.gov (United States)

    Ganapathi Sridevi; Rakesh Minocha; Swathi A. Turlapati; Katherine C. Goldfarb; Eoin L. Brodie; Louis S. Tisa; Subhash C. Minocha

    2012-01-01

    Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-...

  4. New depositing method of Langmuir-Blodgett film of fatty acid soap as a radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Iwahashi, Makio; Watanabe, Norifumi; Seimiya, Tsutomu; Naito, Fujio

    1985-02-01

    A stable radioactive source in vacuo was obtained by a new depositing method of Langmuir-Blodgett (L/B) film. In spite of the slight consumption of the substrate solution (only 2-2.5 ml) for preparing a 15 mm x 25 mm sized L/B film containing four molecular layers of /sup 109/Cd-eicosanoate, the deposition of the film was complete. (author).

  5. Data-Driven Lead-Acid Battery Prognostics Using Random Survival Forests

    Science.gov (United States)

    2014-10-02

    Kogalur, Blackstone , & Lauer, 2008; Ishwaran & Kogalur, 2010). Random survival forest is a sur- vival analysis extension of Random Forests (Breiman, 2001...Statistics & probability letters, 80(13), 1056–1064. Ishwaran, H., Kogalur, U. B., Blackstone , E. H., & Lauer, M. S. (2008). Random survival forests. The...and environment for sta- tistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project .org/ Wager, S., Hastie, T

  6. Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH USA

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Palaniswamy Thangavel; Subhash C. Minocha; Christopher Eagar; Charles T. Driscoll

    2010-01-01

    Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions...

  7. Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels

    Science.gov (United States)

    Wang, Congyan; Wu, Bingde; Jiang, Kun; Zhou, Jiawei

    2018-05-01

    Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most

  8. Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors

    Science.gov (United States)

    Héctor García-Gomez; Sheila Izquieta-Rojano; Laura Aguillaume; Ignacio González-Fernández; Fernando Valiño; David Elustondo; Jesús M. Santamaría; Anna Àvila; Mark E. Fenn; Rocío Alonso

    2016-01-01

    Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work...

  9. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province

    Science.gov (United States)

    Timothy Sullivan; Bernard Cosby; William Jackson

    2011-01-01

    An important tool in the evaluation of acidification damage to aquatic and terrestrial ecosystems is the critical load (CL), which represents the steady-state level of acidic deposition below which ecological damage would not be expected to occur, according to current scientific understanding. A deposition load intended to be protective of a specified resource...

  10. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  11. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The

  12. Modelling impacts of acid deposition and groundwater level on habitat quality and plant species diversity

    NARCIS (Netherlands)

    Kros, J.; Mol, J.P.; Wamelink, G.W.W.; Reinds, G.J.; Hinsberg, van A.; Vries, de W.

    2016-01-01

    Introduction
    We quantified the effects of the site factors pH and nitrate (NO3) concentration in soil solution and groundwater level on the vegetation of terrestrial ecosystems for the Netherlands in response to changes in atmospheric nitrogen (N) and sulphur (S) deposition and groundwater level

  13. Application of a complex transport problem for simulating an acid rain episode in Europe. Anwendung eines komplexen Ausbreitungsmodells zur Simulation einer Episode saurer Deposition ueber Europa

    Energy Technology Data Exchange (ETDEWEB)

    Stern, R; Scherer, B

    1989-04-01

    For the first time in Europe, a comprehensive Eulerian regional tropospheric transport, transformation and removal model has been applied to an european wide acid deposition episode. This model, the Transport And Deposition of Acidifying Pollutants (TADAP) model incorporated detailed knowledge of the relevant physicochemical processes which lead to the formation of photochemical oxidants and acidifying pollutants. The EUROPA-model (EUM) of the German Weather Service, a limited area numerical weather prediction model, has been used to derive the total meteorological cloud variables. The application of the EUM/TADAP-modelling system to a 20 day-wintertime acid deposition episode in Europe showed that it is possible to model the principal features of the acid deposition system. In general, there is reasonable agreement between observed and predicted concentration and deposition patterns. Most discrepancies from observed trends can be explained by deviations between the modelled and the actual meteorology. First sensitivity studies with TADAP directed to reveal the influence of emission changes on the acid deposition system showed that there are considerable non-proportionalities between depositions of secondary pollutants and the emissions of the respective precursors. The nonlinearities arise due to the chemical coupling of the SO{sub x}/No{sub x}/VOC-system. This makes the design of control strategies to a highly complex task. Strategies developed to tackle different air pollution problems can therefore not be looked upon independently. (orig.) With 47 refs., 42 figs.

  14. Effects and quantification of acid runoff from sulfide-bearing rock deposited during construction of Highway E18, Norway

    Science.gov (United States)

    Hindar, Atle; Nordstrom, D. Kirk

    2015-01-01

    The Highway E18 between the cities of Grimstad and Kristiansand, southern Norway, constructed in the period 2006–2009, cuts through sulfide-bearing rock. The geology of this area is dominated by slowly-weathering gneiss and granites, and oxidation of fresh rock surfaces can result in acidification of surface water. Sulfide-containing rock waste from excavations during construction work was therefore deposited in three waste rock deposits off-site. The deposits consist of 630,000–2,360,000 metric tons of waste rock material. Shell sand and limestone gravel were added in layers in adequate amounts to mitigate initial acid runoff in one of the deposits. The shell sand addition was not adequate in the two others. The pH in the effluents from these two was reduced from 4.9–6.5 to 4.0–4.6, and Al concentrations increased from below 0.4 mg/L to 10–20 mg/L. Stream concentrations of trace metals increased by a factor of 25–400, highest for Ni, and then in decreasing order for Co, Mn, Cd, Zn and Cu. Concentrations of As, Cr and Fe remained unchanged. Ratios of Co/Ni and Cd/Zn indicate that the metal sources for these pair of metals are sphalerite and pyrite, respectively. Based on surveys and established critical limits for Al, surface waters downstream became toxic to fish and invertebrates. The sulfur release rates were remarkably stable in the monitoring period at all three sites. Annual sulfur release was 0.1–0.4% of the total amount of sulfur in the deposit, indicating release periods of 250–800 years. Precipitates of Al-hydroxysulfates, well-known from mining sites, were found at the base of the deposits, in streams and also along the ocean shore-line. The effects of added neutralization agents in the deposits and in treatment areas downstream gradually decreased, as indicated by reduced stream pH over time. Active measures are needed to avoid harmful ecological effects in the future.

  15. High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa; Lu, Xiankai; Gundersen, Per

    2016-01-01

    ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention...

  16. Nutrients in foliage and wet deposition of nitrate, ammonium and sulfate in washing tree top in Abies religiosa forests

    Science.gov (United States)

    E.R Peña-Mendoza; A. Gómez-Guerrero; Mark Fenn; P. Hernández de la Rosa; D. Alvarado Rosales

    2016-01-01

    The nutritional content and tree top in the forests are evaluated of Abies religiosa, San Miguel Tlaixpan (SMT) and Rio Frio (RF), State of Mexico. The work had two parts. In the first, the nutritional content was evaluated in new foliage (N, P, K, Ca and Mg) in Abies religiosa trees, in periods of spring, summer and winter, in...

  17. Acid deposition: State of science and technology. Summary report of the U.S. National Acid Precipitation Assessment Program

    International Nuclear Information System (INIS)

    Irving, P.M.; Smith, E.

    1991-09-01

    The twenty-seven State-of-Science and State-of-Technology (SOS/T) Reports, published in 1990 as the definitive scientific and technical synthesis of information obtained during the first decade of the U.S. national Acid Precipitation Assessment Program (NAPAP), are summarized in the document. In most cases, these summaries were the final chapter of the complete SOS/T Report

  18. Anthropogenic Effects on Forest Ecosystems at Various Spatio-Temporal Scales

    Directory of Open Access Journals (Sweden)

    Michael Bredemeier

    2002-01-01

    Full Text Available The focus in this review of long-term effects on forest ecosystems is on human impact. As a classification of this differentiated and complex matter, three domains of long-term effects with different scales in space and time are distinguished: 1- Exploitation and conversion history of forests in areas of extended human settlement 2- Long-range air pollution and acid deposition in industrialized regions 3- Current global loss of forests and soil degradation.

  19. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Science.gov (United States)

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  20. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  1. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  2. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  3. Structural and surface morphological studies of long chain fatty acid thin films deposited by Langmuir-Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nayan Mani, E-mail: nayanmanidas3@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Roy, Dhrubojyoti [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Gupta, Mukul [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Gupta, P.S. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2012-12-15

    In the present work we aim to study the structural and surface morphological characteristics of divalent cation (cadmium ion, Cd{sup 2+}) induced thin mono- to multilayer films of fatty acids such as arachidic acid and stearic acid prepared by the Langmuir-Blodgett (LB) technique. These ultra thin films of various numbers of layers were studied by X-ray diffraction (XRD), X-ray reflectivity (XRR) and Atomic Force Microscopy (AFM). In this specific Y-type deposition, it was found that as the individual layer thickness increases, the corresponding layer by layer interfacial electron density of the thin films decreases. Since the fatty acid chain tries to maintain its minimum value of cross-sectional area, tilting occurs with respect to its nearest neighbor. The tilt angle calculated for 9 layers of cadmium arachidate (CdA{sub 2}) and cadmium stearate (CdSt{sub 2}) are 18 Degree-Sign and 19.5 Degree-Sign , respectively. An asymmetric air gap of thickness {approx}3 A was also seen between the tail parts of 2 molecular chains. The RMS roughness and average height factors calculated through AFM studies show non-uniform surface morphology of both CdA{sub 2} and CdSt{sub 2}, although the calculated topographic variations were found to have more irregularity in case of CdSt{sub 2} than in case of CdA{sub 2}.

  4. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Selig, Michael J; Viamajala, Sridhar; Decker, Stephen R; Tucker, Melvin P; Himmel, Michael E; Vinzant, Todd B

    2007-01-01

    Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these "lignin" droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130 degrees C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150 degrees C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.

  5. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.

    1999-01-01

    used: a business as usual scenario (BAU) and a restrictive critical load scenario (CL). The BAU scenario leads to a strong decrease in both Al concentrations and pH in the topsoil of the Dutch and the Danish sites due to a decrease in the amount of amorphous Al compounds. The decline in pH leads...... is predicted for northern Sweden as deposition levels are below critical loads. Soil chemistry at the recently replanted Swedish sites is dominated by changes in N cycling instead of by deposition. The CL scenario leads, especially after 2010, to a stronger decline in Al concentration compared with the BAU...... are still declining on the Danish and Dutch sites in 2090. It is concluded that deposition levels above critical loads lead to exhaustion of the pool of amorphous Al compounds and a decline in pH. Base saturation does not decline due to an increase in mineralization with stand age and an increase...

  6. Piper sarmentosum is comparable to glycyrrhizic acid in reducing visceral fat deposition in adrenalectomised rats given dexamethasone.

    Science.gov (United States)

    Fairus, A; Ima Nirwana, S; Elvy Suhana, M R; Tan, M H; Santhana, R; Farihah, H S

    2013-01-01

    Visceral obesity may be due to the dysregulation of cortisol production or metabolism that lead to metabolic disease. In adipose tissue, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 regulates cortisol metabolism (11beta-HSD1). A previous study showed an increase in the visceral fat deposition in adrenalectomised rats given intramuscular dexamethasone. Glycyrrhizic acid (GCA) has been shown to reduce fat deposition because it is a known potent inhibitor of the 11beta-HSD1 enzyme. Piper sarmentosum (PS) is an edible medicinal plant commonly used in Asia as traditional medicine for treating diabetes, hypertension and joint pains. In this study, we determined the effects of PS extract on the disposition and morphology of perirenal adipocytes of adrenalectomised rats given intramuscular dexamethasone. A total of 21 male Spraque Dawley rats were adrenalectomised and given intramuscular dexamethasone, 120 μg/kg/day. These rats were further divided into three groups: adrenalectomised control (ADR+Dexa; n=7), GCA-treated (ADR+Dexa+GCA; dose=240 mg/kg/day; n=7) and PS-treated (ADR+Dexa+PS; dose=125 mg/kg/day; n=7) groups. The various treatments were given via gastric gavage following 2 weeks of adrenalectomy. Treatment with PS extract for 8 weeks showed decreased deposition of perirenal adipocytes which was similar to the GCA-treated group. However, PS-treated rats had thinner adipocyte membrane compared with that of the GCA-treated group. In conclusion, PS extract decreased perirenal fat deposition and reduced the diameter of the adipocyte membrane. However, the mechanisms of action needed further study.

  7. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    Science.gov (United States)

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  8. Use of 15N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gardsjoen, Sweden

    International Nuclear Information System (INIS)

    Kjonaas, O. Janne; Wright, Richard F.

    2007-01-01

    To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35 kg N enriched with the stable isotope 15 N (2110 per mille δ 15 N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50 kg ha -1 year -1 . The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at Gardsjoen, Sweden. The 15 N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9 years following the 15 N addition. During the year of the 15 N addition the δ 15 N level in runoff largely reflected the level in incoming N, indicating that the leached NO 3 - came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON. - 15 N tracer addition showed that initially the main source of NO 3 - in runoff was N from atmospheric deposition

  9. Phytopigments and fatty acids in the gut of the deposit-feeding heart urchin

    NARCIS (Netherlands)

    Boon, A.R.; Duineveld, G.C.A.

    2012-01-01

    As part of a broader study on benthic–pelagic coupling in the southern North Sea, specimens of the common heart urchin Echinocardium cordatum were sampled for analyses on phytopigments and fatty acids in their guts. Results were interpreted in the context of feeding and ecological

  10. Fatty acid metabolism and deposition in subcutaneous adipose tissue of pasture and feedlot finished cattle

    Science.gov (United States)

    An experiment was conducted to evaluate the effects of pasture finishing versus high-concentrate finishing, over time, on fatty acid metabolism in Angus crossbred (n = 24) steers. Ruminal fluid, serum, and adipose tissue biopsies were obtained on d 0, 28, 84, and 140. Pasture forages and diet ingr...

  11. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.

    Science.gov (United States)

    Arbaugh, Michael; Bytnerowicz, Andrzej; Grulke, Nancy; Fenn, Mark; Poth, Mark; Temple, Patrick; Miller, Paul

    2003-06-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains.

  12. Amphibia and insects as potential bioindicators of high acid and aluminium levels in the northern part of the Black Forest

    International Nuclear Information System (INIS)

    Boehmer, J.; Vollmer, W.; Rahmann, H.

    1992-01-01

    Atmospheric sulphur dioxide and nitrogen oxide loads have caused an acidification of numerous surface waters in the calcium-deficient regions of Europe. The effects of acidification on aquatic organisms was examined in the Northern Black Forest. High acid loads and correlatively high aluminium loads were found to decrease the diversity of aquatic species. Both in wild conditions and in the aquarium embryonic and larval mortality rates were seen to be elevated, leading to a decrease in population of many species. Sublethal impairments such as damage to organs or growth or behavioural disorders were also found. The observed changes in amphibian spawn and populations were used exemplarily as a bioindication of the acid state of the 37 standing waters studied. (orig.) [de

  13. Forest fuel and sulphur

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-10-01

    This report illustrates the sulphur cycle in forest fuel and in the forest ecosystem. The hypothesis is that sulphur dioxide from combustion of forest fuel is not more acidifying than sulphur that is mineralized from tree biomass if it is left in the forest instead of being burnt. The report gives an overview of the sulphur cycle in general together with the acidifying effect of sulphur. The sulphur content in wood biomass is about 1 mg/g in the needles and 0.2-0.3 mg/g in wood. Chipped forest fuel contains 0.2-0.5 mg S/g. A removal of 40 tonnes of felling residues per hectare may contain about 8-30 kg S. The sulphur occurs both in organic, often reduced, form and as sulphate. In situations of high availability to sulphur there will be an increased proportion of sulphate. After combustion some, perhaps half, of the sulphur is left in the ashes, most of which appears to be sulphate. In mineralisation of reduced organic sulphur, of type R-SH, the sulphur is released in the form of sulphide. Hydrogen sulphide, H2S, can be oxidised by microbes to sulphate, which should be acidifying (2 H+ will remain). A very rough estimate suggests that emissions of sulphur dioxide from forest fuel, spread over the period the trees are growing, and on the area from which the trees are taken, corresponds to 0.5% of the sulphur deposition in southern Sweden. Sulphur emissions from biofuel combustion are much lower than Sweden's and the EU's most stringent emission limits for coal. Whole-tree removal with return of ashes will theoretically give a considerable reduction in soil acidity since large quantities of nitrogen are removed and thus the acidifying effect of nitrogen will not occur. This should be of greater importance for forest acidification than the effect of biomass sulphur. 80 refs, numerous tabs

  14. Solid-State Spun Fibers from 1 mm Long Carbon Nanotube Forests Synthesized by Water-Assisted Chemical Vapor Deposition

    Science.gov (United States)

    Zhang, Shanju; Zhu, Lingbo; Minus, Marilyn L.; Chae, han Gi; Jagannathan, Sudhakar; Wong, Ching-Ping; Kowalik, Janusz; Roberson, Luke B.; Kumar, Satish

    2007-01-01

    In this work, we report continuous carbon nanotube fibers dry-drawn directly from water-assisted CVD grown forests with millimeter scale length. As-drawn nanotube fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile liquid. Nanotube fibers are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman microscopy and wide-angle X-ray diffraction (WAXD). Mechanical behavior and electrical conductivity of the post-treated nanotube fibers are investigated.

  15. The effect of pomegranate seed oil and grapeseed oil on cis-9, trans-11 CLA (rumenic acid), n-3 and n-6 fatty acids deposition in selected tissues of chickens.

    Science.gov (United States)

    Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A

    2018-04-23

    The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.

  16. A uranium-bearing coalificated wood remain from the Upper Carboniferous uranium ore deposit in the Baden-Baden region of the Black Forest

    International Nuclear Information System (INIS)

    Kirchheimer, F.

    1981-01-01

    From the 1973 discovered Upper Carboniferous uranium ore sandstone deposit in the Baden-Baden region (Black Forest) a uranium-bearing coalificated wood remain derived, probably the relic of a Cordaites-trunk. The chemical determinated whole uranium content of this amounts about to 40 wght.-%. Pitchblende of the collomorphic type is embedded in the vitrinite of the fossil and imitates the nearly destroyed former wood-structure. The aggregates of this mineral, surrounded by zones of contact, consist of at least two modifications of different reflectance and hardness. Radiometric analyses reveale a different disturbed radioactive equilibrium, which indicated partly loss and re-enrichment of the uranium-content in recent time. A part of the fossil is completely mineralized by pitchblende of high reflectance and associated galena. For this paragenesis the radiometric investigations proved an approached equilibrium of radioactive substances. Therefore it is to be estimated, that the pitchblende is not alterated substantially, in contrast to the embeddings in the vitrinite, rich in little reflecting and soft nasturanium. The inhomogenic mineralization of the highly coalificated fossil, also to recognise microscopically, is set in relation to the controverse genetic interpretation of the deposit. Final remarks are concerned to other uranium-enriched fossils, especially remains of bones of different origin and age. (orig.) [de

  17. Spatial and temporal small-scale variability of nitrogen mobilization in a forest ecosystem with high N deposition in NW-Germany.

    Science.gov (United States)

    Lorz, Carsten; Eissner, Christel; Lethmate, Jürgen; Schneider, Birgit

    2010-02-01

    For conifer stands in NW-Germany with high DIN load (23-35 kg N ha(-1) a(-1)) and a long history of nitrogen export the risk of N mobilization were investigated. Ammonium is the most mobilized N species, pointing towards either conditions not favoring nitrification or, more likely - under the dominant aerobic conditions - a very high amount of ammonium in the forest floor. Independence of net nitrification and net ammonification from each other indicates the existence of two separate systems. The nitrifying system depends very much on biotic conditions - as a function of energy and moisture - and seems not to be directly related to N deposition. In contrast, for the ammonification system (Oe horizon) a correlation with the sum of ammonium deposition three months prior to sampling was found. However, the role of disturbance, i.e. nitrogen export, during the last centuries and the role of recovery of the N balance during the last 150 years is still not clear. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest

    International Nuclear Information System (INIS)

    Sase, Hiroyuki; Takahashi, Akiomi; Sato, Masahiko; Kobayashi, Hiroyasu; Nakata, Makoto; Totsuka, Tsumugu

    2008-01-01

    The seasonal changes in throughfall (TF) and stemflow (SF) chemistry and the canopy interactions of K + and N compounds were studied in a Japanese cedar forest near the Sea of Japan. The fluxes of most ions, including non-sea-salt SO 4 2- , from TF, SF, and rainfall showed distinct seasonal trends, increasing from autumn to winter, owing to the seasonal west wind, while the fluxes of NH 4 + and K + ions from TF + SF might have a large effect of canopy interactions. The contact angle (CA) of water droplets on leaves decreased with leaf aging, suggesting that surface wettability increases with leaf age. The K + concentration in TF was negatively correlated with the CA of 1-year-old leaves, while the NH 4 + concentration was positively correlated with the CA. The net fluxes of NH 4 + and NO 3 - from TF were positively correlated with the CA. The increase in wettability may accelerate leaching of K + or uptake of NH 4 + . - Leaf surface properties may contribute to the ion transport process of the forest canopy

  19. Use of soil-streamwater relationships to assess regional patterns of acidic deposition effects in the northeastern USA

    Science.gov (United States)

    Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.

    2013-01-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East.More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Decreased water flowing from a forest amended with calcium silicate

    Science.gov (United States)

    Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...

  1. Regional air-quality and acid-deposition modeling and the role for visualization

    International Nuclear Information System (INIS)

    Novak, J.H.; Dennis, R.L.

    1991-11-01

    The U.S. Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. The paper provides a brief technical description of several regional scale atmospheric models, their current use within EPA, and related data analysis issues. Spatial analysis is a key component in the evaluation and interpretation of the model predictions. Thus, the authors highlight several types of analysis enhancements focusing on those related to issues of spatial scale, user access to models and analysis tools, and consolidation of air quality modeling and graphical analysis capabilities. They discuss their initial experience with a Geographical Information System (GIS) pilot project that generated the initial concepts for the design of an integrated modeling and analysis environment. And finally, they present current plans to evolve this modeling/visualization approach to a distributed, heterogeneous computing environment which enables any research scientist or policy analyst to use high performance visualization techniques from his/her desktop

  2. Long-term changes in soil pH across major forest ecosystems in China

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  3. Influence of gas-particle partitioning on ammonia and nitric acid fluxes above a deciduous forest in the Midwestern USA

    DEFF Research Database (Denmark)

    Hansen, Kristina; Sørensen, Lise Lotte; Hornsby, Karen E.

    to bi-directionality of the flux, and the dynamics of the chemical gas/aerosol equilibrium of NH3 and HNO3 (or other atmospheric acids) with aerosol-phase ammonium (NH4+) and nitrate (NO3-). NH3 and HNO3 are both very reactive and typically exhibit higher deposition velocities than aerosol NH4...... diffusion denuders with detection by florescence and half-hourly flux measurements are calculated. HNO3 REA system is based on gas capture on sodium chloride (NaCl) coated denuders with subsequent analysis by ion-chromatography, and the resulting fluxes have a resolution of 3-4 hours. CO2 fluxes...

  4. Acidic deposition: State of science and technology. Report 2. Atmospheric processes research and process model development. Final report

    International Nuclear Information System (INIS)

    Hicks, B.B.; Draxler, R.R.; Albritton, D.L.; Fehsenfeld, F.C.; Davidson, C.I.

    1990-10-01

    The document represents an attempt to put together, in one place, a summary of the present state of knowledge concerning those processes that affect air concentrations of acidic and acidifying pollutants, during their transport, from emission to deposition. It is not intended to be an all-encompassing review of the entire breadth of each of the contributing disciplines, but instead focuses on those areas where the state of science has improved over the last decade--the period of the National Acid Precipitation Assessment Program. The discussion is not limited to NAPAP activities, although it is clear that the products of NAPAP research are perhaps given greater attention than are the results obtained elsewhere. This bias is partially intentional, since it is the INTEGRATED ASSESSMENT that is currently being prepared by NAPAP that constitutes the 'client' for the material presented here. The integrated assessment pay attention to the North American situation alone, and hence the present work gives greatest attention to the North American case, but with awareness of the need to place this particular situation in the context of the rest of the world

  5. Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor hematopoietic cell transplantation.

    Science.gov (United States)

    Marino, S R; Lin, S; Maiers, M; Haagenson, M; Spellman, S; Klein, J P; Binkowski, T A; Lee, S J; van Besien, K

    2012-02-01

    The identification of important amino acid substitutions associated with low survival in hematopoietic cell transplantation (HCT) is hampered by the large number of observed substitutions compared with the small number of patients available for analysis. Random forest analysis is designed to address these limitations. We studied 2107 HCT recipients with good or intermediate risk hematological malignancies to identify HLA class I amino acid substitutions associated with reduced survival at day 100 post transplant. Random forest analysis and traditional univariate and multivariate analyses were used. Random forest analysis identified amino acid substitutions in 33 positions that were associated with reduced 100 day survival, including HLA-A 9, 43, 62, 63, 76, 77, 95, 97, 114, 116, 152, 156, 166 and 167; HLA-B 97, 109, 116 and 156; and HLA-C 6, 9, 11, 14, 21, 66, 77, 80, 95, 97, 99, 116, 156, 163 and 173. In all 13 had been previously reported by other investigators using classical biostatistical approaches. Using the same data set, traditional multivariate logistic regression identified only five amino acid substitutions associated with lower day 100 survival. Random forest analysis is a novel statistical methodology for analysis of HLA mismatching and outcome studies, capable of identifying important amino acid substitutions missed by other methods.

  6. A geochemical characterization of cold-water natural acid rock drainage at the Zn–Pb XY deposit, Yukon, Canada

    International Nuclear Information System (INIS)

    Gault, Kristen B.; Gammon, Paul; Fortin, Danielle

    2015-01-01

    Highlights: • Characterizes the waters and minerals of a natural acid rock drainage (ARD). • Demonstrates that cold climate ARD is mostly similar to temperate systems. • Cold-climate differences impact kinetic rates and hydrologic seasonality. • Demonstrates that thermodynamic equilibrium governs the ARD system. • Demonstrates that extraneous inputs can be detected in the system. - Abstract: Acid rock drainage (ARD) is considered to be temperature-limited due to the diminished activity of Fe(II)-oxidizing microbes at low temperatures. Nonetheless, ARD streams are present in cold climates. This study presents a geochemical characterization of a cold climate ARD creek at the Zn–Pb XY deposit in Yukon, Canada, which showed highly elevated concentrations of dissolved zinc (up to 475 mg/L). Acid rock drainage at the XY deposit is likely generated via subsurface abiotic and biotic oxidation of sulfide minerals, and then exits as seeps at the headwaters of the creek. The uppermost reaches of the creek have the lowest pH levels (pH 3.3) and highest metal concentrations, with prolific precipitation of iron-hydroxysulfate and -oxyhydroxide mineral precipitates (schwertmannite, jarosite, and goethite), present as terraced iron formations (TIFs) at one sampling location. The lower reaches of the creek show a progressive pH increase (up to pH level 4.9) which occurs due to Fe(III)- and Al-hydrolysis, the neutralizing influence of carbonate-rich strata and/or ground waters, and dilution by surface waters entering the creek. Progressive pH neutralization causes a change in precipitate mineralogy to X-ray amorphous Al-hydroxysulfates, with a composition similar to aluminite and hydrobasaluminite, and amorphous Al(OH)_3. Natural attenuation of Cd, Zn, and Pb occurred downstream from the headwater seeps, which was likely influenced by adsorption reactions involving both metal-sulfate anions and metal-sulfate ternary complexes. Generally, the concentrations of Cd, Zn, and

  7. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  8. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet

    2016-12-01

    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  9. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    Science.gov (United States)

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  10. Effect of glycerin and formic acid in the efficiency of deposit on Zn-Ni, obtained by electrodeposition; Efeito da glicerina e do acido formico na eficiencia de deposito da liga Zn-Ni, obtido atraves de eletrodeposicao

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza, G.A.G.; Souza, C.A.C.; Lima, L.R.P.A.; Ferreira, D.M. [Universidade Federal da Bahia - Escola Politecnica, BA (Brazil)

    2010-07-01

    Additives are added to the electrodeposition of metal coatings to improve the characteristics of the deposit. However, the objective was to investigate the effect of adding glycerin and formic acid in the deposition efficiency and deposit structure of zinc-nickel alloy obtained by electrodeposition. The depositions were made at a galvanostatic current density of 10 mA/cm{sup 2} to obtain a deposit of about 5 mm in thickness. The deposition efficiency was determined through measures of mass, chemical composition of the deposit in the presence and absence of additives was examined by X-ray Spectrometer Fluorescence (XRF) and surface characterization of coatings was performed by Scanning Electron Microscopy (SEM). The high levels of glycerin (0,07 M) and formic acid (0,26 M) in bath deposition increased the deposition efficiency of around 10% to 12% by mass, respectively. (author)

  11. Input-Output Budget of Nitrogen and the Effect of Experimentally Changed Deposition in the Forest Ecosystems in Central Japan

    Directory of Open Access Journals (Sweden)

    Junko Shindo

    2001-01-01

    Full Text Available To evaluate the current nitrogen (N status in Japanese forests, field measurements of rainfall, throughfall, litter layer percolation, and soil solution percolation were conducted in a red pine stand (Kannondai and a deciduous stand (Yasato located in central Japan. N input via throughfall was 31 and 14 kg ha–1 year–1and output below rooting zone was 9.6 and 5.5 kg ha1 year–1 in Kannondai and in Yasato, respectively. Two thirds of input N were retained in plant-soil systems. Manipulation of N input was carried out. Ionic constituents were removed from throughfall with ion exchange resin at removal sites and ammonium nitrate containing twice the N of the throughfall was applied at N addition sites periodically. SO42– output below 20-cm soil layer changed depending on the input, while NO3– output was regulated mainly by the internal cycle and effect of manipulation was undetected. These Japanese stands were generally considered to have a larger capacity to assimilate N than NITREX sites in Europe. However, N output fluxes had large spatial variability and some sites in Kannondai showed high N leaching below rooting zone almost balanced with the input via throughfall.

  12. Ecological ranges for the pH and NO3 of syntaxa: a new basis for the estimation of critical loads for acid and nitrogen deposition

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Goedhart, P.W.; Malinowska, A.H.; Frissel, J.Y.; Wegman, R.M.A.; Slim, P.A.; Dobben, van H.F.

    2011-01-01

    Question: Can the abiotic ranges of syntaxonomic units (associations) in terms of pH and nitrate concentration be estimated and then in principle be used to estimate critical loads for acid and nitrogen deposition? Location: Europe. Methods: Using splines, abiotic ranges of syntaxonomic units were

  13. Effect of PW12–GPK on the acid characteristics of Ni-, Pd- and Pt- catalysts deposited onto pillared Al montmorillonite

    Directory of Open Access Journals (Sweden)

    D. Zhumadullaev

    2012-03-01

    Full Text Available Acid characteristics of Ni-, Pd-, Pt- catalyzers , deposited to Al pillared CaH montmorillonite modified by heteropolyacid H3PW12O40·xH2O (PW12 by ammonia thermoadsorbtion method has been studied.

  14. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    International Nuclear Information System (INIS)

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands

  15. Identification sources of pollen spectra in dry and wet atmospheric deposition in the forest-steppe zone of Altai Krai (Russia)

    Science.gov (United States)

    Ryabchinskaya, Natalia; Nenasheva, Galina; Malygina, Natalia

    2015-04-01

    Pollen spectra circulating in the atmosphere contain the important information about primary biological aerosol particles (PBAP), worldwide interest in which has significantly increased in recent decades [Despres, 2012]. It is related to the fact that many researchers suggest primary aerosols as a condensation nucleus significantly affected on the formation of clouds and precipitation and, consequently, on the hydrological cycle and climate, especially at the regional level [Andreae et al., 2008; Poschlet et al., 2010; Prenni et al., 2009]. We present the comparison of pollen spectra obtained during the dry and wet atmospheric deposition in Altai Krai (Russia) and identification of the sources/regions of their receipts. Altai Krai is located in the center of the Eurasian continent, at the border of several natural and climatic zones. A significant part of the region's territory is characterized as a forest-steppe zone with a lot of natural and anthropogenic landscapes, accompanied by continental climate. It provides a rich diversity of natural vegetation and cultural associations. During last 10 years pollen grains has been monitored in the airspace of Barnaul city (the capital of Altai Krai) located in the central part of the forest-steppe zone). During the monitoring, the attempts to determine the origin of pollen spectra (local or introduced) were made as well. In the long-term average dates of the first wave of dusting in the spring season 2014 Burkard pollen traps were used in order to monitor the airspace in Barnaul, namely dry deposition of pollen grains [Nenasheva, 2013]. To estimate the wet deposition PBAP (pollen), which can reach 80% in the middle latitudes, precipitation sampler were installed close to Burkard pollen traps in order to sample precipitation. The samples were filtered through a filter having a pore diameter of 1 µm, then prepared and examined for the presence of pollen grains. The comparison of the results of pollen analysis of 10 samples

  16. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    Science.gov (United States)

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province.

    Science.gov (United States)

    Sullivan, Timothy J; Cosby, Bernard J; Jackson, William A

    2011-11-01

    An important tool in the evaluation of acidification damage to aquatic and terrestrial ecosystems is the critical load (CL), which represents the steady-state level of acidic deposition below which ecological damage would not be expected to occur, according to current scientific understanding. A deposition load intended to be protective of a specified resource condition at a particular point in time is generally called a target load (TL). The CL or TL for protection of aquatic biota is generally based on maintaining surface water acid neutralizing capacity (ANC) at an acceptable level. This study included calibration and application of the watershed model MAGIC (Model of Acidification of Groundwater in Catchments) to estimate the target sulfur (S) deposition load for the protection of aquatic resources at several future points in time in 66 generally acid-sensitive watersheds in the southern Blue Ridge province of North Carolina and two adjoining states. Potential future change in nitrogen leaching is not considered. Estimated TLs for S deposition ranged from zero (ecological objective not attainable by the specified point in time) to values many times greater than current S deposition depending on the selected site, ANC endpoint, and evaluation year. For some sites, one or more of the selected target ANC critical levels (0, 20, 50, 100μeq/L) could not be achieved by the year 2100 even if S deposition was reduced to zero and maintained at that level throughout the simulation. Many of these highly sensitive streams were simulated by the model to have had preindustrial ANC below some of these target values. For other sites, the watershed soils contained sufficiently large buffering capacity that even very high sustained levels of atmospheric S deposition would not reduce stream ANC below common damage thresholds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest

    NARCIS (Netherlands)

    Sardans, J.; Penuelas, J.; Ogaya, R.

    2008-01-01

    A six-year (1999-2005) experiment of drought manipulation was conducted in a Quercus ilex Mediterranean forest (Southern Catalonia) to simulate predicted climatic conditions projected for the decades to come. The aim was to investigate the direct and indirect effects of drought conditions on acid

  19. Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long

    2004-01-01

    The objective of the present study was to develop a rapid HPLC method for simultaneous separation and quantitation of dansylated amino acids and common polyamines in the same matrix for analyzing forest tree tissues and cell cultures. The major modifications incorporated into this method as compared to previously published HPLC methods for separation of only dansyl...

  20. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part III. Modelling the effects of N-deposition on the biodiversity of plant communities in temperate forests; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht III. Modellierung der Wirkung der Stickstoff-Deposition auf die biologische Vielfalt der Pflanzengesellschaften von Waeldern der gemaessigten Breiten

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Martin [Waldkunde-Institut Eberswalde GmbH - W.I.E., Bad Freienwalde (Oder) (Germany)

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physico-chemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Institute for Forest Science Eberswalde) and soil organisms (Giessen University). Work carried out at the Institute for Forest Science Eberswalde concentrated on modeling the effect of N-deposition on plant biodiversity in forests of the Northeast German lowlands. The model approach is based on 722 probability density functions modeling the distribution of about 400 plant species over chemical top-soil parameters C/N-ratio and pH-value. On this base an indicator value model was developed and applied to the analysis of forest vegetation dynamics due to N-deposition-induced top soil dynamics since the middle of the last century. Threshold values for deposition-induced changes of top soil were derived for most important forest ecosystems types on sites not influenced by ground water. These threshold values correspond to four different classes of endangering of plant biodiversity. Coupling with the biogeochemical process model of IMK-IFU yielded projections of endangering of plant biodiversity for selected forest sites up to the year 2050. (orig.)

  1. Forest blowdown and lake acidification

    International Nuclear Information System (INIS)

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  2. Reactive nitrogen deposition to South East Asian rainforest

    Science.gov (United States)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid

  3. Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.

    Science.gov (United States)

    Hontecillas, Raquel; Diguardo, Maggie; Duran, Elisa; Orpi, Marcel; Bassaganya-Riera, Josep

    2008-10-01

    Catalpic acid (CAT) is a conjugated linolenic acid (CLN) isomer containing trans-9, trans-11, cis-13 double bonds in an 18-carbon chain and it is found primarily in the seed oil of ornamental and medicinal trees and shrubs of the family Bignoniaceae. The objective of this study was to investigate whether CAT decreases obesity and ameliorates insulin sensitivity and glucose tolerance in mice fed high-fat diets. To test the efficacy of CAT in decreasing obesity and diabetes we used both a model of diet-induced obesity (DIO) and a genetic model of obesity (i.e., mice lacking the leptin receptor). Blood was collected on days 0, 7, 14, 21 and 28 for determining fasting glucose and insulin concentrations in plasma. In addition, a glucose tolerance test was administered on day 28. We found that dietary CAT (1g/100g) decreased fasting plasma glucose and insulin concentrations, ameliorated the glucose normalizing ability following glucose challenge and decreased abdominal white adipose tissue accumulation. In white adipose tissue (WAT), CAT upregulated peroxisome proliferator-activated receptor (PPAR) alpha and its responsive genes [i.e., stearoyl-coenzyme A desaturase (SCD1) and enoyl-coenzyme A hydratase (ECH)], increased concentrations of high-density lipoprotein (HDL) cholesterol and decreased plasma triglyceride (TG) levels. CAT decreased abdominal fat deposition, increased HDL cholesterol, decreased TG concentrations, decreased glucose and insulin homeostasis and modulated WAT gene expression in a manner reminiscent of the actions of the PPAR alpha-activating fibrate class of lipid-lowering drugs.

  4. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    Science.gov (United States)

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  5. Optimization of Processing Parameters in 3D-Printing of Poly(lactic acid by Fused Deposition Modeling Method

    Directory of Open Access Journals (Sweden)

    Maryam Ezoji

    2017-05-01

    Full Text Available Nowadays, making use of additive manufacturing (AM processes such as fused deposition modeling (FDM, in different areas, such as car manufacturing, biomedical and aerospace industries is gaining popularity worldwide because of their capacities in producing functional parts with complex geometries. Therefore, it is very important to identify the significance of FDM processing parameters which would have an impact on the quality of articles produced by the processing system. In this work, poly(lactic acid was used to study the effects of processing parameters such as layer thickness, raster angle and printing plane on the tensile properties and surface roughness of the printed specimens. The results showed that the tensile strength of a specimen increased by reducing its layer thickness. However, the elastic modulus values increased with decreasing the layer thickness to some extent. Moreover, when the layer thickness was kept constant at 0.05 mm and 3D-printing was carried out in XYZ plane, the maximum modulus and tensile strength were obtained for the raster angle of 0˚. Microscopic studies showed that in low layer thickness, the polymeric layers diffused properly into each other and no voids were formed between the layers. However, with a thickness above its critical value, a few voids were formed between the layers which played as a stress concentrator and decreased the tensile strength of the specimens. The results also showed that the surface roughness increased with increasing the layer thickness.

  6. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    Science.gov (United States)

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P level of P level of P level of P level of P level of P chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in NO 3- concentrations resulting from the increased productivity. ?? 2007 Springer Science+Business Media, Inc.

  7. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    Science.gov (United States)

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed. © 2015 by The Mycological Society of America.

  8. Using tracer-based sediment budgets to quantify erosion and deposition within harvested forests in south-east NSW, Australia

    International Nuclear Information System (INIS)

    Wallbrink, P.J.; Roddy, B.P.; Olley, J.M.

    1998-01-01

    Full text: The total impact of forest operations on the store of soil material within harvested coupes can be difficult to quantify. A study was recently undertaken in a small (∼12 ha) basin near Bombala, south-east NSW to measure both the net amount of soil erosion from the basin, and the redistribution of eroded soils and sediments within it. The dry sclerophyll study area was divided into several distinct elements: log landings, snig tacks, general harvest area (GHA), cross banks, and the filter strip of native vegetation left adjacent to the major streamline Measurements of two radionuclide tracers ( 137 Cs and 210 Pb-excess) in each of these locations were then integrated into budgets describing the movement of soil within and between the various landscape elements. The 137 Cs budget showed that no net loss of soil material had occurred from within the study area, with retention of 109 ± 14 %. Conversely, the 210 Pb-excess budget showed a total retention of 78 ± 12 %. The deficit of 2 10 Pb compared to that of 137 Cs was explained by a combination of analytical and sampling uncertainties, losses of 2 10 Pb associated with combustion and/or transport of litter and organic matter from the site, and some small loss of surface soil (to a depth of 2 mm). However, no evidence of surface-derived topsoil material was found in sediments currently being transported from the site. Both tracer budgets showed that a net loss of soil from the snig tracks and log landings had occurred. This was quantified to be 28 ± 13 mm and 48 ± 29 mm depth from these land forms respectively. Up to 30 % of this loss could be directly attributable to the creation of the cross banks by bulldozer blading. The remainder was associated with mechanical losses due to export on truck tyres and bark, dust during the dry summer harvesting phase, and losses associated with sheet and rill erosion during storm events over the intervening years. Soil material eroded from the log landings was

  9. Natural Formation and Degradation of Chloroacetic Acids and Volatile Organochlorines in Forest Soil

    Czech Academy of Sciences Publication Activity Database

    Laturnus, F.; Fahimi, I.; Gryndler, Milan; Hartmann, A.; Heal, M. R.; Matucha, M.; Schöler, H. F.; Schroll, R.; Svensson, T.

    2005-01-01

    Roč. 12, č. 4 (2005), s. 233-244 ISSN 0944-1344 Institutional research plan: CEZ:AV0Z50200510 Keywords : chloroacetic acids * degradation * fores decline Subject RIV: EE - Microbiology, Virology Impact factor: 1.518, year: 2005

  10. Distribution of heavy metals in a wood culture water catchment area under the influence of acid deposition as shown by the example of the Soese trough (Western Harz region); Verteilung von Schwermetallen in einem forstlich genutzten Wassereinzugsgebiet unter dem Einfluss saurer Deposition am Beispiel der Soesemulde (Westharz)

    Energy Technology Data Exchange (ETDEWEB)

    Andreae, H. [ed.

    1993-12-31

    This thesis deals with the distribution and turnover of heavy metals in partial terrestrial ecosystems of the water catchment area of the Soese storage dam in the Western Harz region, a forested area affected by acid deposition. The metals investigated are cadmium, chromium, cobalt, copper, nickel, lead and zinc. The work distinguishes three spatial areas: Regional heavy metal pollution is characterized via the establishment of nine deposition measuring sites (recent pollutant stress) in the field or under spruce stands and via cadastre-oriented surveying of element contents and accumulations in humus ground covers and mineral soils (historical pollutant stress). In-soil heavy metal turnovers are documented in five representative sites via investigation of the soil solution (years of measurement 1989-1991). In three sites, heavy metal turnovers are quantified via flow balances for the terrestrial ecosystem and the soil zone free of roots. (orig.) [Deutsch] Die vorliegende Arbeit befasst sich mit der Verteilung und dem Umsatz von Schwermetallen in terrestrischen Teiloekosystemen des bewaldeten, durch saure Deposition beeinflussten Wassereinzugsgebiets der Soese-Talsperre im Westharz. Untersucht werden die Metalle Cadmium, Chrom, Kobalt, Kupfer, Nickel, Blei und Zink. In der Arbeit werden drei raeumliche Ebenen unterschieden: Die regionale Belastung wird ueber die Einrichtung von neun Depositionsmessstellen [rezente Belastung] im Freiland bzw. unter Fichtenbestaenden sowie ueber eine katasterorientierte Erfassung von Element-Gehalten und -Vorraeten in Humusauflagen und Mineralboeden [historische Belastung] charakterisiert. Die bodeninternen Umsaetze der Schwermetalle werden an fuenf repraesentativen Standorten anhand der Untersuchung der Bodenloesung dokumentiert (Messjahre 1989-1991). An drei Standorten werden die Schwermetall-Umsaetze ueber Flussbilanzen fuer das terrestrische Oekosystem und die undurchwurzelte Bodenzone quantifiziert. (orig.)

  11. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2007-01-01

    Full Text Available The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.

  12. Dietary protein reduction on microbial protein, amino acid digestibility, and body retention in beef cattle: 2. Amino acid intestinal absorption and their efficiency for whole-body deposition.

    Science.gov (United States)

    Mariz, L D S; Amaral, P M; Valadares Filho, S C; Santos, S A; Detmann, E; Marcondes, M I; Pereira, J M V; Silva Júnior, J M; Prados, L F; Faciola, A P

    2018-03-06

    The objective of this study was to determine the apparent and true intestinal digestibility of total and individual AA, and to estimate the efficiency of whole-body AA retention from individual and total absorbed AA. Four Nellore animals (241.3 kg initial BW) and four crossbred Angus × Nellore (263.4 kg initial BW) cannulated in rumen and ileum were randomly allocated in two 4 × 4 Latin squares. The experiment lasted four 17 d periods, with 10 d for adaptation to diets and another 7 d for data collection. The diets consisted of increasing CP levels: 100, 120, or 140 g/kg of DM offered ad libitum, and restricted intake diet with 120 g CP/kg DM (experiment 1). In experiment 2, forty-four bulls (22 Nellore and 22 crossbred F1 Angus × Nellore) with 8 months and initial shrunk BW 215.0 ± 15.0 kg (Nellore = 208.0 ± 12.78 kg; Angus × Nellore = 221.9 ± 14.16 kg) were used. Eight of those animals were slaughtered at the beginning of the experiment. The remaining 36 bulls were allocated in a completely randomized design with six replicates, in a 2 (genetic groups) × 3 (CP contents) factorial scheme. The amount of essential AA (EAA) and nonessential AA (NEAA) reaching the small intestine increased linearly (P digestibility of EAA was not affected (P > 0.05) by CP content, with exception for histidine (P = 0.07, linear effect), leucine (P = 0.01, linear effect), and methionine (P = 0.05, linear effect). Differences existed among AA when compared the apparent digestibility of NEAA. The apparent digestibility of alanine (P = 0.05), aspartic acid (P = 0.07), glutamic acid (P = 0.02), glycine (P = 0.05), proline (P = 0.02), and serine (P = 0.04) responded quadratically to CP content increase. However, the apparent digestibility of cystine and tyrosine was not affected (P > 0.05) by increasing dietary CP. The true intestinal digestibilities of total, essential, nonessential AA, lysine, and methionine were 75.0%, 77.0%, 74.0%, 77.0%, and 86%, respectively. The true

  13. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  14. 2.4. The kinetics of hydrochloric-acid decomposition of calcined concentrate of boron raw material of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of hydrochloric-acid decomposition of calcined concentrate of boron raw material of Ak-Arkhar Deposit. The experimental data of dependence of hydrochloric-acid decomposition of calcined boron raw material for boron oxide extraction on temperature (20-80 deg C) and process duration (15-60 min) were considered. It was defined that at temperature increasing the boron oxide extraction from borosilicate raw material increases from 24.1 till 86.8%. The constants of decomposition rate of boron raw material were calculated.

  15. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    Science.gov (United States)

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Environmental effect studies on a forest ecosystem in Germany

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Bunzl, K.

    1993-01-01

    Long-term acid deposition on a forest ecosystem can have serious impacts on many physicochemical processes in the soil. Since 1984 extensive studies have been carried out in the 'Hoglwald', an old Norway spruce stand near Munich, Germany. In 1986 a variety of radionuclides were deposited in the canopy and on the forest floor of the Hoglwald following the reactor accident at Chernobyl. The amount of 137 Cs from Chernobyl was about 10 times larger than that present in the soil before Chernobyl. Six experimental plots were established in order to study the potential disturbances caused by artificial acid irrigation and compensative liming. Using these fields, investigations on the interception and retention of radionuclides by a coniferous woodland have been done together with the deposition and vertical migration of the radionuclides in the forest. One of the most important results obtained was that 134 Cs deposition velocity in the spruce stand was as high as 5.5 mm/s, and thus higher by a factor of 10 than the corresponding value for the grassland. By evaluating the depth profiles of the Chernobyl-derived 137 Cs in the soil with a compartment model. The fixation of radiocesium in the forest soil was found to be a rather slow process. (author)

  17. Online measurement of biogenic organic acids in the boreal forest using atmospheric pressure chemical ionization mass spectrometry (APCI-MS)

    Science.gov (United States)

    Vogel, A. L.; Brüggemann, M.; ńijälä, M.; Ehn, M.; Junninen, H.; Corrigan, A. L.; Petäjä, T.; Worsnop, D. R.; Russell, L. M.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-04-01

    Emission of biogenic volatile organic compounds (BVOCs) by vegetation in the boreal forest and their subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA) which has important impacts on climate and human health. Oxidation of BVOCs produces a variety of mostly unidentified species in oxygenated organic aerosol (OOA). Presently aerosol mass spectrometers (AMS) are able to determine quantitative information about the relative oxygen to carbon content of organic aerosols and thereby reveal the photochemical age and volatility of organic aerosol by distinguishing between low volatile oxygenated organic aerosol (LV-OOA), semivolatile oxygenated organic aerosol (SV-OOA) and hydrocarbon like organic aerosol (HOA)[1]. However, the AMS can usually not be used to measure and quantify single organic compounds such as individual biogenic organic marker compounds. Here we show the results of online measurements of gas and particle phase biogenic acids during HUMPPA-COPEC 2010 at Hyytiälä, Finland. This was achieved by coupling a self built miniature Versatile Aerosol Concentration Enrichment System (mVACES) as described by Geller et al. [2] with an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI IT MS; Hoffmann et al., [3]). The benefits of the on-line APCI-MS are soft ionization with little fragmentation compared to AMS, high measurement frequency and less sampling artifacts than in the common procedure of taking filter samples, extraction and detection with LC-MS. Furthermore, the ion trap of the instrument allows MS/MS experiments to be performed by isolation of single m/z ratios of selected molecular species. By subsequent addition of energy, the trapped ions form characteristic fragments which enable structural insight on the molecular level. Comparison of APCI-MS data to AMS data, acquired with a C-ToF-AMS [4], revealed a good correlation coefficient for total organics and sulphate. Furthermore, data show

  18. Soil base saturation combines with beech bark disease to influence composition and structure of sugar maple-beech forests in an acid rain-impacted region

    Science.gov (United States)

    Gregory B. Lawrence; Todd C. McDonnell; Timothy J. Sullivan; Martin Dovciak; Scott W. Bailey; Michael R. Antidormi; Michael R. Zarfos

    2017-01-01

    Sugar maple, an abundant and highly valued tree species in eastern North America, has experienced decline from soil calcium (Ca) depletion by acidic deposition, while beech, which often coexists with sugar maple, has been afflicted with beech bark disease (BBD) over the same period. To investigate how variations in soil base saturation combine with effects of BBD in...

  19. Study of underpotential deposited Cu layers on Pt(111) and their stability against CO and CO2 in perchloric acid

    DEFF Research Database (Denmark)

    Schlaup, Christian Georg; Horch, Sebastian

    2013-01-01

    The underpotential deposition (UPD) of copper on a Pt(111) electrode and the influence of gas coadsorbates, i.e. CO and CO2, on the thus deposited copper layer were studied in a 0.1 M HClO4 electrolyte by means of EC-STM. By UPD, an atomically flat Cu layer is formed, which exhibits a pseudomorph...

  20. FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model.

    Directory of Open Access Journals (Sweden)

    Mingjun Wang

    Full Text Available Single amino acid variants (SAVs are the most abundant form of known genetic variations associated with human disease. Successful prediction of the functional impact of SAVs from sequences can thus lead to an improved understanding of the underlying mechanisms of why a SAV may be associated with certain disease. In this work, we constructed a high-quality structural dataset that contained 679 high-quality protein structures with 2,048 SAVs